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Abstract

Despite the fundamental variability of human appear-
ance, the last several years have seen considerable ad-
vances in age estimation from images of faces. Many of
these advances have been made possible by artificially re-
moving external sources of variability—they focus on highly
constrained images from datasets such as the MORPH face
database and FG-NET. We introduce a novel approach to
estimating age from a single “wild” image, where pose, il-
lumination, expression, face size, and face occlusions are
not managed. Our method is able to reduce the effects of
variations that already exist within in image.

Using pose-specific projections, we map image fea-
tures into a latent space that is pose-insensitive and age-
discriminative. Age estimation is then performed using a
multi-class SVM. We show that our approach outperforms
other published results on the Images of Groups dataset [9],
which is the only age-related dataset with a non-trivial num-
ber of off-axis “wild” face images. We also show results
that are competitive with recent age estimation algorithms
on the mostly-frontal FG-NET dataset, and we experimen-
tally demonstrate that our feature projections introduce in-
sensitivity to pose.

1. Introduction

There have been dramatic advances in face detection and
recognition in the last decade, as demonstrated by Phillips
et al. [21]. Unfortunately, progress achieved in recognition
has not directly led to improvements in facial analytics.

Over the last several years there has been significant in-
terest in systems that can predict biographical information
from a single face image. There are innumerable environ-
mental, genetic factors, and medical conditions that alter the
appearance of a person’s face, which make automatic tech-
niques for determining biographical details such as gender,
race, and age extremely challenging, even in controlled en-
vironments.

The problem worsens when wild images are used. Fea-
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tures are much less consistent across images when there are
significant variations in pose and illumination, and the gen-
erally unpredictable nature of wild images adds yet another
level of difficulty (“is that person’s face wrinkle-free or is it
a low resolution photo?”).

Most age estimation algorithms don’t explicitly account
for the variations found in wild data, even algorithms de-
signed to operate on uncontrolled images. Some introduce
insensitivity to variables such as face shape and lighting,
but the assumption of a frontal image is virtually univer-
sal. In this paper we propose an approach that mitigates the
effect of image variations while preserving age discrimina-
tion. Our current implementation focuses on pose variation,
but our overall framework can be extended to account for
other sources of variation, such as illumination, gender, ex-
pression, and race. In our approach pose-specific projec-
tions are applied to image features. These projections map
the features to a latent space that is insensitive to pose.

Our algorithm has three primary distinguishing charac-
teristics. (1) Instead of one classifier that takes features
from the entire face, we build independent sets of features
from several specific regions of the face. This in itself im-
proves robustness to differences in pose, face shape, or other
sources of spatial variability. By considering the regions in-
dependently of each other, local confusers such as occlu-
sions or sunglasses will have a reduced impact on the over-
all classification. (2) For each region, we learn projections
to a latent space that is discriminative with respect to age.
There are different projections for different poses, but they
all map to the same latent space. This allows direct com-
parison between images of faces with dramatically differ-
ent poses. (3) Instead of projecting from image space we
project from a feature space. There are a few advantages to
this. First, our feature space has a lower dimensionality than
images. Second, the image features introduce some degree
of robustness to variations, which results in a more stable
projection. For example, a change in lighting may have un-
predictable effects on an image-based projection, but will
have no effect on a projection from features that are them-
selves lighting invariant.
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Figure 1. Age estimation pipeline.

2. Related works
2.1. Age estimation

There are several approaches to representing the human
face for age estimation. Although some of the works dis-
cussed below have some insensitivity to pose, only one di-
rectly addresses the problem of pose variation.

e Anthropomorphic models. Kwon and da Vitoria
Lobo [17] use ratios of distances between facial landmarks
to distinguish between babies and adults. Ramananathan
and Chellappa [22] learn a continuous progression in face
age with similar ratios.

e Active appearance models (AAM). Luu et al. [19]
use AAMs to encode a representation of the face. The loca-
tions of the AAM’s landmarks are used to warp the image to
align with a “neutral” set of landmarks and image features
are extracted from the warped image. Image features are
mapped to age estimates using support vector regression.
It is important to note that the image warping helps provide
some amount of robustness to pose variation. Chen et al. [5]
explore various methods of model selection to accomplish
discriminative dimensionality reduction.

e Age manifolds. A number of works learn mappings
between face images and a low dimensional manifold [8],
[7]. A regression function is used to estimate age given the
projection of an image onto the manifold. These methods
are sensitive to variations in pose and image normalization
because raw images are used for the projection. Further-
more, the use of raw images necessitates a very large train-
ing set due to their high dimensionality.

¢ Biologically-inspired models. Taking a cue from
studies of human perception and recent efforts at object cat-
egory recognition, some works apply alternating layers of
simple and complex processing to a face image that has
been filtered with a set of Gabor filters [12]. Dimensionality
reduction is applied to the features and then a regressor or
classifier can be learned.

e Compositional models. A complex model of the hu-
man face, based on the compositional model from Xu et al.
[26], is proposed by Suo et al. [25].

Suo et al. [25] add an age-based dynamic element to the
model, with particular attention paid to how wrinkles de-
velop with age.

e Patch-based models. Several works follow the grid-
based approach introduced in Ahonen et al. [1], which ex-

tracts image features from a grid of image patches. Shan
[23] uses features from local binary pattern (LBP) and Ga-
bor wavelet features. Others use completed local binary pat-
terns, which are a variant of LBP that include contrast infor-
mation [32], [31]. Alnajar et al.[2] use soft assignments of
codewords in an attempt to make the encoding less sensitive
to image noise and illumination changes.

Li et al. [18] cluster patches from training images into
age- and pose-based code groups. At test time a feature
vector is created that indicates the distance between the
query image and each of the code groups. This approach
assumes that relatively simple distances are capable of pro-
viding good discrimination between code groups. The au-
thors demonstrate that their framework performs better than
image-based classifiers, but there is no comparison to other
published methods.

Yan et al. [29] characterize faces with a mixture of
spatially-flexible image patches. As with the AAMs, the
ability of the image patches to move within an image will
help compensate for small differences in pose.

e Hybrid approaches. Choi et al. [6] combine global
AAM features with local image features. Facial landmarks
are used to define regions in which to measure the responses
of Gabor filters (for wrinkle detection) and LBP features
(for skin texture description). All features are then com-
bined and a coarse age bin classification is followed by spe-
cific age estimation.

e Contextual models. Gallagher and Chen [9] at-
tempt to exploit the spatial relationships between people in
groups. Analysis of a large dataset of groups of people re-
vealed correlations between the age of people and their rel-
ative locations in an image.

2.2. Multi-view face recognition

Pose variation can dramatically complicate face recog-
nition. To address this, some works have explored project-
ing face images into a pose-neutral latent space. Sharma et
al. [24] propose a general multi-view approach called gen-
eralized multiview analysis (GMA), which is a supervised
extension of canonical correlation analysis. Kan et al. [15]
introduce a related method called multi-view discriminant
analysis (MvDA). Both of these methods attempt to learn a
set of pose-specific projections that minimize the distance
between instances of one class (in this case, class corre-
sponds to the identity of the person) and maximizes the dis-
tance between classes.
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Figure 2. (a) Example from the Images of Groups dataset. (b)
After normalization and landmark detection. (c,d) Image regions.

3. Robust age estimation in wild images

A general overview of our age estimation pipeline can be
seen in Figure 1. To briefly summarize our algorithm: face
detection is used to spatially normalize the image and locate
facial keypoints. The keypoints are used to define a set of
regions and within each region a set of features is extracted.
The dimensionality of the features is reduced with PCA, and
then the resulting feature vector is projected into a latent
space using MvDA. The projected features from each face
region are concatenated together and fed into a SVM-based
classifier to provide the final age estimate.

3.1. Preprocessing

We use the PittPatt [20] face detection software to find
faces in an image and locate major facial landmarks. Given
the location of two eyes (or if both eyes are not found, an
eye and a nose), we use an affine transform to rotate and
scale the image so that the eyes in all images are aligned.
All images are also cropped to a uniform size.

PittPatt also provides a partial pose estimate (in terms of
roll and yaw). Images with a negative yaw are flipped.

We use an extension of [3] that was provided by
Kriegman-Belhumeur Vision Technologies (KBVT) to lo-
cate 55 facial landmarks in each normalized image. An ex-
ample of image normalization and keypoint detection can
be seen in Figure 2.

3.2. Defining regions

Given the facial landmarks, we define image regions in
two ways. First, we take square patches around 25 of the
landmarks, as seen in Figure 2(c). These patches are in-
tended to capture shape characteristics of parts of the face
(eyes, nose, etc.). Second, we use the landmarks as refer-
ence points for 18 polygonal patches of the face, as seen in
Figure 2(d). These are intended to capture characteristics of
the skin, such as surface texture and wrinkles.

3.3. Features

Each of the N image regions defined in Section 3.2 is
used to generate a feature vector: f = [f1,...fx]". In our
specific implementation, N = 43.

Each feature vector f,, begins with the concatenation of
four feature types, which will be discussed in detail below.

fo = [0 FE FEE AL T (1)

As we will discuss in section 3.5, the feature vector fn is
first projected into a subspace of lower dimensionality with
basis vectors B,,. Next, the resulting vector is projected into
the latent age-encoded space through the pose-dependent
linear transformations W2, where p is the estimated pose of
the face.

fn = WEB, fn, )

e Gabor filters (f*)Finding wrinkles is either implic-
itly or explicitly at the core of many age estimation algo-
rithms. Gabor filters are excellent features for detecting the
fine lines that characterize wrinkles, and are consequently
frequently used [30], [6]. It is common to either use the en-
tire response of each filter or to use simple statistics (such as
maximum value and standard deviation) in portions of the
image. We take a somewhat different approach and build a
set of 8-bin histograms of filter responses for each of our 43
image regions. Following Yang et al. [30] we use 5 scales
and 8 orientations of Gabor filters.

e Local Binary Patterns (f*)We again use histograms
for LBP features, which are commonly used as a textural
descriptor. We first calculate LBP features for the entire im-
age and then build a histogram over the 256 LBP encodings
in each image region.

e GLCM statistics (f%)The gray-level co-occurrence
matrix (GLCM) is another way of describing texture and
is similar in spirit to LBP features. However, instead of
directly using the encoded relationships between pixels, it
is most common to use statistics from the GLCM matrix
[13]. We use the four GLCM properties available in MAT-
LAB’s Image Processing Toolbox (contrast, correlation, ho-
mogeneity, and energy). GLCM matrices are calculated
with single-pixel offsets at 0°, 45°, 90°, and 135°.

e Image PCA (f!)Some face parts, such as the eyes and
nose, have shapes that change with age. We learn PCA ba-
sis vectors from each of the image patches. We keep the
first 50 basis vectors, which collectively capture approx-
imately 90% of the variance in our training set. We use
these features for the square image patches only, as the ir-
regular shape of the polygonal patches make image-based
PCA methods difficult. In Equation 1, f represents the set
of image pixels in the n*" image patch, and A,, is the asso-
ciated set of PCA basis vectors.

3.4. Dimensionality reduction

Altogether, for each polygonal image region we have
5x8 8-bin Gabor feature histograms ( f¢*), a 256-bin LBP
histogram (f%), and 4x4 GLCM features (f*), resulting
in a 320 4 256 + 16 = 592 dimensional feature vector. The



same features are used for the square image regions, but we
also include the first 50 image intensity basis vectors ( f1),
resulting in a 642 dimensional feature vector.

These feature vectors are relatively large, and not all of
their elements are particularly useful. For example, there
are some LBP encodings that never appear in the training
set. To improve the overall quality of the feature vectors,
as well as to reduce the complexity of future calculations,
we reduce the dimensionality of the feature vectors through
PCA. This is done independently for each image patch. We
keep enough basis vectors to account for 95% of the vari-
ance in the training set.

3.5. MvDA projection

At this point it would be perfectly valid to train classifiers
or regressors on each B, fn, but we are interested in enhanc-
ing our model’s robustness and flexibility, particularly with
respect to pose. To this end, we partition the training data
into P pose bins and jointly learn MvDA projections for
each pose bin.

MvDA is a method for jointly learning linear projections
from different “views” to one common and discriminative
latent space. It is easiest to think of views in terms of cam-
era angles, but a “view” can apply to many different repre-
sentational modalities. For example, one could learn MvDA
projections in which a photograph is one considered to be
from one view, a sketch from a second view, and a painting
from a third. Here, we simply associate each of our P pose
bins with a different view.

MvDA operates, much like Fisher Discriminant Analy-
sis (FDA), by maximizing the inter-class variance and min-
imizing the intra-class variance. The nature of the class de-
pends upon the desired application. When the goal is face
recognition, MvVDA vectors with be learned with all pho-
tos of a specific subject belonging to one class. We, how-
ever, are interested in a person’s age, so we use age bins
as classes. This is the critical moment at which we cripple
our ability to estimate an exact age—the MvDA projections
only care about age bins and an ideal set of MvDA vectors
will project features from everybody in one age bin onto the
same point in latent space.

What we lose in fine-grained accuracy (age estimation to
the year), however, we gain in robustness and flexibility. A
good MvDA projection will have several benefits. (1) The
dimensionality of the feature vector will be further reduced.
(2) Any variation in the training data will be reflected in
the projection. For example, a projection that was trained
on images with varying light sources will have a natural in-
sensitivity to lighting. This also applies to pose. Even if
only one pose label is used (P = 1), the MvDA projection
will find the linear projection that is most robust to the pose
variations in the training data. (3) Most importantly, the
projections of images from different views can be directly

compared to each other.

It is important to note that our use of relatively coarse age
bins for class labels is an entirely practical matter. Given
sufficient training data, it would be reasonable to learn pro-
jections with a separate class label for each year of age.
With a limited number of images, it is necessary to strike a
balance between a large number of class labels (and conse-
quently a more fine-grained classification) and projections
of high quality.

The use of MvDA projections has an interesting effect
on the need for training data. Clearly, many training exam-
ples are required for every combination of view and class in
order to learn successful projections. Once the projections
have been made, training is dramatically simplified. In fact,
a successful classifier can be learned even if training data is
only available for one of the views. This is particularly im-
portant in the case of face age estimation. We wish to learn
classifiers that can be applied to wild images over a wide
range of poses, but the overwhelming majority of the train-
ing data consists of frontal images. We explore this issue in
Section 4.4.2 and Figure 4.

We wish to point out one important difference between
the MvDA projections that we learn, and the projections
used in [15],[8], and others. Those works learn projections
from image space, whereas we project from a feature space.
Not only does our feature space have an inherently smaller
dimensionality than an image (thereby reducing the number
of required training images), but it is a smarter space. After
all, the features themselves have been specifically designed
to extract useful information from the image, and it can be
expected that they would result in a more stable projection.

In Equation 2, W represents the set of direction vec-
tors used to project B,, fn into the latent age-encoded space
when the face in the image has been estimated to have pose
p. Please refer to [15] for details regarding the construction
of MvDA projections.

3.6. Classification

We use the MATLAB interface to LIBSVM [4] to learn
a C-SVC-type multi-class support vector machine (SVM)
with a radial basis function (RBF) kernel for age group clas-
sification. Parameters for the SVM were learned with five
fold cross-validation on training images.

4. Experiments

To properly assess our model’s insensitivity to pose, we
naturally must use a dataset with sufficient off-axis training
data. Unfortunately, we are unaware of any datasets of peo-
ple with known ages that have significant diversity in both
age and camera angle. In the absence of an ideal dataset we
give results on two datasets, each of which lacks one kind
of diversity.



MLP | WAS | QM | AGES | RUN | BM | RPK | BIF HIE Ours | Ours Ours
(28] | [11] | [28] | [101 | [28] | [27] | [29] | [12] | [6] | [19] | [5] || (ID) | (age) | (noproj.)
1039 | 806 | 757 | 622 [ 578 | 533 | 495 | 477 | 466 | 437 | 404 || 6.08 | 541 | 538

Table 1. Mean absolute error (MAE) on the FG-NET dataset. ”Ours (ID)” uses identity-based projections that were learned from the
PubFig dataset. ”Ours (age)” uses age-based projections from the Images of Groups dataset. ”Ours (no proj.)” does not use projections.

4.1. Datasets

The FG-NET Aging database is among the most com-
monly used datasets for evaluating contemporary age esti-
mation algorithms. Although the database is small (with
1,002 total images) and mostly frontal (our algorithm is
therefore unable to benefit from pose-specific projections)
we present results on FG-NET to show how our framework
compares to the best contemporary algorithms.

To better understand our algorithm’s robustness to pose
variation, we also present results on the Images of Groups
(IoG) dataset [9]. The dataset consists of 5,080 images with
a total of 28,231 labeled faces. The images were acquired
through searches on the website Flickr. Ground truth an-
notations were not available, so Gallagher et al. manually
assigned each face to one of seven age bins: 0-2, 3-7, 8-12,
13-19, 20-36, 37-65, and 66+. As the images were collected
from searches, there is an extremely uneven distribution of
images across age and pose. See Figure 3(a) for an illustra-
tion of the image distribution. In this figure, the cyan bars
are used to show the number of images in the 20° to 30°
pose bin. There are, for example, only 33 images of people
in the 66+ age bin with a pose greater than 20°. A negli-
gible number of images have a pose greater than 30°, and
these are simply included in pose bins that are described at
extending to 30°.

In the discussion below, by “pose” we refer to the yaw
estimate given by PittPatt. We ignore pitch and compensate
for roll through our image normalization.

4.2. Training

The FG-NET dataset contains images of 82 subjects, and
testing is performed with a leave-one-person-out approach.
Classifiers are trained on images of 81 of the subjects and
evaluated on the remaining subject. This is repeated for
each of the subjects. Results are reported by the mean ab-
solute error (MAE) over all test samples.

FG-NET does not have a sufficient number of images
to learn robust projections, so we must learn them else-
where. We show results for three different approaches to
projection: (1) We learn age-based projections from the
IoG dataset, (2) we learn identity-based projections from
the PubFig dataset [16], and (3) we bypass projections al-
together and simply use raw features (after PCA dimen-
sionality reduction). Because age-based projections that are
learned from another dataset introduce age discrimination
beyond that of FG-NET, they do not lead to an entirely fair

comparison to other methods that only use age information
from FG-NET itself. For this reason, we also learn projec-
tions from a different dataset that are based on identity, and
not age. These projections do not carry any age informa-
tion, leading to a more fair comparison to baseline methods.
Finally, since the FG-NET is almost entirely frontal, pose-
specific projections will be of limited value in the first place.
For this reason, we show results without any projections
at all. In all three of these cases, the final classifiers were
learned using only data from the FG-NET dataset. Because
the dataset is evaluated in terms of MAE, we learn a support
vector regressor (SVR) instead of a multiclass SVM.

Evaluation on the IoG dataset typically relies on the ran-
dom selection of training and testing images. We followed
the same procedure as in [9]: training uses 3500 images that
are randomly selected with the constraint that an equal num-
ber of images fall in each age bin, and testing is performed
on 1050 independent images that are also uniformly dis-
tributed. Because of the relatively small number of images
in any given test set, we performed independent random ex-
periments 10 times and averaged the results.

To learn the image intensity PCA basis vectors we used
images from the Labeled Faces in the Wild dataset [14].
This avoids the extra computational burden of learning the
PCA basis vectors and applying the projections with every
train/test fold. Please note that the image intensity PCA
basis vectors are agnostic with respect to age, so any ad-
vantage from using data external to the training set is neg-
ligible. We relearn feature PCA basis vectors and MvDA
projections for each of the 10 evaluation trials.

4.3. FG-NET results

Results on the FG-NET dataset are shown in Table 1.
Our performance does not exceed every previous method,
but this is not the best platform for evaluating our algo-
rithm as we emphasize robustness to pose variation, which
is largely absent from this dataset. Our performance is best
when no projections are used, but this should not be surpris-
ing given the nature of the dataset. Recall that the projec-
tions are designed to put features from radically different
poses in the same latent space. When the dataset mostly
contains one pose, the projections are essentially superflu-
ous. Furthermore, the projections work better with classifi-
cation than regression because they are trained to discrimi-
nate on a class-by-class basis. For example, if a projection
is trained with a 13-19 year old class, features from a thir-
teen year old may end up closer to features from a nineteen



year old than from those of a twelve year old. This works
well when the same age classes are used for testing via clas-
sification, but it is not ideally suited for regression.

4.4. Images of Groups results

We present results for two sets of experiments on the IoG
dataset. The first set of experiments compares our results
to the best published results on the full IoG dataset. The
second set of experiments demonstrate that our projections
introduce pose-insensitivity to the age estimation process.

For each of the experiments, we evaluate three varia-
tions of our proposed model. The first variation uses only
one pose bin for MvDA projections. In this case, MvDA
reduces to FDA. The second variation uses two pose bins
(one for poses between 0° and 15°, and the other for poses
greater than 15°). The third variation takes the projections
from the first two and concatenates them together, to make
a double-length feature vector. Unfortunately, the limited
number of off-angle images makes it impossible to learn
successful projections with more pose bins.

4.4.1 Primary results

Results for all three variations of our model are shown in
Table 2 with other published results. A confusion matrix
for results with 1&2 pose bins is shown in Table 3. Note
that we report a 7% improvement over the best published
results [32]. The results are shown in more detail in Figure
3. Figures 3(b)-(d) report results for the portion of the test
set with images in the 0° to 10°, 10° to 20°, and 20° to 30°
pose bins, respectively.

There are a number of observations we wish to make
about this figure. First, notice that the performance for all
three variations of our model perform similarly for test im-
ages in the 0° to 10° pose bin (Figure 3(b)). In the 10°
to 20° pose bin (Figure 3(c)) the “2 poses” variation lags a
bit behind the other two variations, but the difference is not
dramatic. Things get interesting in the 20° to 30° (Figure
3(d)). Here, we see the variations with multiple pose views
with a clear advantage in four of the seven age bins, while
the “1 pose” variation dominates in three bins. It is perhaps
unsurprising that two of these three age bins are those with
the fewest off-angle images to train upon. It seems safe to
assume that a more balanced dataset would see reliably su-
perior results from models with multiple pose views.

4.4.2 Results with restricted training

To demonstrate that MvDA projections allow our model to
better generalize across pose, we restrict the training set
to images with a pose of 3° or less. For the three model
variations we have discussed thus far, it is still necessary
to learn MvDA projections using training data across the
entire range of poses, but the final classifier is only shown

Approach rank 1 rank 2

Appearance [9] 383% | 71.3%
Appearance + Context [9] 429% | 78.1%
Gabor + Adaboost [23] 43.7% 80.7%
LBP + Adaboost [23] 44.9% 83.0%

boosted Gabor + SVM [23] | 48.4% | 84.4%
boosted LBP + SVM [23] 50.3% | 87.1%

LBP variants [32] 51.7% 88.7%
Ours, 1 pose bin 58.3% 92.5%
Ours, 2 pose bins 57.1% | 91.5%
Ours, 1&2 pose bins 587% | 92.6%

Table 2. Results on the Images of Groups dataset. Training and
testing images were randomly selected from dataset following the
procedure described in [9]. Results are an average of 10 trials.
“rank 1” results are for correct age group classification. “rank 2”
results allow for an error of one age group.

Algorithm Estimate
0-2 4-7 | 812 | 13-19 [ 20-36 | 37-65 | 66+
0-2 | 8.7 | 156 | 0.7 0.3 0.3 0.3 0.0
4-7 | 13.1 | 609 | 20.7 | 3.9 0.6 0.6 0.2
8-12 | 0.7 | 27.0 | 46.6 | 169 | 54 2.8 0.7
13-19 [ 0.2 29 | 165 | 50.7 | 22.6 | 5.9 1.1
20-36 | 0.3 0.7 3.5 | 235 | 48.1 | 22.1 1.9
37-65] 0.1 0.7 2.6 8.0 | 229 | 462 | 195
66+ | 0.1 0.5 0.8 1.1 27 | 16.0 | 78.7

Human Estimate

Table 3. Confusion matrix of main results (1&2 pose bins).

features from nearly frontal training images. We also report
results for a new variation of our model that does not have
any exposure to age information for images with off-angle
poses, as described below.

Figure 4(a) shows results for our model with two addi-
tional variations. “1 pose (ID)” only uses one projection, as
with “1 pose (age),” but the MvDA projection was learned
differently. The projection was learned from the Labeled
Faces in the Wild, MUCT, and PubFig datasets using sub-
ject ID as a class. None of the images in the IoG dataset
were used to learn the projection, and the projection is com-
pletely agnostic with respect to age (the three datasets don’t
even have age annotations available). The final variation
does not use any MvDA projection at all, and simply uses
the feature vectors from the PCA described in Section 3.4.

In Figure 4(a), we see that our first three model variations
perform best on test images with pose less than 10°, but the
“1 pose (ID)” variation is the highest performer on test im-
ages with pose greater than 30°. This may be somewhat
surprising, since the first three model variations use projec-
tions that were learned using age-binned data at all angles,
but it is actually just a reminder that the dataset does not pro-
vide enough off-angle images to provide reliable age-based
projections at the more extreme angles.

We attempt to mitigate the effects of the dataset’s im-
balance by eliminating the two most poorly represented age
bins (8-12 and 66+) from the testing set, with results shown
in Figure 4(b). Only the testing set is altered—the classi-



fiers are the same as in Figure 4(a). Here, we see the vari-
ations with multiple projections performing the best, while
accuracy of the variation with no projection declines signif-
icantly as the test images get further away from frontal.

To more clearly show how the performance of each vari-
ation changes from more frontal images to more off-angle
images, Table 4 shows the percentage decrease in perfor-
mance from the 0° - 10° pose bin to the 20° - 30° pose bin.
The first column of results corresponds to Figure 4(a). The
“1 pose bin (ID)” variation shows the smallest performance
drop of less than 20%. The second column of results corre-
sponds to Figure 4(b). Notice that the variation with no pro-
jection shows a decrease in accuracy of nearly 50%, while
both the variations with projections based on more than one
pose bin show a decline of less than 20%. We were some-
what surprised by the difference between the two columns
for the “1 pose bin (ID)” variation, since its projections do
not rely on the IoG dataset. It may be due to a bias in the
classifier.

% decrease from 0°-10° to 20°-30°

Model test all ages | without 8-12 and 66+
1 pose bin (age) 23.6% 24.2%
2 pose bins (age) 30.9% 18.9%
1&2 pose bins (age) 26.4% 19.5%
1 pose bin (ID) 19.3% 29.6%
no projection 32.0% 47.4%

Table 4. Decrease in performance from frontal pose to off-angle
when trained only on the 0° to 3° pose range. Smaller is better.

5. Conclusions

We have introduced a novel approach to human age es-
timation from a single uncontrolled image. By projecting
image features into a pose-invariant latent space, we in-
troduce insensitivity to camera angles, which leads to in-
creased accuracy on wild images. We have shown that our
algorithm outperforms the best published results on a chal-
lenging dataset, is competitive on another dataset, and ex-
perimentally verified the pose-insensitivity of our model.
Our model is by no means constrained to age estimation.
In our next effort we will apply the same model to estimat-
ing gender, ethnicity, and expression in wild images.

Notice: This manuscript has been authored by UT-Battelle,
LLC, under Contract No. DE-AC05-000R22725 with the U.S.
Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for
United States Government purposes.

References

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description
with local binary patterns: Application to face recognition.
PAMI, 28(12), 2006.

[2] F. Alnajar, C. Shan, T. Gevers, and J.-M. Geusebroek.

Learning-based encoding with soft assignment for age esti-

mation under unconstrained imaging conditions. Image and

Vision Computing, 30(12):946-953, 2012.

P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-

mar. Localizing parts of faces using a consensus of exem-

plars. In CVPR, 2011.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems

and Technology, 2, 2011. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

C. Chen, Y. Chang, K. Ricanek, and Y. Wang. Face age

estimation using model selection. In CVPR, 2010.

[6] S.E.Choi, Y.J. Lee, S.J. Lee, K. R. Park, and J. Kim. Age

estimation using a hierarchical classifier based on global and

local facial features. Pattern Recognition, 44(6), 2011.

Y. Fu and T. S. Huang. Human age estimation with regres-

sion on discriminative aging manifold. Multimedia, IEEE

Transactions on, 10(4), 2008.

[8] Y. Fu, Y. Xu, and T. S. Huang. Estimating human age by

manifold analysis of face pictures and regression on aging

features. In Multimedia and Expo, 2007.

A. C. Gallagher and T. Chen. Understanding images of

groups of people. In CVPR, 2009.

[10] X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age
estimation based on facial aging patterns. PAMI, 2007.

[11] X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning
from facial aging patterns for automatic age estimation. In
ACM international conference on Multimedia, 2006.

[12] G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estima-
tion using bio-inspired features. In CVPR, 2009.

[13] R. M. Haralick, K. Shanmugam, and I. H. Dinstein. Textural
features for image classification. Systems, Man and Cyber-
netics, IEEE Transactions on, (6), 1973.

[14] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller.
E.: Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. 2007.

[15] M. Kan, S. Shan, H. Zhang, S. Lao, and X. Chen. Multi-view
discriminant analysis. In ECCV. 2012.

[16] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.
Attribute and simile classifiers for face verification. In ICCV,
2009.

[17] Y. H. Kwon and N. da Vitoria Lobo. Age classification from
facial images. CVIU, 74(1), 1999.

[18] Z.Li, Y. Fu, and T. S. Huang. A robust framework for mul-
tiview age estimation. In CVPRW, pages 9-16. IEEE, 2010.

[19] K. Luu, K. Ricanek, T. D. Bui, and C. Y. Suen. Age esti-
mation using active appearance models and support vector
machine regression. In BTAS, 2009.

[20] M. C. Nechyba, L. Brandy, and H. Schneiderman. Pittpatt
face detection and tracking for the clear 2007 evaluation.
In Multimodal Technologies for Perception of Humans.
Springer, 2008.

3

—

(5

—

[7

—

[9

—



10000 Number of images Test pose angle 0° to 10°

0.8

1000 0.6
m0-10 05 H 1 pose
m10-20 04 M 2 poses

100 2030 03

- 1&2 poses

0.2

0.1

10 0

(b)

Accuracy

13-19 20-36  37-65 8-12 13-19 20-36 37-65 66+

(a) Age Age
Test pose angle 10° to 20° Test pose angle 20° to 30°
0.9 09
0.8 0.8
0.7 0.7
0.6 0.6
g 8151 M 1 pose g gi W 1 pose
g 0‘3 M 2 poses E 0'3 M 2 poses
’ 1&2 poses - 1&2 poses
0.2 0.2
0.1 0.1 L .
0 0
3-7 8-12 13-19 20-36 37-65 66+ 3-7 8-12 13-19 20-36 37-65 6+
(C) Age (d) Age
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