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Executive Summary 
Power grid planning and operation decisions are made based on simulation of the dynamic behavior 

of the system. Enabling substantial energy savings while increasing the reliability of the aging North 

American power grid through improved utilization of existing transmission assets hinges on the 

adoption of wide-area measurement systems (WAMS) for power system stabilization. However, 

adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability 

and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic 

simulations that will enable the dynamic stability margins, proactive real-time control, and improve 

grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day 

dynamic simulations are performed only during offline planning studies, considering only worst case 

conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable 

generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected 

in the near future and greater integration of cyber infrastructure (communications, computation and 

control), monitoring and controlling the dynamic performance of the grid in real-time would become 

increasingly important. The state-of-the-art dynamic simulation tools have limited computational 

speed and are not suitable for real-time applications, given the large set of contingency conditions to 

be evaluated. These tools are optimized for best performance of single-processor computers, but the 

simulation is still several times slower than real-time due to its computational complexity. With 

recent significant advances in numerical methods and computational hardware, the expectations 

have been rising towards more efficient and faster techniques to be implemented in power system 

simulators. This is a natural expectation, given that the core solution algorithms of most commercial 

simulators were developed decades ago, when High Performance Computing (HPC) resources were 

not commonly available. 

This project team, led by GE Global Research (GEGR), in collaboration with GE Energy Consulting 

(GEEC), Pacific Northwest National Laboratory (PNNL) and Southern California Edison (SCE) has 

formulated and implemented a dynamic simulation method that exploits HPC techniques to enable 

power system dynamic simulation based analysis and control closer to real-time, as opposed to the 

traditional approach of performing such simulations in offline studies. The project team has 

demonstrated speed improvements using modified solution architecture on GE’s Positive Sequence 

Load Flow (PSLF) dynamic simulation software. Furthermore, the team has developed a novel Fast 

Contingency Screening And Control Action Engine (FCSCAE) that can enable real-time small signal 

stability assessment and control at the power system control center. 

The following are the key project results: 

1. A novel time stacking method was formulated and implemented for speeding up power system 

dynamic simulation using high performance computing (HPC). In this method, differential 

equations in dynamic simulation are algebrized for several time steps. The resulted algebraic 

equations representing multi-step power system dynamics are then solved using Newton’s 

method. Unlike conventional simultaneous methods where differential-algebraic equations 

(DAEs) are solved one step after another, the time stacking method is able to solve DAEs over 

multiple time steps simultaneously. The team has implemented and tested the time stacking 
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method on a multi-core and shared-memory HPC machine. It is found that time stacking method 

has the potential to accelerate dynamic simulation by efficiently utilizing more computing 

capability of HPC. 

2. A significant speed improvement of the dynamic simulation core of GE’s Positive Sequence Load 

Flow (PSLF) software was achieved.  The solution architecture of GE PSLF dynamic simulation 

engine and how it can be improved were the major focus of this study. Speed improvements 

were achieved by parallelizing and updating core solution algorithms of the program. Speed ups 

greater than 2x have been observed in the parallel version of PSLF.  Results have been confirmed 

and validated by testing the parallel version of PSLF on PNNL’s super computers and preliminary 

results indicate that the solution accuracy remains unchanged. 

3. A novel FCSCAE has been developed and demonstrated to enable small signal stability 

assessment and control in real-time. An eigenvalue sensitivity based contingency screening and 

ranking algorithm was developed to screen the long list of possible contingencies, and arrive at a 

small subset of contingencies. This tool ensures that when analyzing large scale power systems 

with thousands of nodes/ buses, the contingency analysis for small signal stability assessment 

can be performed at a fast rate. Once critical contingencies are identified by this tool, each of the 

contingencies can further by analyzed using the detailed time-domain simulation. Furthermore, a 

novel eigenvalue sensitivity based generator re-dispatch and/or load control algorithm was 

developed with the goal of improving the small signal stability of the system for not only the 

current operating condition but also for the critical contingency conditions. The control algorithm 

leverages the results from the contingency screening tool in the form of eigenvalue sensitivities 

to identify the most impactful generators and groups of loads that can influence the small signal 

stability of the system.   
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1 Introduction 

1.1 Objectives 

Enabling substantial energy savings while increasing the reliability of the aging North American 

power grid through the improved utilization of existing transmission assets hinges on the adoption of 

wide-area measurement systems (WAMS) for power system stabilization.  However, the adoption of 

WAMS alone will not suffice the power system to reach its full entitlement in stability and reliability. 

The need is to enhance predictability with “faster than real-time” dynamic simulations that will 

enable dynamic stability margin, proactive real-time control and improve grid resiliency to fast time 

scale phenomena like cascading network failure.  

GE Global Research (GEGR) in collaboration with GE Energy Consulting (GEEC), Pacific Northwest 

National Laboratory (PNNL), and Southern California Edison (SCE) formed a team to leverage scientific 

advancements in mathematics and computation for application to power system models and 

software tools. This team was tasked to develop and apply advanced computational techniques to 

enhance the speed of the dynamic simulation software. This was complemented with GEGR’s 

expertise in small signal stability to develop a proof-of-concept for fast contingency screening and 

control action engine (FCSCAE). The FCSCAE is targeted to be an Energy Management System (EMS) 

application with three key elements 1) Fast Dynamic Simulation, 2) Contingency Screening and 

Ranking, and 3) Control Action Engine. The technologies developed will enable fast, high fidelity 

capabilities that improve grid reliability in a large scale, dynamic environment.  

Specific objectives include: 

 Develop mathematical and high performance computing (HPC) techniques applicable to 

power system fast dynamic simulation. 

 Implement high performance computing techniques in power system dynamic simulation 

software. 

 Develop fast contingency screening and control action method for small signal stability.  

 Verify and validate speed enhancement of dynamic simulation and decision making 

methods.  

 

1.2 Background 

Since the 1996 blackout in the Western Electricity Coordinating Council (WECC) system, there has 

been renewed emphasis on continuous measurement-based system monitoring to avoid or restrict 

the spread of such a collapse [1]. Several events of abrupt line-tripping, load, and generation 

shedding took place during this break-up, leading to changes in modal behavior of the system [2], [3]. 

The cascade failure could possibly have been avoided through appropriate operator intervention 

with accurate and real-time knowledge of system frequency and damping, which are vital indicators 

of system stress and stability [4], [5]. 

To date, utilities have considered using the WAMS technology for situational awareness by the 

operators—which is essentially a monitoring application. As a part of the North American 
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Synchrophasor Initiative (NASPI), many PMUs have already been installed in the US power grid [6]. 

Researchers at PNNL, Montana Tech, and the University of Wyoming have developed a grid 

oscillation detection system called "Mode Meter" [4] which uses real-time data combined with new 

analytic methods, and reports to operators with an easy-to-read visualization tool. Many universities, 

vendors, and utilities have combined knowledge over time to develop such applications using 

different signal processing techniques [5], [7], [8], [9] and these are being used today in control 

centers [10], [11], [12].  

Even after equipping the grid with PMUs and situational awareness tools, a cascaded blackout took 

place in the Arizona-Southern California region on September 8, 2011. A detailed investigation report 

[13]  by the Federal Energy Regulatory Commission/North American Electric Reliability Corporation 

(FERC/NERC) indicated lack of adequate real-time situational awareness of conditions and 

contingencies throughout the Western Interconnection. The executive summary reflected: “…many 

entities' real-time tools, such as State Estimator and Real-Time Contingency Analysis (RTCA), are 

restricted by models that do not accurately or fully reflect facilities and operations of external 

systems to ensure operation of the Bulk Power System (BPS) in a secure N-1 state. ….The lack of 

adequate situational awareness limits entities' ability to identify and plan for the next most critical 

contingency to prevent instability, uncontrolled separation, or cascading outages. If some of the 

affected entities had been aware of real-time external conditions and run (or reviewed) studies on 

the conditions prior to the onset of the event, they would have been better prepared for the impacts 

when the event started and may have avoided the cascading that occurred."  

Present day dynamic simulations are done only during offline planning studies. The state-of-the-art 

dynamic simulation tools have limited computational speed and are not suitable for real-time 

applications, given a large set of contingencies to be evaluated. These tools are optimized for the 

best performance of single-processor computers, but the simulation is still several times slower than 

real time due to its computational complexity. With the latest development in numerical methods 

and computational hardware, there has been the expectation that more efficient and faster 

techniques are implemented in power system simulators. This is a natural expectation given that the 

core solution algorithms of most commercial simulators were developed decades ago, when HPC 

resources were not commonly available. 

Recently, there have been an increasing number of efforts aimed at increasing the computational 

speed of the power system dynamic simulation. Researchers at PNNL have shown that the 

traditional power system computation should be reformulated to take advantage of the high-

performance computing platform. It has also been indicated that with parallelization and significant 

speed-up, it is possible to achieve a faster than real-time dynamic simulation.  

In addition, a part of the computation burden can be relieved by developing a fast contingency 

screening and ranking tool. The advantage of fast dynamic simulation can then be taken to develop 

an application to guide system operators in real-time to take definitive control action.  

In summary, the team proposes to develop and implement high performance computational (HPC) 

techniques such as the simultaneous method and preconditioned conjugate gradient method to 

accelerate the speed of the power system dynamic simulations. These HPC capabilities combined 
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with screening and prioritizing contingencies are proposed for proactive decision making (control) for 

system operator to improve small signal stability. GE’s existing PSLF simulation software gives us an 

excellent platform to commercialize the resulting technologies.  

1.3 Organization of the report 

This report is organized into eight sections. The key objectives of the project along with the brief 

background are described in first section. The second section outlines the key challenges associated 

with the enhancing the speed of the dynamic simulation and some potential approaches. The third 

section describes in detail the steps taken to improve the simulation speed of the PSLF dynamic 

simulation engine along with the lessons learned during the process. A simultaneous time stacking 

method which has the potential to significantly improve the speed of dynamic simulation is 

formulated in fourth section of the report. A fast contingency screening and oscillation damping 

control action method is described in section five and six respectively. Section seven lists the relevant 

references. Lastly, the publications and patents that best describes the outcome of the project is 

listed in section eight. 
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2 Mathematical and computational techniques for fast dynamic 

simulation 
Assessing power system transient stability under contingency conditions via dynamic simulation is of 

critical importance to the secure operation and planning of a power system. It solves a set of 

differential-algebraic equations (DAEs) many times during one simulation that describes the electro-

mechanical interaction of generators as well as power electronic devices and their controllers. Due to 

the extensive computational requirement and increasing model complexity, it is several times slower 

than real time to run a single time-domain simulation for a large-scale system model, such as WECC 

or Eastern Interconnection in North America. Currently, most of the commercial software tools for 

dynamic simulation use explicit integration methods to solve the differential-algebraic equations. 

Due to the numerical instability issues inherent with explicit methods, a small time step, e.g., ¼ cycle 

or ½ cycle, is typically required to ensure simulation accuracy and numerical stability in estimating 

the dynamics of the power system. The small time step can be a fundamental challenge that affects 

the speedup of dynamic simulations.  

 

Figure 1. Obtaining time-domain trajectory using dynamic simulations 

There are several ways to improve power system dynamic simulation speed. One popular way is to 

reduce system model complexity so that the total amount of computation time can be reduced. 

There is no doubt that the computation time can be significantly reduced by model reduction. 

However, detailed behavior of power system can be easily lost so that the simulation accuracy 

cannot be guaranteed. Another method is to use distributed simulation for massive contingency 

analysis. This method is designed to distribute a large number of simulation cases to different 

cores/computers so that the total amount of simulation time can be reduced, but this approach 

cannot speed up each individual simulation case. For a large-scale power grid, the simulation speed 

cannot reach real-time requirement to apply control action in time. It is very challenging to further 

reduce the simulation time without compromising simulation accuracy by varying time steps, model 

reduction and/or other techniques. The main reason is that today’s commercial tools for dynamic 

simulation (e.g., PSLF by GE, PSS/E by Siemens PTI, and TSAT by Powertech Labs) are designed, 

optimized and operated on a single-core machine, while the main frequency of CPUs is not 

increasing because of physical constraints. Speeding up dynamic simulations via parallel computing 

has been proved to be a feasible and low-cost solution. A variety of parallel algorithms were 
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proposed decades ago, including parallel in time, parallel in space, and waveform relaxation. 

However, very few algorithms have been actually adopted by major software vendors, because: (1) 

fast parallel computers with reasonable costs were not available back then; and (2) it requires a 

significant amount of time and efforts to revise the source code of those stability programs that were 

developed ~30 years ago. 

 

Figure 2. Implicit integration shows better numerical stability with larger time steps, tested on a 2-area system (Left 
figure: modified euler method; Right figure: Trapezoidal integration method) 

In this research effort, several methods are explored in order to improve the speed of a single 

dynamic simulation. The first way is to leverage ongoing research work performed at PNNL to apply 

HPC techniques to the explicit integration methods. The main idea is that for each time step 

marching, differential equations representing generator dynamics are allocated to different cores of 

HPC platform because the generator dynamics can be computed independently. Regarding solving 

the network algebra equation, an efficient linear solver is required for speeding up dynamic 

simulation. Such innovative ideas can be directly integrated into PSLF. Another promising method to 

further speed up power system dynamic simulation is to reformulate the problem so that the 

differential equations and network algebra equations are solved simultaneously at each time step. In 

this method, the state variables at the current step are modeled as a function of both the values at 

previous steps and themselves. To solve such problem requires implicit integration methods, which 

have better numerical stability compared to explicit methods. That means, a larger time step can be 

used for improving simulation speed. Our literature review shows that both the explicit methods and 

implicit methods were proposed for power system simulator decades ago. However, the 

performance of implicit methods implemented on a single-core computer was not superior to explicit 

methods, according to a test conducted by GE about two decades ago, due to the following reasons: 

1. It can take much time to compute the Jacobian matrix at each time step if using single-core 

computer. 

2. Iterative methods are needed to solve for the system equation in the implicit form. 

Convergence can be a limiting factor without a good linear solver. 

3. The algorithms were written to run on single-core computers. The HPC hardware platform 

was not ready for implementing more advanced algorithms.  
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With the development of HPC techniques and advanced algorithms for linear solvers for the past 

decade, these bottlenecks can be easily overcome, given the fact that PNNL has already built up 

such capabilities, in that: (1) computing the elements of the Jacobian matrix can be allocated to 

different processors at the same time to save time; (2) PNNL has implemented advanced iterative 

solver that has good scalability with good convergence performance, which will be introduced in the 

section below; and (3) the HPC platform becomes much more affordable with mature algorithms. 

With such advantages, the implicit integration method can be of great potential to speed up dynamic 

simulation so that faster-than-real-time simulation capability can be achieved for a large-scale 

power system without model reduction. Unlike other published work on HPC implementation in 

dynamic simulation that is performed on simple power system dynamic models, the collaboration of 

GE and PNNL makes it possible the advanced algorithms developed in this project be directly 

integrated into the commercial software for industry members to use, because PSLF has the entire 

model library of commonly used power system devices. 

Initially, GE Energy Consulting (GE) and Pacific Northwest National Lab (PNNL) have been tasked with 

developing a parallel architecture of a power system simulator that was faster than real time.  

Because a major modification of the PSLF dynamic solution engine is infeasible due to time and 

resources constraints set in this project, two different paths were initially considered in order to 

improve chances of a successful project completion.  It is worth mentioning that although each team 

had well-defined and independent tasks to perform, they interacted heavily and a substantial 

amount of knowledge was exchanged in the course of the project. 

The two proposed approaches to develop a parallel version of a power system simulator are 

described below: 

• Approach 1: Leverage current PSLF solution architecture and use APIs for multiprocessing 

computation (such as MPI/Open MP) recent advances in linear system solvers to improve 

simulation speed. 

• Approach 2: Develop an alternative solution architecture of the system of differential-

algebraic equations (DAE) used to represent the electric power system and its components.  

Such architecture would be multicore-friendly to but would require a significant effort and 

major re-writing PSLF’s solution engine. 

Advantages and disadvantages of each approach are summarized in Table 1. 
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Table 1:  Summary of advantages and disadvantages of parallelization approaches 

Approach 1 Approach 2 

PROS 

 Faster to implement in PSLF since the 
solution architecture of the program 
does not need to be completely re-
written 

 Less code changes require less effort to 
translate the prototype into an eventual 
commercial version of the tool 

PROS 

 Expected to provide greater speed gains 
than approach 1, especially if system of 
DAE equations can be made very large 
to leverage multiprocessing more 
efficiently 

 Can be used as the basis for the 
development of next generation of tools 
and additional tools, such as a small 
signal analysis tool. 

CONS 

 Speed gains are limited by the speed of 
slowest loop on current program 
architecture – the speed bottleneck 

 This approach still requires significant 
changes that can be challenging and 
require a significant amount of resources 
to be performed 

 

CONS 

 More difficult to be implemented and be 
translated into a commercial grade 
application 

 More code changes and more code 
development 

 Would require a significant effort to the 
current solution architecture in PSLF 

 

After a team review and considering the resources available in this research project, it has been 

determined that approach 1 would be carried out by the GE team, with the PNNL team being 

responsible for implementing approach 2.  Section 3 describes the effort related to approach 1 

conducted by GE team on improving the speed of PSLF simulation engine. Section 4 describes the 

alternative simulation architecture developed by PNNL to significantly improve the speed of dynamic 

simulation. 

Such task division is aimed at trying to maximize the project success by executing two parallelization 

strategies concurrently.  Nonetheless, both GE and PNNL team have exchanged a large amount of 

experience, information and knowledge in this project, which was an important aspect in its 

successful completion.   
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3 Parallelization of existing PSLF solution architecture 
The first step to improve the solution speed of PSLF is to investigate where the program spends most 

of the time in the course of a dynamic simulation.  A thorough review of the solution algorithm was 

performed in this study to identify potentially feasible steps that could be taken in order to parallelize 

the program architecture.  

Several different attempts have been made before achieving a successful parallel architecture 

described in this report.  Because many of these attempts were unsuccessful at improving solution 

speed, significant insight was gained in the process by better understanding how the dynamic 

simulation of power systems could be effectively formulated to explore latest advancements in 

solver and parallel architectures.  Despite several failed attempts, a combination of certain 

combination of improvements has been shown to make the dynamic simulation of large electric 

power systems faster.  The major enables of such speed improvements are: updated ordering 

algorithms, updated linear solvers, extensive usage of sparse matrix manipulations and the use of 

multiple threads by the solution engine. 

Parallelizing the solution of power system dynamic simulations involves the solving a system of 

algebraic and differential equations in parallel.  Because PSLF relies on particular solution 

architecture, both the solution of algebraic and differential equations needs to be parallelized or 

accelerated.  Failure in doing so will cause the non-improved portion of the core to limit 

parallelization gains obtained due to use of multithreaded computations. 

3.1 PSLF solution architecture 

The GE PSLF program is a well-accepted software solution in the electric power industry.  The 

program can analyze the electric power system in three major areas, namely: power flow and steady 

state, short circuit and stability.  This study is focused at accelerating the portion of the program that 

performs the stability analysis, also frequently referred to as dynamic simulation.  During the course 

of this report, the term dynamic simulation will be used to refer to the solution of the differential and 

algebraic equations used to model the system. 

The first step in accelerating the program execution is a careful evaluation of the current program 

architecture and identification of bottlenecks were much of the simulation time is spent.  Such 

analysis may seem trivial but given the extension of the program source code, such step can be time 

consuming.  Moreover, since the program has been developed over many years, portions of the code 

lack proper documentation, making the process of understanding program operation a more 

challenging. 

The PSLF dynamic solution architecture can be divided in to two major parts: the network solution 

and the model solution.  Network solution is concerned with the solution of the network equations 

given the current injections at the boundary of the network. These current injections are obtained 

from the solution of the models that are connected to the network.  In a broad sense, the model 

being solved can be represented by equation 
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In ( 1 ), algebraic variables are represented by in the array V and include bus voltage magnitudes and 

angles.  The current injection at the system buses is represented by the array I, whereas array x is 

used to represent all states variables present in the dynamic models used in a particular simulation.    

Since it would be a significant effort to describe all possible state variables used in a simulation, the 

user is referred to the PSLF user manual for as additional details regarding set of differential 

variables used on each dynamic model. 

Traditionally, the solution of ( 1 ) is generally accomplished via two major approaches: a partitioned 

solution or simultaneous solution. 

The partitioned solution solves the algebraic equations separately from the differential equations, 

thus the name partitioned.  Initially, the program is solved for a steady state solution of the network, 

representing the current power flow at a specific operating condition.  The solution of the algebraic 

equations (network solution) is often accomplished with a sparsity oriented factorization method, 

followed by a forward and a backward sweep.  Differential equations are solved in multiple ways and 

by different integration algorithms.  Popular methods include both explicit algorithms such as 

Adams-Bashforth family (Euler method is one of the most popular variants of the Adams-Bashforth 

integration algorithms), and implicit methods, such as the trapezoidal, Krylov subspace methods 

such as the GMRES, BCG and implicit Runge-Kutta algorithms.  For a more detailed discussion of 

different integration methods, the reader is directed to [14], [15].  

Several intricacies of the dynamic models play a major role in determining which integration method 

should be used to solve the differential system of equations.  The stiffness of the system of equations, 

which is characterized by a ratio between the largest and smallest system time constant, is critical in 

determining the algorithm used and an adequate integration step size.  The number of steps used in 

the integration method, i.e., the numbed of past time steps necessary to calculate the current 

integration time step, also affects the integration step size, stability and accumulated error of the 

methods. 

PSLF uses a partitioned solution scheme with an explicit integration method and constant integration 

time step.  This is a very popular method amongst commercial grade power system simulators that 

perform dynamic simulation.  This is also the method of choice in many programs that perform 

simulations in the electromagnetic transient realm, such as the Electromagnetic Transient Program 

(EMTP) developed by BPA.  On the other hand, there are commercial tools that use implicit integration 

methods combined with variable integration time step. 

In the PSLF architecture, the network voltages are initially solved for using a power flow solution.  The 

initial voltage values are then passed to the models connected to the network, which will then 

calculate how much current injection shall be produced by them.  Once the nodal current injections 

are found, they are passed to the network model and the first equation shown in ( 1 ) is solved for V.  

This process is repeated until the end of the simulation.  Figure 3 shows a sketch of how the 
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partitioned method exchanges the necessary information across an interface while solving both 

algebraic and differential equations in a simulation run. 

 

Figure 3:  PSLF solution architecture depicting the partitioned solution scheme where algebraic equations are solved 
separately from differential equations 

The flowchart shown in Figure 4 depicts the steps taken in order to solve a dynamic simulation in 

PSLF.  Keywords show in capitalized text helps orchestrate the program execution and are used in 

the internal structure of all PSLF models, including the user defined ones. 

In a dynamic simulation, the user calculated the network solution that defines the actual state of the 

power flows and voltage levels at all buses in the system.  On all voltages are known, all dynamic 

models need to be initialized based on the current network solution.   

The INIT block performs the initialization of all state variables and its derivatives in order to prepare 

the models for integration during the run. 

The SORC step calculates the amount of injected current into the network and is only necessary in 

models that interface the network, such as generators, motors, SVCs, etc.  For instance, electrical 

controllers and turbine governor systems would not have a SORC block of code in its structure 

because they do not interface the network directly, but rather connect to a generator model. 

NETW calculates the network solution based on injected currents calculated in the SORC block and 

will then determine the new voltage magnitudes to be used in the next step. 

ALGE is often responsible for the calculation of algebraic variables during the simulation process, 

such as variable wind up limits, integrator limits and any variable of interested that needs to be 

recorded for later analysis. 

 

CURRENT INJECTIONS 
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EQUATIONS 
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Figure 4:  Detailed solution flowchart of PSLF indicating all steps required in order to solve a dynamic simulation 
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SORC 

Calculate model injected currents into 
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NETW 

Solve network for boundary currents 
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all models 

OUTP 

Send output variables to channel 

recording file 

Execute integration step 
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Performs network solution including 
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The RATE block performs the calculation of all state derivatives and other necessary variables that 

are needed in order to perform an integration time step.  All models that have states will have to 

have a RATE block represented in their structure. 

All variables recorder for later analysis are specified in the OUTP block.  This includes both algebraic 

and state variables of interest, block diagram outputs and any other value of interest.   After all 

blocks have been executed, the program executes an integration time step and advances the 

simulation in time.  The simulation continues in loop until the end or until the user stops it to 

introduce a disturbance or a switching event. 

3.2 Parallelization of PSLF differential equations with OpenMP 

The solution of differential equations accounts for a significant amount of time spent at the PSLF 

core during a dynamic simulation.  Therefore, improving the speed at which these equations are 

solved is a key step towards achieving a faster simulation engine. 

OpenMP is an application program interface (API) that supports multi-platform shared memory 

multiprocessing programming in C, C++ and FORTRAN, on most processor architectures and 

operating systems, including Solaris, AIX, HP-UX, Mac OSX and Windows platforms.  Its extensive set 

of directive-based APIs allows for easy and flexible parallelization of earlier, serial programs written in 

the languages described above. 

OpenMP is extensively used to parallelize programs that were originally written to run in serial, with a 

good flexibility regarding the platforms where it can be used.  Some of the latest versions of OpenMP 

are already integrated in developing environments such as Microsoft® visual Studio 2010, thus 

making its applicability to existing applications even easier.   

A transient stability simulation in PSLF (and other commercial grade simulators) sequentially executes 

several specific activities at each time step.  An integration step is then performed and time is 

advanced.  This cycle will be repeated until the user specified end time of the simulation is reached. 

The solution of the differential equations is mainly performed by the activities SORC, NETW, ALGE, and 

RATE.  Two other activities, DYSL and OUTP, account for the solution of the algebraic equations 

(network solution) and the output of selected variables, respectively.  An integration step is then 

performed by activity STEP after the other activities have been executed at least once and the cycle 

is repeated until the end of the simulation. 

The program structure is serial, thus becoming a good candidate for parallelization with OpenMP.  

After the parallelization, it is expected that the parallel version of PSLF will be able to share its 

computational load during a dynamic simulation among several cores and threads.  Therefore, only 

parallelization in space is being attempted in approach 1. 

The PNNL team is experimenting with a time-stacking method that performs the parallelization in 

time along with a parallelization in space.  As previously described, a significant effort would be 

required to implement such method under the existing PSLF architecture and was deemed inviable in 

this project.  The GE team has determined that it would be best to focus its efforts in trying to 

leverage the existing PSLF solution architecture and extensive model library to the highest extent 
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possible.  On the other hand, the PNNL team has dedicated much of its resources at developing a 

practical prototype that will step away from conventional solution architectures of power system 

simulators. 

3.2.1 Results of parallelization of differential equation solution 

The parallelization of the differential equation solution has been successfully performed for a 

selected group of generator models and a summary of the results is shown in Table 3. 

The test case used to perform these simulations was the Eastern Interconnection and a description 

of system components is provided in Table 2.  For this test, only generator models are switched on 

and all other models are switched off. 

Although only generating units have been considered in this test, these models are detailed and 

accurately represent the same models used by power system planners and operators daily in the US. 

Table 2:  Description of test system elements including totals 

Element Count 

Buses 70477 

Branch Sections 64008 

Transformers 21909 

Generators 9447 

Loads 38196 

Shunts 3535 

Static VAR devices 6308 

DC buses 76 

DC lines 38 

DC converters 76 

 

The speed gains for a 1s simulation are reported in Table 3 and indicate that some degree of 

parallelization can be achieved in order to improve performance.  Preliminary results indicate that 

the solution accuracy remains unchanged.  When two threads are used, the simulation time is 

reduced by 15.1% on average.  For three threads, it goes up slightly, thus indicating that either 

saturation started to occur or there are not enough threads available.  Nonetheless, a reduction 12.7 
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% on average is observed when three threads are used.  If processes compete for threads, the 

computer may spend additional time switching between various activities that are competing for a 

particular core. 

Table 3:  Parallelization of differential equation solution 

Run Serial Parallel (2 threads) Parallel (3 threads) 

1 11.10s 9.88s 10.22s 

2 11.91s 9.71s 10.15s 

3 11.60s 9.78s 10.21s 

Average 11.53s 9.79s 10.19s 

Gain - Reduction of ~15.1% Reduction of ~12.7% 

 

In order to better understand why saturation was occurring at a relatively low number of threads, a 

detailed core analysis was performed in order to identify the major bottlenecks of the current PSLF 

structure.  The following list summarizes a couple factors that directly impact the speed of execution 

of the parallel version of PSLF: 

1. System size:  the simulation of the EI case showed that speed gains could be achieved 

because the system size was large and a significant large number of computations is 

required.  Consequently, the number of dynamic models and floating point operations (flops) 

needed to find a solution is high.  This is important because the time spent in the blocks of 

code parallelized by OpenMP need to have enough operations so that the overhead costs of 

parallelizing can be offset.  It has been observed that small test cases with only tens or 

hundreds of buses and dynamic models, the parallel version of the code may take longer 

than the serial version due to OpenMP overhead costs being greater than the amount of time 

required to perform the flops in serial. 

2. Overhead costs of parallelization:  In PSLF and other commercial grade simulators, all 

dynamic models have their equations arranged internally before the simulation.  After the 

simulation is initialized, the equations are solved at each integration time step.  Therefore, the 

only window where parallelization can be attempted is in between each time step.  It is 

impossible, at least under the current PSLF solution architecture, to perform parallelization of 

multiple time steps concurrently. 

Because most transient stability simulators have a similar structure of PSLF, the parallelization of 

their architectures will face similar challenges and limitations.  One of the most important restrictions 

is perhaps the fact that a large number of flops per time step are required in order to observe gains 

in a parallel implementation.  Unless a minimal number of computations are executed, the overhead 
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costs of forking-joining multiple threads cannot be offset.  In those circumstances, the serial version 

of the simulator will be faster than its parallel version. 

3.3 Network solution 

3.3.1 Identification of fast linear solvers 

After parallelizing part of the dynamic engine, a relatively small runtime reduction in the order of 15% 

was observed.  For a more substantial performance improvement and higher speed gains, additional 

modifications in the PSLF code will be required and that includes a thorough investigation of network 

solution engine. 

During a typical dynamic simulation, the network equations also need to be solved at each time step 

and during transients.  These solutions are typically solved several times at each time step due to the 

higher rate of change in the system states.  Additional solutions are necessary because model 

current injection on the network boundary buses is constantly changing due the dynamics of the 

models. 

Network solution is composed of three main steps: ordering, factorization and solve.  In a typical 

algorithm, the factorization step accounts for most of the time taken to find a solution (around 95%), 

while the forward/backward is responsible for the remaining 5%.  Factorization is only required when 

the network topology changes, i.e., during the beginning of the simulation, during switching events 

and during faults.  It is also one of the computationally tasks in a dynamic simulation, even though it 

is only performed a few times during the course of a solution.  Therefore, an improvement on the 

linear solver used could help expedite the solution, making the overall simulation faster. 

A solve needs to be performed after the network matrix is factorized in order to calculate system 

voltages.  Although the solve step only accounts for a small portion of the time involved in the 

network solution (around 5%), it accounts for a substantial portion of the time spent during the 

simulation because it is invoked several times over the course of a single dynamic run.  Therefore, if 

the forward/backward solution can also be accelerated, then the overall system solution time could 

be significantly reduced [16].  Improvements in the factorization and solve routine can provide 

observable improvements in simulations within typical transient stability time frame (10-30s). 

3.3.1.1 Parallelization of solve (forward/backward substitution) 

Since most time consumed in the network solution is spent at the solve step, an attempt to parallelize 

the forward and backward substitution algorithm available in PSLF was made.  Despite the fact that 

the forward and backward algorithm is inherently serial and has little room for effective 

parallelization, some level of parallelization can be implemented [16].  The idea is to explore the 

algebraic variables that are already computed and run subsequent calculations in parallel. 

The parallel solve method was successfully implemented but did not show significant speed 

improvements mainly due to the fact that the amount of flops executed in parallel was not enough to 

justify the overhead costs of parallelization.  Therefore, the idea of parallelizing and accelerating the 

linear system solution in PSLF was dropped altogether and other options needed to be explored. 
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A possible way to improve the execution speed of the linear system solver involved with the network 

solution was to replace the native PSLF solver.  The rationale was that if an up to date solver with 

superior execution speed in ordering, factorization and solve could be implemented and used to 

replace the current PSLF solver, speed gains would be achieved. 

3.3.2 Literature review 

In order to replace the PSLF solver with a solver that could provide additional speed gains, a detailed 

literature review was performed to identify a suitable direct method solver that could provide 

performance improvement.  The solver needs to have demonstrated performance on circuit solutions 

and must also be able to be compiled and linked as a library in the PSLF model.  After a few solvers 

are identified as potential candidates for replacement, the most promising ones will be tested in 

matrices representing real size networks. 

3.3.3 Direct methods and iterative methods 

Before deciding which solver could be used to replace the current PSLF solver, a review of current 

state of the art linear system solvers was performed in order to find a suitable replacement.  Since 

PSLF has its architecture already developed around a direct method, there is a slight preference to 

replace its current direct method solver with another direct solver.  Another factor influencing the 

choice of a direct method instead of an iterative method is that direct methods tend to be faster than 

iterative methods for the problems with dimension of order near 100,000. 

In the past 50 years, extensive work has been done in the area of linear system solution and 

comparison has been performed in order to determine the most suitable solvers for each problem at 

hand [17], [18], [19].  The general consensus is that there is not a single “silver bullet” solver that is 

capable of outperforming all of its competitors for a wide range of matrices that arise from different 

mathematical problems.  Much of the success of a linear system solver is dependent upon the matrix 

characteristics of the problem at hand. 

For instance, the SuperLU solver and is capable to outperform several other solvers in terms of speed 

by exploiting the so called supper nodes.  Super nodes are a group of continuous factor columns with 

nested structures that can be solved together.  What makes super LU fast is the capability to explore 

these super nodes.  However, not all mathematical problems (including power system networks) 

have a substantial amount of super nodes that SuperLU could take advantage of.  Therefore, other 

apparently “less sophisticated” methods can outperform SuperLU when applied to power system 

problems. 

The network matrices that arise in power system modeling are often very sparse, quasi-symmetric 

and lack many characterizes that could be explored by several recent solvers.  Therefore, choosing 

an appropriate solver is key in order to ensure speed gains and must take into account the problem 

being addressed. 

3.3.4 Ordering 

Sparsity oriented methods and adequate matrix ordering are critical to achieving a more efficient 

use of computational resources, maximizing speed and minimizing memory storage needs.  Without 

proper ordering, matrices that originate from modeling the largest US interconnections could not be 
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efficiently solved in modern computers and without sparse storage methods, it would require 

significant memory to store these matrices on a typical desktop/laptop computer. 

Therefore, finding an adequate ordering method is a key step in improving the entire speed of 

solution.  In this project, several ordering methods were tested and the fastest algorithm was 

selected to be implemented in PSLF. 

The efficacy of the selected algorithm in ordering a typical large size power system matrix can be 

visualized in Figure 5.  The figure on the left hand side shows the WECC network matrix before 

ordering, whereas the left hand side picture shows the same matrix after running the AMD algorithm.  

The dimension of the matrix is around 18,000.  As expected, the matrix is very symmetric with respect 

to its main diagonal and exhibits significant sparse characteristics. 

 

Figure 5:  The left hand side figure shows the network matrix for the WECC interconnection; the right hand side figure 
shows the same matrix after ordering. 

Both matrices are factorized in order to verify the effectiveness and impact of the ordering algorithm 

and the results are shown in Figure 6.  The differences are visible to the naked eye and the reader 

can easily notice that the matrix on the right hand side has a smaller number of non-zero elements 

than the matrix on the left hand side.  The actual number of non-zero elements is 1470223 on the left 

hand side matrix, versus 52126 in the matrix on the right. 
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Figure 6:  The left hand side matrix shows the L factor for the non-ordered WECC network matrix; the right hand side 
matrix shows the L factor for the ordered version of the WECC network matrix  

Such large difference in the total number of non-zero elements, nearly 30 times, will significantly 

impact the calculation speed during the forward and backward solve due to the difference in the 

number of flops performed.  This substantial difference will directly impact the calculation speed of 

the entire simulation.  Therefore, choosing an appropriate ordering algorithm is a critical step in 

enhancing the simulation speed of power system simulations. 

3.3.5 Solver comparison 

Before replacing the current PSLF linear solver engine, a comparative evaluation process was 

performed using real size systems matrices obtained from modeling the WECC system.  The solvers 

included in the testing stage were predefined after a screening procedure based on recent 

publications in the area of linear system solutions, which significantly narrowed down the most 

efficient solvers for circuit simulations.  For confidentiality reasons, the name of the selected solver 

and ordering algorithms cannot be share at this moment. 

A total of 4 ordering algorithms and 2 factorization algorithms were combined and tests, for a total 

combination of 8 pairs factorization-ordering algorithm.  A comparative analysis indicated that the 

fastest factorization algorithm is nearly 50 times faster than the current PSLF factorization algorithm.  

On the other hand, the best ordering algorithm can reduce the amount of non-zeroes in one of the 

triangular factors by 16.4% in comparison to the PSLF ordering method. 

Another important conclusion from exercise is that the current ordering algorithm used in PSLF is 

very efficient in terms of reducing the number of fill-ins.  Despite the fact that it was written nearly 30 

years ago, it outperformed recently written methods in terms of the total number of fills ins.  On the 

other hand, the PSLF ordering algorithm takes more time to perform the ordering than recent 
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ordering methods.  This difference can be partially explained by the fact that other tasks are 

performed by the ordering algorithm rather than simply ordering the network matrix. 

The next step in the project will focus at implementing the selected solver and ordering algorithm in 

the PSLF core and ensuring that the program solution remains as accurate as when the native solver 

was used.  This is an extreme challenging step given the fact that PSLF was not written with the 

required modularity to make this a trivial exercise and it has never been attempted before. 

3.3.6 Selected solver implementation 

In order to implement the selected solver as the main solution engine of PSLF, several intermediate 

steps needed to be executed.  Firstly, the network admittance matrix needed to be passed to the 

solver along with the current injection from the network models.  In addition to that, the Ybus matrix 

needed to be compressed into a compact sparse column (CSC) format. 

Code to output the Ybus matrix had to be modified in order to be able to explicitly extract the 

network matrix from the core of PSLF algorithm.  After extraction, the matrix needs to be compressed 

so that it is in a form that is suitable to be passed into the solver.  Once the matrix is extracted and 

passed to the solver, a solution is obtained and the PSLF data structures get populated before the 

next integration time step.  In order to enable this process, functionalities that were previously 

performed inside the PSLF solver had to be coded externally so that the solver replacement becomes 

a reality. 

Preliminary results to verify solution accuracy after solver replacement are shown in Figure 7 and 

Figure 8 below.  The figures show voltage magnitude at a particular bus in a 9 bus test case when 

subjected to a fault applied at 0.1s and cleared at 0.2s. Simulation is run for 10s and it can be 

concluded visual inspection that the solution accuracy of the new solver is the same, or very close, to 

the accuracy of the PSLF native solver. 
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Figure 7:  Dynamic response of a bus voltage for a 9 bus case with the new solver 

 

Figure 8:  Dynamic response of a bus voltage for the 9 bus test case with the PSLF native linear solver 

Additional tests to verify the solver accuracy have been performed in the WECC test case with 18202 

buses.  Figure 9 and Figure 10 below show the solution differences for the voltage magnitude and 

angle between the newly selected linear solver and the PSLF native solver. 
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Figure 9: Voltage magnitude differences between the PSLF solver and the new solver showing that the solution 
differences are minimal. 

 

Figure 10:  Voltage angle differences between the PSLF solver and the new solver showing that the solution differences 
are minimal. 

It can be observed that the solution differences are minimal and will not significantly impact the 

results, as the plots shown in Figure 7 and Figure 8 had already indicated.  In fact, the voltage 

magnitude solution is the identical in both solvers up to the 3rd significant digit, with most buses 
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showing a difference les or equal to of 0.0001pu.  The angle differences are identical up to the 1st 

decimal place, with most differences being within + 0.04 degrees.  Although present, these 

differences are considered to be negligible because they do not impact the dynamic response of the 

system or its performance to a significant extent. 

3.4 Simulation results with new linear solver and parallel solution engine 

A comparison between the existing PSLF version and the version with a new linear solver and parallel 

solution engine is presented in this section.  Results were obtained on a 4 core/8threads laptop 

computer and a PNNL supercomputer with 8 cores and 20 threads per core. 

3.4.1 Test case 

In order to verify speed gains on larger systems, it is critical to ensure that the test case being 

simulated is large enough (has enough flops) so that the impact of a parallel implementation is 

readily visible.  This is of primary importance because of the overhead costs involved with forking-

joining threads at the end of each parallel block may overcome any gains. 

Therefore, an Eastern Interconnect (EI) case was chosen as the base case and will be used as 

benchmark for the time domain simulations performed herein.  This database is an excellent choice 

for many reasons, the main ones being: 

1. It is real database representing the eastern interconnect of the US power grid and is used 

daily by several transmission planners and system operators.  A successful demonstration 

using this database indicates that a commercial version of the parallel prototype is very close 

to reality. 

2. It is the largest available case and should be able to harvest the highest benefits from a 

parallel version of PSLF 

3. The actual validation of the parallel version of PSLF on an actual database using traditional 

increases the credibility of the results 

Table 4 below contains a list of all models present in the test case utilized, including a count of each 

individual model.  A total of 20540 dynamic models are present in this database, which has nearly 

70k buses.  More details of the system can be found in in Table 2. 
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Table 4:  Model count and names of all models initialized and simulated on the EI database 

Model name Model Count Model name Model Count 

alwscc 34 genind 214 

crcmgv 17 genrou 5106 

esac1a 275 gensal 1604 

esac2a 62 gewtg 111 

esac3a 26 ggov1 741 

esac4a 101 gpwscc 61 

esac5a 264 hyg3 79 

esac6a 36 hygov 622 

esac7b 234 hygov4 18 

esac8b 279 ieeeg1 1399 

esdc1a 1353 ieeeg3 31 

esdc2a 181 ieeest 173 

esdc3a 36 lsdt1 126 

esdc4b 7 pidgov 55 

esst1a 941 pss2a 1055 

esst2a 52 pss2b 71 

esst3a 24 rexs 50 

esst4b 808 scrx 318 

esst5b 6 sexs 191 

esst6b 38 stcon 13 

exac1a 9 tgov1 690 

exac2 233 tgov3 14 

exac3 31 vwscc 51 

exac3a 3 wlwscc 1 

exbbc 3 wndtge 109 

exdc2 2 wsccst 31 

exdc4 123 wt1g 7 

exeli2 8 wt1p 7 

exivo 2 wt1t 7 

expic1 168 wt2e 6 

exst2 171 wt2g 6 

exst3 54 wt2p 6 

exwtge 111 wt2t 6 

g2wscc 9 wt4e 12 

gast 1167 wt4g 12 

gencls 657 wt4t 12 

  Grand Total 20540 
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3.4.1.1 Results on laptop computer 

Figure 11 and Figure 12 show the reduction in runtime and the speedup factor for various numbers 

of threads.  These results were obtained on a laptop computer with 4 cores and 8 threads available.  

It can be observed that the runtime can be reduced by a factor slightly greater than 2, while 

saturation in performance seems to occur at around 4 threads. 

 

Figure 11:  Simulation gains for 20 s simulation with fault applied at 0.2s and cleared at 0.3s 
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Figure 12:  Acceleration factor for 20 s simulation with fault applied at 0.2s and cleared at 0.3s showing a speedup of 
nearly 2.17x. 

In order to ensure that the accuracy of the results remains unchanged, several variables at the 

faulted generator are plotted for various configurations.  The dynamic response of the single thread 

engine with native PSLF solver is identical to the response of the 2, 4 and 6 threads version of PSLF 

with the new linear solver.  The simulation results for all different versions of PSLF are shown from 

Figure 50 to Figure 57 in Appendix C. 
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3.4.1.2 Results on PNNL PIC computer 

The same tests performed in the laptop computer were successfully reproduced in the PNNL PIC 

machine in order to verify their accuracy. 

Figure 13 and Figure 14 show that the runtime simulation of a typical 20s simulation on PNNL’s PIC 

computer can also be reduced by slightly over half, with a highest speedup gain of 2.22x at 12 cores. 

 

 

Figure 13:  Simulation runtime reduction for typical 20 s simulation with fault applied at 0.2s and cleared at 0.3s 
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Figure 14:  Acceleration factor for 20 s simulation with fault applied at 0.2s and cleared at 0.3s showing a speedup of 
nearly 2.22x. 

In this case, the computer had 8 processors with 20 threads each.  A total of 6 simulations 

considering 1, 2, 4, 6, 12 and 18 threads were performed.  The variables that vary the most during the 

simulation are plotted for verification.  Results are shown from Figure 58 to Figure 69 in Appendix D 

and indicate that the accuracy does not change with the number of threads used and the presence 

of the new linear system solver. 

3.5 Conclusions 

In this work, a full overhaul of the dynamic simulation engine of GE PSLF was performed.  The 

modifications include the parallel solution of differential equations, new and improved ordering, 

factorization and forward/backward substitution algorithms.  Speed improvements have been 

observed for both typical laptop computers as well as a PNNL supercomputer.  Speed gains are 

observed in all sections of the program responsible for dynamic simulation, with the speed gains 

varying from section to section.  Speed gains on each section are not reported in detail due to 

proprietary reasons. 

Another important observation is that although a significant speed improvement was obtained, it is 

unlikely that major speed gains will occur under the existing program architecture.  This is mainly due 

to the fact that all code used in the dynamic simulation core was reviewed and improved, leaving 
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very little room for further improvements.  Moreover, despite the fact that the largest power system 

model in the US has nearly 100 thousand buses, the problem size that arises from its formulation is 

still relatively small for parallel iterative linear solver to be used.  As the problems dimension grows 

larger and the number of dynamic models increases, it is expected that iterative solvers will 

outperform direct methods and the performance of the program under the existing architecture may 

benefit from that.  Given the fact that most commercial transient stability simulators have a similar 

architecture as PSLF, it is unlikely that very high speed gains are obtained on their architectures as 

well.  For additional speed improvements due to parallelization, more significant changes in the 

solution architecture and perhaps integration time step will be required. 

Overall, a typical 20s simulation with a fault applied and cleared can be sped up over 2x on a 

computer with at least 4 cores and 8 threads.  These results are promising and the possibility that 

they can become part of GE PSLF simulator in a short term is substantial. 
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4 Simultaneous time stacking method for fast dynamic simulation 
As discussed in Section 2, the significant improvement in the solution speed of the power system 

dynamic simulation need alternate DAE solution architecture that are multi-core friendly. 

Development of such architecture requires significant research and development. To overcome the 

challenge, PNNL research team worked closely with GE GRC and Energy Consulting teams to develop 

faster-than-real-time dynamic simulation to enable predictive capabilities for validating small signal 

stability controls by exploring a variety of mathematical algorithms and advanced computational 

methods using high performance computing (HPC) techniques. The main idea is to develop methods 

that have the best fit of the algorithms and computational libraries for the power grid simulation 

problem. PNNL’s main tasks include: 

(1) Support the development of parallel version of PSLF 
a. Identification of fast linear solvers that can be used by the existing PSLF software 
b. Providing test systems, data, HPC resources, algorithms and benchmarking as 

needed 
(2) Develop a new “time-stacking” method to obtain system trajectories within a time window 

simultaneously 
a. Formulation of the implicit integration 
b. Formulation of the “time-stacking” method 
c. Identification of fast solvers to gain speedup 
d. Investigation of adaptive time steps in dynamic simulation 

 

With faster dynamic simulation, a variety of benefits are expected, as it will: 

(1) Enable online security assessment to enhance situational awareness by Estimating the 
current and near-future system status more accurately and comprehensively 

(2) Expedites system planning process by significantly reducing simulation time from weeks to 
hours, or even minutes 

(3) Prevents cascading failures by validating preventive and corrective control schemes ahead 
of time 

(4) Enables real-time path rating by improving transfer capability of existing lines, relieving 
transmission congestion, facilitating emergency control to integrate more renewable energy 
and deferring the construction of new transmission lines  

(5) Further improves power grid reliability 
 

4.1 Formulation of dynamic simulation 

The dynamics of a power system can be represented by a set of first-order differential and algebraic 

equations: 

 𝑥̇ = 𝑓(𝑥, 𝑦)
0 = 𝑔(𝑥, 𝑦)

 
( 2 ) 

( 3 ) 

where the boldface denotes vector, x, represents a vector of state variables (e.g., rotor angle and 

speed of a generator), and y represents a vector of algebraic variables (e.g., bus voltage magnitudes 
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and angles). A power system described in ( 2 ) and ( 3 ) can be solved using various solution schemes 

[20]. The main differences between the schemes rest in the way the differential and algebraic 

equations are interfaced (partitioned or simultaneous), and in the numerical integration method 

approach (implicit or explicit). The partitioned-solution method is predominantly used in industrial 

programs, which are mainly designed for sequential computation on a single core computer. In this 

method, differential equation set ( 2 ) is algebrized and then solved for state variables. The algebraic 

equation set ( 3 ) is then solved for algebraic variables. These solutions are alternated with each other 

in some manner inside each time step. In the simultaneous solution method, ( 2 ) is algebrized and 

then lumped together with ( 3 ) to form a larger set of algebraic equations to be solved. This method 

mostly adopts implicit integration methods particularly the trapezoidal rule, which seems to be a 

most reliable and elegant method for the numerical solution of practical systems of differential 

equations [20], [21]. 

 

Figure 15. Categories of solution approaches for dynamic simulation 

4.1.1 Partitioned method with explicit integration 

Using an explicit integration method, (1a) is converted into an algebraic equation set 

 xϒ= F(xϒ-1, yϒ-1) ( 4 ) 

where ϒ is the current simulation step. Equation ( 4 ) can be solved for xϒ, which is then used to solve 

( 5 ) for yϒ. 

 0 = g(xϒ, yϒ) ( 5 ) 

The explicit methods evaluate the state variables of the current step explicitly as a function of the 

values at previous steps. Equations ( 2 ) and ( 3 ) are solved alternatively at each time step. As 

mentioned above, a small time step is required in the explicit methods to guarantee numerical 

stability so that the total simulation time is relatively longer. 
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4.1.2 Partitioned method with implicit integration 

Using an implicit integration method, equation ( 2 ) is converted into an algebraic equation set 

 xϒ = F(xϒ,yϒ) ( 6 ) 

The initial guess of xϒ can be obtained based on xϒ-1 and yϒ-1 using any explicit integration formula. 

The value of xϒ is used to solve equation ( 5 ) for yϒ. The value of yϒ is then used in equation ( 6 ) to 

obtain xϒ, which is used in equation ( 5 ) to solve yϒ. This process will be repeated until the solution is 

converged. 

4.1.3 Simultaneous method with implicit integration 

Writing equation ( 6 ) in the form 

 0 = H(xϒ ,yϒ) ( 7 ) 

and then combining equation ( 7 ) and equation ( 5 ), one can obtain a single set of algebraic 

equations. The Newton’s method can be used to solve this algebraic equation set, requiring the 

construction and solution of the Jacobian matrix at each iteration: 

 𝑱 = [
𝑱𝐹𝑥 𝑱𝐹𝑦
𝑱𝑔𝑥 𝑱𝑔𝑦

] ( 8 ) 

When ignoring the sub-matrices JFy and Jgx, and updating F and g alternately, this method 

degenerates to partition method with implicit integration. No matter which scheme is used, those 

non-linear algebraic equations need to be solved, using either Gauss or Newton (more general) type 

procedures. Dishonest Newton or very dishonest Newton methods are often used in industrial 

softwares to increase computation speed. When Newton-like method is used, linear solvers are 

required. A summary of preconditioning techniques for large linear systems can be found in [22]. As 

an example, Khaitan and McCalley applied the multi-frontal method in linear solvers [23]. 

4.2 A time-stacking method 

In the proposed research work, PNNL team first implemented the “simultaneous method” using HPC 

platform to simultaneously solve one set of algebra equations at each time step, which contain both 

the discretized differential equations and the network algebraic equations. The formulation of the 

problem is formulated in Equation ( 9 ). Since implicit integration method has better numerical 

stability, a larger time step can be used to save the total computation time. The flowchart for the 

“simultaneous method” is shown in Figure 16. 

 
{
𝑥𝛾+1 = 𝑓(𝑥𝛾 , 𝑥𝛾+1, 𝑦𝛾 , 𝑦𝛾+1)

0 = 𝑔(𝑥𝛾+1, 𝑦𝛾+1)
 

( 9 ) 
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Figure 16. Flowchart of the “simultaneous method” 

 

To further increase computational speed of dynamic simulation, a “time-stacking” method is 

proposed and implemented to compute system dynamic behavior several time steps within a time 

frame simultaneously using HPC techniques, instead of computing state variables at each time step 

in Equation ( 9 ). The key idea is shown in the Figure 18. Although the size of the problem is increased 

due to the fact that solving state variables for several time steps are combined together into one set 

of algebraic equations, the overall solution time can be greatly reduced with the help of advanced 

parallel linear solvers that are commonly used in the HPC platform. 

 

 

Figure 17: Sequential time-stepping process (left) vs. a new time-stacking method (right). 
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4.3 Identification of efficient linear solvers 

To solve the time-stacking problem (or more generally, Ax=b) accurately and rapidly, find an ideal 

solver is the key. Iterative methods are required due to the implicit nature of the problem, which are 

to develop an iterative procedure starting from an initial approximation to converge to the solution, 

e.g., the Newton’s method. The two main classes of iterative methods are the stationary iterative 

methods, and the more general Krylov subspace methods. The Krylov subspace methods work by 

forming a basis of the sequence of successive matrix powers times the initial residual (the Krylov 

sequence). The approximations to the solution are then formed by minimizing the residual over the 

subspace formed. The prototypical method in this class is the conjugate gradient (CG) method. 

Iterative methods like CG are more suitable for use with sparse matrices in power system dynamic 

simulation than direct methods. Most iterative methods are memory-efficient and run quickly with 

sparse matrices. In the last few decades the CG method has been used successfully in various 

engineering applications for the solution of linear algebraic equations. The convergence rate of CG 

iterative solution depends on the condition number. When the matrix's condition number is mini-

mized, the method usually converges much faster. Preconditioning is a technique for minimizing the 

condition number by pre-multiplying both sides of equation by the inverse of a preconditioner matrix, 

p,  

 𝑝−1𝐴𝑥 = 𝑝−1𝑏 ( 10 ) 

to yield a new equation of  

 𝐴̂𝑥 = 𝑏̂ ( 11 ) 

where the condition number of Â is much smaller than the original matrix of A. This method is known 

as Preconditioned Conjugated Gradient (PCG) method. PCG method presents great potential for 

achieving high performance in parallel computers. Parallelization can be implemented at both the 

preconditioner generation step and the equation solving step. Existing software libraries for iterative 

method include Hypre, PETSc, and Aztec, etc. We have applied the PCG method to solve power 

system state estimation problem utilizing the Hypre software package. With the help of ILU 

preconditioner and parallel computers, the execution time of solving the linear algebraic equation 

can be greatly reduced using multiple processors. It’s promising to see that by applying the 

parallelized PCG method to solve the network algebraic equation, the solution time for power system 

dynamic simulation can also be significantly reduced to achieve a faster than real time dynamic 

simulation. Other similar types of linear solvers will be investigated and compared to achieve the best 

possible performance. 

4.4 Adaptive time stepping method  

An adaptive time stepping method is also proposed in order to further speed up dynamic simulation 

by using larger time steps when the power system is at quasi-steady state and using smaller time 

step at/near switching conditions. As an example, a smaller time step is used to simulate the detailed 

dynamic behavior of the system during a fault condition; and a larger time step can be used at initial 

conditions or after a disturbance is settled. In this implementation, the time step of dynamic 

simulation is adjusted based on local truncation errors, the performance of Newton corrector 

http://en.wikipedia.org/wiki/Krylov_subspace
http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29
http://en.wikipedia.org/wiki/Conjugate_gradient_method
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iteration, and switching events and faults. The time step is increased only if the max norm of the local 

error vector is below a specified tolerance for a number of time steps. On the other hand, if the 

tolerance is exceeded, then the time step is reduced and fixed to the reduced value for a number of 

time steps before attempting to increase it. 

4.5 Methodology Implementation and Observed Performance 

4.5.1 The time-stacking method with classical generator model 

When generators are represented using the classical model, the equations of motion for generator i 

in per unit are: 

 

 

( 12 ) 

where ω(i) is the per unit speed deviation for generator I; δ(i) is the angular position of the rotor of 

generator i in electrical radians with respect to a synchronously rotating reference; H(i) is the inertia 

constant of generator i using system base; D(i) is the damping factor or coefficient of generator i in 

pu torque/pu speed deviation; Pm(i) is the mechanical power input of generator i, and ωb is the base 

rotor electrical speed in radians per second. In this case, state variables in ( 2 ) only include rotor 

speed and angle, i.e., 

 

 

( 13 ) 

where n is the number of generators. Using the classical model to study the transient stability for a 

multi-machine system, it is often assumed [24]: 

 

 

Figure 18. Illustration of a power network represented by classical generator model and constant impedance load 

1) Mechanical power input, Pm(i) is constant. 

2) The mechanical rotor angle of a machine coincides with the angel of the voltage    

     behind the transient reactance. 
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3) The network is assumed to be in the sinusoidal steady state. 

4) Load is represented by the passive impedances, i.e., the dynamics of load is ignored. 

Therefore, let Y’’ (with a dimension equal to m by m) denote the nodal admittance matrix of an m-bus 

system comprised of n generator buses and m-n load buses. One can follow the steps in [24] or [25] 

to add machine internal buses and include load impedance into the network admittance matrix, 

resulting in an extended Y-bus matrix — Y’ (with a dimension of m+n by m+n). The network equation 

becomes: 

 

 

( 14 ) 

Where Y′ = [
Ynn Ynm
Ymn Ymm

].  

The network equations can be reduced to 

 IE =  Y ∗ E   ( 15 ) 

where Y = Ynn –Ynm Ymm-1 Ymn. Numerical evaluation of direct solvers for large sparse, symmetric 

linear equations can be found in the literature, which could be used to solve Ymm-1Ymn. For each 

generator internal voltage bus i, the injection current in system reference can be expressed as： 

 

 

( 16 ) 

where a bar above the notation represents a complex number, 𝐼 ̅𝑖
𝑠𝑦𝑠

 is the injection current of bus i in 

system reference, and 𝐸̅(𝑘) is the stator internal voltage of bus k in system reference. Let 𝐸̅(k) = Ere(k) 

+ jEim(k) and 𝑌̅ (ik) = G(ik) + jB(ik), resolving ( 16 ) into real and imaginary part yields, 

 

 

( 17 ) 

The transformation from machine dq0 reference frame to system reference frame is 

 

 

( 18 ) 

In the classic generator model, since 𝐸𝑑
′ = 0, applying the above transformation to Ire, Iim, Ere, and Eim 

in ( 17 ) and after manipulations, we obtain equations in machine reference frame 
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( 19 ) 

The active power at air gap can be expressed as 

 
 

( 20 ) 

Replacing Pe(i) in ( 12 ) by ( 20 ) yields 

 

 

( 21 ) 

Combining ( 21 ) and ( 19 ) results in a set of DAE in the same form as ( 2 ) and ( 3 ), where 

 
 

( 22 ) 

 
 

( 23 ) 

and the other notations represent parameters. 

We first implemented the trapezoidal method to run dynamic simulations with classical generator 

model. For time step ϒ, applying trapezoidal rule to ( 17 ), and then combining the resulted algebraic 

equations with ( 19 ), yields 

 

 

( 24 ) 

where h is the integration step length. The first two equations correspond to equations of F in ( 4 ), 

and the last two correspond to equations of g in ( 5 ). Combining these equations results in 
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( 25 ) 

Where 

 
 

 

and 

 
 

 

The Newton’s method can be used to solve the above equations. The corresponding Jacobian 

matrices are shown below: 

 

 

( 26 ) 

Each sub-matrix is calculated below: 

 JFx = diag(JFx
i )  

 

 

 

 JFy = diag(JFy
i )  
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 Jgy = diag(Jgy
i )  

 

 

 

Similarly, one can find the analytical expression of Jacobian matrix when higher order machine 

model and dynamic load model are used. Among the reviewed the references, there should be no 

obvious difficulties to find the analytical expression of Jacobian matrix. Method to find Jacobian 

matrix in general case (rather than classic machine model and constant impedance) is described in 

[20]. In [26], analytical expression of Jacobian matrix is provided when transient machine model, 

dynamic exciter, and dynamic load model are used. 

For the time stacking method, equations in ( 25 ) for several time steps are combined together to 

form a large set of algebraic equations: 

 

 

( 27 ) 

where p represents the number of time steps in parallel, and H and H’ comprise of equations similar 

to ( 24 ). In H, the previous time step variables are known and the only unknown are the current time 

step variables. In H’, variables of two future adjacent time steps are unknown. The variables to be 

determined are: 
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This equation set can be solved similarly as conventional one-step approach. The corresponding 

Jacobian matrix is 

 

 

( 28 ) 

 

where the diagonal sub-matrix is shown in ( 26 ). In the subscript of the off-diagonal matrix, the first 

number represents the equation set index, and the second number represents variable set index. 

 

 

( 29 ) 

where j = ϒ, ϒ + 1, …, ϒ + p-2. Each sub-matrix is calculated below: 

 
 

 

 

 

 

 
 

 

 

 

 

A prototype was successfully developed in MATLAB to implement the time-stacking method to prove 

the concept. This code considers reduced admittance matrix, constant impedance load model and 

classical generator model. The MATLAB scripts were also converted to FORTRAN code to implement 

parallel solvers for speedup purposes, which will be described in the following subsections. The 

detailed structure of the Jacobian matrix for the time-stacking method is shown in Figure 19 and 

Figure 20. A preliminary simulation was performed on the IEEE 16-generator-68-bus system model. 

Twenty steps were stacked together that can be solved simultaneously. The comparison of time-

domain trajectories is made in Figure 21, which proves the concept of the proposed time-stacking 

method. 



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

50 
 

 

Figure 19. Structure of Jacobian matrix for the time stacking method (20 steps) 

 

 

 

Figure 20. A zoom-in view of the Jacobian matrix elements with reduced admittance matrix 
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Figure 21. Proof of concept for the time-stacking method 

 

4.5.2 Network admittance matrices (reduced vs. full) 

As shown in Figure 19 and Figure 20, the Jacobian matrix for the time-stacking method contains a 

dense portion, if using reduced admittance matrix for network solution. The dense nature of the 

matrix might not be a desired feature in the trapezoidal method when solved in an iterative way, 

although the size is much smaller than the original, full admittance matrix (e.g., 3000 by 3000 vs. 

16,000 by 16000 for a WECC size model). As suggested by the GE experts, PNNL team modified the 

formulation of the dynamic simulation by using full admittance matrix (larger but sparser than the 

previously used reduced admittance matrix). The complexity comparison is made between the 

reduced and full admittance matrices, shown in  

Table 5. The corresponding MATLAB and FORTRAN codes were developed and tested to reflect this 

change. As expected, around 2 to 3 times of speedup were observed using the same simulation 

parameter settings and the computer hardware. Table 6 shows the comparison of computation time 

between the two schemes, for different test systems. It is observed that using the full admittance 

matrix can reduce the total simulation time using trapezoidal method from ~145s to ~54.2s. The 

SuperLU linear solver outperforms the DGESV solver. A preliminary scalability test is also performed 

to investigate the total computation time with respect to different number of processors, shown in 

Table 7 and Table 8. Around 15% of speedup is observed when using 4 processors are used to 

perform the dynamic simulation. 
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Table 5: Computational complexity comparison 

 
 

Table 6: Computational time comparison 

 Reduced Y-bus Full-Ybus 

System 16g68b 50g145b 288g1081b  288g1081b  288g1081b  288g1081b  

Linear 
solver 

DGESV DGESV DGESV SuperLU SuperLU SuperLU & 
Dishonest 
Newton 

Admittance 
Matrix (s) 

0.086 0.742 23.868 3.645 0.252 0.242 

Jacobian 
(s) 

0.121 0.792 25.139 4.299 0.378 0.128 

Solver (s) 0.559 5.268 513.808 136.921 52.609 19.710 

Total (s) 0.765 6.810 562.907 144.972 54.173 20.852 

 
 

Table 7: Performance of parallel computing on the 288-generator-1081-bus model using Newton’s method 
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Table 8: Performance of parallel computing on the 288-generator-1081-bus model using Dishonest Newton’s method 

 
 

4.5.3 Complexity of the time-stacking method 

With the full admittance matrix and SuperLU solver, the time-stacking method was implemented in 
FORTRAN in the OPENMP environment to test the scalability of the time-stacking method. Table 9 
summarizes the preliminary testing results for the 50-generator-145-bus model. The scalability of the 
time-stacking method is shown in Figure 22.  
 

 
Table 9: Scalability testing of the time-stacking method with SuperLU and full admittance matrix 

Stack 1 step 1 thread 2 threads 4 threads 8 threads  

Admittance matrix 0.077 0.090 0.085 0.095 

Jacobian matrix 0.087 0.148 0.110 0.145 

Linear solver 9.800 9.410 8.490 8.950 

Total (including others) 10.270 10.880 9.222 9.680 
 

Stack 2 steps 1 thread 2 threads 4 threads 8 threads  

Admittance matrix 0.064 0.075 0.078 0.088 

Jacobian matrix 0.086 0.136 0.129 0.141 

solver 13.393 11.747 11.327 12.667 

Total (including others) 13.684 12.746 11.736 13.128 
 

Stack 4 steps 1 thread 2 threads 4 threads 8 threads  

Admittance matrix 0.055 0.060 0.055 0.057 

Jacobian matrix 0.086 0.122 0.093 0.090 

solver 19.327 18.542 14.351 15.330 

Total (including others) 20.263 20.648 16.870 15.720 
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From this preliminary testing, the computation time of the time-stacking method is longer than the 
one for single time step implementation. This is expected due to the fact that additional coupling 
information is introduced when stacking multiple time steps together. For single step dynamic 

simulation, define the total computation time 𝑻𝒔
𝒕𝒐𝒕 =

𝑻𝒔

𝒖𝒔
𝒕; for the time-stacking method, 𝑻𝒑

𝒕𝒐𝒕 =
𝑻𝒑

𝒖𝒑
∗
𝒕

𝒑
, 

where t is the number of time steps, ts is the average simulation time per set of equations at each 
single step using single thread, us is the speedup with multiple threads in single step method, tp is the 
average simulation time per enlarged set of equations at each multi-step using single thread, and up 
is the speedup with multiple threads in time stacking method. In order to run the time-stacking 

simulation faster than single step simulation, we need to have  
𝒖𝒑

𝒖𝒔
>

𝑻𝒑

𝒑𝑻𝒔
, which requires good 

scalability of a parallel linear solver. 
 

 

 
 

Figure 22. Scalability of the time-stacking method for different number of stacked steps with SuperLU solver 

 

4.5.4 Performance of linear solvers 

In order to speed up dynamic simulation, identification of a good linear solver is the key. PNNL team 
has investigated a number of linear solvers (direct and iterative solvers) that may achieve the best 
possible speed performance for the two target problems, (1) solving I=Y*U, for speeding up dynamic 
simulation in PSLF; and (2) solving ΔX=Jacobian-1 * ΔY for the proposed time-stacking method using 
trapezoidal integration.  

4.5.4.1 Direct solvers for PSLF 

It is found that for problem ( 2 ) and ( 3 ), direct solvers perform better than iterative solvers given the 
size (18,000 by 18,000 for a WECC system) and the property of the problem (re-factorization is only 
needed a couple times during a dynamic simulation). For the WECC size problem, we tested several 
direct solvers in MATLAB. It was found that the fastest direct solver can solve the problem much 
faster than the existing solver inside PSLF. After the selected solver is integrated into GE PSLF, the 
preliminary testing result shows more than 30 times of speedup to complete one linear solution. The 
total simulation time is reduced to half when using around 6 processors, with the same simulation 
settings. The simulation accuracy is also validated in PSLF. 
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4.5.4.2 Iterative solvers for the time-stacking method 

For problem ( 4 ), iterative solvers perform equally well as direct solvers on a mid-size test system 
(16generator68bus with 20 steps stacked) once a good preconditioner is found. As an example, 
Figure 23 shows the structure of a Jacobian matrix (4,410 by 4,410 with 44,170 non-zeros) obtained 
in the time-stacking method, on a mid-size model. It shows a very large condition number: 
7.9505*109. To complete one solution for this Jacobian matrix, it takes 0.0182s using KLU solver. With 
the GMRes iterative solver and ILU as preconditioner, it takes 0.0784s to complete one solution using 
1 processor. This iterative solver shows some scalability when using multiple processors: 0.0664s (2 
processors) and 0.0365s (3 processors). 
 

 
 

Figure 23 Structure of a Jacobian matrix for a mid-size system in the time-stacking method 

For a larger problem with a bigger dimension in Jacobian, it is found that iterative solvers can 
outperform direct solvers using multiple processors. The problem size is increased to 44,100 by 
44,100, when stacking more steps together. The testing results are compared in Figure 24. It clearly 
indicates that iterative solvers can beat KLU using 2 and more processors in solving this bigger linear 
problem. This is a desired feature for the time-stacking method on a large-scale model, indicating 
significant speedup can be expected for the time-stacking method. It is worth to mention that this 
iterative solver is only valid in MPI version, which is fundamentally different from the OPENMP parallel 
computing environment. The team is still in the process of identifying a good parallel linear solver 
that can be used on PNNL’s FORTRAN scripts for the time-stacking method. 

 
Figure 24. Performance comparison between GMRES and KLU solvers for solving a larger linear problem with a 

dimension of 44,100 * 44,100 
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4.5.5 Preliminary testing of adaptive time stepping method 

PNNL team investigated several methods to vary time steps during the course of a dynamic 

simulation. The main objective is to further speed up dynamic simulation by using larger time steps 

when the power system is at quasi-steady state and using smaller time step at/near switching 

conditions. As an example, a smaller time step is used to simulate the detailed dynamic behavior of 

the system during a fault condition; and a larger time step can be used at initial conditions or after a 

disturbance is settled. It is found that up to 30% speedup can be observed using this technique 

without compromising simulation accuracy. 

 

Figure 25. Accuracy of simulation results with adaptive time step (case 1: fixed time step; case 2: adaptive time step) 

 

4.5.6 Implementation of detailed generator models with controllers 

In order to obtain more realistic simulation results, state-space equations were developed for 

complex generator and controller models, including GENTPJ, EXAC2, and IEEEG1. The differential 

equations and their Jacobian matrices were developed from their control block, for the time-stacking 

method. Figure 26 through Figure 28 provide the control block diagrams for the 3 identified models. 

Limiters, saturations and nonlinear functions are all considered in Jacobian matrix. MATLAB codes 

were developed to implement these detailed models for dynamic simulations with the time-stacking 

method. The MATLAB code is then converted to C++ code for further testing purposes.  

 
 

Figure 26. Control block diagram for GENTPJ (source: PSLF manual) 
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Figure 27. Control block diagram for EXAC2 (source: PSLF manual) 

 

 

 

 

 
 

 

Figure 28. Control block diagram for IEEEG1 (source: PSLF manual) 

  



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

58 
 

4.6 Conclusions and Proposed Future Work 

In the research project, several advanced computing techniques for speeding up a single dynamic 

simulation were explored and evaluated. A few major achievements were made, which include: 

 PNNL team surveyed a few popular linear solvers in different platforms including both direct 

methods and iterative methods. A comprehensive study and comparison was made to identify 

the best for both GE PSLF software and the new time-stacking method for fast dynamic 

simulation. The best direct linear solver shows more than 30 times speedup compared to the 

existing solver in PSLF. This helps effectively enhance the speed of PSLF simulation (2x speedup 

using 6 processors on a WECC size model). For the time-stacking method, the best linear solver is 

GMRes iterative solver with ILU as preconditioner, which shows good scalability performance 

comparing to the single-core based KLU method. 

 

 Methods/Prototypes developed 

o A simultaneous method (Trapezoidal rule) 

PNNL team implemented a dynamic simulation code in MATLAB (for proof of concept) 

and FORTRAN (for testing scalability in OPENMP environment) with the Trapezoidal 

method and classical generator models. We investigated and compared the computation 

complexity of using reduced (small but dense) and (big but sparse) full admittance 

matrices. Both Newton and dishonest Newton’s methods were implemented. 

o A time stacking method 

A prototype was developed that implements the proposed time stacking method, in both 

MATLAB and FORTRAN language. The concept was proved. Detailed generator models 

and controllers (GENTPF, EXAC2, and IEEEG1) were developed to provide more realistic 

results. 

o An adaptive time stepping method 

PNNL team investigated several methods to vary time steps during the course of a 

dynamic simulation. The main objective is to further speed up dynamic simulation by 

using larger time steps when the power system is at quasi-steady state and using smaller 

time step at/near switching conditions. As an example, a smaller time step is used to 

simulate the detailed dynamic behavior of the system during a fault condition; and a 

larger time step can be used at initial conditions or after a disturbance is settled. It is 

found that up to 30% speedup can be observed using this technique. 

From our efforts, the speed of running power system dynamic simulations can be significantly 

improved by parallel computing techniques.  

As explained in earlier sections, a good parallel linear solver is the key to the success of the time-
stacking method. The best possible parallel linear solver identified was only available in MPI version. 
The OPENMP version of the solver didn’t show good scalability, indicating that future research is 
needed to either identify a better parallel iterative solver in OPENMP or reprogram the code for the 
time-stacking method in MPI environment to leverage the identified solver.  
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5 Contingency screening and ranking for small signal stability 
Utilities today are in need of tools and techniques that will enable them to predict the dynamic 

stability and reliability of the grid in the real-time. The problem is challenging because of the large 

number of contingencies that are to be simulated. In this project a fast method for power system 

contingency screening and ranking for small signal stability assessment is presented which 

essentially reduces the number of contingencies for detailed evaluation. The proposed method 

avoids repeated computation of eigenvalues for all possible postcontingency scenarios. Instead, the 

eigenvalues corresponding to critical modes for post-outage conditions are estimated based on first-

order eigenvalue-sensitivity using just the nominal condition eigenvalues and post outage system 

state matrices. Since a critical outage condition can produce a large change in the eigenvalues, the 

first order prediction might not have acceptable accuracy. To overcome this issue, a second-order 

correction is applied which needs the computation of the eigenvectors corresponding to the 

eigenvalues of interest. The proposed approach avoids the computationally expensive eigenvalue 

computation for each contingency case and helps to screen the harmful contingencies in real time. 

5.1 Introduction 

Poorly damped electro-mechanical modes remain to be of significant concern in modern power 

systems. Power system stabilizers (PSSs) have traditionally been employed to improve the damping of 

these modes. Although PSSs are effective in damping the local electromechanical modes, they are 

not quite effective for the inter-area modes. Therefore, these modes might become poorly damped 

or unstable in the worst case under certain operating conditions following contingencies. One of the 

goals of Dynamic Security Assessment (DSA) is to identify such critical contingencies and analyze the 

system security. Since a practical power system can have thousands of possible contingencies, it is 

not possible to analyze all of them using time-domain simulations. As a result, the first step in DSA is 

contingency screening and ranking which gives a list of cases that needs further attention. The focus 

of this paper is fast contingency screening and ranking for small-signal stability analysis of inter-area 

modes. Not much work has been reported in the area of contingency screening and ranking for DSA. 

Most of the research in this area focused primarily on the so-called ‘first swing’ stability of the power 

systems. Transient energy function methods involving the construction of a Lyapunov function 

following a contingency were used to evaluate the critical clearing time [27], [28], [29], [30], [31]. A 

composite index approach was proposed in [32] which used multiple indices to screen contingencies. 

Coherency based indices were proposed by Li et-al in [33] and this approach was compared with 

different transient energy function approaches in [34]. Eigenvalue sensitivity was used in [35] for 

computing modal synchronizing torque coefficient for contingency screening for the first swing 

stability. The power transfer distribution factor (PTDF), which is calculated based on a dc power flow 

assumption has been used in literature [36], [37] to determine the post contingency operating 

condition. In [38], the PTDF has been used for contingency screening and ranking. This approach can 

avoid the computational burden of the full AC load flow and determine the post outage operating 

condition using DC load flow. The trade-off, however, is the accuracy of the post contingency 

condition. It was shown in [38] that this approach was unable to capture almost half of the unstable 

contingencies in a 3-machine WSCC system [24] and 80% of the unstable contingencies in the 10-

machine 39-bus New England test system [39].  
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In [40], contingency screening was performed for extremely large contingencies like (N - 2) and (N - 3) 

based on eigenvalue sensitivity to small perturbations in line admittance and shunt capacitor. This is 

an approximation to the effect of line outage, which is a large disturbance. Moreover, the 

contingencies were sorted based on the magnitude of eigenvalue sensitivity -the higher the 

magnitude, the greater is the criticality of the contingency. This criteria does not indicate how critical 

the modes are i.e., how far they are from the imaginary axis. In the proposed approach of this paper, 

we do not consider a dc load flow approximation. The eigenvalues for a post-outage scenario are 

estimated from a system state matrix which is computed after the removal of the line rather than a 

small change in its admittance. Moreover, the proposed algorithm considers the 2nd order 

approximation in order to take into account the non-linearity due to the large change in the system 

matrix resulting from the line outage. In the proposed approach, the contingencies are sorted based 

on estimation of eigenvalues corresponding to inter-area modes. The method focuses on 

eigenvalues associated with the critical modes rather than any indirect way such as screening based 

on eigenvalue sensitivity. 

5.2 Eigenvalue sensitivity based fast contingency screening 

Power system dynamic behavior is typically modeled using a set of differential-algebraic equations 

(DAEs) 

 𝑥̇ = 𝑓(𝑥, 𝑦)
0 = 𝑔(𝑥, 𝑦)

 
( 30 ) 

where, x is a vector of state variables associated with the dynamic states of generators, loads, and 

other system components; y is a vector of algebraic variables associated with steady-state variables 

such as voltage phasor magnitudes and angles. Small signal stability analysis is done by linearizing 

these non-linear equations around an operating point  (x0 , y0) 

 [
∆𝑥̇
0
] =  [

𝐽1 𝐽2
𝐽3 𝐽4

]
⏟    
𝐽

[
∆𝑥
∆𝑦
] 

( 31 ) 

where, 𝐽 is the system Jacobian matrix, and 𝐽1 =  𝜕𝑓/𝜕𝑥|0,  𝐽2 =  𝜕𝑓/𝜕𝑦|0, 𝐽3 =  𝜕𝑔/𝜕𝑥|0, 𝐽4 =

 𝜕𝑔/𝜕𝑦|0 are the respective partial derivatives evaluated at the operating point.  The system 

eigenvalues can be computed by eliminating the vector of algebraic variables, so that the DAE 

system is reduced to a set of purely ordinary differential equations (ODE) 

 ∆𝑥̇ = (𝐽1 − 𝐽2 𝐽4
−1𝐽3)∆𝑥 = 𝐴𝑠𝑦𝑠∆𝑥 ( 32 ) 

The eigenvalues and eigenvectors of 𝐴𝑠𝑦𝑠 are given by 

 𝐴𝑠𝑦𝑠𝜙𝑖 = 𝜆𝑖𝜙𝑖  ( 33 ) 

 𝜑𝑖𝐴𝑠𝑦𝑠 = 𝜆𝑖𝜑𝑖  ( 34 ) 
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where, 𝜆𝑖, 𝜙𝑖  and 𝜑𝑖  are the eigenvalue, right eigenvector and left eigenvector respectively 

corresponding to mode 𝑖. The eigenvalues of the above ODE system provide all the information on 

modal damping ratios and frequencies. For each mode, characterized by a pair of complex 

conjugate eigenvalues, the corresponding right eigenvector indicates the mode shape, giving 

information on the relative phase of each state in that particular mode.  The participation factors 

provide information on the influence of states on modes, and can be computed using the left and 

right eigenvectors. 

The eigenvalues of the above linear system provide the information on modal damping ratios and 

frequencies. Small-signal stability assessment is the small-signal stability analysis of the system 

under a set of contingencies for a range of operating conditions. The system is considered to be 

small-signal secure if the damping ratio/settling time of all the oscillatory modes is within a required 

threshold value. For the problem of inter-area oscillations, we focus on modes in the frequency range 

of 0.1 Hz to 1 Hz. Oscillatory modes with damping ratio less than a threshold value, such as 0.05, are 

considered to be the critical modes of concern. The system state matrix 𝐴𝑠𝑦𝑠 changes with changes 

in the operating point, since it is formed based on a linearization around an operating point. The 

operating point changes as a result of a contingency such as loss of a transmission line due to a 

fault. In order to analyze the impact of contingencies on small signal stability of the system, one 

approach is to re-compute the eigenvalues for post-contingency situations by solving (4). Upon 

solving this equation for each case, the contingencies can be ranked according to their impact on 

the eigenvalues. The contingencies that result in the maximum movement of the eigenvalue towards 

the positive side of the real axis are considered as the critical contingencies.  

For a large system, solving ( 33 ) for each post-contingency condition is a computationally challenging 

problem. This problem becomes infeasible when the goal is to perform such a contingency analysis 

in near-real-time. Another approach is to perform time domain simulations for all the contingency 

conditions, and evaluate the change in damping of critical modes using measurement-based modal 

identification techniques. Here again, simulating large number of contingencies in time domain for a 

large-scale system is a time consuming process, and infeasible for near-real-time applications. 

The goal of the proposed algorithm is to screen the critical contingencies for a given poorly damped 

mode without either solving ( 33 ) for each contingency or simulating the computationally intensive 

time-domain dynamic simulations. The algorithm is based on an eigenvalue sensitivity-based 

approach. In this approach, the eigenvalue corresponding to the given critical mode is estimated 

based on the eigenvalues and eigenvectors at the nominal condition and change in the system 

matrix for each contingency. The advantage of the proposed algorithm is that we avoid the 

computationally challenging task of solving ( 33 ) for each contingency.  

Eigenvalue sensitivity is a very useful tool to understand the small-signal stability problem, and has 

been used in various applications in the past. Here, we consider its use in analyzing the impact of 

contingencies, which result in changes in operating point. The 1st order eigenvalue sensitivity is given 

by 
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𝜕𝜆𝑖
𝜕𝛾

=
𝜓𝑖
𝜕𝐴
𝜕𝛾 𝜙𝑖

𝜓𝑖𝜙𝑖
 

( 35 ) 

where, 𝛾 is any system parameter. The above equation gives information on sensitivity of the 

eigenvalue corresponding to mode 𝑖 for a small change in the system parameter 𝛾. Both left and 

right eigenvectors are used in the calculation. Multiplying both sides of above equation by 𝛥𝛾, we get  

 𝜕𝜆𝑖
𝜕𝛾
Δ𝛾 =̃

𝜓𝑖Δ𝐴𝜙𝑖
𝜓𝑖𝜙𝑖

 

 

 

where, 𝛥𝐴 = (𝐴𝑝𝑜𝑠𝑡 − 𝐴) is the change in system state matrix from nominal condition to a post-

contingency condition. Using Taylor series approximation, the eigenvalue for the post-contingency 

condition can be estimated by 

 
𝜆𝑝𝑜𝑠𝑡 =̃ 𝜆𝑖 +  

𝜕𝜆𝑖
𝜕𝛾
Δ𝛾 =̃ 𝜆𝑖 +

𝜓𝑖Δ𝐴𝜙𝑖
𝜓𝑖𝜙𝑖

𝜑𝑖 
( 36 ) 

The only term in ( 36 ) dependent on the post-contingency condition is 𝛥𝐴. All the other terms are 

computed only once – at the nominal condition. Since 𝛥𝐴 is computed using nominal condition and 

post-contingency condition, the change in operating condition due to a contingency is taken into 

account in the estimation algorithm, without needing to re-compute the eigenvalue using ( 33 ). So, 

although the estimation of eigenvalue is based on a 1st order approximation, the post-contingency 

condition is accounted for through the 𝛥𝐴 term. 

While ( 36 ) takes into account the change in operating condition as a result of a contingency, it is 

bound to have certain inaccuracy in predicting the eigenvalue due to the underlying 1st order 

approximation. To improve the accuracy in this regard, we include the 2nd order term. Then, the 

estimate of eigenvalue is given by 

 
𝜆𝑝𝑜𝑠𝑡 =̃ 𝜆𝑖 +  

𝜕𝜆𝑖
𝜕𝛾
Δ𝛾 +

1

2!

𝜕2𝜆𝑖
𝜕𝛾2

(Δ𝛾)2 
 

 

=̃ 𝜆𝑖 +
𝜓𝑖Δ𝐴𝜙𝑖
𝜓𝑖𝜙𝑖

+
1

𝜓𝑖𝜙𝑖
[𝜓𝑖Δ𝐴∑(

𝜓𝑘Δ𝐴𝜙𝑖𝜙𝑘
𝜓𝑘𝜙𝑘(𝜆𝑖 − 𝜆𝑘)

)

𝑛

𝑘=1
  ≠𝑖

] 

( 37 ) 

The second order term in ( 37 ) uses information on all the eigenvalues, left and right eigenvectors 

computed at the nominal condition in order to estimate the eigenvalue for mode 𝑖. The 1st order 

estimation in ( 36 ), however, requires only the eigenvalue and eigenvector corresponding to that 

particular mode. Hence, there is a tradeoff between accuracy and computation when the eigenvalue 

is estimated using a higher order approximation vs. a first order approximation. 
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5.3 Feasibility of Practical Implementation 

The steps followed in determining the critical eigenvalues under post-contingency operating 

scenarios as described in the previous sub-section are summarized in the flow chart shown in Figure 

29. The three key components of the proposed estimation method are highlighted in Blocks I, II and 

III. Following the completion of these key steps, the contingencies are screened and ranked based on 

the real-part of the estimated eigenvalues. The real-part of the eigenvalue is used as the indicator 

of how far the eigenvalue is from the imaginary axis. A contingency is classified as ‘critical’ if the real- 

part of eigenvalue is greater than a threshold value (e.g., -0.133 corresponding to a settling time of 30 

seconds). After screening and ranking the critical contingencies, time-domain simulations can be run 

to validate the results for the most critical contingencies. Time-domain simulations are run using HPC 

platform to validate the results for the most critical contingencies. 

 

Figure 29: Flowchart of the proposed contingency screening algorithm. 
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As mentioned earlier, the eigenvalues for the post-contingency scenarios can be calculated by 

solving ( 33 ). In this report the ‘eig’ function of MATLAB, which utilizes the LAPACK library from Intel 

Math Kernel Library (Intel MKL) is used for computing the eigenvalues from the full state matrix. This 

is a computationally efficient way of calculating the eigenvalues using commercial grade software 

such as MATLAB. This method will be referred to as ‘EIG’ in the rest of the report. 

Blocks I and II are common in the EIG approach and the proposed approach. In the proposed 

approach, Block III estimates only a few selected eigenvalues which correspond to the critical 

electro-mechanical modes. 

While the proposed eigenvalue sensitivity-based algorithm gets rid of the computationally 

challenging task of solving ( 33 ) for each contingency, it still has portions that may pose challenges 

when considering real-time implementation on large-scale systems. One of the challenges is in the 

computation of the 2nd order term in Block III. As can be seen from ( 37 ), this term requires the 

knowledge of all the eigenvalues and left and right eigenvectors at the nominal condition, which 

could be a challenging problem for a large-scale system. Furthermore, in Block II, the system state 

matrix has to be computed for all the contingency conditions, and this could also be a challenging 

problem for a large-scale system.  

Two approaches have been identified in this task to further improve the computational efficiency of 

the proposed algorithm. The two approaches are described below. 

5.3.1 Approach 1 

5.3.1.1 Improving speed of computation of Block III: 

For an efficient calculation of Block III, the matrix multiplication and addition in ( 36 ) and ( 37 ) should 

be done judiciously. This computation can be made more efficient as follows. The left and right eigen-

matrices and the eigenvalues are computed from Block I, and can be arranged in matrix form as,  

 

𝛷 =

[
 
 
 
𝜙1
𝑇

𝜙2
𝑇

⋮
𝜙𝑛
𝑇]
 
 
 

(𝑛×𝑛)

𝛹 =

[
 
 
 
𝜓1
𝑇

𝜓2
𝑇

⋮
𝜓𝑛
𝑇]
 
 
 

(𝑛×𝑛)

  𝛬 = [

𝜆1
𝜆2
⋮
𝜆𝑛

]

(𝑛×𝑛)

 

 

Rows and columns corresponding to the critical eigenvalues are selected from these matrices. Let us 

assume 𝜆1, 𝜆2, … , 𝜆𝑛𝑐𝑟𝑖𝑡 are the critical eigenvalues of interest. 

1) First order estimate:  The estimation of the critical eigenvalues for a particular post-contingency 

scenario is described in ( 36 ). To calculate the first order term, the following arrangement of 

matrix multiplication leads to an efficient computation: 
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𝛥𝛬 =

[
 
 
 
 
 
𝛥𝜆1
𝛥𝜆2
⋮
𝛥𝜆𝑖
⋮

𝛥𝜆𝑛𝑐𝑟𝑖𝑡]
 
 
 
 
 

= 𝑑𝑖𝑎𝑔

{
 
 

 
 

[
 
 
 
 
 
𝜓1
𝜓2
⋮
𝜓𝑖
⋮

𝜓𝑛𝑐𝑟𝑖𝑡]
 
 
 
 
 

[𝛥𝐴𝑠𝑦𝑠]

[
 
 
 
 
 
𝜙1
𝑇

𝜙2
𝑇

⋮
𝜙𝑖
𝑇

⋮
𝜙𝑛𝑐𝑟𝑖𝑡
𝑇 ]

 
 
 
 
 

}
 
 

 
 

 

 

2) Second order estimate:  Similarly, for the second order term, the summation term can be 

calculated efficiently in the following steps of matrix multiplications and additions: 

 

Step I: the following expression is computed. 

 

𝛤 =

[
 
 
 
 

𝛹𝛥𝐴𝑠𝑦𝑠

[
 
 
 
𝜙1
𝑇

𝜙2
𝑇

⋮
𝜙𝑟
𝑇]
 
 
 

(𝑛×𝑛𝑐𝑟𝑖𝑡)]
 
 
 
 

 

 

where, 𝛤 = [𝛤1 𝛤2    ⋯ 𝛤𝑛𝑐𝑟𝑖𝑡] 

 

Step II: corresponding to the ith critical eigenvalue 𝛥𝜆𝑖𝑘 is computed as 

 Δ𝜆𝑖𝑘 = [(𝜆𝑖 − 𝜆1) (𝜆𝑖 − 𝜆2)    ⋯ (𝜆𝑖 − 𝜆𝑛)]
𝑇  

 

Step III: the matrix given below is evaluated: 

 Ξi = 𝛤𝑖 ∙/Δ𝜆𝑖𝑘  

where, the dot operator represents element-wise division in matrices. 

 

StepIV: The ith row of the above matrix Ξ𝑖  and the ith column of right eigenvector 𝜙 are removed 

and the corresponding variables are defined as  Ξ[𝑖] and 𝜙[𝑖] respectively. 

 

Step V: the summation term in (8) is computed by summing over the columns of the matrix 

(ϕ[i] x diag{Ξ[i]}) given by: 𝑠𝑢𝑚{𝑐𝑜𝑙(𝜙[𝑖] × 𝑑𝑖𝑎𝑔{Ξ[𝑖]})} 

 

Step VI: steps II to V are repeated for 𝑖 = 1, 2, … , 𝑛𝑐𝑟𝑖𝑡. 

 

5.3.1.2 Improving speed of computation of Block II: 

Calculation of 𝐴𝑠𝑦𝑠 consumes a significant portion of time since it needs to be performed for all post 

contingency conditions. One popular numerical method to compute 𝐴𝑠𝑦𝑠 is the perturbation based 

technique, where each state is perturbed individually. This computation can be reduced by selectively 

perturbing the states that have higher impact on a given critical mode. This information is obtained 
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by computing the participation factors for a given mode. Participation factors of the states for a 

particular mode are computed using the left and right eigenvectors, the sum of which equals 1 for a 

given mode. The states that contribute to a majority of participation in a given mode, given by the 

cumulative sum of participation factors can be chosen as the important states. This process can 

potentially improve the speed of computation of sys matrix for each contingency. As will be 

demonstrated in the next section, the threshold value used to determine the majority contribution 

(e.g., cumulative sum equal to 0.95) dictates the accuracy of the algorithm. Smaller the threshold, 

lesser the number of states that need to be perturbed in order to compute the 𝐴𝑠𝑦𝑠 matrix, but 

greater is the inaccuracy in estimating the eigenvalues. 

The shortcoming of this approach is that it requires the computation of the full eigenspace in order to 

calculate the participation factors. This may be impractical for a large scale system, especially when 

considering a dense system state matrix for real-time application.  

5.3.2 Approach 2 

To overcome the short coming of approach 1, we consider an alternate way to compute the second 

order term in the eigenvalue estimation. In the second order term in ( 37 ), we can see that there is a 

summation term that requires all the eigenvalues and eigenvectors at the operating point. This can 

consume significant computation time. We recall ( 37 ) below. 

 
𝜆𝑝𝑜𝑠𝑡 =̃ 𝜆𝑖 +  

𝜕𝜆𝑖
𝜕𝛾
Δ𝛾 +

1

2!

𝜕2𝜆𝑖
𝜕𝛾2

(Δ𝛾)2 
 

 

=̃ 𝜆𝑖 +
𝜓𝑖Δ𝐴𝜙𝑖
𝜓𝑖𝜙𝑖

+
1

𝜓𝑖𝜙𝑖
[𝜓𝑖Δ𝐴∑(

𝜓𝑘Δ𝐴𝜙𝑖𝜙𝑘
𝜓𝑘𝜙𝑘(𝜆𝑖 − 𝜆𝑘)

)

𝑛

𝑘=1
  ≠𝑖

] 

 

The second order term in the above expression can be written alternatively as 

 𝜕2𝜆𝑖
𝜕𝛾2

(Δ𝛾)2 =̃
1
𝜓𝑖𝜙𝑖

[2𝜓𝑖 {
𝜕𝐴𝑠𝑦𝑠
𝜕𝛾
Δ𝛾 −  

𝜕𝜆𝑖
𝜕𝛾
(Δ𝛾)𝐼}

𝜕𝜙
𝑖

𝜕𝛾
Δ𝛾] 

 

 
=̃

1

𝜓𝑖𝜙𝑖
[2𝜓𝑖{Δ𝐴𝑠𝑦𝑠  − Δ𝜆𝑖

1𝑠𝑡𝐼}
𝜕𝜙𝑖
𝜕𝛾
Δ𝛾] 

( 38 ) 

Multiplying on both sides of the above equation by Δ𝛾, we get 

 

[

𝐴𝑠𝑦𝑠 − Re(𝜆𝑖𝐼) Im(𝜆𝑖𝐼)

−Im(𝜆𝑖𝐼) 𝐴𝑠𝑦𝑠 − Re(𝜆𝑖𝐼)

Re(𝜙𝑖
∗) Im(𝜙𝑖

∗)

]

[
 
 
 Re (

𝜕𝜙𝑖
𝜕𝛾
) Δ𝛾

Im(
𝜕𝜙𝑖
𝜕𝛾
) Δ𝛾

]
 
 
 

=  [

−Re(Δ𝐴𝑠𝑦𝑠 − Δ𝜆𝑖
1𝑠𝑡𝐼)𝜙𝑖

−Im(Δ𝐴𝑠𝑦𝑠 − Δ𝜆𝑖
1𝑠𝑡𝐼)𝜙𝑖

0

] 

( 39 ) 

The above equation is in the form 𝐴𝑥 = 𝑏. In this equation, all the terms are known except the 𝑏 term. 

The remaining terms are dependent on just the system state matrices for nominal and post-
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contingency conditions, the eigenvalues and eigenvectors corresponding to a given electro-

mechanical mode, and the first order estimate. Solving this equation, and substituting the resulting 

eigenvector sensitivity in the second order estimate equation ( 38 ), one can obtain the second order 

term. This approach has the advantage that the computation of the full eigenspace is avoided. Only 

the eigenvalues and right eigenvectors corresponding to the modes of interest need to be known. 

There exist computationally efficient techniques that can perform such a selected eigenspace 

computation for large-scale dense matrices.   

Other approaches to improve computational efficiency:  

Exploiting sparsity in full DAE formulation: The proposed eigenvalue sensitivity-based algorithm 

uses the system state matrix 𝐴𝑠𝑦𝑠 , which is dense. Instead, the sparse nature of the full DAE model 

given by ( 31 ) can be exploited. It is straightforward to extend the proposed algorithm to the full DAE 

formulation. This extension to the full DAE formulation could potentially benefit the contingency 

screening algorithm. 

Application of High Performance Computing (HPC): The proposed algorithm requires the 

computation of system state matrices corresponding to all the contingencies. This process is easily 

parallelizable, and so HPC can be used to speed up this computation. Computation of A matrix 

involves perturbing each of the dynamic states and computing the resulting changes in system 

states and this process is inherently parallelizable. Parallel computing techniques can be exploited to 

allocate tasks that are performed in a loop to multiple cores. Also, the analysis for one contingency is 

independent of the others. Therefore, the algorithm can be easily parallelized in order to analyze 

multiple contingencies. Such a parallelization can lead to a significant reduction in the computational 

time of the overall algorithm. 

5.4 Results 

5.4.1 16-machine 68-bus system 

A 16-machine 68-bus test system is used to demonstrate the effectiveness of the proposed 

contingency screening algorithm. The description of this test system is included in Appendix A and 

the detail small signal characteristics is described in Appendix B. As shown in Table 25 in Appendix B, 

this test system has 4 inter-area modes. For the purpose of this analysis, we will focus on the Mode 1 

(~ 0.37 Hz mode).  

For (N-1) contingency analysis in this system, 87 feasible line outage scenarios have to be 

considered. The goal of the proposed algorithm is to reduce the number of contingencies to be 

analyzed. Table 10 summarizes the results of this algorithm. Each row in the table corresponds to a 

contingency. Note that here we do not show the results for all possible contingencies, but for only a 

selected set, although the algorithm is run for all possible contingencies. The table lists the estimated 

real part of eigenvalue corresponding to a particular critical mode using the second order based 

approach as well as the first order based approach. It also lists the “benchmark” results that can be 

obtained using exact eigenvalue computation. As can be seen from the table, across all the selected 

contingencies the second order based approach performs better (lower error) than the first order 

based approach. The error shown here is simple the absolute value of the difference between 



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

68 
 

estimated value and benchmark value. By setting a threshold value for the real part of eigenvalue of 

-0.1 (corresponding to a settling time of 40 seconds), we can see that the top 6 contingencies 

(highlighted in blue) are critical based on the benchmark results. Since the proposed algorithm 

estimates eigenvalues, we added a 10% margin to this threshold in order to arrive at the list of 

critical contingencies. The resulting list of critical contingencies based on the second order 

estimation is highlighted in red. As can be seen, all the critical contingencies obtained based on the 

actual computation are captured by the algorithm. The algorithm also identifies 2 additional 

contingencies, due to the added margin. This demonstrates that the proposed algorithm is 

successful in identifying the critical contingencies. The table also lists a ranked list of contingencies 

for the first order and second order based approaches along with the benchmark ranking list. As can 

be seen from this, the second order based approach is able to capture the top ten contingencies and 

maintain most of the ranking. However, the first order based approach is unable to capture 

contingencies ranked 9 and 10. This demonstrates the importance of the second order term in 

accurately estimating the eigenvalues post contingency and capturing the critical contingencies.  

Table 10: Comparison of estimated and actual eigenvalues for contingency screening and ranking (Base Case with 
default load model) 

Line Real part Real part Real part Error Error Ranking Ranking Ranking 

From To (2nd 
order) 

(1st order) (EIG) (2nd 
order) 

(1st order) (2nd 
order) 

(1st order) (EIG) 

37 68 -0.0517 -0.0865 0.0129 0.0646 0.0994 1 1 1 

22 21 -0.0805 -0.1024 -0.0354 0.0451 0.0670 3 4 2 

47 53 -0.0782 -0.0948 -0.0755 0.0026 0.0193 2 2 3 

21 68 -0.1031 -0.1124 -0.0899 0.0132 0.0225 6 8 4 

27 37 -0.1000 -0.1044 -0.0980 0.0019 0.0064 4 5 5 

40 48 -0.1008 -0.0952 -0.1002 0.0006 0.0050 5 3 6 

61 60 -0.1061 -0.1133 -0.1029 0.0032 0.0104 7 9 7 

61 60 -0.1061 -0.1133 -0.1029 0.0032 0.0104 8 10 8 

54 53 -0.1103 -0.1164 -0.1076 0.0027 0.0088 9 16 9 

54 53 -0.1103 -0.1164 -0.1076 0.0027 0.0088 10 17 10 

 

A key aspect of the proposed approach is the computation time of the algorithm. Table 11 below 

shows the computation times for a single contingency using the 1st order approach, 2nd order 

approach and the EIG approach. As can be seen from the table, the 1st order approach takes the 

least amount of time, followed by the 2nd order approach and then the EIG approach. The 1st order 

approach is almost 27 times 5 faster than the EIG approach, and the 2nd order approach is 2:5 times 

faster than the EIG approach. The computer used to perform these simulation had the following 

configuration: IntelR XeonR CPU W3565 @ 3.2 Ghz, 4 Cores, 8GB RAM, Windows 7 Professional, 64-bit, 

and the MATLAB version used was R2013b. PSLF solution architecture. 
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Table 11: Comparison of computation times in second 

(1st order) (2nd order) EIG 

0.000433 0.00465 0.011654 

 

Therefore by first screening the contingencies with first order approach considering higher threshold 

on real-part of eigenvalue (damping or settling time) and then computing the second order terms for 

only those contingencies that exceeds the threshold, a significant reduction in computation time can 

be achieved.  

Figure 30 shows the graphical representation of the two oscillating generator group for 0.37 Hz 

mode. Group 1 generators are shown in green and Group 2 generators are shown in red. The circle 

represents the generator and magnitude and angle of the arrow represents the modehape 

magnitude and angle for 0.37 mode. The critical contingences that cause this mode to be 

unstable/lightly damped are shown in blue colored line. 

 

 

Figure 30: Graphical representation of oscillation group and critical contingences for 16 machine 68 bus system. 
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Table 12 summarizes the results of this algorithm for the same 16 machine test system, but at a 

different operating condition considering constant impedance load model. This case was developed 

to represents a lightly damped system which can then be used to demonstrate the effectiveness of 

optimal control action.  The control action necessary to bring the system back to stability following 

the critical contingencies is explained using this condition in next section. As can be seen from the 

table, similar to the previous test condition, here as well the 2nd order based approach provides 

better results than the 1st order based approach. This can be concluded by looking at the error values 

for each of the top 10 contingencies for 2nd order and 1st approaches in table 13.  

Table 12: Comparison of estimated and actual eigenvalues for contingency screening and ranking (Lightly damped 
case with constant impedance load model) 

Line Real part Real part Real part Error Error Ranking Ranking Ranking 

From To (2nd 
order) 

(1st order) (EIG) (2nd 
order) 

(1st order) (2nd 
order) 

(1st order) (EIG) 

37 68 0.1403 0.0542 0.2270 0.0867 0.1728 1 1 1 

22 21 0.0622 0.0040 0.1372 0.0750 0.1332 2 2 2 

21 68 -0.0050 -0.0336 0.0235 0.0285 0.0571 3 6 3 

61 60 -0.0080 -0.0234 -0.0078 0.0003 0.0156 4 3 4 

61 60 -0.0080 -0.0234 -0.0078 0.0003 0.0156 5 4 5 

27 37 -0.0182 -0.0288 -0.0129 0.0053 0.0159 6 5 6 

54 53 -0.0222 -0.0358 -0.0217 0.0005 0.0141 7 7 7 

54 53 -0.0222 -0.0358 -0.0217 0.0005 0.0141 8 8 8 

24 23 -0.0300 -0.0444 -0.0237 0.0063 0.0207 9 9 9 

63 58 -0.0356 -0.0489 -0.0302 0.0054 0.0188 10 10 10 

 

 

5.5 Conclusions 

A novel eigenvalue sensitivity-based approach for screening contingencies for small signal stability 

has been proposed and tested on the 16-machine 68-bus New York-New England Test. The result 

shows that the proposed approach of estimating modes for post contingency condition is suitable in 

identifying critical contingencies with significant speed gain. While the second order correction 

entails more computation burden than the first order, it can more accurately screen and rank the 

contingencies in the order of severity. With the improved availability of parallel computing 

techniques for utility operations, the proposed approach has the potential to enable real time 

decision making to predict and tackle oscillatory problems based on current operating conditions. 
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6 Oscillation damping control 

6.1 Introduction 

The objective of this task is to develop an algorithm that will determine the optimum generation 

and/or load change required to improve the damping of poorly damped oscillatory modes in the 

system for all N-1 contingencies. The proposed algorithm takes advantage of a model-based 

approach to improve the oscillatory stability of the system considering “what-if” or N-1 contingency 

conditions. The broad idea is to leverage the fast time domain simulation engine to estimate the 

sensitivity of eigenvalues with respect to tunable system parameters (e.g., generation re-dispatch) 

and use this information to determine the required control action scheme that the system operator 

can take. One key benefit of adopting an eigenvalue sensitivity based approach is that the same 

information can be leveraged for the contingency screening algorithm proposed earlier. For example, 

if the system operator needs to analyze the impact of generator outage contingencies on system 

oscillatory modes, the eigenvalue sensitivity can be used to obtain such information. As a byproduct 

of that, the sensitivity can be used in the control algorithm proposed in this task.   

In any generation re-dispatch based oscillation damping control scheme, there are four basic 

questions that need to be answered: 

1. Which generators should increase their output and which ones should decrease their output 

in order to improve the damping of an oscillatory mode? 

2. Which generators will be more effective in impacting a certain oscillatory mode? 

3. What is the optimum amount of generation re-dispatch needed to improve the damping of 

that mode? 

4. How to avoid negative interaction among multiple poorly damped modes as a result of the 

re-dispatch? 

The answer to these questions lies in the fundamental quantity that governs the relationship 

between oscillatory modes and generator power output change – the eigenvalue sensitivity. The 

eigenvalue sensitivity quantifies the change in eigenvalue corresponding to an oscillatory mode 

when a particular generator output is changed by a small amount. It is not possible to write the 

analytical expression for this quantity in an explicit form, and so the computation of the eigenvalue 

sensitivity involves a perturbation based approach. That is, the generator power is changed by a 

small amount and the resulting change in eigenvalue is computed by calculating the new system 

state matrix at the new operating point.  

Since the contingency screening algorithm relies on eigenvalue sensitivities, and generator outage is 

part of the list of contingencies to be analyzed, the idea is to perform the sensitivity computation only 

once at the base case, and exploit it for both the contingency screening and damping control 

algorithms. 
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6.2 Eigenvalue sensitivity to generator power output change 

The first goal in arriving at the re-dispatch based damping control algorithm is to determine an 

accurate way to compute eigenvalue sensitivity to generator power change. There are two potential 

approaches to do this: 

1. Approach 1:  For a given generator, perturb its power output by a small amount and let the 

slack generator absorb the resulting change. 

2. Approach 2:  For a given generator, perturb its power output by a small amount and 

distribute the perturbation equally among the rest.   

The approach that yields uniform sensitivity for a given generator, irrespective of which bus is 

considered as a slack bus would be considered as the suitable approach. To evaluate these 2 

approaches, consider the 4-machine 2-area test system. Table 13: Sensitivity of real-part of 

eigenvalue to generator power using approach 1Table 13 summarizes the results for approach 1. In 

this table, each row represents the sensitivity of real part of eigenvalue corresponding to mode 1 for 

a small change in generator 1’s output power as the slack bus is varied from generator 1 to 

generator 4. 

Table 13: Sensitivity of real-part of eigenvalue to generator power using approach 1 

Generator\Slack G1 G2 G3 G4 

G1 0 0.0036 0.0008 0.0042 

G2 -0.0038 0 -0.0028 0.0007 

G3 -0.002 0.002 0 0.0034 

G4 -0.0056 -0.0014 -0.0037 0 

 

Table 14 shows the results for approach 2. In this table, again the same convention of rows and 

columns is used. As mentioned earlier, the difference is in how the perturbation is distributed. In 

approach 2, the perturbation made at one generator is distributed equally among the rest of the 

generators. 

Table 14: Sensitivity of real-part of eigenvalue to generator power using approach 2 

Generator\Slack G1 G2 G3 G4 

G1 0.0037 0.0034 0.003 0.0028 

G2 -0.0013 -0.0014 -0.0018 -0.0018 

G3 0.0011 0.0013 0.0018 0.0017 

G4 -0.0036 -0.0032 -0.0031 -0.0028 

 

By comparing Table 13 and Table 14, it can be observed that in approach 2, the choice of slack bus 

has no impact on the eigenvalue sensitivity calculations. On the other hand, in approach 1, it can be 

seen that the choice of slack does have an impact on eigenvalue sensitivities. Thus, we can conclude 

that approach 2 is the appropriate one. 
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Also, from Table 14 it can be seen that for each column, the addition of sensitivities equals 0. This can 

be explained as follows. Let λ represent the eigenvalue corresponding to the mode of concern and N 

represent the total number of generators. Then, according to approach 2, a change in generation ΔP 

at G1, is compensated equally among the remaining generators.  So, the change in eigenvalue can 

be approximated using Taylor series as 

 
Δ𝜆1 = 

𝜕𝜆
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The eigenvalue sensitivity is then given by 
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Similarly, a change in generation at G2 would result in 
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The corresponding eigenvalue sensitivity for this change is given by 
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Similarly, the eigenvalue sensitivity for the i th generator is given by  

 
Si =  

Δ𝜆𝑖
Δ𝑃

= −
𝜕𝜆

𝜕𝑃1
(
1

𝑁 − 1
) − 

𝜕𝜆

𝜕𝑃2
(
1

𝑁 − 1
) −⋯+

𝜕𝜆

𝜕𝑃𝑖
−⋯ 

𝜕𝜆

𝜕𝑃𝑁
(
1

𝑁 − 1
) 

 

 

Then, adding all the sensitivities for generators 1 to N gives, 

 
∑𝑆𝑖

𝑁

𝑖=1

=  
𝜕𝜆

𝜕𝑃1
(1 −

𝑁 − 1

𝑁 − 1
) + 

𝜕𝜆

𝜕𝑃2
(1 −

𝑁 − 1

𝑁 − 1
) +⋯+ 

𝜕𝜆

𝜕𝑃𝑁
(1 −

𝑁 − 1

𝑁 − 1
) = 0 

 

 

Hence, for a given slack bus choice, the sum of all eigenvalue sensitivities to generator power 

changes equals 0. 
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6.3 Importance of eigenvalue sensitivity 

Next, we demonstrate the value of using an eigenvalue sensitivity based approach for generator re-

dispatch based damping control. We consider the 16-machine system for the demonstration. Each of 

the 16 generators is perturbed by a small amount, and the resulting change in real-part of 

eigenvalue corresponding to the top 3 critical modes is evaluated. Table 15 shows the resulting 

sensitivities. 

Table 15: Sensitivity of real-part of eigenvalue to generator power change 

Generator Mode 1 Mode 2 Mode 3 

G1 -0.00070 0.00018 -0.00047 

G2 0.00964 0.00189 0.00618 

G3 0.01350 0.00247 0.00856 

G4 0.03024 0.00446 0.01128 

G5 0.03882 0.00545 0.01540 

G6 0.02858 0.00457 0.01487 

G7 0.02483 0.00409 0.01331 

G8 0.00129 0.00072 0.00059 

G9 0.00194 0.00097 0.00179 

G10 -0.01799 -0.00289 -0.00909 

G11 -0.01828 -0.00328 -0.01007 

G12 -0.01757 -0.00407 -0.01226 

G13 -0.01778 -0.00405 -0.01278 

G14 -0.02780 -0.00258 -0.00845 

G15 -0.02560 -0.00277 -0.00920 

G16 -0.02296 -0.00510 -0.00964 

 

From Table 15 it can be seen that across all the generators, the sensitivity of real part of the 

eigenvalue for mode 2 is much less than that for modes 1 and 3.  Also, it can be seen that mode 1 

has the highest magnitude of sensitivity to generator power output changes, which indicates that 

controlling that mode needs much less re-dispatch as compared to the other modes. Furthermore, 

the signs of the sensitivities indicate the positive interaction among all the 3 critical modes. In other 

words, by targeting to improve mode 1 via generation re-dispatch, there would not only be an 

improvement in damping of mode 1, but also that of modes 2 and 3 even if they are not explicitly 

considered in the objective function. The eigenvalue sensitivity can be used as a first indicator to 

operators to determine the feasibility of generator re-dispatch based control for improvement of 

modal damping. As was seen in this example with mode 2, the eigenvalue sensitivity may be so low 

that improving the damping of such modes would require unrealistically large amount of generation 

re-dispatch; in which case the operators may be able to conclude that generation re-dispatch would 

not be a feasible solution. In other cases, such as mode 1 in the above example, the operators may 

use this information to further solve an optimization problem to determine re-dispatch commands 

for individual generating units in order to improve modal damping, as will be demonstrated in the 

following sub-section. 
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6.4 Quadratic programming based approach to decide generation re-dispatch  

Next, we consider the objective of improving the damping of just mode 1 in the above 16-machine 

example system using generation re-dispatch. The optimization problem is formulated as a quadratic 

program (QP) follows: 

 

min 𝐽 =  ∑Δ𝑃𝑖
2

𝑁𝑔

𝑖=1

 

 

 

Subject to:  ∑Δ𝑃𝑖 = 0

𝑁𝑔

𝑖=1

 

 

 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜎𝑏𝑎𝑠𝑒  +  ∑Δ𝑃𝑖𝑆𝑖

𝑁𝑔

𝑖=1

    

 

where, Ng is the total number of generators, ΔPi is the amount of re-dispatch for generator i, Si is the 

sensitivity of real-part of the eigenvalue to change in power of ith generator, σbase is the real-part of 

eigenvalue for the base case, σtarget is the targeted real-part of eigenvalue post-dispatch. 

The sensitivities are calculated using approach 2 described above. The base case real-part of 

eigenvalue is -0.0802. The targeted real-part is -0.13 (corresponding to a settling time of 30 seconds). 

Then, the QP results in a total re-dispatch of 1.0087 p.u. (i.e., the total increment within one group of 

generators has to be 1.0087 p.u., and an equal amount of decrement within the other group). This re-

dispatch is then implemented, and the resulting post-re-dispatch eigenvalue real-part is -0.1226. As 

expected, the post-re-dispatch eigenvalue real-part does not exactly match with the targeted value 

of -0.13. This is due to the fact that the relationship between eigenvalue movement and re-dispatch 

of generators is expected to be non-linear one (but one for which a closed form expression is not 

available), but in the QP, we make the assumption of a linear relationship between generation re-

dispatch and change in eigenvalue real-part given by the eigenvalue sensitivity. In spite of this 

assumption, it is encouraging to see that the post-dispatch eigenvalue real-part is quite close to the 

targeted value. We also examine the impact of this re-dispatch on mode 2, which was not explicitly 

considered in the objective function. However, our expectation is that because the eigenvalue 

sensitivities for modes 1 and 2 have the same signs, the re-dispatch would help improve the 

damping of mode 2 as well. The base case real-part of eigenvalue corresponding to mode 2 is -

0.1242. Post-re-dispatch, this eigenvalue is -0.1342. So, although not a very significant change in 

magnitude, the same re-dispatch is able to move mode 2 as well in a direction that would improve its 

damping. 

Next, we consider targeting improving the damping of just mode 2. Based on the eigenvalue 

sensitivities given in table 3, we expect that the improvement of damping of mode 2 would need 

significantly higher amounts of re-dispatch as compared to what is needed for mode 1. The base 

case real-part of eigenvalue corresponding to mode 2 is -0.1242. The targeted real-part is -0.1742, so 

that the change in real-part targeted (-0.05) matches with the previous case of mode 1. The QP 
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results in a total re-dispatch of 6.49 p.u. The resulting real-part of eigenvalue after the re-dispatch is -

0.1427. This re-dispatch shows that for mode 2 to meet a targeted eigenvalue movement of the 

same magnitude as mode 1, it would require more than 6 times the re-dispatch. This finding 

validates our hypothesis that is based on purely base case eigenvalue sensitivities.  

6.5 Damping control with constraints on amount of re-dispatch  

Next, we consider the objective of improving the damping of just mode 1, with the addition of 

constraints on the amount of re-dispatch that each generator can provide. So, the QP formulation 

now has the following inequality constraints: 

 𝑃𝑚𝑖𝑛
𝑖  ≤ Δ𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥

𝑖   

Note that these are constraints on the change in power of generators, and not the actual power 

outputs itself. For the same test case as above, we consider the following constraints:  for i =

14 to 16, Pmin
i = −0.15 p.u. For the remaining generators, Pmin

i = −1 p.u. The upper limit Pmax
i  for all 

the generators is set at 1 p.u. The resulting change in dispatch after solving the modified QP is 1.1393 

p.u. The real-part of eigenvalue post-re-dispatch is -0.1225. As expected, the addition of constraints 

on generator re-dispatches results in higher amount of re-dispatch (1.1393 p.u. with constraints vs. 

1.0087 p.u. without constraints) to reach the same amount of modal damping. 

6.6 Damping control with constraints on frequency of eigenvalue and amount of 

re-dispatch  

Next, we consider the impact of re-dispatch on imaginary part of eigenvalue. We consider the same 

16-machine system for the demonstration. Each of the 16 generators is perturbed by a small 

amount, and the resulting change in imaginary-part of eigenvalue corresponding to the top 3 critical 

modes is evaluated. Table 16 shows the resulting sensitivities. 

Table 16: Sensitivity of imaginary-part of eigenvalue to generator power change 

Generator Mode 1 Mode 2 Mode 3 

G1 0.00591 0.00512 0.00424 

G2 -0.00217 0.00417 -0.01214 

G3 -0.00505 0.00377 -0.01753 

G4 -0.02360 0.00145 -0.04184 

G5 -0.02635 0.00104 -0.05031 

G6 -0.01989 0.00194 -0.03996 

G7 -0.02042 0.00207 -0.03657 

G8 0.00193 0.00428 -0.00140 

G9 -0.00563 0.00402 -0.00563 

G10 0.02413 0.00746 0.03171 

G11 0.02482 0.00714 0.03599 

G12 0.02544 0.00776 0.04753 

G13 0.02546 0.00744 0.04579 

G14 -0.00169 -0.02752 0.01839 
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G15 -0.00223 -0.01316 0.01428 

G16 -0.00073 -0.01711 0.00737 

 

We consider the objective of improving the damping of just mode 1, with the addition of constraints 

on the change in imaginary part of eigenvalue, along with the previous constraints on the amount of 

re-dispatch that each generator can provide. So, the QP formulation now has the following inequality 

constraints:  

 
ωmin
i  ≤ ∑ΔPiTi

Ng

i=1

≤ ωmax
i  

 

The limits are chosen as:  ωmin
i = 0,ωmax

i = 0.002.  The resulting change in dispatch after solving the 

modified QP is 1.4125 p.u. The real-part of eigenvalue post-re-dispatch is -0.1236. As expected, the 

addition of constraints on imaginary part of eigenvalue in addition to constraints on generator re-

dispatches results in higher amount of re-dispatch (1.4125 p.u. with additional constraints vs. 1.0087 

p.u. without constraints) to reach the same amount of modal damping. The imaginary part of 

eigenvalue post-re-dispatch is 2.2824 (base case imaginary part is 2.2858). The post-re-dispatch 

imaginary part of eigenvalue is 0.0034 smaller than the base case value, although in the QP the 

lower limit on change in imaginary part was set at 0. This difference is due to that fact that the 

relationship between eigenvalue sensitivity and generator re-dispatch is a non-linear one, while in 

the QP formulation we are making a linearity assumption.  However, for the previous case where 

there was no constrain on imaginary part of eigenvalue, the post-re-dispatch eigenvalue has an 

imaginary part of 2.3135, which is higher than the base case by 0.028. So, comparing the change in 

imaginary part for the 2 cases (0.0034 vs. 0.028), it is clear that the re-dispatch is able to keep a 

tighter control on the imaginary part. The trade-off, however, is that the amount of re-dispatch is 

higher than the previous case (1.4125 p.u. vs. 1.1393 p.u.).  

Figure 31 below shows the percentage re-dispatch (change in generation) for each of the 16 

generators for this problem with constraints on imaginary part as well as power output. As can be 

seen from the figure, generators 1 to 13 except 9 are required to reduce their power output, and 

generators 9 and 14 to 16 are required to increase their power output.  
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Figure 31: Individual generator and load power changes. 

 

6.7 Proposed method of re-dispatch for ensuring post-contingency stability  

In the previous sub-section, the re-dispatch command for generators was derived by posing it as an 

optimization problem. Constraints on the change in power dispatch and deviation of post-dispatch 

frequency were imposed and the optimization was solved using QP. It can be recalled that a major 

motivation behind model-based approach is doing ‘what if’ analysis – that cannot be done using 

measurement based approaches. To that end, the key question would be: how do we determine the 

generation re-dispatch in the base case scenario that could ensure stability under the post 

contingency conditions. The underlying challenges include: 

 Considering changes in eigenvalue sensitivities following outages  

 Ensuring stability across all (N-1) contingencies 

 Non-linear relationship between the eigenvalue movement and re-dispatch – especially for 

post contingency scenario 

 

Figure 32 shows the proposed sequence of operations in the Fast Contingency Screening and Control 

Action Engine (FSCAE). The fast contingency screening and ranking will be done on the base case 

(steps a and b) following the approach mentioned in the previous section. Based on the outcome of 

the screening and ranking (step b) and pre-determined threshold for the settling time, we will obtain 
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a list of ‘critical’ contingencies. If there exist no ‘critical’ contingencies, no control action will be 

considered. Otherwise, control action engine (CAE) will come into effect.  

The CAE based on the eigenvalue sensitivity with respect to generator power output for the Base 

Case was described in the previous sub-sections. However, the eigenvalue sensitivity under post-

contingency condition is likely to change. To address this challenge, we propose the following: 

Step I: Compute the sensitivities 
Δσ

ΔP
 and 

Δω

ΔP
 for each generator under post-worst case contingency 

condition. The sensitivity is computed only for the mode of interest which is causing instability.  

Step II: Under current operating condition (base case), use the above computed sensitivity for 

optimization. The targeted real part of the eigenvalue will be determined in two steps. First, the 

targeted change in the real part is determined by the equation 

 Δσtarget = σpost−target − σpost  

Here, σpost is the real-part of the eigenvalue under the worst-case post contingency condition (which 

is known based on the post contingency model) and σpost−target is the targeted real-part of the 

eigenvalue under the same condition (which can be set by the operator). Next, the target of the base 

case eigenvalue real-part under post-dispatch condition is determined using the value of Δσtarget  as 

σtarget = Δσtarget + σbase  . 

Step III: Evaluate the dispatch command by the quadratic optimization mentioned before, to achieve 

𝛔𝐭𝐚𝐫𝐠𝐞𝐭 with constraints on real power and frequency. This leads to a new base case with a target 

settling time as shown in step (e) of Figure 32. 

Step IV: To validate its effectiveness, time-domain simulations will be run on the most ‘critical’ 

contingencies using the new operating condition following the re-dispatch (step f).  Using Prony 

analysis the settling time will be calculated. If it is acceptable, the re-dispatch command will be 

initiated. Otherwise, the CAE will have to be run again. 
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Figure 32: Proposed sequence of operations in the Fast Contingency Screening and Control Action Engine (FSCAE). 

 

6.8 Results  

In the 16-machine 68 bus test system, the line outage scenarios lead to instability of mode 1. From 

contingency screening results the worst case contingency is line outage #46 (bus 37 – bus 68) whose 

post contingency real part of the eigenvalue is 0.234, which is in the far right half of the s-plane. It 

should be noted that instability of such severity under (N-1) contingency condition is not practical for 

a realistic power system.  
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To circumvent this impractical contingency, the next worst contingency, i.e. #23 (bus 22 – bus 21) 

where the real part of the mode 1 eigenvalue is 0.123 is chosen. Let us consider that we would like to 

attain a 30s settling time for this mode under the post-contingency scenario.  This leads to 

σpost−target = −0.13. Therefore, Δσtarget = − 0.13 −  0.123 =  −0.253 and σtarget =-0.253 – 0.08 = 

-0.333. 

Table 17 shows the eigenvalue sensitivities computed for the outage of the line #23. These 

sensitivities were used under the base case and the QP was used to derive the power dispatch to 

achieve σtarget = -0.333 with constraints imposed on change in dispatch and modal frequency. The 

limits on the change in dispatch were set to be 20% of their nominal values. The lower and upper 

limits on modal frequency were the same as the previous case study. 

The real part of the eigenvalue under the pre and post-dispatch (Case I) condition are shown in Table 

18. The results from Case I shows that the base case σ is moved to -0.21 instead of -0.33. For outage 

#23, it moves to -0.097 as opposed to the target of -0.13. It can also be seen that stability is achieved 

for top 10 critical contingencies.  

As a test, the line impedance of line #23 was increased to a very high value to represent the outage. 

As an example (Case II), the eigenvalue sensitivities were computed with the corresponding line 

impedance increased by 800% as shown in Table 17. When these sensitivities were used for re-

dispatch, the real part of the eigenvalue under post-dispatch condition when line #23 is out becomes 

-0.135 as compared to the target of -0.13 (see Table 18). It can also be observed that post-

contingency conditions are stable.  

Table 17: Eigenvalue sensitivities computed for contingency #23 

Generator Line out (#23) Increased impedance by 800% 
𝚫𝛔

𝚫𝐏
 

𝚫𝛚

𝚫𝐏
 

𝚫𝛔

𝚫𝐏
 

𝚫𝛚

𝚫𝐏
 

G1 -0.0097 0.0109 -0.0037 0.0074 

G2 -0.0016 0.0039 0.0056 0.0007 

G3 0.0025 0.0008 0.0096 -0.002 

G4 0.0283 -0.0191 0.0316 -0.0196 

G5 0.0341 -0.0196 0.0388 -0.0208 

G6 0.0927 -0.0505 0.052 -0.0275 

G7 0.0845 -0.0553 0.046 -0.0301 

G8 -0.0075 0.008 -0.0015 0.0043 

G9 -0.0067 0.0018 -0.0006 -0.0026 

G10 -0.0253 0.025 -0.0209 0.0225 

G11 -0.0259 0.0255 -0.0214 0.023 

G12 -0.0261 0.0268 -0.0213 0.0239 

G13 -0.0266 0.0274 -0.0217 0.0242 

G14 -0.0395 0.0054 -0.0331 -0.0009 

G15 -0.0377 0.0042 -0.031 -0.0017 

G16 -0.0351 0.0044 -0.0281 -0.0008 
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Table 18: Real part of mode 1 Eigen value under pre-dispatch and post-dispatch conditions for base case and top 10 
contingencies 

 Pre-dispatch Post-dispatch 
 (Case I) 

Post-dispatch 
 (Case II) 

Outage # σ σ σ 

Outage #46 (bus 37 – bus 68) 0.234 -0.0339 -0.1106 

Outage #23 (bus 22 – bus 21) 0.123 -0.0966 -0.1348 

Outage #22 (bus 21  - bus 68) 0.025 -0.1537 -0.1892 

Outage #80 (bus  61- bus 60) 0.008 -0.1499 -0.1947 

Outage #81 (bus 61 – bus 60) 0.008 -0.1499 -0.1947 

Outage #29 (bus 27 – bus 37) -0.005 -0.1666 -0.2007 

Outage #63 (bus 47 – bus 53) -0.031 -0.1348 -0.1577 

Base Case -0.08 -0.2108 -0.2366 

 

 

Figure 33 and Figure 34 graphically shows the result shown in Table 18. It is apparent that extent 

of the movement of σ from pre-dispatch to post-dispatch condition shows consistency across 

different contingencies.  

 

 

Figure 33: Case I:  Real part of Eigen value (Y-axis) for Pre and post-dispatch conditions. X-axis plots top 10 
contingencies and the base case. 
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Figure 34: Case II:  Real part of Eigen value (Y-axis) for Pre and post-dispatch conditions. X-axis plots top 10 
contingencies and the base case. 

 

6.9 Eigenvalue sensitivity with loads  

So far, we considered the objective of improving damping of oscillatory modes using generation re-

dispatch. Next, we consider the possibility of load participation in this objective. That is, if both 

generation and load are allowed to change, how would the algorithm be designed to take advantage 

of this added flexibility. The approach is very similar to the previous one. The key addition is in the 

way eigenvalue sensitivity to load change is calculated. 

There are a couple of differences when considering load flexibility vs. generation change. When 

considering load as an actuator, one constraint is that loads can be changed in only one direction. 

That is, it is possible to only reduce the load, and not increase it, unlike the case with generation re-

dispatch. Secondly, there are many more load points in the system compared to the generators. 

Typically, if a system has tens of generators, there would be several hundreds to thousands of 

aggregate loads. So, it would be infeasible to compute the eigenvalue sensitivity for each of the 

loads.  

The approach proposed here allows one to determine eigenvalue sensitivity for loads in a realistic 

manner. The steps of the eigenvalue sensitivity computation with respect to loads are as follows: 

Step I: Compute the generating areas using previously computed eigenvalue sensitivity information 

for generators – group 1 corresponds to positive sensitivities, and group 2 to negative 

Step II: Decrease aggregated loads L1 in group 1 and distribute the decrement among all generators 

to compute SL =
Δλ

ΔPL
 

Step III: Repeat Step II to compute eigenvalue sensitivity for group 2 loads L2 
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Table 19 below shows the sensitivity of real part of eigenvalue for load change for the 16 machine 

system using the approach described above. 

Table 19: Sensitivity of real-part of eigenvalue to load change 

Load group Mode 1 Mode 2 Mode 3 

L1 -0.00469 -0.00064 -0.00382 

L2 0.01939 0.00337 0.00942 

 

Table 20 below shows the sensitivity of imaginary part of eigenvalue for load change. 

Table 20: Sensitivity of imaginary-part of eigenvalue to load change 

Load group Mode 1 Mode 2 Mode 3 

L1 -0.00540 -0.00497 -0.00161 

L2 -0.01541 0.00060 -0.02639 

 

From Table 19 and Table 20 it can be seen that a decrease in group 2 loads increases damping 

(moves eigenvalue to left) of all the critical modes. So, this aids generation reduction for generators 

with positive sensitivity. This information can be incorporated in the damping control algorithm as 

follows: 

The QP problem can be modified to 

 

min 𝐽 =  ∑Δ𝑃𝑖
2

𝑁𝑔

𝑖=1

+∑Δ𝑃𝐿𝑔𝑟𝑝
2

2

𝑖=1

 

 

 

Subject to:  ∑Δ𝑃𝑖 +∑Δ𝑃𝐿𝑔𝑟𝑝

2

𝑖=1

= 0

𝑁𝑔

𝑖=1

 

 

 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜎𝑏𝑎𝑠𝑒  +  ∑Δ𝑃𝑖𝑆𝑖

𝑁𝑔

𝑖=1

+∑Δ𝑃𝐿𝑔𝑟𝑝 𝑆𝐿𝑔𝑟𝑝

2

𝑖=1

    

 

 𝑃𝑚𝑖𝑛
𝑖  ≤ Δ𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥

𝑖   

 𝑃𝑚𝑖𝑛
𝐿  ≤ Δ𝑃𝐿𝑔𝑟𝑝 ≤ 0  

The modified QP was tested on the 16 machine test system. The resulting total reduction in 

generation is found to be 0.9569pu (this is aided by a total load reduction of 0.15 pu). The total 

increase in generation is 1.1069 pu (compared to the previous case which was 1.1393 pu). The 

resulting post-dispatch eigenvalue real-part is -0.1289 (compared to the previous case which was -

0.1225). Therefore, it can be seen that including loads in the problem improves post-dispatch 
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eigenvalue while reducing the total generation re-dispatch compared to the case when considering 

just generation re-dispatch. Figure 35 below shows the percentage re-dispatch (change in power) for 

each of the 16 generators for this problem with constraints on imaginary part as well as power 

output as well as for the group of loads. The bars labeled 17 and 18 represent the load changes 

(positive and negative respectively).  

 

 

Figure 35: Individual generator and load power changes considering post-worst contingency. 

 

6.10 Grid operational benefit from fast screening and control 

The fast contingency screening and control action engine (FSCAE) will provide significant benefit to 

the system operation by improving the grid resiliency to fast time-scale phenomena including: 

 Improved utilization of existing transmission assets by reduction of stability margin.  

 Increased turbine life by reducing frequency oscillation in the systems 

 Avoid false tripping of backup relays during power swings by maintaining more than 5% 

damping ration. 

 Reduction of the dynamic rating of expensive FACTS devices used for supplementary 

damping control action. 

 Improved situational awareness with real-time dynamic simulation capability. 
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Appendix A - Model data and system 
The dynamic models of two test systems (4 machine 11 bus system and 16 machine 68 bus system) 

that are widely used in stability studies are developed in PSLF environment. These test systems will 

be used in the project to test the fundamental concepts for contingency screening and control action 

for small signal stability.  

A.1 A 4 Machine 11 Bus Test System 

Figure 36 shows a 4 machine 11 bus test system that is used to study small signal oscillation 

problem [41]. This system consists of two similar areas connected by weak tie-lines. Each area 

consists of two coupled units each having a rating of 900 MVA at 20 kV. A step-up transformer with 

impedance of 15% on 900 MVA and 20/230 kV base, and an off-nominal tap ratio of 1.0 connects 

each generator to the transmission system. The transmission system nominal voltage is 230 kV. The 

system is operating with area 1 (consisting of buses 1, 2, 5, 6 and 7) exporting 400 MW to area 2 

(consisting of buses 3, 4, 9, 10 and 11). The active component of the loads has constant current and 

reactive component has constant impedance characteristics. Two shunt capacitors with ratings of 

200 MVAR and 350 MVAR are connected at buses 7 and 9 respectively. All four generators are 

represented by a 6th order sub-transient model and are equipped with IEEE DC1A type exciters. 

 
 

Figure 36: 4 machine 11 bus test system. 

A.2 A 16 Machine 68 Bus Test System 

Figure 37 shows a 16-machine, 68 bus test system. Further details can also be found in [42]. This is a 

reduced order equivalent of the interconnected New England test system (NETS) and New York 

power system (NYPS) which is taken from [43]. The buses are renumbered as in [42] keeping the 

topology and the data (static and dynamic) the same as in [43].  There are five geographical regions 

out of which NETS and NYPS are represented by a group of generators whereas, import from each of 

the three other neighboring areas, Area #3, Area #4 and Area #5 are approximated by equivalent 

generator models. 

Generators G1 to G9 are the equivalent representation of the NETS generation whilst, G10 to G13 

represent the generation of the NYPS. Generators G14 to G16 are the dynamic equivalents of the 

three neighboring areas connected to the NYPS. There are three major transmission corridors 
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between NETS and NYPS connecting buses #60-#61, #53-#54 and #27-#53. All these corridors have 

double-circuit tie-lines.  

All generators are represented by their 6th order sub-transient model. The generators G1 to G8 are 

equipped with slow excitation systems (IEEE-DC1A) whilst G9 is equipped with a fast acting static 

excitation system (IEEE ST1A) and a speed-input power system stabilizer (PSS) to ensure adequate 

damping for its local models. The rest of the generators are under manual excitation control. 

 

Figure 37: 16 machine 68 bus dynamic equivalent of New York – New England power system. 
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Appendix B - Benchmark model 
B.1 Introduction 

The 4-machine 11-bus system (shown in Figure 36 and the 16-machine 68-bus system (shown in 

Figure 37) have been accepted as standard test cases that are widely used by power systems 

engineers in the industry as well as the academia to study the small signal stability phenomenon. The 

results of these two test cases have been published in numerous peer-reviewed publications. These 

test cases are available with the project team as a MATLAB/SIMULINK model. The fact that MATLAB 

can provide us a linearized model of the test network gives us an analytic foundation for testing our 

hypotheses towards developing techniques for contingency screening, ranking and control action 

engine. The results of a linear analysis of the MATLAB/SIMULINK model will be matched with the 

published results, thus giving us a certain degree of confidence in the accuracy of the model. Since 

the high performance computing (HPC) component of the project will be based on time domain 

simulation in PSLF, it is necessary that we have the test case available in PSLF also. In order to ensure 

the accuracy of the PSLF model and its time domain simulation, the team will benchmark the results 

of the PSLF model against the benchmarked MATLAB model, for both systems.  

B.2 Objective 

The main objective is to benchmark the two systems in PSLF against the same model created in 

MATLAB/SIMULINK by comparing their load flow and dynamic results. While it is ideal to have the two 

models to exactly replicate each other, the innate characteristics of the software like numerical 

integration techniques, mathematical model definition of the network components, etc. would 

introduce some differences in the model behavior. It is important to quantify these differences 

irrespective of how subtle they are, in order to understand and estimate the differences between the 

final outcomes. Although the 4-machine 11-bus system and 16-machine 68-bus system is available 

as a standardized test case for studying small signal stability, there might be subtle differences in the 

model performance depending on the software platform on which the model was created. While 

these differences are inconsequential in studies that use the same software for analysis, they must 

be quantified in our project since we seek to leverage a combination of multiple methods and 

computational software to achieve our project objectives.  

MATLAB is used widely by scientists and engineers across several disciplines that require 

mathematical modeling. Simulink is a block diagram environment for modeling, simulating and 

analyzing dynamic systems. The 4-machine 11-bus system and 16-machine 68-bus system is 

modeled by the first principles using the differential-algebraic equations that govern the dynamic 

response of the power system components. The small signal behavior of the model has been 

validated against published results.  

GE Concorda PSLF is a commercial power systems analysis tool that is designed to provide 

comprehensive and accurate load flow, dynamic simulation and short circuit analysis for large real-

life electric networks. PSLF is used widely by utilities for planning and operation. The use of PSLF for 

small signal analysis allows the team to use larger networks for testing and validating the developed 

techniques which would otherwise have not been possible with MATLAB/SIMULINK alone. 
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B.3 Approach 

In order to compare the network modeled in two different simulation environments, it is necessary to 

characterize the differences in model behavior during dynamic and linear analysis. The differences 

should be quantified and the possible sources of differences be identified and ensure the closest 

possible matching between the models in the two simulation environments.  

B.4 Benchmarking results for 4-machnine 11-bus system 

Dynamic simulation 

A dynamic simulation of the network provides a time domain response of the various power system 

components. The dynamics of the network is modeled as a set of differential-algebraic equations 

that represent all the time-dependent components of the network like generators and exciters. 

Without any disturbance, the dynamics of the network should exhibit a flat profile, indicating steady 

initial conditions. Once this is achieved, the dynamic response of the two models can be compared 

by initiating a disturbance. The dynamic responses of the two models are compared by initiating a 

disturbance. Two types of disturbances, namely generator output step change and bus fault were 

used for the benchmarking process of the 4-machine 11-bus system.  

Generator output step change is the smaller of the two disturbances. In this case, a pulse was 

created by increasing the output of generator 1 by 0.01 p.u. and decreasing the output of generator 

3 by 0.01 p.u. Bus fault is a large disturbance. A three phase symmetrical fault (self-clearing) is placed 

at bus 8 for a short period of time and then cleared. 

The rotor angles of generators 1, and 2 with generator 3 as a reference are plotted over the duration 

of simulation for each of the two models and are presented in Figure 38-Figure 43. The red plots 

represent the PSLF output, the blue lines are from the MATLAB simulation. 

(1) Constant Current Load Model (Small Disturbance) 

 

Figure 38: Rotor angle plot for a small disturbance with constant current load model. 

 

 

 

0 5 10 15 20
23.2

23.4

23.6

time(s)

G
1

0 5 10 15 20

15.2

15.4

15.6

time(s)

G
2

0 5 10 15 20

-13.65

-13.6

-13.55

time(s)

G
4

0 5 10 15 20
-10

-5

0

5

10

time(s)

D
if
fe

re
n
c
e



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

95 
 

(2) Constant Current Load Model (Large Disturbance) 

 

Figure 39: Rotor angle plot for a large disturbance with constant current load model. 

 

(3) Default Load Model (Small Disturbance) 

 

Figure 40: Rotor angle plot for a small disturbance with default load model. 

 

(4) Default Load Model (Large Disturbance) 

 

Figure 41: Rotor angle plot for a large disturbance with default load model. 
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(5) Constant Impedance Load Model (Small Disturbance) 

 

Figure 42: Rotor angle plot for a small disturbance with constant impedance load model. 

 

(6) Constant Impedance Load Model (Large Disturbance) 

 

Figure 43: Rotor angle plot for a small disturbance with constant impedance load model. 

The comparison of the time-domain response of the MATLAB/SIMULINK model and PSLF model 

shows that although the frequency of oscillation is same after the disturbance, the damping are 

different. The mismatch is due to the differences in representation of the dynamic components like 

generators and exciters in various software tools.  The generator and exciter model in the 

MATLAB/SIMULINK is based on the model described in [41] (which forms the basis of this test system). 

While the commercial tools like PSLF requires that the model be in a standard modeling format 

accepted by the industry and standard associations. For example “genrou” for solid rotor generator 

represented by equal mutual inductance rotor modeling, “gentpf” for generator represented by 

uniform inductance ratios rotor modeling to match WSCC type F model with shaft speed effects 

neglected, “gensal” for salient pole generator represented by equal mutual inductance rotor 

modeling and so forth. 

Small signal response 

The 4-machine system has only one critically damped inter-area mode. This mode (shown in Table 

21) is given in [41]. Default load model (50% constant current, 50% constant impedance) is used. 
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Table 21: Critically damped inter-area mode of the 4-machine system from [41]. 

Case Critical Eigenvalues Frequency 
 (Hz) 

Damping Ratio 
(%) 

Settling Time (s) 

Real Imaginary 

Manual 
Excitation 

-0.111 3.43 0.545 3.2 36 

DC Excitation -0.018 3.27 0.52 0.5 222 

 

The linearization results from MATLAB/SIMULINK are shown in Table 22. The results shown in Table 21 

and Table 22 are close enough, which means the model built in MATLAB/SIMULINK is an accurate 

representation of the 4 machine system. 

Table 22: Linearized results of MATLAB/SIMULINK model. 

Case Critical Eigenvalues Frequency 
 (Hz) 

Damping Ratio 
(%) 

Settling Time (s) 

Real Imaginary 

Manual 
Excitation 

-0.115 3.42 0.544 3.4 34.7 

DC Excitation -0.017 3.27 0.521 0.5 236.2 

 

Finally, the results of prony analysis for the MATLAB/SIMULINK model and the PSLF model are 

compared and shown in Table 23 and  

Table 24. Here are some observations that can be obtained from the comparison: 

1. The frequency of the MATLAB/SIMULINK model and PSLF model are very close; 

2. The damping ratio in PSLF is larger than that in MATLAB/SIMULINK for all cases. Since the 

generator model, static exciter models and load models used in MATLAB/SIMULINK and PSLF are 

slightly different; these can be the probable factors causing discrepancies in the small signal 

responses. 

Table 23: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Manual Excitation). 

Manual Excitation Case MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small  
Disturbance 
(pulse) 

Const. I 0.5435 3.85 30.43 0.5400 4.71 25.01 

Const. Z 0.5395 2.05 57.65 0.5453 4.13 28.30 

Default 0.5460 3.72 31.38 0.5434 4.44 26.40 

Large 
Disturbance 
(bus fault) 

Const. I 0.5438 3.39 34.55 0.5425 4.48 26.20 

Const. Z 0.5414 2.56 45.90 0.5416 3.90 30.17 

Default 0.5454 3.37 34.66 0.5448 4.33 26.99 
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Table 24: Comparison of prony results for MATLAB/SIMULINK and PSLF models (DC Excitation). 

DC Excitation Case MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small  
Disturbance 
(pulse) 

Const. I 0.5165 0.47 261.88 0.5129 2.41 51.42 

Const. Z 0.5216 -0.42 293.66 0.5183 1.3 94.36 

Default 0.5202 0.52 236.99 0.5159 2.24 55.02 

Large 
Disturbance 
(bus fault) 

Const. I 0.5162 0.46 266.30 0.5111 1.81 68.85 

Const. Z 0.5221 -0.31 387.53 0.5176 1.59 77.45 

Default 0.5152 0.44 279.07 0.5155 1.87 65.94 

 

B.5 Benchmarking results for 16-machnine 68-bus system 

Dynamic simulation 

Similar benchmarking process was done for the 16-machine 68-bus system. The system is modeled 

in MATLAB/SIMULINK and PSLF. The differences in model behavior during dynamic simulation are 

compared. Three different types of load modeling (1. 50% constant impedance, 50% constant 

current, 2. Constant impedance, 3. Constant Current) and two different types of disturbances (1. Small 

disturbance by perturbing generator mechanical power input, 2. Large disturbance by applying fault 

at bus 53 and clearing the fault by opening line 53-54), yielding a total of six cases on which the 

models were compared.  

The rotor angles of generators 14, 15 and 16 with generator 13 as a reference are plotted over the 

duration of simulation for each of the two models and are presented in Figure 44-Figure 48. The red 

plots represent the PSLF output, the blue lines are from the MATLAB simulation and the green lines 

represent the difference between the two simulation results at each sample of the simulation. 
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(1) Constant Current Load Model (Small Disturbance) 

 

Figure 44: Rotor angle plot for a small disturbance with constant current load model. 

 

(2) Constant Current Load Model (Large Disturbance) 

 

Figure 45: Rotor angle plot for a large disturbance with constant current load model. 
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(3) Default Load Model (Small Disturbance) 

 

Figure 46: Rotor angle plot for a small disturbance with default load model. 

 

(4) Default Load Model (Large Disturbance) 

 

Figure 47: Rotor angle plot for a large disturbance with default load model. 
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(5) Constant Impedance Load Model (Small Disturbance) 

 

Figure 48: Rotor angle plot for a small disturbance with constant impedance load model. 

 

(6) Constant Impedance Load Model (Large Disturbance) 

 

Figure 49: Rotor angle plot for a small disturbance with constant impedance load model. 

 



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

102 
 

Small signal response 

In order to accomplish the benchmarking, it is necessary that the team perform the linearization of 

the Simulink model. Since the Simulink model was built using the fundamental equations, the results 

from this exercise present the “true modes” of the network. Table 25 and Table 26 list the four 

critically damped inter-area modes in the system for base case and for line 53-54 outage case.  

There are four critically damped inter-area modes in the 16-machine test system, as shown Table 25 

and Table 26.  

Table 25: Linearized results of MATLAB/SIMULINK model for base case. 

Load Model Modes Frequency(Hz) Damping (%) Settling Time (s) 

Constant 
 I 

Mode 1 0.366 5.9 29.5 

Mode 2 0.505 4.4 28.7 

Mode 3 0.587 5.7 18.9 

Mode 4 0.789 5.0 16.0 

Constant Z Mode 1 0.367 6.3 27.6 

Mode 2 0.492 4.4 29.5 

Mode 3 0.582 5.2 21.1 

Mode 4 0.788 5.0 16.2 

Default Mode 1 0.368 5.9 29.2 

Mode 2 0.498 4.4 28.2 

Mode 3 0.588 5.5 19.5 

Mode 4 0.789 5.0 16.1 

 

Table 26: Linearized results of MATLAB/SIMULINK model for line 53-54 out. 

Load Model Modes Frequency(Hz) Damping (%) Settling Time (s) 

Constant 
 I 

Mode 1 0.357 5.3 33.8 

Mode 2 0.503 4.3 29.1 

Mode 3 0.558 5.1 22.2 

Mode 4 0.789 5.0 16.0 

Constant Z Mode 1 0.351 5.3 34.0 

Mode 2 0.491 4.3 30.4 

Mode 3 0.556 4.5 25.5 

Mode 4 0.788 5.0 16.2 

Default Mode 1 0.355 5.4 33.2 

Mode 2 0.497 4.3 29.5 

Mode 3 0.560 5.0 22.9 

Mode 4 0.788 5.0 16.1 

 

The small signal properties of the MATLAB/SIMULINK and PSLF response for different modes using 

different signals had been analyzed. The results of the prony analysis listed in Tables 3, 4, 5 and 6. 
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Table 27: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 1). 

Mode 1 
 

MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small Const. I 0.367 5.8 30.1 0.352 7.1 25.6 

Const. Z 0.367 6.2 27.9 0.348 6.5 28.2 

Default 0.368 5.9 29. 4 0.352 6.9 26.1 

Large Const. I 0.356 5.1 35.3 0.331 5.7 34.1 

Const. Z 0.351 5.2 34.7 0.333 6.0 31.7 

Default 0.356 5.3 34.1 0.332 5.4 35.6 
 

 

 

Table 28: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 2). 

Mode 2  
 

MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency  
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small Const. I 0.506 4.7 27.1 0.485 4.6 28.2 

Const. Z 0.497 4.9 26.1 0.463 5.3 25.9 

Default 0.498 5.1 25.2 0.501 5.1 25.2 

Large Const. I 0.504 5.3 23.9 0.501 5.6 22.6 

Const. Z 0.503 5.5 23.2 0.515 4.6 26.4 

Default 0.499 5.2 24.4 0.499 6.2 20.6 

 

 

 

Table 29: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 3). 

Mode 3 
 

MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small Const. I 0.584 6.0 18.2 0.592 6.2 20.6 

Const. Z 0.579 5.4 20.4 0.579 5.8 19.2 

Default 0.586 5.7 19.1 0.585 7.0 15.5 

Large Const. I 0.558 4.6 25.1 0.556 5.9 19.3 

Const. Z 0.555 4.2 27.1 0.558 6.1 18.7 

Default 0.560 4.8 24.0 0.558 5.9 19.2 
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Table 30: Comparison of prony results for MATLAB/SIMULINK and PSLF models (Mode 4). 

Mode 4 
 

MATLAB/SIMULINK PSLF 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Frequency 
(Hz) 

Damping 
(%) 

Settling 
Time (s) 

Small Const. I 0.781 3.9 20.8 0.821 6.1 33.9 

Const. Z 0.778 4.2 19.6 0.795 4.7 17.0 

Default 0.771 4.2 19.6 0.780 3.4 23.9 

Large Const. I 0.815 5.9 13.3 0.796 4.7 17.2 

Const. Z 0.786 5.9 13.7 0.810 5.9 13.3 

Default 0.787 5.1 15.8 0.807 8.0 9.9 

 

Comparison of Tables 2 to 5 shows that the model matches closely in terms of their small signal 

behavior. Some difference in the results are expected due to the differences in the dynamic model 

being implement in the two platform to represent the same component. 
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Appendix C – PSLF simulation results on laptop  

 

Figure 50:  Single core PSLF simulation showing original variable response 
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Figure 51:  Single core PSLF simulation showing original variable response 
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Figure 52:  2 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 
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Figure 53:  2 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 
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Figure 54: 4 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 
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Figure 55:  4 threads + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 
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Figure 56:  6 thread + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

112 
 

 

Figure 57:  6 thread + new linear solver version of PSLF showing that the simulation accuracy remains unchanged 

 



Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control 

113 
 

Appendix D – PSLF simulation results on PNNL’s PIC machine 

 

Figure 58:  Single thread and native PSLF solver simulation showing that variable response remains unchanged 
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Figure 59:  2 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 60:  4 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 61:  6 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 62:  12 threads + new linear system solver version of PSLF showing that simulation accuracy remains 
unchanged 
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Figure 63:  18 threads + new linear system solver version of PSLF showing that simulation accuracy remains 
unchanged 
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Figure 64:  Single thread and native PSLF solver simulation showing that variable response remains unchanged 
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Figure 65:  2 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 66:  4 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 67:  6 threads + new linear system solver version of PSLF showing that simulation accuracy remains unchanged 
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Figure 68:  12 threads + new linear system solver version of PSLF showing that simulation accuracy remains 
unchanged 
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Figure 69: 18 threads + new linear system solver version of PSLF showing that simulation accuracy remains 
unchanged 


