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Abstract

We present a methodology to assess the predictive fidelity of multiscale simula-

tions by incorporating uncertainty in the information exchanged between the compo-

nents of an atomistic-to-continuum simulation. We account for both the uncertainty

due to finite sampling in molecular dynamics (MD) simulations and the uncertainty

in the physical parameters of the model. Using Bayesian inference, we represent the

expensive atomistic component by a surrogate model that relates the long-term out-

put of the atomistic simulation to its uncertain inputs. We then present algorithms
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to solve for the variables exchanged across the atomistic-continuum interface in

terms of Polynomial Chaos Expansions (PCEs). We consider a simple Couette flow

where velocities are exchanged between the atomistic and continuum components,

while accounting for uncertainty in the atomistic model parameters and the con-

tinuum boundary conditions. Results show convergence of the coupling algorithm

at a reasonable number of iterations. The uncertainty in the obtained variables

significantly depends on the amount of data sampled from the MD simulations and

on the width of the time averaging window used in the MD simulations.

1 Introduction

A wide variety of devices, such as physical nanodevices and micro-fluid systems, achieve

their function through phenomena that operate on a range of time and length scales.

To properly resolve the key phenomena on all relevant scales, multiscale methods are

required [1–7], often coupling different physical models across scales, such as atomistic

models (e.g. Molecular Dynamics (MD)) and continuum macroscale formulations [8–10].

While recent years have brought tremendous progress in the field of multiscale model-

ing [1–7], a key requirement for predictive simulations is to also quantify the uncertainty

in the multiscale simulation results. Uncertainty in multiscale simulations stems from

input parameter, initial condition, and boundary condition uncertainties; from modelling

assumptions on each resolved scale level; but also from modelling assumptions in the cou-

pling between the different scales [11–14]. Uncertainty Quantification (UQ) in multiscale

simulations is an active research topic, with many approaches being developed for the

various types of multiscale coupling [11–13, 15, 16]. Most of the current research appears

to focus on UQ on individual scale levels, or on one-way propagation of uncertainty across

scales. More research is needed on requisite two-way coupling of uncertainty across scales,

especially when different physical models are involved for each scale [17].
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Recent work on uncertainty quantification in coupled multiphysics models has focused

on dimensionality reduction in the information shared at the interface between different

model components [18,19]. More specific to coupled atomistic to continuum simulations,

we have studied two-way coupling between uncertainties across the scale interface. In [14],

we studied the effect of finite sampling on the atomistic level, which leads to uncertainty

in the macroscale quantities that are extracted from MD simulations and passed on to

the continuum level. The current paper extends this formulation to also account for

parametric uncertainties on both the atomistic and continuum levels.

The class of atomistic-continuum multiscale problems studied in this work is schemat-

ically represented in Figure 1, along with the various flows of information between the

scales. The main components in the multiscale simulation framework are the contin-

uum and atomistic models, with input parameters PC and PA respectively, as well as

externally imposed boundary conditions BCC and BCA. Each of these inputs can be

uncertain. A further source of uncertainty is the fact that macroscale (i.e. continuum-

level) observables extracted from the MD simulation through averaging generally have

uncertainty due to the finite amount of MD samples available, given the relatively high

computational cost of MD simulations [14]. The atomistic and continuum models ex-

change information across a multiscale interface indicated by the dotted line in Figure 1.

The exchanged information is conceptually represented in terms of two variables u and

v. The variable v extracted from the MD simulation is fed to the continuum component

of the system while u is imposed on the MD simulation. For the present discussion, we

assume that the relevant outputs of the overall, coupled atomistic-continuum simulation,

are macroscale observables, extracted from the continuum model. The uncertainty in the

parameters and boundary conditions on all scale levels, as well as the sampling noise in

macroscale information extracted from the atomistic model contribute to the uncertainty

of these macroscale observables.
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Figure 1: Information flow in a general stochastic atomistic-continuum multiscale simu-

lation. Inputs to the atomistic simulation are parameters PA, boundary conditions BCA

and a variable u extracted from the continuum simulation. Inputs to the continuum sim-

ulation are parameters PC , boundary conditions BCC and a variable v extracted from

the atomistic simulation. Each of the input parameters and boundary conditions can

be uncertain, resulting in uncertainties in the observables that are extracted from the

continuum simulation.

Given the above mentioned sources of uncertainty, the main question addressed in this

paper is how to quantify the resulting uncertainty in the predicted values of the macroscale

observables extracted from the continuum simulation. To do so, it is crucial to first

quantify the uncertainty in the coupling variables between the atomistic and continuum

simulations. Hence, a key aspect of the present work is to calculate the coupling variables

u and v and their associated uncertainty.

The current work focuses on cases where there is a strong separation between the

relevant time and/or length scales of the resolved atomistic and continuum phenomena.
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Mathematically, the information exchanged between the different system scales is there-

fore passed in terms of boundary conditions imposed on the atomistic and continuum

components of the simulation [8]. Such a coupling procedure has been studied by differ-

ent research groups [20–28]. In almost all of these studies, the coupling was performed

near a fluid-solid interface where the wall velocity was the main variable of interest.

The particular case studied in this work is a near-wall flow resolved with an atomistic

model coupled to a continuum model for the flow further away from the wall. The

continuum flow model operates on a time scale much longer than that of the natural

variability of the atomistic velocities, such that the continuum model is deterministic in

nature. However, extraction of macroscale observables from the atomistic model with

finite sampling generates uncertainty in those observables [13], introducing uncertainty to

the overall multiscale simulation.

In previous work [14], we quantified this sampling related uncertainty in coupling

velocities that are extracted from atomistic simulations of a Couette flow problem. This

uncertainty was then propagated to the continuum model, which sets the input parameters

for the atomistic model. The uncertainty caused by the finite sampling therefore also

creates uncertainty in the atomistic model inputs, and this two-way coupling leads to a

fixed point iteration on the uncertain coupling variables. Polynomial Chaos Expansions

(PCEs) [29–31] were used to spectrally represent the uncertain coupling variables, and

a Bayesian inference approach [32] was used to determine the PCE coefficients of the

macroscale velocities extracted from the atomistic simulations. A surrogate model for

the atomistic simulation was used to speed up the fixed point iterations on the PCE

coefficients of the coupling variables.

In the current work, the surrogate model approach is improved to streamline the

coupling process, and the improved efficiency allows the incorporation of parametric un-

certainty in the atomistic and continuum model parameters along with the existing un-

certainty due to finite sampling on the atomistic level. As in [14], a steady-state Couette
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flow problem is chosen to develop and illustrate the approach, but the approach can be

generalized to more involved geometries and/or time-dependent problems.

By accounting for parametric and sampling uncertainties in a consistent way across

all scales, the approach developed in this paper allows the assessment of the uncertainty

in the outputs of coupled atomistic-to-continuum simulations, for a given amount of com-

putational resources. The representation of this uncertainty with PCEs as a function of

the different sources of uncertainty also shows what the dominant sources of uncertainty

in the outputs of interest are, such that if more confident predictions are desired, one can

determine whether this requires more computational resources (more samples), or better

determined input parameters.

The paper is organized as follows. Section 2 outlines the geometry of the atomistic-to-

continuum problem considered in this paper, along with an overview of the MD approach

used to simulate the atomistic flow behavior, and the exchange of information between

the atomistic and continuum components in the simulation. Section 3 covers the math-

ematical foundation for representing uncertainty and constructing surrogate models for

the atomistic and continuum components. Sections 4 and 5 then detail, respectively, how

these surrogate models are used to obtain the coupling variables in a case with sampling

noise only, and in a case where sampling noise is combined with parametric uncertainty.

We then discuss the results and conclude in Section 6.

2 Problem Setup

2.1 Model Geometry

Consider the Atomistic-Continuum steady Couette flow schematically depicted in Fig-

ure 2. The typical configuration for Couette flow, where two walls separated by a fluid

region are moving in opposite directions at a velocity w, is shown in Figure 2(a). The
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regions close to the walls (depicted in red) are the ones where MD simulations should

be performed in order to capture wall-slip phenomena that can not be resolved in fully

continuum simulations. By virtue of symmetry, we can restrict our study to the lower

half of the continuum domain. Using Galilean invariance, we then can map this domain

into the situation where the lower wall is stationary while the fluid at the centerline is

moving at a velocity w. This system, which is shown in Figure 2(b and c), is the tar-

get of this study. The system contains a discrete overlap region shown as a dashed red

area, where coupling information is communicated between the continuum and atomistic

simulations. The distance δ from the wall to the overlap region needs to be chosen such

that all continuum and atomistic governing equations are applicable in the overlap region.

Figure 2(c) is a magnified view of the MD simulation domain where the bottom wall is

stationary and the top wall is moving at a constant deterministic velocity 2uA such that

the velocity at y = hMD is equal to uA, where uA is the fluid velocity at y = hMD in

Figure 2(b). Further details about the MD simulation are given in [14].
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Figure 2: A schematic showing different components of the continuum-atomistic simula-

tion. The red color signifies the atomistic portion of the simulation while blue represents

the continuum portion. The schematics show: (a) a general symmetric Couette flow mul-

tiscale geometry where w is the continuum wall velocity, (b) a transformed half-geometry

where the atomistic simulation is next to the stationary wall; the dashed red area is an

overlap region between atomistic and continuum, and (c) an atomistic Couette flow simu-

lation performed next to the wall where uA is the constant deterministic velocity imposed

on the MD region in (b); the green area denotes the region in the atomistic simulation

that models the walls.

2.2 MD Numerical Implementation

The MD simulation geometry suggested in Figure 2(c) consists of a stationary and a

moving wall. We consider a three-dimensional domain occupied by particles representing

water molecules. The soft inter-particle interaction is modeled by the Lennard-Jones (LJ)
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pairwise potential φij [33]. For particles i and j separated by a distance r, φij is given by:

φij = 4φ0

[

(σ

r

)12

−
(σ

r

)6
]

. (1)

We set the nominal values of the LJ parameters for water to φ0 = 0.152 Kcal/mole

and σ = 3.15 Å [34]. We simulate moving walls by fixing the velocity of particles lying

around at y = hMD to a prescribed velocity vector {uA, 0, 0} for the whole simulation

period.

MD computations were performed with LAMMPS [35] at a constant temperature T =

298 K, using a velocity Verlet time integration of the Newtonian equations and a simple

velocity rescale temperature control performed every 100 steps [34, 35] to maintain the

steady state in the presence of mechanical energy input from the walls.

We extract the velocity at y = δ (see Figure 2(c)). We choose δ =20.5 Å, which is far

enough from the wall such that the velocity profile is linear making the continuum laws

applicable in this location as discussed in the beginning of Section 2.1. Details on the

extraction of the velocity can be found in [14]. This value of δ is the same for all the cases

considered in this paper. We then employ a moving time average with a window width

of tw to determine an ensemble average for the short-time averaged velocity. Velocity

samples are collected until the noise amplitude in the mean due to finite sampling is

reduced below a target cutoff. While the intial particle positions are on a regular grid in

the simulation box, the initial velocities are assigned randomly. For each set of inputs we

perform different replica simulations to sample over the degrees of freedom in the initial

conditions.

Extracted velocities as a function of MD simulation time are shown in Figure 3. For

all the considered averaging time windows, the amplitude of the velocity noise decreases

with increasing averaging time window.
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Figure 3: Plot showing short-time averaged velocities extracted from the Couette flow MD

simulation (see Figure 2) for uA =10 m/s and different moving time averaging window

widths, as indicated.

2.3 Variable Exchange between the Atomistic and Continuum

Simulations

In the setting of the Couette flow in Figure 2(b), the key variables coupling the atomistic

and continuum simulations are either shear stress (F) or velocity (V). Hence there are

four different coupling schemes based on the classification of Ren [8]. Since shear stress,

unlike velocity, is not a fundamental quantity in MD and therefore difficult to control

directly in MD simulations, the schemes involving shear stress were not considered in this

work. The stability considerations discussed in [14] led us to use the Velocity-Velocity

(VV) coupling scheme where a velocity is extracted from the continuum simulation at

y = hMD and imposed as a boundary condition on the atomistic simulation at y = hMD.

In exchange, an updated velocity is extracted from the atomistic simulation at y = δ and

imposed on the continuum at y = δ (see Figure 4). The resulting exchange of variables
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between the atomistic and the continuum simulations is visualized in Figures 4 and 5.

Figure 4: A schematic showing the locations of variable exchange between the atomistic

and continuum simulations in a VV coupling scheme.

In these figures, the superscript C is used to signify that a particular variable is defined

on the macroscale continuum level, whereas the superscript A indicates a quantity on the

atomistic level.

As mentioned in the introduction, and as studied in [14], the velocity vC is inferred from

short-term averaged noisy samples of the atomistic velocity vA, and as such, the output

vC from the atomistic simulation is treated as an uncertain quantity on the continuum

level. Section 3.2 quantifies this uncertainty as a function of the time-averaging window

and the number of MD velocity samples used.

Due to the uncertain input vC to the continuum simulation (see Figure 5), the output

uC from the continuum simulation will also have uncertainty (see Section 3.3). Hence,

in this two-way coupled setting, the outputs vC and uC of the atomistic and continuum

simulations, respectively, are both uncertain quantities, and uncertainty information is

passed in both directions across the interface.

The uncertainty in uC is propagated through the atomistic model by sampling specific

values uAi from the distribution of uC , and imposing those values uAi as deterministic

boundary conditions on the atomistic model. An appropriate ensemble of replica MD

simulations is performed [9] to sample over the many degrees of freedom for the initial

particle positions and velocities.
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Figure 5: A schematic showing the exchange of the variables in a VV coupling scheme

between the atomistic and continuum simulations. The superscript index (i) indicates the

current coupling iteration.

To determine the coupling velocities u and v along with their uncertainties, an itera-

tive scheme was developed [14] for the case where the atomic sampling noise was the only

source of uncertainty in the system. The fixed point iteration scheme looped through

the information flow depicted in Figure 5 until the coupling velocities converged. As this

iteration required multiple runs of the atomistic model for slightly different input condi-

tions uA, a surrogate model was developed for the output velocities vA of the atomistic

model. This surrogate model greatly reduced the computational cost associated with the

iterative scheme.

In the current work, this approach is improved by constructing a surrogate not just

for the atomistic component, but for the ensemble of the continuum to atomistic (C2A),

the atomistic, and the atomistic to continuum (A2C) components; i.e. for all components

inside the box with the dashed outline in Figure 5. In doing so, the exchange of information

between the atomistic and continuum models can be written in terms of variables that all
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reside on the continuum level, vC and uC , which need to satisfy:

vC = fA(uC)

uC = gC(vC) (2)

where fA is the surrogate model for the ensemble of atomistic components, and gC is the

surrogate for the continuum model.

The next Section 3 details how the surrogate model for the atomistic system fA is

constructed in 3.2, and the surrogate for the continuum model gC in 3.3. The uncertainties

in the exchange variables vC and uC are represented with Polynomial Chaos coefficients,

which are introduced in Section 3.1.

3 Mathematical Formulation

3.1 Polynomial Chaos Expansions

Polynomial Chaos Expansions (PCEs) are spectral representations of random variables in

terms of polynomial functions of standard random variables multiplied by deterministic

coefficients. Under some generally mild assumptions [36], any finite-variance random

variable u can be represented as a PCE as follows:

u =
∞
∑

k=0

ukψk(ξ), (3)

for a wide class of standard random variables ξ and standard polynomials ψk(ξ) that are

orthogonal with respect to the probability distribution function of ξ. Two of the most

commonly used expansions for continuous random variables are Gauss-Hermite (Hermite

polynomials as functions of standard normal random variables) and Legendre-Uniform

(Legendre polynomials as functions of uniform random variables) PCEs. A multivariate
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generalization of the PCE is written as

x =
∞
∑

k=0

xkΨk(ξ), (4)

where x is a scalar quantity depending depending on a vector of standard variables

ξ = (ξ1, ξ2, . . . , ξn), and Ψk(ξ) are multivariate standard polynomials defined as Ψk(ξ) =

ψp1(ξ1) · · ·ψpn(ξn) according to a chosen enumeration of these polynomials for some or-

dering in the set of vectors of component-wise orders (p1, . . . , pn), called multi-indices.

Note that, in the simplest setting, the stochastic dimension, i.e. the size of the vector ξ,

is the same as the number of input parameters n. In practice, when the input parameters

are independent, one can decouple the form (4) and write n independent PC expansions

for each uncertain input.

xi =
∞
∑

k=0

xi,kψk(ξi). (5)

While the univariate PC expansions are usually truncated at some finite order p, the

multivariate expansion (4) is typically truncated according to the total degree of the

retained polynomials, i.e. p1+ · · ·+ pn ≤ p, where p is a predefined value for the maximal

degree. The number of terms will then be P + 1 = (n+ p)!/n!p!.

After characterizing uncertain variables with PCEs, one can efficiently propagate their

associated uncertainty through a set of model equations. One approach to do this is to

substitute the PCE variables directly into the model equations and perform all operations

(e.g. multiplication, square root) directly on the PC expansions. As such, this method is

referred to as the Intrusive Spectral Projection (ISP) approach. Numerical operations on

PCEs are described in detail in the work of Debusschere et al. [37]. Two operations that

will be commonly used in this work are multiplications and square roots.
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The product z of two PCEs x and y is computed as

z = x⊗ y (6)

zk =
1

〈Ψ2
k〉

P
∑

i=0

P
∑

j=0

xiyj〈ΨiΨjΨk〉 (7)

We compute the square root of a PCE using the equality
√
x = e

1

2
log x, i.e. by first

computing its natural logarithm, multiplying the outcome by 1/2 then applying the ex-

ponential function to the result. For more details, see the work of Debusschere et al. [37].

Another way to derive the PC coefficients of the solution of a set of equations is to

project the solution directly onto the PC basis. For example, to get the PC coefficients

of a model output x, one writes

xk =
〈xΨk〉
〈Ψ2

k〉
, k = 0, . . . , P (8)

This requires numerical evaluation of the projection integrals 〈xΨk〉 using quadrature

rules, relying on samples of x for specific values of the uncertain model inputs. This

method is referred to as non-intrusive spectral projection (NISP) [38], which will also be

used in this study. More details about PCEs and their numerical implementations are

found in [38].

3.2 Atomistic Component: Inference of a Polynomial Response

Surface

To enable rapid evaluation of the output velocities of the atomistic model, for various

values of its inputs, a cheaper-to-evaluate surrogate model is created for the atomistic

model in this work. Mathematically, consider the atomistic model as a forward function

f(·), relating input x to output y = f(x). In general, the input x consists of n input

parameters x = (x1, x2, . . . , xn). Our goal is to construct the surrogate model as a re-
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sponse surface f̃(x;m) that approximates the forward function f(·) within a hypercube

ai ≤ xi ≤ bi, for i = 1, 2, . . . , n, i.e. f(x) ≈ f̃(x;m). The vector of the response surface

parameters m is the object of inference. In this paper, a polynomial model is employed

for a response surface construction. First, the input parameters xi ∈ [ai, bi] are scaled to

λi ∈ [−1, 1]

xi =
ai + bi

2
+
bi − ai

2
λi for i = 1, 2, . . . , n, (9)

where [ai, bi] is the input range for the parameter xi.

The goal is to find a polynomial approximation f̃(x,m) for the forward function f(x),

i.e.

f(x) ≈ f̃(x;m) =
∑

α

mαλ(x)
α, (10)

where λ(x) is the linear relationship derived from (9). Here, we used the notation

λα =
∏

i λ
αi

i for the monomial corresponding to a multi-index vector α. The polyno-

mial expansion (10) is truncated based on the total degree of the retained monomials, i.e.

||α||1 = α1 + α2 + · · · + αn ≤ p, where p is the order of the expansion, chosen a priori,

leading to the number of terms K = (n+ p)!/n!p!.

We will employ Bayesian inference to find the polynomial coefficientsm = {mα}||α||1≤p

in the expansion (10). Let y be a vector of observable data, or a set of training evaluations

of the forward model f at points xi, i.e. yi = f(xi) for i = 1, . . . , N . Bayes’ rule writes

the posterior PDF for the model parameters m given the observed function evaluations

y [39, 40]:

P(m|y) ∝ P(y|m)P(m) (11)

The prior P(m) and posterior P(m|y) probabilities represent degrees of knowledge

of m before and after obtaining the data y, respectively. The key component in (11)

is the likelihood function L(m) = P(y|m). To construct the likelihood, we assume a

Gaussian i.i.d. discrepancy between the polynomial model prediction f̃(x;m) and the

forward model f(x) at the parameter values of interest xi. Specifically, the components
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of the discrepancy vector ǫ = [ǫ1, ǫ2, · · · , ǫN ]T are defined as

ǫi = yi − f̃(xi;m) (12)

are assumed to be independent and correspond to the PDF πs(z) = exp(−z2/2s2)/
√
2πs2,

leading to a likelihood

L(m; s) =
N
∏

i=1

πs(yi − f̃(xi;m)) (13)

Note that we have introduced the hyperparameter s that is the standard deviation of

the error model for the discrepancy. In the absence of any knowledge of the magnitude of

it, this parameter is also an object of inference, therefore, the Bayes’ formula should be

viewed as

P(m, s|y) ∝ L(m; s)P(m)P(s). (14)

Since we are primarily interested in the parameters m, we will take the marginal posterior

distribution of m only:

P(m|y) =
∫

s

P(m, s|y)ds. (15)

Independent uniform priors are taken for the polynomial coefficients, P(m) = const,

while a Jeffrey’s prior is assumed for the positive parameter s, i.e. P(s) ∼ 1/s. With

such priors, given that the response surface (10) is linear in the parameters m, as well

as independent Gaussian assumptions on the likelihood, one can exactly solve for the

posterior distribution P(m, s|y) as well as marginalize over s to obtain [14]:

P(m|y) ∝
(

1 +
1

γ
(m− µ)TV −1(m− µ)

)− γ+K

2

(16)

which is a multivariate Student-t distribution

m|y ∼ MST (µ,V , γ) (17)
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with mean

µ = (QTQ)−1QTy, (18)

scale matrix1

V =
yTy − yTQ(QTQ)−1QTy

N −K − 1
(QTQ)−1 (19)

and degrees of freedom

γ = N −K − 1. (20)

To this end, we note that when the degrees of freedom is large, i.e. γ ≫ 1, this multivariate

Student-t distribution converges to a multivariate normal distribution with mean µ and

covariance V . In Eqs. (18) and (19), the measurement matrix Q ∈ R
N×K is defined as

the matrix of evaluations of the monomials λα in (10) at the training x-values. That is,

Qnk = λ(xn)
α(k), where α(k) is the k-th multi-index in the ordering of the monomial

terms in (10). With a multivariate Student-t distribution as polynomial coefficients, the

polynomial approximation becomes a Student-t process. The marginal distribution of this

process at each fixed value of x is a Student-t random variable

f̃(x) ∼ ST (q(x)Tµ, q(x)TV q(x), γ), (21)

where the vector q(x) ∈ R
K is defined as q(x)k = λ(x)α(k).

Therefore, one can write

f̃(x) = q(x)Tµ+ ζ
√

q(x)TV q(x), (22)

where ζ is a standard Student-t random variable, ζ ∼ ST (0, 1, γ).

In the present context, f̃(x) is a response surface for the continuum wall velocity

vC , which is the key output of the atomistic model. While the atomistic model has

many input parameters and boundary conditions, the response surface is constructed as

1For completeness, we note that the covariance is proportional to the scale matrix Σ = γ

γ−2
V .
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a function of only the inputs that have variability. In the case without external sources

of uncertainty, as discussed in section 4, the only input is simply the continuum input

velocity uC . Therefore x = {uC} and the atomistic surrogate becomes

vC = fA(uC , ζ). (23)

To infer this surrogate model, a set of short-term averaged values of the atomistic velocity

vA, sampled at different values of the input uC is used as data. Due to the finite amount of

sampling over the raw atomistic velocities used to extract those data points, large amounts

of noise may be present. Nevertheless, since the data consists of a short-term averaged

MD simulation outputs, the noise can approximately be characterized as Gaussian due

to the Central Limit Theorem [14]. The other component of the discrepancy between the

response surface and data is the error associated with the accuracy of the response surface

itself. We assume, however, that the polynomial response surface order is chosen large

enough – but without having to overfit – to render this generally correlated discrepancy

component negligibly small. The outcome of the Bayesian inference of the response surface

relies on the standard Student-t random variable ζ in (22) and (23) that corresponds to the

variability in the posterior distribution, and represents the uncertainty due to the sampling

noise as well as due to a possible model discrepancy between the true atomistic model and

the response surface. Again, with large enough order in the polynomial response surface,

one can safely assume that the sampling noise is the only contributor to the variability

described by ζ.

For the case studied in section 5, the Lennard-Jones parameter σ corresponding to

the soft sphere radius in the MD force model is assumed to be uncertain. The atomistic

surrogate model needs to cover that external source of uncertainty as well, such that

x = {uC , σ} and the surrogate model becomes

vC = fA(uC , σ, ζ) (24)
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In this case, the data used in the inference process consists of short-term averaged atom-

istic velocities vA, sampled over a range of values for uC and σ.

3.3 Continuum Component: Linear Relationship

The velocity obtained from the MD simulations, or its polynomial approximation, is

imposed on the continuum system as shown in Figure 4. We formulate the continuum

Couette flow mathematical model based on Figure 2(b). Assuming a steady, laminar,

Newtonian flow, the Navier-Stokes equations reduce to:

d2u

dy2
= 0, for δ ≤ y ≤ h (25)

Based on Section 2.1, the boundary conditions are set such that the velocity extracted

from the MD simulation is imposed at y = δ in the continuum simulation. The boundary

conditions become:

u(y = δ) = vC (26)

u(y = h) = w, (27)

leading to the linear relationship for the velocity extracted at y = hMD,

u(y = hMD) = uC = w + β(w − vC) = gC(v
C , w), (28)

where β = hMD−h

h−δ
.
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4 Application to Coupled Atomistic-Continuum Cou-

ette Flow with Sampling Noise

In this section, we consider the case of coupled atomistic-continuum Couette flow with

uncertainty due to sampling noise, similarly to our previous study [14]. This case enables

comparing the results of the current continuum level surrogate model approach to our

previous atomistic level stochastic coupling approach. We assume deterministic values

for all the parameters in the coupled system, namely, h, w, φ0 and σ. The only source of

uncertainty therefore is due to finite sampling in the extraction of macroscale variables

from the MD simulation. Hence, this uncertainty only exists in the expression of fA

in (2). Here, the response surface construction for the atomistic component described

in Section 3.2 is carried out for one input only, x = {uC}, and the coupled system of

equations reduces to:

vC = q[uC(ζ))]Tµ+ ζ
√

q[uC(ζ)]TV q[uC(ζ)], (29)

uC = w + β(w − vC) (30)

We rely on NMD = 200 short-time MD data averaged over a window tw = 5 ns for each

of the five training values of the input uCi ∈ {0.0, 1.125, 2.25, 3.375, 4.5} m/s. These five

values are equally spaced and chosen around a nominal value of uC assumed to be equal

to 2.25 m/s. Due to the linear nature of the Couette flow, we assume a linear relationship

(i.e. an exact, linear response surface) between uC and vC that gives:

q(uC) = {1, uC}T . (31)
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for σ = 3.15 Å, µ and V can be derived according to Section 3.2 as:

µ = (−0.056, 0.55)Tm/s

V =







1.17× 10−5 −2.08× 10−6

−2.08× 10−6 1.84× 10−6






m2/s2 (32)

Given the relative simplicity of this case, we start by providing a graphical solution

of the system formed by Eqs. (29) and (30). Plotting vC versus uC according to Eq. (29)

leads to a family of curves parametrized by ζ ∼ ST (0, 1, γ) as discussed previously. Note

that since the degrees of freedom is large γ = 190 ≫ 1 in the Student-t parameter

definition (20), we can approximate ζ by a normal distribution N (0, 1). On the other

hand, plotting Eq. (30) leads to a unique curve. The solution of the system (29) and (30)

is therefore a 1D interval of pairs (uC , vC) rather than a single point. This is visualized in

Figure 6 for two different deterministic values of the LJ parameter σ in the MD simulation.

The plots show hat σ significantly affects the slope of the atomistic response curves. This

is not surprising because in Eq. (1), the interaction energy between the LJ particles

exhibits a 12th order dependence on σ. The change in the interaction energy incurred by

σ affects the fluid viscosity, hence the flow field inside the MD domain.
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Figure 6: Plot showing: (solid lines) different realizations of the atomistic response surface

sampled from Eq. 29 for two different values of the parameter σ, NMD = 200 and

tw = 5 ns, and (dashed line) the continuum response surface (37) for a deterministic

w = w0 = 20 m/s.

The uncertain solution of the system is given by the intersection of the continuum

response curve (black dashed line) and the atomistic response curves in red and blue for

σ =3.35 Å and σ =3.15 Å, respectively. To compute this intersection formally, we assume

a first order PCE for both uC and vC . The velocity uC is therefore written as:

uC = u0 + u1ζ (33)

Using the ISP approach outlined in Section 3.1, the PC coefficients for uC and vC

are obtained as follows. Starting from an initial guess of the PC coefficients u0 and u1,

we proceed with a fixed-point iterator that computes vC from Eq. (29) and updates uC
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using Eq. (30). This iterative procedure, summarized in Algorithm 1, is repeated until

convergence of the PC coefficients. At each iteration, multiplication and square root

operations take place on PCEs, as discussed in Section 3.1.

Algorithm 1 solves a system of equations in two uncertain variables expressed as PCEs

using ISP in the case of sampling noise with no parametric uncertainty.

uC,0
0 = u0, u

C,0
k>0 = 0 {Initial guess of the PC coefficients of uC}

i = 0, imax = 500, er = 100 {Maximum number of iterations and initial error}

ǫ = 10−4 {Relative tolerance}

while er > ǫ and i < imax do

Compute m = ζ
√

qT,i(uC,i)V qi(uC,i)

Compute the PCE of vC,i = qi,Tµ+m using Eq. (29)

Compute an updated PCE uC,i+1 using Eq. (30)

er = max
0≤k≤1

|1− uC,i+1
k /uC,i

k |

i = i+ 1

end while

The convergence of the solution is depicted in Figure 7 as a function of the number of

iterations. Unlike the atomistic level stochastic coupling scheme [14], the current response

surface approach produces smooth convergence curves with better defined convergence

criteria.
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Figure 7: Plot showing the convergence of the PC coefficients of uC with only uncertainty

due to sampling noise and for two different values of the parameter σ, as indicated. Results

are obtained with an atomistic response surface computed using NMD = 200 and tw = 5

ns. The ISP approach in Algorithm 1 was used to solve Eqs. (29) and (30).

The computed uncertain velocity uC is reported in Figure 8 in terms of its mean and

standard deviation. vC can easily be obtained once uC is computed using Eq. (30). Also

shown in Figure 8 are the results obtained using the atomistic level stochastic coupling

scheme [14]. The standard deviation of uC decreases with the time averaging window tw,

as expected, and increases with σ as discussed previously. The results of the response

curve approach are in good agreement with the stochastic coupling approach for all σ and

tw.
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σ = 3.15 Å, w=20 m/s
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Figure 8: Plot showing the mean and standard deviation of the predicted continuum scale

velocity uC considering only uncertainty due to sampling noise for two different values

of the parameter σ, as indicated. Results are obtained based on the same MD data for

different time averaging windows tw, as indicated, using the atomistic level algorithm

(red) [14] and the continuum level response surface iterative scheme (blue).

5 Application to Coupled Atomistic-Continuum Cou-

ette Flow with Sampling Noise and Parametric Un-

certainty

In this section, we provide a generalization of the coupling procedure described in the

previous section such that we account for parametric uncertainty in addition to sampling

noise. Similar to Section 4, coupling two systems is obtained by solving two equations of
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the forms obtained in Sections 3.2 and 3.3. We focus on our current case of Couette flow

to describe our solution method. However, the algorithms we develop are also applicable

to systems with different numbers of uncertain parameters whether in the atomistic or

the continuum components. We assume two uncertain parameters σ(ξ1) (in the atomistic

component) and w(ξ2) (in the continuum component) in addition to the sampling noise

ζ = ξ3. As such, the variables ξi for i = 1, 2, 3 encapsulate all the uncertain components of

the coupled system. The main quantities of interest, uC and vC , can therefore be written

as PCEs

vC =
P
∑

k=0

vkΨk(ξ1, ξ2, ξ3), uC =
P
∑

k=0

ukΨk(ξ1, ξ2, ξ3). (34)

Our goal is to find their PC coefficients uk and vk for k = 0, . . . P , given the relations

vC = fA(u
C , σ, ζ),

uC = gC(v
C , w).

Thus, we would like to solve:

vC(ξ) = q[uC(ξ), σ(ξ1)]
Tµ+ ξ3

√

q[uC(ξ), σ(ξ1)]TAATq[uC(ξ), σ(ξ1)] (35)

= q[uC(ξ), σ(ξ1)]
Tµ+ ξ3‖ATq[uC(ξ), σ(ξ1)]‖2

uC(ξ) = gC(vC(ξ), w(ξ2)) (36)

for the uncertain variables uC and vC expressed as PCEs where ξ = (ξ1, ξ2, ξ3), A is the

Cholesky decomposition of the matrix V (V = AAT ) and ‖ · ‖2 denotes the L2 norm.

Note that since the continuum relationship is linear in both w and vC , one can write

an analytical relationship between the PC coefficients of uC , vC , and w:

uk = wk + (wk − vk)
hMD − h

h− δ
, for 0 < k < P. (37)

Unlike the case of sampling noise only, the intersection of the atomistic and continuum

28



response surface cannot be easily visualized. We rely on computations to solve for the

uncertain uC and vC .

5.1 Solution Method

Given the form of the system of equations (35) and (36), we use a fixed point iterations

algorithm for the solution. Starting with an initial guess of one of the variables, the

algorithm allows the exchange of this variable between the two equations to obtain a

more accurate value at each iteration until convergence (see Figure 4). Since the variables

involved in the solution are uncertain and expressed as PCEs, we devise two approaches.

In the first one, the mathematical operations (addition, multiplication, etc.) on the PCEs

take place intrusively at each iteration. The second one follows the NISP approach,

in which the PCE of a variable is sampled and the solution for each sample is obtained

separately using a fixed point iterator. The samples are then used to evaluate the integrals

in Eq. (8) to recover the PCE of the solution.

5.1.1 Intrusive Spectral Projection (ISP)

The procedure used to solve for the PCEs of uC and vC with an ISP approach is summa-

rized in Algorithm 2. We assume a deterministic initial value of uC i.e. the PC coefficients

uCk are equal to zero for all k > 0. A common entity to compute at each iteration is the

vector of PCEs q(uC) that describes the atomistic response surface. This involves multi-

ple Galerkin operations over PCEs namely powers of uC and products with σ. Many of

these operations are repetitive thus we devise a recursive scheme to minimize the com-

putational effort. Another special operation involved in this approach is the square root

of a PCE required to compute the second part of the right-hand side of Eq. (35). All of

these operations are performed as discussed in Section 3.1. These operations are repeated

until the maximum relative error between two consecutive sets of PC coefficients of uC is

below a given tolerance. Numerical issues usually arise at large uncertainty magnitudes
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when computing the logarithm of a PCE. A suitable choice of the PCE basis and order

can alleviate these challenges and results in a converging algorithm.

Algorithm 2 solves a system of equations in two uncertain variables expressed as PCEs

using ISP in the case of both sampling noise and parametric uncertainty.

uC,0
0 = u0, u

C,0
k>0 = 0 {Initial guess of the PC coefficients of uC}

i = 0, imax = 500, er = 100 {Maximum number of iterations and initial error}

ǫ = 10−4 {Relative tolerance}

while er > ǫ and i < imax do

Compute qi(uC,i)

Compute ‖ATqi‖2
Compute the PCE of vC,i = qi,Tµ+ ξ3‖ATqi‖2 using Eq. 35

Compute an updated PCE uC,i+1 using Eq. 36

er = max
0≤k≤P

|1− uC,i+1
k /uC,i

k |

i = i+ 1

end while

5.1.2 Non-Intrusive Spectral Projection (NISP)

In the NISP approach, no Galerkin operations are performed. Instead, the PCE of uC is

sampled at each iteration over M = qn deterministic Gauss quadrature points where n

is the number of stochastic dimensions. For each deterministic value of the parameters

σj, wj and ζj, the system in Eqs. (35) and (36) is solved for uCj and vCj . These latter are

then plugged in Eq. (8) to build the PCEs of uC and vC . More details about this NISP

approach are given in Algorithm 3.
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Algorithm 3 solves a system of equations in two uncertain variables expressed as PCEs

using NISP in the case of both sampling noise and parametric uncertainty.

imax = 500 {Maximum number of iterations}

ǫ = 10−4 {Relative tolerance}

M = qn, q ≥ p+ 1 {M is the total number of quadrature points}

for j = 1 to M do

uC,0
j = u0 {Initial guess of uj}

er = 100 {Initial error}

i = 0

while er > ǫ or i < imax do

Compute vC,i
j using Eq. (35)

Compute an updated uC,i+1
j using Eq. (36)

er = |1− uC,i+1
j /uC,i

j |

i = i+ 1

end while

end for

Build the PCEs of uC and vC using NISP, i.e. Eq. (8)

5.2 Results

We consider the case of the atomistic-continuum Couette flow where parametric uncer-

tainty exists in addition to the uncertainty due to finite sampling noise. For instance,

we consider the top wall velocity w in the continuum sub-model and the LJ parame-

ter σ in the atomistic sub-model to be uncertain. In this set of results we also rely of

NMD =200 short-time MD data averaged at tw =5 ns. The atomistic response surface

vC = fA(uC , σ, ζ) is given by Eq. (22) for the response surface input x = (uC , σ), i.e.

vC = q(uC , σ)Tµ+ ζ
√

q(uC , σ)TV q(uC , σ) (38)
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Based on the uncertainty in σ and given its substantial effect on vC as shown in

Section 4, we assume a fourth order dependence of uC on σ. Concurrently, we assume

a linear dependence of vC on uC due to the linear nature of the Couette flow. Hence

the polynomial basis for the response surface construction is given by, assuming a fourth

order expansion in σ,

q[uC(ξ), σ(ξ1)] = {1, σ, σ2, σ3, σ4, uC , uCσ, uCσ2, uCσ3, uCσ4}T (39)

We infer values of µ and V based on training data obtained from different MD simu-

lations for different values of σ and uC . We pick 7 and 5 equidistant values in the σ and

uC dimensions, respectively, thus performing a total of 35 MD simulations. These values

are denoted by the black dots in Figure 9 where we plot the deterministic part of the fA

surface.
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Figure 9: Surface plot of the atomistic mean response surface fA in the presence of

uncertainty in the LJ parameter σ. The black dots denote the variability of the surface

due to finite sampling. The plot was generated from NMD = 200 short-time data averaged

with tw =5 ns for each sample input {uC , σ}.

On the continuum side, the response surface uC = gC(vC) is given by Eq. (28). We

assume the linear PC expressions for the uncertain inputs σ, w, ζ as given in Eq. (40).

and seek PC coefficients for the quantities of interest uC and vC given in Eq. (34). In

the current context, the uncertain input variables are cast as first-order Hermite-PC

expansions in the following way (in the brackets we noted the assumed values of the PC
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coefficients):

σ = σ0 + σ1ξ1 [= 3.15 + 0.074ξ1 (Å)]

w = w0 + w1ξ2 [= 20 + ξ2 (m/s)] (40)

ζ = ξ3,

where ξ1, ξ2, ξ3 are the stochastic inputs to the problem and are standard normal. Note

that, while ζ is a standard Student-t random variable, it is well-approximated here by a

standard normal as discussed in Section 4.

5.2.1 Convergence Study

We apply the algorithms and methods developed in Section 5.1 to the coupled atomistic-

continuum 1D laminar Couette flow problem described previously and verify the conver-

gence in the PDF of the coupled model output in terms of the PCE order.
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Figure 10: Plots showing the PDFs of uC in the case of parametric uncertainty and

sampling noise for different PCE orders of uC , as indicated. Plotted are results obtained

using the ISP (left) and the (NISP) approaches in the fixed point iterative scheme.

We solve for the PC coefficients uCk and vCk using the ISP and the NISP fixed iterator

approaches described earlier. In the NISP approach, we rely on M = (p + 1)n Gauss-
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Hermite quadrature points to build the PCEs of uC and vC where p is given the PCE

order and n the number of stochastic dimensions. We draw a large number of samples

from these PCEs and using Kernel Density Estimation [41], we construct their equivalent

PDFs. These are reported in Figure 10 for uC for different expansion orders. The results

of the ISP and NISP approaches are in very good agreement. The plots imply that an

expansion order p = 3 is required to accurately quantify the overall uncertainty in uC .

This is expected due to the assumed high order dependence of the vC velocity on σ (see

Eq. 39).
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Figure 11: Plots showing the PC coefficients of uC in the case of parametric uncertainty

and sampling noise for different PCE orders of uC , as indicated. Plotted are results

obtained using the ISP (blue) and the NISP (green) approaches in the fixed point iterative

scheme.

The computed PC coefficients are shown in Figure 11. Again, a very good agreement

between the ISP and NISP approaches is observed. For p ≥ 2, we notice that the PC

coefficients that correspond to the PC modes with higher orders in ξ2 have negligible

amplitude. The number of such PC coefficients increases with p. This is not surprising

due to the linear nature of the Couette flow problem where both uC and vC vary linearly
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with w. Thus, a first order expansion in the w ∼ ξ2 dimension is sufficient in the PC

representation of uC and vC as a function of w.

A performance study (not shown) indicates that in this response surface coupling

method, the ISP approach requires more expensive computations than the NISP ap-

proach. This is due to the computational overhead required by the Galerkin operations

described in Section 5.1.1 upon each fixed point iteration. This overhead quickly increases

with the expansion order p since more iterations are required. On the other hand, the

computational cost per sample in the NISP approach is negligible thanks to the surro-

gate expressions fA and gC that replace the expensive MD and finite element simulations

with simple polynomial relationships between the quantities of interest and the system

parameters.

5.2.2 Sensitivity Analysis

In engineering applications, it is often useful to understand the individual effects of the

uncertain parameters on a quantity of interest. This latter can either be the uC or vC

velocity. Such exercise is referred to as sensitivity analysis which, in the PCE context, is

performed by the evaluation of the total sensitivity indices derived by Crestaux et.al. [42,

43]. Sensitivity index measures the fraction of output variance that can be attributed

to the particular input uncertainty. In other words, the higher the sensitivity index, the

stronger the contribution of the uncertainty of that parameter on the quantity of interest.

Table 1: The total sensitivity indices of uC and vC on the uncertain entities present in

the model. Results are computed from their PC representations of uC and vC for p =3

using the parametric uncertainty level in Eq. 40 where NMD = 200 short-time MD data

averaged at tw =5 ns were used.

σ w ζ

uC 0.606 0.254 0.140

vC 0.745 0.083 0.172
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The total sensitivity indices are shown in Table 1 for uC and vC . Even though the

level of uncertainty in σ is less than 2.5% (see Eq. 40), it contributes more than 60% to

the uncertainty in uC and vC . As shown previously in Section 4, small variations in σ

result in huge variations in uC and vC . Thus, in order to reduce the uncertainty in the

results in this problem, attention should be mainly focused on reducing the uncertainty

in σ. This can be accomplished through more accurate predictions of this parameter by

using more computational data and/or more experimental measurements, as described by

Rizzi et al. [44, 45]

6 Conclusion

This paper addresses the coupling between atomistic and continuum solvers in multiscale

simulations. In particular, an approach was developed to account for uncertainty due

to model parameters on the continuum and the atomistic level, as well as uncertainty

due to the use of a finite number of sample realizations for the extraction of macroscale

quantities from atomistic simulations.

For computational efficiency, our approach constructs surrogate models or response

surfaces for the coupling variables at the interface between the atomistic and continuum

components, as a function of the uncertain parameters in the multiscale model. To build

this surrogate model for the atomistic component, an ensemble of atomistic simulations

are performed, for sampled values of the atomistic inputs. We use Bayesian inference to

infer the atomistic surrogate model from short-time averaged data extracted from these

simulations. The resulting posterior uncertainty in this inferred surrogate model repre-

sents the uncertainty due to the finite amount of sampling from the atomistic simulations.

The intersection of the surrogate models associated with the continuum and the atom-

istic components yields the values for the coupling variables. An intrusive and a non-

intrusive approach are introduced to perform this intersection, while accounting for the

38



uncertainty in the model parameters as well as atomistic surrogate model.

The approach was demonstrated on two canonical Couette flow cases. In the first

case, only noise due to finite sampling was considered, similar to our prior work [14]. The

current surrogate model approach was shown to obtain a much smoother convergence than

in our prior work [14], with the same accuracy. The ability of the current approach to also

handle parametric uncertainty was demonstrated on a second case, where uncertainty in

the atomistic force field models as well as in the continuum driving velocity was considered.

The surrogate model approach performed well in this case, with the non-intrusive approach

being more stable than the intrusive approach. The formulation also allows for sensitivity

analysis to determine the dominant sources of uncertainty in the coupling variables. In

the current case, the main source of uncertainty was shown to be the atomistic force field

parameter, with the sampling noise making only a minor contribution.

Note that, in the present work, the steady state sampling of mean velocity of a region

of the molecular model of the fluid is coupled to classical Stokes flow. Other authors,

notably Donev et al. [28], couple a microscale model of the fluid to Landau- Lifshitz

Navier-Stokes equations where the mean and physical fluctuations upon the mean due

to the small length scales of the problem under consideration are both treated at the

continuum level. A distinction between the finite sampling noise of the estimate of the

time-averaged velocity in this work and the statistical hydrodynamic fluctuations at small

length-scales is that the former is reducible (by taking more samples) and the latter is

intrinsic, physical and aleatory. We leave a treatment of coupling through the mean and

variance of the velocities of the finite sample box for future work, as well as the treatment

of unsteady flow where the averaging time window will be tied to the ( estimated) time-

scale of the macroscopic process.

Overall, the surrogate model approach developed in this paper allows the quantitative

assessment of the effects of sampling noise as well as other uncertainties on the predictive

fidelity of atomistic to continuum simulations. If better confidence in the model predic-
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tions is desired, this approach also allows one to determine whether additional atomistic

simulation data is needed to reduce the sampling noise, or if more information is needed

to better quantify the input parameters.

7 Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research. Sandia National Laboratories

is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract No. DE-AC04-94AL85000.

8 References

[1] Nasr M Ghoniem, Esteban P Busso, Nicholas Kioussis, and Hanchen Huang. Mul-

tiscale modelling of nanomechanics and micromechanics: an overview. Philosophical

magazine, 83(31-34):3475–3528, 2003. 3

[2] P Ladeveze. Multiscale modelling and computational strategies for composites. In-

ternational Journal for Numerical Methods in Engineering, 60(1):233–253, 2004. 3

[3] Dimitri D Vvedensky. Multiscale modelling of nanostructures. Journal of Physics:

Condensed Matter, 16(50):R1537, 2004. 3

40



[4] Jacob Fish. Bridging the scales in nano engineering and science. Journal of Nanopar-

ticle Research, 8(5):577–594, September 2006. 3
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