The submitted manuscript has been createc
by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 witt
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behaif, a paid-up, nonexclusive,
irevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behaif of
the Government.

‘ AnL|mes|ef- O any

Communication Services |
for Advanced Network Applications

John Bresnahan, Ian Foster, Joseph Insley, Brian Toonen, Steven Tuecke
Mathematics and Computer Science Division . #» ..

Argonne National Laboratory
Argonne, IL, U.S.A.

Abstract Advanced network applications such as
remote instrument control, collaborative environ-
ments, and remote I/0 are distinguished from “tra-
ditional” applications such as videoconferencing by
their need to create multiple, heterogeneous flows
with different characteristics. For example, a sin-
gle application may require remote I/0 for raw
datasets, shared controls for a collaborative anal-
ysts system, streaming video for image rendering
data, and audio for collaboration. Furthermore,
each flow can have different requirements in terms
of reliability, network quality of service, security,
ete. We argue that new approaches to communi-
cation services, protocols, and network architecture
are required both to provide high-level abstractions
for common flow types and to support user-level
management of flow creation and quality. We de-
scribe experiences with the development of such ap-
plications and communication services.

Keywords: Network applications, communica-
tion libraries, Nexus, Collaboratory Interoper-
ability Framework (CIF)

1 Introduction

Advanced network applications such as re-
mote instrument control, collaborative envi-
ronments, and remote [/O are distinguished
from “traditional” networked applications such
as videoconferencing by their need to main-
tain multiple, heterogeneous flows with dif-
ferent characteristics. For example, a single
application may require remote I/O for raw
datasets, shared controls for a collaborative

0CT 13 1504

analysis system, streaming védi;lilmage ren-
dering data, and audio for collaboration. Fur-
thermore, each flow can have different require-
ments in terms of reliability, network quality
of service, security, and so on. For example,
in a tele-immersive collaborative environment,
tracking information need not be propagated
reliably but can often benefit from multicast,
while database updates require reliable com-
munication but cannot always use multicast
capabilities. Mechanisms are required that al-
low both convenient specification of these ap-
plications and efficient execution in a variety
of environments.

Historically, such applications either have
used a single low-level communication proto-
col for all flows (e.g., TCP/IP [1, 2, 3]) or have
used a mixture of different, often specialized
APIs for different flows [4, 5, 6]. Neither ap-
proach is ideal. The first approach leads to a
protocol that is good for some purposes but
less ideal for others; in the second, program
complexity is increased and portability is hard
to achieve. In both cases, a variety of issues
relating to the coordination of multiple flows
(e.g., synchronization of audio and video, pri-
oritization of different flows) have typically not
been addressed at all.

We believe that such applications require
more sophisticated communication services
with, ideally, the following characteristics:

e A uniform API allows both high-level
specification of communication structure
and independent specification of commu-
nication mechanisms.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefuiness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

e A variety of flow types and interaction
models are supported, including various
types of streaming data, shared controls,
and database updates.

e Support is provided for automatic and
user-managed manipulation of flow char-
acteristics, such as privacy, integrity, com-
pression, and network quality-of-service.

e Support is provided for the coordina-
tion and management of ensembles of
flows, enabling, for example, programmer-
controlled prioritization, synchronization,
and aggregation of flows in various types
of network.

¢ Integrated instrumentation allows user-
level monitoring of flow quality and no-
tification, for the purpose of adaptation,
of violations in performance contracts.

Our views on these topics have been shaped R

by our experiences developing both advanced
networked applications and communication li-
braries designed to support such applications.
In this paper, we review these experiences, fo-
cusing on one particularly demanding appli-
cation and three different communication li-
braries.

2 Motivating Example

We use a single example application to moti-
vate some of the discussion that follows. Our
chosen application is typical of an emerging
class of so-called “Grid” applications that cou-
ple geographically distributed resources of var-

ious types to create virtual devices with unique

capabilities [7]. In this case, the resources
in question are a specialized scientific instru-
ment, the Advanced Photon Source (APS) at
Argonne National Laboratory, used to probe
the interior structure of materials at very small
scales using, in this case, a technique called
computed microtomography (CMT); a super-
computer, used to reconstruct 3-D material
densities from the sequence of 2-D raw data
“slices” provided by the instrument; and a

number of both high-end and low-end display
devices, used to support collaborative analy-
sis of the reconstructed data. These resources
work in concert to enable quasi-real-time re-
construction and collaborative analysis of APS
data, so that users at remote sites can be
manipulating and discussing three-dimensional
image data just minutes after data collection
begins [8].

2.1 Visualization Capabilities

The visualization system uses a specialized
graphics utility, the SGI Volumizer library, to
produce high-quality, 3-D volume-rendered im-
ages of the dataset. As illustrated in Figures 1
and 2, this data can be displayed in multi-
ple ways, depending on the capabilities of the
user’s visualization environment:

e Virtual reality display: CAVE or Im-
mersaDesk (Idesk) immersive display de-
vices support high-quality, 3-D stereo dis-
play. The user can control the dis-
play through the use of a control panel
provided within the virtual environment.
This control panel allows operations such
as rotation, volume cropping, and assign-
ment of color and opacity to dataset vox-
els.

e Desktop display: Rather than rewriting
the volume renderer to run on less capable
desktop hardware, we use remotely ren-
dered video for the desktop display. The
high-quality images produced by the SGI-
based volume rendering hardware and
software are captured, compressed, and
sent over the network for display using
standard network video display tools. A
Java control panel supports desktop con-
trol of the rendering process.

e Web display: The same software can
also capture individual images from the
scene and put them on a Web page, for a
very low-end solution that provides high-
quality images.

Figure 1: A screen shot of the ImmersaDesk
taken during a collaborative session with two
users.

Shared-state mechanisms are used to link
the virtual reality and desktop displays, so that
users at different locations and on different
systems can cooperate in the steering of the
volume-rendering process.

2.2 Communication Requirements

The application is typical of advanced Grid ap-
plications in its simultaneous use of many un-
derlying communication structures:

e The transfer of 2-D images from the APS
to the supercomputer, and of 3-D datasets
from the supercomputer to the visualiza-
tion system, requires high-bandwidth (10s
of Mb/s today, Gb/s or more in the fu-
ture), unicast communication.

e Communication within the parallel 3-D re-
construction program requires high band-
width and low-latency communication, as
is typically available on parallel supercom-
puters through the Message Passing Inter-
face (MPI) or shared-memory libraries.

e The video stream uses standard, unre-
liable IP multicast protocols (e.g., RTP
and RTCP). We commonly used 800x600
pixel H.261 video, which requires approxi-
mately 300 kbps of bandwidth when the

Figure 2: A screen shot of a low-resolution
graphics workstation taken during a collabora-
tive session with two users.

image is rapidly chahging; significantly
higher resolution is desirable.

o Audio streams between thecollaborators
can also use standard, unreliable IP mul-
ticast protocols. Audio requires less band-
width than video but is more susceptible
to quality degradation due to lost packets.

e The communication between the control
panels of the collaborators uses both re-
liable and unreliable multicast protocols.
Unreliable protocols can be used for in-
cremental updates of the panels, for ex-
ample while a user is dragging a slider on
the panel. Reliable protocols are used to
ensure that all participants are synchro-
nized, for example when the user releases
the slider on the panel to set a final value.

Hence, even in this relatively simple appli-
cation we see a need for tens of flows (if multi-
ple collaborators are participating) with widely
varying characteristics. Other applications can
place yet more complex demands on a commu-
nications infrastructure. For example, DeFanti
and Stevens identify nine flow types in collab-
orative design applications [9].

3 Nexus

The preceding section outlines the wide va-
riety of communication modalities that must
be simultaneously supported in an advanced
network application such as the CMT collab-
orative analysis and visualization system. In
general, we observe that the low-level method
used to achieve a communication can vary ac-
cording to where communication is being per-
formed, what is being communicated, or when
communication is performed [10].

Currently, developers of such applications
must program to a variety of APIs for these
various flows (e.g., TCP sockets, IP multicast,
reliable multicast libraries, MPI) and must
know myriad details about each API in order
to achieve good performance (e.g., TCP socket
buffer sizes). This burden will only increase as
these applications add such features as security
and network quality of service.

We believe that the solution to this prob-
lem is to allow for the separate specification
of the communication structure of an appli-
cation and the methods used to achieve that
communication. The Nexus communication li-
brary [11, 10] represents both an ambitious ex-
periment in this regard and a substantial soft-
ware system that has been used in many tool
development and application projects, rang-
ing from parallel language compilers to high-
level communication libraries and distributed
performance profiling systems. Nexus also
serves as the communication component of the
Globus toolkit.

Nexus provides simple, general ways for ex-
pressing communication, based on the abstrac-
tions of startpoints, endpoints, communication
links, and remote service requests. These ab-
stractions are able to express the wide va-
riety of communication modalities described
above. The Nexus implementation maps these
abstractions onto a wide variety of underlying
communication methods.

Nexus programs bind communication start-
points and endpoints to form communication
links. If multiple startpoints are bound to an
endpoint, incoming communications are inter-

leaved, in the same manner as messages sent
to the same node in a message passing sys-
tem. If a startpoint is bound to multiple end-
points, communication results in a multicast
operation. A startpoint can be copied between
processors, causing new communication links
to be created that mirror the links associated
with the original startpoint. Hence, startpoints
can be used as global names for objects that
can be communicated and used anywhere in a
distributed system.

A communication link supports a single
communication operation: an asynchronous re-
mote service request (RSR). An RSR is applied
to a startpoint by providing a procedure name
and a data buffer. For each endpoint linked
to the startpoint, the RSR transfers the data
buffer to the address space in which the end-
point is located and remotely invokes the spec-
ified procedure, passing the endpoint and the
data buffer as arguments. A local address can
be associated with an endpoint, in which case
startpoints associated with the endpoint can be
thought of as “global pointers” to that address.

An advantage of the startpoint construct in
a distributed computing environment is that
the startpoint can be used to encapsulate not
only information about where communication
should be performed, but also how to commu-
nicate. Different communication methods can
be associated with different communication
links, with selection being either automatic or
user guided. The communication methods cur-
rently supported by Nexus are listed in Table 1.

In addition, a message transform, or filter,
can be applied to each communication link.
This feature allows operations such as compres-
sion, encryption, and profiling to be specified
and performed on a per-link basis.

Our experience is that the Nexus abstrac-
tions capture nicely numerous communication
structures and map cleanly onto a variety of
underlying protocols and capabilities (e.g., se-
curity and quality of service). The one limita-
tion of which we are aware relates to support
for multicast communication. The Nexus API
for creating startpoints and endpoints is cur-
rently better suited for the creation of unicast

Table 1: Communication methods supported by Nexus

Totem

Name Description
Local Reliable ordered unicast within a single process
SysV Reliable ordered unicast between processes

on the same computer, via System V shared memory
MPI/MPL/INX | Reliable ordered unicast between processes on

different nodes of a single distributed-memory computer,
via low-level communication libraries

TCP Reliable ordered unicast

UDP Unreliable, unordered or ordered unicast
IP multicast Unreliable, unordered or ordered multicast
XTP Reliable, source-ordered multicast

Reliable, totally ordered multicast

communication than for multicast communica-
tion. In particular, there is currently no way to
directly bind a startpoint to multicast group.
Instead, one must first create an endpoint that
is bound to the multicast group, and then bind
a startpoint to that endpoint. This can be an-
noying for processes that only want to send
to a particular multicast group. This problem
can be corrected by adding the communication
link management to the API and then allowing
startpoints and endpoints to directly bind to
the communication link. Therefore, multicast
communication would be set up by creating a
communication link with multicast properties
and by binding one or more startpoints and
endpoints to that communication link.

4 CIF Comm Library

While Nexus demonstrates that a uniform in-
terface can be constructed for a variety of pro-
tocols and messaging libraries, this interface
(which was originally designed for use by com-
pilers) is too low level for all but the most
expert programmer. Hence, in a more recent
project we have developed a higher-level inter-
face that makes the same protocols available
in a more convenient form. This interface, de-
veloped as part of the DOE2000 Collaboratory
Interoperability Framework (CIF) project, is
termed CIF Comm.

The CIF Comm design employs object-
oriented concepts as a means of encapsulating
protocol details. The interface consists of three
core classes: abstract connection and listener
classes, and a factory class to instantiate them.

The abstract connection class provides a
simple interface for sending and receiving mes-
sages. It is from this class that all protocol-
specific connection classes are derived. As
the class name and capabilities imply, each of
the protocol-specific implementations provide
a connection-oriented, message-passing style
view of the communication irrespective of the
underlying protocol. Hence, applications can
switch between different protocols simply by
instantiating a different class.

The abstract listener class allows traditional
client-server applications to implement server-
side functionality using CIF Comm. Once a
class has been instantiated, the listener waits
for connection requests from remote connec-
tion objects. These connection requests are
transformed into local connection objects when
the application requests the next incoming con-
nection from the listener.

In reality, an application never instantiates
a protocol-specific connection or listener class.
Instead, it makes a request to the factory class,
which performs the instantiation on its be-
half. To facilitate protocol independence in the
factory, all requests are made using URLs in
which the first component specifies the proto-

col to be used. This protocol information is
used to instantiate the correct connection or
listener class, which is then passed the remain-
der of the URL.

At present, both C4+4 and Java bindings
have been implemented for the CIF Comm in-
terface, supporting TCP, UDP, IP multicast,
and Totem. In addition, XTP is supported in

the C++ implementation and will soon be sup-

ported in Java as well. With these protocols,
the application has the full cross product of
reliable/unreliable and unicast/multicast com-
munication available to it.

To date, CIF Comm has been used in two
applications: a multi-user camera controller
system developed by Deb Agarwal at Lawrence
Berkeley National Laboratory and the CIF
Shared State library (described below), a fun-
damental piece of the CMT application.

5 CIF Shared State Library

Collaborative applications require mechanisms
for maintaining and synchronizing updates to
the shared data elements that represents the
state of the world in which collaboration oc-
curs. For example, in the CMT data analysis
system this shared state includes the various
controls for the remote visualization system:
point of view, color map, and so forth. We have
used CIF Comm to implement a shared-state
abstraction library, CIF Shared State, which
was then used to implement the CMT collab-
orative data analysis system.

The Shared State component of CIF allows
for shared control of abstract states in collabo-

rative space across multiple platforms. An ini- .

tial impetus for the creation of the shared-state
library was to allow for shared control of “wid-
gets” across different computer architectures
and languages. (Other systems, in particular
NCSA’s Habanero, support a shared-state ab-
straction, but only within a Java framework.)
If shared control of sliders, buttons, and other
arbitrary components could be established, a
graphical program running on a high-end re-
source could be controlled remotely from a

simpler, more accessible computer. The CMT
collaborative visualization application uses the
CIF Shared State Library to do just that.

The CIF Shared State library is an object-
oriented API with both C++ and Java im-
plementations that allows for shared control
of abstract states. (A Java implementation
is provided for portability and a C++ imple-
mentation for use on high-end platforms and in
C-based applications; a common Nexus-based
wire protocol allows for interoperability.) The
abstract states can be implemented as GUI
components (sliders, buttons, toggles) or more
simply as arrays of data primitives (integers,
floating point numbers, bytes). To create a
shared state, the user needs only to provide a
mechanism for packing and unpacking its cur-
rent values into a CIF Shared State “Serial”
object via convenient methods provided by the
APL

The use of shared-state information rather
than collective control functions as our ba-
sic primitive proved extremely effective in the
CMT application. We were able to create un-
orthodox visual components that provided no
control to the user but were used to display
useful information, such as histogram graphs,
color bandwidth filter curves, and images of
all of the users currently participating in the
collaborative session. This layer of abstraction
between shared data and visual control also al-
lowed us to couple different visual component
packages with the messaging structure: a Java-
based control GUI for desktop clients and a set
of 3-D widgets for use in the CAVE.

6 Conclusions

Emerging networked applications involve mul-
tiple flows with different and time-varying re-
quirements for low-level protocols, security,
performance, and so on. We have argued that
the communication services that we provide
to support these applications need to recog-
nize this fact and provide explicit support both
for the separate specification of communica-
tion flow and communication method and for

the management of ensembles of flows in an
integrated fashion. We have described three
software systems that we have developed to
address the first of these concerns, namely,
the Nexus communication library and the CIF
Comm and CIF Shared State libraries. Appli-
cation experiences with these systems indicate
that the separate specification of communica-
tions structure and method is indeed desirable.
In future work, we will address the association
of quality-of-service attributes with flows and
the management of flow ensembles.

Acknowledgments

We gratefully acknowledge the many colleagues
who have contributed to the development of
Nexus, the CIF libraries, and the CMT appli-
cation, in particular Gregor von Laszewski and
Steve Wang at Argonne; Carl Kesselman and
Mei Su at USC/ISI; Deb Agarwal at LBNL;
and Bruce Mah at SNL/CA. This work was
supported in part by the Mathematical, Infor-
mation, and Computational Sciences Division
subprogram of the Office of Computational and
Technology Research, U.S. DOE, under Con-
tract W-31-109-Eng-38; by DARPA under con-
tract N66001-96-C-8523; and by NSF.

References

[1] C. Shaw and M. Green. The MR
toolkit peers package and environment. In
Proceedings of the IEEE Virtual Reality
Annual International Symposium. IEEE
Computer Society Press, 1993.

[2] K. Birman. The process group approach
to reliable distributed computing. Com-
munications of the ACM, 36(12):37-53,
1993.

[3] C. Carlsson and O. Hagsand. DIVE -
a multi-user virtual reality system. In
Proceedings of the IEEE Virtual Reality
Annual International Symposium. IEEE
Computer Society Press, 1993.

[4] J. Mandeville, J. Furness, and T. Kawa-
hata. Greenspace: Creating a distributed
virtual environment for global applica-
tions. In Proceedings of the IEEE Net-
worked Virtual Reality Workshop. IEEE
Computer Society Press, 1995.

[5] M. Roussos, A. Johnson, J. Leigh,
C. Valsilakis, C. Barnes, and T. Moher.
NICE: Combining constructionism, narra-
tive, and collaboration in a virtual learn-
ing environment. Computer Graphics,
31(3):62-63, August 1997.

[6] M. Macedonia and M. Zyda. A taxon-
omy for networked virtual environments.
In Proceedings of the 1995 Workshop on
Networked Realities. 1995.

[7] L. Foster and C. Kesselman, editors. The
Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann Pub-
lishers, 1999.

[8] G. von Laszewski, I. Foster, J. Ins-
ley, J. Bresnahan, C. Kesselman M. Su,
M. Thiebaux, M. Rivers, I. McNulty,
B. Tieman, and S. Wang. Real-time analy-
sis, visualization, and steering of microto-
mography experiments at photon sources.
In Proceedings of the Ninth SIAM Confer-
ence on Parallel Processing for Scientific
Computing. SIAM, 1999.

[9] T. DeFanti and R. Stevens. Teleimmer-
sion. In [7], pages 131-156.

[10] 1. Foster, J. Geisler, C. Kesselman, and
S. Tuecke. Managing multiple com-
munication methods in high-performance
networked computing systems. Journal
of Parallel and Distributed Computing,
40:35-48, 1997.

[11] 1. Foster, C. Kesselman, and S. Tuecke.
The Nexus approach to integrating mul-
tithreading and communication. Jour-
nal of Parallel and Distributed Comput-
ing, 37:70-82, 1996.

