
1

An efficient tensor transpose algorithm for multicore CPU,

Intel Xeon Phi, and NVidia Tesla GPU.

Dmitry I. Lyakh
*

National Center for Computational Sciences, Oak Ridge National Laboratory
†
, Oak Ridge TN, 37831

Abstract

An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units,

namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors

(multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use

of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the

overhead encountered in the transformation of tensor contractions into matrix multiplications in

computer implementations of advanced methods of quantum many-body theory (e.g., in electronic

structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that

typically appear in the so-called multireference correlated methods of electronic structure theory.

Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of

magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to

the naïve scattering algorithm (no memory access optimization). The tensor transpose routines

developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

Keywords: tensor transpose, array reordering, tensor contraction, many-body theory, electronic

structure, multireference, NVidia GPU, Intel Xeon Phi.

I. Introduction

*
 Corresponding author's email: quant4me@gmail.com (permanent) or liakhdi@ornl.gov (work).

†
 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.

Department of Energy. The United States Government retains and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

The Department of Energy will provide public access to these results of federally sponsored research in accordance with the

DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

mailto:quant4me@gmail.com
mailto:liakhdi@ornl.gov

2

Efficient, massively parallel tensor algebra algorithms are instrumental for enabling the use of

correlated (post-Hartree-Fock) quantum many-body methods [1] in high-impact simulations in

quantum chemistry, solid-state and nuclear physics. In particular, being implemented in a general-

purpose parallel library, those algorithms can help us increase both the size and the accuracy of

quantum many-body simulations, thus improving our predictive power in the search for efficient photo-

catalytic nano-systems, energy storage materials, etc. To date, in electronic structure theory (on a post-

Hartree-Fock level), several software packages exist [2-11], which are capable of performing massively

parallel tensor algebra operations. In particular, the NWChem [2-3] software suite, based on the Global

Arrays (GA) library [12-14], exploits the automated code generation module TCE (Tensor Contraction

Engine) [15-17] (together with its later extensions [38-41]) in order to implement optimized tensor

contraction routines. The ACESIII software package [4-7], the first electronic-structure software

equipped with an internal domain-specific language SIAL (Super-Instruction Assembly Language) [7],

offers a developer a set of higher-level parallel abstractions in order to facilitate automatic

parallelization of the evaluation of tensor expressions encountered in conventional quantum many-body

methods (MBPT2, CCSD, EOM-CCSD [1]). Similarly to TCE in NWChem, an automated

equation/code generation plug-in has also been developed for the SIAL language [18], although rather

limited capabilities of SIAL prevented its extensive deployment (the next generation ACES code,

ACES IV, is expected to have a more flexible implementation of the SIAL language). Among the new

experimental attempts aiming at massive parallelism, we need to mention the CYCLOPS tensor algebra

library [19] that exploits a cyclic distribution of tensors (multidimensional arrays) in pursuit of better

load balancing and communication regularization. A conceptually close, massively parallel RRR

framework, based on the block-cyclic distribution of tensors, was reported very recently [41]. Besides,

let us mention the C++ tensor algebra code by Hanrath [20], a shared-memory tensor algebra library by

Epifanovsky et. al. [37] (used in Q-Chem [21]), and a shared-memory (accelerator-enabled) tensor

3

algebra library TAL-SH developed by the present author.

Technically, regardless of the actual choice of a correlated many-body method, tensor contractions

form the most computationally expensive part of its computer implementation. A tensor contraction is

a reduction over pairs of indices shared by two tensors. Fortunately, the binary tensor contraction

operation can be reduced to a matrix-matrix multiplication (extremely well parallelized on both x86

Intel/AMD CPU, Intel Xeon Phi, and NVidia GPU) via several tensor transpose (tensor dimension

reordering) operations. For example, the following tensor contraction

𝑍𝑎1,𝑎2,𝑎3,𝑖1,𝑖2,𝑖3
+= 𝑆𝑎1,𝑎2,𝑐1,𝑐2,𝑖1,𝑖2,𝑖3,𝑘1

𝐻𝑘1,𝑎3,𝑐1,𝑐2
 (1)

can be evaluated as

1. Tensor transpose: 𝑆𝑎1,𝑎2,𝑐1,𝑐2,𝑖1,𝑖2,𝑖3,𝑘1
→ 𝑆𝑎1,𝑎2,𝑖1,𝑖2,𝑖3,𝑘1,𝑐1,𝑐2

;

2. Tensor transpose: 𝐻𝑘1,𝑎3,𝑐1,𝑐2
→ 𝐻𝑘1,𝑐1,𝑐2,𝑎3

;

3. Matrix multiplication: 𝑍(𝑎1,𝑎2,𝑖1,𝑖2,𝑖3);(𝑎3)+= 𝑆(𝑎1,𝑎2,𝑖1,𝑖2,𝑖3);(𝑘1,𝑐1,𝑐2)𝐻(𝑘1,𝑐1,𝑐2);(𝑎3);

4. Tensor transpose: 𝑍𝑎1,𝑎2,𝑖1,𝑖2,𝑖3,𝑎3
→ 𝑍𝑎1,𝑎2,𝑎3,𝑖1,𝑖2,𝑖3

.

In step 3 above, multiple indices grouped within parentheses are combined into a single (composite)

index, thus transforming the tensors into three matrices. Formally, on average, a tensor transpose

involves an order of magnitude less operations than a matrix multiplication. Thus, one might expect

steps 1, 2, 4 to take much less time than step 3. In practice, however, this is often not the case because

the tensor transpose performs element-wise data scattering/gathering and cannot be executed efficiently

on modern computer architectures if implemented straightforwardly (due to a high rate of cache

misses). To improve efficiency, one can try using in-place reordering algorithms [22] (if memory

bound) or employ optimized generic sorting algorithms, especially for tensors of lower dimensionality

(say, up to four). However, there is a whole class of high-end correlated many-body theories [23-33]

where the tensor dimensionality can grow really high, thus increasing the size of the sorted keys.

4

Consequently, the main objective of this work is to introduce an alternative, cache-efficient, parallel

tensor transpose algorithm (as a part of the tensor contraction operation) capable of running on

multicore compute nodes, possibly equipped with the Intel Xeon Phi and NVidia GPU accelerators.

Such an algorithm will reduce the overhead of tensor element reordering during the transformation of

tensor contractions into matrix-matrix multiplications.

In the context of tensor algebra for electronic structure theory, this problem has been addressed

before by Hammond [34] and Hanrath [20]. In particular, Hammond employed an automatic code

generator in order to sample the loop optimization space for tensor transposes of relatively low rank.

He found [34] that the optimal solution delivers a significant performance gain over the implementation

used in TCE [15-17] on a single CPU core.

Here, we extend the previous studies on tensor transpose algorithms, emphasizing the case of

higher-rank tensors with small and irregular dimensions that has not been carefully investigated before.

Apparently, for higher-rank tensors, an exhaustive sampling of the loop optimization space would be

prohibitive in terms of the time required. Below, we present a formal analysis of the tensor transpose

problem and implement a universal multithreaded (OpenMP based) subroutine for multicore CPU and

Intel Xeon Phi as well as a universal CUDA kernel for NVidia GPU, thus covering all possible tensor

transpose cases (arbitrary tensor rank, size, and permutation). The performance of the corresponding

routines is subsequently analyzed on multicore CPUs (AMD Opteron 6274, AMD Opteron 6378, Intel

Xeon E5-2670), Intel Xeon Phi 5110P, and NVidia Tesla K20X GPU. The routines have been put

together into a general-purpose tensor algebra library under the working name TAL-SH (with three

submodules, CP-TAL, PH-TAL, NV-TAL, for CPU, Xeon Phi, and NVidia GPU, respectively).

II. Algorithm

A general rank-n tensor 𝑇(𝑖1,..., 𝑖𝑛) is a map {𝑖1,..., 𝑖𝑛} → (ℝ|ℂ), where 𝑖1,..., 𝑖𝑛 are integers, and

real/complex numbers are assumed to be represented in either single or double precision when storing

5

the corresponding array in computer memory. Formally, the tensor transpose (tensor dimension

reordering) problem can be defined as

𝐷(𝑖1,..., 𝑖𝑛) = 𝑆(𝑖𝑗1
,..., 𝑖𝑗𝑛

) ∀{𝑖1,..., 𝑖𝑛}, (2)

where n is the number of dimensions (tensor rank), each tensor index 𝑖𝑘 independently runs over the

integer range 1 ≤ 𝑖𝑘 ≤ 𝑁𝑘, and {𝑗1,..., 𝑗𝑛} is the required index permutation (dimension k of the input

tensor S becomes dimension 𝑗𝑘 in the output tensor D). For n=2 the (non-trivial) problem reduces to the

matrix transpose whereas for n=1 it is always a trivial copy. If a general tensor transpose (Eq. 2) is

implemented as a straightforward nest of loops over consecutive dimensions of the input/output tensor,

one will end up scattering/gathering individual tensor elements to/from very different computer

memory locations, which is not cache-friendly, unless the leading dimensions of both tensors coincide

and the aggregate size of those leading dimensions is comparable to or exceeds the cache line length.

To improve cache utilization, we present a tensor transpose algorithm based on a generalization of

cache-efficient matrix transpose algorithms (see Ref. [35], for example). The subsequent parallelization

of the algorithm is done only for shared-memory systems (multicore CPU, Intel Xeon Phi, NVidia

GPU). A distributed tensor transpose can easily be implemented on top of our developments if the

tensors (arrays) are distributed among MPI processes in terms of dense tensor blocks obtained by

segmentation of index ranges (tiling techniques used in Global Arrays [12-14] or ACES III [4-7] are an

example). In such a case, each tensor block will stay on the same node. Only the internal element order

in a tensor block will be modified according to a given permutation, that is, a tensor block will be

transposed into another tensor block. In the current work, we restrict ourselves to dense tensor blocks,

although partially ordered tensor block storage schemes (with partial order relations between tensor

dimensions) are extremely important when dealing with higher-rank tensors encountered in

multireference quantum many-body theory [23-33]. The implementation of the corresponding (partially

6

ordered) tensor transpose algorithms will be reported elsewhere. For dense tensor blocks, we can

assume either a Fortran-like or a C-like array element storage, where the fastest changing index will be

called the leading or minor (first in Fortran, last in C) whereas the most slowly changing one will be

referred to as senior (last in Fortran, first in C). For the sake of clarity, we will adopt the Fortran

convention here, thus having a tensor block (or, simply, a tensor) 𝑇(𝑖1,..., 𝑖𝑛) stored in memory

contiguously as a Fortran array.

As we have mentioned, the tensor transpose problem for rank-2 tensors is reduced to the well-

studied matrix transpose, for which cache-efficient algorithms are widely available [35]. Those

algorithms are based on matrix tiling such that the tiles can be transposed consecutively (or in parallel)

by utilizing only a handful of cache lines for each tile. In this case, two-dimensionality of matrix tiles

maps perfectly onto the two-dimensional structure of the cache, represented by the cache line length

and the number of utilized cache lines (width). Provided that the length of the senior dimension of the

matrix is neither a half nor a multiple of the L1 cache size, one can obtain close to the optimal

performance on modern processors (with cache associativity higher or equal to two). Here and in the

following discussion, we express the cache size in units equal to the size of a tensor element (4 or 8

bytes for real, 8 or 16 bytes for complex numbers, depending on the precision used).

An attempt to straightforwardly adopt the cache-efficient matrix transpose algorithm for tensors of

dimensionality higher than two will quickly fail however, since maintaining a manageable size of

tensor sub-blocks (higher-dimensional counterparts of matrix tiles) with uniformly extended

dimensions will result in very small index segments, leading to more frequent cache misses. Hence, in

order to keep utilizing the CPU cache efficiently, one has to explore a non-uniform partitioning of a

tensor into tensor sub-blocks by grouping/segmenting its specific dimensions, depending on a given

index permutation. For NVidia GPU, the equivalent of the efficient CPU cache utilization is the

coalescence of global memory accesses per thread warp. The corresponding algorithms are formalized

7

below.

Let us filter out certain tensor transpose cases for which an efficient algorithm will be obvious. We

will need some formal definitions:

Definition 1: A multi-index of length m≤n is a subset of m distinct tensor indices, {𝑖𝑙1
,..., 𝑖𝑙𝑚

},

placed in a specific order, where n is the tensor rank (total number of tensor dimensions).

The position of each index in a multi-index is fixed. Any possible combination of index values in a

multi-index {𝑖𝑙1
,..., 𝑖𝑙𝑚

} is a particular value of that multi-index, the union of which forms the multi-

index range. The basic set operations (union, intersect, etc.) will apply to multi-indices, with additional

index reordering whenever necessary (specified in each particular case).

Definition 2: The volume of multi-index {𝑖𝑙1
,..., 𝑖𝑙𝑚

} is defined as 𝑉𝑜𝑙({𝑖𝑙1
,..., 𝑖𝑙𝑚

}) ≡ ∏ 𝑅𝑙𝑘

𝑚
𝑘=1 ,

where 𝑖𝑙𝑘
∈ 𝑟𝑎𝑛𝑔𝑒(𝑖𝑙𝑘

) and 𝑅𝑙𝑘
 is the extent of dimension 𝑙k.

First, any trivial index permutation, {1,..., 𝑛}, will result in a direct copy of the input tensor into the

output tensor. This special case will serve as a reference since the performance is only limited by the

memory bandwidth (no multi-index translation overhead, minimal cache misses, etc.). Another group

of special (easy) cases can be formed by those tensor transposes for which the index permutation

{𝑗1,..., 𝑗𝑛} and the tensors obey the following condition:

∃𝑚: (𝑗𝑘 = 𝑘, 1 ⩽ 𝑘 ⩽ 𝑚) AND (𝑉𝑜𝑙({𝑖1,..., 𝑖𝑚}) ⩾ 𝐿), (3)

where L is the cache line length (or the warp size for GPU accelerators) measured in words (the size of

the word is equal to the size of a tensor element). In this case, one will have 𝑉𝑜𝑙({𝑖𝑚+1,..., 𝑖𝑛})

independent tasks, each copying a contiguous segment of 𝑉𝑜𝑙({𝑖1,..., 𝑖𝑚}) consecutive elements from

the input tensor into a contiguous segment of the output tensor. Since the segment length is larger or

equal to the cache line length (or the warp size for GPU accelerators), this kind of tensor transposes is

expected to be already efficient (low rate of cache misses). Furthermore, any transpose involving small

8

tensors, as compared to the L1 cache size, can be done without any special treatment.

Another important special case is when the first (leading) dimension of the input tensor is different

from the first (leading) dimension of the output tensor and the extents of both are greater than or equal

to the cache line length (the warp size for GPU accelerators), L: (𝑗1 ≠ 1) AND (𝑅1 ⩾ 𝐿) AND (𝑅𝑗1
⩾

𝐿). In this case, for each value of the external multi-index, {𝑖1,..., 𝑖𝑛} ∖ {𝑖1, 𝑖𝑗1
}, a cache-efficient matrix

transpose corresponding to the indices 𝑖1 and 𝑖𝑗1
 needs to be performed:

 𝐷(𝑖1,..., 𝑖𝑗1
,...) = 𝑆(𝑖𝑗1

,..., 𝑖1,...). (4)

Hence, there will be 𝑉𝑜𝑙({𝑖1,..., 𝑖𝑛} ∖ {𝑖1, 𝑖𝑗1
}) independent tasks, each of which is a (cache-efficient)

matrix transpose.

If neither of the above conditions applies, the tensor transpose will be treated generically, as

formalized below (for both x86 CPU and NVidia GPU). Few more definitions:

Definition 3: The minor input multi-index of length m is a multi-index consisting of the first m

indices from the input tensor in their original order: 𝑀𝑚
𝐼 ≡ {𝑖𝑗1

,..., 𝑖𝑗𝑚
}. The minor output multi-

index of length k is a multi-index consisting of the first k indices from the output tensor in their

original order: 𝑀𝑘
𝑂 ≡ {𝑖1,..., 𝑖𝑘}.

Definition 4: The minor multi-index is the union of the minor input and minor output multi-

indices: 𝑀𝑚𝑘 ≡ 𝑀𝑚
𝐼 ∪ 𝑀𝑘

𝑂 = {𝑖𝑗1
,..., 𝑖𝑗𝑚

} ∪ {𝑖1,..., 𝑖𝑘}, where non-redundant indices from 𝑀𝑘
𝑂 are

appended to 𝑀𝑚
𝐼 . The external multi-index comprises the remaining tensor indices: 𝑀̄𝑚𝑘 ≡

{𝑖1,..., 𝑖𝑛} ∖ ({𝑖𝑗1
,..., 𝑖𝑗𝑚

} ∪ {𝑖1,..., 𝑖𝑘}) (in the order dictated by the output tensor here).

The above definitions allow us to formulate heuristic grouping/segmenting rules for tensor

dimensions, thus inducing a split of the tensor into smaller blocks with a shape/volume appropriate for

an efficient CPU cache utilization or for coalescing global memory accesses on an NVidia GPU. As

before, L will designate either the cache line length (for x86 CPU) or the warp size (for NVidia GPU)

9

expressed in words (the word size is equal to the tensor element size). The typical value for L is 8/16

double/single precision real numbers for x86 CPU and 32 real numbers for NVidia GPU (warp size).

Also, for NVidia GPU, B will designate the size (in words) of the shared-memory buffer allocated per

CUDA thread block.

Given a tensor and a permutation, we need to optimize the following parameters in our algorithm:

(a) The length of the minor input multi-index, m⩽n;

(b) The length of the minor output multi-index, k⩽n;

(c) Segment length for the last index of the minor input multi-index, 𝑠𝐼 ⩽ 𝑅𝑗𝑚
;

(d) Segment length for the last index of the minor output multi-index, 𝑠𝑂 ⩽ 𝑅𝑘.

The heuristic optimization criteria/constraints are:

(1) 𝑉𝑜𝑙(𝑀𝑚
𝐼) ⩾ 𝐿;

(2) 𝑉𝑜𝑙(𝑀𝑘
𝑂) ⩾ 𝐿;

(3) CPU: 𝑉𝑜𝑙(𝑀𝑚𝑘) ⩽ 𝑝𝐿2 ≤ 𝐿1_𝑐𝑎𝑐ℎ𝑒_𝑠𝑖𝑧𝑒, 1 ⩽ 𝑝 ⩽ (≈ 8);

 NVidia GPU: 𝑉𝑜𝑙(𝑀𝑚𝑘) ⩽ 𝐵 ⩾ 𝐿2;

(4) The last index (dimension) of the minor input/output multi-index can be split into segments

only if it is not an internal index in the output/input multi-index, respectively;

(5) Try keeping 𝑉𝑜𝑙(𝑀𝑚
𝐼) ≈ 𝑉𝑜𝑙(𝑀𝑘

𝑂).

Given an arbitrary tensor transpose, a special function returns the optimized parameters m, k, 𝑠𝐼, and 𝑠𝑂.

They are not guaranteed to result in the best possible performance but it should be reasonable in most

cases as illustrated in numerical results. The rationale behind the above optimization criteria/constraints

lies in a proper reshaping of an arbitrary tensor transpose into the form similar to the special case of

multiple matrix transposes (Eq. 4) that can utilize the cache efficiently. First, the minor input multi-

index is packed into a single super-index J:

10

𝑆(𝑖𝑗1
,..., 𝑖𝑗𝑚

; 𝑖𝑗𝑚+1
,..., 𝑖𝑗𝑛

) → 𝑆(𝐽; 𝑖𝑗𝑚+1
,..., 𝑖𝑗𝑛

). (5)

Similarly, the minor output multi-index is packed into a single super-index I:

𝐷(𝑖1,..., 𝑖𝑘; 𝑖𝑘+1,..., 𝑖𝑛) → 𝐷(𝐼; 𝑖𝑘+1,..., 𝑖𝑛). (6)

If too long, subject to constraint (4), super-indices J and I can be segmented by dividing into segments

the last constituent index, 𝑖𝑗𝑚
 and 𝑖𝑘, respectively, in order to fulfill the first three optimization criteria

(an analog of tiling in matrix transposes). Having combined the tensor indices in such a way, the

principal difference from the special case of multiple matrix transposes, depicted by Eq. 4, is that the

super-indices J and I can generally overlap (they can share the same tensor indices). If they do not

overlap, such that 𝑉𝑜𝑙(𝑀𝑚𝑘) = 𝑉𝑜𝑙(𝑀𝑚
𝐼) ⋅ 𝑉𝑜𝑙(𝑀𝑘

𝑂), we can symbolically write

∀𝑋: 𝐷(𝐼, 𝐽, 𝑋) = 𝑆(𝐽, 𝐼, 𝑋) ∀𝐼, 𝐽, (7)

where the original index ordering has been relaxed to some extent and X is the super-index obtained by

packing the indices of the external multi-index. Similarly to Eq. 4, these are just independent matrix

transposes, each corresponding to a certain value of X. We can also invoke a geometrical interpretation

using an n-dimensional Cartesian space (n is the tensor rank). In this space, a tensor occupies an n-

dimensional volume equal to the number of elements in the tensor. Having specified the minor multi-

index 𝑀𝑚𝑘(𝑠𝐼 , 𝑠𝑂), we can divide the tensor into smaller blocks extended over the dimensions involved

in the minor multi-index (taking into account possible segmentation of those) while being flat (segment

size of 1) over the dimensions contained in the external multi-index. The dimensionality of these

smaller blocks is equal to the length of the minor multi-index, 𝑑 ≤ (m + k): The blocks can be line

segments, plain rectangles, 3-dimensional parallelepipeds, and so on). Consequently, we will have a set

of independent tasks, each task being a tensor transpose of a small d-dimensional block that can be

executed in a cache-friendly manner.

Having defined the minor multi-indices, 𝑀𝑚
𝐼 ≡ {𝑖𝑗1

,..., 𝑖𝑗𝑚
} (input), 𝑀𝑘

𝑂 ≡ {𝑖1,..., 𝑖𝑘} (output), and

11

their union 𝑀𝑚𝑘 ≡ 𝑀𝑚
𝐼 ∪ 𝑀𝑘

𝑂, together with the index segmentation (if any), each tensor block, thus

obtained, is independently transposed by reorganizing the loops over the tensor indices. After having

segmented (at most two) minor tensor indices (𝑖𝑗𝑚
 and 𝑖𝑘), we impose the following order of loops in

the multicore x86 CPU algorithm (AMD/Intel CPU, Intel Xeon Phi):

Algorithm 1

Loops over the segments of 𝑖𝑗𝑚
 and 𝑖𝑘 (sets the current bounds for 𝑖𝑗𝑚

 and 𝑖𝑘 ranges);

 Loop nest over the indices of the external multi-index 𝑀̄𝑚𝑘 ≡ {𝑖1,..., 𝑖𝑛} ∖ ({𝑖𝑗1
,..., 𝑖𝑗𝑚

} ∪ {𝑖1,..., 𝑖𝑘});

 Loop nest over consecutive indices of 𝑀𝑚𝑘 ∖ 𝑀𝑚
𝐼 (the leftmost index is the innermost);

 Loop nest over consecutive indices of 𝑀𝑚
𝐼 (the leftmost index is the innermost).

𝐷(𝑖1,..., 𝑖𝑛) = 𝑆(𝑖𝑗1
,..., 𝑖𝑗𝑛

)

The first two loop nests define the coarse grain parallelism by spawning a set of independent tasks,

each corresponding to the transpose of a d-dimensional tensor sub-block accomplished by the last two

loop nests (note that in the last two loop nests the indices 𝑖𝑗𝑚
 and 𝑖𝑘 run within their current bounds due

to possible segmentation). In our OpenMP implementation, the iteration space of the first two loop

nests is distributed across the OpenMP threads, each thread obtaining a contiguous segment of the

iteration space. Let us analyze the cache utilization in each independent task (individual transpose of a

tensor sub-block). Since the innermost loop nest runs over the indices of 𝑀𝑚
𝐼 (the leading m indices of

the input tensor), the number of cache misses during consecutive 𝑉𝑜𝑙(𝑀𝑚
𝐼) reads is minimal (the fourth

loop nest is optimal for reading). At the same time, the corresponding writes to array D can cause up to

𝑉𝑜𝑙(𝑀𝑚
𝐼) cache misses, each write occurring to a distinct cache line (the first invocation of the fourth

loop nest can be the least optimal for writing). Then, in the best case, all those freshly opened write

12

cache lines will be kept open simultaneously such that, after the next iteration in the third loop nest (it

will shift the writing position in D by one), the following 𝑉𝑜𝑙(𝑀𝑚
𝐼) writes will be done to the same

(already opened) cache lines. In certain cases (appropriate tensor shapes/sizes and alignment), one can

achieve the optimal performance, that is, the number of cache misses will be equal to that of the ideal

case (direct copy of the input tensor into the output tensor without any permutation). Conversely, for

certain tensor shapes/sizes, the 𝑉𝑜𝑙(𝑀𝑚
𝐼) writes in the fourth loop nest may be mapped to the same

cache line, leading to multiple cache line replacements (this can happen when the elementary

increments 𝑖𝑗1
++ shift the write position in D by a multiple of the cache size). In this case, the

performance will be poor, similar to the naïve implementation of the tensor transpose via element-wise

scattering. On average, the number of collisions (cache line replacements) in write caching is likely to

be proportional to 𝑉𝑜𝑙(𝑀𝑚
𝐼) (the total extent of the fourth loop nest). At the same time, in order to

maintain efficient read/write caching when it is feasible, 𝑉𝑜𝑙(𝑀𝑚
𝐼) and 𝑉𝑜𝑙(𝑀𝑘

𝑂) cannot be less than L.

In practice, to get a compromise, both volumes should be chosen to lie between L and 4L, unless the

tensor transpose falls into one of simpler categories. This explains the heuristic rules formulated above.

As shown in numerical results, these rules can provide an order of magnitude speedup (on x86 CPU),

as compared to the naïve element-wise scattering algorithm, especially for higher-rank tensors (the

main accent of this work).

On NVidia GPU, an efficient tensor transpose algorithm is expected to coalesce global (read/write)

memory accesses per thread warp, which turns out to be a harder task than optimizing the L1 cache

utilization per thread on x86 CPU (including Intel Xeon Phi). Hereafter, the input/output tensors are

assumed to reside in the GPU global memory. A proper tensor transpose algorithm should read/write L

consecutive tensor elements per warp from/to global memory (L = warpSize). In order to achieve a

high degree of coalescence for global memory accesses, our CUDA kernel utilizes an intermediate

13

buffer allocated in the GPU shared memory (the buffer size is designated as B). According to the

heuristic rules formulated above, the lower bound for the buffer size is 𝐿2. The upper bound is also

limited due to the necessity of keeping the occupancy of streaming multiprocessors at a sufficient level

(we should note however that this is not very important since the tensor transpose algorithm mostly

depends on the efficiency of data movement). The GPU tensor transpose algorithm exploits the same

coarse grain parallelism as the CPU algorithm. Namely, the first two loop nests of Algorithm 1 are

distributed among CUDA thread blocks (they are independent). However, the inner part, executed

within each thread block, differs as shown below:

Algorithm 2

Loops over the segments of 𝑖𝑗𝑚
 and 𝑖𝑘 (sets the current bounds for 𝑖𝑗𝑚

 and 𝑖𝑘 ranges);

 Loop nest over the indices of the external multi-index 𝑀̄𝑚𝑘 ≡ {𝑖1,..., 𝑖𝑛} ∖ ({𝑖𝑗1
,..., 𝑖𝑗𝑚

} ∪ {𝑖1,..., 𝑖𝑘});

 Read 𝑉𝑜𝑙(𝑀𝑚𝑘) elements from the input tensor into the shared-memory buffer;

 __syncthreads();

 Write 𝑉𝑜𝑙(𝑀𝑚𝑘) elements from the shared-memory buffer to the output tensor;

 __syncthreads();

As seen from Algorithm 2, each thread block reads 𝑉𝑜𝑙(𝑀𝑚𝑘) elements from the input tensor by

dividing the range of the minor multi-index 𝑀𝑚𝑘 into segments of length 𝑉𝑜𝑙(𝑀𝑚
𝐼). These segments

are contiguous in memory occupied by the input tensor and each segment can be read in a coalesced

way by one of the thread warps available (fine grain parallelism). This also explains the heuristic rule

𝑉𝑜𝑙(𝑀𝑚
𝐼) ⩾ 𝐿 (to achieve coalescence). In this way, we load a part of the input tensor defined by the

minor multi-index (and index segmentation) into the shared-memory buffer. This part consists of

14

multiple contiguous segments of length 𝑉𝑜𝑙(𝑀𝑚
𝐼). Then, we upload (by all thread warps in parallel) the

content of the shared-memory buffer into the output tensor by segments of length 𝑉𝑜𝑙(𝑀𝑘
𝑂), which are

contiguous in memory occupied by the output tensor but scattered in the shared-memory buffer. If

𝑉𝑜𝑙(𝑀𝑘
𝑂) ⩾ 𝐿, the uploading process can benefit from coalescing global memory writes. In the writing

process, the translation of addresses is done via special (small) tables stored in shared-memory as well.

Since the GPU shared memory has a good extent of access randomization (no need of coalescence, but

conflicts are still possible), one may expect such an algorithm to be more efficient than the naïve

implementation via straightforward tensor element scattering. In practice, as one will see in numerical

results, our GPU algorithm is only 2-3 times faster on average. The high level of concurrency inherent

to NVidia GPUs seems to partially circumvent the scalar inefficiency of the scattering tensor transpose

algorithm in this case.

III. Numerical results

In order to test performance of our tensor transpose algorithms, we ran a series of random tensor

transposes with double precision real numbers. We varied the following parameters in our sample:

1. Tensor volume (number of elements): 37M, 77M, 141M;

2. Tensor dimensionality (rank): 2, 3, 4, 5, 6, 7, 8, 15;

3. Dimension spread (ratio between the largest and the smallest dimensions): [1, 5, 15].

While a specific tensor rank can always be imposed exactly, actual tensor sizes and dimension spreads

were only approximately equal to the above listed values (as close as possible). For each combination

of {tensor size; tensor rank; dimension spread}, we obtained seven random permutations (trivial

permutations were excluded), performed the corresponding tensor transposes together with their

inverses, and recorded the timings for our algorithm and the straightforward scattering algorithm, in

which the tensor elements are consecutively read from the input tensor and written into their new

15

locations in the output tensor. Then, the average bandwidths were calculated for our algorithm and for

the scattering algorithm. Both values were compared to the reference case of the direct copy of the

input tensor into the output tensor (without any permutation) that was also averaged over the random

sample. The total sample size is 504=3*8*3*7. For the sake of completeness, we will also provide the

average bandwidths obtained for the reverse permutations exclusively, that is, for permutations like

{2,1}, {3,2,1}, {4,3,2,1}, {5,4,3,2,1}, etc., which are believed to represent the worst case.

Our OpenMP implementation for multicore AMD processors was compiled with the GNU Fortran

compiler v.4.8.2 (O3 optimization), the OpenMP implementation for multicore Intel Xeon and many-

core Intel Xeon Phi processors was compiled with the Intel Fortran compiler v.2015.0.090 (O3

optimization), and the GPU CUDA C implementation was compiled with the CUDA 5.5 nvcc compiler

(O3 optimization).

Figure 1 illustrates the average bandwidths obtained on a single node of the Cray XK7 HPC system

Titan [36] at the National Center for Computational Sciences at the Oak Ridge National Laboratory.

The node consists of two NUMA nodes equipped with AMD Opteron 6274 (Interlagos), totaling in 16

integer cores operating under the 2.2 GHz clock, and an NVidia Tesla K20X GPU accelerator (Kepler

architecture). The performance of the tensor transpose algorithms on NVidia Tesla K20X will be

shown later, for now focusing on AMD CPU only. As one can see, our efficient tensor transpose

algorithm is on average 2 times slower than the direct copy when using 2 OpenMP threads, while only

about 50% slower with 8 and 16 OpenMP threads. In all cases, it is significantly faster than the naïve

scattering algorithm (≈7x speedup). Note that the memory channels get saturated already with 8

OpenMP threads. Figure 2 demonstrates the performance of the tensor transpose algorithms for reverse

permutations exclusively. It is only slightly worse than the random permutation case. Figure 3 provides

a more detailed analysis where the tensor transpose bandwidths are provided for each tensor rank

separately (the size of the sample is 63 for each tensor rank), using 16 OpenMP threads. As one can see,

16

the highest bandwidth is achieved for tensor ranks of 3 to 6.

Figures 4, 5, 6 show the results obtained on a single node of the Linux Cluster at the HPC center of

the University of Florida equipped with AMD Opteron 6378 processors (2.4 GHz), totaling in 64 cores

per node. Although the performance of our efficient tensor transpose algorithm, as compared to the

direct copy, is even better than for AMD 6274, the inefficiency of the scattering algorithm is less

pronounced in the case of random permutations. Yet, for reverse permutations, our algorithm still

delivers a significant speedup with 64 OpenMP threads. And again, the highest bandwidth is achieved

for tensor ranks of 3 to 6, as one can see in Figure 6.

Figure 7, 8, 9 show the average bandwidths obtained on a single node of the Beacon computer

cluster located at the National Institute for Computational Sciences at the Oak Ridge National

Laboratory. Beacon is a heterogeneous machine equipped with Intel Xeon E5-2670 (2.6 GHz) CPU and

Intel Xeon Phi 5110P MIC accelerators. Focusing on CPU only, the superiority of our algorithm over

the naïve scattering algorithm is obvious, although we are quite behind the direct copy case on lower

numbers of cores (2, 4, 8). According to Figure 9, our algorithm significantly outperforms the naïve

scattering algorithm for higher tensor ranks.

Finally, Figures 10-13 show the results obtained on accelerators (Intel Xeon Phi 5110P with 236

OpenMP threads and NVidia Tesla K20X with 256 threads per CUDA block). Clearly, our efficient

algorithm favors Intel Xeon Phi, delivering up to 30x speedup over the scattering algorithm for some

cases, as can be seen from Figure 12 (mostly due to higher L1 cache associativity). It is also only about

2.5 times slower than the direct copy in the case of random permutations, as compared to about 5.5

times on NVidia Tesla K20X. For reverse permutations, the performance on Intel Xeon Phi and NVidia

Tesla K20X is similar. As we already mentioned in the previous section, the high level of concurrency

pertinent to NVidia GPU alleviates the scalar inefficiency of the scattering algorithm to a big extent,

thus diminishing the superiority of our efficient algorithm. On average, we only observe about 2x-3x

17

speedup on NVidia Tesla K20X. Also, the use of the intermediate shared memory buffer on NVidia

GPU introduces a noticeable overhead, thus putting the performance of our algorithm well behind the

direct copy. Besides, contrary to Intel Xeon Phi and AMD/Intel CPU, our GPU tensor transpose

algorithm favors lower tensor ranks, as can be seen from Figure 13.

IV. Conclusions

Based on the results obtained on our random samples, the presented (efficient) tensor transpose

algorithms show a significant speedup with respect to the naïve scattering algorithm, especially for

multicore CPU and many-core Intel MIC devices. It turned out that the optimization of the L1 cache

utilization per CPU core is easier than achieving a coalescence of global memory accesses on NVidia

GPU (for the tensor transpose problem). Interestingly, the high level of concurrency exposed by

NVidia GPU alleviates the scalar inefficiency of the naïve scattering algorithm, thus diminishing the

superiority of our efficient GPU algorithm. Nevertheless, we still achieve a steady 2x-3x speedup over

the scattering algorithm on Kepler architecture. Furthermore, while the bandwidths obtained on

multicore CPUs and NVidia GPU in each specific tensor transpose case had little variability, the

performance on Intel Xeon Phi could vary noticeably, depending on the previous operation (we took

special precautions in order to produce meaningful numbers).

Overall, the suggested tensor transpose algorithm shows a significant potential for improving the

performance of the tensor contraction operation, the cornerstone of any efficient computer

implementation of correlated quantum many-body methods.

V. Acknowledgements

The initial part of this work (open-source multi-CPU OpenMP implementation) was started during

author's postdoctoral work at the Quantum Theory Project at the University of Florida (group of Prof.

R. J. Bartlett) with the financial support from the Air Force Office for Scientific Research. The author

is thankful for that opportunity. The computational resources of the HPC Center of the University of

18

Florida are also appreciated. The rest of the work was accomplished in the Scientific Computing group

(led by Dr. T. Straatsma) at the National Center for Computational Sciences at the Oak Ridge National

Laboratory. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak

Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC05-00OR22725. A part of the presented results was obtained using

the computational resources of the Beacon project, supported by the National Science Foundation

under grant No. 1137097 and by the University of Tennessee: Any opinions, findings, conclusions, or

recommendations expressed in this material are those of the author and do not necessarily reflect the

views of the National Science Foundation or the University of Tennessee.

References

1. I. Shavitt, R. J. Bartlett, Many-Body Methods in Chemistry and Physics, Cambridge University

Press, Cambridge, 2009.

2. http://www.nwchem-sw.org/index.php/Main_Page

3. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J.

Nieplocha, E. Apra, T.L. Windus, W.A. de Jong. Comput. Phys. Commun. 181, 1477 (2010).

4. http://www.qtp.ufl.edu/aces

5. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens, R. J. Bartlett, J. Chem. Phys,

128, 194104 (2008).

6. B. A. Sanders, R. J. Bartlett, E. Deumens, V. Lotrich, M. Ponton. Proceedings of the

ACM/IEEE SC2010 Conference, Nov. 2010, New Orleans LA, USA.

7. E. Deumens, V. F. Lotrich, A. Perera, M. J. Ponton, B. A. Sanders, R. J. Bartlett. WIREs

Comput. Mol. Sci. 1, 895 (2011).

8. http://daltonprogram.org

9. http://www.psicode.org

http://www.nwchem-sw.org/index.php/Main_Page
http://www.qtp.ufl.edu/aces
http://daltonprogram.org/
http://www.psicode.org/

19

10. http://www.mpqc.org

11. http://www.msg.ameslab.gov/gamess/gamess.html

12. http://hpc.pnl.gov/globalarrays

13. J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Apra. Int. J. High Perform. C.

20, 203 (2006).

14. H. J. J. van Dam, W. A. de Jong, E. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, M.

Valiev. WIREs Comput. Mol. Sci. 1, 888 (2011).

15. http://www.nwchem-sw.org/index.php/TCE

16. S. Hirata, J. Phys. Chem. A 107, 9887 (2003).

17. S. Hirata, Theor. Chem. Acc. 116, 2 (2006).

18. D. I. Lyakh, R. J. Bartlett. 50th Sanibel Symposium, St. Simon's Island, GA, USA, Feb 24 –

Mar 2, 2010. Book of abstracts.

19. http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-210.html

20. M. Hanrath, A. Engels-Putzka. J. Chem. Phys. 133, 064108 (2010).

21. http://www.q-chem.com/

22. C. H.Q. Ding. IEEE Transactions on Parallel and Distributed Systems 12, 306 (2001).

23. P. Piecuch, N. Oliphant, L. Adamowicz. J. Chem. Phys. 99, 1875 (1993).

24. L. Adamowicz, J.-P. Malrieu, V. V. Ivanov. J. Chem. Phys. 112, 10075 (2000).

25. D. I. Lyakh, V. V. Ivanov, L. Adamowicz. J. Chem. Phys. 122, 024108 (2005).

26. V. V. Ivanov, L. Adamowicz, D. I. Lyakh. Collect. Czech. Chem. Commun. 70, 1017 (2005).

27. V. V. Ivanov, D. I. Lyakh, L. Adamowicz. Phys. Chem. Chem. Phys. 11, 2355 (2009).

28. M. Hanrath. J. Chem. Phys. 123, 084102 (2005).

29. A. Engels-Putzka, M. Hanrath. J. Chem. Phys. 134, 124106 (2011).

30. M. Kallay, P. G. Szalay, P. R. Surjan. J. Chem. Phys. 117, 980 (2002).

http://www.mpqc.org/
http://www.msg.ameslab.gov/gamess/gamess.html
http://hpc.pnl.gov/globalarrays/
http://www.nwchem-sw.org/index.php/TCE
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-210.html
http://www.q-chem.com/

20

31. H.-S. Hu, K. Kowalski. J. Chem. Theory Comput. 9, 4761 (2013).

32. D. I. Lyakh, M. Musial, V. F. Lotrich, R. J. Bartlett. Chem. Rev. 112, 182 (2012).

33. D. I. Lyakh, R. J. Bartlett. J. Chem. Phys. 133, 244112 (2010).

34. This information was deduced from the abstract of the PhD thesis of Dr. Jeff Hammond

“Coupled-cluster response theory: Parallel algorithms and novel applications” and another

unlabeled paper (found via GOOGLE) authored by him.

35. M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran. Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, Oct 17-19, 1999, New York City, NY. P.

285. DOI: 10.1109/SFFCS.1999.814600.

36. https://www.olcf.ornl.gov/titan

37. E. Epifanovsky, M. Wormit, T. Kus, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I.

Kaliman, A. Dreuw, A. I. Krylov. J. Comput. Chem. 34, 2293 (2013).

38. A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,

R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J.

Ramanujam, P. Sadayappan, A. Sibiryakov. Mol. Phys. 104, 211 (2006).

39. A. Hartono, Q. Lu, T. Henretty, S. Krishnamoorthy, H. Zhang, G. Baumgartner, D. E.

Bernholdt, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan. J. Phys. Chem. A 113, 12715

(2009).

40. P.-W. Lai, K. Stock, S. Rajbhandari, S. Krishnamoorthy, P. Sadayappan. Proceedings of SC'13,

article #13. DOI: 10.1145/2503210.2503290.

41. S. Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S. Krishnamoorthy, P. Sadayappan.

Proceedings of SC’14, P. 375, DOI: 10.1109/SC.2014.36.

https://www.olcf.ornl.gov/titan

21

Figure captions

1. Tensor transpose bandwidths obtained on AMD 6274 by the efficient and scattering algorithms,

compared to the reference case of direct copy. Random sample consists of arbitrary

permutations, excluding trivial ones.

2. Tensor transpose bandwidths obtained on AMD 6274 by the efficient and scattering algorithms,

compared to the reference case of direct copy. Random sample consists of reverse permutations

only (believed to be the worst case).

3. Tensor transpose bandwidths obtained on AMD 6274 (16 cores) by the efficient and scattering

algorithms, compared to the reference case of direct copy: Dependence on the tensor rank.

Random sample consists of arbitrary permutations, excluding trivial ones.

4. Tensor transpose bandwidths obtained on AMD 6378 by the efficient and scattering algorithms,

compared to the reference case of direct copy. Random sample consists of arbitrary

permutations, excluding trivial ones.

5. Tensor transpose bandwidths obtained on AMD 6378 by the efficient and scattering algorithms,

compared to the reference case of direct copy. Random sample consists of reverse permutations

only (believed to be the worst case).

6. Tensor transpose bandwidths obtained on AMD 6378 (16 cores) by the efficient and scattering

algorithms, compared to the reference case of direct copy: Dependence on the tensor rank.

Random sample consists of arbitrary permutations, excluding trivial ones.

7. Tensor transpose bandwidths obtained on Intel Xeon E5-2670 by the efficient and scattering

algorithms, compared to the reference case of direct copy. Random sample consists of arbitrary

permutations, excluding trivial ones.

8. Tensor transpose bandwidths obtained on Intel Xeon E5-2670 by the efficient and scattering

algorithms, compared to the reference case of direct copy. Random sample consists of reverse

22

permutations only (believed to be the worst case).

9. Tensor transpose bandwidths obtained on Intel Xeon E5-2670 (16 cores) by the efficient and

scattering algorithms, compared to the reference case of direct copy: Dependence on the tensor

rank. Random sample consists of arbitrary permutations, excluding trivial ones.

10. Tensor transpose bandwidths obtained on Intel Xeon Phi 5110P and NVidia Tesla K20X by the

efficient and scattering algorithms, compared to the reference case of direct copy. Random

sample consists of arbitrary permutations, excluding trivial ones.

11. Tensor transpose bandwidths obtained on Intel Xeon Phi 5110P and NVidia Tesla K20X by the

efficient and scattering algorithms, compared to the reference case of direct copy. Random

sample consists of reverse permutations only (believed to be the worst case).

12. Tensor transpose bandwidths obtained on Intel Xeon Phi 5110P by the efficient and scattering

algorithms, compared to the reference case of direct copy: Dependence on the tensor rank.

Random sample consists of arbitrary permutations, excluding trivial ones.

13. Tensor transpose bandwidths obtained on NVidia Tesla K20X by the efficient and scattering

algorithms, compared to the reference case of direct copy: Dependence on the tensor rank.

Random sample consists of arbitrary permutations, excluding trivial ones.

