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Executive Summary

Active Magnetic Regenerative Refrigeration (AMRR) systems have no direct global warming
potential or ozone depletion potential and hold the potential for providing refrigeration with
efficiencies that are equal to or greater than the vapor compression systems used today. The
work carried out in this project has developed and improved modeling tools that can be used to
optimize and evaluate the magnetocaloric materials and geometric structure of the regenerator
beds required for AMRR Systems.

There has been an explosion in the development of magnetocaloric materials for AMRR systems
over the past few decades. The most attractive materials, based on the magnitude of the
measured magnetocaloric effect, tend to also have large amounts of hysteresis. This project has
provided for the first time a thermodynamically consistent method for evaluating these hysteretic
materials in the context of an AMRR cycle. An additional, practical challenge that has been
identified for AMRR systems is related to the participation of the regenerator wall in the cyclic
process. The impact of housing heat capacity on both passive and active regenerative systems
has been studied and clarified within this project. This report is divided into two parts
corresponding to these two efforts. Part 1 describes the work related to modeling magnetic
hysteresis while Part 2 discusses the modeling of the heat capacity of the housing.

A key outcome of this project is the development of a publically available modeling tool that
allows researchers to identify a truly optimal magnetocaloric refrigerant. Typically, the
refrigeration potential of a magnetocaloric material is judged entirely based on the magnitude of
the magnetocaloric effect and other properties of the material that are deemed unimportant. This
project has shown that a material with a large magnetocaloric effect (as evidenced, for example,
by a large adiabatic temperature change) may not be optimal when it is accompanied by a large
hysteresis. The trade-off between these various material properties and the proper design of an
AMRR system can only be evaluated correctly using the comprehensive, physics-based model
developed by this project.

The development of these modeling tools and optimization studies will provide the knowledge
base that is required to achieve transformational discoveries. The widespread adoption of
AMRR technology will change the character of energy demand in this country and provide
manufacturing jobs as well as employment associated with retrofitting existing HVAC&R
applications.



Comparison of Accomplishments with Goals & Objectives
This section revisits the objectives laid out in the original proposal (as individual tasks) and
compares them with the accomplishments of the project.

Modeling Hysteresis in AMRR Systems
Obijective: A history-dependent entropy term will be derived, verified and eventually integrated
into the AMRR model. The term will include the magnetocaloric material properties that
represent the impact of hysteresis; i.e., the result of sweeping out the entire hysteresis curve
during each cycle which is analogous to the net generation of thermal energy in the bed. This
thermal energy provides an additional refrigeration load and leads to a degradation in the cycle
performance. The behavior of the modified model will be examined as hysteresis is added in
order to understand this effect and verify that the model behavior is logical and consistent.

Accomplishment: The effect of magnetic hysteresis on AMRR systems was successfully
modeled using first principles. Thermodynamically, hysteresis is treated as a source of entropy
generation that is proportional to the area swept by the hysteresis loop experienced locally by the
material during one refrigeration cycle. The 1-D numerical model originally presented by
Engelbrecht (2008) was modified to include magnetic hysteresis. The strategy was published in
the paper Brey et al. (2014) and presented at the 6™ IIR/IIR International Conference on
Magnetic Refrigeration, THERMAG V1.

Modeling Housing Heat Capacity in AMRR Systems
Objective: A passive and active regenerator model will be developed by coupling an additional
equation set that represents the heat capacity of the housing at each axial location. The resulting
model is substantially more complex than the 1-D models typically used to study regenerator
behavior because the participation of the housing requires the radial transport of energy and
therefore the equations will be two-dimensional and transient. The modified model will be
verified against the original model in the limit of zero housing heat capacity.

Accomplishment: A 2-D transient numerical model was developed using the compiled language
FORTRAN. The model was originally generated for a passive (i.e., non-magnetocaloric)
material interacting with its housing. The model was verified and then extended to an active
material interacting with its housing.

Assess the Limits of AMRR Systems with Advanced Materials
Obijective: The model including hysteresis was integrated with measured material properties for
several, first order giant Magnetocaloric materials. The model was used to carry out an
optimization of the AMRR system.

Accomplishment: The AMRR model including hysteresis was utilized to examine the potential
performance of a hysteretic material as compared to a non-hysteretic material. For a specified
refrigeration capacity and load temperature, a bed layered with La(Fe;.xSix)13Hy (a hysteretic
material) showed a higher COP at relatively small volumes when compared to a bed layered with
Gd-Er (a non-hysteretic material) (see Figure 1). Furthermore, for a specified refrigeration
capacity and regenerator volume, a bed layered with La(Fe1.«Six)13Hy was shown to outperform a




bed layered with Gd-Er at large temperature span (see Figure 2). As regenerator volume
increases, hysteretic losses outweigh the capacity gains associated with adding more refrigerant.
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Figure 1: Coefficient of Performance (COP) as a function of regenerator volume for an AMRR spanning the
temperature range 299 K to 310 K and providing 5 kW of refrigeration using a hysteretic vs non-hysteretic material.
The impact of hysteresis is also shown by comparison with the no-hysteresis case.
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Figure 2: Coefficient of Performance (COP) as a function of load temperature with a fixed heat rejection
temperature of 310 K for an AMRR using a hysteretic vs non-hysteretic material.

Examine the Trade-Off between Magnetocaloric Material Properties
Obijective: The model will be used to assess the trade-off between various aspects of the
magnetocaloric effect as characterized by material properties such as adiabatic temperature
change and isothermal entropy change.

Accomplishment: The model was used to generate maps showing the performance of an
optimally designed AMRR system in the parameter space of adiabatic temperature change and




isothermal entropy change by scaling the properties of both first- and second-order materials.
The performance was quantified both in terms of COP (Figure 2) and volume-specific
refrigeration. Magnetocaloric materials developers can use this map in order to assess the relative
merit of their materials which might have both significant hysteresis and large magnetocaloric
effect.
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Figure 3. COP at the optimal aspect ratio as a function of negative isothermal entropy change and adiabatic entropy
change for La(Fe;.,Six)1sHy layered bed with a volume specific refrigeration capacity of 1.25 KW/L.

Examine the Impact of Housing Heat Capacity
Obijective: Assess the importance of housing heat capacity on both a passive and active
regenerator.

Accomplishment: The 2-D transient model was used to carry out a parametric study in terms of
non-dimensional numbers that characterized the impact of the housing heat capacity on the
performance of a passive regenerator under both oscillating and single-blow conditions as well
as an AMRR system. Figure 4 illustrates the normalized COP (to the no-wall case) as a function
of the two dimensionless parameters of interest: the thermal mass ratio () and the thermal wave
propagation function (o) for various values of Reynolds number.




Re = 34

0.95

COP

0.85

st
i
-y

10

0.95

i
Uy

| u

Ty 1y :H‘H:

oy

\‘H:” : HTHW\L\‘HHH

Tyt o oy ety
[T Ty

o “u:”‘ %‘\H:H” | ‘\\H‘“‘

ST S T bty

| Y
‘L‘LH | SRR

[
| | 1 !
1" [ |
i Ce ! [
S TPyt <4

il ‘J‘L\u‘” Py Mgy v

[

[

COP
o
©
t
r

COP

”Hm | H‘:HH
\:W gy 0.85 —

-t --—-

0.85

(I
IS
T iy
oMy
il ‘\H‘HH
<§‘H‘HH

-

V

Figure 4: Surface plots showing normalized COP as a function of (7 and (7 for various values of Re.

Experimental Work
Objective: Use experimental data as available to improve/verify the model.

Accomplishment: The magnetocaloric measurements of an advanced material were obtained
from Astronautics under conditions of increasing and decreasing field and temperature in order
to quantify the magnetic and thermal hysteresis. For example, Figure 5 illustrates the
magnetization of the sample under conditions of increasing temperature for both increasing and
decreasing field. These data were then used within the model for the parametric study.
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Figure 5: Magnetization as a function of applied field for increasing temperatures in JF1-142A. Solid lines indicate
increasing field and dotted lines indicate decreasing field.

Model Dissemination
Obijective: The model will be provided with a Graphical User Interface (GUI) and disseminated
via download from the web.

Accomplishment: The model has been provided with a front-end interface (Figure 6) and can be
downloaded from the UW-SEL web site and has been used by many research groups. The model
is implemented in MATLAB. A baseline set of MATLAB files can be downloaded in order to
simulate the most basic configuration, material, etc. These files are well-documented and so it is
possible for the user to modify various aspects of the model in order to consider specific
materials, regenerator geometries, applications, etc. The model is a complex, 1-D transient
simulation and therefore it requires some user expertise to operate competently. This is true of
any powerful engineering tool and cannot be avoided.




PART 1: MODELING AMRR CYCLES WITH HYSTERESIS

ABSTRACT

Active magnetic regenerative refrigeration (AMRR) has recently become an attractive alternative to
vapor compression refrigeration due to its potential environmental benefits through the use of working
materials with low ozone depletion potential (ODP). Several prototype machines have been constructed
that achieve refrigeration at modest efficiencies with commercially available permanent magnets.
Additionally, numerical modeling and experiment have shown that the efficiency of an AMRR device can
be increased through layering with a tunable magnetic refrigerant. However, current numerical modeling
is limited to second order magnetic transition (SOMT) materials that exhibit modest adiabatic temperature
changes and no magnetic hysteresis. Since the discovery of the giant magnetocalotic effect (GMCE) in
first order magnetic transition (FOMT) materials, there is increasing interest to investigate the
performance of an AMRR cycle that uses these materials. Near the Curie temperature, FOMT materials
yield large adiabatic temperature changes relative to SOMT materials, but also exhibit magnetic

hysteresis in a changing magnetic field.

Currently there is no known numerical model that can accurately capture the effects of magnetic
hysteresis on the performance of an AMRR cycle. This thesis quantifies the effects of magnetic
hysteresis on the performance of AMRR cycles which use FOMT materials. Thermodynamically,
magnetic hysteresis is treated as a source of entropy generation that is proportional to the area swept by a
hysteresis loop for one refrigeration cycle. The one-dimensional numerical model presented by
Engelbrecht (2008), is modified to include entropy generation from magnetic hysteresis in the regenerator

energy equations

AMRR system performance losses due to magnetic hysteresis are shown to be directly proportional

to regenerator volume. Thus at large refrigeration capacity to volume ratios, AMRR cycles operating
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with layered FOMT materials significantly outperform the same cycle with layered SOMT type

refrigerant under the same operating conditions.
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Chapter 1 INTRODUCTION

1.1 The Magnetocaloric Effect

The magnetocaloric effect is a phenomenon by which a magnetic material experiences a decrease in
internal entropy when it is exposed to an externally applied magnetic field. In ferromagnetic materials
near the ordering temperature (the Curie temperature) or paramagnetic solids near absolute zero, the
applied magnetic field causes the magnetic spin domains to align in a manner that decreases the internal
disorder of the material, resulting in a decrease in the magnetic portion of the entropy in the system [1].
Under adiabatic conditions with no entropy generation, the total entropy of the material must remain
constant. Therefore, the decrease in the magnetic entropy must result in an increase in the thermal

entropy and an adiabatic temperature rise (A7 ,) is induced that is characteristic of a particular

magnetocaloric material.
The thermodynamic relation for the internal energy (U) of a closed system can be expressed as:

dU =50 - W (1-1)

where kinetic and potential energy effects have been neglected. The JQ term represents the differential

heat flow info the system and the S/ term represents the differential work done by the system. Because
Eq. (1-1) holds true for all thermodynamic systems in (quasi-) equilibrium, an isothermal magnetization
process can be compared to the isothermal compression of a gas. When a magnetocaloric material is
magnetized isothermally, the magnetic portion of the entropy and therefore the overall entropy is
decreased. Analogously, when a gas is compressed isothermally, the spatial component of the entropy is

reduced, reducing the overall entropy of the system. This analogy is depicted in Figure 1-1.



mechanical work transfer magentic work transfer
to a compressible subtance to a magnetic subtance

Figure 1-1. Analogy between mechanical work and magnetic work to reduce entropy

For expansion or compression of a gas, the differential work done by the system is represented by:
oW =PdV (1-2)
where P is the pressure of the gas and dV is the differential volume of the gas. Similarly, the work term

for magnetic work done by the system can be represented as:

SW =—u,Hd (VM) (1-3)

where 14,H is the applied magnetic field, V' is the volume of the magnetic material, and M is the volume

magnetization of the magnetic material. By comparing Eq. (1-2) and (1-3), it is clear that the applied

field is analogous to the applied pressure and that the magnetization of the material is analogous to the



(inverse of) volume. Substituting Eq. (1-3) into Eq. (1-1) allows the internal energy of a magnetocaloric

material to be expressed as:
dU =80+ u,Hd (VM) (1-4)
The heat input term in Eq. (1-4), 60 , will be discussed in Chapter 3.

The magnetocaloric effect for a given material is typically reported in the literature in terms of
either an isothermal entropy change or an adiabatic (isentropic, assuming no irreversible losses)
temperature change. These two quantities describe the difference in entropy or temperature, respectively,
between two lines of constant applied magnetic field on a temperature-specific entropy diagram. A
temperature-specific entropy diagram for gadolinium is shown in Figure 1-2. Figure 1-3 (a) shows a
temperature-specific entropy diagram for a typical ferromagnetic material and Figure 1-3 (b) shows the
corresponding adiabatic temperature change and isothermal entropy change as a function of temperature
near the Curie temperature of the material. Figure 1-2 shows that for all temperatures, the entropy of
gadolinium decreases as the magnetic field is increased, and this effect is most dramatic near the Curie
temperature of 293 K. Note that both figures report the volume specific entropy instead of the mass
specific entropy. In the design of a magnetic refrigerator, volume is the important metric that must be
minimized, not mass. However, the specific isothermal entropy change is most commonly reported in the
literature on a mass basis, and will thus be written on a mass basis in the subsequent sections of this thesis
as well. Most magnetocaloric materials can be assumed to be incompressible over the temperature range

near the Curie temperature.
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Figure 1-2. Temperature-volume specific entropy diagram for gadolinium for different applied magnetic
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temperature near the Curie temperature [1]



1.2 Magnetic Refrigeration

Since the discovery of the magnetocaloric effect by Emil Warburg in 1881, there has been an interest
in exploiting the effect for the movement of heat in the form of a refrigeration cycle. More recently, the
discovery of the giant magnetocaloric effect (GMCE) in Gds(Si,Gei.,); type materials in 1996 has
stimulated research interest in room temperature magnetic refrigeration applications [2]. Several
magnetic refrigeration cycles have been developed, most notably the adiabatic demagnetization

refrigeration (ADR) cycle and the active magnetic regenerative refrigeration cycle (AMRR).

1.2.1 Adiabatic Demagnetization Refrigeration (ADR) Cycle

The adiabatic demagnetization refrigeration cycle (ADR) is the magnetic equivalent of a Carnot
cycle for vapor compression systems. The cycle was first proposed by Debye (1926) and Giauque (1927)
as a means of achieving temperatures below the boiling point of helium [3, 4]. The cycle was
subsequently demonstrated by Giauque and MacDougall (1933) and successfully achieved sub-Kelvin
temperatures [5]. Figure 1-4 depicts the ideal ADR cycle on a temperature-specific entropy diagram for

pure gadolinium with lines of constant magnetic field shown.
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Figure 1-4. Adiabatic demagnetization refrigeration (ADR) or magnetic Carnot cycle for gadolinium.

The ideal ADR cycle shown in Figure 1-4 consists of four distinct processes that are summarized

below:
1. Process 1 — 2: Adiabatic magnetization
2. Process 2 — 3: Isothermal heat rejection
3. Process 3 — 4: Adiabatic demagnetization
4. Process 4 — 1: Isothermal heat addition

In practice, it is difficult to reject heat isothermally, since the magnetic field must also be modulated
properly in order to achieve this condition; this requires complex heat switches that limit heat flux rates.
Also, the temperature lift of an ADR cycle is limited to the adiabatic temperature change of the material.
The ADR cycle has therefore been limited to cryogenic sub-Kelvin refrigeration applications using

paramagnetic salts as refrigerants.



1.2.2 Active Magnetic Regenerative Refrigeration (AMRR) Cycle

The active magnetic refrigeration (AMR) cycle is similar to the ADR cycle, but heat addition and
rejection occurs at a constant magnetic field rather than at constant temperature. Isothermal heat rejection
and addition is impractical to implement since the applied magnetic field must be modulated to match the

temperature with the heat rejection rate. The AMR cycle is the magnetic equivalent of the Brayton cycle

for a compressible fluid and is shown on a temperature-entropy diagram in Figure 1-5.

Figure 1-5. Temperature — Entropy diagram for an ideal Active Magnetic Refrigeration (AMR) cycle for

The ideal AMR cycle shown in Figure 1-5 consists of four distinct processes which are summarized as

follows:
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gadolinium.

1. Process 1 — 2: Adiabatic magnetization
2. Process 2 — 3: Isofield heat rejection

3. Process 3 — 4: Adiabatic demagnetization



4. Process 4 — 1: Isofield heat addition

The achievable temperature span for a single AMR cycle near room temperature is limited to the
adiabatic temperature change by the strength of the applied magnetic field change. Currently, the
strongest permanent magnets (neodymium-based) can achieve fields near 1.5 Tesla, which does not take
into account geometric limitations and demagnetization effects [6]. From Figure 1-5, the adiabatic
temperature change for gadolinium near the Curie temperature for a field change from 0 to 1.5 Tesla is

approximately A7 ,=3.5 K. This limited operating temperature range is not useful for most

refrigeration applications. The solution to this problem is to arrange a porous matrix magnetocaloric
material in a regenerator bed with a heat transfer fluid flowing through it. Each infinitesimal segment of
the regenerator bed undergoes a unique thermodynamic refrigeration cycle and thermally interacts with an
adjacent cycle through the flowing heat transfer fluid. In this arrangement, a much larger temperature

span can be achieved. This cycle is called the active magnetic regenerative refrigeration (AMRR) cycle.

Practical AMRR cycles utilize either a porous matrix of packed magnetocaloric spheres housed in a
regenerator bed or a parallel plate regenerator consisting of stacked parallel plates of magnetocaloric
material. Brown (1976) first demonstrated a regenerative magnetic heat pump operating near room
temperature with gadolinium as the refrigerant under a high magnetic field that varied between 0 to 7
Tesla. The regenerator was a vertical column with a stationary fluid and a moving regenerator of
gadolinium plates, oscillating between the hot and cold reservoirs of the column [7]. More recently,
Zimm et al. (2006) constructed a rotary regenerator that consists of six packed sphere regenerator beds of
gadolinium operating with stationary permanent magnets. This system uses variable speed pumps with
rotary valves to control the heat transfer fluid (water) flow [8]. Yu et al. (2010) provide a comprehensive

review of AMRR prototype systems that have been built before the year 2010 [9].

The AMRR cycle consists of four processes that are similar to the AMR cycle. For an AMRR cycle
operating at steady state, the first process is an adiabatic magnetization of the magnetocaloric matrix in

thermal contact with the entrained fluid, resulting in a temperature rise across the bed. In this instance,



heat transfer occurs between the entrained fluid and the regenerator material, but the regenerator housing
is assumed to be adiabatic. The second is an isofield heat rejection by the regenerator matrix and
entrained fluid through a cold-to-hot flow of heat transfer fluid. In this process, the magnetic field is held
constant while the heat transfer fluid flow is activated and flowing from the cold heat exchanger to the hot
heat exchanger. As the third process begins, the fluid flow is halted, and the magnetic field begins to
decrease. The third process is an adiabatic demagnetization of the regenerator material and entrained heat
transfer fluid, resulting in a temperature decrease along the length of the bed. Once the bed is completely
demagnetized (i.e., the field reaches zero Tesla) the fourth process begins in which a hot-to-cold fluid
flow is activated and an isofield heat addition to the regenerator material and the entrained fluid occurs.
A hot-to-cold fluid flow indicates that the heat transfer fluid is flowing from the hot heat exchanger to the
cold heat exchanger (the opposite direction of process 2). At the end of the fourth process, the fluid flow

is terminated and the cycle restarts.

Figure 1-6 shows the temperature-specific entropy diagram of the regenerator material in an AMRR
cycle with a bed using a single material, a porous matrix of GdyosErpo4, and water as the heat transfer
fluid. The minimum and maximum applied field strengths are 0 and 3 Tesla, respectively. The
temperature of the cold reservoir is 299 K and the temperature of the hot reservoir is 310 K. The Curie

temperature is specified to be 7., =304.5 K. Shown on the diagram are refrigeration cycles occurring

at dimensionless regenerator positions of x/L = 0, 0.25, 0.5, 0.75 and 1. State points are only shown for
the steady state AMRR cycle occurring at x/L = 0.5 for clarity, but occur simultaneously on each
independent cycle curve. In this sense, they are not state “points” but spatially-dependent state “lines”
that are projected on a two-dimensional temperature-entropy diagram. A three-dimensional projection of
the temperature-specific entropy-length diagram is shown in Figure 1-7. This diagram shows a
visualization of a three-dimensional ‘tube’ of temperature as a function of specific entropy through the

spatial dimension of the AMRR cycle. The state points (or projections of state lines) shown in Figure 1-6

correspond to the AMRR processes as follows:
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1. Process 1 — 2: Adiabatic magnetization transformation with entrained fluid

2. Process 2 — 3: Isofield heat rejection to heat transfer fluid

3. Process 3 — 4: Adiabatic demagnetization transformation with entrained fluid

4. Process 4 — 1: Isofield heat addition to heat transfer fluid
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Figure 1-6. Temperature-Entropy diagram of the Active Magnetic Regenerative Refrigeration (AMRR)
Cycle for a bed composed of Gdgy4Er¢s. State points are shown for the cycle occurring at x/L = 0.5.
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Figure 1-7. Three-dimensional projection of the Temperature-Entropy-Length diagram for AMRR
cycle shown in Figure 1-6.

For an AMRR cycle operating with a single refrigerant material, the operating temperature can
deviate significantly from the Curie temperature, where the magnetocaloric effect is largest. Thus, a
regenerator bed that contains several materials with Curie temperatures near the spatially local operating
temperature range would improve cycle performance. This type of arrangement is termed a ‘layered’
regenerator bed. Figure 1-8 shows the temperature-entropy diagram of the regenerator material in an
AMRR cycle with an infinitely layered bed using a porous matrix of gadolinium-erbium alloy and water
as the heat transfer fluid. The Curie temperature of the gadolinium-erbium alloy is controlled by altering
the composition. For this study, the properties of GdggsErgs are modulated by adjusting the Curie

temperature in order to simulate an infinitely layered bed. The Curie temperature is modulated so that it
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varies linearly between the hot and cold reservoir temperatures. The minimum and maximum applied
field strengths are 0 and 3 Tesla, respectively. The temperatures of the cold and hot reservoirs are 299 K
and 310 K, respectively. Isomagnetic field lines are shown only for the AMRR cycle occurring at x/L =
0.5 for clarity, however each spatial cycle operates with its own refrigerant material composition with
separate magnetic properties. By direct comparison of Figure 1-8 and Figure 1-6, there is an increased
total area of cycle operation below the cold reservoir temperature (299 K) for the layered bed than the
single layered bed; this corresponds to an increased refrigeration capacity for the same operating
conditions. Figure 1-9 is a three dimensional surface plot of the temperature-entropy-length diagram for
the AMRR cycle with a layered regenerator material shown in Figure 1-8. The total enclosed volume of
the temperature-entropy-length ‘tube’ below the cold reservoir temperature isotherm is the refrigeration

capacity.
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Figure 1-8. Temperature-Entropy diagram of the Active Magnetic Regenerative Refrigeration (AMRR)
Cycle for gadolinium-erbium with an infinitely layered bed. Isofield lines for cycle occurring at x/L. =
0.5 are shown.
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Figure 1-9. Three-dimensional projection of the Temperature-Entropy-Length diagram for AMRR
cycle shown in Figure 1-8.

1.3 Magnetic Hysteresis

Magnetic hysteresis is a phenomenon exhibited in ferromagnetic materials when they are exposed to
variable magnetic fields. These materials tend to retain a magnetization, even after an applied magnetic
field is removed. This effect can be explained by the ability of microscopic magnetic domains to become
‘caught’ in a magnetized state caused by impedance from neighboring domains, resulting a remnant
magnetization even at zero applied magnetic field [10]. Ferromagnetic materials are subdivided into
‘hard’” and ‘soft’ magnets. The term ‘soft’ magnet used to describe a material where a low applied

coercive field is required for magnetization but the material does not tend to remain magnetized when the
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field is removed. A ‘hard’ magnetic material is a material that requires a high applied coercive field for
magnetization and retains its magnetization long after the applied field is removed. Thus, permanent
magnets are ‘hard’ magnetic materials, and only exhibit significant hysteresis under very high magnetic

fields [10].

Hysteresis is a causal process, where the present output is dependent on the present state as well as
past input history. An example of a single cycle hysteresis loop, with arrows showing loop direction, is

shown in Figure 1-10.
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Figure 1-10. Example of a hysteresis loop with an applied magnetic field which cycles between 0 and 1.5
Tesla.

When the ferromagnetic material is first exposed to the applied magnetic field, it has zero
magnetization and follows a path known as the anhysteric magnetization curve to the maximum applied
field. When the applied field is ramped down again, remnant magnetization within the material causes it

to follow a downward magnetization path and ultimately reach a nonzero magnetization when the applied
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field reaches zero. When the magnetic field is ramped up again, it follows a path that begins from the
non-zero remnant magnetization at zero applied field and eventually smoothly coincides with the
anhysteric curve as shown in Figure 1-10. When plotted against time, the magnetization has higher field
strength than the applied field due to the effective field within the material that takes contributions from
both the applied field and magnetization of the internal domains. This relation is shown in Figure 1-11.
There are several variables that influence the shape of the hysteresis curve: the applied field, saturation

(or spontaneous) magnetization, material coercivity, susceptibility, and remanence.
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Figure 1-11. Magnetization and Applied Field as a function of time for hysteresis loop in Figure 1-10

The influence of the applied field on a hysteresis curve determines how large the loop spans on an
M-H curve. The saturation magnetization is the upper limit of the magnetization that the hysteresis loop
will approach asymptotically as the applied field approaches infinity. Remanence is defined as the
magnetization that remains in a material after it has been exposed to a magnetic field and then removed

from it. The coercivity is the applied field that is required to bring a material’s magnetization to zero.
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The magnetic susceptibility of a material determines the slope of the magnetization versus applied field

curve.

The Jiles-Atherton and Preisach models are two common mathematical models for magnetic
hysteresis. The Jiles-Atherton model is a deterministic model that empirically defines a hysteresis loop
based on five macroscopic characteristic parameters that are based on the properties that characterize a
hysteresis loop: saturation magnetization, remanence, coercivity, and anhysteretic magnetic susceptibility
[11, 12]. The Preisach model of magnetic hysteresis is a probabilistic mathematical model of hysteresis
that attempts to quantify hysteresis in terms of the microscopic magnetic domains rather than the

macroscopic volume average magnetization [13].

LoBue et al. (2005) use the Preisach model to show the irreversibilities of magnetic hysteresis and its
qualitative negative effects on the performance of AMRR systems. Ultimately, hysteresis results in a
generation of entropy internal to the magnetocaloric material. Therefore, one approach for including
hysteresis in an AMRR model is to treat it as a source of entropy generation that is physically linked to
the hysteretic characteristics of the material as well as the operating conditions of the cycle; this is the

approach used for the work in this thesis.

1.4 Magnetocaloric Materials

One of the most significant limitations on the performance of magnetic refrigeration systems is the
magnetocaloric material (refrigerant) properties. These materials are generally characterized by an
adiabatic temperature change due to magnetization (AT, ), an isothermal specific entropy change due to
magnetization (As,, ), or both. The effect of varying these parameters on the performance of magnetic
coolers is not well understood, but is generally accepted that increasing each independently improves

system performance.

There exist two main groups of magnetocaloric materials: first order magnetic transition (FOMT)

and second order magnetic transition (SOMT) type materials. In SOMT materials, the partial derivative
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of the Gibbs free energy with respect to any intensive state variable (7 or u,H for example) is continuous
during the phase transition from a ferromagnetic to paramagnetic state. In these materials, the
magnetocaloric effect is a consequence of a reduction in the heat capacity when exposed to a magnetic

field [1]. Additionally, SOMT materials exhibit negligible magnetic hysteresis.

In FOMT materials, the partial derivative of the Gibbs free energy with respect to either temperature
or applied field is discontinuous at the Curie temperature. The magnetocaloric effect in FOMT materials
is a result of a shift in the Curie temperature in an applied magnetic field [1]. Furthermore, FOMT
materials exhibit significant magnetic hysteresis. As a consequence of the nature of the first order phase
transition, the magnetocaloric effect can be much larger in magnitude in FOMT than in SOMT materials,
but generally occurs over a smaller range of temperatures. Furthermore, FOMT materials can exhibit
considerable lag time between the application or removal of a magnetic field and the magnetization
induced within the material (a phenomenon related to the physical mechanisms behind rate-dependent
magnetic hysteresis) [10]. Slow magnetic phase transitions may cause inefficiencies in AMRR systems

with small cycle times running with FOMT type materials.

Gschneidner and Pecharsky (2000) provide a detailed explanation of the complex relationship
between the adiabatic temperature change and isothermal entropy change [14]. The adiabatic temperature
change is dependent on variation of specific entropy with temperature as well as magnetic field in a
variable applied field. In contrast, the isothermal entropy change is only dependent on the magnetic
portion of the entropy contribution in a variable applied field. The authors also discuss in depth the
physical mechanisms by which the two quantitative characteristics of the magnetocaloric effect arise in
both FOMT and SOMT type ferromagnetic materials (as well as paramagnetic and antiferromagnetic

materials).

The magnitude of magnetic hysteresis for a material is typically reported either as the measured
temperature difference in the material after a single magnetization-demagnetization cycle or as a

calculated exergy loss per cycle for a specified applied field change. This thesis will discuss another way



19

to quantitatively characterize magnetic hysteresis in terms of a magnetization loss or gain, which is based
on the Jiles-Altherton model of magnetic hysteresis [12]. This method of characterizing magnetic

hysteresis is the focus of Chapter 2.

1.4.1 Gadolinium and Gadolinium Alloys

Gadolinium is a rare earth element that exhibits a significant magnetocaloric effect near its Curie
temperature (293 K). Pure gadolinium exhibits a second order magnetic transition from the ferromagnetic
to paramagnetic phase when it is heated above its Curie temperature. Due to the nature of the SOMT,
pure gadolinium shows negligible hysteresis when it is subjected to a variable applied magnetic field near

its Curie temperature. Dan’kov et al. (1998) report the adiabatic temperature change of pure gadolinium

to be near AT, =5.5 K and the isothermal entropy change to be approximately As,, =-5.5 kg+K for an

applied field change from O to 2 Tesla [15]. These measurements can vary slightly based on the
measurement technique, applied magnetic field alignment with the crystalline structure, and gadolinium

purity. The thermal conductivity of gadolinium is approximately k£ =10 —Y- near 293 K, but increases

nearly linearly to 12 Y- at 350 K [16].

The Curie temperature of gadolinium can be tuned through alloying with other rare earth lanthanides,
while preserving the second order nature of the phase transition. Gd,..R, compounds (where R = Tb, Ho,
Dy, or Er) have been shown to shift the Curie temperature of gadolinium to lower temperatures with a
slight decrease in the magnitude of the magnetocaloric effect [17, 18]. Since the magnetocaloric

properties of these materials are tunable, these materials are attractive for use in a layered regenerator bed.

1.4.2 La(Fe1-xSix)13Hy Compounds

The lanthanum-iron-silicon hydrides are a promising material for use in active magnetic refrigerators
since they exhibit a large magnetocaloric effect (MCE) near room temperature. These materials exhibit a
first-order itinerant-electron metamagnetic phase transition between the ferromagnetic and paramagnetic

phases, during which the material exhibits magnetic hysteresis [19]. The Curie temperature can be tuned
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between approximately 200 K to 336 K by adjusting the concentration of hydrogen in the compound (y),

depending on the concentration of iron and silicon (x) [20].

Figure 1-12 is the Curie temperature (7¢,..) and critical temperature (7)) as a function of hydrogen
concentration in La(Fe,.,Si,);3H, with x = 0.12 [19]. The Curie temperature (Tcy) is the temperature at
which the phase transition from a ferromagnetic to paramagnetic phase begins when heated, and the
material enters the metamagnetic phase transition region. The critical temperature (7)) is the temperature
at which the metamagnetic transition phase ends and the material becomes fully paramagnetic during
heating, meaning magnetic hysteresis effects have also disappeared. As the figure shows, T¢,.. is almost
exactly a linear function of hydrogen concentration, and 7} also correlates nearly linearly with hydrogen
concentration. This linear dependence indicates that the material’s Curie point can be tuned to a wide

range of temperatures, which makes for ideal usage in a layered active magnetic refrigerator.
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Figure 1-12. Curie temperature (7¢,,;) and critical temperature (7)) as a function of hydrogen
concentration in La(Fe,.,Si,);:H, with x = 0.12 [19].
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Fujieda et al. (2002) report an isothermal entropy change of As, =-24 1<g+1< and an adiabatic

temperature change of A7, =6.9 K for La(Fe(39Sig11)13Hi3 for an applied field change from 0 to 2

Tesla. The particular composition with x = 0.11 and y = 1.3 has a Curie temperature of approximately
291 K, which can be approximately inferred from Figure 1-12. These materials tend to be less expensive
to manufacture than pure gadolinium, but require precise and tedious processing to modulate the silicon
and hydrogen compositions. Zhao et al. (2009) demonstrated that hysteresis losses may be reduced with

the partial substitution of praseodymium for lanthanum with only a slight decrease in the magnetocaloric

effect. LagsPros(FeogsSio12)13H16 exhibited a magnetocaloric effect of As,, =—17.7 1<g+1< at a Curie

temperature of approximately 7.

urie

=320 K with a hysteresis loss per cycle of 2.3 klg [21].

1.4.3 Gds(Si1xGex)4 Compounds

In 1997, Pecharsky and Gschneidner announced the discovery of the giant magnetocaloric effect
(GMCE) in Gds(Si;..Ge,)s type compounds [22]. The gadolinium-germanium-silicon family of
magnetocaloric materials is of the FOMT type, and exhibit large isothermal entropy and adiabatic
temperature changes for relatively modest applied field changes. For the composition type where x = 0.5,

the adiabatic temperature and isothermal entropy change have been reported to be as large as A7, , =7 K
and As,, =-27 kg#K , respectively, for an optimally prepared material under an applied field change from

0 to 2 Tesla [23]. The Curie temperatures of these materials are tunable by varying the germanium
content (x) of the alloy, and scale approximately linearly for 0.2 < x < 0.5 [24]. These materials also
exhibit significant magnetic hysteresis by nature of the FOMT, which is dependent on the specific

composition of the material.

1.5 Research Objectives
The primary goal of this research is to develop a thermodynamic model of magnetic hysteresis for
applications in magnetic cooling systems and evaluate the effect of hysteresis on their performance.

Currently there is no known numerical model that can accurately capture the effects of magnetic
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hysteresis on the performance of an AMRR cycle, but the effect has been simulated through the use of
scaling factors applied to the efficiency of the system calculated without hysteresis [25]. This thesis will
quantify the effects of magnetic hysteresis on the performance of AMRR cycles which use FOMT
materials. Thermodynamically, magnetic hysteresis is treated as a source of entropy generation that is

proportional to the area swept by a hysteresis loop for one refrigeration cycle.

The one-dimensional, numerical model presented by Engelbrecht (2008) [26], is modified to include
entropy generation from magnetic hysteresis in the regenerator energy equations. This model accepts
inputs such as the regenerator geometry, magnetic refrigerant material, and heat transfer fluid and
calculates the steady-state temperature distribution for the complete AMRR cycle as a function of time
and space through an iterative successive substitution technique that subject to a specified convergence
tolerance. The final fluid and regenerator material temperature distributions are used to quantify the

performance of the cycle.

The modified model is used to optimize the performance an AMRR cycle that uses FOMT materials
and compare it to the performance of an AMRR cycle that uses SOMT materials. The effect of model
input parameters such as regenerator volume, mass flow rate profile, regenerator aspect ratio, and bed

layering geometry on the performance of the cycle is studied.
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Chapter 2 HYSTERESIS MODELING

2.1 Entropy Generation due to Magnetic Hysteresis

This chapter presents a rigorous thermodynamic analysis of magnetic hysteresis in magnetocaloric
materials. In this analysis, magnetic hysteresis is treated as a source of entropy generation in a system
defined by a magnetocaloric material. The entropy generation associated with hysteresis is proportional
to the area swept by the hysteresis curve on a applied field — magnetization (H-M) curve [1]. The H-M
curve for a material is split into two components: anhysteretic or reversible magnetization and hysteretic
or irreversible magnetization. This model of anhysteretic and hysteretic magnetization is based on the
Jiles-Atherton model of magnetic hysteresis proposed in 1986 [2]. The irreversible magnetization (or
hysteretic magnetization) is considered an applied field rate-independent property in this thesis, which
may not be a valid treatment for systems with slow phase transitions relative to the time rate of change of

the applied magnetic field [1]. Thermal hysteresis is also neglected in this analysis.

2.1.1 Entropy Balance without Magnetic Hysteresis
Consider an adiabatic process undergone by a magnetocaloric material without hysteresis. Such a
process is assumed to be reversible and therefore an entropy balance on this system, carried out on a unit

mass basis, requires that:
—=0 (2-1)

The time rate of change of the specific entropy in Eq. (2-1) is divided into its magnetic field (x,H) and

temperature (7) driven components:

(2 () o) ()
dt \or),,\dr) \opH )\ di
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where the temperature 7 and applied magnetic field u,H are only functions of time. The partial
derivative of specific entropy with respect to temperature at constant applied field can be written in terms

of the constant field specific heat capacity, ¢,

[ﬁj :c*‘_ﬂ” (2-3)
oT soH T

A Maxwell relation is used to write the partial derivative of specific entropy with respect to applied field

at constant temperature in terms of the mass specific anhysteretic magnetization (v M,,) [3]:

( 0s J :(8VMMJ (2-4)
OuH ), oT ) n
Substituting Eqgs. (2-3) and (2-4) into Eq. (2-2) leads to:
c
b () (o) (22
dt T \ dt or )\ dt

For magnetic refrigeration systems, the term of interest in Eq. (2-5) is often the change in temperature

with respect to time < since we are typically interested in characterizing an adiabatic temperature rise

for a given material. By inspection of this equation, it is evident that the temperature rise is a direct

function of the change in the applied magnetic field, the magnitude of the constant field specific heat ¢, ,,

and the partial derivative of mass-specific anhysteretic magnetization vM ,, with respect to temperature

at constant field.

2.1.2 Entropy Balance with Magnetic Hysteresis

Since hysteresis is an irreversible process, it is necessary to model the phenomenon as an internal
entropy generation. Consider an adiabatic process undergone by a magnetocaloric material with
hysteresis. Such a process will be irreversible and therefore an entropy balance on this system, carried

out on a unit mass basis, requires that:
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ﬂ _ Sgen
dt m

(2-6)

where m is the mass of the material and S «en 18 the rate of entropy generation, which must have a positive

n

value. The rate of entropy generation per unit mass is defined using the irreversible magnetization (M )

irr

and it is assumed to be related to the area within a hysteresis curve. The rate at which the hysteretic curve

area is being swept out per time is given by:

735y | (2-7)
m rr dl’
or, solving for the entropy generation rate per unit mass:
Sgen — VM[rr dIUOH| (2_8)
m T | dt |

where v is the specific volume of the magnetic material, M, is the irreversible magnetization per unit

. . . duoH . .
volume, 7 is the temperature of the magnetic material, and ZO; is the rate of change of the applied

magnetic field. The irreversible magnetization is a function that must be unambiguously positive and
represents the deviation of the magnetization from its anhysteretic value. The irreversible magnetization
must be a function of temperature and applied field as well as the minimum and maximum values of the
applied field experienced by the material during each cycle. Assuming that the degree of hysteresis does
not depend on the rate of the process, the total magnetization induced in the material (M) is the sum of the
anhysteretic (M,,) and hysteretic (M;,,) terms:

du H
dt

M(TﬂﬂOH’luOHmin’ﬂOHmax’ j = Man (T’/’lOH)
(2-9)

. du H
_Mirr (T’ luOH’ /u(JHmin ’luOHmax)Slgn(Tj
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Note that the sign function returns the sign of its argument and causes the irreversible magnetization to
subtract from the anhysteretic magnetization during the time that the applied field is increasing and add to

it when it is decreasing.

The value of M, must be equal to zero when the applied field reaches its minimum and maximum
values:

Mirr (T’ /JOH = IUOHmin > /’IOHmin > :LlOHmax ) = O
M, (T9 ILIOH = IUOHmax 4 ILIOHmin 4 luOHmax ) = 0

r

(2-10)

Note that the absolute value of the rate of change of the applied field is used in Eq. (2-8) in order to
ensure that the entropy generation rate is unambiguously positive. Defining the entropy generation rate
with an irreversible magnetization term permits the calculation of the entropy generation rate at any point
along the M-H curve. Graphically, the irreversible magnetization can be thought of as a method of
“fattening out” the M-H curve by adding or subtracting (depending on the direction of the rate of applied
field change) it from the anhysteretic magnetization function. An example of a hysteresis curve that is

defined using the irreversible magnetization function is shown in Figure 2-2.

The rate of change of specific entropy is again separated into its magnetic and temperature driven

components, which yields:

S
ds _Cun(dT) (OVM,, ) (diH ) Seen (2-11)
dt T \ dt or ),un\ dt m

Note that the anhysteretic magnetization term, M, , remains in Eq. (2-11) because the irreversibility

associated with hysteresis is accounted for within the entropy generation term. By substituting Eq. (2-8)

into Eq. (2-11):

C .
toH (ﬂj+ ovM ,,, du,H) vM,, du,H| (2-12)
T \ dt or ), u\ dt T dt |
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which represents the final relation between temperature, applied field, irreversible magnetization,

anhysteretic magnetization, and time for an adiabatic process.

2.2  Adiabatic Magnetization and Demagnetization with Hysteresis

The model of irreversible magnetization suggested in Section 1.1 is tested by using it to simulate a
single piece of magnetic material that is exposed to an alternating magnetic field under adiabatic
conditions. First the process is simulated with no hysteresis effects. Then the simulation is repeated with

the addition of an irreversible magnetization term in order to simulate hysteresis.

In order to illustrate this approach, the simple Curie law equation of state for a paramagnetic material

is used as the basis for the anhysteretic portion of the volume magnetization:

M, (T, 1) =Sl (2-13)

o T

where C is the Curie constant. Substituting Eq. (2-13) into Eq. (2-9) leads to:

duoH]_ C uH

M T: H’ Hm[n’ Hmax’
[ Hot1, Hy Hy di T

(2-14
du,H )

_Mirr (T’ /’lOH’ /’IOHmin’:l’lOHmax )Slgn(Tj

One requirement for the irreversible magnetization function is that it must be equal to zero at the
minimum and maximum applied fields experienced by the material, as shown in Eq. (2-10). One

possibility for M;,, is therefore:

(2-15)

1 max

H-uH .
M‘”'(T”LIOH’/UOHmin’/uOH ):AMSIH[”(/JO Ho mm))

IUOHmaX - ILIOHmin

where AM is a constant that represents the maximum irreversible magnetization. Substituting Eq. (2-15)

into Eq. (2-14) provides:
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dﬂon _C uH

M T’ H’ Hmin’ Hmax’
( HotT 5 Hy Mot d1 i T

i H (2-16)
—AM sin 7 (Ao = poH ) sign[—dﬂoHJ
ﬂOHmax _luOHmin dt
For the cases considered in this report, 14,Hi, = 0 and therefore the magnetization is described by:
H H H H
M(T,uoH,yon,yoHWd“° j:Q%——AMsin s sign(d% j (2-17)
) dt ILIO T IUOHmax dt

Figure 2-1 shows the irreversible magnetization function given by Eq. (2-15) as a function of the applied

magnetic field for various values of vAM with g H_ =2 T. Note that it satisfies the constraints of Eq.

(2-10) as it is zero at the minimum and maximum applied field.

VAM = 1 [A-m?/Kg]

VM [A-m?/kg]

Appplied Field, ;4oH [T]

Figure 2-1. Irreversible magnetization function as a function of applied magnetic field for various values
of vAM for the model considered.
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For the magnetization-demagnetization adiabatic process, the material is exposed to an oscillating

magnetic field that varies between zero and a maximum applied field, u,H in an assumed sinusoidal

max 2

manner:

Mﬂ(r):%(l—cos(%n (2-18)

T

where 71is the period of each cycle. The derivative of the applied field with respect to time is:

dIUOH ::uonaxﬂ.Sin(Zﬂ.tj (2_19)
dt T T

Equation (2-12) is solved for the temperature rate of change:

VMirr dﬂ0H|_(a‘)Manj (d/'lOH)
AT r | de |\ or )\ ar

dt cﬂoH
T

(2-20)

Equation (2-15) is used to evaluate the first term in Eq. (2-20) and the Curie law, Eq. (2-13), is used to

evaluate the second term:

|:VAM sin( 7 pyH jsign(dyOH)‘dyoH|+Cv,uOH(d,uOHH
dT

T H dt )| dt r* \ dt
:u0 max | 'uO (2—21)
dt Cun (HH.T)
T
or
dT _vAM Sin( 7 p H Jsign(d”OHJ|d”°H| . C VﬂoH(dﬂoHJ (2:22)
dt cﬂoH OHmax dt dt | ,UO TC”OH dt

Note that the ordinary differential equation has no simple closed form solution that would allow the

temperature to be expressed explicitly in terms of time; therefore, numerical methods must be employed



34

to solve Eq. (2-22). The first-order Euler method can be employed, which approximates the temperature

at the end of each time step according to:

T, ~T +(§) At i=1..N (2-23)
t i

where N is the total number of time steps and Atis a finite valued time step. This is an approximation
using the first two terms of the Taylor expansion for 7. For this approximation, the initial temperature
must be known as an initial condition used to approximate the temperature at the first step forward in

time. The single shot model was evaluated using the inputs listed in Table 2-1.

Table 2-1. Properties specified for magnetization-demagnetization model simulation

Variable Value Variable Value

C A-K
HH 2 Tesla AO 273 4K,
/’lonin 0 Tesla T 4 s
Chuti=o 0.5 Y AM 0.1 4,
P 1 ks, T(t=0) 293K

The values of the parameters used in Table 1 are arbitrary and were chosen in order to illustrate the
impact of hysteresis in the model. The purpose of the simulation is to verify that the method described to
add an irreversible magnetization term to the entropy balance equation is valid. Figure 2-2 illustrates the
magnetization of the material as a function of applied field with the anhysteretic and hysteretic lines

predicted by Eqgs. (2-13) and (2-15), respectively, indicated. Note that the A, term essentially widens

the curve by reducing the magnetization from the anhysteretic value as the field increases and increasing

the magnetization from its anhysteretic value as the field is removed.
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Figure 2-2. Magnetization as a function of applied magnetic field for a magnetic material predicted

Figure 2-3 shows the temperature of the magnetic material as a function of time as it is exposed to
the alternating applied magnetic field. For the case where it is modeled with no hysteresis (AM = 0), the
material experiences an isentropic temperature rise and then returns to its initial temperature as the field is
removed. When hysteretic effects are included, the material experiences an adiabatic temperature change
that is accompanied by an entropy increase due to the entropy generation. Therefore, when the field is

removed the material does not return to its initial temperature because its entropy increases. Instead the

using Egs. (2-13) and (2-15).

temperature gradually rises as entropy increases during each successive cycle.
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Figure 2-3. Temperature as a function of time for an adiabatic material exposed a sinusoidal applied
field with and without hysteresis.

A temperature-specific entropy diagram for the adiabatic magnetization-demagnetization model is

shown in Figure 2-4, with the isofield entropy lines shown. The results of the simulation with and

without hysteresis are indicated.
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Figure 2-4. T-s diagram for single-shot model with and without hysteresis showing isofield entropy lines

The specific entropy values used to generate Figure 2-4 are calculated by eliminating the time
derivatives and integrating Eq. (2-5) from a reference entropy (s,,) at a reference applied field and

temperature (/s and T, to a final entropy (s) at an arbitrary applied field and temperature (u,/1; and

Ty). The integration path proceeds first along a line of constant applied field (¢,H,) from T, to Ty:
i CﬂoH =HoH, o Tf
S(T = Tf,/,lOH = /UOHref ) - Sref = ‘[ TdT = CﬂoH:ﬂoHre/’ In T_ (2-24)
Tror ref
and then along a line of constant temperature (7y) from the reference field 1,/ to u H f:
HoH
ovM ,,
s(T=T,,uH,)~s(T =T, 1, H =, H,, ) = d u,H (2-25)
H aT H,T=T,
HolTyep Holt, /
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where CopH=tH, is the constant field specific heat at u,H,. Substituting Eq. (2-13) into Eq. (2-25)
provides:
ot CvuH C v
(T =Ty pH )~ (T =Ty ptyH = iy H ., ) = j — P g H =———( u,H, - p,H})(2-26)
iy Mo T #o 2T

Adding Egs. (2-25) and (2-26) together and defining s,.,= 0 at T,.,= 1 K and x,H,.r= 0 provides:

o) e g in(7) - C 1) (2-27)
> Hy HoH =0 o 2T2

From Eq. (2-27), the constant field derivative of entropy with respect to temperature is:

2
( Os J _ St _ Sz, € V(“of' ) (2-28)
T )y T T y T

which shows that the constant field specific heat must be a function of temperature in order to agree with
the Curie law equation of state:

2
C v(u,H)

Cpptt = Cpgri=0 T~

2-29
P (2-29)

As the plot in Figure 2-4 indicates, the specific entropy remains constant for the case where there is
no hysteresis. In the case where hysteresis is modeled, the entropy increases gradually as more cycles are
completed, due to the entropy generation related to the irreversible magnetization term. The

discontinuous slope in the entropy for the model with hysteresis is a consequence of the absolute value of

the d‘;"lH term in Eq. (2-8).

The entropy generation rate is plotted as a function of time in Figure 2-5 according to the relation
given in Eq. (2-8). It reaches a minimum where the field is at either the maximum or minimum value,
and it reaches a maximum where the irreversible magnetization is maximum (halfway between the

minimum and maximum fields). This behavior is consistent with the idea that entropy generation is
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related to the area of the hysteresis curve; Figure 2-2 shows that the differential area of the hysteresis
curve approaches zero at u,H,,;, and u,H,,.,. Figure 2-6 shows the entropy generation rate as a function of

time over a larger range of times and with a larger maximum irreversible magnetization of

vAM =0.5 A;—;’z . The plot demonstrates that the entropy generation rate decreases steadily over time as

the temperature of the material increases, which is a consequence of the entropy generation rate being
inversely proportional to the material temperature per Eq. (2-8). The larger value of the maximum
irreversible magnetization was chosen so that the behavior of the entropy generation rate as a function of

time is obvious.
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Figure 2-5. Entropy generation as a function of time as a result of hysteresis in the single-shot model.
Note that the time scale is not large enough to show decrease in entropy generation rate with time.
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Figure 2-6. Entropy generation rate as a function of time with vAM = 0.5 [A-m”/kg] to show steady
decline in rate over time.

The total entropy generated should be equal to the difference in entropy between the initial and final
states of the process since this is an adiabatic, closed process. In other words the area underneath the
curve in Figure 2-5 should be equal to the difference between final entropy and initial entropy for the

process with hysteresis shown in Figure 2-4. Mathematically, this can be stated in an integral:

I G

S
sp -8, = j < gt (2-30)

0 m

where ¢, =12 sec in this case. By utilizing the trapezoidal method for integration, the integral in (2-30)

yields a value of 0.0026 %g—K , which is exactly the same value of 5, —s5;. The MATLAB code used to

generate these plots and data is included in Appendix A.
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Also, the area of the hysteresis loop should be equivalent to the area swept by the irreversible
magnetization function. Since the irreversible magnetization function is always positive and symmetrical,

the total area swept by the irreversible magnetization function is equal to:

S HoH oy
drea=T=2" = § M, |dpH|=2 [ vM,, duH (2-31)
m
cycle 0

This area is also equal to the area of the hysteresis loop for one complete cycle:

S?en
Area =T =" = qS vM d i, H (2-32)
m

cycle

By numerical integration of Eq. (2-31) using the trapezoidal rule function in MATLAB, the area is found

to be 0.2546 ), and by numerically integrating Eq. (2-32) in the same fashion, the area is found to be
0.2535 J{,. This is a 0.43% difference, which is attributable to numerical estimation error. Figure 2-7

is a plot of the exergy loss per cycle as a function of the maximum irreversible magnetization constant
AM . The solid line shows the energy loss calculated via Eq. (2-32) and the data points show the
calculation via Eq. (2-31). There is very little difference in the values, and therefore the entropy

generation is directly related to the area under the M-H curve for this model.
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Figure 2-7. Comparison of calculation of exergy loss for various values of AM

2.3 Carnot Cycle Analysis

As an extension to the investigation of hysteretic effects on a single shot adiabatic
magnetization/demagnetization model, a magnetic Carnot refrigeration cycle (or ADR cycle) is modeled
to investigate the deterioration in its performance that occurs due to the entropy generation that arises

from hysteresis. The magnetic Carnot cycle consists of four distinct processes listed as follows:
1. Adiabatic magnetization
2. Isothermal heat rejection
3. Adiabatic demagnetization

4. Isothermal heat addition
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The same entropy generation term introduced in Eq. (2-8) is added to the entropy balance for the
magnetization and demagnetization processes in order to simulate the irreversibility associated with

magnetic hysteresis.

2.3.1 Governing Equations

Adiabatic magnetization and demagnetization

By performing an entropy balance on the magnetic material of interest, the following equation is

obtained in the same manner as the single-shot model:

ds .
—=S5 2-33
dl’ gen ( )
which can be rewritten on a mass specific basis in terms of the mass of the magnetic material m:
N
as _gen (2-34)
dt m

The derivative in Equation 34 can be expressed in terms of its magnetic and thermal contributions to

entropy:

¢ S
ds _ Cup (ﬂ}r OvM,, | (A ) _ Sgen (2-35)
di T \di or ), m

which is identical to Eq. (2-11) in Section 2.1.2 . Similarly, the entropy generation can be expressed

according to Eq. (2-8):

¢ .
wH (ﬂj+ ovM , du,H) vM,, du,H| (2-36)
T \ dt or ), u\ dt T | dt |

which is identical to Eq. (2-12). These equations are valid for both adiabatic magnetization and

demagnetization because the processes are thermodynamically equivalent.
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Isothermal heat rejection and addition

By performing an entropy balance on the magnetic material of interest:

as . 0
—=S, += 2-37
dt R ( )

and by dividing by the mass of the magnetic material m:

S .
ﬁzﬂJri (2-38)
dt m T

where ¢ is the rate of heat transfer per unit mass of magnetic material and T is the temperature of the

material. Again by expanding the rate of change in entropy into its magnetic and thermal terms provides:

c N '
fan(4T), (00 ) () S 039)
T \ dt or ),m\ dt m T
Since processes 2 and 4 are isothermal, the change in temperature with respect to time <L is equal to

zero. Applying this relation and substituting the expression for the entropy generation from Eq. (2-8)

leads to:

[aVManJ (dﬂOHJZVM[rr dIUOH|+i (2_40)
or ), ,\ dt T | dt | T

By rearranging this equation, the rate of heat transfer per unit mass of magnetic material can be recovered

for both the heat rejection process (¢,, ) and heat absorption process (¢, ). For the heat rejection to the

hot thermal reservoir:

du =T, (GVM“”J (d”(’H)—VM” LN (2-41)
or ),u\ dt T, | dt |

and for the heat absorption from the cold thermal reservoir:
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g =T (8VMMJ (d,uon_va d,uoH| (2-42)
<l or )\ at T. | dr |

It is important to note that the positive direction for heat flow is defined to be into the material, and

thus ¢g,, is a negative quantity and ¢, is a positive quantity for this model.

2.3.2 Model Parameters
For this model, the equation of state relating the magnetization and applied magnetic field that is
used is the Curie law (the same equation of state that was used previously in the single-shot model):

_CpH

an (2-43)
uy T

The irreversible magnetization will again be applied to describe the effects of hysteresis on the

magnetization of the material:

M =Man _MirrSign(d/;OHj (2‘44)
t

For simplicity, M,  can be described by a sinusoidal relationship described in Eq. (2-15) which
is positive for all values of applied field except at the minimum and maximum applied fields, where it is
equal to zero. In this simple model the minimum applied field will be equal to zero, ¢, H ,, =0, which
yields and equation for the magnetization M of the form:

H . H ). duH
M :EﬂO——AM sm[ﬁLngn(‘u—oJ (2-45)
;u0 T IUOHmax

Substituting the equation of state in (2-43) into Eq. (2-36) and eliminating the time derivatives

provides:

C/JoH dT _£ VIUOH

2 H=
T u, T

du

0

M,
v T,rr d,uoH| (2-46)
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Doing the same for equations (2-41) and (2-42) respectively:

(2-47)

(2-48)

where 0¢q,, and 0¢g, are the differential heat transfers per unit mass of magnetic material to the hot and

cold reservoirs, respectively.

2.3.3 Model Results

Table 2-2 is a summary of the input parameters used in this model. These inputs are arbitrary and

are chosen to be realistic; however, they are not specific to any magnetic refrigerant material.

Table 2-2. Properties specified for Carnot cycle model simulation

Variable Value Variable Value
HoH 2 Tesla C 20 K
HH 0 Tesla T 45
Cyti=0 0.5 Yok p 280 K
p 7900 45/, T, 273 K

In this model, each of the equations were evaluated numerically using a second order Runge-Kutta

method. This method solves for a point one step forward in magnetic field by using the slope of the

function evaluated halfway between the current point and the point 1 step forward, multiplying that slope

by the step size, and adding it to the value of the current point. Mathematically, this process appears as:

[ (H)] =]/ (H)], +A,uOHdZ—fH(,uOH[ L At

2

(,Uonfi))

i=1..N(2-49)
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where Ay, H is a finite step size for the magnetic field and 7 is the current step. The function f ( HH )

can be any function that has a known derivative with respect to magnetic field and a known initial

condition. For this problem, f can be the temperature 7, specific entropy s, or heat transfer ¢ for the

isothermal heat addition/rejection processes. The entropy is defined using the same method described in

Eqgs. (2-24)-(2-27), where a reference field is set at 0 Tesla and a reference temperature is 1 K.

By applying the equations for adiabatic magnetization or demagnetization outlined in Section
2.3.1 the state of the system can be described. Writing numerical estimates explicitly based on Eq. (2-49),
the temperature during the adiabatic magnetization or demagnetization at any node step in magnetic field

i can be expressed as:

vM, c v(uH)
~ T irr,mid,i A H mid i
l+.(cﬂo”)m,~d_,i| HoH |+ to () Tova

Au,H i=1.N (2-50)

where ( HH )ml_ , and T . are evaluated at the midpoint between the steps i and i+1. Note that the

irreversible magnetization function is also evaluated at( uH ) The midpoint applied magnetic field

mid *

1s:

(#H ), = Ho (2-51)
and midpoint temperature:
T, =T+ vM,,, IA,uZOH| L C C v(uH), ot (2-52)
()" s ) 7
The constant field specific heat is a function of the temperature and applied magnetic field as well:
C v(4H), 0,
( st )mzdz = Cupti=o0 +,U_0T (2-53)

The irreversible magnetization is described in terms of the applied magnetic field for this problem by:
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M

irr,i

= AMsin(ﬂﬂO—H"j
ILI()HmaX

ApgH
AM(,TLJ
;uonax

(2-54)

M

irr,mid,i
For the entropy calculation, the midpoint temperature is also used:

VMirr mid i .
=5, +———" Ay, H| i=1..N (2-55)

mid,i
Note that in these equations, Ay H is positive for magnetization and negative for demagnetization.

The isothermal heat addition/rejection processes are treated with a different set of equations
(described in Section 2.3.1 ) and therefore must be solved separately. Since the temperature at any time is
known, it does not have to be determined numerically: it is 7}, for the heat rejection process and 7. for
the heat addition process. However, since the magnetic field is not constant during these processes, the

entropy changes according to:

C vi,H

S =8, ——————a L Ay H (2-56)
Hy "
H .
T L Y (2-57)
Hy T

and the total amount of heat transferred up to node i is expressed as follows:

C vuH

i1 =4, __—MWA,UOH - VMirr,mid,i |A:u0H| (2'58)
Hy T,
C V,U Hmi i

91 =4, __#AﬂOH VM, iai |A:uOH| (2-59)
Hy T,
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In the previous equations (2-56)-(2-59), the temperature is the temperature of the thermal sink (7}, for
heat rejection and 7, for heat addition). Again it should be noted that the magnetic field step Ay, H is
positive for isothermal heat rejection and negative for heat addition..

These equations are evaluated numerically (using the MATLAB code included in Appendix A) and
the resulting Carnot cycles are plotted on a 7-s diagram. Figures 2-8, 2-9 and 2-10 show the cycle plotted

on a T-s diagram for vAM =0, 0.5, and 5 4

;;,”2 , respectively, with pertinent isofield entropy lines drawn.
The hot and cold reservoirs are 280 K and 273 K respectively for each plot. These diagrams also show
the numerical result for entropy as a function of temperature obtained from Eqgs. (2-55) and (2-56) or
(2-57) as compared to the analytical result obtained from evaluating Eq. (2-27). As these plots illustrate,
there is nearly perfect agreement between the numerical results to the analytical results, which verifies the
numerical calculations. Also, by examining the plots, it is evident that as the irreversible magnetization is
increased, the adiabatic magnetization and demagnetization processes have a characteristic curvature

(seen in Figure 2-10) in the direction of increasing entropy. This behavior is a direct result of entropy

generation and has a significant effect on the performance of the refrigeration cycle.
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Figure 2-8. T-s diagram for Carnot cycle operating between Ty =280 K and T¢ =273 K with AM =0 A-
m2/kg and isofield entropy lines shown
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Figure 2-10. 7-s diagram for Carnot cycle operatingzbetween Ty =280 K and T¢ =273 K with vAM =5
A-m/kg

Figure 2-11 shows the coefficient of performance as a function of the maximum irreversible
magnetization vAM for the magnetic Carnot cycle presented in Figure 2-8, Figure 2-9, and Figure 2-10.

The COP decreases sharply with increasing maximum irreversible magnetization, with the Carnot COP
occurring where vAM =0. Such a sharp decline in COP relative to a small increase in vAM suggests
that the performance of a magnetic refrigerator is adversely affected by even a small amount of hysteresis
that occurs in the material. However, magnetic materials that exhibit hysteresis also exhibit larger
adiabatic temperature changes of magnetization, which may offset the negative effect of hysteresis and

the characteristics of an AMRR cycle may be substantially different than this Carnot cycle.

Figure 2-12 shows the coefficient of performance of a Carnot refrigerator with hysteresis as a
function of the refrigeration temperature (7, ) for various values of vAM with the hot reservoir held
fixed at 7, =293 K. Like Figure 2-11, it shows that the COP decreases as vAM increases for all

refrigeration temperatures. Also, it indicates that as the temperature difference between the hot and cold
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thermal reservoirs increases, the relative impact of increasing vAM on the COP remains approximately

the same. For example, the COP with vAM =0.2 A;—"‘z is approximately )4 the value of the COP with
4

vAM =0 A;—:’Z for all values of T..

40

35
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20

COP

15

10

0 1 2 3 4 5
Maximim lrreversible Magnetization, vAM [A—mzlkg]

Figure 2-11. COP as a function of the maximum irreversible magnetization for magnetic Carnot cycle
with Ty =280 Kand T¢c =273 K
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Figure 2-12. COP as a function of the load temperature (T¢) for various values of the maximum
irreversible magnetization and Ty =293 K

Figure 2-13 illustrates the refrigeration capacity per mass of a Carnot refrigerator with hysteresis as a

function of the refrigerator temperature (7. ) for various values of AM with the hot reservoir held fixed at

T, =293 K. Like the COP, the refrigeration capacity decreases with increasing AM for all 7.
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Figure 2-13. Refrigeration capacity per mass as a function of the load temperature (T¢) for various
values of the maximum irreversible magnetization and Ty = 293 K
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Chapter 3 NUMERICAL MODEL DESCRIPTION

The numerical model used in this this thesis is described by Engelbrecht (2004, 2008) with
modifications to account for magnetic hysteresis in the regenerator energy balance equations [1, 2]. The
modified MATLAB code for the model is included in Appendix C. Engelbrecht (2008) provides a
detailed description of the AMR model used in this thesis, and outlines the governing heat transfer fluid
energy equations as well as Nusselt number, pressure drop, and heat transfer fluid property correlations
used in the model. Corrections for internal temperature gradients that exist in a packed sphere regenerator
are also discussed in depth. This chapter focuses on the modification of the regenerator magnetocaloric

material governing energy equations presented by Engelbrecht (2008) to account for magnetic hysteresis.

3.1 Model Input Parameters

Figure 3-1 is a conceptual schematic of the one-dimensional AMRR regenerator bed model with
important model input parameters shown. The model requires input parameters that define the heat
transfer fluid, the magnetic regenerator material, the regenerator geometry, and the applied magnetic

field.

The heat transfer fluid properties required by the model are the fluid specific heat capacity (cy),
density (py), thermal conductivity (ky), and viscosity (7). The temperatures of the fluid hot (7) and cold
(T¢) reservoirs must also be specified, and are assumed to be constant. The time-dependent mass flow (
m ) profile of the heat transfer fluid must also be defined, and should be based on the profile of the
applied magnetic field (u,/), which also must be specified in space (x) and time (¢). A positive mass flow
rate indicates flow from the hot to cold reservoir and a negative mass flow rate flows from the cold to hot
reservoir. The heat transfer fluid is assumed to be incompressible and the flow is assumed to be perfectly

distributed, meaning there is no spatial variation in the flow.

The magnetocaloric material properties required by the model are the regenerator material thermal

0s,

conductivity (k,), partial derivative of entropy with applied field at constant temperature (aﬂ =

) , constant
T
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field specific heat capacity (c, ), and density (o). Also, if the bed is layered, the model requires a

spatially-dependent Curie temperature (7¢,;.) input. The regenerator geometry is specified by the cross-
sectional area (4.), bed length (L), volume specific particle surface area (a;), particle hydraulic diameter
(dr), and bed porosity (¢). A Nusselt number dependent on the regenerator geometry, Reynolds number
of the flow (Rey), and Prandtl number of the fluid (Pry) is required. Likewise, a friction factor (fy) that is
dependent on the regenerator geometry and the Reynolds number of the fluid flow is required. Finally, an
effective thermal conductivity of the regenerator matrix is specified (k) that depends on the thermal
conductivity of the fluid, the thermal conductivity of the magnetocaloric material, the regenerator

geometry, the Reynolds number of the fluid flow, and the Prandtl number of the fluid.

The outputs of the model are the regenerator material (7,) and heat transfer fluid (7) temperature
distributions as a function of regenerator position (x) and cycle time (¢). These temperature distributions

are used along with the material property data to calculate performance parameters that characterize the

system, such as refrigeration capacity (Qref.) and the system coefficient of performance (COP).

heat transfer fluid properties:

(T)p, ke (T),pe, (T
. c/( )pf /( )/“/( ) T, ()

o

m(t) R cold end,

fluid enters at 7.

hot end,
fluid enters at 7,

T, (x0)

,uUH(x,t)
magnetic regenerator material properties:

0os,
k,(r),[ 5 J(T,%H), ¢, (T H). p,
T

ou,H

regenerator bed configuration
A, L, a,, d), & Nu(Re, Pr), f(Re), k4(Re, Pr)

Figure 3-1. Conceptual schematic of the one-dimensional regenerator bed showing heat transfer fluid,
magnetocaloric regenerator material, and bed geometry input parameters.
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The coefficient of performance (COP) used in this thesis is defined as:

COP =‘Q—’ (3-1)
| 417,

otor

where O, is the refrigeration load, W, = is the pump work, and W,

pump motor

is the motor work per cycle.

The motor work per cycle is defined as:

W;na
= (3-2)
77mot0r

motor

where W, . is the magnetic work per cycle and 7, is the motor efficiency. The pump work per cycle

mag

is defined in terms of the pressure gradient (<2 ) across the regenerator bed:

1 Lo
Wpu'np :—J.,g(

npump 0

m(t) dP
p, dx

jdzdx (3-3)

where 77,,,,, is the pump efficiency, L is the length of the regenerator bed, and 7 is the cycle time.

Engelbrecht (2008) presents correlations for the pressure gradient in packed sphere and parallel plate
regenerator geometries. A typographical error exists in this reference in the presentation of the Ergun
(1952) equation to model the pressure drop in a packed sphere regenerator (Egs. (2.57) and (2.58) in
reference [2]). The Ergun equation for the pressure gradient in a packed sphere regenerator is [3]:

dau,) (Bpu,
ap _[Aany | [BPH ), (3-4)
dx | & d

P

where the parameters 4 and B are based on the surface roughness of the particles and d, is the particle
diameter. Kaviany suggests values of 4 = 180 and B = 1.8 for smooth particles [4]. The particle diameter

is expressed in terms of the hydraulic diameter () according to:

d =>-""4d, (3-5)
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where € is the porosity of the packed sphere bed. Eq. (3-4) can be rearranged and the spatial pressure
gradient can be converted into a friction factor according to:

dp  f, i’

ar__Jm 3-6
dx  2p, 42d, 3-6)

Combining Egs. (3-4) and (3-6) yields an equation for the friction factor based on the particle hydraulic

diameter:

_ 8 4 4B
9Ref.5 3¢

Iy -7

where Reyis the Reynolds number of the fluid based on the hydraulic diameter of the packed particles.

The refrigeration load per cycle (Q,,, ) is defined as:

Orer = [hf (Te) =" (Tf,x=L)]m(t)dt for i(z)>0 (3-8)

O© ey

where &, (T C) is the enthalpy of the fluid evaluated at the cold reservoir temperature and 4, (T P L) is

the enthalpy of the fluid evaluated at the temperature of the fluid at the cold end of the bed (x = L) at
cycle time ¢. Note that a positive mass flow rate indicates a hot-to-cold blow providing refrigeration and

the integral in Eq. (3-8) is only evaluated during cycle times where the mass flow rate is positive.

3.2  Regenerator Governing Equations

For the spatially one-dimensional active magnetic refrigerator model developed at the UW, the
regenerator energy balance equation is modified to include an irreversible entropy generation source that
can be used to represent the effect of hysteresis on the thermodynamic cycle. The model solves a pair of
coupled partial differential equations in time and space for a cycle steady state condition. One equation

describes the energy balance for the fluid flow through the matrix, and the other describes the energy
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balance for magnetocaloric material and entrained fluid in the matrix. A schematic of the energy balance
for a differential segment of the regenerator is shown in Figure 3-2:

Nu,(Re,.Pr, )k, (T,)

d

Heat Transfer: a, AT, -1, )dx

aaaaaaa
vvvvvvvv
................

------

aaaaaa
vvvvvvv

vvvvvvvv

. _ ot BLLLLLL 2
Axial Conduction LHS: kcﬁ-AL. 3 AR IEEAT Axial Conduction RHS: k‘gA_ 6}':, +k3.A_ 0 I,
x & (& & [

dx

-------

............... T ax T ax?

........

.......
vvvvvv

A Ak
-------
;;;;;
-----

vvvvvvvv

0
Energy Storage: —| pA (1-¢)u, |dx
Magnetic Work Transfer: —A_(1-¢) u,H 6—:{,\:
/
Figure 3-2. Differential segment of the regenerator with energy balance terms included
where the differential control volume has differential length dx and cross-sectional area A..

The energy balance in Figure 3-2 is written as:

Nu-k oM o°’T, ou
S 1 (T { - »

a =T )+ 1-¢ H11_+k A_'—QA l-¢
f s s( f r) c( ) 0 at eff “ ¢ 6 2 r c( ) 6t

(3-9)

An entropy balance on a differential piece of magnetocaloric material is given by:

as =22, S o (3-10)

r

where S ¢en 18 the internal entropy generation related to hysteresis. By combining the energy balance for a

magnetocaloric material represented by Eq. (1-4) and the entropy balance for the same magnetocaloric

material represented by Eq. (3-10) we obtain:

dU=T dS-T. S

gen

+uH-d(V-M) (3-11)
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Dividing through by the mass of the material leads to:

S
duzT,,ds—T,,{ﬂJeroH-d(v-M) (3-12)
m

where (S gen / m) is the mass specific entropy generation. Equation (3-12) can be rearranged:

S
%__'UOH% 8s -T g (3-13)
o p, ot 8t m

Substituting Eq. (3-13) into Eq. (3-9) provides the overall energy balance equation for the regenerator:

Nu-k 2 S
LA (1,1 )k A, = p A1 s)T(a; —J (3-14)

h m

which can be further simplified by expressing the change in the regenerator specific entropy in terms of

the its magnetic field and temperature driven components:

Nu-k

Jﬂ

2 S
La A (T, T)+keijca =p A (1-¢)- 6T’+T o, 8”0 | (3-15)
o’ " ot 8y0H| m

h

The last term in Eq. (3-15) is related to internal entropy generation due to hysteresis. From Chapter 2, the
specific entropy generation rate is resolved in terms of an irreversible magnetization according to Eq.

(2-8). Substituting Eq. (2-8) into Eq. (3-15) yields:

Nu-k. 2
U (T T ) kg A T p g 0y | ey Ty, O | O a“—H‘ (3-16)
] o o T oumH| ot o1

as the final regenerator energy balance equation including hysteresis effects, which are expressed in terms

of the irreversible mass specific magnetization (v, ).

rr
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3.3 Discretization of Governing Regenerator Equations
The regenerator is discretized into Nx spatial nodes where the axial location of each node is given

by:
o1 .
X, =(1—5j— i=1.Nx (3-17)

where i is the axial subscript and L is the length of the regenerator bed. The temporal grid is similarly

separated into Nt nodes where the cycle time is given by:
t =j— j=0.Nt (3-18)
SV

where j is the temporal subscript.

Following Eq. (3-16), the regenerator energy balance equation for each control volume can be

discretized as follows:

Nug, k., L L
%GSAS ﬁ(T, N ) A E(l - g)p"c”"H " T

(7

rijtl ~ Arig

Nxk , ..A
eff i, 4
+T1[Tr i T

A

Nxk . ..

(3-19)
aSr a,uOH Xi’tj+]+tj n
ou,H y ot 2

aﬂH t,,+t
A.(1- w,) |2 [
c( 8),0,- (Vr irr )f,j‘ a[ [xNx: 2 ]

T

ri-1,j+1

_Ac (l_g)p)Tr i,j[

i=2..Nx-1

Since the ends of the bed are assumed to be insulated, the conduction terms vanish at the hot end (i =1)

and the cold end (7 = Nx). The regenerator energy balance at the hot end is:
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Nu, .k, L L (T, =T, )Nt
fLjvf rljt ri,j
djh . sAs Nx(T; 1,j+1 _Tf 1,(/’+1)+Ac Nx(l_g)prcyuH 1,j r
Nxk, ,.A Os OuH( ty,+t;
of 1j ¢ _ _ r 0 JH g
+f[T; 1 L 2,j+1:| =4, (1 g)prTr 1j (aﬂo sz } ot X B (3-20)

ou,H t..,+t.
4.(1- M, ot AR
+ c( g)pr(vr zrr)j,j‘ at [xNx’ 2 )

Similarly, by neglecting conduction at the cold end of the bed, the regenerator energy balance at the cold

end is:

Nu,, k,. L L (A R b
£ Nxj Vo, 7 Nx,j 7 Nx,j
djh ~a 4, Nx (Tr Ne,j+l Tf Nr, j+1 ) +4, Nx (1 - g)prcﬂoH 1j T
Nxk A Os ou-H t., +t.
eff Nx,, c _ r /J +7 )
+#[Tr w1 — 1 Nx-],j+1:| =—4, (1 - g)prTr Nx.j (QUOH ij ]- aot (XNX» - > ’ J (3-21)

o, H t,,+E,
4.(1- M, s L
+ c( g)pr(vr H"’”)i,j| 6t (xNxﬂ 2 ]

where (v. M, ) is the mass specific irreversible magnetization due to magnetic hysteresis. The final

term in Egs. (3-19) - (3-21) represents the energy lost due to the hysteresis entropy generation rate.
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Chapter 4 MAGNETIC EQUATIONS OF STATE

The thermodynamics of the magnetic phase change has become a growing field of interest since the
discovery of the near room temperature giant magnetocaloric effect (GMCE) in Gds(Si,Ge;..)s type

compounds by Pecharsky and Gschneider in 1997 [1].

Despite the magnetocaloric effect being well-documented, it is difficult to model accurately for most
materials since a general magnetic equation of state (akin to the Redlich-Kwong-Soave or Peng-Robinson
equations of state for compressible substances) does not exist. The Brillouin function is widely used as
the general equation of state for magnetic materials, and works well for second-order magnetic transition
(SOMT) materials such as pure gadolinium [2, 3]. The second-order magnetic transition is a continuous
phase transition, meaning that the partial derivative of the free energy with respect to any intensive state
variable is continuous [4]. Jiles (1998) presents equations of state for paramagnetic and ferromagnetic

materials based on the Brillouin function.

For first-order magnetic transition (FOMT) materials, where the magnetic phase change is
discontinuous, the quantum Brillouin model presented by Jiles is not accurate. Von Ranke, Oliveira, and
Gama (2004) propose a model for the first-order magnetic phase change through modifications to the
Brillouin equation of state [5]. Their model is a two-parameter equation of state that also accounts for

pressure effects.

4.1 Paramagnetic Equation of State

At temperatures above the Curie temperature (7¢,..), a ferromagnetic material becomes completely
paramagnetic. A fundamental equation of state for paramagnetism allows the thermodynamic properties
of a magnetic material to be evaluated above these temperatures. The quantum mean-field theory of
paramagnetism states that the volumetric magnetization for a multi-electron magnetic material can be

expressed as a function of applied field ( «,H ) and temperature (7) [3]:
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(4-1)

J H
M(ILIOH’T)ZMSBJ (Z):NgLJIUBBJ (M}

k,T

where M is the saturation magnetization, N is the number of atoms per unit volume, g, is the material-

dependent Lande factor, J is the total molecular angular momentum number, £, is the Bohr magneton,

and k, is the Boltzmann constant. The Brillouin function ( B, (Z) ) is defined as [3]:

B (z)=(2J+1Jcoth(2J+lzj—(ijcoth(ij (4-2)
! 2J 2J 2J 2J

where the argument z =g, Ju,u H /(k,T) is the ratio of the energy due to the applied magnetic field to

the thermal energy. In the limit of an ideal paramagnet (in small fields or high temperatures), the

Brillouin function can be estimated by a first order series expansion:

Nep S+ pH

Ng,JuB,(z) (4-3)
L B=J 3kBT
Eq. (4-3) is simply the Curie law:
2,2
yNeuJU+hpu H _ H (4-4)
3k, T T
which implies that:
2,2
c-N#ug H S+ 4-5)
3k,

where C is the Curie constant.

Eq. (4-1) is effectively a two-parameter magnetic equation of state, where the Lande factor (g;) and

the total angular momentum (J) can be adjusted to fit the characteristics of a certain material.
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4.2  Ferromagnetic Equation of State
For temperatures below the Curie temperature, a magnetic material exists in the ferromagnetic phase.
The quantum mean-field equation of state for a ferromagnetic material is related to the quantum mean-

field equation of state for a paramagnetic material, the difference is that ferromagnetic materials have

magnetic domains that interact with one another. The interaction leads to an effective internal field (

) that is dependent on both the applied field and magnetization. Thus the equation of state for a

ferromagnetic material can be written as:

(4-6)

J H+aM
M(/JoHaT):NgLJ,UBBJ[gL /13/10( ))

k,T

where « is the domain coupling constant that is representative of the strength of interactions between
neighboring domains. The magnetization of a ferromagnetic material is thus implicitly defined by itself.
Eq. (4-6) has three free parameters: ¢, J, and g; . In a high temperature limit, a ferromagnetic system

becomes paramagnetic, and the Brillouin function can be estimated by a first order series expansion:

Ng, i, J(J+)u, (H+aM
NgLJ:uBBJ(Z)z S T ( ) 4-7)
B

where the argument z=g,J 1,11, (H +aM ) / (kzT). The volumetric magnetization is thus:

_ Ng iy J(J+ D, (H+aM)

M 4-8
3k, T )
which can be rearranged to solve explicitly for M:
__ Neiuy I+ H/GkT) _ Ngjuy J(J+1) 4, H [ (3ky) (4-9)
1—aN g} uy J(J + D) u,H/Gk,T) T—aNgjuyJ(J+1)u,H/(3k,)

Under close inspection, Eq. (4-9) is the Curie-Weiss law:

M = C—WH (4-10)
T-T

Curie
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where the Curie-Weiss constant is C,, = Nu g, u; J (J +1) /(3k3) and the Curie temperature is

T

Curie

=aNu,g; 1, J(J +1) / (3k,). Since the Curie temperature is a measurable quantity, it is useful to

express the domain coupling constant () as a function of 7., :

urie

a= 3?3 {Curie (4_11)
Nu, g py J(J +1)

The expression for the domain coupling constant can be substituted into the argument of the Brillouin

function in Eq. (4-6) to yield:

J H 37. .M
gL /LlBlua + Curie j (4_12)

M(uyH,T)=Ng, Ju, B
(ﬂo ) &L Hg J( k,T Ng,py (J+1)T

which is dependent on the Curie temperature rather than the domain coupling constant.

Figure 4-1 shows the isothermal magnetic entropy change for pure gadolinium predicted by Eq.
(4-12) compared to experimental data for an applied field change from 0 to 1.5 Tesla. For gadolinium,
the Landé g-factor has a value of g; = 2 and the total angular momentum has a value of J = 3.5; these
values were used to generate the curve in Figure 4-1 [3]. The ferromagnetic equation of state generally
over-predicts the magnitude of the magnetic entropy change for temperatures below the Curie

temperature (293 K) and under-predicts it for temperatures above the Curie temperature.
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Figure 4-1. Isothermal magnetic entropy change for gadolinium for a magnetic field change of 0 to 1.5
Tesla computed using the mean field model and from experimental specific heat data. Data provided by
Astronautics Corporation of America.

4.3 Metamagnetic Phase Transitions
4.3.1 Equation of State Model

Von Ranke et al. (2004) propose an equation of state model for the metamagnetic phase transition of
first-order magnetic transition materials. The underlying assumption of the model is that the Curie

temperature (7, ) is linearly dependent on the change in volume due to magnetostriction that occurs

urie

during the phase change:
Teuie =Ty (1+ B ) (4-13)

where 7, is the Curie temperature in the absence of an external magnetic field at atmospheric pressure,

o 1is the dimensionless change in volume, and £ is a material-dependent, dimensionless parameter that
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is proportional to the derivative of Curie temperature with respect to volume (d7,.,,, /dV ). The
dimensionless change in volume @ is defined as:
w="L""0 (4-14)
"

where 7 is the material volume in the absence of an external magnetic field at the reference pressure. In

general, the Gibbs free energy for a magnetic, compressible material is defined as:
G=U+PV-HM-TS (4-15)

where U is the internal energy, P is pressure, V' is volume, H is the external magnetic field, M is the total
magnetic moment, 7 is the temperature, and S is the entropy. Using a molecular field approximation for a
ferromagnetic lattice that includes exchange, Zeeman, distortion, and pressure effects, the Gibbs free

energy is:

3(J \N 1
G=-=| —|=k,T.0c°-H JNo+—&* +Po-TS 4-16
2(]+1)V0 picO 81 Hp g K ( )

where J is the total angular momentum, N is the number of magnetic spins, kz is the Boltzmann constant,
T¢ is the Curie temperature, o is the dimensionless magnetization, H is the external magnetic field, g; is
the Landé g-factor, K is the compressibility, P is the externally applied pressure, and S is the magnetic

entropy. The dimensionless magnetization (o) is defined as:

M

o=———"— (4-17)
gL Mz J N

The minimum of the Gibbs free energy defined in Eq. (4-16) determines the equilibrium condition.
To determine the equilibrium condition, the partial derivative of the Gibbs free energy with respect to the
dimensionless change in volume at constant temperature, pressure, applied magnetic field, and number of

magnetic spins is set to zero:
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(6_Gj :_3[_J jﬁkgwu&p:o (4-18)
00 )rpyy  2\J+1)V, K

Rearranging Eq (4-18), the dimensionless volume change that minimizes the Gibbs free energy is:

3 J* N 5
o=————k, KT, fo"—PK 4-19
2J(J+1)V0 B Oﬂ ( )

By substituting Eq. (4-19) into Eq. (4-16) and taking the derivative of the Gibbs free energy with respect

to the dimensionless magnetization (& ), the magnetic equation of state is obtained:

4 3
oc=B, 33( J ja+g“uBJH+2 @+l —1\hno ;JHPKT, (4-20)
T\J+1 k, T s\2U+OT ) T J+) T

where B, indicates the Brillouin function, which is defined as:

Br,(x)=(2é;ljcoth(2;;1xj—[$jcoth(%xj (4-21)

The parameter 77 indicates the order of the magnetic phase transition and is directly related to the

parameter S by:

_S5[4JU+DY Nk

= = 2 4-22
2[2J +1)* =11V, KT P (4-22)

Thus, # is proportional to the square of the derivative of the Curie temperature with respect to volume. In

other words, it is indicative of the magnitude of the magneto-structural volume change.

4.3.2 Application to La(Fe1xSix)13Hy

A promising material for use in magnetic coolers is the La(Fe,Siy);3H, family of compounds. These
materials exhibit a large magnetocaloric effect resulting from a first order magnetic phase change. For
compositions with 0.87 < x < 0.90, the Curie temperature ranges from approximately 180 K to 330 K,

depending on the concentration of hydrogen (y).
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The only element to exhibit ferromagnetism in La(Fe;..Siy)i3Hy near its transition temperature is
iron (Fe). Hence, the total angular momentum of isolated elemental iron is used to approximate that of
La(Fe .«Siy)i3Hy . The Landé g-factor for isolated iron is approximately equal to its value for gadolinium

and is g; = 2 and the total angular momentum has a value of J = 1.5 [3].

Entropy data for the specific composition of La(Fe;.,Siy);3Hy with x =0.115 and y = 1.21 is available

for comparison. For this specific composition, the number of magnetic spins per mole is N=11.5N,
where the coefficient of N, represents the number of iron atoms per mole. Figure 4-2 shows the

isothermal entropy change predicted by the mean field model and experimental magnetization data for a
applied magnetic field change from 0 to 1.5 Tesla for La(FegssSio.115)13H121. The parameters chosen for
the mean field model are # =1.39 and T, = 283.5 K. These parameters most closely match the data and
were chosen based on trial-and-error. The model is fairly accurate in predicting the isothermal entropy
change for this material, but tends to over-predict the effect below 290 K, and under-predict for

temperatures above 290 K.
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Figure 4-2. Isothermal entropy change for La(Feg gg5Sig.115)13H1.21 predicted by mean field model and
from experimental magnetization data. Data provided by Astronautics Corporation of America.

4.4 Raw Data
Another method for characterizing magnetic material properties is through interpolation of raw data
for that material. The purpose of this section is to demonstrate how raw magnetization and specific heat

data can be used in lieu of an equation of state.

The raw data used in this demonstration were provided from Astronautics Corporation of America
and include four sets of magnetization measurements as a function of applied field taken along 12
isotherms for the FOMT material La(Fe(s5510.115)13H121. A set of data was taken for increasing applied
field and temperature, another for decreasing applied field and increasing temperature, a third for
increasing applied field and decreasing temperature, and a final set for decreasing applied field and
temperature. Table 4-1 lists the physical properties of the sample tested. Figure 4-3 is a photo of the

mounting apparatus used for a magnetization sample.
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Table 4-1. Test specimen details

Density 7170 k&,
Sample Mass 0.0163 g

Packed spheres w/~0.37 porosity inside
Geometry cylindrical housing with 0.10 in diameter.
Applied Field Parallel to the axis of cylindrical sample
Direction holder.

La(Fe,.Si,)3H,
Chemical Formula
where x = 0.115 and y = 1.21

Figure 4-3. Typical mounting apparatus for a magnetization sample. Photo courtesy of Astronautics
Corporation of America.
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Figure 4-4 shows the mass-specific magnetization as a function of applied field for various
temperatures when the temperature is increasing. The solid lines are representative of the magnetization
while the field is increasing with time, and the dotted lines represent the magnetization in a decreasing
field. Figure 4-5 is the mass-specific magnetization as a function of applied field for various temperatures
when the temperature is decreasing. Comparison of these two plots indicate that La(Feggs5S19.115)13H1.21

exhibits large magnetic hysteresis but little thermal hysteresis near the Curie temperature.
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Applied Field [T]

Magnetization [A-m?/kg]

Figure 4-4. Magnetization as a function of applied field for increasing temperatures in JF1-142A. Solid
lines indicate increasing field and dotted lines indicate decreasing field.
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Figure 4-5. Magnetization as a function of applied field for decreasing temperatures in JF1-142A. Solid
lines indicate increasing field and dotted lines indicate decreasing field.

4.4.1 Demagnetization Effects
A magnetization (M) is induced within the material when it is subjected to an applied magnetic field

(H,). Inside a material of finite geometry, these fields are oriented in opposite directions and result in an

internal magnetic field (H;,) that is smaller in magnitude than the applied magnetic field [3]. To calculate

the internal field, first the demagnetizing field ( /) is defined as:

H,=N,M (4-23)

where M is the volume magnetization of the material and N, is the material demagnetization factor. The

demagnetization factor is a function of material geometry, applied field, and temperature. The
demagnetization factor must be determined experimentally for complex geometries, but it can be found
analytically for simple geometries such as cylinders and spheres. Suggested values for the

demagnetization factor for many simple geometries have been published in the literature [3, 6]. Since the
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demagnetizing field vector is opposite the applied field vector, the magnitude of internal field vector is

simply expressed as:
H, =H -H,=H,-N,M (4-24)

Expressing the magnetization as a function of the calculated internal field and temperature yields the
corrected magnetization function. Demagnetizing effects should be accounted for in an efficient AMRR
design and can be detrimental to the performance for cycles using low applied field (< 2 Tesla) permanent

magnets [7].

4.4.2 Anhysteretic and Irreversible Magnetization

The anhysteretic magnetization function (M, ) is the hypothetical magnetization curve of a material
in the absence of magnetic hysteresis. The anhysteretic magnetization is calculated by taking the average

of the positive (M,,) and negative (M,,) magnetization curves for a given applied field and

temperature:
M HT)+M H,T
o, (.= LI T) Mo (1LT) 429)
where M, is the magnetization when the change in field with time is positive and M, , is the

magnetization when the change in field with time is negative. Bozorth (1951) states that the average of
the positive (M,,,) and negative (M,.,) magnetization branches of the hysteresis curve at a given applied
field is an accurate estimate of the anhysteretic magnetization [8]. Figure 4-6 is the anhysteretic
magnetization taken from the decreasing temperature magnetization data depicted in Figure 4-5 (not

corrected for demagnetization effects).



80

110
100}
90|
80|
70|
60|

288K 289K 290K 291K 292K 293K 294K

50[
40
30|
20(
10]

VM, [A-m?/kg]

0 0.4 0.8 1.2 1.6 2
Applied Field [T]

Figure 4-6. Anhysteretic magnetization for La(Fe(ggsSig.115)13H1.21 for the decreasing temperature
measurement. Not corrected for demagnetization.

Figure 4-7 shows the anhysteretic magnetization for La(FegssSi.115)13Hi21 after correcting for
demagnetization effects. The raw data were first corrected using Eq. (4-24), and the anhysteretic
magnetization was subsequently calculated with Eq. (4-25). The magnetization curves below the Curie
point (approximately 288 K for La(FeggssSio.115)13H121) should be tangent to the vertical axis at zero
applied field. The demagnetization factor was therefore empirically determined in order to satisfy this
requirement. The resulting demagnetization factor is approximately 0.15 for these data. For a perfect
sphere, the demagnetization factor is 0.33 [3]. Since the total geometry consists of many closely packed
spheres, the demagnetizing field will differ from that of a perfect sphere. There is no explicit
recommendation in the literature for packed spheres, but air gaps in samples are known to reduce the
effective demagnetizing field [9]. Thus, a value of 0.15 for the demagnetization factor is reasonable in
this case. Note that the graphical effect of the demagnetization factor is counterclockwise rotation of each

magnetization curve about the origin for the anhysteretic magnetization function.
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Figure 4-7. Anhysteretic magnetization for La(Feg gg5Sig.115)13H1.21 for the decreasing temperature
measurement. Corrected for demagnetization with NV, = 0.15.

The irreversible magnetization (M, ) is defined in order to recover the area swept by a given

hysteresis curve. The irreversible magnetization can be calculated according to:

M, (uH.T)=M,, (4,H.T)

. (4-26)

Mirr (ILIOH’T) =

The absolute value in Eq. (4-26) ensures a positive value for the irreversible magnetization which is
necessary since it is directly related to the entropy generation. The positive and negative magnetization

curves can be expressed in terms of the anhysteretic and irreversible magnetization:

MPOS (’UOH’ T) = Man (IUOH’T) _Mirr (/u()H,T) (4-27)
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Mneg (/LIOH’T):M{M (/LIOH’T)+M (/’IOHaT) (4'28)

wr

Figure 4-8 shows the irreversible magnetization for La(FeggsgsSio115)13H121 calculated using the data
associated with temperatures between 287 and 294 K. At temperatures below the Curie point (~288 K),
the irreversible magnetization becomes small. These data were extracted from the data shown in Figure

4-5 without the correction for demagnetization.
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Figure 4-8. Irreversible magnetization for La(Fe(ggsSi¢.115)13H1.21 for the decreasing temperature
measurement. Not corrected for demagnetization effects.

Figure 4-9 is the irreversible magnetization for the decreasing temperature measurement after it has
been corrected for demagnetization. Like the anhysteretic magnetization, the raw data were first
corrected, and then the anhysteretic magnetization was derived from the corrected data. By comparing
Figure 4-8 and Figure 4-9, the effect of applying the demagnetization factor becomes apparent.
Graphically, it reduces the width of the peaks but also causes their peaks to become higher. Since the

area underneath the curve is proportional the entropy generation and the entropy generation is constant
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whether or not demagnetization effects occur, the area underneath each curve should remain constant

before and after the application Eq. (4-24).
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Figure 4-9. Irreversible magnetization for La(Fe ggsSi¢.115)13H1.21 for the decreasing temperature
measurement. Corrected for demagnetization effects with N, = 0.15.

4.4.3 Specific Entropy Calculation

With the anhysteretic and irreversible magnetization calculated, the specific entropy of
La(FesssSig.115)13H 21 can be mapped as a function of both applied field and temperature. The total
differential of the specific entropy (ds) of the material can be divided into its temperature-driven and

applied magnetic field-driven components:

ds:(@j dT+[ Os j du,H. (4-29)
aT HoH a/u()]—lint T
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where u,H,, is the internal field. The Maxwell relation that relates the entropy to the anhysteretic

int

magnetization can be utilized:

( ds j _(6VMMJ (4-30)
OuH ), oT  ),u

as well as the definition of specific heat:

c
[&j = At (4-31)
oT)yn T

where ¢

41 18 the constant field specific heat. Substituting Egs. (4-30) and (4-31) into Eq. (4-29) yields:

ovM ,,
or

C
ds =1 dTJ{

j dpH,, (4-32)
T HoH

Since only the zero-field specific heat is known for this material (this information was also obtained from

Astronautics), Eq. (4-32) must be integrated first along a line of constant reference applied field (,%H,ef

= 0 Tesla) from a reference temperature (7, ) to the temperature of interest ( 7') :

T

S(T:TaluoH:/uoHref)_S(T:TrqfuuoH:/uoHref): J.%Hz%wdT (4-33)

Loy

where ¢ is the constant field specific heat at the reference field. Note that the second term on the

toH =pH,
right hand side of Eq. (4-32) vanishes for this integration since the field is not changing (d u,H =0).

Equation (4-32) can subsequently be integrated from the reference field and the temperature of interest to

the field of interest ( u,H ):

S(T:T,IUOH:,LlOH)_S(T:T’/uoH:lLlOHref):

i ( ovM ,,

duH., (4-34)
or jﬂ,” 0

Mo, s
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Now note that, in this case, the first term on the right side of Eq. (4-32) vanishes since the temperature is
not changing. Also, the derivative of the anhysteretic magnetization with respect to temperature at
constant field must be evaluated at the temperature of interest (7). Adding Egs. (4-33) and (4-34) allows

for a full mapping of the entropy function:

© Conti-uot,, wl oM -
S(THUOH)_S(T:Zef’/uOH::uOHref): j TdT+ J‘ dIUOHint (4_35)
Tor HoH, o HoH,T

For this data set, a reference entropy of 0 was set at a reference temperature of 283 K and a reference field

of 0 Tesla:
s(T=283 K, 14,H=0 T)=0 (4-36)

Substituting these reference states into (4-35) provides:

T HoH
s(T,uH) = J' cﬂ()%dT‘f' I (8\)@]\?} du,H.,, (4-37)
0 HoH T

283 K

The zero field specific heat capacity (c, ;) is known as a function of temperature for

La(FeogssSig115)13H121 and is presented in Figure 4-10 below. Note that the zero field specific heat

becomes very large at the Curie temperature due to the ferromagnetic to paramagnetic phase transition.
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Figure 4-10. Zero field specific heat for La(Fe sgsSi¢.115)13H1.21 as a function of temperature.

Utilizing the specific heat capacity data presented in Figure 4-10 and the adjusted anhysteretic
magnetization data provided in Figure 4-7, the specific entropy can be calculated with Eq. (4-37). The
specific entropy as a function of temperature and applied field near the Curie temperature for
La(FegggsSig.115)13H1 21 is shown in Figure 4-11. The large dip in the specific entropy surface along the

Curie temperature isotherm illustrates the magnetocaloric effect. For this material, the maximum

isothermal specific entropy decrease is approximately 15.7 kg+K for a field change from 0 to 2 Tesla.



87

Internal Field [T]

f temperature and internal field

ion o
t at 283 K and 0 applied field.

1s)13Hy 21 as a functi

1o,

1S s¢

.

Eie

T
s
A
S
R
s

[4-Bxyr] Adosug

Temperature [K]

fic entropy of La(Fe(ggsS

4-11. Speci

Figure

Reference entropy of 0

ith.

W1



88

REFERENCES

Pecharsky, V.K. and J.K.A. Gschneidner, Giant Magnetocaloric Effect in Gds(Si,Ge;). Physical

Review Letters, 1997. 78(23): p. 4494.

Brillouin, L., Les moments de rotation et le magnétisme dans la mécanique ondulatoire. J. Phys.

Radium, 1927. 8(2): p. 74-84.

Jiles, D., Introduction to Magnetism and Magnetic Materials. 2nd Edition ed. 1998: CRC Press.

568.

Gschneidner, K.A., V.K. Pecharsky, and A.O. Tsokol, Recent developments in magnetocaloric

materials. Reports on Progress in Physics, 2005. 68(6): p. 1479.

Von Ranke, P.J., N.A. de Oliveira, and S. Gama, Understanding the influence of the first-order
magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGel-x)4. Journal

of Magnetism and Magnetic Materials, 2004. 277(1-2): p. 78-83.

Goldfarb, R.B., Demagnetization Factors, in Concise Encyclopedia of Magnetic &

Superconducting Materials, J. Evetts, Editor. 1992: Oxford.

Peksoy, O. and A. Rowe, Demagnetizing effects in active magnetic regenerators. Journal of

Magnetism and Magnetic Materials, 2005. 288: p. 424-432.

Bozorth, R.M., Ferromagnetism. Bell Telephone Laboratories series. 1951: Van Nostrand. xvii,

968 p.

Dai, W., et al., Application of high-energy Nd-Fe-B magnets in the magnetic refrigeration.

Journal of Magnetism and Magnetic Materials, 2000. 218(1): p. 25-30.



&9

Chapter 5 PARAMETRIC STUDIES

5.1 Refrigeration Capacity Curves

Magnetic coolers, like vapor compression refrigeration systems, have characteristic refrigeration
capacity curves that show the refrigeration capacity and coefficient of performance (COP) as a function
of the heat transfer fluid mass flow rate. In the case of vapor compression systems, the working fluid is
both the refrigerant and the heat transfer fluid. For an AMRR system, the thermodynamic working

substance is the solid magnetocaloric material and the mass flow rate refers to the heat transfer fluid.
Figure 5-1 shows the COP and refrigeration capacity (Qref) as a function of the heat transfer fluid mass
flow rate amplitude for a properly configured AMRR system with SOMT material Gd-Er as the magnetic
refrigerant. Shown are curves depicting beds that are consist of a single material and infinitely layered.

Table 5-1 presents the inputs to the AMRR model used to generate Figure 5-1 and Figure 5-2. The mass

flow and magnetic field profiles used for this study are shown in Figure 5-3 and Figure 5-4, respectively.

Table 5-1. Inputs to AMRR model for refrigeration curves

Parameter Value Parameter Value

cycle time 0.2s dwell ratio 172

max magnetic field 15T regenerator type packed sphere
heat transfer fluid water particle diameter 0.0002 m
porosity 0.36 motor efficiency 0.9

heat rejection temperature 310K pump efficiency 0.7

load temperature 299 K number of beds 6

aspect ratio 0.2 regenerator volume 6L

In the case of an infinitely layered bed, the Curie temperature (7¢,..) is assumed to vary linearly

between the hot and cold reservoirs according to:

TCurt’e(x):TH_(TH_TC)% (5-1)
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where x/L is the dimensionless regenerator position, and 7y and T¢ are the hot and cold reservoir
temperatures, respectively. In the case of a bed composed of a single material (i.e., a single layer bed),
the Curie temperature is assumed to be a constant and is evaluated as the arithmetic mean of the hot and

cold reservoir temperatures:

T, +T,
TCurie = ( Z C) (5_2’)
2
Note the Curie temperature is not a function of regenerator position in this case.
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Figure 5-1. COP and refrigeration capacity as a function of heat transfer fluid mass flow rate amplitude
for Gd-Er. Curves for single layered and infinitely layered beds are shown.

As Figure 5-1 illustrates, there exist two mass flow rate amplitudes that can achieve a given
refrigeration capacity, up to some maximum possible refrigeration capacity for the bed. The larger mass
flow rate amplitude value corresponds to a condition where the regenerator matrix is flooded with heat
transfer fluid. This condition is undesirable since the value of the COP is reduced dramatically by an

increased pump work requirement. For a given refrigeration capacity, the operating condition that
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corresponds to the smaller value of mass flow rate should be chosen, since this condition yields a higher
COP. Also, shown in Figure 5-1 is the effect of layering the regenerator bed. For a given refrigeration

capacity, the COP at the optimal operating condition is increased by layering.

Figure 5-2 is the refrigeration capacity curve for the FOMT hysteretic material La(Fe,.Si,)i;sH,
showing the curves for cases with and without magnetic hysteresis modeled. The bed is infinitely layered
and operates under the condition listed in Table 5-1. The effect of hysteresis on cycle performance
becomes less significant at large mass flow rate amplitudes, since hysteretic losses are becoming small
relative to the pump work. Additionally, by comparison of Figure 5-2 and Figure 5-1, the potential
advantage of FOMT materials over SOMT materials is an increased refrigeration capacity for a given
operating condition. For example, the refrigeration capacity for a layered bed with hysteretic La(Fe,.
«Siy)13H, is approximately five greater than that of the same system operating with a layered bed of Gd-Er
for an operating point where the COP = 4. Also, Figure 5-2 shows that FOMT type materials may be

particularly advantageous for applications requiring large refrigeration capacities.
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Figure 5-2. COP and refrigeration capacity as a function of heat transfer fluid mass flow rate amplitude
for La(Fe;.Si,);3H,. Curves for infinitely layered beds with and without hysteresis are shown.

5.2 Space Conditioning Study

One potential use for magnetic coolers is space conditioning. A refrigeration capacity of

Qref', . =3.00 kW is chosen as a design criteria for a typical space cooling application in this study. A

gadolinium-erbium compound (Gd,..Er,) with a tunable Curie temperature is used to model a second-
order magnetic transition (SOMT) material and a lanthanum-iron-silicon hydride compound (La(Fe,.
«Siy)13H,) with a tunable Curie temperature is used to model a first-order magnetic transition (FOMT)
material. The beds are layered such that the Curie temperature of each layer varies linearly between load

and heat rejection temperatures. Heat exchangers are not explicitly modeled in this study.

5.2.1 Model Inputs
Table 5-2 lists the inputs for the AMRR model for the space conditioning parametric study. These

parameters are held constant, while the total regenerator volume (V), aspect ratio (4R), mass flow rate
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amplitude (m,,,,) are varied. The dwell ratio is defined as the ratio of the time in which the mass flow

rate is zero to the total cycle time. The aspect ratio is defined as the length of a single regenerator bed to

its diameter.

Table 5-2. Inputs to AMRR model for space conditioning study

Parameter Value Parameter Value

cycle time 0.2s dwell ratio 1/2

max magnetic field 15T regenerator type packed sphere
heat transfer fluid water particle diameter 0.0002 m
porosity 0.36 motor efficiency 0.9

heat rejection temperature 310K pump efficiency 0.7

load temperature 299 K number of beds 6

Figure 5-3 illustrates the mass flow rate as a function of cycle time, where the peak and trough
represent the positive and negative of the specified mass flow rate amplitude, respectively. Note that the

mass flow rate is zero for half of the cycle time, as specified by the dwell ratio listed in Table 5-2.

Mamp

Mass Flow Rate
o

-Mamp

0 0.1 0.2 0.3 0.4 0.5
Time [s]

Figure 5-3. Mass flow rate as a function of cycle time.
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Figure 5-4 shows the applied magnetic field as a function of time. During the first quarter of the
cycle, the magnetic field is linearly ramped from zero to its maximum value; it then remains at its
maximum value for the next quarter, decreases linearly from its maximum value to zero during the third
quarter, and finally is zero for the final quarter of cycle time. The mass flow rate and magnetic field

profiles are only functions of time, and do not vary spatially across the regenerator bed.

Applied Field [T]

0 0.1 0.2 0.3 0.4 0.5
Time [s]

Figure 5-4. Applied magnetic field as a function of cycle time.

5.2.2 Design Strategy

The UW AMRR model requires inputs such as an initial temperature distribution, magnetocaloric
refrigerant material, working fluid, regenerator geometry, magnetic field profile, and mass flow profile.
The model begins with an initial temperature distribution and numerically iterates the partial differential
equations forward through time until it reaches a temperature distribution that satisfies the convergence
criteria for steady state regenerator operation. The main outputs of the model include the regenerator and

fluid temperature distributions, from which important performance metrics such as the coefficient of
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performance (COP) and refrigeration capacity (Q'ref) can be calculated for a given magnetocaloric

refrigerant. The list of required inputs is outlined in detail in Chapter 3.

In order to specify a refrigeration capacity for a given regenerator volume and aspect ratio and
determine the corresponding mass flow rate amplitude, it is necessary to provide a guess value for the
fluid flow rate amplitude and check the refrigeration capacity that is output against the desired capacity.
It is best to provide a small mass flow rate as a guess value. A “small” mass flow rate in this sense is
taken relative to the size of the regenerator and desired cooling capacity. A small mass flow rate initial
guess ensures that the bed is not in the overloaded region of the refrigeration curve (as explained in
Section 5.1 ), which ensures that the operating condition that is ultimately identified will correspond to
the optimal COP. If the refrigeration capacity is above the design refrigeration capacity, then a smaller
mass flow rate amplitude than the initial guess is required to achieve the desired cooling capacity at the
optimal COP. If it is less than the design refrigeration capacity, then the mass flow rate amplitude must
be incrementally increased until the design refrigeration capacity is reached. The iterative process is
outlined in the flow diagram presented as Figure 5-5. This process is repeated for various combinations

of volume and aspect ratio.
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Figure 5-5. Model flow chart to find specified refrigeration capacity.

5.2.3 Modeling Results

For a given regenerator volume and refrigeration capacity, there exists an optimal aspect ratio that
balances axial conduction and pressure drop losses and therefore yields a maximum coefficient of
performance. Thus, for each volume, the aspect ratio is varied until an optimal value of the COP is found

using the golden section search optimization technique.

Regenerator Volume

For a fixed load temperature of 7 = 299 K, the regenerator volume is varied to examine its effect on
COP at the optimal aspect ratio for each volume. All other model parameters are held constant at the
values listed in Table 5-2. Figure 5-6 shows the coefficient of performance (COP) as a function of

regenerator volume; each point on the curve is associated with a unique, optimal aspect ratio and assumes



97

a layered bed with 60 layers for each material. Figure 5-7 shows the corresponding optimal aspect ratio
as a function of volume for each material. The three materials simulated are the SOMT material Gd;_Er,,
and the FOMT material La(Fe,;.Si,);3H,; the FOMT material is modeled with and without hysteresis

effects.

By inspection of Figure 5-6, it is clear that the hysteresis losses become greater with an increasing
volume. Consequently, for a given refrigeration capacity and temperature span, there exists an optimal
regenerator volume where the COP is maximized. For a 5 kW application with 7c =299 K and Ty =
310 K, Figure 5-6 demonstrates that a magnetic cooler with layered La(Fe,.Si,);3H, as the active
refrigerant performs better at this optimal volume (~ 4.3 L) than it would with layered Gd,_Er,. At larger
regenerator volumes, above approximately 7 liters, the layered gadolinium-erbium refrigerant

outperforms the FOMT La(Fe,.,Si,);3H, refrigerant.

10

9 La(Fel_XSix)lg,Hy
no hysteresis

Gd-Er

La(Fel_XSix)lg, Hy )/

COP []

0 2 4 6 8 10
Volume [L]

Figure 5-6. COP as a function of regenerator volume at its optimal aspect ratio and a load temperature
of T¢ =299 K for a layered bed with each material indicated.
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Figure 5-7. Optimal AR as a function of regenerator volume at a load temperature of 7¢ =299 K for
each material.

Load Temperature

In this study, the load temperature (7¢) is varied while the volume is held constant at § liters in order
to examine the effect of load temperature on the cycle COP. The aspect ratio is optimized at each value
of load temperature in order to yield the highest COP. The number of bed layers for each material is
fixed at N, = 60. Other pertinent model inputs are listed in Table 5-2. Figure 5-8 illustrates the COP as a
function of the load temperature with the bed set to its optimal aspect ratio for each material. Figure 5-9

shows the aspect ratio that yields the optimal COP as a function of the load temperature.

If hysteresis is neglected for La(Fe;.Si,);3H, then it is more efficient than the gadolinium-erbium
compound for all load temperatures. However, when hysteresis is accounted for, La(Fe,.Si,)3H, is only
more efficient than Gd,_.Er, at load temperatures that are below approximately 297.5 K, for this particular
application and bed volume. For a load temperature of 294 K, the COP resulting from La(Fe,.,Si,)3H, is

approximately 25% greater than that of Gd,_Er,.
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Figure 5-8. COP as a function of load temperature (7¢) at the optimal aspect ratio for an infinitely
layered regenerator bed with volume of 8 liters.
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Figure 5-9. Optimal aspect ratio as a function of load temperature (7¢) for a, an infinitely layered
regenerator with volume of 8 L.
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Figure 5-10 shows the COP as a function of load temperature (7¢) at the optimal aspect ratio for a
regenerator bed volume of 2 liters. Figure 5-11 and Figure 5-12 show the COP as a function of load
temperature (7¢) at the optimal aspect ratio for a regenerator bed volume of 4 and 6 liters, respectively.
Comparing the figures for regenerator volumes between 2 and 8 liters, the performance of a layered bed
with lanthanum-iron-silicon hydride is less sensitive to changes in regenerator volumes than the
performance of a bed layered with gadolinium-erbium. As the volume is increased, the load temperature
at which the COP of an AMR cycle with layered La(Fe,.Si,);3sH, and layered Gd-Er is identical
decreases. Hence for smaller volumes (2 L), La(Fe,,Si,)i3H, will outperform Gd-Er for load
temperatures below at least 304 K with a heat rejection temperature (7y) of 310 K for a 5 kW cooling

application.

18
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Figure 5-10. COP as a function of load temperature (7¢) at the optimal aspect ratio for an infinitely
layered regenerator bed with a volume of 2 liters.
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Figure 5-11. COP as a function of load temperature (7¢) at the optimal aspect ratio for an infinitely
layered regenerator bed with a volume of 4 liters.
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Figure 5-12. COP as a function of load temperature (7¢) at the optimal aspect ratio for an infinitely
layered regenerator bed with a volume of 6 liters.
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In order to compare the performance of the AMR cycle with each refrigerant, the COP of Gd-Er can
be used as a baseline for comparison. The percent deviation (%odev) of the COP of La(Fe,.,Si,)13H, from

the COP of Gd-Er can be represented as:

COPLaFeSiH - COF,

Y%dev = COP GAEr .(100%) (5-3)
GdEr

where COPpqpesiry 15 the coefficient of performance of the AMR cycle with La(Fe,.,.Si,);3H, as the
refrigerant and COPg, is the coefficient of performance of the AMR cycle with Gd-Er as the refrigerant.

In this study, the COP of each material will be evaluated at their respective optimal aspect ratios.

Figure 5-13 presents the COP percent deviation as a function of load temperature for various
values of regenerator volume. Lines are only drawn for operation points (load temperatures and volumes)
where both refrigerants are physically capable of producing 5 kW of refrigeration capacity. Positive
percent deviation indicates a performance advantage for La(Fe,.Si,);sH, whereas a negative percent
deviation indicates a performance advantage for Gd-Er. For regenerator volumes below 8 liters, the plot
indicates that a cycle with La(Fe,,Si,);3sH, runs more efficiently than one with Gd-Er for load

temperatures below 297 K.
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Figure 5-13. COP percent deviation as a function of load temperature for various values of regenerator
volume for a S kW cooling application.

Bed Layering

In the studies presented in the previous sections, the number of layers across each bed was assumed
constant at N, = 60. In each regenerator bed, the Curie temperature of each layer varies linearly between
the load and heat rejection temperatures. In this study, the effect of the number of layers on cycle
performance is evaluated at a specified refrigeration capacity of 5 kW, a regenerator volume of 8 liters,
and a heat rejection temperature of 310 K for various load temperatures. Other pertinent model inputs are

listed in Table 5-2. The equation used to model the spatial distribution of the Curie temperature is:

)[(z‘—o.s)m—o.s

L

=T, —(T, - T, (5-4)

Curie,i

where i is the spatial node number, Nx is the number of spatial nodes, and N; is the number of layers. The

argument of the f ] operator indicates rounding up to the nearest integer.
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Figure 5-14 shows the coefficient of performance as a function of the number of layers in each
regenerator bed for various values of load temperature at their optimal aspect ratio with Gd,..Er, as the
working refrigerant. For all load temperatures, the COP is negligibly affected by an increase in the
number of layers above approximately 10 layers. Thus, for applications in this range of load

temperatures, a bed with 10 layers is sufficient.

16

: Tc =304K
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294 K
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Layers [-]

Figure 5-14. COP as a function of the number of layers in each regenerator bed for various load
temperatures at their respective optimal aspect ratios with Gd;_.Er, as the refrigerant.

Figure 5-15 shows the COP as a function of the number of layers in each regenerator bed for various
load temperatures at their respective optimal aspect ratios with La(Fe,.,Si,);3H, as the active refrigerant.
For each temperature span, there exists a number of layers below which the cycle cannot produce the
specified refrigeration capacity of 5 kW. As the temperature span increases, the minimum number of
layers required to achieve the desired refrigeration capacity also increases; larger temperature spans
require more layers to operate properly. Figure 5-16 shows the minimum number of layers required by an

AMRR cycle running with regenerator beds layered with Gd-Er and La(Fe,..Si,)i3H, to achieve a
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refrigeration capacity of 5 kW at the optimal aspect ratio. The minimum number of layers for a load
temperature of 294 K is N, = 19, as illustrated by Figure 5-16. Thus, in general, a FOMT refrigerant

requires more bed layers than a SOMT refrigerant to operate properly at the same refrigeration capacity.

10 —

9[ Tc=304K

6l 299 K

COP []

294 K

0 10 20 30 40 50 60
Layers [-]

Figure 5-15. COP as a function of the number of layers in each regenerator bed for various load
temperatures at their respective optimal aspect ratios with La(Fe;_Si,);3H, as the refrigerant.
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Figure 5-16. Minimum number of layers required each regenerator bed to achieve a refrigeration
capacity of S kW for AMRR cycle running with Gd-Er and La(Fe;.Si,);3H,,

Hysteresis Scaling

In this study, the load temperature, the heat rejection temperature, volume and other model inputs
listed in Table 5-2 are held constant, while the hysteresis scaling factor (C}) is varied from 0 to 6 (0 to
600%). La(Fe,;.Si,)i3H, is used as the refrigerant in this study and the number of layers is fixed at N, =
60. A hysteresis scaling factor of 0 indicates no hysteresis in the model while a factor of 1 indicates the
amount of hysteresis that La(Fe,,Si,);3H, would normally exhibit under these conditions. Figure 5-17
shows the COP at the optimal aspect ratio as a function of percent hysteresis for La(Fe;..Si,);3H, for
various regenerator volumes. Percent hysteresis is defined as the hysteresis scaling factor multiplied by

100%.
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Figure 5-17. COP at the optimal aspect ratio as a function of percent hysteresis for La(Fe;..Si,);3H, for
various regenerator volumes. 100% hysteresis indicates normal hysteresis losses for La(Fe;..Si.)3H,
under specified conditions.

As shown by Figure 5-17, increasing the hysteresis is detrimental to the COP of the cycle for all
regenerator volumes. However, for smaller volumes, increasing the percent hysteresis has less effect on
cycle performance than it does for larger volumes. This behavior is due to hysteresis being a volumetric
loss, which therefore becomes more substantial at larger regenerator volumes. Thus, a well-designed
regenerator with a FOMT refrigerant should be small enough to negate hysteretic losses but large enough

to provide the required cooling power at an acceptable COP.

5.3 Magnetocaloric Property Modulation

There are two parameters that are often used in the literature to characterize magnetocaloric
materials: the adiabatic temperature change (AT,;) and the isothermal entropy change (Asy). These
values are expressed for a given change in magnetic field (AuyH), generally from 0 Tesla to a specified
value. The specific isothermal entropy change is determined from a material’s partial derivative of

entropy with respect to magnetic field at constant temperature according to:
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HoH,
0s
Asy (T, 1 H , 1t H,, p1,H, ) = j [ : j du,H (5-5)
T
which, by use of the Maxwell relation shown as Eq. (2-4) can be rewritten as:

HoH, av M
Asy, (TvﬂoH’:uoHlnuoHZ) = I (%j duH (5-6)
HoH

HoH,

where (%) is the partial derivative of the mass specific anhysteretic magnetization with respect to
HoH

temperature at constant applied field. The parameters uoH; and uyH, are the initial and final applied

magnetic field of integration.

The adiabatic temperature change can be written as:

“l T (ovM
AT, (T, 1 H sty H,, 1, H, ) = J_(T

C
woH, = uoH

j du,H (5-7)
HH

where ¢, is the magnetic material mass specific heat capacity at a constant magnetic field. By

inspection of Eq. (5-6), the isothermal entropy change is proportional to the partial derivative of the mass
specific anhysteretic magnetization with respect to temperature at constant applied field. From Eq. (5-7),
the adiabatic temperature change is also proportional to the partial derivative of the mass specific
anhysteretic magnetization with respect to temperature at constant applied field and is inversely

proportional to the constant applied field specific heat capacity.

Using a set of property data or an equation of state, the adiabatic temperature and isothermal entropy
changes can be computed. These values can then be artificially modulated using scaling factors.
Changing these parameters with scaling factors allows parametric studies on the mutual effect of AT,,and
Asy on AMRR system performance. The scaling factor Cy, is chosen to modify partial derivative of the

mass specific anhysteretic magnetization with respect to temperature at constant applied field and the



scaling factor C. is chosen to modify the mass specific heat at constant applied field.

derivative is written as:

M
av}” an j d/,lOH
T HH

C
ds=C,, 23” dT+CM[

c

In a similar fashion, Eqgs. (5-6) and (5-7) can be written to include the scaling factors:

Mot
Asy, (TaﬂoHnuoHlaﬂon’CM): _[ Cy

HoH,

(GVM

T an du,H
orT LH 0

AT,

ad c

s T avrMan
C

(Ts,UoHuuonUoHpCc): I C.— EY: jﬂoﬁdﬂoH

HoH, HoH
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The entropy

(5-8)

(5-9)

(5-10)

Note that now the isothermal entropy change and adiabatic temperature change are functions of Cj, and

C., respectively.

Utilizing the scaling factors, a parametric study is conducted to examine the effect of the adiabatic

temperature and isothermal entropy changes on AMRR cycle performance. The inputs for the UW

AMRR model are listed in Table 5-3. The mass flow and magnetic field profiles are same as described in

Section 5.2 .
Table 5-3. Inputs to AMRR model for magnetocaloric parameter study
Parameter Value Parameter Value
cycle time 0.2s dwell ratio 172
max magnetic field 15T regenerator type packed sphere
heat transfer fluid water particle diameter 0.0002 m
porosity 0.36 motor efficiency 0.9
heat rejection temperature 310K pump efficiency 0.7
load temperature 299 K number of beds 6

Figure 5-18 shows the COP at the optimal aspect ratio of layered bed with a Gd-Er compound as a

function of adiabatic temperature and (negative) isothermal entropy change. The field change is from 0 to
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1.5 Tesla. The base properties of the SOMT Gd-Er compound were modified according to Egs. (5-8),

(5-9), and (5-10). The volume-specific refrigeration capacity (wa / V') is held constant at 1.25 kW/L.

By examination of Figure 5-18, the COP of this system is not a strong function of adiabatic temperature

change for values above AT, , =4 K, below this value of AT,; the COP begins to decrease rapidly.
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Figure 5-18. COP at the optimal aspect ratio as a function of negative isothermal entropy change and
adiabatic entropy change for Gd-Er layered bed with a volume specific refrigeration capacity of 1.25
kW/L.

Figure 5-19 shows the regenerator volume specific refrigeration capacity as a function of adiabatic
temperature change and isothermal entropy change for a infinitely layered regenerator bed of Gd-Er with

a specified COP = 4. As the figure shows, the volume specific refrigeration capacity is not a strong
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function of adiabatic temperature change above AT,, =4 K for negative isothermal entropy changes

below As,, =20 .
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Figure 5-19. Volume Specific refrigeration capacity at the optimal aspect ratio as a function of negative
isothermal entropy change and adiabatic entropy change for Gd-Er layered bed with a specified COP of
4.

Figure 5-20 is the COP at the optimal aspect ratio of a layered bed with modified La(Fe,.,Si,);3H, as
a function of adiabatic temperature and (negative) isothermal entropy change. The field change is from 0
to 1.5 Tesla and the hysteresis is set to zero. Adiabatic temperature changes below 4 K are shown. In this

range, the COP becomes a strong function of A7, , and only weakly depends on As,, .
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Figure 5-20. COP at the optimal aspect ratio as a function of negative isothermal entropy change and
adiabatic entropy change for La(Fe,..Si,)3H, layered bed with a volume specific refrigeration capacity
of 1.25 kW/L. Hysteresis is set to zero.

Figure 5-21 is the COP at the optimal aspect ratio of a layered bed with modified La(Fe,.Si,)i3H, as
a function of adiabatic temperature and (negative) isothermal entropy change with hysteresis set to unity
for a volume of 4 liters. The field change is from 0 to 1.5. Adiabatic temperature changes below 4 K are
shown. By comparison to Figure 5-20, the COP is slightly less for a hysteretic material. The detriment to
hysteresis is relatively small since it was used for a relatively small bed of 4 liters. Again, because

hysteresis is a volumetric loss, increasing the bed size increases the hysteretic losses.
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Figure 5-21. COP at the optimal aspect ratio as a function of negative isothermal entropy change and
adiabatic entropy change for La(Fe,..Si,)3H, layered bed with a volume specific refrigeration capacity
of 1.25 kW/L. Hysteresis is set to unity for a volume of 4 L.

For an infinitely layered regenerator bed in an AMRR cycle for a field change from 0 to 1.5 Tesla, an
ideal material would have an adiabatic temperature change above 4 Kelvin and large isothermal entropy
change near room temperature, with minimal hysteresis. However, hysteretic losses can be mitigated by

designing for a minimal regenerator volume for a particular application.
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Chapter 6 CONCLUSIONS

Room temperature magnetic refrigeration is a promising alternative to vapor compression
refrigeration because it has a high theoretical efficiency, uses non-ozone depleting refrigerants, and
exhibits relatively quiet operation. However, magnetic cooling system design presents numerous
challenges that must be overcome before becoming a practical alternative to vapor compression systems.
The most encouraging thermodynamic cycle for magnetic refrigeration is the active magnetic regenerative
refrigeration (AMRR) cycle using a layered magnetocaloric refrigerant. By the nature of the solid state
refrigerant, magnetic coolers require a separate heat transfer fluid to physically transport heat from one
location to another, which requires complex pumping systems. These systems also require large magnets
and high magnetic fields to operate properly. Additionally, there is currently difficulty understanding the
thermodynamics of these systems since detailed magnetocaloric equations of state are not readily

available for exotic refrigerants that exhibit the most promise for use in magnetic coolers.

Pure gadolinium is considered the baseline magnetic refrigerant for use in magnetic coolers because
its magnetocaloric properties near room temperature have been measured and modeled most precisely.
Gadolinium exhibits a modest magnetocaloric effect and has been successfully used in prototype
magnetic coolers. In 1997, Pecharsky and Gschneidner announced the discovery of the giant
magnetocaloric effect (GMCE) in Gds(Si;Ge,)s type compounds. Due to the nature of their phase
transition near room temperature, these compounds exhibit a large magnetocaloric effect but also exhibit
magnetic hysteresis. Since the discovery of the GMCE, several promising hysteretic compounds that
exhibit a GMCE under magnetic field changes have been discovered, including La(Fe,..Si,)i3H,
compounds. These materials have a tunable Curie temperature, making them ideal for use in a layered
regenerator bed. Extensive property data of these materials are not publically available, and the effects of

magnetic hysteresis on AMRR performance are not well understood.

This thesis presents a thermodynamic model of magnetic hysteresis that treats the phenomenon as a

form of internal entropy generation. This model of magnetic hysteresis is based on the Jiles-Atherton
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model of magnetic hysteresis. The proposed model defines the magnetization induced in the material in
terms of reversible, anhysteretic magnetization and irreversible, hysteretic magnetization components.
For an incompressible substance, the anhysteretic magnetization (M,,) is a function of applied magnetic
field and temperature only. However, for the same incompressible substance (assuming no thermal
hysteresis), the irreversible magnetization (M) is a complex function of instantaneous applied magnetic
field (uyH), temperature (7), maximum applied magnetic field (uoH,.), minimum applied magnetic field

(uoH in), and the rate of change of applied magnetic field in time (alg’tH

). Since there are limited

property data for hysteretic materials, the irreversible magnetization is treated as being independent of the

rate of change of applied field in this thesis.

The proposed thermodynamic model of irreversible magnetization was tested for its effect on the
performance of a magnetic Carnot cycle. The irreversible magnetization was defined as a sinusoidal
function that is zero at the minimum and maximum applied magnetic fields. The area enclosed by the
hysteretic H-M curve was shown to be equivalent to the integral of the irreversible magnetization function
over 1 cycle, and is representative of the exergy destroyed per cycle due to hysteresis. At a given load
and rejection temperature, as the irreversible magnetization function was increased in magnitude, the
COP of the cycle was shown to decrease. This simple model verified the thermodynamic treatment of

hysteresis as a source of internal entropy generation in the ideal limit of a Carnot cycle.

The model of entropy generation that was implemented in the Carnot cycle model was subsequently
implemented into the governing regenerator equations used in the the one-dimensional University of
Wisconsin numerical model developed by Engelbrecht (2005, 2008). By combining the first and second
laws of thermodynamics, the internal energy of the regenerator material is resolved in terms of the
temperature and magnetic field driven components, the latter of which includes the entropy generated due
to hysteresis. The entropy generation rate can be further resolved in terms of the irreversible
magnetization according to Eq. (2-8). The equations are subsequently discretized and can be solved for

steady state operating conditions.
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Chapter 4 discussed magnetic equations of state for ferromagnetic, paramagnetic, and metamagnetic
phase transition materials. These equations of state are all based on the Brillouin function. For first order
magnetic transition type materials, the magnetic equation of state model proposed by Von Ranke et al.
(2004) may be appropriate. The anhysteretic magnetization as a function of applied field and temperature
can be estimated from raw magnetization data. One method is to estimate it as the arithmetic mean of the
induced magnetization while the applied field is increasing and magnetization wiled the field is for a
given temperature and applied magnetic field. For a given temperature and applied field, the irreversible
magnetization is thus the absolute value of the difference between the anhysteretic magnetization and
actual magnetization (field increasing or decreasing). These data can, along with data for a constant field
specific heat, be used to create a map of the magnetocaloric material entropy as a function of temperature

and applied field to be used by the 1D UW model.

The effect of magnetic hysteresis of AMRR systems was quantified through parametric studies with
the hysteresis-modified 1D UW model. For a specified refrigeration capacity and load temperature, a bed
layered with La(Fe;..Si,)i3H, showed a higher COP at relatively small volumes when compared to a bed
layered with Gd-Er. Furthermore, for a specified refrigeration capacity and regenerator volume, a bed
layered with La(Fe,.,Si,);3H, was shown to outperform a bed layered with Gd-Er at large temperature
spans. As regenerator volume increases, hysteretic losses outweigh the capacity gains associated with
adding more refrigerant. Parametric studies also implied that the adiabatic temperature change may not

have a significant effect on the performance of a layered bed for AT, , >4 K.
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6.1 Recommendations for Future Work

There are several areas for future work to improve upon the accuracy of the model:

Implementation of an accurate equation of state for a hysteretic material, which includes the

irreversible magnetization.

Investigate the dependence of irreversible magnetization for a given material on the
minimum and maximum applied magnetic fields and the rate at which the applied field is

ramped.

Experimental validation of the magnetic hysteresis model.

Investigate the effect of hysteresis on an AMRR heat pump cycle.

Model the thermal interaction between the regenerator bed and the regenerator housing.
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Appendix A  SINGLE SHOT MATLAB MODEL

clear;

muH_max=2; %maximum applied magnetic field in Tesla
vdM_max=0.1; %mass specific irreversible magnetization In A-m"2/kg
cmuOH=0.5; %specific heat in J/kg-k

rho=1; %density of fictional material in kg/m"3
tau=4; %period of magnetic field oscillation iIn s
c=273; %Curie constant in K-A/T-m

h=0.008; %time step In s

t=0:h:12;

n=length(t)-1;

T(1)=293; %initial temperature in K

vM(1)=0;

muH=muH_max*(1-cos(2*pi*t/tau))/2; %sinusoidal function for magnetic field

for i=1:n

dmuHdt=muH_max*pi*sin(2*pi*t(i)/tau)/tau; %derivative of magnetic field
w.r.t. time

dsdT=cmuOH/T(i); %partial derivative of entropy w.r.t. temperature

dvMandT=-c*muH(i)/(rho*(T(i)"2)); %partial derivative of entropy w.r.t.
magnetic field

VM_irr(i)=vdM_max*sin(muH(i)*pi/muH_max); %irreversible magnetization

dTdt=((vM_irr(1)/T(i1))*abs(dmuHdt)-dvMandT*dmuHdt)/dsdT;
T(i+D)=T(i)+h*dTdt;
vM(1)=c*muH(i)/T(i)-vM_irr(i)*sign(dmuHdt); %magnetization
muHi (1)=muH(i);
S _gen_dot(i)=vM_irr(i)*abs(dmuHdt)/T(i); %entropy generation rate
ti(nD)=t(i); %new time vector for plotting

end

Tiso=(290:15/(n):305)";

i=1:n+l %entropy calculation - analytical
s(i)=cmuOH*log(T(1))-c*((muH(I)/T(i))"2)/(2*rho);
s_min(i)=cmuOH*log(Tiso(1));
s_max(i1)=cmuOH*log(Tiso(1))-c*((muH_max/Tiso(1))"2)/(2*rho);

for i=1:n-1
dmuHdt=muH_max*pi*sin(2*pi*t(i)/tau)/tau;
dS_gen(i)=((W_irr(i+1)+wW_irr(i))/(T(i+1)+T(i)))*abs(dmuHdt)*(t(i+1)-
t(i)); %integrate S _gen function numerically; trapezoidal rule
end

%compare area of curve to area of irreversible curve
A _mag=trapz(vM,muHi) %evaluate @ t=tau
A magirr=2*trapz(vM_irr,muHi) %evaluate @ t=tau/2

%calculate total entropy generated

S_gen=sum(dS_gen) %result of integrating S _gen_dot function
S_gen2=max(s)-min(s) %result of subtracting the final entropy from the
initial entropy, should be equal.
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Appendix B

clear all;
muH_max=2;
rho=7900;
cmuOHO0=0.5;
C=20;
mu0=4*pi*10"-7;
c=C/mu0;

tau=4;
dM_max=5*rho;

T H=280.00;
h=0.001;
muH=0:h:muH_max;

CARNOT CYCLE MATLAB MODEL

Y%maximum applied magnetic field in Tesla
%Desnity In kg/m"3

%constant field specific heat in J/kg-K
%Curie constant in K

%Permeability of free space in T-m/A
%adjusted curie constant A-K/T-m

%cycle duration in seconds

Y%maximum irreversible magnetization in A/m
%hot reservoir temperature in K

%applied magnetic field step size iIn Tesla
%ramp up magnetic field

n=length(muH)-1; %number of iterations

m=1;

%preallocate space for matricies
T=zeros(n,m);

s_pos=zeros(n,m);

Tl=zeros(n,m);

s_neg=zeros(n,m);

for k=1:m

T _C=273; %cold reservoir temperature in K
T(1,K=T_C(k); %Initial condition for magnetizatiom
T1(n+1,k)=T _H; %initial condition for demagnetization
s_pos(1,k)=cmuOHO*1og(T_C(k)); %Initial entropy w/ref @ O applied field
T=1 K
%dM_max=I1inspace(0,rho*5,m)";
magnetization constants in A/m

k
for i=1:n %increment magnetic field from minimum to maximum

if (T(i,k)<T_H) %adiabatic magnetization
Mirr=dM_max*sin(pi*muH(i)/muH_max); %irreversible magnetization

and
%various maximum irreversible

function

dvMdT=-(c*muH(1))/(rho*(T(i,k))"2); %maxwell relation for
dsdmuH

cmuOH=cmuOHO+c*muH(1)"2/ (rho*T(i,k)"2); %function for constant
field specific heat

dsdT=cmuOH/T(i,k); %partial derivative of entropy wrt temperature

dTdmuH=((Mirr/(rho*T(i,k)))-dvMdT)/dsdT; %eliminate time

derivatives and rearrange entropy balance

%calculate midpoint values

T_mid=T(i1,k)+h*dTdmuH/2;
dvMdT_mid=-(c*(muH(i)+h/2))/(rho*(T_mid)"2);
cmuOHmid=cmuOHO+c*(muH(i)+h/2)"2/ (rho*T_mid"2);
dsdT_mid=cmuOHmid/T_mid;
Mirr_mid=dM_max*sin(pi*(muH(i)+h/2)/muH_max);
dTdmuH_mid=((Mirr_mid/(rho*T_mid))-dvMdT_mid)/dsdT_mid;

%calculate properties
s_pos(i+l,k)=s_pos(i,k)+h*(Mirr_mid/(rho*T_mid)); %entropy vector
T(i+1,k)=T(i,k)+h*dTdmuH_mid; %temperature
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else %isothermal heat rejection
Mirr=dM_max*sin(pi*(muH(i)+h/2)/muH_max);
dvMdT=-(c*muH(1))/(rho*(T_H)"2); %only derivative for dsdmuH
exists since T=constant
dvMdT_mid=-(c*(muH(i)+h/2))/(rho*(T_H)"2);
s_pos(i+l,k)=s_pos(i,k)+h*dvMdT_mid;

%calculate entriopy and heat rejection
dg_o(i+1,k)=h*T_H*(dvMdT_mid-(Mirr/(rho*T_H)));
T(i+1)=T_H; %temperature is constant
end
end
g_out=sum(dq_o0)"; %total amount of heat rejection
s_min=cmuOHO*log(T_H)-c*((muH_max/T_H)"2)/(2*rho); %initial condition for
demag @ T=T_H & muH=muH_max
s_max=cmuOHO*log(T_C(k));
s_neg(n+1,k)=s_min; %IC
for i=n+1:(-1):2 %decrement magnetic field from maximum to minimum
it (T1(1)>T_C) %adiabatic demagnetization
Mirr=dM_max*sin(pi*muH(i)/muH_max); %irreversible magnetization
function
dvMdT=-(c*muH(1))/(2*rho*(T1(i,k))"2);
cmuOH=cmuOHO+c*muH(i)"2/ (rho*T1(i,k)"2);
dsdT=cmuOH/T1(i,Kk);
dTdmuH=((~-Mirr/(rho*T1(i,k)))-dvMdT)/dsdT;

%calculate midpoint values

T1 mid=T1(i,k)+h*dTdmuH/2;
dvMdT_mid=-(c*(muH(1)-h/2))/(rho*(T1_mid)"2);
cmuOHmid=cmuOHO+c*(muH(i)+h/2)"2/(rho*T1_mid"2);
dsdT_mid=cmuOHmid/T1 _mid;
Mirr_mid=dM_max*sin(pi*(muH(i)-h/2)/muH_max);
dTdmuH_mid=((-Mirr_mid/(rho*T1_mid))-dvMdT_mid)/dsdT_mid;

%calculate temperature and entropy

T1(i-1,Kk)=T1(i,k)-h*dTdmuH_mid; %temperature; steps are negative
since field iIs decreasing

s _neg(i-1,k)=s_neg(i,k)-h*dvMdT_mid-h*dTdmuH_mid*dsdT_mid;

else %isothermal heat addition from cold reservoir
Mirr=dM_max*sin(pi*(muH(i)-h/2)/muH_max);
dvMdT=-(c*muH(1))/(rho*(T_C(k))"2);
dvMdT_mid=-(c*(muH(i)-h/2))/(rho*(T_C(k))"2);

%calculate entropy and heat absorption
s_neg(i-1,k)=s_neg(i,k)-h*dvMdT_mid;
dg_i (i-1,k)=-h*T_C(K)*(dvMdT_mid+(Mirr/(rho*T_C(k))));
T1(1-1,K)=T_C(K);
end
end
g_in=sum(dg_i)"; %total amount of heat absorption

for i=1:n+1
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s_pos_ana(i,k)=cmuOHO*log(T (i ,K))-c*((MuH(D)/T (i1 ,k))"2)/(2*rho);
%analytical calculation of entropy for magnetization
end
for i=1:n+l

s _neg_ana(i)=cmuOHO*log(T1(i,k))-c*((muH(i)™N2)/T1(i,k)"2)/(2*rho);
%analytical calculation of entropy for demagnetization
end

COP(1,k)=q_in(k)/abs(g_in(k)+g_out(k)) %coefficient of performance for cycle
COP_carnot=T_C(k)/(T_H-T_C(k)) %COP for an ideal carnot cycle
end
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Appendix C MATLAB AMRR REGENERATOR BED MODEL CODE

%% This is the main regenerator model developed at UW. This function takes
%% inputs that define the system and forcing functions, such as mass flow
%% profile, and calculates the regenerator performance. This model does

%% not account for heat exchangers. The main outputs of the model are the
%% cyclical steady state temperatures of the fluid and solid over an entire
%% cycle and the heat rejection, cooling power, and pumping power of the

%% system.

%% This model has been modified to include the effects of hysteresis

function[mdot,muoH,heat_rej,ref _load, ref_cap,COP,COP_h,Wmag,Wpump,mdot_amp,Ql
0ss,Qent,Qentt,DS_iso,DT_ad]=AMR_pl_imp(TC,TH,TCurie,mdot_amp,Vol,AR,n,Ch,Cx,
Cy,tau)

%%Bed paramters

fluid="eg50-;

n_beds=6;

bed_vol=Vol/n_beds;

D=(4*bed_vol/(AR*pi))"(1/3);

L=AR*D;

muoH_max=1.5; %Tesla

dwell=1/2;

delay=(1-dwell)*_45*tau;

unbal=0.0;

flow_ramp=0.25;

dh=0.0002; %m

Ac=pi*D"2/4; %m"2

eps=0.36;

as=6*(1-eps)/dh; %m™2/m"3

L Fflow=1*L; %ratio of bed length to bed length in which there is flow
n_motor=.9; %electric motor efficiency

n_pump=.7; %pump efficiency

massflowinputs=[dwell,delay,flow_ramp,unbal];

m=120;

% n=60;

reltol=0.0002;

wt=1;

N=2*m*n+m+n;

A=spalloc(N,N,4*N);

B=spalloc(N,1,N);

%modelcheck=0; %l=show T-s and enthalpy flux graphs O=don"t show them

i=0:n;

xFf=L*i"/n;

J=1:m;
tf=("-0.5)*tau/m;
i=1l:n;
xr=(i"-0.5)*L/n";
J=0:m;

tr=j "*tau/m;
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mdot=mdotsmoothunbal_delay(tf,tau,mdot _amp,massflowinputs);
muoH=muoH_ramp(xr,tr,tau,muoH_max);

for j=0:m
Trg(:,Jj+1)=TH-xr*(TH-TC)/L;

end

for j=1:m
TFg(:,J)=TH-xF*(TH-TC)/L;

end

%Calculate lumped cap correction factor
if(strcmp(Fluid, "water™))
[muf,kf,cF,rhof,hf,sf]=props_water(Tfg);
elseif(strcmp(fluid, "air"))
[muf,kF,cf,rhof,hf,st]=props_air(Tfg);
elseif(strcmp(Fluid, "water_const®))
[muf,kf,cF,rhof,cfunc,T_ref]=Fluidprops(Tfg);
elseif(strcmp(fluid, "eg50™))
[muf,kf,cF,rhof,hf,sF]=props_ethgly50 3(Tfg);
end

[cmuoH,dsdmuoH, rhor ,kr,sr,hr,vM_irr,DS_iso,DT_ad]=JF1142A(Trg,TCurie,muoH,Cx,
Cy);

cf_av=mean(mean(cf));

cmuoH_av=mean(mean(cmuoH));

done=0;
while(done==0)
if(strcmp(Fluid, "water™))
[muf,kf,cF,rhof,hf,sf]=props_water(Tfg);
elseif(strcmp(fluid, "air®))
[muf,kf,cF,rhof,hf,sF]=props_air(Tfg);
elseif(strcmp(Fluid, "water_const"))
[muf,kf,cF,rhof,cfunc,T_ref]=Fluidprops(Tfg);
elseif(strcmp(fluid, "eg50™))
[muf,kf,cF,rhof,hf,sF]=props_ethgly50 3(Tfg);
end
for i=1:n
mufn(i, )=(muf(i, )+muf(i+l,:))/2;
ctn(i,:)=(cf(i,:)+cF(i+l,:))/2;
kfn(i, :)=(kF(i,)+kF(i+1,:))/2;
end
Prf=cfn_*mufn./(kfn);
Ref=ones(n,1)*abs(mdot")*dh./(Ac*mufn);

[cmuoH,dsdmuoH, rhor ,kr,sr,hr,vM_irr,DS_iso,DT_ad]=JF1142A(Trg,TCurie,muoH,Cx,
Cy); %JF1142A nh Gd94Er6

cf_av=mean(mean(cf));

cmuoH_av=mean(mean(cmuoH));

R=(rhof*eps*cf_av)/(rhor*(1-eps)*cmuoH_av);

AF=1+1.764*R+1.0064*R"2; %correction factor

v=mdot/ (Ac*rhof);

[Nuf,dP,keff]=sph_part 1(Ref,Prf,eps, kfn, kr,v,dh,mufn,rhof,1,1,1);
%cNu, cff,cnk

for j=1:m

f(:,))=dP(:,J)*2*dh./(rhof*v()"2);
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end

Bi=(Nuf.*kfn)/(2*kr);

Fo=kfn*tau./(rhof*ctn*(dh/2)"2);

Fo_av=mean(mean(Fo));

Bi_av=mean(mean(Bi));
chi=Fo_av*exp(0.246196-0.84878*log(Fo_av)-0.05639*(log(Fo_av))"2);
DFFc=1/(1+Bi_av*chi/5);
eta_c=1/(1+(2*pi/(3*Bi_av*Fo_av)*(1/DFFc))"2)~(1/2);
rhor=eta_c*rhor;

for j=1:m
cmuoH( -, j)=(cmuoH(:, j)+cmuoH(:,j+1))/2;
dsdmuoH(:, j)=(dsdmuoH(:, j)+dsdmuoH(:,j+1))/2;
v iarr(GL )= iarr(CL,J)+vM_irr(:,j+1))/2;
end
%Fill matrices used to solved temperature profile
for j=1:m
if(mdot(j)>=0)
%hot-to-cold flow
i=1:n;
A(((N+1)*@ -1 +i+1-1)*N+(n+1)*(J -
D)+i+1)=Nuf(:,J) -*kfn(:,j)*as*Ac./((1+chi(:,]J)-*Bi(:,3)/5)*(2*dh))+n*mdot(J)*
ctn(:,j)/L;
A(((+D)*-D)+i-1+1-1D)*N+(n+1)*( -
D)+i+1)=Nuf(:,J) -*kfn(:,j)*as*Ac./((1+chi(:,])-*Bi(:,}])/5)*(2*dh))-
n*mdot(J)*ctn(:,j)/L;
A(((n+D)*m+n*J+i-1D)*N+(n+1)*(G-1)+i+1)=-
Nuf(:,J)-*kfn(:,j)*as*Ac./((1+chi(:,]J)-*Bi(:,J)/5)*(2*dh));
A(((N+D)*m+n*-1)+i-1)*N+(n+1)*(G-1)+i+1)=-
Nuf(:,J)-*kfn(:,j)*as*Ac./((L+chi(:,]J)-*Bi(:,]J)/5)*(2*dh));
B((n+1)*(G-1)+i+1,1)=abs(Ff(:,]) -*mdot(J)"3/(2*rhof 2*Ac” 2*dh));
%Viscous dissipation
i=0;
AC(N+1)*J-1)+i+1, (n+1)*(-1)+i+1)=1;
B((n+1)*(-1)+i+1,1)=TH;

else
if(mdot(j)<0)
%cold-to-hot flow
i=0:(n-1);

A((+1)*(-1)+i+1-1)*N+(n+1)*(J -
D)+i+1)=Nuf(:,J)-*kfn(:,j)*as*Ac./((1+chi(:,]J)-*Bi(:,j)/5)*(2*dh))-
mdot(J)*cfn(:,jJ)*n/L;

A(((+D)*@G-D)+i+1+1-1D)*N+(n+1)*( -

D +i+1)=Nuf(:,j)-*kfn(:,j)*as*Ac./((1+chi(:,]).-*Bi(:,3)/5)*(2*dh))+mdot(j)*cF
n(:z,3)*n/L;

A(((n+D)*m+n*j+i+1-1)*N+(n+1)*G-1)+i+1)=-
Nuf(:,J)-*kfn(:,j)*as*Ac./((1+chi(:,J).*Bi(:,J)/5)*(2*dh));

A(((+D)*m+n*G-D)+i+1-1)*N+(n+1)*(G-1) +i+1)=-
Nuf(:,J).-*kfn(:,j)*as*Ac./((1+chi(:,j)-*Bi(:,j)/5)*(2*dh));

B((n+1)*(-
D+i+l,1)=abs(fF(:,J) -*mdot(J)"3/(2*rhof 2*Ac”2*dh)); %viscous dissipation
i=n;

A((N+D)*@-D+i+1, (n+1)*-1)+i+1)=1;

B((n+1)*(G-1)+i+1,1)=TC;

else
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%no flow

end
end
end
for j=1:m
i=1l:n;
A(((Nn+D)*-D)+i+1-1D)*N+(n+1)*m+n*j+i)=-
Nuf(:,J)-*kfn(:,j)*as*Ac./((1+chi(:,]J)-*Bi(:,J)/5)*(2*dh));
A(((N+D)*-D)+i-1+1-1)*N+(n+1)*m+n*j+i)=-
Nuf(:,J)-*kfn(:,j)*as*Ac./((Q1+chi(:,J).*Bi(:,j)/5)*(2*dh));
B((n+1)*m+n*j+i,1)=-Ac*(1-
eps)*rhor*((Trg(:,J+1)+Trg(:,§))/2) -*dsdmuoH(:,j) -*(muoH(:,j+1)-
muoH(:,j))*m/tau. ..
+Ch*Ac*(1-eps)*rhor.*vM_irr(:,j).-*abs(muoH(:, j+1)-muoH(:,j))*m/tau;
i=2:(n-1);
AN+ *m+n*j+i-
D*N+(n+1)*m+n*j+i)=Nuf(i”,j) -*kfn(i",j)*as*Ac./((L+chi(i",j)-*Bi(i",j)/5)*(2
*dh))+Ac*(rhof*eps*cfn(i", j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n"2*keff(i", j)*Ac/L"2;
A(((+D)*m+n*(G-1D)+i-
D*N+(n+1)*m+n*j+i)=Nuf(i*,j) -*kfn(i",j)*as*Ac./((L+chi(i",j)-*Bi(i",j)/5)*(2
*dh))-Ac*(rhof*eps*cfn(i”,j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n"2*keff(i", j)*Ac/L"2;
A(((N+D)*m+n*(G-1)+(1-1)-1)*N+(n+1)*m+n*j+i)=-
n"2*keffF(i",J)*Ac/(2*L"2);
A(((n+D)*m+n*()+(1-1)-D)*N+(n+1)*m+n*j+i)=-n"2*kefF(i ", J)*Ac/(2*L"2);
A(((n+D)*m+n*(G-1)+(i+1)-1)*N+(n+1)*m+n*j+i)=-
n"2*keff(i",j)*Ac/(2*L"2);
A+ *m+n* () +(I+1) -1 *N+(n+1)*m+n*j+i)=-n"2*kefF(i ", j)*Ac/(2*L"2);
o1

AN+ *m+n*j+i-

D)*N+(n+1)*m+n*j+i)=Nuf(i~,j) -*kfn(i",j)*as*Ac./((L+chi (i, j)-*Bi(i",j)/5)*(2
*dh))+Ac*(rhof*eps*cfn(i", j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n""2*keff(i", j)*Ac/(2*L"2);;

A(((+D)*m+n*(G-D)+i-

D)*N+(n+1)*m+n*j+i)=Nuf(i~,j) -*kfn(i",j)*as*Ac./((L+chi(i",j)-*Bi(i",j)/5)*(2
*dh))-Ac*(rhof*eps*cfn(i”,j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n"2*keff(i~, j)*Ac/(2*L"2);

A(((n+D)*m+n*G-1)+(1+1)-1)*N+(n+1)*m+n*j+i)=-
n"2*keff(i",j)*Ac./(2*L"2);

A(((n+D)*m+n*(G)+(1+1)-D)*N+(n+D)*m+n*j+i)=—-n"2*kefF(i ", j)*Ac./(2*L"2);

i=n;

A(((n+D)*m+n*j+i-
D)*N+(n+1)*m+n*J+i)=Nuf(i~,j) . *kfn(i~,j)*as*Ac./((1+chi(i",J)-*Bi(i",j)/5)*(2
*dh))+Ac*(rhof*eps*ctn(i~,j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n"2*keff(i*",Jj)*Ac/(2*L"2);;

A(((n+D)*m+n*(G-1)+i-

D)*N+(n+1)*m+n*J+i)=Nuf(i~,j) . *kfn(i",j)*as*Ac./((1+chi(i",J)-*Bi(i",j)/5)*(2
*dh))-Ac*(rhof*eps*cfn(i~", j)+(1-
eps)*rhor*cmuoH(i ", j))*m/tau+n"2*keff(i", j)*Ac/(2*L"2);

A(((n+D)*m+n*(G-1)+(i-1)-1)*N+(n+1)*m+n*j+i)=-
n"2*kefF(i",j)*Ac./(2*L"2);

A(((+D)*m+n* () +(1-1)-1D)*N+(n+1)*m+n*j+i)=-n"2*kefF(i ", j)*Ac./(2*L"2);

end
3=0;
i=1l:n;
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A(((n+D)*m+n*J+i-1)*N+(n+1)*m+n*j+i)=1;
A(((n+D)*m+n*m+1-1)*N+(n+1)*m+n*j+i)=-1;
X=A\B;
for j=1:m
i=0:n;
TFCL, D=Full(X((n+1)*(-1)+i+1));
end
for j=0:m
i=1l:n;
Tr(C,J+D)=Fful l(X((n+1)*m+n*j+i1));
end
err=max(max(max(abs(Tf-Tfg))) ,max(max(abs(Tr-Trg))))
if(err<reltol)
if(strcmp(Fluid, "water®))
[muf,kf,cf,rhof,hf,sf]=props_water(Tf);
elseif(strcmp(fluid, "air®))
[muf,kf,cF,rhof,hf,sF]=props_air(Tf);
elseif(stremp(fluid, "water_const®))
[muf,kf,cF,rhof,hf,sF]=Fluidprops(Tf);
elseif(strcmp(Fluid, "eg507))
[muf,kf,cF,rhof,hf,sF]=props_ethgly50 3(Tf);
end

[cmuoH,dsdmuoH, rhor ,kr,sr,hr,vM_irr,DS_iso,DT_ad]=JF1142A(Trg,TCurie,muoH,Cx,
Cy); %JF1142A nh Gd94Er6
done=1;%Relaxation process complete
else
TFg=TFf*wt+TFfg*(1-wt);
Trg=Tr*wt+Trg*(1-wt);
end %Update guess temp values
end
for i=1:n
for j=1:m
TEn(i, §)=CTF(i, j)+TF(i+1,5))/2;
Trn(i,J))=(TFfG,J+Tr(i,j+1))/2;
end
end
for i=1:m
if abs(mdot(i))<mdot_amp
Tfa(:,i1)=Tfn(:z,i);
else
Tfa(:,1)=Tfn(:,1);
end
end

Tout_avg=trapz(tf(1:m/2),Tf(n+1,1:m/2)*)/(tF(m/2,1)-tF(1,1));
eff=(TH-Tout_avg)/(TH-TC);
U=mdot_amp*cf(1,1)*tau/(2*Ac*L*(1-eps)*rhor*cmuoH(1,1));
Crat=Ac*L*(1-eps)*rhor*cmuoH(1,1)/(mdot_amp*cf(1,1)*tau/2);

%Calculate regenerator bed capacity

for i=1:n
dcapr(i)=trapz(tr,cmuoH(i,:))/tau;

end

capr=sum(dcapr)*rhor*Ac*L/n;
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%Calculate parameters for lumped heat capacitance corrections
V=Ac*L;

crtot=mean(mean(cmuoH));

cftot=mean(mean(cf));

Cr=rhor*V*(1-eps)*crtot;

Cf=rhof*V*(eps)*cftot;

R=C¥/Cr;

lambda=tau*L_flow/(L*n_beds);
U=mdot_amp*cftot*lambda/(Cr+Cf);
NTU=Nuf(1,19)*kFf(1,19)*Ac*L*as/(dh*mdot_amp*cf(1,19));

for i=1:(n+1)
hflux(i,1l)=sum(mdot.*hf(i,:)")*tau/m;
sTlux(i,l)=sum(mdot.*sf(i,:)")*tau/m;
end
%Calculate energy loss due to pressure drop across the bed and pumping
Y%power
v=mdot/ (Ac*rhof);
alpha=(1-eps)"2/eps”3;
beta=(1-eps)/eps"3;
A=180; %for Ergun model from Fand et al
B=1.8; %for Ergun model from Fand et al
for j=1:m
dP(:,j)=abs(Ff(:,j)-*mdot(j)"2/(2*rhof*Ac”"2)*L/(n*dh)); %delta P in Pa
dWpump(:,j)=abs(mdot(§)/rhof*dP(:,j)); %W

dP_ergun(:,j)=(A*alpha*muf(:,j)/dh"2*abs(v(j))+B*beta*rhof/dh*v(j)"2)*L/n;
%Pa
end
deltaP=sum(dP,1);
deltaP_ergun=sum(dP_ergun,1);
Wpump=sum(sum(dWpump, 1) ,2)*tau/m; %J
%Calculate Energy Change due to Thermal Entropy Change per cycle
for j=1:m
dQentt(:,PD=Tr(:,j+1)-Tr(:,j)) -*L/n*Ac*(1-eps)*rhor.*cmuoH(:,j);
end
Qentt=sum(sum(dQentt,1),2);

%Calculate Energy Change due to Magnetic Entropy Change per cycle
for j=1:m

dQent(:,j)=Ac*(1-
eps)*rhor*((Tr(:,j+D+Tr(:,3))/2) . *dsdmuoH(:,J) -*(muoH(:, j+1)-muoH(:,J))*L/n;
end
Qent=sum(sum(dQent,1),2);

%Calculate Heat Loss Per Cycle Due to Hysteresis

for j=1:m
dQloss(:,j)=-Ch*Ac*(1-eps)*rhor._*vM_irr(:,J)-*abs(muoH(:,j+1)-

muoH(:,j))*L/n;

end

Qloss=sum(sum(dQloss,1),2);

%calculate total cooling in the cycle (J) and cooling rate (W)
ref_load=-hflux(n+1); %J
ref_cap=ref_load/tau/1000*n_beds %kW
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%calculate heat rejection in the cycle (J) and heat rejection rate (W)
heat load=-hflux(1); %J

heat_rej=heat_load*n_beds/tau/1000 %kWw
Wmag=heat_load-ref_load-Wpump;%hFlux(n+1)-hflux(1l);
Wmotor=(Wmag)/n_motor;

%Calculate COP from cooling power, magnetic work and pump work
COP=ref_load/ (Wmotor+Wpump/n_pump)

COP_h=heat_load/ (Wmotor+Wpump/n_pump)

COP_Carnot=(TC)/(TH-TC);



Part 2

A 2-D NUMERICAL MODEL TO DETERMINE THE IMPACT OF
REGENERATOR HOUSING HEAT CAPACITY ON ACTIVE MAGNETIC
REGENERATIVE REFRIGERATORS

Abstract

Magnetic refrigeration is based on the magnetocaloric effect, which couples the entropy in a magnetic material to a
change in magnetic field. Consequently, a magnetocaloric material may be used as the thermodynamic working fluid
in a cycle that produces refrigeration. The magnetocaloric effect is highest around the Curie temperature and may
produce a maximum adiabatic temperature change of about 2K/Tesla. Because this temperature change is too small
for any practical refrigeration application, the concept of an Active Magnetic Regenerative Refrigeration (AMRR)
system was introduced as a means of producing a larger temperature lift. Pecharsky et al. [1] provide a thorough

background of the magnetocaloric effect, magnetic refrigeration, and the AMRR cycle.

The performance of the AMRR cycle is highly dependent on the heat transfer coefficient between the heat transfer
fluid and the magnetic material, which is typically represented in terms of a Nusselt number. When operating at room
temperature, these systems generally require high Prandtl number fluids and operate at low Reynolds numbers (Re <
100). Since the heat transfer coefficient is a function of Reynolds number and Prandtl number, correlations are used
to determine the Nusselt number. However, Nusselt number correlations for flow through a packed bed are typically
determined using a gaseous test fluid with a moderate Prandtl number and high Reynolds number. Few correlations
exist for high Prandtl, low Reynolds number flows and therefore these moderate Prandtl number correlations are
often used in AMRR models to determine the heat transfer coefficient. Frishmann et al [2] discuss the difficulty in
determining the Nusselt correlations for high Prandtl number fluids when the Reynolds number becomes relatively
low (Re < 10) and suggest that at such low Reynolds numbers, the heat capacity of the regenerator housing can have
a large impact on the behavior of the regenerator. Nielsen et al. developed a 2-D transient model of a passive magnetic
regenerative regenerator system in order to examine the impact of the regenerator housing on the behavior of the
device and therefore on the measurement of the Nusselt number using single-blow type testing [3]. It was concluded
that at low Reynolds numbers, the regenerator wall housing reduced the regenerator’s effectiveness by as much as

18%.

A 2-D, transient numerical model of an active magnetic regenerative refrigeration system has been developed based
on the 2-D passive model developed by Nielsen. The model couples the working heat transfer fluid with the
regenerator housing heat capacity. The key modification presented in this project is the addition of the magnetocaloric
effect to the regenerator solid. The numerical model is then used to quantify the cycle performance of the AMRR

with respect to the housing heat capacity.



Nomenclature

AP Pressure drop [Pa] nr Number of radial nodes
AT,q4 Adiabatic temperature change [K] nt Number of timesteps

Ar; Spacing between radial nodes [m] nx Number of axial nodes
ASy, Magnetic entropy change [J/kg-K] p Density [kg/m?]

At Time change between nodes [s] Pr Prandtl number

Ax Spacing between axial nodes [m] q Heat transfer rate[ W]
AV, Volume of grid cell at location i, j [m?] Qrer Refrigeration load [J]

a Thermal Diffusivity [m?/s] Qrej Heat rejection [J]

Ac Cross-sectional area [m?] r Radial direction

c Specific heat [J/kg-K] Ry Radius of fluid-solid domain [m]
CFL Courant-Friedrichs-Lewy Number R, Radius of wall domain [m]
corp Coefficient of Performance [-] 7 Radial location at j [m]

dp Hydraulic diameter [m] Re Reynolds number

d, Diameter of bed sphere [m] s Entropy [J/kg-K]

) Thermal wave propagation fraction [-] T Temperature [K]

£ Porosity [-] toim Simulation time [s]

h Convective heat transfer coefficient [W/(m-K)] u Velocity [m/s]

k Thermal conductivity [W/(m-K)] u Dynamic viscosity [Pa-s]
kaisp Thermal dispersion [W/(w-K)] uoH Magnetic field strength [Tesla]
Kstar Static thermal conductivity of bed [W/(w-K)] x Axial direction

L Length of regenerator [m] Winag Magnetic Work [J]

m Mass flow rate [kg/s] @ Thermal Utilization [-]
Nu Nusselt number P Thermal mass ratio [-]
1  Introduction

Warburg discovered the magnetocaloric effect (MCE) in 1881 after noticing that there was a resulting temperature
change in iron when an external magnetic field was applied [4]. However, it wasn’t until 1926 and 1927 when
Debye [5] and Giauque [6] independently explained the MCE in detail and proposed the first practical use of this
effect. The process, known as adiabatic demagnetization, was suggested to reach ultra-low temperatures (below
1K). In 1933 Giauque and MacDougall [7] experimentally proved that ultra-low temperatures were attainable with
the MCE by cooling Gd»(SO4);3-8H,0 to 0.25K. In recent years, there has been a great deal of interest in using the

MCE not only cryogenic refrigeration but also room temperature refrigeration.

1.1 The Magnetocaloric Effect

The First Law of Thermodynamics for a closed system gives the following differential energy balance:

where 6 Q;, is the differential amount of heat transferred into the system, §W,,,,; is the differential amount of work
done by the system, and dU is the differential change in internal energy of the system. There are many different

types of work that can be done on a system: mechanical, electrical, magnetic, chemical, etc. By substituting in the

6Qin = Wy +dU




definition of mechanical work and the Second Law of Thermodynamics, Equation 1.1 can be rewritten in terms of

the well known Fundamental Property Relation:

dU = TdS — PdV (12)

It can be seen that the variables used to appropriately substitute for heat and work in Equation 1.2 are the product
of an extensive property and an intensive property of the system. The heat transfer is defined as the product of the
intensive property, temperature, and the extensive property, entropy. Similarly, mechanical work is defined by the
product of the intensive property, pressure, and the extensive property, volume. These pairs of variables are defined
as the canonically conjugate thermodynamic variables [8] and can be used to define other energy transfers such as
magnetic work. Guggenheim defined magnetic work as the product of applied magnetic field (uyH) and magnetic

moment (VM) [9]. Rewriting Equation 1.2 in terms of the magnetic work gives:

dU = TdS + poHd(VM) (13)

A comparison can be made between terms in Equations 1.2 and 1.3 such that applied magnetic field is analogous to
pressure of a mechanical system and magnetic moment is analogous to the inverse of volume. Note the difference
in signs in Equations 1.2 and 1.3 is due to the fact that mechanical work is required to decrease the volume of a
compressible substance however magnetic work is required to increase the magnetic moment of a paramagnetic

material.

This analogy between mechanical work and magnetic work can be extended further. In the isothermal compression
and expansion of a gas, the entropy will increase as the gas is being compressed and will decrease as the gas is being
expanded. Similarly, as a paramagnetic material is being isothermally magnetized, the magnetic moments become
aligned and the entropy will decrease. When the material is isothermally demagnetized, the entropy will increase
back to its zero field entropy state. The parallelism between mechanical work and magnetic work make it possible
to use certain thermodynamic results usually constrained to pure compressible substances such as Maxwell’s
relations. Therefore, temperature-entropy plots of magnetic materials will have the same qualitative profile as pure
compressible substance. For a magnetocaloric material such as pure Gadolinium, a temperature-entropy plot will

display lines of constant applied magnetic field as seen in Figure 1.
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Figure 1: T-s diagram for Gadolinium

It can be seen from Figure 1 that adiabatic magnetization leads to a temperature increase in the Gadolinium.
However, it is clear that the magnetization effects in pure Gadolinium do not produce very large temperature

changes and therefore magnetocaloric material such as GdosErs seen in Figure 2, are used.
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Figure 2: T-s diagram for GdesErs

The corresponding adiabatic magnetization of GdysErs for varying magnetic field changes can be seen in Figure 3.
There are a few interesting consequences of the magnetocaloric effect. First, as the change in magnetic field strength
increases, the adiabatic temperature change also increases. In addition, the magnitude of the adiabatic temperature
change depends on the initial temperature of the material. The temperature where the adiabatic temperature change

is at a maximum is known as the Curie temperature.
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Figure 3: Adiabatic temperature lift in GdesErs

1.2 Magnetic Refrigeration

Adiabatic Demagnetization Refrigeration Cycle (ADR)

When Giauque and MacDougall experimentally proved that ultra-low temperatures were attainable with the MCE
they did so by using the adiabatic demagnetization refrigeration (ADR) cycle. As previously mentioned, the
magnetic work term is synonymous with mechanical work and therefore it is appropriate to assume a parallelism
between the ADR cycle and the vapor compression refrigeration cycle. For the ADR cycle there are four main

processes that occur and are illustrated in Figure 4 and summarized below:
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Figure 4: ADR cycle [10]



. Adiabatic magnetization (Process 1 = 2): When the magnetocaloric material is magnetized the magnetic

dipoles in material to align and consequently leads to a decrease in the entropy. However since the
magnetization process is adiabatic, the temperature of the magnetocaloric material increases.

ii. Isothermal heat rejection (Process 2 = 3): Heat is removed isothermally and rejected to the hot reservoir
which causes the entropy of the MCM to decrease.

iil. Adiabatic demagnetization (Process 3 > 4): The material is partially demagnetized adiabatically until it

reaches the temperature of the cold reservoir.

iv. Isothermal heat addition (Process 4 = 1): Heat is added isothermally to the MCM from the cold reservoir.

The ADR cycle is considered a one-shot refrigeration cycle and has several drawbacks. During the isothermal heat
rejection/addition processes, the magnetic field must be modified in order to properly achieve the constant
temperature. This is a major drawback to the ADR cycle mainly due to the level of complexity required to adjust
the magnetic field while maintaining isothermal conditions. In addition, the temperature change in the cycle is

limited to the adiabatic temperature difference of the magnetocaloric material.

Active Magnetic Regenerative Refrigeration (AMRR) Cycle

The active magnetic refrigeration (AMR) cycle is a modified version of the ADR cycle. In the AMR cycle, process
2 = 3 is no longer an isothermal heat rejection process. Instead, heat rejection occurs at a constant magnetic field
instead of at a constant temperature. In addition, process 4 = 1 occurs at a constant magnetic field instead of a

constant temperature. The AMR cycle is seen in Figure 5 and summarized below.
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Figure 5: AMR cycle [10]

. Adiabatic magnetization (Process 1 = 2): When the magnetocaloric material is magnetized the magnetic

dipoles in material to align and consequently leads to a decrease in the entropy. However since the

magnetization process is adiabatic, the temperature of the magnetocaloric material increases.



il. Isofield heat rejection (Process 2 = 3): Heat is removed at a constant magnetic field and rejected to the

hot reservoir which causes the entropy and temperature of the MCM to decrease.
iil. Adiabatic demagnetization (Process 3 = 4): The material is partially demagnetized adiabatically until it
reaches the temperature of the cold reservoir.

iv. Isofield heat addition (Process 4 = 1): Heat is accepted from the cold temperature at a constant magnetic

field which causes the entropy and temperature of the MCM to increase.

For an AMR cycle at room temperature, the maximum possible temperature lift is limited to the adiabatic
temperature change of the magnetocaloric material. For a material such as pure Gadolinium, the adiabatic
temperature change at the Curie temperature is approximately 3.5 K. For a single cycle, this temperature lift is not
useful for room temperature refrigeration applications. In order to overcome this limitation, the MCM was
incorporated into a regenerative heat exchanger. The magnetocaloric material is arranged into a porous matrix and
packed into a casing. The casing is exposed to a magnetic field and a heat transfer fluid is passed over the MCM to
accomplish the cycle mentioned above. By cascading the fluid over the matrix of magnetocaloric materials, a larger
temperature lift can be established. This cycle is known as the active magnetic regenerative refrigeration cycle

(AMRR).

1.3 Research Objectives

The primary goal of this project is to determine a way of quantifying the effects of the housing heat capacity on the
performance of an AMRR system. Currently, there is no numerical model that couples the wall of the active
magnetic regenerator to the heat transfer fluid and/or regenerator solid. There are 1-D numerical models of AMRR
systems such as the one presented by Engelbrecht [11] but these does not include the regenerator housing and
assume adiabatic boundary conditions. There is a 2-D numerical model of passive regenerators such as the one
presented by Nielsen [3] that includes the housing effects but does not incorporate the magnetocaloric effect. In
order to accomplish the main objectives of this project, the passive numerical model developed by Nielsen will be
augmented to include the magnetocaloric effect. In doing so, this 2-D passive model will become a 2-D active model
which allows for the study of the walls effect on the regenerator performance. Once the numerical model is
validated, the overall effect of the housing on the regenerator needs to be quantified. A non-dimensional approach

is used as a means of generalizing the effects by relating the wall properties to the regenerator properties.

2  Numerical Model

2.1 Geometry

The regenerator geometry for this numerical model is cylindrical with an axis of symmetry about the centerline
corresponding to a radial location » = 0. A 2-D grid, shown in Figure 6 (not to scale), is used to represent a cut plane
in the cylinder where the bottom boundary represents the axis of the cylinder, the left boundary and right boundaries
are the cold and hot sides of the regenerator respectively, and the top boundary designates the outer edge of the

housing wall.
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Figure 6: Grid

The grid is subdivided into three major domains: the housing wall domain, the regenerator solid domain, and the fluid
domain. The housing wall domain lies within the radial coordinates, R, < r < (R;s + R,), while the fluid and
regenerator solid domains lie within the radial coordinates, 0 < r < Ry, for all axial locations. Since the geometry is

inherently cylindrical, each cell has a volume defined as:

AV; ; = 2mrArjAx @1

The 7 index corresponds to the nodal location in the axial direction and the j index corresponds to the nodal location

in the radial direction. Note that the nodal locations (i, j) are cell-centered.

2.2 Governing Equations

The foundation of this numerical model is based on a 2-D transient passive regenerator model developed by Nielsen.
The passive model has been modified by integrating the magnetic work term presented by Engelbretcht [11] into
the governing equations. Since there are three domains present in this model, a coupled set of partial differential
equations is needed to define the temperature distribution in the fluid, regenerator and regenerator housing. Energy
balances around the fluid nodes, regenerator solid nodes, and wall nodes are performed. Figure 7 illustrates a

differential control volume about a fluid node at location (i,j).
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Figure 7: Control volume energy balance on fluid node

After simplification, the energy balance for the fluid node suggested by Figure 7 is:

fn+1 _ Tfn Tfn+1 _ fn+1
ij ij i+1,j i-1,j
Spfi,jcfi,jAVi-j At + Uy 2Ax
energy storage convection
— n+l _ pn+1) _ n+1l _ pn+1 n+l _ gn+1l
- Dfi,j+1 (Tfi,j+1 fij ) Dfi,j—1 (Tfi,j fi,j—l) +Dfi+1,j (Tfi+1,j Tfi,j ) 2.2)

radial conduction i,j—1i,j+1 radial conduction i,j—1i,j—1 axial conduction i,j—i+1,j

n+1 n+1 n+1 +1 7y
- Dfi-1,j (Tfi,j - fi—1,j) + hASi,j (Tfi,j - T5 ) + |gv AVi.jl

Sij

axial conduction i,j—i—1,j Convection between fluid and solid ~ Viscous dissipation

The terms Dfi,j+1’ D

fi,j—l’Dfi+1,j , and Dfi—l,j represent the thermal conductance’s of the corresponding nodal

~rr

locations and g,," represents the volumetric generation due to viscous dissipation. Definitions for these terms can
be found in Appendix A. In the limit where the spatial domain becomes continuous (i.e. Ax = 0 and Ar = 0) and

the timestep approaches zero, the following governing PDE emerges for the fluid domain:

o O\ _1o( 9T\ o o ha(r, 1) + |22
Prese\Tae ™ “ax ) T rar \FaiserT gy | T gy \ Maisea Ty A P 2.3)

The terms from the left to the right represent: energy storage, convection, radial conduction, axial conduction,

convection between the fluid and the solid and viscous dissipation.

Figure 8 illustrates a differential control volume about a regenerator solid node at location (i, j).
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Figure 8: Control volume energy balance on solid node

The energy balance for the solid node suggested by Figure 8 reduces to:

Tn+1 _ Tn
1 -8)ps, C AV | 2 ) =
Ps; ;CsuoH; jRVYij At =
P
energy storage

DSi,j+1 (Tn+1 _ Tn+1) _ DSU_1 (Tn+1 _ Tn+1 ) + D5i+1,j (Tn+1 _ Tn+1)

Sij+1 Si,j Si,j Sij-1 Si+1,j Si,j
radial conduction i,j— i,j+1  radial conduction i,j—i,j—1 axial conduction i,j—i+1,j (2_4)
_ n+1 _ pn+1 _ n+1l _ pn+1
Dsi—l.j (Tsi'i Tsi—l.f) Dsi—l.j (TSU Tsi—l.f)
axial conduction i,j—i—1,j axial conduction i,j—i—1,j
Cs,uoH; a ou,H
WMoHj j S 22
+ R, (T;%ﬂ - T;!ﬂ) +(1—&)ps, AV -
L \"fij ij Lk At OuoH/ 1 ot
Convection between fluid and solid Si,j

Magnetic Work

The ( 0

o H) term is determined by interpolating experimental data for the specific magnetocaloric material that
ot/ Th

is being simulated. In addition, the (a;;(;y

) term is set in the operating conditions of the simulation, representing the

applied magnetic field as a function of time. Definitions for DSij+1’ Dsij—l’ Dy, T and Dsi_ljcan be found in

Appendix A. In the limit where the spatial domain becomes continuous (i.e. Ax = 0 and Ar = 0) and the timestep

approaches zero, the following governing PDE emerges for the solid domain:

T, T, O0s, OuyH 10 daT;
-t = ( stat? or

(1-¢) )+a(k aTS)+hA(T T;) 2.5
PsCuoH N\ ot Cugr OgH 0t ) 7 or dx \ % gx S\VF s (2.5)



The terms from the left to the right represent: energy storage, magnetic work transfer, radial conduction, axial

conduction, and convection between the fluid and the solid.

Figure 9 illustrates the differential control volume about a wall node at location (i, j).
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Figure 9: Control volume energy balance for wall node

The energy balance for the wall node suggested by Figure 9 is:

n+l _ n
avy, (2 Do
pwiljcwi,j i,j At

_ n+l _ pn+1l) _ n+1 _ pn+i n+l _ pn+1l

- DWi,j+1 (TWi,j+1 TWi,j ) DWi,j—1 (TWi,j TWi,j—1) + DWi+1,j (TWi+1,j TWi,j )
radial conduction i,j—i,j+1 radial conduction i,j—i,j—1 axial conduction i,j—i+1,j (2’6)

— n+1l _ n+1
Dwi—l.f (Twi.f Twi—l.j)
axial conduction i,j—i—1,j

Definitions for DWi,j oy DWi.j— 1 Dw,, T and Dy, ,jcan be found in Appendix A. In the limit where the spatial

domain becomes continuous (i.e. Ax = 0 and Ar = 0) and the timestep approaches zero, the following governing

PDE emerges for the wall domain:

JaT,, 16( OTW) 6( 6Tw)

Pwiwae = rar\"™ ar ) " ax \" ax 2.7

The terms from the left to the right represent: energy storage, radial conduction, and axial conduction.



2.3 Boundary Conditions

As presented by Nielsen, the fluid equation is coupled to the wall equation by recognizing that the fluid is in contact
with the wall at the radial location » = Ry, for all axial nodes. This condition can be described by the resistance

network in Figure 10.

; AN\ ——AN"——AN\\—0 T,
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Figure 10: Resistance network at fluid-wall boundary

This resistance network acts in the radial direction and couples the wall nodes at the fluid/wall boundary to the

corresponding fluid nodes. The equation for the net heat flux corresponding to this resistance network is given by:

T+l ot
p _ Wii+nrsf finrsf
fwi ATy inrs f / Aan,sf /
1 2 2,1 (2.8)
5 t% th
Zn(rnr,sf + Arnr,sf)Ax Wittnrsf finrsf w

Here Ar is the distance between the fluid node and the wall node. In the limit where the heat transfer coefficient
gets very large (i.e. h,, = o) the resistance to convection goes to zero. This causes the thermal resistance between
the fluid and the wall to be only a function of the conductivities of the materials. To incorporate this boundary
condition into the numerical mode, Equation 2.8 is added to the right hand side of the governing fluid Equation 2.2
and subtracted from the right hand side of the wall Equation 2.6 at the appropriate radial locations. The remaining
boundary conditions are summarized in Table 1, 2, and 3 where each table indicates the fluid, solid, and wall domain
respectively. It should be noted that the boundary conditions for the fluid at the left and right boundaries depend on
the sign of the mass flow rate. If the mass flow rate is positive, the fluid flows from the cold end to the hot end.
Conversely, if the mass flow rate is negative, the fluid flows from the hot end to the cold end. The temperature 7¢
corresponds to the temperature at the cold side of the regenerator whereas T corresponds to the temperature at the

hot side.

Table 1: Boundary conditions for fluid domain

Radial Location Axial Location Boundary Condition
Bottom Boundary r=0 0<x<L Adiabatic/Symmetry
Top Boundary r = Ry 0<x<L See equation 2.8
Tr=Tc ifm >0
Lefi Boundary 0<r<Ry x=0 )
Adiabatic if m <0
Adiabatic if m > 0Ty
Right Boundary 0<r<Rys x=L

=Tu___ifm <0




Table 2: Boundary Conditions for solid domain

Radial Location Axial Location Boundary Condition
Bottom Boundary r=0 0<x<lL Adiabatic/Symmetry
Left Boundary 0<r<Ry x=20 Adiabatic
Right Boundary 0<r<Ry x=1L Adiabatic

Table 3: Boundary conditions for wall domain

Radial Location Axial Location Boundary Condition
Top Boundary r = Res+Ryw 0<x<L Adiabatic
Left Boundary Ris <r < RgstRw x=0 Adiabatic
Right Boundary Ris <r < RgstRw x=1L Adiabatic

2.4 Numerical Solution

Solution Algorithm

The temporal derivative is approximated using Euler’s implicit method as seen in Equation 2.9. This results in a

system of linear equations that can be written in matrix form as:

Ax =B

where A is a square coefficient matrix, x is a solution vector of all temperatures in the domains, and B is a vector

containing the right hand side or known quantities. The coefficient matrix is a sparse matrix. The x vector contains

all of the temperatures values at the next timestep and is set up as follows:

n+1
Tl,l

Tnx,nrw

The coefficient matrix and the right hand side vectors are hardcoded and Equation 2.9 is solved directly using the

Intel Math Kernel Library (MKL) which is capable of efficiently solving a non-symmetric, sparse system directly.

The flowchart algorithm for the entire numerical model is seen in Figure 11. When the program is executed, an



input file with all the appropriate operation conditions is read and the code will execute commands according to
those input parameters. Based on the input parameters, the model will simulate either the single blow mode or
periodic steady state mode. When the model is set to perform a single blow operation, there is no iterative process.
When the model is set to perform a periodic steady state operation, the code will iterate until its specified
convergence criteria is met. This occurs when the heat flux at the cold and hot ends are equal at the initial and final
time steps. Within the iteration loop is a time loop which captures the transient temperature variation over a specified
simulation time. At the beginning of each time step, the model will calculate the temperature and magnetic field
dependent properties based on the nodal temperature values from the previous time step. When all of the appropriate
properties are determined, the code begins to assemble the coefficient matrix and right hand side vectors mentioned
in Equation 2.9. The MKL direct sparse solver (DSS) requires the coefficient matrix be broken down into three
separate 1-D arrays. Each array contains a different value that corresponds with the magnitude and location of each
non zero element. The first 1-D has a size that corresponds to the total number of non-zero elements in the coefficient
matrix. This array stores every non zero value in every row. The next 1-D array has the same size as the first array
and includes the column number associated with each value that is stored in the first array. The final 1-D array
includes the indexing for the first non-zero element in each row. The size of this array corresponds to the number
of rows in the coefficient matrix and the value will match with the index of the first array that indicates the number
is in the next row. When the entire program is compiled with the Intel Fortran Compiler, the entire code is vectorized

which in combination with the MKL DSS, allows for this model to run quickly and efficiently.
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Model Assumptions

There were several assumptions made when developing this numerical model. Below is a list of all the assumptions

made:
i. The heat transfer fluid is incompressible (i.e. the density of the fluid remains constant and consequently the

mass flow rate does not vary spatially within the regenerator)

il. The regenerator bed has a uniform geometry (i.e. the porosity does not vary spatially)

iil. The magnetization and demagnetization process are assumed to be reversible (i.e. there is no hysteresis nor
temperature gradients)

iv. Thermal properties variation per time step is negligible (i.e. temperature dependent properties are determined
explicitly at the beginning on each time step based on the solution from the previous time step)

V. The wall interacts only with the heat transfer fluid (i.e. The regenerator and wall are coupled only through

the fluid nodes and wall nodes)
2.5 Material Properties

Fluid Properties

The default heat transfer fluid used in this model is water assuming the fluid to be incompressible. For the
simulations performed in the report, the thermophysical properties of water (c¢, pf, k¢, and if) are assumed to be
constant. However, the numerical model has two options for dealing with property data. The first option is to
assume the data is constant and the second option is to numerically interpolate the data to utilize temperature
variant properties. The latter is useful since the numerical model calculates the temperature dependent properties
at each time step. For water, the thermophysical properties that range around room temperature are nearly
constant and therefore it is appropriate to assume so in the simulations. However, other heat transfer fluids that are
being considered in AMRR applications do not have the same consistency as water and therefore it is necessary to

include the interpolation.

Wall Properties

There are three wall material options that are built into the numerical model: plastic nylon, stainless steel, and
aluminum. For the simulations presented in this report, the wall material chosen is nylon. Like the fluid properties
mentioned above, the model defaults to assuming the wall properties are constant however there is the option to

incorporate temperature varying property data for interpolation.

2.6 Magnetocaloric Material Properties

The magnetocaloric material (MCM) initially being studied in this model is commercial grade gadolinium. While
pure gadolinium does not have a very strong magnetocaloric effect, it is the simplest MCM to incorporate into the
numerical model. The property data of gadolinium, i.e. the temperature and entropy variation with respect to

magnetic field strength was obtained from Engelbrecht and can be seen in Figure 12. Since the magnetocaloric



properties of the regenerator solid (c,,y and ds/dpyH) are functions of temperature and applied magnetic field,

interpolation is required to ensure smooth property values.
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Figure 12: T-s diagram of Gadolinium

Interpolation of Property Data

Upon examination of Equation 2.5 we see that there are two important terms that quantify the magnetocaloric effect:

the specific heat capacity at a constant magnetic field, c,, y, and the partial derivative of entropy with respect to the
magnetic ﬁeld,(as / Ao H) . In order to properly evaluate these terms at each nodal location for every time step, it
T

is important to numerically differentiate entropy data for the specific material. The property data that are used in
this model was obtained from Engelbrecht and provides the entropy of the material for a range of magnetic fields

and temperatures.

Equation 2.10 is used to determine the specific heat capacity of the magnetocaloric material.

_7 <as>
ol = T\GT) o (2.10)

The partial derivative of entropy with respect to temperature can be numerically differentiated using a second order

central differencing:

(ﬁ) - (SuoH,T+AT - SuOH,T—AT)
oT

HoH 2AT (2.11)



Here AT is a small but finite change in temperature that is a quantity smaller than the difference between two
ascending temperatures present in the property data table. Similarly, the partial derivative of entropy with respect

to magnetic field can be numerically differentiated using a first order differencing:

< ds ) - <ST.#0H+A#0H_ST.M0H)

ouoH ApoH (2.12)

T
Again AugH is a small but finite change in magnetic field strength that is a quantity smaller than the difference

between two ascending magnetic field strengths present in the property data.

Since the values of AT and Ay H are chosen to be so small, the calculations of s, g 447> Spgn,r—a7> A0d ST 40 H4AEH
require interpolation of the magnetocaloric property data to ensure smooth and accurate results. Two interpolation
methods were investigated to determine which approach would provide the smoothest results: linear interpolation

and bilinear interpolation.

The simplest way to compare the interpolation methods are to calculate the adiabatic temperature change of the
magnetocaloric material when a magnetic field is applied. The numerical model calculates the adiabatic temperature
change in the limit where there is no fluid flow, porosity, housing wall effects, nor conduction. Figure 13 displays

the adiabatic temperature difference for varying temperatures when the magnetic field is changed from 0 to 1 Tesla.
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Figure 13: Comparison between linear and bilinear interpolation

It can be seen that near the Curie temperature, the linear interpolation is unable to smoothly resolve the peak in the
temperature difference. Also, it seems that the linear interpolation method under predicts the temperature change
before and after the Curie temperature. Based on the comparison, using a bilinear interpolation property data is a

better option to ensure accuracy of the magnetocaloric effect.



2.7 Regenerator Correlations

The Nusselt number correlation established by Wakao and Kaguei [12] in Equation 2.13 is used in this numerical

model.
Nu =2+ 1.1Repy®Pr'/3 (2.13)
Here the Reynolds number is a function of the particle sphere size, d,, and is defined as follows:

prudye

Re
P (2.14)

The heat transfer coefficient, 4, is calculated using the Nusselt number.

= kau
T d, (2.15)

where, d; symbolizes the hydraulic diameter which is a function of the regenerator sphere diameter and the porosity.

W=z (2.16)
The Reynolds number of the fluid is a function of the hydraulic diameter and is computed as follows:
prudpe
Ref =
s 1y (2.17)

The pressure drop across the regenerator bed was calculated using the Ergun equation [13] and is shown below:

d 1—¢8)?usv 1—¢)pev?
—p=A( )'ML B( )Pf

dx g2 d} e d (2.18)

p

Kaviany [14] suggests that 4 = 180 and B = 1.8 for smooth particles.

Effective Conductivity of the Regenerator

The fluid that moves through a porous medium is a complex, 3-D flow which makes it very difficult to calculate
the velocity and temperature fields. To deal with this added complexity, a macroscopic or continuum approach via
volume averaging is performed on the governing equations. During this averaging process, an additional term
known as thermal dispersion appears in the equation. The thermal dispersion term can be written in the form of
diffusion transport which depends on the thermal dispersion conductivity of the medium. When the governing
equations are simplified, the thermal diffusion conductivity is lumped with the thermal conductivity of the porous

continuum domain to give the effective thermal conductivity [15].
keff = kstar + kad (2.19)

Here, kg4 is the static effective thermal conductivity when there is no fluid motion and kad is the thermal

dispersion conductivity where D? is a dispersion coefficient that is a function of the Peclet number. To calculate

the static effective thermal conductivity, Hadley [16] suggested the following correlation for € < 0.58:



2

[ z~:f0+k(lL 2(%) (1—s)+(1+25)%]

_ (1~ efo) 1 1
kstar = ke | (1 —ap) + ap 220
1—8(1—f)+L &4_1_5 (2.20)

L 07 " kee(1 = fo) ks ]

Here, f; and « are defined as follows:

fo=08+0.1¢ (2.21)
log ay = —4.898¢ for 0 < e<0.0827 (2.22a)
logay = —0.405 — 3.154(¢ — 0.0827) for 0.0827 < £ <£0.298 (2.22b)
logay, = —1.084 — 6.778(¢ — 0.298) for 0.298 < £ £ 0.580 (2.22¢)

Kaviany [14] suggested the calculation of the thermal dispersion conductivity in the axial direction of a uniformly

packed bed of spheres as:
a 3
kdisp,x = ka = kf ZSRefPT (223)

This equation is only valid for the Reynolds number range of 1 < Ref < 10. If the Reynolds number of the fluid is
less than 1, then the dispersion assumption becomes negligible and the intrinsic fluid conductivity is used. Delgado
[17] suggested that the dispersion in the radial direction is a function of the dispersion in the axial direction and is
calculated as:
1
kaispr = 5 ky (2.24)

Like the equation for axial dispersion, Equation 2.24 is valid only within the range of 1 < Rey < 10. If the Reynolds

number of the fluid is less than 1, then the radial dispersion value is the same as the axial dispersion value.
2.8 Model Validation

Passive Mode Verification

Several steps were taken in order to validate the numerical model. As previously mentioned, the AMRR model
presented in this paper is an extension of the passive regenerator model developed by Nielsen. As such, several of
the initial validation steps were performed by Nielsen and will be mentioned for completeness. The first step was
to verify that the passive regenerator model accurately predicts the temperature distribution during a single blow
operation. Nielsen shows that in the limit where there is no magnetocaloric effect, axial conduction, viscous
dissipation, nor internal temperature gradients in the solid, the numerical model agrees with the Schumann solution
[18] to within 0.3% accuracy when using 150 axial nodes and a CFL number of 0.1. The CFL number is defined in
the model as:
mAt

CFL = ————
prR?eAx (2.25)



Nielsen also compares the passive model to the regenerator effectiveness solution provided by Dragutinov and Baclic
[19]. In this case, the numerical model assumes periodic boundary conditions, no entrained fluid heat capacity, no
axial conduction, no dispersion, no viscous dissipation, and all thermal properties are constant. Using the same axial
nodes and CFL number previously mentioned, it was shown that the model agrees with the analytical solution to

within 0.3% accuracy.

Consistency of Numerical Model

Once the magnetic work term was incorporated into the model, it was important to verify that the passive mode (i.e.
the original code) remained unchanged. One way to do this was to reproduce the effectiveness results of the 2-D
passive regenerator with wall effects that were presented by Nielsen. If the mass flow rate and specific heat capacity

of the fluid is constant, then the effectiveness of a passive regenerator is defined as follows:

tsim
fo /Z(TH - TC,out)dt
Ty — Te) 'sim/,

ef fectivenss = (2.26)
In his paper, Nielsen uses several non-dimensional numbers to represent variation in specific operating conditions.
The first non-dimensional number used is the thermal utilization:

me

? = 2fmyc, 2.27)

where f'is the operating frequency of the regenerator and is defined as f = l/tsim' The thermal utilization describes

the ratio of the thermal mass of the fluid that is moved through the regenerator to the total thermal mass of the
regenerator solid. The next non-dimensional number used is the ratio between the thermal mass of the wall to the
thermal mass of the regenerator solid:

_ myCy
= e, (2.28)

¥

In addition to Equations 2.27 and 2.28, the Reynolds number seen in Equation 2.17 is used. Lastly, the dimensional

number known as thermal diffusivity is used:

kw
e (2.29)
The following four operating conditions are varied and quantified by the aforementioned non-dimensional and
dimensional quantities: mass flow rate (1i1), wall thickness (W), simulation time (tg;,,), and wall conductivity
(k). Figure 14 displays a comparison between the original results from Nielsen’s model and the results from the
new model. This figure shows the effectiveness of the regenerator when running in passive, cyclic steady-state mode
at varying Reynolds numbers for a range of wall to solid thermal mass ratios. It can be seen that by modifying the

code to add the magnetocaloric material has not changed the results for passive regenerators.
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Figure 14: Check for comparison between old code and node code

Validation of Magnetic Work Interaction

The next step was to verify that the magnetic work term and the magnetocaloric property data were implemented
correctly into the model. In general, magnetocaloric materials are characterized by the adiabatic temperature change

produced when a magnetic field is applied. The adiabatic temperature change can be calculated with Equation 2.30:

T
AT, = —|— | AS
== e 2:30)

Here ASy, represents the magnetic entropy change:

Hmax

ds
ASm = Ko f (ﬁ)T dH 2.31)
0

The adiabatic temperature difference can be calculated independent of the numerical model and compared to the
model results in the limit where there is no fluid flow, porosity, housing wall effects, nor conduction. When all of
these limits are enforced in the numerical model, Equations 2.3 and 2.7 are effectively zero and therefore not solved
in the numerical model. In addition, the right hand side of Equation 2.5 goes to zero, leaving only the energy storage
and magnetic work transfer terms. Figure 15 displays the adiabatic temperature difference for varying temperatures
when the magnetic field is changed from 0 to 1 Tesla. It can be seen that the numerical model computes the same
results that the theoretical calculations predict. This shows that the magnetic work transfer term was properly
incorporated into the numerical model and that the numerical interpolation of the magnetocaloric property data was

handled correctly.
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Figure 15: Comparison of adiabatic temperature difference between theory and model

Validation of Model

The final and most important step of the validation process was to compare the results of this numerical model to
another well-established model. As previously mentioned, a 1-D AMRR model was developed by Engelbrecht. This
model did not account for wall effects and was designed for a rotary AMRR system. In order to perform a
comparison, the two numerical models were set to operate in similar conditions and the COP and Q.. outputs were

compared. Taking an energy balance on the cold end of the regenerator, the refrigeration load is defined as:

nt
— DN NN
Qref nZl e Tri=1 At (2.32)

where 'I_’f’fizl is the area-weighted average of the fluid temperature at the cold end of the regenerator at time . It
should be noted that the superscript n always denotes the value at a specific time level. Similarly, the heat rejection

can be calculated as follows:

nt

Qrej = Z " CF T i n AL (2.33)

n=1

where Tf_,, is the area-weighted average of the fluid temperature at the hot end of the regenerator at time 1. To

determine the COP, the magnetic work must be calculated by taking an energy balance on the entire regenerator

which will provide Equation 2.34:



Winag = Qrej = Qrer (2.34)

From this, the COP can be calculated as:

Winag (2.35)

The operating conditions used in both models are presented in Table 4. However, since the 1-D model was
developed specifically for a rotary AMRR system, there are certain parameters that are not present in the model
described in this report and can be seen in Table 5. For further understanding of the parameters listed in Table 5,

please refer to reference [11].

Table 4: Operating conditions that are the same in both models

Operating Conditions Value Operating Conditions Value
R [m] 0.0083 pr [kg/m’] 1000
L [m] 0.1 cr[J/kg-K] 4200
UoH [Tesla] 1.5 ks[W/m-K] 0.6
€[] 0.36 Tc [K] 290
dp[m] 0.005 Ty[K] 295
magnetocaloric material Gd toim [S] 0.5
o, [kg/m?] 7900 m [kg/s] 0.03
¢, [J/kg-K] Based on prop. data nx [-] 150
ks [W/m-K] 10.5 nt [-] 578
fluid material Water

Table 5: Operating conditions that vary between both models

Operating Conditions Engelbrecht’s Model Le Moine’s Model
number of beds [-] 1 N/A
flow ramp period for fluid flow[s] 0.1 N/A
arc of magnet[°] 120 N/A
arc of ramp[°] 15 N/A
arc of each bed[°] 360 N/A
delay time([s] 15/360%t 4, N/A
dwell ratio[-] 1/2 N/A

For this comparison the COP, refrigeration load, and heat rejections of both models were compared. The percent
difference between the COP calculations is approximately 19.9% whereas the refrigeration load varied by only 0.9%
and the heat rejection by 1.5%. Due to the fact that there are some inherent differences between the two models as
seen in Table 5, the refrigeration load and heat rejection values are slightly different. While the differences are
small, they ultimately lead to a large variance in the COP. This is due to the fact that the COP is a smaller number
than the refrigeration power or heat rejection and therefore minor variations will lead to large percent differences.
Thus, if we attribute the differences in refrigeration load and heat rejection to the intrinsic differences between the
two models, we can conclude that if the two models were operating at exactly the same conditions, they would

produce near similar results and the COP percent difference would be very small.



2.9Grid Study

Before running case studies with the validated numerical model, it is important to determine the appropriate grid
size and time step for the simulations. These parameters must be chosen to balance the total computational time
required per simulation and the numerical accuracy of the results. If the number of spatial nodes in the computational
domain is decreased, the computational time for each simulation will also decrease. However, as the number of
spatial nodes becomes lower, the numerical accuracy of the solution begins to decline. It is therefore important
ensure that the grid spacing is coarse enough to reduce the overall computational time for each simulation but also
fine enough to ensure numerical accuracy. Similarly, the number of time steps for each simulation needs to be
studied to make sure that the periodic steady state solution is accurate. The grid study was subdivided into three
parts: determining the number of axial nodes, determining the number of radial nodes, and determining the CFL

number (i.e. time stepping).

Number of Axial Nodes

Several cases were run at various values of axial nodes under the same operating conditions in order to determine

the appropriate number of axial nodes. Table 6 provides a list of the operating conditions used for these cases:

Table 6: Operating conditions

Operating Conditions Value Operating Conditions Value
R [m] 0.0083 pr [kg/m’] 1000
L [m] 0.1 cr[J/kg-K] 4200
UoH [Tesla] 1.5 k:[W/m-K] 0.6
g [-] 0.36 Py [kg/m®] 1000
dp,[m] 0.005 cwlI’kg-K] 1500
magnetocaloric material Gd k,,[W/m-K] 0.25
ps [kg/m?] 7900 Tc [K] 290
¢ [J/kg-K] Based on prop. data Ty[K] 295
kg [W/m-K] 10.5 teim [S] 0.5
fluid material Water m [kg/s] 0.03

For the passive regenerator model, Nielsen suggested that the radial nodes in both the fluid/solid and wall domains
should be set to 10 and the CFL number to 0.5; therefore, these values are assumed for this grid study and verified
later. Since the main value of interest for the regenerator is the efficiency, the COP will be used as the metric for
the convergence study. The error in the COP is computed as the percent error between the COP predicted by the
simulation relative to the COP predicted by the converged solution. The converged solution is obtained by modelling
the same operating conditions with a very fine mesh that is much larger than the grids selected for the study. In this
case, the converged solution was determined by setting the number of axial nodes to 500. Figure 16 shows the
percent error in COP for various values of axial nodes. If the maximum allowable percent error for the COP is

assumed to be 10 percent, then the smallest possible number of axial nodes is equal to 100.
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Figure 16: Axial node grid convergence

Number of Radial Nodes

The second grid sensitivity study examined the number of radial nodes in both the wall and fluid/solid domain.
From this point forward the fluid/solid domain will be referred to as domain A and the wall domain will be referred
to as domain B. Prior to this study, the nodes in domains A and B were both set to 10. As such the total number of

equations solved in the numerical model becomes 3000 and is represented by the following equation:
Nq = (2 % nx * nrg ) + (nx * nr;,) (2.36)

Solving more equations (i.e. a finer grid) requires more computational time and therefore it was necessary to
determine the minimum allowable number of radial nodes in both domains. Additionally, the radial nodes in
domains A and B do not need to be the same and since the main focus of this project is to determine the impact of
the wall on the regenerator performance, it would be beneficial to have more nodes in domain B than in A. This is
important because the more nodes that there are in the wall domain, the more accurate the temperature distribution
becomes. A grid study was performed that varied the number of nodes in domains A and B independently from
each other. These numbers are varied from 3 to 10 and compared the percent error of COP values as well as the
total CPU time. Figure 18 shows the percent error of the COP with respect to varying radial nodes in domains A
and B. Here it can be seen that for all cases, the percent error of the COP is well below 10% with the maximum
percent error being around 1.1%. From these results, it is clear that the number of radial nodes can be reduced in
both domains. Before choosing the radial nodes for domains A and B, the computational time required for the
different node options needs to be examined. Figure 18 shows the computational time required for each case
corresponding to Figure 17. If the desired CPU time is under a minute, the corresponding values of nry¢ and nr,,

that produce the greatest numerical accuracy are 4 and 5 respectively.



N

1 1 1 1 1 * s
18F -~ S beeoe- Lo b Lol O
| | | | | D nr =5
| | | | | ° an':G
Lal - S I S [ [ N
1.2 :L L L :L i S
5% } } ; ! ! O
5 1777777‘777777%77777%77777%77777%77 X nr=10 ||
LE * | | | | |
3 | | | | |
Y1 SR A N —
il o) ‘ * Yy L 7
| I * * 9%
0.6¢ —---H----- B CEEEE o oot x
T T ©)
N, SO S . OO - O B - B
E [
+ AN A A A A % T
02p- - o NI SR & § 77777 Q----- S
<> <> <> X | |
0 W N X I I I
3 4 5 6 7 8 9 10
an
Figure 17: Radial node grid convergence
200 ‘ ‘ ‘ ‘ ‘ ‘
| | | | | |
. S R S I [ L]
1 1 1 1 1 1
0}------------t- -t ____

140 --- -~ F----- r----- T - T T % ***** g

| | | |
120f -~ - S Stk g ***** & g
100 | | g :
|

RIZTON

CPU time [s]
_ '@é __

& : ¥ =3
80F----- A - - * fffff - O
éé @ | : D nrs;f:5

60Kk -4 —--JH- -~ Lo L - e N =6

f

% A A A N G

aiot e
| | | | | -+ =8

2l AR SR B BN S ISy
1 1 1 1 1 X rgE10

0 L | | L L
3 4 5 6 7 8 9 10
an

Figure 18: CPU time for corresponding radial node convergence study

CFL Number

Equation 2.37 defines the CFL condition, which is a way to relate the grid size to the number of timesteps:

ult
CFL = — (2.37)
Ax

In Equation 2.37 u is the bulk fluid velocity, Ax is the spacing between axial nodes, and At is the time increment.
For explicit solvers, the CFL condition is used to determine the largest allowable At that the solver needs to maintain
numerical stability. The implicit solver used in this numerical model is unconditionally stable (i.e. there is no actual

CFL criterion). Although the solver has no CFL criterion for stability, the value of CFL still affects the numerical



accuracy of the solution. The percent error of the COP was calculated for CFL numbers varying from 0.1 to 5.
Figure 19 shows that at lower CFL numbers, the numerical accuracy of the solution increases. Assuming the

allowable percent error to be 10%, the corresponding CFL number is equal to 0.35.
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Figure 19: CFL number accuracy study

3 Parametric Study

3.1 Determination of Mass Flow Rate

As the mass flow rate applied to a magnetic refrigeration system of a specific size increases, the COP will tend to
decrease because most losses will scale with mass flow rate. Conversely, the refrigeration capacity will first tend to
increase with mass flow rate and then decrease once the bed performance becomes overwhelmed by the increasing
losses. The refrigeration capacity will peak at a specific mass flow rate and as such there will be two mass flow
rates which produce the same refrigeration capacity however the lower mass flow rate will correspond to a higher
COP. It is interesting to understand how the housing would influence the COP and Q. curves. Figure 20 illustrates
the refrigeration capacity and COP for the AMRR system represented by the operating conditions listed in Table 6
for the cases where thermal coupling with the wall was turned off and on. When the wall coupling is turned off, the
wall equations are not solved and there is no coupling between the fluid domain and the wall domain. It can be seen
that this particular system operates over the range of mass flow rates from 0.03 to 0.1 kg/s. When the wall coupling
is turned on, both the COP and refrigeration capacity curves decrease in magnitude. The maximum decrease in the
COP with respect to the no wall case is 7.5% and this at a small mass flow rate. As the mass flow rate increases, the
percent decrease in the COP reaches a minimum value of 1.2% at around 0.08 kg/s. The maximum percent decrease
in the refrigeration capacity is 2.9% at a mass flow rate of about 0.1 kg/s. As the mass flow rate decreases, the

percent decrease ranges between 0.8% and 2.0%.
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Figure 20: COP and refrigeration curve for kw = 0.25 W/m-K

A second case was performed with the same operating conditions listed in Table 6. The only difference was that the
thermal conductivity of the wall was increased to be 250 W/m-K. As in the previous figure, Figure 21 shows the
refrigeration capacity and COP for various values of mass flow rate. Similar to the previous case, both the COP and
refrigeration capacity curves decrease in magnitude when the wall coupling is turned on. The maximum decrease
in the COP with respect to the no wall case is 13.3% and this at the lowerst mass flow rate of 0.3 kg/s. As the mass
flow rate increases, the percent decrease in the COP reaches a minimum value of 2.6% at around 0.08 kg/s. The
maximum percent decrease in the refrigeration capacity is 4.8% at a mass flow rate of about 0.1 kg/s. As the mass
flow rate decreases, the percent decrease ranges between 2.5% and 3.6%. It is clear when comparing Figure 20 and

Figure 21 that an increase in the thermal conductivity of the wall will lead to a larger decrease in the regenerator

performance.
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Figure 21: COP and refrigeration curve for kw = 250 W/m-K

3.2 Dimensionless numbers

Determination of Dimensionless Numbers

From the mass flow rate study above, it is apparent that the housing can lead to a decrease in the regenerator
performance. It is therefore important to establish design criteria for the housing that will minimize the adverse
effects on the regenerator performance. To accomplish this, it is necessary to express relationships between the
properties of the wall to other properties in the regenerator. By defining meaningful dimensionless numbers that
relate the wall properties to either the fluid or regenerator solid properties, general design considerations can be

established.

There are two main methods for determining the dimensionless numbers that govern a problem. The first is to non-
dimensionalize the governing partial differential equations and see which non-dimensional numbers arise while the
other method is to use Buckingham Pi theory to determine all possible dimensionless numbers. While option one is
favorable to options two, non-dimensionalizing the governing PDE’s for this model is difficult mainly due to the
entropy change with respect to the magnetic field that appears in the magnetocaloric material equations. Therefore,
Buckingham Pi analysis can be used to determine some of the possible dimensionless numbers. However, the
Buckingham Pi method is tedious and does not always provide physically meaningful dimensionless quantities. So
some intuition can be used to define potentially meaningful numbers. One of the first non-dimensional numbers that

should be considered is the well-known Reynolds number based on the hydraulic diameter:



eprud
Re, = PLECH @.17)
Hr

The Reynolds number is useful for internal flow problems because it quantifies the flow regime based on the ratio

between the inertial forces and the viscous forces. The Reynolds number for this analysis will be chosen based on
the mass flow rates from section 3.1. The next non-dimensional number that is considered is the ratio between the

total thermal mass of the wall to the total thermal mass of the regenerator solid.

my,Cy,
Y= e, (2.38)
The thermal mass ratio is interesting to examine because it dictates which material (the wall or the magnetocaloric
material) is likely to absorb and retain thermal energy. Referring back to the boundary condition that couples the
fluid to the wall, it can be seen that for this model the wall does not directly contact the magnetocaloric material.
Therefore, as the fluid passes through the regenerator there will be a tendency for thermal energy to transfer to or
from the wall and the regenerator solid. If the thermal mass of the wall is high enough, thermal energy will tend to
transfer to the wall instead of the solid therefore causing a larger impact on the regenerator performance. In the limit
where the thermal mass of the wall goes to zero, the wall does not participate and will not impact the regenerator

performance. The last non-dimensional number of interest relates to the thermal diffusivity of the wall and is defined

as follows:

5= Aytsim (2.39)
w
In the limit where the axial conduction in the wall goes to zero, the numerator becomes the depth at which a thermal
wave is able to propagate radially through the wall for a given simulation time. Normalizing this value by the wall

thickness quantifies the fraction of the wall penetrated by the thermal wave.

3.3 Results

Equations 2.17, 2.38, and 2.39 provide three distinct dimensionless quantities that directly relate to the walls
influence on the regenerator. In order to vary these numbers for the parametric study, a base geometry needs to be
simulated. The geometry used in section 3.1 (based on Table 6) is used and the dimensionless numbers are varied
by changing physical properties of the wall. For instance, Equation 2.38 depends on the mass and specific heat
capacity of the wall as well as the mass and specific heat capacity of the solid. Since the magnetocaloric effect leads
to a change in the value of the MCM specific heat capacity, the value of the specific heat capacity is set to the value
that occurs at the Curie temperature with no magnetic field applied. In addition, the porosity of the regenerator is
assumed to be constant and therefore the mass of the magnetocaloric material cannot change. This leaves two values
that can be changed in Equation 2.38: the specific heat capacity of the wall or wall thickness. Since the product of
the mass and specific heat capacity appear in Equation 2.7, it does not matter which value is augmented to obtain a
specific value of Y. Similarly Equation 2.39 depends on the wall thickness and thermal diffusivity. Equation 2.29
shows that the thermal diffusivity depends on the specific heat capacity, density, and conductivity of the wall. Since

the specific heat capacity and density are required for defining 1, the only values that will be varied for § is the



thermal conductivity. From section 3.1, it is clear that for this particular geometry there are four cases of mass flow
rates that provide the highest COP and refrigeration power: 0.3-0.6 kg/s. These mass flow rates correspond to the
following Reynolds numbers: 25, 34, 43, and 52. For each Reynolds number, the thermal mass ratio, Y, and the
thermal wave propagation fraction, §, will be independently varied from small to large numbers (relative to 1) as

follows:

001<y <10 (2.40)
0.01<6<10 (2.41)

Looking at these ranges of ¥ and § will allow for a better understanding of what is happening when the
dimensionless numbers are much less than 1 and much greater than 1.

Figure 22 shows surface plots of the COP for the corresponding ¥ and & values for the range of Reynolds numbers
mentioned above. The COP values are normalized to the case when there is no wall effect (i.e. the wall equation is

decoupled from the fluid equation).

Effect of Reynolds Number

Figure 22 shows that as the Reynolds number increases the wall tends to have less of an impact on the regenerator
performance. Since the flow is laminar, the transport of energy is mainly due to molecular diffusion. As the
Reynolds number increases, the fluid molecules have less time to interact with the wall and consequently transfer
less energy than in the case where the Reynolds number is lower. It is clear from Figure 22 that the resulting
regenerator performance depends largely on the combination of the thermal mass ratio and the thermal wave
propagation fraction. It is therefore necessary to include all three considerations when designing the regenerators

housing.
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Figure 22: Surface plots of parametric study for various Reynold numbers

Effect of thermal mass ratio

Looking at the case where Reynolds number is the lowest, the effect of the thermal mass ratio is clearly observed.
When following lines of constant §, the COP decreases as the thermal mass ratio increases. This concept is perhaps
the easiest to understand. For 1 < 1, the thermal mass of the wall is small relative to the thermal mass of the
regenerator solid material and as such there is a higher tendency for thermal energy to pass from the fluid to the
regenerator solid. Conversely, when ¥ > 1, the thermal mass of the wall is large relative to the thermal mass of the
solid and thermal energy tends to pass from the fluid to the wall. From this, it can be concluded that when designing
the housing for a regenerator, the housing material and size must be chosen such that its thermal mass is much less
than that of the regenerator solid. In addition to the thermal mass ratio, the regenerator performance also depends

on the housing materials ability to conduct thermal energy.

Effect of thermal wave propagation fraction

From Figure 22, it is concluded that even at low thermal mass ratios, the thermal wave propagation fraction can still
greatly affect the regenerator performance. As previously mentioned in Section 3.2, the dimensionless number § is
defined as the distance a thermal wave can propagate radially in the wall normalized to the wall thickness. This
means that for § = 1, a thermal wave will propagate through the entire thickness of the wall. For a Reynolds number
of 25, it can be seen that for moderately large thermal mass ratios the COP will drastically decrease for small
increases in §. To understand why this is happening, it is interesting to look at a few select cases to see how energy
is transferring through the wall material. Figure 23, 24, and 25 show the transient temperature distribution through
the wall for cases when ¥ = 10 and § = 0.01,§ = 1, and § = 10 respectively. For the first case when § = 0.01, a
thermal wave can only penetrate a small portion of the wall resulting in the majority of the wall remaining at a
constant temperature. In addition, the temperature change of the wall is relatively small over time. In the second
case when § = 1, the thermal wave penetrates the entire thickness of the wall, resulting in a temperature change
throughout the entire length. Throughout the simulation, the temperature profile throughout the wall changes with

the largest change occurring at the region closest to the fluid. In the third case when § = 10, the thermal wave



penetrates the entire thickness of the wall almost instantaneously resulting in large temperature changes throughout
the entire wall. It is interesting to see that since the conduction occurs so quickly, the entire wall at any instant of
time is near constant. Comparing Figure 23, 24, and 25 with Figure 22 , it is clear that large values of § result in a
decrease in COP mainly due to the amount of thermal energy that transfers throughout the entire wall length and it

is therefore very important to consider the conduction of thermal energy through the wall.
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Figure 25: Transient temperature profile for case when =10 and §=10

Discussion and Conclusion

A 2-D numerical model that simulates the transient thermal process of an Active Magnetic Regenerative
Refrigeration system was developed. This 2-D model utilizes a radial geometry and couples the housing to the heat

transfer fluid and the regenerator solid. From this, the effect of the housing heat capacity on the regenerator



performance was able to be determined and quantified. Meaningful dimensionless numbers were established to
analyze the impact of the housing. Through the study, it was concluded that great care must go into designing the
housing for any AMRR system. There are three major considerations that need to be considered concurrently: the
Reynolds number of the fluid, the thermal mass ratio of the wall to the solid, and the thermal conduction length
through the wall with respect to its thickness. Generally speaking, at low Reynolds numbers, the wall should have
a small thermal mass ratio in addition to a small thermal wave conduction length. As the Reynolds number increases,
the effects of the wall begin to reduce drastically. The results from this study are very informative and interesting

however there are simplifications to the model that could be addressed in future studies.

The model currently assumes the magnetocaloric effect to be reversible and it is suggested that the model be
augmented to include the effects of hysteresis. In addition, it is suggested that additional magnetocaloric material
properties be added to the model. The magnetocaloric effect of pure Gadolinium is very weak with respect to layered
materials that are currently of interest in AMRR systems. It would be interesting to see how the wall impacts the

performance when there is a larger temperature gradient in the regenerator.
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Appendix A — Definition of Terms

The thermal conductance terms that appear in Equations 2.2, 2.4, and 2.6 are presented. The thermal conductance

terms for fluid Equations 2.2 are defined as follows:

1
Dy . =
fij+1 1 Arj+1/2 + AT}-/Z (A.1)
2ne(ry + Ary/2)Ax \Kaisprijyr  Kaispr
b B 1
fij-1— 1 Ar; /2 4 Arj_1/2 (A.2)
27'[(1”}- — AT]-/Z)Ax kdisp.ri_j kdiSp'ri,j—l
D B 1
fi+1,j Ax/2 1 N 1 (A3)
27T7”]-A7”j kdisp,Xi+1,j kdisp,xi,j
1
Dfi—l i =
J Ax/Z 1 + 1 (A-4)
2mr;Ar; kdisp,xi,j kdiSP-xi—Lj
The viscous dissipation generation term is defined as:
.y APM AS
9’ = 1A, (A.5)

The thermal conductance terms for solid Equation 2.4 are defined as:
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The thermal conduction terms for wall Equation 2.6 are defined as:

1
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