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Executive Summary

Power grid planning and operation decisions are made based on simulation of the dynamic behavior
of the system. Enabling substantial energy savings while increasing the reliability of the aging North
American power grid through improved utilization of existing transmission assets hinges on the
adoption of wide-area measurement systems (WAMS) for power system stabilization. However,
adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability
and reliability. It is necessary to enhance predictability with “faster than real-time" dynamic
simulations that will enable the dynamic stability margins, proactive real-time control, and improve
grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day
dynamic simulations are performed only during offline planning studies, considering only worst case
conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable
generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected
in the near future and greater integration of cyber infrastructure (communications, computation and
control), monitoring and controlling the dynamic performance of the grid in real-time would become
increasingly important. The state-of-the-art dynamic simulation tools have limited computational
speed and are not suitable for real-time applications, given the large set of contingency conditions to
be evaluated. These tools are optimized for best performance of single-processor computers, but the
simulation is still several times slower than real-time due to its computational complexity. With
recent significant advances in numerical methods and computational hardware, the expectations
have been rising towards more efficient and faster techniques to be implemented in power system
simulators. This is a natural expectation, given that the core solution algorithms of most commercial
simulators were developed decades ago, when High Performance Computing (HPC) resources were
not commonly available.

This project team, led by GE Global Research (GEGR), in collaboration with GE Energy Consulting
(GEEC), Pacific Northwest National Laboratory (PNNL) and Southern California Edison (SCE) has
formulated and implemented a dynamic simulation method that exploits HPC techniques to enable
power system dynamic simulation based analysis and control closer to real-time, as opposed to the
traditional approach of performing such simulations in offline studies. The project team has
demonstrated speed improvements using modified solution architecture on GE’s Positive Sequence
Load Flow (PSLF) dynamic simulation software. Furthermore, the team has developed a novel Fast
Contingency Screening And Control Action Engine (FCSCAE) that can enable real-time small signal
stability assessment and control at the power system control center.

The following are the key project results:

1. A novel time stacking method was formulated and implemented for speeding up power system
dynamic simulation using high performance computing (HPC). In this method, differential
equations in dynamic simulation are algebrized for several time steps. The resulted algebraic
equations representing multi-step power system dynamics are then solved using Newton'’s
method. Unlike conventional simultaneous methods where differential-algebraic equations
(DAEs) are solved one step after another, the time stacking method is able to solve DAEs over
multiple time steps simultaneously. The team has implemented and tested the time stacking
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method on a multi-core and shared-memory HPC machine. It is found that time stacking method
has the potential to accelerate dynamic simulation by efficiently utilizing more computing
capability of HPC.

2. A significant speed improvement of the dynamic simulation core of GE's Positive Sequence Load
Flow (PSLF) software was achieved. The solution architecture of GE PSLF dynamic simulation
engine and how it can be improved were the major focus of this study. Speed improvements
were achieved by parallelizing and updating core solution algorithms of the program. Speed ups
greater than 2x have been observed in the parallel version of PSLF. Results have been confirmed
and validated by testing the parallel version of PSLF on PNNL's super computers and preliminary
results indicate that the solution accuracy remains unchanged.

3. A novel FCSCAE has been developed and demonstrated to enable small signal stability
assessment and control in real-time. An eigenvalue sensitivity based contingency screening and
ranking algorithm was developed to screen the long list of possible contingencies, and arrive at a
small subset of contingencies. This tool ensures that when analyzing large scale power systems
with thousands of nodes/ buses, the contingency analysis for small signal stability assessment
can be performed at a fast rate. Once critical contingencies are identified by this tool, each of the
contingencies can further by analyzed using the detailed time-domain simulation. Furthermore, a
novel eigenvalue sensitivity based generator re-dispatch and/or load control algorithm was
developed with the goal of improving the small signal stability of the system for not only the
current operating condition but also for the critical contingency conditions. The control algorithm
leverages the results from the contingency screening tool in the form of eigenvalue sensitivities
to identify the most impactful generators and groups of loads that can influence the small signal
stability of the system.
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1 Introduction

1.1 Objectives

Enabling substantial energy savings while increasing the reliability of the aging North American
power grid through the improved utilization of existing transmission assets hinges on the adoption of
wide-area measurement systems (WAMS) for power system stabilization. However, the adoption of
WAMS alone will not suffice the power system to reach its full entitlement in stability and reliability.
The need is to enhance predictability with “faster than real-time” dynamic simulations that will
enable dynamic stability margin, proactive real-time control and improve grid resiliency to fast time
scale phenomena like cascading network failure.

GE Global Research (GEGR) in collaboration with GE Energy Consulting (GEEC), Pacific Northwest
National Laboratory (PNNL), and Southern California Edison (SCE) formed a team to leverage scientific
advancements in mathematics and computation for application to power system models and
software tools. This team was tasked to develop and apply advanced computational technigues to
enhance the speed of the dynamic simulation software. This was complemented with GEGR’s
expertise in small signal stability to develop a proof-of-concept for fast contingency screening and
control action engine (FCSCAE). The FCSCAE is targeted to be an Energy Management System (EMS)
application with three key elements 1) Fast Dynamic Simulation, 2) Contingency Screening and
Ranking, and 3) Control Action Engine. The technologies developed will enable fast, high fidelity
capabilities that improve grid reliability in a large scale, dynamic environment.

Specific objectives include:

e Develop mathematical and high performance computing (HPC) techniques applicable to
power system fast dynamic simulation.

e Implement high performance computing techniques in power system dynamic simulation
software.

e Develop fast contingency screening and control action method for small signal stability.

e \Verify and validate speed enhancement of dynamic simulation and decision making
methods.

1.2 Background

Since the 1996 blackout in the Western Electricity Coordinating Council (WECC) system, there has
been renewed emphasis on continuous measurement-based system monitoring to avoid or restrict
the spread of such a collapse [1]. Several events of abrupt line-tripping, load, and generation
shedding took place during this break-up, leading to changes in modal behavior of the system [2], [3].
The cascade failure could possibly have been avoided through appropriate operator intervention
with accurate and real-time knowledge of system frequency and damping, which are vital indicators
of system stress and stability (4], [5].

To date, utilities have considered using the WAMS technology for situational awareness by the
operators—which is essentially a monitoring application. As a part of the North American

11



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

Synchrophasor Initiative (NASPI), many PMUs have already been installed in the US power grid [6].
Researchers at PNNL, Montana Tech, and the University of Wyoming have developed a grid
oscillation detection system called "Mode Meter" [4] which uses real-time data combined with new
analytic methods, and reports to operators with an easy-to-read visualization tool. Many universities,
vendors, and utilities have combined knowledge over time to develop such applications using
different signal processing techniques (5], [7], [8], [9] and these are being used today in control
centers [10], [11], [12].

Even after equipping the grid with PMUs and situational awareness tools, a cascaded blackout took
place in the Arizona-Southern California region on September 8, 2011. A detailed investigation report
[13] by the Federal Energy Regulatory Commission/North American Electric Reliability Corporation
(FERC/NERC) indicated lack of adequate real-time situational awareness of conditions and
contingencies throughout the Western Interconnection. The executive summary reflected: “..many
entities' real-time tools, such as State Estimator and Real-Time Contingency Analysis (RTCA), are
restricted by models that do not accurately or fully reflect facilities and operations of external
systems to ensure operation of the Bulk Power System (BPS) in a secure N-1 state. ...The lack of
adequate situational awareness limits entities' ability to identify and plan for the next most critical
contingency to prevent instability, uncontrolled separation, or cascading outages. If some of the
affected entities had been aware of real-time external conditions and run (or reviewed) studies on
the conditions prior to the onset of the event, they would have been better prepared for the impacts
when the event started and may have avoided the cascading that occurred.”

Present day dynamic simulations are done only during offline planning studies. The state-of-the-art
dynamic simulation tools have limited computational speed and are not suitable for real-time
applications, given a large set of contingencies to be evaluated. These tools are optimized for the
best performance of single-processor computers, but the simulation is still several times slower than
real time due to its computational complexity. With the latest development in numerical methods
and computational hardware, there has been the expectation that more efficient and faster
technigues are implemented in power system simulators. This is a natural expectation given that the
core solution algorithms of most commercial simulators were developed decades ago, when HPC
resources were not commonly available.

Recently, there have been an increasing number of efforts aimed at increasing the computational
speed of the power system dynamic simulation. Researchers at PNNL have shown that the
traditional power system computation should be reformulated to take advantage of the high-
performance computing platform. It has also been indicated that with parallelization and significant
speed-up, it is possible to achieve a faster than real-time dynamic simulation.

In addition, a part of the computation burden can be relieved by developing a fast contingency
screening and ranking tool. The advantage of fast dynamic simulation can then be taken to develop
an application to guide system operators in real-time to take definitive control action.

In summary, the team proposes to develop and implement high performance computational (HPC)
techniques such as the simultaneous method and preconditioned conjugate gradient method to
accelerate the speed of the power system dynamic simulations. These HPC capabilities combined
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with screening and prioritizing contingencies are proposed for proactive decision making (control) for
system operator to improve small signal stability. GE's existing PSLF simulation software gives us an
excellent platform to commercialize the resulting technologies.

1.3 Organization of the report

This report is organized into eight sections. The key objectives of the project along with the brief
background are described in first section. The second section outlines the key challenges associated
with the enhancing the speed of the dynamic simulation and some potential approaches. The third
section describes in detail the steps taken to improve the simulation speed of the PSLF dynamic
simulation engine along with the lessons learned during the process. A simultaneous time stacking
method which has the potential to significantly improve the speed of dynamic simulation is
formulated in fourth section of the report. A fast contingency screening and oscillation damping
control action method is described in section five and six respectively. Section seven lists the relevant
references. Lastly, the publications and patents that best describes the outcome of the project is
listed in section eight.

13



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

2 Mathematical and computational techniques for fast dynamic

simulation

Assessing power system transient stability under contingency conditions via dynamic simulation is of
critical importance to the secure operation and planning of a power system. It solves a set of
differential-algebraic equations (DAEs) many times during one simulation that describes the electro-
mechanical interaction of generators as well as power electronic devices and their controllers. Due to
the extensive computational requirement and increasing model complexity, it is several times slower
than real time to run a single time-domain simulation for a large-scale system model, such as WECC
or Eastern Interconnection in North America. Currently, most of the commercial software tools for
dynamic simulation use explicit integration methods to solve the differential-algebraic equations.
Due to the numerical instability issues inherent with explicit methods, a small time step, e.g., ¥% cycle
or ¥ cycle, is typically required to ensure simulation accuracy and numerical stability in estimating
the dynamics of the power system. The small time step can be a fundamental challenge that affects
the speedup of dynamic simulations.

Unstable

Stable

A

real system
—
=y currentsimulation

» target simulation

Q! Disturbance Occurs t

Figure 1. Obtaining time-domain trajectory using dynamic simulations

There are several ways to improve power system dynamic simulation speed. One popular way is to
reduce system model complexity so that the total amount of computation time can be reduced.
There is no doubt that the computation time can be significantly reduced by model reduction.
However, detailed behavior of power system can be easily lost so that the simulation accuracy
cannot be guaranteed. Another method is to use distributed simulation for massive contingency
analysis. This method is designed to distribute a large number of simulation cases to different
cores/computers so that the total amount of simulation time can be reduced, but this approach
cannot speed up each individual simulation case. For a large-scale power grid, the simulation speed
cannot reach real-time requirement to apply control action in time. It is very challenging to further
reduce the simulation time without compromising simulation accuracy by varying time steps, model
reduction and/or other techniques. The main reason is that today's commercial tools for dynamic
simulation (e.g., PSLF by GE, PSS/E by Siemens PTI, and TSAT by Powertech Labs) are designed,
optimized and operated on a single-core machine, while the main frequency of CPUs is not
increasing because of physical constraints. Speeding up dynamic simulations via parallel computing
has been proved to be a feasible and low-cost solution. A variety of parallel algorithms were
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proposed decades ago, including parallel in time, parallel in space, and waveform relaxation.
However, very few algorithms have been actually adopted by major software vendors, because: (1)
fast parallel computers with reasonable costs were not available back then; and (2) it requires a
significant amount of time and efforts to revise the source code of those stability programs that were
developed ~30 years ago.

Figure 2. Implicit integration shows better numerical stability with larger time steps, tested on a 2-area system (Left
figure: modified euler method; Right figure: Trapezoidal integration method)

In this research effort, several methods are explored in order to improve the speed of a single
dynamic simulation. The first way is to leverage ongoing research work performed at PNNL to apply
HPC techniques to the explicit integration methods. The main idea is that for each time step
marching, differential equations representing generator dynamics are allocated to different cores of
HPC platform because the generator dynamics can be computed independently. Regarding solving
the network algebra equation, an efficient linear solver is required for speeding up dynamic
simulation. Such innovative ideas can be directly integrated into PSLF. Another promising method to
further speed up power system dynamic simulation is to reformulate the problem so that the
differential equations and network algebra equations are solved simultaneously at each time step. In
this method, the state variables at the current step are modeled as a function of both the values at
previous steps and themselves. To solve such problem requires implicit integration methods, which
have better numerical stability compared to explicit methods. That means, a larger time step can be
used for improving simulation speed. Our literature review shows that both the explicit methods and
implicit methods were proposed for power system simulator decades ago. However, the
performance of implicit methods implemented on a single-core computer was not superior to explicit
methods, according to a test conducted by GE about two decades ago, due to the following reasons:

1. It can take much time to compute the Jacobian matrix at each time step if using single-core
computer.

2. lterative methods are needed to solve for the system equation in the implicit form.
Convergence can be a limiting factor without a good linear solver.

3. The algorithms were written to run on single-core computers. The HPC hardware platform
was not ready for implementing more advanced algorithms.
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With the development of HPC techniques and advanced algorithms for linear solvers for the past
decade, these bottlenecks can be easily overcome, given the fact that PNNL has already built up
such capabilities, in that: (1) computing the elements of the Jacobian matrix can be allocated to
different processors at the same time to save time; (2) PNNL has implemented advanced iterative
solver that has good scalability with good convergence performance, which will be introduced in the
section below; and (3) the HPC platform becomes much more affordable with mature algorithms.
With such advantages, the implicit integration method can be of great potential to speed up dynamic
simulation so that faster-than-real-time simulation capability can be achieved for a large-scale
power system without model reduction. Unlike other published work on HPC implementation in
dynamic simulation that is performed on simple power system dynamic models, the collaboration of
GE and PNNL makes it possible the advanced algorithms developed in this project be directly
integrated into the commercial software for industry members to use, because PSLF has the entire
model library of commonly used power system devices.

Initially, GE Energy Consulting (GE) and Pacific Northwest National Lab (PNNL) have been tasked with
developing a parallel architecture of a power system simulator that was faster than real time.
Because a major modification of the PSLF dynamic solution engine is infeasible due to time and
resources constraints set in this project, two different paths were initially considered in order to
improve chances of a successful project completion. It is worth mentioning that although each team
had well-defined and independent tasks to perform, they interacted heavily and a substantial
amount of knowledge was exchanged in the course of the project.

The two proposed approaches to develop a parallel version of a power system simulator are
described below:

» Approach 1: Leverage current PSLF solution architecture and use APIs for multiprocessing
computation (such as MPI/Open MP) recent advances in linear system solvers to improve
simulation speed.

* Approach 2: Develop an alternative solution architecture of the system of differential-
algebraic equations (DAE) used to represent the electric power system and its components.
Such architecture would be multicore-friendly to but would require a significant effort and
major re-writing PSLF’s solution engine.

Advantages and disadvantages of each approach are summarized in Table 1.
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Table 1: Summary of advantages and disadvantages of parallelization approaches

| Approach 1

PROS

Faster to implement in PSLF since the
solution architecture of the program
does not need to be completely re-
written

Less code changes require less effort to
translate the prototype into an eventual
commercial version of the tool

Approach 2
PROS

Expected to provide greater speed gains
than approach 1, especially if system of
DAE equations can be made very large
to leverage multiprocessing more
efficiently

Can be used as the basis for the
development of next generation of tools
and additional tools, such as a small
signal analysis tool.

CONS

Speed gains are limited by the speed of
slowest loop on current program
architecture - the speed bottleneck

This approach still requires significant
changes that can be challenging and
require a significant amount of resources
to be performed

CONS

More difficult to be implemented and be
translated into a commercial grade
application

More code changes and more code
development

Would require a significant effort to the
current solution architecture in PSLF

After a team review and considering the resources available in this research project, it has been
determined that approach 1 would be carried out by the GE team, with the PNNL team being
responsible for implementing approach 2. Section 3 describes the effort related to approach 1
conducted by GE team on improving the speed of PSLF simulation engine. Section 4 describes the
alternative simulation architecture developed by PNNL to significantly improve the speed of dynamic
simulation.

Such task division is aimed at trying to maximize the project success by executing two parallelization
strategies concurrently. Nonetheless, both GE and PNNL team have exchanged a large amount of
experience, information and knowledge in this project, which was an important aspect in its
successful completion.
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3 Parallelization of existing PSLF solution architecture

The first step to improve the solution speed of PSLF is to investigate where the program spends most
of the time in the course of a dynamic simulation. A thorough review of the solution algorithm was
performed in this study to identify potentially feasible steps that could be taken in order to parallelize
the program architecture.

Several different attempts have been made before achieving a successful parallel architecture
described in this report. Because many of these attempts were unsuccessful at improving solution
speed, significant insight was gained in the process by better understanding how the dynamic
simulation of power systems could be effectively formulated to explore latest advancements in
solver and parallel architectures. Despite several failed attempts, a combination of certain
combination of improvements has been shown to make the dynamic simulation of large electric
power systems faster. The major enables of such speed improvements are: updated ordering
algorithms, updated linear solvers, extensive usage of sparse matrix manipulations and the use of
multiple threads by the solution engine.

Parallelizing the solution of power system dynamic simulations involves the solving a system of
algebraic and differential equations in parallel.  Because PSLF relies on particular solution
architecture, both the solution of algebraic and differential equations needs to be parallelized or
accelerated.  Failure in doing so will cause the non-improved portion of the core to limit
parallelization gains obtained due to use of multithreaded computations.

3.1 PSLF solution architecture

The GE PSLF program is a well-accepted software solution in the electric power industry. The
program can analyze the electric power system in three major areas, namely: power flow and steady
state, short circuit and stability. This study is focused at accelerating the portion of the program that
performs the stability analysis, also frequently referred to as dynamic simulation. During the course
of this report, the term dynamic simulation will be used to refer to the solution of the differential and
algebraic equations used to model the system.

The first step in accelerating the program execution is a careful evaluation of the current program
architecture and identification of bottlenecks were much of the simulation time is spent. Such
analysis may seem trivial but given the extension of the program source code, such step can be time
consuming. Moreover, since the program has been developed over many years, portions of the code
lack proper documentation, making the process of understanding program operation a more
challenging.

The PSLF dynamic solution architecture can be divided in to two major parts: the network solution
and the model solution. Network solution is concerned with the solution of the network equations
given the current injections at the boundary of the network. These current injections are obtained
from the solution of the models that are connected to the network. In a broad sense, the model
being solved can be represented by equation
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0=1-YV (1)
x=f(x, V)

In (1), algebraic variables are represented by in the array V and include bus voltage magnitudes and
angles. The current injection at the system buses is represented by the array I, whereas array x is
used to represent all states variables present in the dynamic models used in a particular simulation.

Since it would be a significant effort to describe all possible state variables used in a simulation, the
user is referred to the PSLF user manual for as additional details regarding set of differential
variables used on each dynamic model.

Traditionally, the solution of ( 1) is generally accomplished via two major approaches: a partitioned
solution or simultaneous solution.

The partitioned solution solves the algebraic equations separately from the differential equations,
thus the name partitioned. Initially, the program is solved for a steady state solution of the network,
representing the current power flow at a specific operating condition. The solution of the algebraic
equations (network solution) is often accomplished with a sparsity oriented factorization method,
followed by a forward and a backward sweep. Differential equations are solved in multiple ways and
by different integration algorithms. Popular methods include both explicit algorithms such as
Adams-Bashforth family (Euler method is one of the most popular variants of the Adams-Bashforth
integration algorithms), and implicit methods, such as the trapezoidal, Krylov subspace methods
such as the GMRES, BCG and implicit Runge-Kutta algorithms. For a more detailed discussion of
different integration methods, the reader is directed to [14], [15].

Several intricacies of the dynamic models play a major role in determining which integration method
should be used to solve the differential system of equations. The stiffness of the system of equations,
which is characterized by a ratio between the largest and smallest system time constant, is critical in
determining the algorithm used and an adequate integration step size. The number of steps used in
the integration method, i.e., the numbed of past time steps necessary to calculate the current
integration time step, also affects the integration step size, stability and accumulated error of the
methods.

PSLF uses a partitioned solution scheme with an explicit integration method and constant integration
time step. This is a very popular method amongst commercial grade power system simulators that
perform dynamic simulation. This is also the method of choice in many programs that perform
simulations in the electromagnetic transient realm, such as the Electromagnetic Transient Program
(EMTP) developed by BPA. On the other hand, there are commercial tools that use implicit integration
methods combined with variable integration time step.

In the PSLF architecture, the network voltages are initially solved for using a power flow solution. The
initial voltage values are then passed to the models connected to the network, which will then
calculate how much current injection shall be produced by them. Once the nodal current injections
are found, they are passed to the network model and the first equation shown in ( 1) is solved for V.
This process is repeated until the end of the simulation. Figure 3 shows a sketch of how the
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partitioned method exchanges the necessary information across an interface while solving both
algebraic and differential equations in a simulation run.

BUS VOLTAGES
>
ALGEBRAIC DIFFERENTIAL
EQUATIONS EQUATIONS
CURRENT INJECTIONS
A4
<€
Interface

Figure 3: PSLF solution architecture depicting the partitioned solution scheme where algebraic equations are solved
separately from differential equations

The flowchart shown in Figure 4 depicts the steps taken in order to solve a dynamic simulation in
PSLF. Keywords show in capitalized text helps orchestrate the program execution and are used in
the internal structure of all PSLF models, including the user defined ones.

In a dynamic simulation, the user calculated the network solution that defines the actual state of the
power flows and voltage levels at all buses in the system. On all voltages are known, all dynamic
models need to be initialized based on the current network solution.

The INIT block performs the initialization of all state variables and its derivatives in order to prepare
the models for integration during the run.

The SORC step calculates the amount of injected current into the network and is only necessary in
models that interface the network, such as generators, motors, SVCs, etc. For instance, electrical
controllers and turbine governor systems would not have a SORC block of code in its structure
because they do not interface the network directly, but rather connect to a generator model.

NETW calculates the network solution based on injected currents calculated in the SORC block and
will then determine the new voltage magnitudes to be used in the next step.

ALGE is often responsible for the calculation of algebraic variables during the simulation process,
such as variable wind up limits, integrator limits and any variable of interested that needs to be
recorded for later analysis.
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Figure 4: Detailed solution flowchart of PSLF indicating all steps required in order to solve a dynamic simulation
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The RATE block performs the calculation of all state derivatives and other necessary variables that
are needed in order to perform an integration time step. All models that have states will have to
have a RATE block represented in their structure.

All variables recorder for later analysis are specified in the OUTP block. This includes both algebraic
and state variables of interest, block diagram outputs and any other value of interest.  After all
blocks have been executed, the program executes an integration time step and advances the
simulation in time. The simulation continues in loop until the end or until the user stops it to
introduce a disturbance or a switching event.

3.2 Parallelization of PSLF differential equations with OpenMP

The solution of differential equations accounts for a significant amount of time spent at the PSLF
core during a dynamic simulation. Therefore, improving the speed at which these equations are
solved is a key step towards achieving a faster simulation engine.

OpenMP is an application program interface (API) that supports multi-platform shared memory
multiprocessing programming in C, C++ and FORTRAN, on most processor architectures and
operating systems, including Solaris, AIX, HP-UX, Mac OSX and Windows platforms. Its extensive set
of directive-based APIs allows for easy and flexible parallelization of earlier, serial programs written in
the languages described above.

OpenMP is extensively used to parallelize programs that were originally written to run in serial, with a
good flexibility regarding the platforms where it can be used. Some of the latest versions of OpenMP
are already integrated in developing environments such as Microsoft® visual Studio 2010, thus
making its applicability to existing applications even easier.

A transient stability simulation in PSLF (and other commercial grade simulators) sequentially executes
several specific activities at each time step. An integration step is then performed and time is
advanced. This cycle will be repeated until the user specified end time of the simulation is reached.

The solution of the differential equations is mainly performed by the activities SORC, NETW, ALGE, and
RATE. Two other activities, DYSL and OUTP, account for the solution of the algebraic equations
(network solution) and the output of selected variables, respectively. An integration step is then
performed by activity STEP after the other activities have been executed at least once and the cycle
is repeated until the end of the simulation.

The program structure is serial, thus becoming a good candidate for parallelization with OpenMP.
After the parallelization, it is expected that the parallel version of PSLF will be able to share its
computational load during a dynamic simulation among several cores and threads. Therefore, only
parallelization in space is being attempted in approach 1.

The PNNL team is experimenting with a time-stacking method that performs the parallelization in
time along with a parallelization in space. As previously described, a significant effort would be
required to implement such method under the existing PSLF architecture and was deemed inviable in
this project. The GE team has determined that it would be best to focus its efforts in trying to
leverage the existing PSLF solution architecture and extensive model library to the highest extent

22



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

possible. On the other hand, the PNNL team has dedicated much of its resources at developing a
practical prototype that will step away from conventional solution architectures of power system
simulators.

3.2.1 Results of parallelization of differential equation solution
The parallelization of the differential equation solution has been successfully performed for a
selected group of generator models and a summary of the results is shown in Table 3.

The test case used to perform these simulations was the Eastern Interconnection and a description
of system components is provided in Table 2. For this test, only generator models are switched on
and all other models are switched off.

Although only generating units have been considered in this test, these models are detailed and
accurately represent the same models used by power system planners and operators daily in the US.

Table 2: Description of test system elements including totals

Element Count
Buses | 70477
Branch Sections 64008
Transformers 21909
Generators 9447
Loads 38196
Shunts 3535
Static VAR devices 6308

DC buses 76

DC lines 38

DC converters 76

The speed gains for a 1s simulation are reported in Table 3 and indicate that some degree of
parallelization can be achieved in order to improve performance. Preliminary results indicate that
the solution accuracy remains unchanged. When two threads are used, the simulation time is
reduced by 15.1% on average. For three threads, it goes up slightly, thus indicating that either
saturation started to occur or there are not enough threads available. Nonetheless, a reduction 12.7
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% on average is observed when three threads are used. If processes compete for threads, the
computer may spend additional time switching between various activities that are competing for a
particular core.

Table 3: Parallelization of differential equation solution

Run Serial Parallel (2 threads) Parallel (3 threads)

1 11.10s 9.88s 10.22s

2 1191s 9.71s 10.15s

3 11.60s 9.78s 10.21s

Average 11.53s 9.79s 10.19s
Gain - Reduction of ~15.1% Reduction of ~12.7%

In order to better understand why saturation was occurring at a relatively low number of threads, a
detailed core analysis was performed in order to identify the major bottlenecks of the current PSLF
structure. The following list summarizes a couple factors that directly impact the speed of execution
of the parallel version of PSLF:

1. System size: the simulation of the El case showed that speed gains could be achieved
because the system size was large and a significant large number of computations is
required. Consequently, the number of dynamic models and floating point operations (flops)
needed to find a solution is high. This is important because the time spent in the blocks of
code parallelized by OpenMP need to have enough operations so that the overhead costs of
parallelizing can be offset. It has been observed that small test cases with only tens or
hundreds of buses and dynamic models, the parallel version of the code may take longer
than the serial version due to OpenMP overhead costs being greater than the amount of time
required to perform the flops in serial.

2. Overhead costs of parallelization: In PSLF and other commercial grade simulators, all
dynamic models have their equations arranged internally before the simulation. After the
simulation is initialized, the equations are solved at each integration time step. Therefore, the
only window where parallelization can be attempted is in between each time step. It is
impossible, at least under the current PSLF solution architecture, to perform parallelization of
multiple time steps concurrently.

Because most transient stability simulators have a similar structure of PSLF, the parallelization of
their architectures will face similar challenges and limitations. One of the most important restrictions
is perhaps the fact that a large number of flops per time step are required in order to observe gains
in a parallel implementation. Unless a minimal number of computations are executed, the overhead
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costs of forking-joining multiple threads cannot be offset. In those circumstances, the serial version
of the simulator will be faster than its parallel version.

3.3 Network solution

3.3.1 Identification of fast linear solvers

After parallelizing part of the dynamic engine, a relatively small runtime reduction in the order of 15%
was observed. For a more substantial performance improvement and higher speed gains, additional
modifications in the PSLF code will be required and that includes a thorough investigation of network
solution engine.

During a typical dynamic simulation, the network equations also need to be solved at each time step
and during transients. These solutions are typically solved several times at each time step due to the
higher rate of change in the system states. Additional solutions are necessary because model
current injection on the network boundary buses is constantly changing due the dynamics of the
models.

Network solution is composed of three main steps: ordering, factorization and solve. In a typical
algorithm, the factorization step accounts for most of the time taken to find a solution (around 95%),
while the forward/backward is responsible for the remaining 5%. Factorization is only required when
the network topology changes, i.e., during the beginning of the simulation, during switching events
and during faults. It is also one of the computationally tasks in a dynamic simulation, even though it
is only performed a few times during the course of a solution. Therefore, an improvement on the
linear solver used could help expedite the solution, making the overall simulation faster.

A solve needs to be performed after the network matrix is factorized in order to calculate system
voltages. Although the solve step only accounts for a small portion of the time involved in the
network solution (around 5%), it accounts for a substantial portion of the time spent during the
simulation because it is invoked several times over the course of a single dynamic run. Therefore, if
the forward/backward solution can also be accelerated, then the overall system solution time could
be significantly reduced [16]. Improvements in the factorization and solve routine can provide
observable improvements in simulations within typical transient stability time frame (10-30s).

3.3.1.1 Parallelization of solve (forward/backward substitution)

Since most time consumed in the network solution is spent at the solve step, an attempt to parallelize
the forward and backward substitution algorithm available in PSLF was made. Despite the fact that
the forward and backward algorithm is inherently serial and has little room for effective
parallelization, some level of parallelization can be implemented [16]. The idea is to explore the
algebraic variables that are already computed and run subsequent calculations in parallel.

The parallel solve method was successfully implemented but did not show significant speed
improvements mainly due to the fact that the amount of flops executed in parallel was not enough to
justify the overhead costs of parallelization. Therefore, the idea of parallelizing and accelerating the
linear system solution in PSLF was dropped altogether and other options needed to be explored.
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A possible way to improve the execution speed of the linear system solver involved with the network
solution was to replace the native PSLF solver. The rationale was that if an up to date solver with
superior execution speed in ordering, factorization and solve could be implemented and used to
replace the current PSLF solver, speed gains would be achieved.

3.3.2 Literature review

In order to replace the PSLF solver with a solver that could provide additional speed gains, a detailed
literature review was performed to identify a suitable direct method solver that could provide
performance improvement. The solver needs to have demonstrated performance on circuit solutions
and must also be able to be compiled and linked as a library in the PSLF model. After a few solvers
are identified as potential candidates for replacement, the most promising ones will be tested in
matrices representing real size networks.

3.3.3 Direct methods and iterative methods

Before deciding which solver could be used to replace the current PSLF solver, a review of current
state of the art linear system solvers was performed in order to find a suitable replacement. Since
PSLF has its architecture already developed around a direct method, there is a slight preference to
replace its current direct method solver with another direct solver. Another factor influencing the
choice of a direct method instead of an iterative method is that direct methods tend to be faster than
iterative methods for the problems with dimension of order near 100,000.

In the past 50 years, extensive work has been done in the area of linear system solution and
comparison has been performed in order to determine the most suitable solvers for each problem at
hand [17], [18], [19]. The general consensus is that there is not a single “silver bullet” solver that is
capable of outperforming all of its competitors for a wide range of matrices that arise from different
mathematical problems. Much of the success of a linear system solver is dependent upon the matrix
characteristics of the problem at hand.

For instance, the SuperLU solver and is capable to outperform several other solvers in terms of speed
by exploiting the so called supper nodes. Super nodes are a group of continuous factor columns with
nested structures that can be solved together. What makes super LU fast is the capability to explore
these super nodes. However, not all mathematical problems (including power system networks)
have a substantial amount of super nodes that SuperLU could take advantage of. Therefore, other
apparently “less sophisticated” methods can outperform SuperLU when applied to power system
problems.

The network matrices that arise in power system modeling are often very sparse, quasi-symmetric
and lack many characterizes that could be explored by several recent solvers. Therefore, choosing
an appropriate solver is key in order to ensure speed gains and must take into account the problem
being addressed.

3.3.4 Ordering

Sparsity oriented methods and adequate matrix ordering are critical to achieving a more efficient
use of computational resources, maximizing speed and minimizing memory storage needs. Without
proper ordering, matrices that originate from modeling the largest US interconnections could not be
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efficiently solved in modern computers and without sparse storage methods, it would require
significant memory to store these matrices on a typical desktop/laptop computer.

Therefore, finding an adequate ordering method is a key step in improving the entire speed of
solution. In this project, several ordering methods were tested and the fastest algorithm was
selected to be implemented in PSLF.

The efficacy of the selected algorithm in ordering a typical large size power system matrix can be
visualized in Figure 5. The figure on the left hand side shows the WECC network matrix before
ordering, whereas the left hand side picture shows the same matrix after running the AMD algorithm.
The dimension of the matrix is around 18,000. As expected, the matrix is very symmetric with respect
to its main diagonal and exhibits significant sparse characteristics.

Ybus before ordering Ybus after ordering
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Figure 5: The left hand side figure shows the network matrix for the WECC interconnection; the right hand side figure
shows the same matrix after ordering.

Both matrices are factorized in order to verify the effectiveness and impact of the ordering algorithm
and the results are shown in Figure 6. The differences are visible to the naked eye and the reader
can easily notice that the matrix on the right hand side has a smaller number of non-zero elements
than the matrix on the left hand side. The actual number of non-zero elements is 1470223 on the left
hand side matrix, versus 52126 in the matrix on the right.
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Figure 6: The left hand side matrix shows the L factor for the non-ordered WECC network matrix; the right hand side
matrix shows the L factor for the ordered version of the WECC network matrix

Such large difference in the total number of non-zero elements, nearly 30 times, will significantly
impact the calculation speed during the forward and backward solve due to the difference in the
number of flops performed. This substantial difference will directly impact the calculation speed of
the entire simulation. Therefore, choosing an appropriate ordering algorithm is a critical step in
enhancing the simulation speed of power system simulations.

3.3.5 Solver comparison

Before replacing the current PSLF linear solver engine, a comparative evaluation process was
performed using real size systems matrices obtained from modeling the WECC system. The solvers
included in the testing stage were predefined after a screening procedure based on recent
publications in the area of linear system solutions, which significantly narrowed down the most
efficient solvers for circuit simulations. For confidentiality reasons, the name of the selected solver
and ordering algorithms cannot be share at this moment.

A total of 4 ordering algorithms and 2 factorization algorithms were combined and tests, for a total
combination of 8 pairs factorization-ordering algorithm. A comparative analysis indicated that the
fastest factorization algorithm is nearly 50 times faster than the current PSLF factorization algorithm.
On the other hand, the best ordering algorithm can reduce the amount of non-zeroes in one of the
triangular factors by 16.4% in comparison to the PSLF ordering method.

Another important conclusion from exercise is that the current ordering algorithm used in PSLF is
very efficient in terms of reducing the number of fill-ins. Despite the fact that it was written nearly 30
years ago, it outperformed recently written methods in terms of the total number of fills ins. On the
other hand, the PSLF ordering algorithm takes more time to perform the ordering than recent
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ordering methods. This difference can be partially explained by the fact that other tasks are
performed by the ordering algorithm rather than simply ordering the network matrix.

The next step in the project will focus at implementing the selected solver and ordering algorithm in
the PSLF core and ensuring that the program solution remains as accurate as when the native solver
was used. This is an extreme challenging step given the fact that PSLF was not written with the
required modularity to make this a trivial exercise and it has never been attempted before.

3.3.6 Selected solver implementation

In order to implement the selected solver as the main solution engine of PSLF, several intermediate
steps needed to be executed. Firstly, the network admittance matrix needed to be passed to the
solver along with the current injection from the network models. In addition to that, the Ybus matrix
needed to be compressed into a compact sparse column (CSC) format.

Code to output the Ybus matrix had to be modified in order to be able to explicitly extract the
network matrix from the core of PSLF algorithm. After extraction, the matrix needs to be compressed
so that it is in a form that is suitable to be passed into the solver. Once the matrix is extracted and
passed to the solver, a solution is obtained and the PSLF data structures get populated before the
next integration time step. In order to enable this process, functionalities that were previously
performed inside the PSLF solver had to be coded externally so that the solver replacement becomes
a reality.

Preliminary results to verify solution accuracy after solver replacement are shown in Figure 7 and
Figure 8 below. The figures show voltage magnitude at a particular bus in a 9 bus test case when
subjected to a fault applied at 0.1s and cleared at 0.2s. Simulation is run for 10s and it can be
concluded visual inspection that the solution accuracy of the new solver is the same, or very close, to
the accuracy of the PSLF native solver.
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Figure 7: Dynamic response of a bus voltage for a 9 bus case with the new solver
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Figure 8: Dynamic response of a bus voltage for the 9 bus test case with the PSLF native linear solver

Additional tests to verify the solver accuracy have been performed in the WECC test case with 18202
buses. Figure 9 and Figure 10 below show the solution differences for the voltage magnitude and
angle between the newly selected linear solver and the PSLF native solver.
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showing a difference les or equal to of 0.0001pu. The angle differences are identical up to the 1st
decimal place, with most differences being within + 0.04 degrees. Although present, these
differences are considered to be negligible because they do not impact the dynamic response of the
system or its performance to a significant extent.

3.4 Simulation results with new linear solver and parallel solution engine

A comparison between the existing PSLF version and the version with a new linear solver and parallel
solution engine is presented in this section. Results were obtained on a 4 core/8threads laptop
computer and a PNNL supercomputer with 8 cores and 20 threads per core.

3.4.1 Testcase

In order to verify speed gains on larger systems, it is critical to ensure that the test case being
simulated is large enough (has enough flops) so that the impact of a parallel implementation is
readily visible. This is of primary importance because of the overhead costs involved with forking-
joining threads at the end of each parallel block may overcome any gains.

Therefore, an Eastern Interconnect (El) case was chosen as the base case and will be used as
benchmark for the time domain simulations performed herein. This database is an excellent choice
for many reasons, the main ones being:

1. It is real database representing the eastern interconnect of the US power grid and is used
daily by several transmission planners and system operators. A successful demonstration
using this database indicates that a commercial version of the parallel prototype is very close
to reality.

2. It is the largest available case and should be able to harvest the highest benefits from a
parallel version of PSLF

3. The actual validation of the parallel version of PSLF on an actual database using traditional
increases the credibility of the results

Table 4 below contains a list of all models present in the test case utilized, including a count of each
individual model. A total of 20540 dynamic models are present in this database, which has nearly
70k buses. More details of the system can be found in in Table 2.
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Table 4: Model count and names of all models initialized and simulated on the El database

Model name Model Count Model name ModeICount\

alwscc 34 genind 214
crcmgv 17 genrou 5106
esacla 275 gensal 1604
esac2a 62 gewtg 111
esac3a 26 ggovl 741
esacda 101 gpwscc 61
esac5a 264 hyg3 79
esac6ba 36 hygov 622
esac7b 234 hygov4 18
esac8b 279 ieeegl 1399
esdcla 1353 ieeeg3 31
esdc2a 181 ieeest 173
esdc3a 36 Isdtl 126
esdcdb 7 pidgov 55
esstla 941 pss2a 1055
esst2a 52 pss2b 71
esst3a 24 rexs 50
esstdb 808 scrx 318
esst5h 6 sexs 191
esstbb 38 stcon 13
exacla 9 tgovl 690
exac2 233 tgov3 14
exac3 31 vwscc 51
exac3a 3 wiwscc 1
exbbc 3 wndtge 109
exdc2 2 wsccst 31
exdc4 123 wtlg 7
exeli2 8 wtlp 7
exivo 2 wtlt 7
expicl 168 wt2e 6
exst2 171 wt2g 6
exst3 54 wt2p 6
exwtge 111 wit2t 6
g2wscc 9 wtde 12
gast 1167 wtdg 12
gencls 657 wtat 12
Grand Total 20540
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3.4.1.1 Results on laptop computer

Figure 11 and Figure 12 show the reduction in runtime and the speedup factor for various numbers
of threads. These results were obtained on a laptop computer with 4 cores and 8 threads available.
It can be observed that the runtime can be reduced by a factor slightly greater than 2, while
saturation in performance seems to occur at around 4 threads.

Runtime reduction
250
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-—time
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Figure 11: Simulation gains for 20 s simulation with fault applied at 0.2s and cleared at 0.3s
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Figure 12: Acceleration factor for 20 s simulation with fault applied at 0.2s and cleared at 0.3s showing a speedup of
nearly 2.17x.

In order to ensure that the accuracy of the results remains unchanged, several variables at the
faulted generator are plotted for various configurations. The dynamic response of the single thread
engine with native PSLF solver is identical to the response of the 2, 4 and 6 threads version of PSLF
with the new linear solver. The simulation results for all different versions of PSLF are shown from
Figure 50 to Figure 57 in Appendix C.
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3.4.1.2 Results on PNNL PIC computer

The same tests performed in the laptop computer were successfully reproduced in the PNNL PIC
machine in order to verify their accuracy.

Figure 13 and Figure 14 show that the runtime simulation of a typical 20s simulation on PNNL's PIC
computer can also be reduced by slightly over half, with a highest speedup gain of 2.22x at 12 cores.

20s simulation with fault on PIC computer

— ——Runtime
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Number of threads

Figure 13: Simulation runtime reduction for typical 20 s simulation with fault applied at 0.2s and cleared at 0.3s
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Figure 14: Acceleration factor for 20 s simulation with fault applied at 0.2s and cleared at 0.3s showing a speedup of
nearly 2.22x.

In this case, the computer had 8 processors with 20 threads each. A total of 6 simulations
considering 1, 2, 4, 6, 12 and 18 threads were performed. The variables that vary the most during the
simulation are plotted for verification. Results are shown from Figure 58 to Figure 69 in Appendix D
and indicate that the accuracy does not change with the number of threads used and the presence
of the new linear system solver.

3.5 Conclusions

In this work, a full overhaul of the dynamic simulation engine of GE PSLF was performed. The
modifications include the parallel solution of differential equations, new and improved ordering,
factorization and forward/backward substitution algorithms.  Speed improvements have been
observed for both typical laptop computers as well as a PNNL supercomputer. Speed gains are
observed in all sections of the program responsible for dynamic simulation, with the speed gains
varying from section to section. Speed gains on each section are not reported in detail due to
proprietary reasons.

Another important observation is that although a significant speed improvement was obtained, it is
unlikely that major speed gains will occur under the existing program architecture. This is mainly due
to the fact that all code used in the dynamic simulation core was reviewed and improved, leaving
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very little room for further improvements. Moreover, despite the fact that the largest power system
model in the US has nearly 100 thousand buses, the problem size that arises from its formulation is
still relatively small for parallel iterative linear solver to be used. As the problems dimension grows
larger and the number of dynamic models increases, it is expected that iterative solvers will
outperform direct methods and the performance of the program under the existing architecture may
benefit from that. Given the fact that most commercial transient stability simulators have a similar
architecture as PSLF, it is unlikely that very high speed gains are obtained on their architectures as
well. For additional speed improvements due to parallelization, more significant changes in the
solution architecture and perhaps integration time step will be required.

Overall, a typical 20s simulation with a fault applied and cleared can be sped up over 2x on a
computer with at least 4 cores and 8 threads. These results are promising and the possibility that
they can become part of GE PSLF simulator in a short term is substantial.
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4 Simultaneous time stacking method for fast dynamic simulation

As discussed in Section 2, the significant improvement in the solution speed of the power system
dynamic simulation need alternate DAE solution architecture that are multi-core friendly.
Development of such architecture requires significant research and development. To overcome the
challenge, PNNL research team worked closely with GE GRC and Energy Consulting teams to develop
faster-than-real-time dynamic simulation to enable predictive capabilities for validating small signal
stability controls by exploring a variety of mathematical algorithms and advanced computational
methods using high performance computing (HPC) techniques. The main idea is to develop methods
that have the best fit of the algorithms and computational libraries for the power grid simulation
problem. PNNL's main tasks include:

(1) Support the development of parallel version of PSLF
a. ldentification of fast linear solvers that can be used by the existing PSLF software
b. Providing test systems, data, HPC resources, algorithms and benchmarking as
needed
(2) Develop a new “time-stacking” method to obtain system trajectories within a time window
simultaneously
a. Formulation of the implicit integration
b. Formulation of the “time-stacking” method
c. ldentification of fast solvers to gain speedup
d. Investigation of adaptive time steps in dynamic simulation

With faster dynamic simulation, a variety of benefits are expected, as it will:

(1) Enable online security assessment to enhance situational awareness by Estimating the
current and near-future system status more accurately and comprehensively

(2) Expedites system planning process by significantly reducing simulation time from weeks to
hours, or even minutes

(3) Prevents cascading failures by validating preventive and corrective control schemes ahead
of time

(4) Enables real-time path rating by improving transfer capability of existing lines, relieving
transmission congestion, facilitating emergency control to integrate more renewable energy
and deferring the construction of new transmission lines

(5) Further improves power grid reliability

4.1 Formulation of dynamic simulation
The dynamics of a power system can be represented by a set of first-order differential and algebraic
equations:

x=f(xy) (2)
0=g9y) (3)

where the boldface denotes vector, X, represents a vector of state variables (e.g., rotor angle and
speed of a generator), and y represents a vector of algebraic variables (e.g., bus voltage magnitudes
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and angles). A power system described in (2 ) and ( 3 ) can be solved using various solution schemes
[20]. The main differences between the schemes rest in the way the differential and algebraic
equations are interfaced (partitioned or simultaneous), and in the numerical integration method
approach (implicit or explicit). The partitioned-solution method is predominantly used in industrial
programs, which are mainly designed for sequential computation on a single core computer. In this
method, differential equation set ( 2 ) is algebrized and then solved for state variables. The algebraic
equation set ( 3 ) is then solved for algebraic variables. These solutions are alternated with each other
in some manner inside each time step. In the simultaneous solution method, ( 2 ) is algebrized and
then lumped together with ( 3 ) to form a larger set of algebraic equations to be solved. This method
mostly adopts implicit integration methods particularly the trapezoidal rule, which seems to be a
most reliable and elegant method for the numerical solution of practical systems of differential
equations [20], [21].
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Figure 15. Categories of solution approaches for dynamic simulation

4.1.1 Partitioned method with explicit integration
Using an explicit integration method, (1a) is converted into an algebraic equation set

Xy= F(Xy-1, Yv-1) (4)

where Y is the current simulation step. Equation (4 ) can be solved for xy, which is then used to solve
(5)for yy.

0 =9g(Xv, yv) (5)

The explicit methods evaluate the state variables of the current step explicitly as a function of the
values at previous steps. Equations ( 2 ) and ( 3 ) are solved alternatively at each time step. As
mentioned above, a small time step is required in the explicit methods to guarantee numerical
stability so that the total simulation time is relatively longer.

40



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

4.1.2 Partitioned method with implicit integration
Using an implicit integration method, equation ( 2 ) is converted into an algebraic equation set

Xy = F(Xy,yy) ( 6 )

The initial guess of xy can be obtained based on xy-.1 and yy-1 using any explicit integration formula.
The value of Xy is used to solve equation ( 5 ) for yy. The value of yy is then used in equation ( 6 ) to
obtain Xy, which is used in equation ( 5 ) to solve yv. This process will be repeated until the solution is
converged.

4.1.3 Simultaneous method with implicit integration
Writing equation (6 ) in the form

0= H(XY ,yy) ( 7)

and then combining equation ( 7 ) and equation ( 5 ), one can obtain a single set of algebraic
equations. The Newton’s method can be used to solve this algebraic equation set, requiring the
construction and solution of the Jacobian matrix at each iteration:

Fx ]Fy ( 8 )
I= [;gx Joy)

When ignoring the sub-matrices Jr, and Jg, and updating F and g alternately, this method
degenerates to partition method with implicit integration. No matter which scheme is used, those
non-linear algebraic equations need to be solved, using either Gauss or Newton (more general) type
procedures. Dishonest Newton or very dishonest Newton methods are often used in industrial
softwares to increase computation speed. When Newton-like method is used, linear solvers are
required. A summary of preconditioning techniques for large linear systems can be found in [22]. As
an example, Khaitan and McCalley applied the multi-frontal method in linear solvers [23].

4.2 A time-stacking method

In the proposed research work, PNNL team first implemented the “simultaneous method” using HPC
platform to simultaneously solve one set of algebra equations at each time step, which contain both
the discretized differential equations and the network algebraic equations. The formulation of the
problem is formulated in Equation ( 9 ). Since implicit integration method has better numerical
stability, a larger time step can be used to save the total computation time. The flowchart for the
“simultaneous method” is shown in Figure 16.

Xy41 = f(xy: Xy+1, Yys yy+1) (9)

¢ 0= g(xy+1'3’y+1)
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Figure 16. Flowchart of the “simultaneous method”

To further increase computational speed of dynamic simulation, a “time-stacking” method is
proposed and implemented to compute system dynamic behavior several time steps within a time
frame simultaneously using HPC techniques, instead of computing state variables at each time step
in Equation ( 9 ). The key idea is shown in the Figure 18. Although the size of the problem is increased
due to the fact that solving state variables for several time steps are combined together into one set
of algebraic equations, the overall solution time can be greatly reduced with the help of advanced
parallel linear solvers that are commonly used in the HPC platform.

{xk+1 = f(Xks Xper1, Yier Vie+1) p = f( )
0= g(xk+1'Yk+1) Xp+1 = f Xior Xie+1: Yoo Yie+1

0= g(xps1,Vi+1)
X2 = [ Kpa1s Xiew 2 Vier 10 Vier2)

{xk+2 = f (k41 X420 Vier 10 Vier2) 0= 9(Xicr2, Yicw2)

0 = g(Xk+2,Vic+2)

Xk+m = f(xk+m—1: Xk+m» Yk+m—1» yk+m)
\ 0= g(xk+mvyk+m)

{xk+m = f(xk+m—1:xk+mf Vi+m—1, Yi+m)
0 = g(Xk+ms Yi+m)

Figure 17: Sequential time-stepping process (left) vs. a new time-stacking method (right).
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4.3 Identification of efficient linear solvers

To solve the time-stacking problem (or more generally, Ax=b) accurately and rapidly, find an ideal
solver is the key. Iterative methods are required due to the implicit nature of the problem, which are
to develop an iterative procedure starting from an initial approximation to converge to the solution,
e.g. the Newton’s method. The two main classes of iterative methods are the stationary iterative
methods, and the more general Krylov subspace methods. The Krylov subspace methods work by
forming a basis of the sequence of successive matrix powers times the initial residual (the Krylov
sequence). The approximations to the solution are then formed by minimizing the residual over the
subspace formed. The prototypical method in this class is the conjugate gradient (CG) method.
lterative methods like CG are more suitable for use with sparse matrices in power system dynamic
simulation than direct methods. Most iterative methods are memory-efficient and run quickly with
sparse matrices. In the last few decades the CG method has been used successfully in various
engineering applications for the solution of linear algebraic equations. The convergence rate of CG
iterative solution depends on the condition number. When the matrix's condition number is mini-
mized, the method usually converges much faster. Preconditioning is a technique for minimizing the
condition number by pre-multiplying both sides of equation by the inverse of a preconditioner matrix,

p.

p tAx =p~b (10)

to yield a new equation of

Ax =D (11)

where the condition number of A is much smaller than the original matrix of A. This method is known
as Preconditioned Conjugated Gradient (PCG) method. PCG method presents great potential for
achieving high performance in parallel computers. Parallelization can be implemented at both the
preconditioner generation step and the equation solving step. Existing software libraries for iterative
method include Hypre, PETSc, and Aztec, etc. We have applied the PCG method to solve power
system state estimation problem utilizing the Hypre software package. With the help of ILU
preconditioner and parallel computers, the execution time of solving the linear algebraic equation
can be greatly reduced using multiple processors. It's promising to see that by applying the
parallelized PCG method to solve the network algebraic equation, the solution time for power system
dynamic simulation can also be significantly reduced to achieve a faster than real time dynamic
simulation. Other similar types of linear solvers will be investigated and compared to achieve the best
possible performance.

4.4 Adaptive time stepping method

An adaptive time stepping method is also proposed in order to further speed up dynamic simulation
by using larger time steps when the power system is at quasi-steady state and using smaller time
step at/near switching conditions. As an example, a smaller time step is used to simulate the detailed
dynamic behavior of the system during a fault condition; and a larger time step can be used at initial
conditions or after a disturbance is settled. In this implementation, the time step of dynamic
simulation is adjusted based on local truncation errors, the performance of Newton corrector
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iteration, and switching events and faults. The time step is increased only if the max norm of the local
error vector is below a specified tolerance for a number of time steps. On the other hand, if the
tolerance is exceeded, then the time step is reduced and fixed to the reduced value for a number of
time steps before attempting to increase it.

4.5 Methodology Implementation and Observed Performance

4.5.1 The time-stacking method with classical generator model
When generators are represented using the classical model, the equations of motion for generator i
in per unit are:

- (12)
O(z) — Wy uu‘(z)

. 1
Y0 = 9q1, (LPrm(iy — ey — Daywiay)

where wli) is the per unit speed deviation for generator /; 4(i) is the angular position of the rotor of
generator i in electrical radians with respect to a synchronously rotating reference; Hli) is the inertia
constant of generator i using system base; Dli) is the damping factor or coefficient of generator i in
pu torque/pu speed deviation; Pmli) is the mechanical power input of generator i, and wsy is the base
rotor electrical speed in radians per second. In this case, state variables in ( 2 ) only include rotor
speed and angle, i.e.,

_ : : (13)
x = [0, @), ++ 75000 Wiy O wim ]

where n is the number of generators. Using the classical model to study the transient stability for a
multi-machine system, it is often assumed [24]:

Py #jQu;
—>

—
Py #jQq4

E’,78
Figure 18. lllustration of a power network represented by classical generator model and constant impedance load

1) Mechanical power input, P(i) is constant.
2) The mechanical rotor angle of a machine coincides with the angel of the voltage

behind the transient reactance.

44



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

3) The network is assumed to be in the sinusoidal steady state.
4) Load is represented by the passive impedances, i.e., the dynamics of load is ignored.

Therefore, let Y” (with a dimension equal to m by m) denote the nodal admittance matrix of an m-bus
system comprised of n generator buses and m-n load buses. One can follow the steps in [24] or [25]
to add machine internal buses and include load impedance into the network admittance matrix,
resulting in an extended Y-bus matrix — Y (with a dimension of m+n by m+n). The network equation

becomes:
{IE} v {E} (14)
0 Vv

Ynn Ynm ]

WhereY' = [Ymn vy, |

The network equations can be reduced to

IE = Y*E (15)

where Y = Ynn -Ynm Ymm- Ymn. Numerical evaluation of direct solvers for large sparse, symmetric
linear equations can be found in the literature, which could be used to solve Ymm-¥Ymn. For each
generator internal voltage bus i, the injection current in system reference can be expressed as :

e _ o (16)
I(f‘) = Ile[i) JF.}Iim(?} = Z} (zk}E(kJ

k=1

where a bar above the notation represents a complex number, 17>

system reference, and E (k) is the stator internal voltage of bus k in system reference. Let E(k) = E(K)
+jEimlk) and ¥ i = Gy + jBix, resolving ( 16 ) into real and imaginary part yields,

is the injection current of bus iin

- (17)
Ire(f} = Z [Eﬂe(k}G(fk) - Eim(k}B(z‘k}]
k=1
Lim(iy = Z [Ewe(t)Biir) + Eim(i) G in))
=1

The transformation from machine dq0 reference frame to system reference frame is

[FT [ sind cos 5] [d] (18)
im| —cosd sindl Lg

In the classic generator model, since E = 0, applying the above transformation to Ire, lim, Ere, and Ein
in (17 ) and after manipulations, we obtain equations in machine reference frame
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: - § - , : (19)
O=sin d(3)Lag) + cos Sy lq(i) — [(cos O(k)Eé[k)) Gliry — (sm S(k)E;[k)) B{ik)} .
k=1

0:— COSs 5{5).[(1(?') -+ sin 6(5).[(?(3:) — |:(COS 6(;€)E‘;(k)) B(?'k) + (sin d(k)E;[k)) G{ik)]
k=1

The active power at air gap can be expressed as

I (20)

q(i)

Py = ':r{i)

Replacing Peli) in (12 ) by ( 20 ) yields

(i) = wh w(i) et

1

Wiy =

(Pr(i) = EqgiyIatiy — Diaywia))
Combining ( 21) and ( 19 ) results in a set of DAE in the same form as (2 ) and ( 3 ), where

—[5 - g Y - T 22
X = [0(1). @) 2 00): Wiy o Om)s W) 2]

T
Y = a)-Tqq1)- - Tagy-Lagy- =+ Lagn)-Lg(m)] (23)
and the other notations represent parameters.

We first implemented the trapezoidal method to run dynamic simulations with classical generator
model. For time step Y, applying trapezoidal rule to ( 17 ), and then combining the resulted algebraic
equations with (19, yields

?(wa(fv 1) + W W(i,y)) (24)
h
0 =Wiy) — Wiiy—1) — [2H (Ptir—1) = By Latin—1) = Do)

1
a1, (P — Eywlata) = Dowin)]

0 =sin 5(7_731',1(?‘7) + cos (5(7 ) I, b)) — [(COS 6{?{,7)E;(k)) G(ik) — (sin 5[;{‘7)5';%)) B(zk)]

0=0(isy) = O(in-1) =

0= —cos 6[i,'y)Id(i,'y) =+ Sil’lé‘(?_,yijn‘,},) Z {(COS 6{R7)E;(k)) B(z’k) + (smé(kﬂE‘;(k)) G(zk)]
k=1

where h is the integration step length. The first two equations correspond to equations of Fin ( 4 ),
and the last two correspond to equations of g in ( 5 ). Combining these equations results in
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-Fl (X'}': Y'}')_ ( 25 )
Fy(xy,y4)
0=H(x,.y,) =

91(Xy, ¥y)
92(%y, ¥+)

Where

Xy = [8(10)- @170 1+ 0(i) - Wiy - Omn) Dn)]
and

Yy = Hati,y-La(i)- Ly Laio) - - Lag)- L]t

The Newton's method can be used to solve the above equations. The corresponding Jacobian

matrices are shown below:
Jre Jry (26)
J =
Jg'r ng

Each sub-matrix is calculated below:

Jrx= diog(]}:x)

_ 1 —hwp/2
Jr. =
0 1+ hD{i)/(ilH(z-))
Jry = diag(Jk)
_ 0 0
Je, =
0 hE /(4H )
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-‘]g.r(ll] ‘]gx(l‘.?) cas ']gr{ln)-

Jg.r(?l] ‘]gx(22) cas Jgr{?n)
Jor =

_ng(ﬂl} JgI(HQ} T ']ga:{nn}_

J B ird{i,?} COS (5'(?';” — Iq(?',,},} sin L’S{i,.},) —+ G(HJE‘;(%) sin (5{3';},} —+ B{“}E;{l) COs 5(?",.},}
Q-E(??—]' Id{i,’}'jl sin L’S{i:.},} + Iq(i,’}‘} cOSs L’S{i:.},) + B(”}E;{l) sin 5(?;!,},} — G{“}E;{l) COs 5(i,'}’}
T G (i) Eg ) S0 0k 1) + Bany Egqi,y €08 01 ) 0
x(ik) = .
g ( } B(ZRJIE;U@} 51N 5{}‘-!.},] —G(fkjE;(k}COS 5{,1‘-._-\':) 0
Jgy = diag(JLy)
5 sindg ) cosd( )

9 —co80(; 4) sind( )

Similarly, one can find the analytical expression of Jacobian matrix when higher order machine
model and dynamic load model are used. Among the reviewed the references, there should be no
obvious difficulties to find the analytical expression of Jacobian matrix. Method to find Jacobian
matrix in general case (rather than classic machine model and constant impedance) is described in
[20]. In [26], analytical expression of Jacobian matrix is provided when transient machine model,
dynamic exciter, and dynamic load model are used.

For the time stacking method, equations in ( 25 ) for several time steps are combined together to
form a large set of algebraic equations:

0= H(X'}”y'}‘) (27)

0=H(x,,y,, X 41, ¥y+1)

|

!
0 = H'(Xy4p—2, Yy4p—2: Xy+p—1, Yy+p—1)

where p represents the number of time steps in parallel, and H and H’' comprise of equations similar
to (24). In H, the previous time step variables are known and the only unknown are the current time
step variables. In H', variables of two future adjacent time steps are unknown. The variables to be
determined are:

[(X'}‘: y’}“)* {X'}‘—F] s ¥y+1 ): ter {X’Y-I-P—l * VV’Y-I-P—I)]
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This equation set can be solved similarly as conventional one-step approach. The corresponding
Jacobian matrix is

- J, 0 . 0 0 7 (28)
Jiy41y) Ty 0 0

A=
| 0 0 s J('v+p—1_.'v+p—2} Jotp—1

where the diagonal sub-matrix is shown in ( 26 ). In the subscript of the off-diagonal matrix, the first
number represents the equation set index, and the second number represents variable set index.

.]( 1.j) = [JFJ+1IJ' ']Fj+1yj] (29)
i+1.) =
J J 0 0

wherej=Y,Y +1,..,Y +p-2. Each sub-matrix is calculated below:

Jr, = diag(J%

+1T5 J'_1Ij}

J i /2
Fijpiz; — 0 -1+ le[i)/(‘iH(i)}

= diag(J%

i+1yj)

Ip,

+1lY;
| 0 0

J —
P 0 hE:;[i)/;(élH[iJ)

A prototype was successfully developed in MATLAB to implement the time-stacking method to prove
the concept. This code considers reduced admittance matrix, constant impedance load model and
classical generator model. The MATLAB scripts were also converted to FORTRAN code to implement
parallel solvers for speedup purposes, which will be described in the following subsections. The
detailed structure of the Jacobian matrix for the time-stacking method is shown in Figure 19 and
Figure 20. A preliminary simulation was performed on the IEEE 16-generator-68-bus system model.
Twenty steps were stacked together that can be solved simultaneously. The comparison of time-
domain trajectories is made in Figure 21, which proves the concept of the proposed time-stacking
method.
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Jacobian Matrix for 20 time steps, 16g68b system
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Figure 19. Structure of Jacobian matrix for the time stacking method (20 steps)
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Figure 20. A zoom-in view of the Jacobian matrix elements with reduced admittance matrix
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Figure 21. Proof of concept for the time-stacking method

4.5.2 Network admittance matrices (reduced vs. full)

As shown in Figure 19 and Figure 20, the Jacobian matrix for the time-stacking method contains a
dense portion, if using reduced admittance matrix for network solution. The dense nature of the
matrix might not be a desired feature in the trapezoidal method when solved in an iterative way,
although the size is much smaller than the original, full admittance matrix (e.g., 3000 by 3000 vs.
16,000 by 16000 for a WECC size model). As suggested by the GE experts, PNNL team modified the
formulation of the dynamic simulation by using full admittance matrix (larger but sparser than the
previously used reduced admittance matrix). The complexity comparison is made between the
reduced and full admittance matrices, shown in

Table 5. The corresponding MATLAB and FORTRAN codes were developed and tested to reflect this
change. As expected, around 2 to 3 times of speedup were observed using the same simulation
parameter settings and the computer hardware. Table 6 shows the comparison of computation time
between the two schemes, for different test systems. It is observed that using the full admittance
matrix can reduce the total simulation time using trapezoidal method from ~145s to ~54.2s. The
SuperlLU linear solver outperforms the DGESV solver. A preliminary scalability test is also performed
to investigate the total computation time with respect to different number of processors, shown in
Table 7 and Table 8. Around 15% of speedup is observed when using 4 processors are used to
perform the dynamic simulation.
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Table 5: Computational complexity comparison

per time step

Reduced Y

Full Y

Partitioned method
with Modified Euler
integration

Network: O(n2)

Dense matrix vector multiplication
and can be parallelized

Network: nnz of (LU) * iter No.
Require forward and backward
substitutions several times, and
difficult to parallelize

Others: O(

n) or O(m)

Simultaneous
method

J: 8n2 multi + 4nZ sin ( can be
reduced to 2n)
Y: 8n2 multiplication + 4n? sin

J: O(m+n)

Newton: one LU decomposition
and a few substitution
LU: ~O(n3)

Newton: one LU decomposition
and a few substitution

LU:~O((m+n)?2)

m: number of buses; n: number of generators

Table 6: Computational time comparison

Reduced Y-bus Full-Ybus

System 16g68b 50g9145b 288g1081b 288g1081b 288g1081b 288g1081b

Linear DGESV DGESV DGESV SuperlLU SuperLU SuperLU &

solver Dishonest
Newton

Admittance 0.086 0.742 23.868 3.645 0.252 0.242

Matrix (s)

Jacobian 0.121 0.792 25.139 4.299 0.378 0.128

(s)

Solver (s) 0.559 5.268 513.808 136.921 52.609 19.710

Total (s) 0.765 6.810 562.907 144972 54173 20.852

Table 7: Performance of parallel computing on the 288-generator-1081-bus model using Newton's method

1 thread 2 threads 4 threads 8 threads 16 threads

Y

Jac

superLU

Total

(including others)

0.252 0.244 0.203 0.176
0.378 0.396 0.267 0.292
52.609 48.851 45.974 51.676
54.173 49.810 46.884 53.237

0.165

0.301

99.023

100.010
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Table 8: Performance of parallel computing on the 288-generator-1081-bus model using Dishonest Newton’s method

1 thread 2 threads 4 threads 8 threads 16 threads

y 0.242 0.236 0.194 0.157 0.156

Jac 0.128 0.125 0.089 0.087 0.099

superLU 19.710 19.437 17.228 18.650 1.833
Total

(including others) 20.852 20.615 18.105 19.461 36.842

4.5.3 Complexity of the time-stacking method

With the full admittance matrix and SuperlLU solver, the time-stacking method was implemented in
FORTRAN in the OPENMP environment to test the scalability of the time-stacking method. Table 9
summarizes the preliminary testing results for the 50-generator-145-bus model. The scalability of the
time-stacking method is shown in Figure 22.

Table 9: Scalability testing of the time-stacking method with SuperLU and full admittance matrix

Stack 1 step 1thread | 2threads | 4 threads | 8 threads
Admittance matrix 0.077 0.090 0.085 0.095
Jacobian matrix 0.087 0.148 0.110 0.145
Linear solver 9.800 9.410 8.490 8.950
Total (including others) 10.270 10.880 9.222 9.680

Stack 2 steps 1thread | 2threads | 4 threads | 8 threads
Admittance matrix 0.064 0.075 0.078 0.088
Jacobian matrix 0.086 0.136 0.129 0.141
solver 13.393 11.747 11.327 12.667
Total (including others) 13.684 12.746 11.736 13.128

Stack 4 steps 1thread | 2threads | 4threads | 8 threads
Admittance matrix 0.055 0.060 0.055 0.057
Jacobian matrix 0.086 0.122 0.093 0.090
solver 19.327 18.542 14.351 15.330
Total (including others) 20.263 20.648 16.870 15.720
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From this preliminary testing, the computation time of the time-stacking method is longer than the
one for single time step implementation. This is expected due to the fact that additional coupling

information is introduced when stacking multiple time steps together. For single step dynamic
t

simulation, define the total computation time T4t = %t; for the time-stacking method, T’* = I, m
where t is the number of time steps, ts is the average simulation time per set of equations at each
single step using single thread, us is the speedup with multiple threads in single step method, t, is the
average simulation time per enlarged set of equations at each multi-step using single thread, and up
is the speedup with multiple threads in time stacking method. In order to run the time-stacking

simulation faster than single step simulation, we need to have :ll_p>pr' which requires good
'S S

scalability of a parallel linear solver.

25.000
20.000
(7]
©
g
§ 15.000 —_ =] step
< = steps
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£ 4 steps
=
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0.000 T T T )

1 thread 2 threads 4 threads 8 threads

Figure 22. Scalability of the time-stacking method for different number of stacked steps with SuperLU solver

4.5.4 Performance of linear solvers

In order to speed up dynamic simulation, identification of a good linear solver is the key. PNNL team
has investigated a number of linear solvers (direct and iterative solvers) that may achieve the best
possible speed performance for the two target problems, (1) solving I=Y*U, for speeding up dynamic
simulation in PSLF; and (2) solving AX=Jacobian-! * AY for the proposed time-stacking method using
trapezoidal integration.

4.5.4.1 Direct solvers for PSLF

It is found that for problem ( 2 ) and ( 3 ), direct solvers perform better than iterative solvers given the
size (18,000 by 18,000 for a WECC system) and the property of the problem (re-factorization is only
needed a couple times during a dynamic simulation). For the WECC size problem, we tested several
direct solvers in MATLAB. It was found that the fastest direct solver can solve the problem much
faster than the existing solver inside PSLF. After the selected solver is integrated into GE PSLF, the
preliminary testing result shows more than 30 times of speedup to complete one linear solution. The
total simulation time is reduced to half when using around 6 processors, with the same simulation
settings. The simulation accuracy is also validated in PSLF.
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4.5.4.2 lterative solvers for the time-stacking method

For problem ( 4 ), iterative solvers perform equally well as direct solvers on a mid-size test system
(16generator68bus with 20 steps stacked) once a good preconditioner is found. As an example,
Figure 23 shows the structure of a Jacobian matrix (4,410 by 4,410 with 44,170 non-zeros) obtained
in the time-stacking method, on a mid-size model. It shows a very large condition number:
7.9505*10°. To complete one solution for this Jacobian matrix, it takes 0.0182s using KLU solver. With
the GMRes iterative solver and ILU as preconditioner, it takes 0.0784s to complete one solution using
1 processor. This iterative solver shows some scalability when using multiple processors: 0.0664s (2
processors) and 0.0365s (3 processors).

Figure 23 Structure of a Jacobian matrix for a mid-size system in the time-stacking method

For a larger problem with a bigger dimension in Jacobian, it is found that iterative solvers can
outperform direct solvers using multiple processors. The problem size is increased to 44,100 by
44,100, when stacking more steps together. The testing results are compared in Figure 24. It clearly
indicates that iterative solvers can beat KLU using 2 and more processors in solving this bigger linear
problem. This is a desired feature for the time-stacking method on a large-scale model, indicating
significant speedup can be expected for the time-stacking method. It is worth to mention that this
iterative solver is only valid in MPI version, which is fundamentally different from the OPENMP parallel
computing environment. The team is still in the process of identifying a good parallel linear solver
that can be used on PNNL's FORTRAN scripts for the time-stacking method.

0.7
0.6 \\
0.5
\
0.4 \
\ = GMRES+ILU
0.3

\’\ e KLU
0.2 A

0.1

O T T T T T T 1
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Figure 24. Performance comparison between GMRES and KLU solvers for solving a larger linear problem with a
dimension of 44,100 * 44,100
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4.5.5 Preliminary testing of adaptive time stepping method

PNNL team investigated several methods to vary time steps during the course of a dynamic
simulation. The main objective is to further speed up dynamic simulation by using larger time steps
when the power system is at quasi-steady state and using smaller time step at/near switching
conditions. As an example, a smaller time step is used to simulate the detailed dynamic behavior of
the system during a fault condition; and a larger time step can be used at initial conditions or after a
disturbance is settled. It is found that up to 30% speedup can be observed using this technique
without compromising simulation accuracy.

x10°

Aw

L n L L s B L L n " L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time (s) time (s)

Figure 25. Accuracy of simulation results with adaptive time step (case 1: fixed time step; case 2: adaptive time step)

4.5.6 Implementation of detailed generator models with controllers

In order to obtain more realistic simulation results, state-space equations were developed for
complex generator and controller models, including GENTPJ, EXAC2, and IEEEG1. The differential
equations and their Jacobian matrices were developed from their control block, for the time-stacking
method. Figure 26 through Figure 28 provide the control block diagrams for the 3 identified models.
Limiters, saturations and nonlinear functions are all considered in Jacobian matrix. MATLAB codes
were developed to implement these detailed models for dynamic simulations with the time-stacking
method. The MATLAB code is then converted to C++ code for further testing purposes.

La-L'd |, oo
Ld-Ll'd [
“LZ 1 B oo S T | Eu| *°
Eff + sT do " 4 ST do i
Ld-L"d " L'd-L"d f——o—
Cd-L d id

Figure 26. Control block diagram for GENTPJ (source: PSLF manual)
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Figure 27. Control block diagram for EXAC2 (source: PSLF manual)
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Figure 28. Control block diagram for IEEEG1 (source: PSLF manual)
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4.6 Conclusions and Proposed Future Work
In the research project, several advanced computing techniques for speeding up a single dynamic
simulation were explored and evaluated. A few major achievements were made, which include:

PNNL team surveyed a few popular linear solvers in different platforms including both direct
methods and iterative methods. A comprehensive study and comparison was made to identify
the best for both GE PSLF software and the new time-stacking method for fast dynamic
simulation. The best direct linear solver shows more than 30 times speedup compared to the
existing solver in PSLF. This helps effectively enhance the speed of PSLF simulation (2x speedup
using 6 processors on a WECC size model). For the time-stacking method, the best linear solver is
GMRes iterative solver with ILU as preconditioner, which shows good scalability performance
comparing to the single-core based KLU method.

Methods/Prototypes developed
o Asimultaneous method (Trapezoidal rule)

PNNL team implemented a dynamic simulation code in MATLAB (for proof of concept)
and FORTRAN (for testing scalability in OPENMP environment) with the Trapezoidal
method and classical generator models. We investigated and compared the computation
complexity of using reduced (small but dense) and (big but sparse) full admittance
matrices. Both Newton and dishonest Newton’s methods were implemented.

A time stacking method

A prototype was developed that implements the proposed time stacking method, in both
MATLAB and FORTRAN language. The concept was proved. Detailed generator models
and controllers (GENTPF, EXAC2, and IEEEG1) were developed to provide more realistic
results.

An adaptive time stepping method

PNNL team investigated several methods to vary time steps during the course of a
dynamic simulation. The main objective is to further speed up dynamic simulation by
using larger time steps when the power system is at quasi-steady state and using smaller
time step at/near switching conditions. As an example, a smaller time step is used to
simulate the detailed dynamic behavior of the system during a fault condition; and a
larger time step can be used at initial conditions or after a disturbance is settled. It is
found that up to 30% speedup can be observed using this technique.

From our efforts, the speed of running power system dynamic simulations can be significantly
improved by parallel computing techniques.

As explained in earlier sections, a good parallel linear solver is the key to the success of the time-
stacking method. The best possible parallel linear solver identified was only available in MPI version.
The OPENMP version of the solver didn't show good scalability, indicating that future research is
needed to either identify a better parallel iterative solver in OPENMP or reprogram the code for the
time-stacking method in MPI environment to leverage the identified solver.
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5 Contingency screening and ranking for small signal stability

Utilities today are in need of tools and techniques that will enable them to predict the dynamic
stability and reliability of the grid in the real-time. The problem is challenging because of the large
number of contingencies that are to be simulated. In this project a fast method for power system
contingency screening and ranking for small signal stability assessment is presented which
essentially reduces the number of contingencies for detailed evaluation. The proposed method
avoids repeated computation of eigenvalues for all possible postcontingency scenarios. Instead, the
eigenvalues corresponding to critical modes for post-outage conditions are estimated based on first-
order eigenvalue-sensitivity using just the nominal condition eigenvalues and post outage system
state matrices. Since a critical outage condition can produce a large change in the eigenvalues, the
first order prediction might not have acceptable accuracy. To overcome this issue, a second-order
correction is applied which needs the computation of the eigenvectors corresponding to the
eigenvalues of interest. The proposed approach avoids the computationally expensive eigenvalue
computation for each contingency case and helps to screen the harmful contingencies in real time.

5.1 Introduction

Poorly damped electro-mechanical modes remain to be of significant concern in modern power
systems. Power system stabilizers (PSSs) have traditionally been employed to improve the damping of
these modes. Although PSSs are effective in damping the local electromechanical modes, they are
not quite effective for the inter-area modes. Therefore, these modes might become poorly damped
or unstable in the worst case under certain operating conditions following contingencies. One of the
goals of Dynamic Security Assessment (DSA) is to identify such critical contingencies and analyze the
system security. Since a practical power system can have thousands of possible contingencies, it is
not possible to analyze all of them using time-domain simulations. As a result, the first step in DSA is
contingency screening and ranking which gives a list of cases that needs further attention. The focus
of this paper is fast contingency screening and ranking for small-signal stability analysis of inter-area
modes. Not much work has been reported in the area of contingency screening and ranking for DSA.
Most of the research in this area focused primarily on the so-called ‘first swing’ stability of the power
systems. Transient energy function methods involving the construction of a Lyapunov function
following a contingency were used to evaluate the critical clearing time [27], [28], [29], [30], [31]. A
composite index approach was proposed in [32] which used multiple indices to screen contingencies.
Coherency based indices were proposed by Li et-al in [33] and this approach was compared with
different transient energy function approaches in [34]. Eigenvalue sensitivity was used in [35] for
computing modal synchronizing torque coefficient for contingency screening for the first swing
stability. The power transfer distribution factor (PTDF), which is calculated based on a dc power flow
assumption has been used in literature [36], [37] to determine the post contingency operating
condition. In [38], the PTDF has been used for contingency screening and ranking. This approach can
avoid the computational burden of the full AC load flow and determine the post outage operating
condition using DC load flow. The trade-off, however, is the accuracy of the post contingency
condition. It was shown in [38] that this approach was unable to capture almost half of the unstable
contingencies in a 3-machine WSCC system [24] and 80% of the unstable contingencies in the 10-
machine 39-bus New England test system [39].
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In [40], contingency screening was performed for extremely large contingencies like (N - 2) and (N - 3)
based on eigenvalue sensitivity to small perturbations in line admittance and shunt capacitor. This is
an approximation to the effect of line outage, which is a large disturbance. Moreover, the
contingencies were sorted based on the magnitude of eigenvalue sensitivity -the higher the
magnitude, the greater is the criticality of the contingency. This criteria does not indicate how critical
the modes are i.e., how far they are from the imaginary axis. In the proposed approach of this paper,
we do not consider a dc load flow approximation. The eigenvalues for a post-outage scenario are
estimated from a system state matrix which is computed after the removal of the line rather than a
small change in its admittance. Moreover, the proposed algorithm considers the 2nd order
approximation in order to take into account the non-linearity due to the large change in the system
matrix resulting from the line outage. In the proposed approach, the contingencies are sorted based
on estimation of eigenvalues corresponding to inter-area modes. The method focuses on
eigenvalues associated with the critical modes rather than any indirect way such as screening based
on eigenvalue sensitivity.

5.2 Eigenvalue sensitivity based fast contingency screening

Power system dynamic behavior is typically modeled using a set of differential-algebraic equations
(DAEs)

x=f(xy) (30)
0=g(xy)

where, x is a vector of state variables associated with the dynamic states of generators, loads, and
other system components; y is a vector of algebraic variables associated with steady-state variables
such as voltage phasor magnitudes and angles. Small signal stability analysis is done by linearizing
these non-linear equations around an operating point (Xq, o)

[Aofc] _ U [ﬁﬂ (31)
J

where, | is the system Jacobian matrix, and J; = af/dx|o, J, = 0f/0y|o. J3 = 09/0x|o, J4a =
dg/dy|, are the respective partial derivatives evaluated at the operating point. The system
eigenvalues can be computed by eliminating the vector of algebraic variables, so that the DAE
system is reduced to a set of purely ordinary differential equations (ODE)

Ax = (11 _]2]4—1]3)Ax:AsygAx (32)
The eigenvalues and eigenvectors of Ay, are given by
Asys(pi = Aip; (33)

¢iAsys = A;p; (34)
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where, 4;, ¢; and ¢; are the eigenvalue, right eigenvector and left eigenvector respectively
corresponding to mode i. The eigenvalues of the above ODE system provide all the information on
modal damping ratios and frequencies. For each mode, characterized by a pair of complex
conjugate eigenvalues, the corresponding right eigenvector indicates the mode shape, giving
information on the relative phase of each state in that particular mode. The participation factors
provide information on the influence of states on modes, and can be computed using the left and
right eigenvectors.

The eigenvalues of the above linear system provide the information on modal damping ratios and
frequencies. Small-signal stability assessment is the small-signal stability analysis of the system
under a set of contingencies for a range of operating conditions. The system is considered to be
small-signal secure if the damping ratio/settling time of all the oscillatory modes is within a required
threshold value. For the problem of inter-area oscillations, we focus on modes in the frequency range
of 0.1 Hz to 1 Hz. Oscillatory modes with damping ratio less than a threshold value, such as 0.05, are
considered to be the critical modes of concern. The system state matrix Ag,,s changes with changes
in the operating point, since it is formed based on a linearization around an operating point. The
operating point changes as a result of a contingency such as loss of a transmission line due to a
fault. In order to analyze the impact of contingencies on small signal stability of the system, one
approach is to re-compute the eigenvalues for post-contingency situations by solving (4). Upon
solving this equation for each case, the contingencies can be ranked according to their impact on
the eigenvalues. The contingencies that result in the maximum movement of the eigenvalue towards
the positive side of the real axis are considered as the critical contingencies.

For a large system, solving ( 33 ) for each post-contingency condition is a computationally challenging
problem. This problem becomes infeasible when the goal is to perform such a contingency analysis
in near-real-time. Another approach is to perform time domain simulations for all the contingency
conditions, and evaluate the change in damping of critical modes using measurement-based modal
identification techniques. Here again, simulating large number of contingencies in time domain for a
large-scale system is a time consuming process, and infeasible for near-real-time applications.

The goal of the proposed algorithm is to screen the critical contingencies for a given poorly damped
mode without either solving ( 33 ) for each contingency or simulating the computationally intensive
time-domain dynamic simulations. The algorithm is based on an eigenvalue sensitivity-based
approach. In this approach, the eigenvalue corresponding to the given critical mode is estimated
based on the eigenvalues and eigenvectors at the nominal condition and change in the system
matrix for each contingency. The advantage of the proposed algorithm is that we avoid the
computationally challenging task of solving (33 ) for each contingency.

Eigenvalue sensitivity is a very useful tool to understand the small-signal stability problem, and has
been used in various applications in the past. Here, we consider its use in analyzing the impact of
contingencies, which result in changes in operating point. The 15t order eigenvalue sensitivity is given

by
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0A (35)
o Yi Wd’i
dy Vi,
where, y is any system parameter. The above equation gives information on sensitivity of the
eigenvalue corresponding to mode i for a small change in the system parameter y. Both left and
right eigenvectors are used in the calculation. Multiplying both sides of above equation by ay, we get

a4, Ay = Y AAg;
T gy = 2200
dy Vi,

where, 44 = (4,5 — A) is the change in system state matrix from nominal condition to a post-

contingency condition. Using Taylor series approximation, the eigenvalue for the post-contingency
condition can be estimated by

dA; i AAQ; 36

Apost = A + G—;AYEAH‘%% 96]
The only term in ( 36 ) dependent on the post-contingency condition is 4A. All the other terms are
computed only once - at the nominal condition. Since 44 is computed using nominal condition and
post-contingency condition, the change in operating condition due to a contingency is taken into
account in the estimation algorithm, without needing to re-compute the eigenvalue using ( 33 ). So,
although the estimation of eigenvalue is based on a 1st order approximation, the post-contingency
condition is accounted for through the 4A term.

While ( 36 ) takes into account the change in operating condition as a result of a contingency, it is
bound to have certain inaccuracy in predicting the eigenvalue due to the underlying 1st order
approximation. To improve the accuracy in this regard, we include the 2nd order term. Then, the
estimate of eigenvalue is given by

_ dA; 1 azﬂi
Apost =4+ W A)/ +§ay2

(Ay)?

(37)

g YibAg 1 lMAi( i AAdichr )
b it | \ i — &)
*i

The second order term in ( 37 ) uses information on all the eigenvalues, left and right eigenvectors
computed at the nominal condition in order to estimate the eigenvalue for mode i. The 1st order
estimation in ( 36 ), however, requires only the eigenvalue and eigenvector corresponding to that
particular mode. Hence, there is a tradeoff between accuracy and computation when the eigenvalue
is estimated using a higher order approximation vs. a first order approximation.
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5.3 Feasibility of Practical Implementation

The steps followed in determining the critical eigenvalues under post-contingency operating
scenarios as described in the previous sub-section are summarized in the flow chart shown in Figure
29. The three key components of the proposed estimation method are highlighted in Blocks I, Il and
lII. Following the completion of these key steps, the contingencies are screened and ranked based on
the real-part of the estimated eigenvalues. The real-part of the eigenvalue is used as the indicator
of how far the eigenvalue is from the imaginary axis. A contingency is classified as ‘critical’ if the real-
part of eigenvalue is greater than a threshold value (e.g., -0.133 corresponding to a settling time of 30
seconds). After screening and ranking the critical contingencies, time-domain simulations can be run
to validate the results for the most critical contingencies. Time-domain simulations are run using HPC
platform to validate the results for the most critical contingencies.

[ Listof [\ [
|.| Contingencies| | S g
- 1
Compute A, .
matrix for
nominal
condifion
Y
—_— Compute all
Compute A, . -
. — eigenvalues
mafrix for Jgyand screen for nominal
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H Aroost — | Block
b III
Y
Rank confingencies
based on
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Figure 29: Flowchart of the proposed contingency screening algorithm.
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As mentioned earlier, the eigenvalues for the post-contingency scenarios can be calculated by
solving ( 33 ). In this report the ‘eig’ function of MATLAB, which utilizes the LAPACK library from Intel
Math Kernel Library (Intel MKL) is used for computing the eigenvalues from the full state matrix. This
is a computationally efficient way of calculating the eigenvalues using commercial grade software
such as MATLAB. This method will be referred to as ‘EIG’ in the rest of the report.

Blocks | and Il are common in the EIG approach and the proposed approach. In the proposed
approach, Block Il estimates only a few selected eigenvalues which correspond to the critical
electro-mechanical modes.

While the proposed eigenvalue sensitivity-based algorithm gets rid of the computationally
challenging task of solving ( 33 ) for each contingency, it still has portions that may pose challenges
when considering real-time implementation on large-scale systems. One of the challenges is in the
computation of the 2nd order term in Block Ill. As can be seen from ( 37 ), this term requires the
knowledge of all the eigenvalues and left and right eigenvectors at the nominal condition, which
could be a challenging problem for a large-scale system. Furthermore, in Block Il, the system state
matrix has to be computed for all the contingency conditions, and this could also be a challenging
problem for a large-scale system.

Two approaches have been identified in this task to further improve the computational efficiency of
the proposed algorithm. The two approaches are described below.

5.3.1 Approach1l

5.3.1.1 Improving speed of computation of Block lil:

For an efficient calculation of Block IlI, the matrix multiplication and addition in (36 ) and (37 ) should
be done judiciously. This computation can be made more efficient as follows. The left and right eigen-
matrices and the eigenvalues are computed from Block |, and can be arranged in matrix form as,

;

Rows and columns corresponding to the critical eigenvalues are selected from these matrices. Let us
assume A4, Ay, ..., Adyerie are the critical eigenvalues of interest.

(nxn)

1) First order estimate: The estimation of the critical eigenvalues for a particular post-contingency
scenario is described in ( 36 ). To calculate the first order term, the following arrangement of
matrix multiplication leads to an efficient computation:
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T

[ A4y ] (T %1 7 Rz
Ay V2 2

AA a2, |=diagy| [444y] ¢lT .

-A/lncrit- \-lpncrit- —¢17;crit-

A

2) Second order estimate: Similarly, for the second order term, the summation term can be
calculated efficiently in the following steps of matrix multiplications and additions:

Step I: the following expression is computed.

NN RN

e —

I
r= ilPAAsys |¢ |
l l(]ﬁ,? (nxncrit)J

Where- I = [rl rz rncrit]
Step II: corresponding to the ith critical eigenvalue 44;; is computed as

Ay = [(/11' - /11) (Ai - /12) (/11‘ - An)]T

Step Ill: the matrix given below is evaluated:

Bl = [ /My

where, the dot operator represents element-wise division in matrices.

SteplV: The ith row of the above matrix Z¢ and the ith column of right eigenvector ¢ are removed
and the corresponding variables are defined as E[ and ¢l respectively.

Step V: the summation term in (8) is computed by summing over the columns of the matrix
(¢! x diag{=[1}) given by: sum{col(¢!! x diag{z[1})}

Step VI: steps Il to V are repeated for i = 1, 2, ..., ncrit.

5.3.1.2 Improving speed of computation of Block Il:

Calculation of Agys consumes a significant portion of time since it needs to be performed for all post
contingency conditions. One popular numerical method to compute Ay is the perturbation based
technique, where each state is perturbed individually. This computation can be reduced by selectively
perturbing the states that have higher impact on a given critical mode. This information is obtained
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by computing the participation factors for a given mode. Participation factors of the states for a
particular mode are computed using the left and right eigenvectors, the sum of which equals 1 for a
given mode. The states that contribute to a majority of participation in a given mode, given by the
cumulative sum of participation factors can be chosen as the important states. This process can
potentially improve the speed of computation of sys matrix for each contingency. As will be
demonstrated in the next section, the threshold value used to determine the majority contribution
(e.g., cumulative sum equal to 0.95) dictates the accuracy of the algorithm. Smaller the threshold,
lesser the number of states that need to be perturbed in order to compute the Ayy,; matrix, but
greater is the inaccuracy in estimating the eigenvalues.

The shortcoming of this approach is that it requires the computation of the full eigenspace in order to
calculate the participation factors. This may be impractical for a large scale system, especially when
considering a dense system state matrix for real-time application.

5.3.2 Approach?2

To overcome the short coming of approach 1, we consider an alternate way to compute the second
order term in the eigenvalue estimation. In the second order term in ( 37), we can see that there is a
summation term that requires all the eigenvalues and eigenvectors at the operating point. This can
consume significant computation time. We recall (37 ) below.

L
a Y Ta

l/)lAAd)l 1 A¢'¢k
A
At eV AZ(wkcpk(A m)

The second order term in the above expression can be written alternatively as

Apost = /11' +

IR

62/1 (')A 0A; Q.
anr = 2y {2 ay - Stapd—ia l
(V) ¢¢[¢ ay(y) 5, A7
9¢; (38)
_ Aptst 2
=05 [2¢ Aos — M1} Ay]
Multiplying on both sides of the above equation by Ay, we get
d0¢; (39)
Agys — Re(4;1) Im(A;I) l[Re( ¢‘) Ay]l —Re(MAgys — AT
_Im(/l*l-l) Agys — Rti(/lil) 06, = | —Im(AAgys — AN,
Re(9) Im(¢}) () 0

The above equation is in the form Ax = b. In this equation, all the terms are known except the b term.
The remaining terms are dependent on just the system state matrices for nominal and post-
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contingency conditions, the eigenvalues and eigenvectors corresponding to a given electro-
mechanical mode, and the first order estimate. Solving this equation, and substituting the resulting
eigenvector sensitivity in the second order estimate equation ( 38 ), one can obtain the second order
term. This approach has the advantage that the computation of the full eigenspace is avoided. Only
the eigenvalues and right eigenvectors corresponding to the modes of interest need to be known.
There exist computationally efficient techniques that can perform such a selected eigenspace
computation for large-scale dense matrices.

Other approaches to improve computational efficiency:

Exploiting sparsity in full DAE formulation: The proposed eigenvalue sensitivity-based algorithm
uses the system state matrix Ay, which is dense. Instead, the sparse nature of the full DAE model
given by (31 ) can be exploited. It is straightforward to extend the proposed algorithm to the full DAE
formulation. This extension to the full DAE formulation could potentially benefit the contingency
screening algorithm.

Application of High Performance Computing (HPC): The proposed algorithm requires the
computation of system state matrices corresponding to all the contingencies. This process is easily
parallelizable, and so HPC can be used to speed up this computation. Computation of A matrix
involves perturbing each of the dynamic states and computing the resulting changes in system
states and this process is inherently parallelizable. Parallel computing techniques can be exploited to
allocate tasks that are performed in a loop to multiple cores. Also, the analysis for one contingency is
independent of the others. Therefore, the algorithm can be easily parallelized in order to analyze
multiple contingencies. Such a parallelization can lead to a significant reduction in the computational
time of the overall algorithm.

5.4 Results

5.4.1 16-machine 68-bus system

A 16-machine 68-bus test system is used to demonstrate the effectiveness of the proposed
contingency screening algorithm. The description of this test system is included in Appendix A and
the detail small signal characteristics is described in Appendix B. As shown in Table 25 in Appendix B,
this test system has 4 inter-area modes. For the purpose of this analysis, we will focus on the Mode 1
(~ 0.37 Hz mode).

For (N-1) contingency analysis in this system, 87 feasible line outage scenarios have to be
considered. The goal of the proposed algorithm is to reduce the number of contingencies to be
analyzed. Table 10 summarizes the results of this algorithm. Each row in the table corresponds to a
contingency. Note that here we do not show the results for all possible contingencies, but for only a
selected set, although the algorithm is run for all possible contingencies. The table lists the estimated
real part of eigenvalue corresponding to a particular critical mode using the second order based
approach as well as the first order based approach. It also lists the “benchmark” results that can be
obtained using exact eigenvalue computation. As can be seen from the table, across all the selected
contingencies the second order based approach performs better (lower error) than the first order
based approach. The error shown here is simple the absolute value of the difference between
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estimated value and benchmark value. By setting a threshold value for the real part of eigenvalue of
-0.1 (corresponding to a settling time of 40 seconds), we can see that the top 6 contingencies
(highlighted in blue) are critical based on the benchmark results. Since the proposed algorithm
estimates eigenvalues, we added a 10% margin to this threshold in order to arrive at the list of
critical contingencies. The resulting list of critical contingencies based on the second order
estimation is highlighted in red. As can be seen, all the critical contingencies obtained based on the
actual computation are captured by the algorithm. The algorithm also identifies 2 additional
contingencies, due to the added margin. This demonstrates that the proposed algorithm is
successful in identifying the critical contingencies. The table also lists a ranked list of contingencies
for the first order and second order based approaches along with the benchmark ranking list. As can
be seen from this, the second order based approach is able to capture the top ten contingencies and
maintain most of the ranking. However, the first order based approach is unable to capture
contingencies ranked 9 and 10. This demonstrates the importance of the second order term in
accurately estimating the eigenvalues post contingency and capturing the critical contingencies.

Table 10: Comparison of estimated and actual eigenvalues for contingency screening and ranking (Base Case with
default load model)

Line Real part Real part Real part Error Error Ranking  Ranking  Ranking
From To (2nd (1st order) (EIG) (2nd (1st order) (2nd (1st order) (EIG)
order) order) order)
37 68 -0.0517 -0.0865 0.0129 0.0646 0.0994 1 1 1
22 21 -0.0805 -0.1024 -0.0354 0.0451 0.0670 3 4 2
47 53 -0.0782 -0.0948 -0.0755 0.0026 0.0193 2 2 3
21 68 -0.1031 -0.1124 -0.0899 0.0132 0.0225 6 8 4
27 37 -0.1000 -0.1044 -0.0980 0.0019 0.0064 4 5 5
40 48 -0.1008 -0.0952 -0.1002 0.0006 0.0050 5 3 6
61 60 -0.1061 -0.1133 -0.1029 0.0032 0.0104 7 9 7
61 60 -0.1061 -0.1133 -0.1029 0.0032 0.0104 8 10 8
54 53 -0.1103 -0.1164 -0.1076 0.0027 0.0088 9 16 9
54 53 -0.1103 -0.1164 -0.1076 0.0027 0.0088 10 17 10

A key aspect of the proposed approach is the computation time of the algorithm. Table 11 below
shows the computation times for a single contingency using the 1st order approach, 2nd order
approach and the EIG approach. As can be seen from the table, the 1st order approach takes the
least amount of time, followed by the 2nd order approach and then the EIG approach. The 1st order
approach is almost 27 times 5 faster than the EIG approach, and the 2nd order approach is 2:5 times
faster than the EIG approach. The computer used to perform these simulation had the following
configuration: IntelR XeonR CPU W3565 @ 3.2 Ghz, 4 Cores, 8GB RAM, Windows 7 Professional, 64-bit,
and the MATLAB version used was R2013b. PSLF solution architecture.
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Table 11: Comparison of computation times in second

| (15t order) (2 order) EIG |
0.000433 0.00465 0.011654

Therefore by first screening the contingencies with first order approach considering higher threshold
on real-part of eigenvalue (damping or settling time) and then computing the second order terms for

only those contingencies that exceeds the threshold, a significant reduction in computation time can
be achieved.

Figure 30 shows the graphical representation of the two oscillating generator group for 0.37 Hz
mode. Group 1 generators are shown in green and Group 2 generators are shown in red. The circle
represents the generator and magnitude and angle of the arrow represents the modehape
magnitude and angle for 0.37 mode. The critical contingences that cause this mode to be
unstable/lightly damped are shown in blue colored line.

Mode No =1 Freq =0.370 Hz Damping = 7.38%
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Figure 30: Graphical representation of oscillation group and critical contingences for 16 machine 68 bus system.
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Table 12 summarizes the results of this algorithm for the same 16 machine test system, but at a
different operating condition considering constant impedance load model. This case was developed
to represents a lightly damped system which can then be used to demonstrate the effectiveness of
optimal control action. The control action necessary to bring the system back to stability following
the critical contingencies is explained using this condition in next section. As can be seen from the
table, similar to the previous test condition, here as well the 2" order based approach provides
better results than the 1st order based approach. This can be concluded by looking at the error values
for each of the top 10 contingencies for 2" order and 15t approaches in table 13.

Table 12: Comparison of estimated and actual eigenvalues for contingency screening and ranking (Lightly damped
case with constant impedance load model)

Real part Real part Real part Error Error Ranking  Ranking  Ranking
From To (2nd (1st order) (EIG) (2nd (1st order) (2nd (1st order) (EIG)
order) order) order)

37 68 0.1403 0.0542 0.2270 0.0867 0.1728 1 1 1
22 21 0.0622 0.0040 0.1372 0.0750 0.1332 2 2 2
21 68 -0.0050 -0.0336 0.0235 0.0285 0.0571 3 6 3
61 60 -0.0080 -0.0234 -0.0078  0.0003 0.0156 4 3 4
61 60 -0.0080 -0.0234 -0.0078  0.0003 0.0156 5 4 5
27 37 -0.0182 -0.0288 -0.0129 0.0053 0.0159 6 5 6
54 53 -0.0222 -0.0358 -0.0217 0.0005 0.0141 7 7 7
54 53 -0.0222 -0.0358 -0.0217 0.0005 0.0141 8 8 8
24 23 -0.0300 -0.0444 -0.0237 0.0063 0.0207 9 9 9
63 58 -0.0356 -0.0489 -0.0302 0.0054 0.0188 10 10 10

5.5 Conclusions

A novel eigenvalue sensitivity-based approach for screening contingencies for small signal stability
has been proposed and tested on the 16-machine 68-bus New York-New England Test. The result
shows that the proposed approach of estimating modes for post contingency condition is suitable in
identifying critical contingencies with significant speed gain. While the second order correction
entails more computation burden than the first order, it can more accurately screen and rank the
contingencies in the order of severity. With the improved availability of parallel computing
techniques for utility operations, the proposed approach has the potential to enable real time
decision making to predict and tackle oscillatory problems based on current operating conditions.
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6 Oscillation damping control

6.1 Introduction

The objective of this task is to develop an algorithm that will determine the optimum generation
and/or load change required to improve the damping of poorly damped oscillatory modes in the
system for all N-1 contingencies. The proposed algorithm takes advantage of a model-based
approach to improve the oscillatory stability of the system considering “what-if” or N-1 contingency
conditions. The broad idea is to leverage the fast time domain simulation engine to estimate the
sensitivity of eigenvalues with respect to tunable system parameters (e.g., generation re-dispatch)
and use this information to determine the required control action scheme that the system operator
can take. One key benefit of adopting an eigenvalue sensitivity based approach is that the same
information can be leveraged for the contingency screening algorithm proposed earlier. For example,
if the system operator needs to analyze the impact of generator outage contingencies on system
oscillatory modes, the eigenvalue sensitivity can be used to obtain such information. As a byproduct
of that, the sensitivity can be used in the control algorithm proposed in this task.

In any generation re-dispatch based oscillation damping control scheme, there are four basic
questions that need to be answered:

1. Which generators should increase their output and which ones should decrease their output
in order to improve the damping of an oscillatory mode?

2. Which generators will be more effective in impacting a certain oscillatory mode?

3. What is the optimum amount of generation re-dispatch needed to improve the damping of
that mode?

4. How to avoid negative interaction among multiple poorly damped modes as a result of the
re-dispatch?

The answer to these questions lies in the fundamental quantity that governs the relationship
between oscillatory modes and generator power output change - the eigenvalue sensitivity. The
eigenvalue sensitivity quantifies the change in eigenvalue corresponding to an oscillatory mode
when a particular generator output is changed by a small amount. It is not possible to write the
analytical expression for this quantity in an explicit form, and so the computation of the eigenvalue
sensitivity involves a perturbation based approach. That is, the generator power is changed by a
small amount and the resulting change in eigenvalue is computed by calculating the new system
state matrix at the new operating point.

Since the contingency screening algorithm relies on eigenvalue sensitivities, and generator outage is
part of the list of contingencies to be analyzed, the idea is to perform the sensitivity computation only
once at the base case, and exploit it for both the contingency screening and damping control
algorithms.
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6.2 Eigenvalue sensitivity to generator power output change

The first goal in arriving at the re-dispatch based damping control algorithm is to determine an
accurate way to compute eigenvalue sensitivity to generator power change. There are two potential
approaches to do this:

1. Approach 1: For a given generator, perturb its power output by a small amount and let the
slack generator absorb the resulting change.

2. Approach 2: For a given generator, perturb its power output by a small amount and
distribute the perturbation equally among the rest.

The approach that yields uniform sensitivity for a given generator, irrespective of which bus is
considered as a slack bus would be considered as the suitable approach. To evaluate these 2
approaches, consider the 4-machine 2-area test system. Table 13: Sensitivity of real-part of
eigenvalue to generator power using approach 1Table 13 summarizes the results for approach 1. In
this table, each row represents the sensitivity of real part of eigenvalue corresponding to mode 1 for
a small change in generator 1's output power as the slack bus is varied from generator 1 to
generator 4.

Table 13: Sensitivity of real-part of eigenvalue to generator power using approach 1

Generator\Slack Gl G2 G3 G4
Gl 0 0.0036 0.0008 0.0042
G2 -0.0038 0 -0.0028 0.0007
G3 -0.002 0.002 0 0.0034
G4 -0.0056 -0.0014 -0.0037 0

Table 14 shows the results for approach 2. In this table, again the same convention of rows and
columns is used. As mentioned earlier, the difference is in how the perturbation is distributed. In
approach 2, the perturbation made at one generator is distributed equally among the rest of the
generators.

Table 14: Sensitivity of real-part of eigenvalue to generator power using approach 2

G1 0.0037 0.0034 0.003 0.0028
G2 -0.0013 -0.0014 -0.0018 -0.0018
G3 0.0011 0.0013 0.0018 0.0017
G4 -0.0036 -0.0032 -0.0031 -0.0028

By comparing Table 13 and Table 14, it can be observed that in approach 2, the choice of slack bus
has no impact on the eigenvalue sensitivity calculations. On the other hand, in approach 1, it can be
seen that the choice of slack does have an impact on eigenvalue sensitivities. Thus, we can conclude
that approach 2 is the appropriate one.
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Also, from Table 14 it can be seen that for each column, the addition of sensitivities equals 0. This can
be explained as follows. Let A represent the eigenvalue corresponding to the mode of concern and N
represent the total number of generators. Then, according to approach 2, a change in generation AP
at G1, is compensated equally among the remaining generators. So, the change in eigenvalue can
be approximated using Taylor series as

A OAAP a/l( ) OA(AP)
17 3P, aP,\N — 1 Py \N — 1

The eigenvalue sensitivity is then given by

S_Ml_aa 6&(1) 6/1(1)
Y= AP~ 9P, 0P,\N-—-1 Py \N — 1
Similarly, a change in generation at G2 would result in
AL = 6/1<AP)+GAAP OA(AP)
27 9P,\N—-1)  aP, Py \N — 1
The corresponding eigenvalue sensitivity for this change is given by
S_A/’lz_ 6/1(1>+GA 6/1(1)
27 AP~ 9P,\N—-1/ " opP, Py \N — 1

Similarly, the eigenvalue sensitivity for the i th generator is given by
S_AAL-_ 6/1<1> OA(1> +a,1 (M(l)
1T AP~ 9P,\N—-1)/ 0P,\N-—1 P, Py \N — 1

Then, adding all the sensitivities for generators 1 to N gives,

is ( N—1>+ 6/1(1 N—1> (’M(l N—1)_0
Lop; N—-1) 0P, N -1 aPN N—-1)

i=1

Hence, for a given slack bus choice, the sum of all eigenvalue sensitivities to generator power
changes equals 0.
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6.3 Importance of eigenvalue sensitivity

Next, we demonstrate the value of using an eigenvalue sensitivity based approach for generator re-
dispatch based damping control. We consider the 16-machine system for the demonstration. Each of
the 16 generators is perturbed by a small amount, and the resulting change in real-part of
eigenvalue corresponding to the top 3 critical modes is evaluated. Table 15 shows the resulting
sensitivities.

Table 15: Sensitivity of real-part of eigenvalue to generator power change

G1 -0.00070 0.00018 -0.00047
G2 0.00964 0.00189 0.00618
G3 0.01350 0.00247 0.00856
G4 0.03024 0.00446 0.01128
G5 0.03882 0.00545 0.01540
G6 0.02858 0.00457 0.01487
G7 0.02483 0.00409 0.01331
G8 0.00129 0.00072 0.00059
G9 0.00194 0.00097 0.00179
G10 -0.01799 -0.00289 -0.00909
G11 -0.01828 -0.00328 -0.01007
G12 -0.01757 -0.00407 -0.01226
G13 -0.01778 -0.00405 -0.01278
G14 -0.02780 -0.00258 -0.00845
G15 -0.02560 -0.00277 -0.00920
G16 -0.02296 -0.00510 -0.00964

From Table 15 it can be seen that across all the generators, the sensitivity of real part of the
eigenvalue for mode 2 is much less than that for modes 1 and 3. Also, it can be seen that mode 1
has the highest magnitude of sensitivity to generator power output changes, which indicates that
controlling that mode needs much less re-dispatch as compared to the other modes. Furthermore,
the signs of the sensitivities indicate the positive interaction among all the 3 critical modes. In other
words, by targeting to improve mode 1 via generation re-dispatch, there would not only be an
improvement in damping of mode 1, but also that of modes 2 and 3 even if they are not explicitly
considered in the objective function. The eigenvalue sensitivity can be used as a first indicator to
operators to determine the feasibility of generator re-dispatch based control for improvement of
modal damping. As was seen in this example with mode 2, the eigenvalue sensitivity may be so low
that improving the damping of such modes would require unrealistically large amount of generation
re-dispatch; in which case the operators may be able to conclude that generation re-dispatch would
not be a feasible solution. In other cases, such as mode 1 in the above example, the operators may
use this information to further solve an optimization problem to determine re-dispatch commands
for individual generating units in order to improve modal damping, as will be demonstrated in the
following sub-section.
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6.4 Quadratic programming based approach to decide generation re-dispatch
Next, we consider the objective of improving the damping of just mode 1 in the above 16-machine
example system using generation re-dispatch. The optimization problem is formulated as a quadratic
program (QP) follows:

Ng
minj = E:APL-2
i=1

Ng
Subject to: Z AP; =0
i=1
Ng
Otarget = Obase T+ ZAPiSi
i=1

where, Ng is the total number of generators, AP, is the amount of re-dispatch for generator i, S; is the
sensitivity of real-part of the eigenvalue to change in power of ith generator, o, is the real-part of
eigenvalue for the base case, oarget i the targeted real-part of eigenvalue post-dispatch.

The sensitivities are calculated using approach 2 described above. The base case real-part of
eigenvalue is -0.0802. The targeted real-part is -0.13 (corresponding to a settling time of 30 seconds).
Then, the QP results in a total re-dispatch of 1.0087 p.u. (i.e., the total increment within one group of
generators has to be 1.0087 p.u., and an equal amount of decrement within the other group). This re-
dispatch is then implemented, and the resulting post-re-dispatch eigenvalue real-part is -0.1226. As
expected, the post-re-dispatch eigenvalue real-part does not exactly match with the targeted value
of -0.13. This is due to the fact that the relationship between eigenvalue movement and re-dispatch
of generators is expected to be non-linear one (but one for which a closed form expression is not
available), but in the QP, we make the assumption of a linear relationship between generation re-
dispatch and change in eigenvalue real-part given by the eigenvalue sensitivity. In spite of this
assumption, it is encouraging to see that the post-dispatch eigenvalue real-part is quite close to the
targeted value. We also examine the impact of this re-dispatch on mode 2, which was not explicitly
considered in the objective function. However, our expectation is that because the eigenvalue
sensitivities for modes 1 and 2 have the same signs, the re-dispatch would help improve the
damping of mode 2 as well. The base case real-part of eigenvalue corresponding to mode 2 is -
0.1242. Post-re-dispatch, this eigenvalue is -0.1342. So, although not a very significant change in
magnitude, the same re-dispatch is able to move mode 2 as well in a direction that would improve its
damping.

Next, we consider targeting improving the damping of just mode 2. Based on the eigenvalue
sensitivities given in table 3, we expect that the improvement of damping of mode 2 would need
significantly higher amounts of re-dispatch as compared to what is needed for mode 1. The base
case real-part of eigenvalue corresponding to mode 2 is -0.1242. The targeted real-part is -0.1742, so
that the change in real-part targeted (-0.05) matches with the previous case of mode 1. The QP
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results in a total re-dispatch of 6.49 p.u. The resulting real-part of eigenvalue after the re-dispatch is -
0.1427. This re-dispatch shows that for mode 2 to meet a targeted eigenvalue movement of the
same magnitude as mode 1, it would require more than 6 times the re-dispatch. This finding
validates our hypothesis that is based on purely base case eigenvalue sensitivities.

6.5 Damping control with constraints on amount of re-dispatch

Next, we consider the objective of improving the damping of just mode 1, with the addition of
constraints on the amount of re-dispatch that each generator can provide. So, the QP formulation
now has the following inequality constraints:

Pi

min < APi =< Prﬁlax

Note that these are constraints on the change in power of generators, and not the actual power
outputs itself. For the same test case as above, we consider the following constraints: for i =
14to 16,PL. = —0.15 p.u. For the remaining generators, PL. = —1 p.u. The upper limit P, for all
the generators is set at 1 p.u. The resulting change in dispatch after solving the modified QP is 1.1393
p.u. The real-part of eigenvalue post-re-dispatch is -0.1225. As expected, the addition of constraints
on generator re-dispatches results in higher amount of re-dispatch (1.1393 p.u. with constraints vs.

1.0087 p.u. without constraints) to reach the same amount of modal damping.

6.6 Damping control with constraints on frequency of eigenvalue and amount of
re-dispatch

Next, we consider the impact of re-dispatch on imaginary part of eigenvalue. We consider the same

16-machine system for the demonstration. Each of the 16 generators is perturbed by a small

amount, and the resulting change in imaginary-part of eigenvalue corresponding to the top 3 critical

modes is evaluated. Table 16 shows the resulting sensitivities.

Table 16: Sensitivity of imaginary-part of eigenvalue to generator power change

G1 0.00591 0.00512 0.00424
G2 -0.00217 0.00417 -0.01214
G3 -0.00505 0.00377 -0.01753
G4 -0.02360 0.00145 -0.04184
G5 -0.02635 0.00104 -0.05031
G6 -0.01989 0.00194 -0.03996
G7 -0.02042 0.00207 -0.03657
G8 0.00193 0.00428 -0.00140
G9 -0.00563 0.00402 -0.00563
G10 0.02413 0.00746 0.03171
G11 0.02482 0.00714 0.03599
G12 0.02544 0.00776 0.04753
G13 0.02546 0.00744 0.04579
G14 -0.00169 -0.02752 0.01839
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G15 -0.00223 -0.01316 0.01428
G16 -0.00073 -0.01711 0.00737

We consider the objective of improving the damping of just mode 1, with the addition of constraints
on the change in imaginary part of eigenvalue, along with the previous constraints on the amount of
re-dispatch that each generator can provide. So, the QP formulation now has the following inequality
constraints:

Ng
winin =< z APiTi < winax

i=1
The limits are chosen as: w! ;. = 0, wl,.x = 0.002. The resulting change in dispatch after solving the
modified QP is 1.4125 p.u. The real-part of eigenvalue post-re-dispatch is -0.1236. As expected, the
addition of constraints on imaginary part of eigenvalue in addition to constraints on generator re-
dispatches results in higher amount of re-dispatch (1.4125 p.u. with additional constraints vs. 1.0087
p.u. without constraints) to reach the same amount of modal damping. The imaginary part of
eigenvalue post-re-dispatch is 2.2824 (base case imaginary part is 2.2858). The post-re-dispatch
imaginary part of eigenvalue is 0.0034 smaller than the base case value, although in the QP the
lower limit on change in imaginary part was set at 0. This difference is due to that fact that the
relationship between eigenvalue sensitivity and generator re-dispatch is a non-linear one, while in
the QP formulation we are making a linearity assumption. However, for the previous case where
there was no constrain on imaginary part of eigenvalue, the post-re-dispatch eigenvalue has an
imaginary part of 2.3135, which is higher than the base case by 0.028. So, comparing the change in
imaginary part for the 2 cases (0.0034 vs. 0.028), it is clear that the re-dispatch is able to keep a
tighter control on the imaginary part. The trade-off, however, is that the amount of re-dispatch is
higher than the previous case (1.4125 p.u. vs. 1.1393 p.u.).

Figure 31 below shows the percentage re-dispatch (change in generation) for each of the 16
generators for this problem with constraints on imaginary part as well as power output. As can be
seen from the figure, generators 1 to 13 except 9 are required to reduce their power output, and
generators 9 and 14 to 16 are required to increase their power output.
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Figure 31: Individual generator and load power changes.

6.7 Proposed method of re-dispatch for ensuring post-contingency stability

In the previous sub-section, the re-dispatch command for generators was derived by posing it as an
optimization problem. Constraints on the change in power dispatch and deviation of post-dispatch
frequency were imposed and the optimization was solved using QP. It can be recalled that a major
motivation behind model-based approach is doing ‘what if’ analysis - that cannot be done using
measurement based approaches. To that end, the key question would be: how do we determine the
generation re-dispatch in the base case scenario that could ensure stability under the post
contingency conditions. The underlying challenges include:

e Considering changes in eigenvalue sensitivities following outages

e Ensuring stability across all (N-1) contingencies

e Non-linear relationship between the eigenvalue movement and re-dispatch - especially for
post contingency scenario

Figure 32 shows the proposed sequence of operations in the Fast Contingency Screening and Control
Action Engine (FSCAE). The fast contingency screening and ranking will be done on the base case
(steps a and b) following the approach mentioned in the previous section. Based on the outcome of
the screening and ranking (step b) and pre-determined threshold for the settling time, we will obtain
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a list of ‘critical’ contingencies. If there exist no ‘critical’ contingencies, no control action will be
considered. Otherwise, control action engine (CAE) will come into effect.

The CAE based on the eigenvalue sensitivity with respect to generator power output for the Base
Case was described in the previous sub-sections. However, the eigenvalue sensitivity under post-
contingency condition is likely to change. To address this challenge, we propose the following:

Step I: Compute the sensitivities % and i—‘l‘:for each generator under post-worst case contingency
condition. The sensitivity is computed only for the mode of interest which is causing instability.

Step Il: Under current operating condition (base case), use the above computed sensitivity for
optimization. The targeted real part of the eigenvalue will be determined in two steps. First, the
targeted change in the real part is determined by the equation

AUtarget = Opost—target — Opost

Here, o0t is the real-part of the eigenvalue under the worst-case post contingency condition (which
is known based on the post contingency model) and opest—target IS the targeted real-part of the
eigenvalue under the same condition (which can be set by the operator). Next, the target of the base
case eigenvalue real-part under post-dispatch condition is determined using the value of AGarger OS

Otarget — AGtarget + Obase -

Step IlI: Evaluate the dispatch command by the quadratic optimization mentioned before, to achieve
Grarget With constraints on real power and frequency. This leads to a new base case with a target
settling time as shown in step (e) of Figure 32.

Step IV: To validate its effectiveness, time-domain simulations will be run on the most ‘critical’
contingencies using the new operating condition following the re-dispatch (step f). Using Prony
analysis the settling time will be calculated. If it is acceptable, the re-dispatch command will be
initiated. Otherwise, the CAE will have to be run again.
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Figure 32: Proposed sequence of operations in the Fast Contingency Screening and Control Action Engine (FSCAE).

6.8 Results

In the 16-machine 68 bus test system, the line outage scenarios lead to instability of mode 1. From
contingency screening results the worst case contingency is line outage #46 (bus 37 - bus 68) whose
post contingency real part of the eigenvalue is 0.234, which is in the far right half of the s-plane. It
should be noted that instability of such severity under (N-1) contingency condition is not practical for

a realistic power system.

(a)

(b)

(c)

(d)

(e)

(f)

(9)
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To circumvent this impractical contingency, the next worst contingency, i.e. #23 (bus 22 - bus 21)
where the real part of the mode 1 eigenvalue is 0.123 is chosen. Let us consider that we would like to
attain a 30s settling time for this mode under the post-contingency scenario. This leads to
Opost—target = —0.13. Therefore, AGiarger = — 0.13 — 0.123 = —0.253 and Gyarger =-0.253 - 0.08 =
-0.333.

Table 17 shows the eigenvalue sensitivities computed for the outage of the line #23. These
sensitivities were used under the base case and the QP was used to derive the power dispatch to
achieve Oarger = -0.333 with constraints imposed on change in dispatch and modal frequency. The
limits on the change in dispatch were set to be 20% of their nominal values. The lower and upper
limits on modal frequency were the same as the previous case study.

The real part of the eigenvalue under the pre and post-dispatch (Case I) condition are shown in Table
18. The results from Case | shows that the base case o is moved to -0.21 instead of -0.33. For outage
#23, it moves to -0.097 as opposed to the target of -0.13. It can also be seen that stability is achieved
for top 10 critical contingencies.

As a test, the line impedance of line #23 was increased to a very high value to represent the outage.
As an example (Case ll), the eigenvalue sensitivities were computed with the corresponding line
impedance increased by 800% as shown in Table 17. When these sensitivities were used for re-
dispatch, the real part of the eigenvalue under post-dispatch condition when line #23 is out becomes
-0.135 as compared to the target of -0.13 (see Table 18). It can also be observed that post-
contingency conditions are stable.

Table 17: Eigenvalue sensitivities computed for contingency #23

Gl -0.0097 0.0109 -0.0037 0.0074
G2 -0.0016 0.0039 0.0056 0.0007
G3 0.0025 0.0008 0.0096 -0.002
G4 0.0283 -0.0191 0.0316 -0.0196
G5 0.0341 -0.0196 0.0388 -0.0208
G6 0.0927 -0.0505 0.052 -0.0275
G7 0.0845 -0.0553 0.046 -0.0301
G8 -0.0075 0.008 -0.0015 0.0043
G9 -0.0067 0.0018 -0.0006 -0.0026
G10 -0.0253 0.025 -0.0209 0.0225
G11 -0.0259 0.0255 -0.0214 0.023

G12 -0.0261 0.0268 -0.0213 0.0239
G13 -0.0266 0.0274 -0.0217 0.0242
Gl4 -0.0395 0.0054 -0.0331 -0.0009
G15 -0.0377 0.0042 -0.031 -0.0017
Gle -0.0351 0.0044 -0.0281 -0.0008
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Table 18: Real part of mode 1 Eigen value under pre-dispatch and post-dispatch conditions for base case and top 10
contingencies

Outage # o o) o
Outage #46 (bus 37 - bus 68) 0.234 -0.0339 -0.1106
Outage #23 (bus 22 - bus 21) 0.123 -0.0966 -0.1348
Outage #22 (bus 21 - bus 68) 0.025 -0.1537 -0.1892
Outage #80 (bus 61- bus 60) 0.008 -0.1499 -0.1947
Outage #81 (bus 61 - bus 60) 0.008 -0.1499 -0.1947
Outage #29 (bus 27 - bus 37) -0.005 -0.1666 -0.2007
Outage #63 (bus 47 - bus 53) -0.031 -0.1348 -0.1577

Base Case -0.08 -0.2108 -0.2366

Figure 33 and Figure 34 graphically shows the result shown in Table 18. It is apparent that extent
of the movement of o from pre-dispatch to post-dispatch condition shows consistency across

different contingencies.
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Figure 33: Case I: Real part of Eigen value (Y-axis) for Pre and post-dispatch conditions. X-axis plots top 10

contingencies and the base case.
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Figure 34: Case II: Real part of Eigen value (Y-axis) for Pre and post-dispatch conditions. X-axis plots top 10
contingencies and the base case.

6.9 Eigenvalue sensitivity with loads

So far, we considered the objective of improving damping of oscillatory modes using generation re-
dispatch. Next, we consider the possibility of load participation in this objective. That is, if both
generation and load are allowed to change, how would the algorithm be designed to take advantage
of this added flexibility. The approach is very similar to the previous one. The key addition is in the
way eigenvalue sensitivity to load change is calculated.

There are a couple of differences when considering load flexibility vs. generation change. When
considering load as an actuator, one constraint is that loads can be changed in only one direction.
That is, it is possible to only reduce the load, and not increase it, unlike the case with generation re-
dispatch. Secondly, there are many more load points in the system compared to the generators.
Typically, if a system has tens of generators, there would be several hundreds to thousands of
aggregate loads. So, it would be infeasible to compute the eigenvalue sensitivity for each of the
loads.

The approach proposed here allows one to determine eigenvalue sensitivity for loads in a realistic
manner. The steps of the eigenvalue sensitivity computation with respect to loads are as follows:

Step I: Compute the generating areas using previously computed eigenvalue sensitivity information
for generators - group 1 corresponds to positive sensitivities, and group 2 to negative

Step II: Decrease aggregated loads L1 in group 1 and distribute the decrement among all generators
AL

to compute §;, = P
L

Step Ill: Repeat Step Il to compute eigenvalue sensitivity for group 2 loads L2
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Table 19 below shows the sensitivity of real part of eigenvalue for load change for the 16 machine
system using the approach described above.

Table 19: Sensitivity of real-part of eigenvalue to load change

L1 -0.00469 -0.00064 -0.00382
L2 0.01939 0.00337 0.00942

Table 20 below shows the sensitivity of imaginary part of eigenvalue for load change.

Table 20: Sensitivity of imaginary-part of eigenvalue to load change

L1 -0.00540 -0.00497 -0.00161
L2 -0.01541 0.00060 -0.02639

From Table 19 and Table 20 it can be seen that a decrease in group 2 loads increases damping
(moves eigenvalue to left) of all the critical modes. So, this aids generation reduction for generators
with positive sensitivity. This information can be incorporated in the damping control algorithm as
follows:

The QP problem can be modified to

Ng 2
min/ = Z APL-2 + Z APLZgrp
i=1 i=1

Ng 2
Subject to: Z AP; + Z APLgrp =0
i=1 i=1

Ng 2
Otarget = Obase T Z AP;S; + z APLgrp SLgrp

=1 =1

P;.nin < APL' < Prflax

P < AP, <0

The modified QP was tested on the 16 machine test system. The resulting total reduction in
generation is found to be 0.9569pu (this is aided by a total load reduction of 0.15 pu). The total
increase in generation is 1.1069 pu (compared to the previous case which was 1.1393 pu). The
resulting post-dispatch eigenvalue real-part is -0.1289 (compared to the previous case which was -
0.1225). Therefore, it can be seen that including loads in the problem improves post-dispatch
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eigenvalue while reducing the total generation re-dispatch compared to the case when considering
just generation re-dispatch. Figure 35 below shows the percentage re-dispatch (change in power) for
each of the 16 generators for this problem with constraints on imaginary part as well as power
output as well as for the group of loads. The bars labeled 17 and 18 represent the load changes

(positive and negative respectively).
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-25

Figure 35: Individual generator and load power changes considering post-worst contingency.

6.10 Grid operational benefit from fast screening and control
The fast contingency screening and control action engine (FSCAE) will provide significant benefit to
the system operation by improving the grid resiliency to fast time-scale phenomena including:

Improved utilization of existing transmission assets by reduction of stability margin.
Increased turbine life by reducing frequency oscillation in the systems

Avoid false tripping of backup relays during power swings by maintaining more than 5%
damping ration.

Reduction of the dynamic rating of expensive FACTS devices used for supplementary
damping control action.

Improved situational awareness with real-time dynamic simulation capability.
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Appendix A - Model data and system

The dynamic models of two test systems (4 machine 11 bus system and 16 machine 68 bus system)
that are widely used in stability studies are developed in PSLF environment. These test systems will
be used in the project to test the fundamental concepts for contingency screening and control action
for small signal stability.

A.1 A 4 Machine 11 Bus Test System

Figure 36 shows a 4 machine 11 bus test system that is used to study small signal oscillation
problem [41]. This system consists of two similar areas connected by weak tie-lines. Each area
consists of two coupled units each having a rating of 900 MVA at 20 kV. A step-up transformer with
impedance of 15% on 900 MVA and 20/230 kV base, and an off-nominal tap ratio of 1.0 connects
each generator to the transmission system. The transmission system nominal voltage is 230 kV. The
system is operating with area 1 (consisting of buses 1, 2, 5, 6 and 7) exporting 400 MW to area 2
(consisting of buses 3, 4,9, 10 and 11). The active component of the loads has constant current and
reactive component has constant impedance characteristics. Two shunt capacitors with ratings of
200 MVAR and 350 MVAR are connected at buses 7 and 9 respectively. All four generators are
represented by a 6t order sub-transient model and are equipped with IEEE DC1A type exciters.

7 8 9

1 5

G1II
(OHH
2

'i‘
ER G

Figure 36: 4 machine 11 bus test system.

A.2 A 16 Machine 68 Bus Test System

Figure 37 shows a 16-machine, 68 bus test system. Further details can also be found in [42]. This is a
reduced order equivalent of the interconnected New England test system (NETS) and New York
power system (NYPS) which is taken from [43]. The buses are renumbered as in [42] keeping the
topology and the data (static and dynamic) the same as in [43]. There are five geographical regions
out of which NETS and NYPS are represented by a group of generators whereas, import from each of
the three other neighboring areas, Area #3, Area #4 and Area #5 are approximated by equivalent
generator models.

Generators G1 to G9 are the equivalent representation of the NETS generation whilst, G10 to G13
represent the generation of the NYPS. Generators G14 to G16 are the dynamic equivalents of the
three neighboring areas connected to the NYPS. There are three major transmission corridors
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between NETS and NYPS connecting buses #60-#61, #53-#54 and #27-#53. All these corridors have
double-circuit tie-lines.

All generators are represented by their 6th order sub-transient model. The generators G1 to G8 are
equipped with slow excitation systems (IEEE-DC1A) whilst G9 is equipped with a fast acting static
excitation system (IEEE ST1A) and a speed-input power system stabilizer (PSS) to ensure adequate
damping for its local models. The rest of the generators are under manual excitation control.
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Figure 37: 16 machine 68 bus dynamic equivalent of New York - New England power system.
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Appendix B - Benchmark model
B.1 Introduction

The 4-machine 11-bus system (shown in Figure 36 and the 16-machine 68-bus system (shown in
Figure 37) have been accepted as standard test cases that are widely used by power systems
engineers in the industry as well as the academia to study the small signal stability phenomenon. The
results of these two test cases have been published in numerous peer-reviewed publications. These
test cases are available with the project team as a MATLAB/SIMULINK model. The fact that MATLAB
can provide us a linearized model of the test network gives us an analytic foundation for testing our
hypotheses towards developing techniques for contingency screening, ranking and control action
engine. The results of a linear analysis of the MATLAB/SIMULINK model will be matched with the
published results, thus giving us a certain degree of confidence in the accuracy of the model. Since
the high performance computing (HPC) component of the project will be based on time domain
simulation in PSLF, it is necessary that we have the test case available in PSLF also. In order to ensure
the accuracy of the PSLF model and its time domain simulation, the team will benchmark the results
of the PSLF model against the benchmarked MATLAB model, for both systems.

B.2 Objective

The main objective is to benchmark the two systems in PSLF against the same model created in
MATLAB/SIMULINK by comparing their load flow and dynamic results. While it is ideal to have the two
models to exactly replicate each other, the innate characteristics of the software like numerical
integration techniques, mathematical model definition of the network components, etc. would
introduce some differences in the model behavior. It is important to quantify these differences
irrespective of how subtle they are, in order to understand and estimate the differences between the
final outcomes. Although the 4-machine 11-bus system and 16-machine 68-bus system is available
as a standardized test case for studying small signal stability, there might be subtle differences in the
model performance depending on the software platform on which the model was created. While
these differences are inconsequential in studies that use the same software for analysis, they must
be quantified in our project since we seek to leverage a combination of multiple methods and
computational software to achieve our project objectives.

MATLAB is used widely by scientists and engineers across several disciplines that require
mathematical modeling. Simulink is a block diagram environment for modeling, simulating and
analyzing dynamic systems. The 4-machine 11-bus system and 16-machine 68-bus system is
modeled by the first principles using the differential-algebraic equations that govern the dynamic
response of the power system components. The small signal behavior of the model has been
validated against published results.

GE Concorda PSLF is a commercial power systems analysis tool that is designed to provide
comprehensive and accurate load flow, dynamic simulation and short circuit analysis for large real-
life electric networks. PSLF is used widely by utilities for planning and operation. The use of PSLF for
small signal analysis allows the team to use larger networks for testing and validating the developed
techniques which would otherwise have not been possible with MATLAB/SIMULINK alone.
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B.3 Approach

In order to compare the network modeled in two different simulation environments, it is necessary to
characterize the differences in model behavior during dynamic and linear analysis. The differences
should be quantified and the possible sources of differences be identified and ensure the closest
possible matching between the models in the two simulation environments.

B.4 Benchmarking results for 4-machnine 11-bus system
Dynamic simulation

A dynamic simulation of the network provides a time domain response of the various power system
components. The dynamics of the network is modeled as a set of differential-algebraic equations
that represent all the time-dependent components of the network like generators and exciters.
Without any disturbance, the dynamics of the network should exhibit a flat profile, indicating steady
initial conditions. Once this is achieved, the dynamic response of the two models can be compared
by initiating a disturbance. The dynamic responses of the two models are compared by initiating a
disturbance. Two types of disturbances, namely generator output step change and bus fault were
used for the benchmarking process of the 4-machine 11-bus system.

Generator output step change is the smaller of the two disturbances. In this case, a pulse was
created by increasing the output of generator 1 by 0.01 p.u. and decreasing the output of generator
3 by 0.01 p.u. Bus fault is a large disturbance. A three phase symmetrical fault (self-clearing) is placed
at bus 8 for a short period of time and then cleared.

The rotor angles of generators 1, and 2 with generator 3 as a reference are plotted over the duration
of simulation for each of the two models and are presented in Figure 38-Figure 43. The red plots
represent the PSLF output, the blue lines are from the MATLAB simulation.

(1) Constant Current Load Model (Small Disturbance)
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Figure 38: Rotor angle plot for a small disturbance with constant current load model.
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(2) Constant Current Load Model (Large Disturbance)
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Figure 39: Rotor angle plot for a large disturbance with constant current load model.

(3) Default Load Model (Small Disturbance)
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Figure 40: Rotor angle plot for a small disturbance with default load model.

(4) Default Load Model (Large Disturbance)
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Figure 41: Rotor angle plot for a large disturbance with default load model.
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(5) Constant Impedance Load Model (Small Disturbance)
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Figure 42: Rotor angle plot for a small disturbance with constant impedance load model.

(6) Constant Impedance Load Model (Large Disturbance)
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Figure 43: Rotor angle plot for a small disturbance with constant impedance load model.

The comparison of the time-domain response of the MATLAB/SIMULINK model and PSLF model
shows that although the frequency of oscillation is same after the disturbance, the damping are
different. The mismatch is due to the differences in representation of the dynamic components like
generators and exciters in various software tools. The generator and exciter model in the
MATLAB/SIMULINK is based on the model described in [41] (which forms the basis of this test system).
While the commercial tools like PSLF requires that the model be in a standard modeling format
accepted by the industry and standard associations. For example “genrou” for solid rotor generator
represented by equal mutual inductance rotor modeling, “gentpf” for generator represented by
uniform inductance ratios rotor modeling to match WSCC type F model with shaft speed effects
neglected, “gensal” for salient pole generator represented by equal mutual inductance rotor
modeling and so forth.

Small signal response

The 4-machine system has only one critically damped inter-area mode. This mode (shown in Table
21) is given in [41]. Default load model (50% constant current, 50% constant impedance) is used.
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Table 21: Critically damped inter-area mode of the 4-machine system from [41].

Critical Eigenvalues Frequency Damping Ratio  Settling Time (s)
Real Imaginary (Hz) (%)
Manual -0.111 3.43 0.545 3.2 36
Excitation
DC Excitation -0.018 3.27 0.52 0.5 222

The linearization results from MATLAB/SIMULINK are shown in Table 22. The results shown in Table 21
and Table 22 are close enough, which means the model built in MATLAB/SIMULINK is an accurate
representation of the 4 machine system.

Table 22: Linearized results of MATLAB/SIMULINK model.

Critical Eigenvalues Frequency Damping Ratio  Settling Time (s)
Real Imaginary (Hz) (%)
Manual -0.115 3.42 0.544 3.4 34.7
Excitation
DC Excitation -0.017 3.27 0.521 0.5 236.2

Finally, the results of prony analysis for the MATLAB/SIMULINK model and the PSLF model are
compared and shown in Table 23 and

Table 24. Here are some observations that can be obtained from the comparison:
1. The frequency of the MATLAB/SIMULINK model and PSLF model are very close,

2. The damping ratio in PSLF is larger than that in MATLAB/SIMULINK for all cases. Since the
generator model, static exciter models and load models used in MATLAB/SIMULINK and PSLF are
slightly different; these can be the probable factors causing discrepancies in the small signal
responses.

Table 23: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Manual Excitation).

Manual Excitation Case MATLAB/SIMULINK PSLF

Frequency Damping Settling  Frequency Damping Settling

(Hz) (%) Time(s) (Hz) (%) Time (s)
Small Const.l  0.5435 3.85 30.43 0.5400 4.71 25.01
Disturbance Const.Z  0.5395 2.05 57.65 0.5453 4.13 28.30
(pulse) Default  0.5460 3.72 31.38 0.5434 4.44 26.40
Large Const.l  0.5438 3.39 34.55 0.5425 4.48 26.20
Disturbance Const.Z 0.5414 2.56 45.90 0.5416 3.90 30.17
(bus fault) Default  0.5454 3.37 34.66 0.5448 4.33 26.99
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Table 24: Comparison of prony results for MATLAB/SIMULINK and PSLF models (DC Excitation).

DC Excitation Case MATLAB/SIMULINK PSLF
Frequency Damping Settling Frequency Damping Settling
(Hz) (%) Time (s) (Hz) (%) Time (s)
Small Const.l  0.5165 0.47 261.88 05129 2.41 51.42
Disturbance Const.Zz 0.5216 -0.42 293.66  0.5183 13 94.36
(pulse) Default  0.5202 0.52 236.99 0.5159 2.24 55.02
Large Const.1  0.5162 0.46 266.30  0.5111 181 68.85
Disturbance Const.Z 0.5221 -0.31 387.53 0.5176 1.59 77.45
(bus fault) Default  0.5152 0.44 279.07 0.5155 1.87 65.94

B.5 Benchmarking results for 16-machnine 68-bus system

Dynamic simulation

Similar benchmarking process was done for the 16-machine 68-bus system. The system is modeled
in MATLAB/SIMULINK and PSLF. The differences in model behavior during dynamic simulation are
compared. Three different types of load modeling (1. 50% constant impedance, 50% constant
current, 2. Constant impedance, 3. Constant Current) and two different types of disturbances (1. Small
disturbance by perturbing generator mechanical power input, 2. Large disturbance by applying fault
at bus 53 and clearing the fault by opening line 53-54), yielding a total of six cases on which the
models were compared.

The rotor angles of generators 14, 15 and 16 with generator 13 as a reference are plotted over the
duration of simulation for each of the two models and are presented in Figure 44-Figure 48. The red
plots represent the PSLF output, the blue lines are from the MATLAB simulation and the green lines
represent the difference between the two simulation results at each sample of the simulation.
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(1) Constant Current Load Model (Small Disturbance)
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Figure 44: Rotor angle plot for a small disturbance with constant current load model.

(2) Constant Current Load Model (Large Disturbance)
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Figure 45: Rotor angle plot for a large disturbance with constant current load model.
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(3) Default Load Model (Small Disturbance)
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Figure 46: Rotor angle plot for a small disturbance with default load model.

(4) Default Load Model (Large Disturbance)
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Figure 47: Rotor angle plot for a large disturbance with default load model.
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(5) Constant Impedance Load Model (Small Disturbance)
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Figure 48: Rotor angle plot for a small disturbance with constant impedance load model.
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(6) Constant Impedance Load Model (Large Disturbance)
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Figure 49: Rotor angle plot for a small disturbance with constant impedance load model.
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Small signal response

In order to accomplish the benchmarking, it is necessary that the team perform the linearization of
the Simulink model. Since the Simulink model was built using the fundamental equations, the results
from this exercise present the “true modes” of the network. Table 25 and Table 26 list the four
critically damped inter-area modes in the system for base case and for line 53-54 outage case.

There are four critically damped inter-area modes in the 16-machine test system, as shown Table 25
and Table 26.

Table 25: Linearized results of MATLAB/SIMULINK model for base case.

Load Model Frequency(Hz) Damping (%) Settling Time (s)
Constant Mode 1 0.366 59 29.5
I Mode 2 0.505 4.4 28.7
Mode 3 0.587 57 18.9
Mode 4 0.789 50 16.0
Constant 2 Mode 1 0.367 6.3 27.6
Mode 2 0.492 4.4 29.5
Mode 3 0.582 5.2 21.1
Mode 4 0.788 50 16.2
Default Mode 1 0.368 59 29.2
Mode 2 0.498 4.4 28.2
Mode 3 0.588 55 195
Mode 4 0.789 50 16.1

Table 26: Linearized results of MATLAB/SIMULINK model for line 53-54 out.

Load Model Frequency(Hz) Damping (%) Settling Time (s)
Constant Mode 1 0.357 53 33.8
I Mode 2 0.503 4.3 29.1
Mode 3 0.558 51 22.2
Mode 4 0.789 5.0 16.0
Constant 2 Mode 1 0.351 53 34.0
Mode 2 0.491 4.3 30.4
Mode 3 0.556 4.5 255
Mode 4 0.788 5.0 16.2
Default Mode 1 0.355 5.4 33.2
Mode 2 0.497 4.3 29.5
Mode 3 0.560 5.0 229
Mode 4 0.788 5.0 16.1

The small signal properties of the MATLAB/SIMULINK and PSLF response for different modes using
different signals had been analyzed. The results of the prony analysis listed in Tables 3, 4, 5 and 6.
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Table 27: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 1).

MATLAB/SIMULINK PSLF
Frequency  Damping Settling ~ Frequency  Damping Settling
(Hz) (%) Time (s) (Hz) (%) Time (s)
Small Const. | 0.367 5.8 30.1 0.352 7.1 25.6
Const.Z 0.367 6.2 27.9 0.348 6.5 28.2
Default 0.368 5.9 29.4 0.352 6.9 26.1
Large Const. | 0.356 51 353 0.331 5.7 34.1
Const.Z 0.351 5.2 34.7 0.333 6.0 31.7
Default 0.356 5.3 34.1 0.332 5.4 35.6

Table 28: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 2).

MATLAB/SIMULINK PSLF
Frequency Damping Settling ~ Frequency  Damping Settling
(Hz) (%) Time (s) (Hz) (%) Time (s)
Small Const. | 0.506 4.7 27.1 0.485 4.6 28.2
Const. Z 0.497 4.9 26.1 0.463 5.3 25.9
Default 0.498 5.1 25.2 0.501 5.1 25.2
Large Const. | 0.504 53 23.9 0.501 5.6 22.6
Const. Z 0.503 5.5 23.2 0.515 4.6 26.4
Default 0.499 5.2 24.4 0.499 6.2 20.6

Table 29: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 3).

MATLAB/SIMULINK PSLF
Frequency Damping Settling Frequency Damping Settling
(H2) (%) Time (s) (Hz) (%) Time (s)
Small Const. | 0.584 6.0 18.2 0.592 6.2 20.6
Const. Z 0.579 5.4 20.4 0.579 5.8 19.2
Default 0.586 57 19.1 0.585 7.0 15.5
Large Const. | 0.558 4.6 25.1 0.556 5.9 19.3
Const. Z 0.555 4.2 27.1 0.558 6.1 18.7
Default 0.560 4.8 24.0 0.558 5.9 19.2
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Table 30: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 4).

MATLAB/SIMULINK PSLF
Frequency Damping Settling Frequency Damping Settling
(Hz) (%) Time (s) (Hz2) (%) Time (s)
Small Const. | 0.781 3.9 20.8 0.821 6.1 339
Const. Z 0.778 4.2 19.6 0.795 4.7 17.0
Default 0.771 4.2 19.6 0.780 3.4 23.9
Large Const. | 0.815 59 13.3 0.796 4.7 17.2
Const. Z 0.786 5.9 13.7 0.810 5.9 13.3
Default 0.787 5.1 15.8 0.807 8.0 9.9

Comparison of Tables 2 to 5 shows that the model matches closely in terms of their small signal
behavior. Some difference in the results are expected due to the differences in the dynamic model
being implement in the two platform to represent the same component.
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Appendix C - PSLF simulation results on laptop
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Figure 50: Single core PSLF simulation showing original variable response
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Figure 51: Single core PSLF simulation showing original variable response
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Sat Dec 06 17:21:37 2014

Figure 52: 2 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged
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@ pslE.cht L_PIC_RUNS
Sat Dec 06 17:22:01 2014

Figure 53: 2 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged

108



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

vt, efd, it, spd

450
425
400

375

3325

3.00

250

Value

128

|
i [\/\A
o050 ||

0.00

[ 1 2 3 4 [ 8 7 8 ] o 11 12 13 14 15 18 7 18 19 20
Time (Sec)

— BBA785 : GRTFAL2G :11.0:0: (00 21wt — 669785 GRTFAL2ZG :11.0:0: (0.0 21 cefd
— BE9785 : GRTFAL2G :11.0:0: 00 21t —BBATES GRTFAL2G:11.0:0: 00 21 :spd

0, Ll00.00, 32, O, 1, 60.00 / PSSEE-32.1  WED, JUL 03 2013 8:3
0, l00.00, 32, O, 1, 60.00 / PSSEE-32.1  WED, JUL 03 2013  8:3

@ pslE.chf .
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Figure 54: 4 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged
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@ pslE.chf .
Sat Dec 06 1£:59:09 2014

Figure 55: 4 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged
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Figure 56: 6 thread + new linear solver version of PSLF showing that the simulation accuracy remains unchanged
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@ pslE.chf .
Sat Dec 06 16:25:38 2014

Figure 57: 6 thread + new linear solver version of PSLF showing that the simulation accuracy remains unchanged

112



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

Appendix D - PSLF simulation results on PNNL's PIC machine
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Figure 58: Single thread and native PSLF solver simulation showing that variable response remains unchanged
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Figure 59: 2 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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Figure 60: 4 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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@ pslEZ0s_Ec.chf .
Mon Dec DB 19:21:28 2014

Figure 61: 6 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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Figure 62: 12 threads + new linear system solver version of PSLF showing that simulation accuracy remains
unchanged
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Figure 63: 18 threads + new linear system solver version of PSLF showing that simulation accuracy remains
unchanged
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Figure 64: Single thread and native PSLF solver simulation showing that variable response remains unchanged

119



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

PY. 99

Walue

] 1 2 3 4 5 [ 7 8 9 10 1 12 13 14 15 18 7 18 19 20
Time (Sec)

— 669785 GRTFAL2G:11.0:0: (00 :2:1:pg —6G69785 GRTFALZG:11.0:0: (00 :2:1:qg

0, Ll00.00, 32, O, 1, 60.00 / PSSEE-32.1  WED, JUL 03 2013  8:3
0, l00.00, 32, O, 1, 60.00 / PSSEE-32.1  WED, JUL 03 2013  8:3

@ pslEZ0s_Zc.chf .
Mon Dec DB 18:52:23 2014

Figure 65: 2 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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Figure 66: 4 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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Figure 67: 6 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged
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Figure 68: 12 threads + new linear system solver version of PSLF showing that simulation accuracy remains
unchanged
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Figure 69: 18 threads + new linear system solver version of PSLF showing that simulation accuracy remains
unchanged
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