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Abstract— We consider the problem of minimizing the long-
run expected average cost of a complex system consisting of
interactive subsystems with an emphasis on advanced propul-
sion systems, e.g., hybrid electric vehicles. We formulate a
multiobjective optimization problem of the one-stage expected
costs of the subsystems and provide a framework to prove that
the control policy yielding the Pareto optimal solution minimizes
the average cost criterion of the system.

I. INTRODUCTION

Complex systems consist of interdependent, diverse enti-
ties, that are connected with each other and can adapt, i.e.,
they can respond to their local and global environment. Com-
plex systems encountered in virtually all transportation- and
energy-related applications. Hybrid electric vehicles (HEVs)
and plug-in HEVs (PHEVs) are such complex systems. A
typical HEV powertrain configuration (Fig. 1) consists of
various interdependent subsystems, e.g., the internal com-
bustion engine, the electric machines (motor and generator),
and the energy storage system (battery), that interact with
each other and adapt appropriately to provide the power
demanded by the driver. In cruising, the power demanded
by the driver Pdriver is expressed by a positive amount of
torque. In braking, HEVs/PHEVs can recover energy, and
thus, recharge the energy storage system. The motor acts as
a generator and absorbs the maximum possible amount as
imposed by the system’s physical constraints. If a residual
amount of braking remains, the friction brakes handle this.

Thus the main advantage of HEVs and PHEVs is the
existence of these individual subsystems that can power the
vehicle either separately or in combination. The supervisory
power management control algorithm determines the control
policy that designates how to distribute the power demanded
by the driver to these subsystems to optimize vehicle’s
efficiency. The problem is formulated as sequential decision
making under uncertainty. A key aspect of this problem is
that each decision may influence the circumstances under
which future decisions will be made. Thus, the decision
maker must balance the desire for low present cost to avoid
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future situations where high cost is inevitable. For example,
the supervisory controller may need to save the energy
available in the battery and use it later when excessive stop-
and-go driving is happening that the engine is inefficient for.

Deriving the optimal control policy online and for different
drivers constitutes a challenging control problem and has
been the object of intense study since 1998. Dynamic pro-
gramming (DP) has been widely used as the principal method
for deriving the optimal control policy in HEVs/PHEVs [1]–
[3] for a given vehicle speed profile (i.e., commute from
point A to point B). DP has been extended to the stochastic
problem formulation in which the optimal control policy is
derived also offline for a family of vehicle speed profiles
[4]–[9].

Although DP can provide the optimal solution in both
the deterministic and stochastic formulation of the power
management control problem, the computational burden as-
sociated with deriving the optimal control policy prohibits
online implementation in vehicles, and it can grow in-
tractable as the size of the problem increases. Nonetheless,
DP is the only general approach for sequential decision
making problems under uncertainty, and even when it is
computationally prohibitive, it serves as the basis for other,
suboptimal approaches. To address these issues, research
efforts have been concentrated on developing online power
management algorithms [10]–[12]. A detailed survey of the
supervisory power management control algorithms that have
been reported in the literature to date can be found in [13].

In this paper, and motivated by previous work [14], we
seek to establish a framework for the analysis and stochas-
tic optimization of complex systems with constraints and
properties in line with HEVs/PHEVs. We generalize this
framework, however, so that it can be applied to other
complex systems consisting of subsystems that interact with
each other and their environment with constraints consistent
to those studied here. The contribution of this paper is the
formulation and solution of a multiobjective optimization
problem of the one-stage expected costs of all interactive
subsystems yielding an operating point that minimizes the
long-run expected average cost of the system.

The remainder of the paper proceeds as follows. In Section
II, we introduce our notation and formulate the problem.
In Section III, we develop a multiobjective optimization
framework to address the problem and we show that the
control policy yielding the Pareto optimal solution minimizes
the long-run expected average cost criterion. Finally, we
present an illustrative example in Section IV and concluding
remarks in Section V.



Fig. 1. A hybrid electric vehicle configuration: ηeng , ηgen, ηbat, and ηmot

are the efficiencies of the engine, generator, battery, and motor; Pdriver is
the power demanded by the driver; Pfuel is the heating value per unit time
of the fuel; Peng,1 and Peng,2 are the amounts of engine power provided
to the driver and generator respectively; Pgen is the electrical power created
from the generator; Pbat is the electrical power drawn from the battery to
power the motor; Qcharge is the initial capacity of the battery; and Pmot

is the mechanical power that the motor provides to the driver.

II. PROBLEM FORMULATION

A. Notation

We denote random variables with upper case letters, and
their realization with lower case letters, e.g., for a random
variable X , x denotes its realization. Subscripts denote
time, and subscripts in parentheses denote subsystems; for
example, Xt(i) denotes the random variable of the sub-
system i at time t, and x(i) its realization. The shorthand
notation Xt(1:N) denotes the vector of random variables(
Xt(1), Xt(2), · · · , Xt(N)

)
and x(1:N) denotes the vector of

their realization
(
x(1), x(2), · · · , x(N)

)
. P(·) is the transition

probability matrix, and E[·] is the corresponding expectation
of a random variable. For a control policy π, we use Pπ(·),
Eπ[·] and βπ to denote that the transition probability matrix,
expectation and stationary distribution depend on the choice
of the control policy π.

B. The System Model

We consider a system consisting of N subsystems. The
subsystems interact with each other and their environment.
At time t, t = 1, 2, · · · , T , the state of each subsystem
i,Xt(i), takes values in a finite state space S(i), which is
a metric space. For each subsystem i, we also consider a
finite control space U(i), which is also a metric space, from
which control actions, Ut(i), are chosen.

The initial state of the system X0(1:N) is a random variable
taking values in the system’s state space, S =

∏N
i=1 S(i).

The evolution of the state is imposed by the discrete-time
equation

Xt+1(1:N) = f(Xt(1:N), Ut(1:N),Wt(1:N)), (1)

where Wt(1:N) is the input from the environment. In a
HEV, for example, Wt(1:N) corresponds to the driver’s power
demand. The state of the system can be completely observed.

In our formulation, a state-dependent constraint is in-
corporated; that is, for each realization of the state of the
subsystem i, Xt(i) = x(i), there is a nonempty and closed
set C(x(i)) :=

{
u(i)|Xt(i) = x(i)

}
⊂ U(i) of feasible control

actions when the system is in state x(i). For each subsystem
i, we denote the set of admissible state/action pairs

Γ(i) : = {(x(i), u(i))|x(i) ∈ S(i) and u(i) ∈ C(x(i))} (2)

such that it is a measurable subset of S(i) × U(i), so it is
closed with respect to the induced topology on S(i) × U(i),
and thus it is compact. The set of admissible state/action
pairs for the system is

Γ: =

N∏
i=1

Γ(i) = {(x(1:N), u(1:N)))|x(1:N) ∈ S

and u(1:N) ∈ C(x(1:N))}, (3)

where C(x(1:N)) =
∏N
i=1 C(i)(x(i)).

For each state of the system Xt(1:N) = x(1:N), we define
the Borel measurable functions µ : S → U , where U =∏N
i=1 U(i), that map the state space to the control action

space defined as the control law. When the system is at state
Xt(1:N) = x(1:N), the controller chooses action according to
the control law u(1:N) = µ

(
x(1:N)

)
.

Definition 1: Each sequence of the measurable functions
µ is defined as a stationary control policy of the system

π : =
(
µ(1), µ(2), · · · , µ(|S|)

)
, (4)

where |S| is the cardinality of the system’s state space S.
Let Π denote the set of the collection of the stationary

control policies

Π: =

{
π|π =

(
µ(1), µ(2), · · · , µ(|S|)

)}
. (5)

The stationary control policy π operates as follows. As-
sociated with each state Xt(1:N) = x(1:N) is the function
µ
(
x(1:N)

)
∈ C(x(1:N)). If at any time the controller finds

the system in state x(1:N), then the controller always chooses
the action based on the function µ

(
x(1:N)

)
. In a HEV, for

instance, based on the current HEV state, the controller
chooses the amount of power for each subsystem that should
be either delivered to the driver or to other subsystems.
A stationary policy depends on the history of the process
only through the current state, and thus to implement it, the
controller only needs to know the current state of the system.
The advantages for implementation of a stationary policy are
apparent as it requires the storage of less information than
required to implement a general policy. Thus a stationary
policy is attractive in automotive-related applications where
computational and storage power is limited onboard a vehi-
cle.



At each stage t, the controller observes the state of the
system, Xt(1:N) = x(1:N) ∈ S , and an action, ut(1:N) =
µ(Xt(1:N)), is realized from the feasible set of actions at
that state. At the same stage t, an uncertainty, Wt(1:N), is
incorporated in the system. At the next stage, t+1, the system
transits to the state Xt+1(1:N) = x′(1:N) ∈ S and a transition
cost for each subsystem i , ct(i)

(
Xt+1(i)|Xt(i), Ut(i)

)
, where

ct(i) : S(i) × C(x(i)) × S(i) → R, and for the system,
ct
(
Xt+1(1:N)|Xt(1:N), Ut(1:N)

)
, where ct : S × C(x(1:N))×

S → R, are incurred.

C. Assumptions

In the model described above, we consider the following
assumptions:

(A1) The set Γ contains the graph of all Borel measurable
functions

(
µ(1), µ(2), · · · , µ(|S|)

)
.

(A2) The input from the uncertainty Wt(1:N) is a sequence
of independent random variables, independent of the initial
state X0(1:N), and take values in the finite sets W .

(A3) For each stationary control policy π, the Markov
chain

{
Xt(1:N)|t = 1, 2, · · ·

}
has a stationary probability

distribution.
(A4) The one-stage expected cost of the system, kπt : Γ→

R, is a function of the one-stage costs of the subsystems and
it is bounded.

(A5) We relax the relationship imposed in [14] between
the one-stage expected costs of the subsystems, and we
assume that the one-stage cost of each subsystem is a
monotonic decreasing function with respect to the one-
stage expected cost of the other subsystems. The implicit
belief here is that there are associated tradeoffs between the
subsystems. In HEV/PHEV, for example, from Fig. 1 it can
be inferred that the efficiency of the generator is a decreasing
function of the efficiencies of the battery and engine

ηgen =
Pbat − ηbat ·Qcharge

ηbat ·
(
ηeng · Pfuel − Peng,1

) . (6)

Thus, by operating the battery and the engine in a way to
maximize their efficiency, the efficiency of the generator is
decreasing. Similar tradeoffs appear also between the other
subsystems in HEVs/PHEVs.

We are concerned with deriving a stationary optimal
control policy π to minimize the long-run expected average
cost of the system

J(π) = lim
T→∞

1

T + 1
Eπ
[
T∑
0

kπt
(
Xt(1:N), Ut(1:N)

)]
, (7)

where kπt
(
Xt(1:N), Ut(1:N)

)
is the one-stage expected cost

of the system.

III. MULTIOBJECTIVE OPTIMIZATION ANALYSIS

A. Pareto Control Policy

Various methods can be used to solve (7) offline. In this
paper, we seek the theoretical framework that will yield the
optimal control policy online while the subsystems interact
with each other. At each stage t, we need to identify an

operating point among the subsystems that will minimize
the average cost of the system.

Let’s consider the function f : Γ→ RN ,

f =

(
kπt(1)

(
Xt(1:N), Ut(1:N)

)
, kπt(2)

(
Xt(1:N), Ut(1:N)

)
, ...,

kπt(N)

(
Xt(1:N), Ut(1:N)

))
, (8)

where kπt(i)
(
Xt(1:N), Ut(1:N)

)
is the one-stage expected cost

for each subsystem i and the following multiobjective opti-
mization problem

min
Ut(1:N)∈C(x(1:N))

(
kπt(1)

(
Xt(1:N), Ut(1:N)

)
,

kπt(2)

(
Xt(1:N), Ut(1:N)

)
, ..., kπt(N)

(
Xt(1:N), Ut(1:N)

))
. (9)

The result of the optimization problem (9) is called Pareto
efficiency. In a Pareto efficiency allocation among agents, no
one can be made better without making at least one other
agent worse. The following is the a formal definition of the
Pareto efficiency or Pareto efficient set from [15] adapted to
the problem formulation (9).

Definition 2 [15]: A solution Ut(1:N) = uo(1:N)∈ U
is called Pareto optimal if, for each realization of the
state Xt(1:N) = x(1:N), there is no u(1:N) ∈ U such
that kt(i)(x(1:N), u(1:N)) ≤ kt(i)(x(1:N), u

o
(1:N)), for i =

1, . . . , N . If uo(1:N) is Pareto optimal, kt(i)(x(1:N), u
o
(1:N))

is called Pareto efficient. If u1
(1:N), u

2
(1:N) ∈ U and

kt(i)(x(1:N), u
1
(1:N)) < kt(i)(x(1:N), u

2
(1:N)), we say

u1
(1:N) dominates u2

(1:N) and kt(i)(x(1:N), u
1
(1:N)) dominates

kt(i)(x(1:N), u
2
(1:N)). The set of all Pareto optimal solutions

uo(1:N)∈ U is the Pareto set, UPareto. The set of all efficient
points kt(i)(x(1:N), u

o
(1:N)) ∈ Y where uo(1:N) ∈ UPareto is

the Pareto efficient set Yeff .
The question that arises is under what conditions the

Pareto efficient set exists. The following result provides the
conditions for its existence.

Proposition 1 [15]: Let Γ be a nonempty and compact
set, and the one-stage expected cost for each subsystem i,
kπt(i)(Xt(i), Ut(i)) : Γ → R, be lower semicontinuous for all
i = 1, · · · , N, l ∈ N. Then the Pareto set is not empty.

In our problem, the set of admissible state/action pairs,
Γ, is a nonempty compact set. Furthermore, the one-stage
expected cost for each subsystem i, kπt(i)(Xt(i), Ut(i)), is a
continuous function. Consequently, the Pareto efficient set
exists.

Definition 3: The Pareto control policy πo is defined as
the policy that yields the Pareto efficient one-stage expected
cost for each subsystem i, kπ

o

(i)(Xt(1:N), U
o
t(1:N)), at each

realization of the system state Xt(1:N) = x(1:N).

B. Connection Between the Pareto Optimal Solution and the
Average Cost Criterion

To simplify notation, in the rest of the paper
the one-stage expected cost of each subsystem i,



kπt(i)
(
Xt(1:N), Ut(1:N)

)
, and the one-stage expected cost of

the system, kπt
(
Xt(1:N), Ut(1:N)

)
, incurred when the system

operates under the control policy π, will be denoted by kπt(i)
and kπt respectively.

We’ve assumed (A5) that the one-stage expected cost of
each subsystem i is a monotonic decreasing function, γ(i),
with respect to the expected cost of the other subsystems.
So, for each subsystem, when the system operates under the
control policy π the one-stage expected cost is given as a
function of the expected costs of the other subsystems

kπt(i) = γ(i)

(
kπt(1), k

π
t(2), · · · , k

π
t(i−1), k

π
t(i+1), · · · , k

π
t(N)

)
.

(10)
Thus for any other subsystem j and for any two control
policies π, π′ ∈ Π such that kπt(j) ≤ kπ

′

t(j), if we fix the
one-stage cost of the other subsystems, then

kπt(i) = γ(i)

(
· · · , kπt(j), · · ·

)
≥ kπ

′

t(i) = γ(i)

(
· · · , kπ

′

t(j), · · ·
)
.

(11)

1) Problem 1: We consider the special case where the
one-stage expected cost of the system is considered to be a
decreasing function, δ, with respect to the expected cost of
each subsystem i. So, when the system operates under the
control policy π, the one-stage expected cost is given as

kπt = δ
(
kπt(1), k

π
t(2), · · · , k

π
t(N)

)
. (12)

Thus for each subsystem i and for any two control policies
π, π′ ∈ Π such that kπt(i) ≤ k

π′

t(i), then

kπt = δ
(
· · · , kπt(i), · · ·

)
≥ kπ

′

t = δ
(
· · · , kπ

′

t(i), · · ·
)
. (13)

Theorem 1: For the Problem 1, the Pareto control policy πo

yields the minimum one-stage expected cost of the system,
k∗t = kπ

o

t .
Proof: For the ease of notation, we first prove the result

for 2 subsystems, and then we extend it for N subsystems.
From (10), the one-stage expected cost for the subsystem

1 is decreasing function with respect to subsystem 2

kπt(1) = γ(1)

(
kπt(2)

)(
or alternatively, kπt(2) = γ(2)

(
kπt(1)

))
,

(14)
and from (12), we have kπt = δ

(
kπt(1), k

π
t(2)

)
.

Suppose that there is another control policy π′ that yields
the minimum one-stage cost of the system at each realization
of the state, namely

kπ
′

t = δ
(
kπ

′

t(1), k
π′

t(2)) < kπ
o

t = δ
(
kπ

o

t(1), k
πo

t(2)

)
, (15)

and thus from (13), this implies kπ
′

t(1) > kπ
o

t(1) and kπ
′

t(2) >

kπ
o

t(2).
However, from (14)

kπ
′

t(1) = γ(1)

(
kπ

′

t(2)

)
> kπ

o

t(1) = γ(1)

(
kπ

o

t(2)

)
, (16)

implies that
kπ

′

t(2) < kπ
o

t(2), (17)

which contradicts the hypothesis.
Now, we extend the result for N subsystems following

similar arguments. Suppose that there is another control

policy π′ that yields the minimum one-stage cost of the
system at each realization of the state, namely

kπ
′

t = δ
(
kπ

′

t(1), k
π′

t(2), · · · , k
π′

t(N)

)
<

kπ
o

t = δ
(
kπ

o

t(1), k
πo

t(2), · · · , k
πo

t(N)

)
,

(18)

and thus from (13), for each subsystem i we have

kπ
′

t(i) > kπ
o

t(i). (19)

However, from (11) we infer that there is a subsystem j
whose expected cost is a monotonic decreasing function of
the cost of subsystem i (A6), and thus since kπ

′

t(i) > kπ
o

t(i)

kπ
′

t(j) = γ(j)

(
·, · · · , kπ

′

t(i), · · · , ·
)
<

kπ
o

t(j) = γ(j)

(
·, · · · , kπ

o

t(i), · · · , ·
)
,

(20)

which contradicts the hypothesis.

2) Problem 2: We consider the general case where the
one-stage expected cost of the system is both a monotonic
decreasing function with respect to the expected cost of a
group of subsystems and a monotonic increasing function
with respect to the expected cost of a group of the other
subsystems.

Definition 4: The group of subsystems whose expected
costs are a decreasing function with respect to the cost of
the system is defined as the minor group.

Definition 5: The group of subsystems whose expected
costs are an increasing function with respect to the cost of
the system is defined as the principal group.

Without loss of generality, we assume that the minor group
consists of the subsystems 1, 2, · · · ,m,m ∈ N, and the
principal group consists of the subsystems m + 1, · · · , N .
Thus, from Definition 4, for each subsystem i in the minor
group and for any two control policies π, π′ ∈ Π such
that kπt(i) ≤ kπ

′

t(i), if we fix the one-stage cost of the other
subsystems in both minor and principal groups we have

kπt = δ
(
· · · , kπt(i), · · ·

)
≥ kπ

′

t = δ
(
· · · , kπ

′

t(i), · · ·
)
. (21)

Similarly, from Definition 5, for each subsystem j in the
principal group and for any two control policies π, π′ ∈ Π
such that kπt(j) ≤ kπ

′

t(j), if we fix the one-stage cost of the
other subsystems in both minor and principal groups we have

kπt = δ
(
· · · , kπt(j), · · · ,

)
≤ kπ

′

t = δ
(
· · · , kπ

′

t(j), · · · ,
)
.
(22)

Let π̄ be the Pareto control policy of the minor group.
Namely, from Definition 3 if the system operates under
the control policy π̄, at each state of the system, then the
expected costs of the subsystems in the minor group are
Pareto efficient. Namely, for any control policy π ∈ Π, if we
ignore the one-stage expected cost of each subsystem in the
principal group

kπ̄t(i) ≤ k
π
t(i), i = 1, . . . ,m. (23)

Let π̄o be the Pareto control policy of the principal group.
Then, from Definition 3, if the system operates under the
control policy π̄o, then the expected costs of the subsystems



in the principal group are Pareto efficient at each state of the
system. Namely, for any control policy π ∈ Π, if we ignore
the one-stage expected cost of each subsystem in the minor
group then we have

kπ̄
o

t(j) ≤ k
π
t(j), j = m+ 1, . . . , N. (24)

Since the expected cost of the system exhibits different
correlations with the minor and the principal group, we
are interested in studying the impact of each group on
the optimal control policy. In particular, we would like to
investigate how the Pareto control policy of each group of
subsystems is related to the optimal control policy for the
system.

Theorem 2: In a complex system consisting of both minor
and principal groups, the Pareto control policy π̄o of the
principal group yields the minimum one-stage expected cost
of the system. Namely, for any control policy π ∈ Π, kπ̄

o

t ≤
kπt .

Proof: Let π̄ and π̄o be the Pareto control policies of the
minor and principal group respectively. Then for the minor
group and for any control policy π ∈ Π,

kπ̄t(i) ≤ k
π
t(i), i = 1, . . . ,m.

From definition 4 this implies

kπ̄t = δ
(
kπ̄t(1), k

π̄
t(2), · · · , k

π̄
t(m), · · ·

)
≥

kπt = δ
(
kπt(1), k

π
t(2), · · · , k

π
t(m), · · ·

)
.

(25)

Since the last inequality is true for any control policy π ∈ Π,
it is also true for the Pareto control policy of the principal
group, π̄o ∈ Π, thus we have

kπ̄t = δ
(
kπ̄t(1), k

π̄
t(2), · · · , k

π̄
t(m), · · · , ·

)
≥

kπ̄
o

t = δ
(
kπ̄

o

t(1), k
π̄o

t(2), · · · , k
π̄o

t(m), · · · , ·
)
.

(26)

Similarly, for the principal group and for any control
policy π ∈ Π we have

kπ̄
o

t(j) ≤ k
π
t(j), j = m+ 1, . . . , N

which implies

kπ̄
o

t = δ
(
· · · , kπ̄o

t(m+1), k
π̄o

t(m+2), · · · , k
π̄o

t(N)

)
≤

kπt = δ
(
· · · , kπt(m+1), k

π
t(m+2), · · · , k

π
t(N)

)
.

(27)

Since the last inequality is true for any control policy π ∈ Π,
it is also true for the Pareto control policy of the minor group,
π̄ ∈ Π, thus we have

kπ̄
o

t = δ
(
·, · · · , kπ̄o

t(m+1), k
π̄o

t(m+2), · · · , k
π̄o

t(N)

)
≤

kπ̄t = δ
(
·, · · · , kπ̄t(m+1), k

π̄
t(m+2), · · · , k

π̄
t(N)

)
.

(28)

Hence from (25) and (28)

kπ̄
o

t = δ
(
kπ̄

o

t(1), k
π̄o

t(2), · · · , k
π̄o

t(N)

)
≤

kπt = δ
(
kπt(1), k

π
t(2), · · · , k

π
t(N)

)
.

(29)

Corollary 1: In a complex system consisting of both minor
and principal groups with the assumptions and constraints

consistent to those considered here, it is sufficient to focus
only on the principal group.

Theorem 3 [16]: In a complex system consisting of both
minor and principal groups, the Pareto control policy π̄o

of the principal group is the optimal control policy π∗ that
minimizes the long-run expected average cost criterion (7).

Proof: Let π̄o be the Pareto control policy. From
Theorem 2 we have that for each realization of the state
Xt(1:N), kπ̄

o(
Xt(1:N), Ut(1:N)

)
≤ kπ

′(
Xt(1:N), Ut(1:N)

)
for

any control policy π′ ∈ Π. Since the system’s one-stage cost
is bounded (A4), taking the expected average sum from t = 0
up to a finite time T ∈ N is well defined and finite. Thus

1

T + 1
Eπ
[
T∑
t=0

kπ̄
o(
Xt(1:N), Ut(1:N)

)]

≤ 1

T + 1
Eπ
[
T∑
t=1

kπ
′(
Xt(1:N), Ut(1:N)

)]
. (30)

Taking the liminf as T goes to infinity

lim inf
T→∞

1

T + 1
Eπ
[
T∑
t=0

kπ̄
o(
Xt(1:N), Ut(1:N)

)]

≤ lim inf
T→∞

1

T + 1
Eπ
[
T∑
t=1

kπ
′(
Xt(1:N), Ut(1:N)

)]
. (31)

Since each stationary control policy has a single ergodic class
(A3) the limit in (31) is well defined; hence for all π′ ∈ Π

J π̄
o

= lim
T→∞

1

T + 1
Eπ
[
T∑
t=0

kπ̄
o(
Xt(1:N), Ut(1:N)

)]
≤

Jπ
′

= lim
T→∞

1

T + 1
Eπ
[
T∑
t=1

kπ
′(
Xt(1:N), Ut(1:N)

)]
.

(32)

IV. ILLUSTRATIVE EXAMPLES

A. Power Management Control of a Hybrid Electric Vehicle:
A System with Subsystems of a Principal Group

The results presented here have been used in the problem
of optimizing online the power management control in a
parallel HEV configuration [16] consisting of subsystems
of a principal group. To compare the Pareto control policy
with the optimal control policy of DP, we need to solve |S|
linear equations, where |S| is the cardinality of the state
space. However for complex systems such as HEVs a more
attractive method to derive the optimal control policy is to
learn the optimal control policy using the Q-learning method
rather than estimating explicitly the transition probabilities
and stage costs as it is shown in [16]. This method is
analogous to value iteration and has the advantage that it
can be used directly in the case of multiple policies. Instead
of approximating the cost function of a particular policy, it
updates directly the factors associated with an optimal policy,
thereby avoiding the multiple policy evaluation steps of the
policy iteration method.



The Pareto control policy was validated through simulation
in a parallel HEV, and it was compared with the control
policy of DP for the long-run expected average cost. In the
case of the Pareto control policy, the model ran just once. The
DP control policy was derived by simulating the HEV model
repeatedly over the same driving cycle until the Q-factors
convergence. For the particular driving cycle the model ran
repeatedly 58 times until convergence. Both control policies
achieved the same cumulative fuel consumption as illustrated
in Fig. 2, demonstrating that the Pareto control policy is
the optimal control policy with respect to the average cost
criterion.

There are still open issues, however, with practical impli-
cations. First, the proposed solution optimizes the efficiency
in HEVs/PHEVs for any driver’s commutes on average.
Namely, being able to derive the optimal control policy
online for any given trip, e.g., commute from point A
to point B, remains still an open question. Second, the
proposed solution uses the efficiency maps of each subsystem
corresponding to their steady-state operation. Even though
the supervisory controller in HEVs/PHEVs designates the
nominal set points for each subsystem for the lower-level
controllers, the implications of the solution in transient
operation need further investigation. One potential approach
could be to learn the transient operation [17], [18] associated
with the driver’s driving style and account for this.
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Fig. 2. Cumulative fuel consumption and state of charge of the battery
for a parallel hybrid electric vehicle using the control policy derived from
dynamic programming and the Pareto control policy over the city-suburban
heavy duty vehicle route driving cycle.

V. CONCLUDING REMARKS

In this paper, we presented a framework for the analysis
and stochastic optimization of the power management con-
trol problem in HEVs/PHEVs. We formulated the control
problem as a multiobjective optimization problem of the
one-stage expected costs of the subsystems and proved that
the Pareto control policy minimizes the long-run expected

average cost criterion of the system. The proposed solution
reveals an operating point among the subsystems, e.g., en-
gine, motor, generator, and battery, for all different values
of the disturbance (driver), which is Pareto efficient. If all
subsystems are operating at this operating point, then the
long-run average cost of the HEV/PHEV is minimized.
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