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Abstract:  It has recently become clear that regulatory RNAs play a major role in regulation of 
gene expression in bacteria.  RNA secondary structures play a major role in the function of many 
regulatory RNAs, and structural features are often key to their interaction with other cellular 
components. Thus, there has been considerable interest in the prediction of the secondary 
structures for RNA families.  A paper describing our new algorithm, RNAG, to predict 
consensus secondary structures for unaligned sequences using the blocked Gibbs sampler has 
been published[1]. This sampling algorithm iteratively samples from the conditional probability 
distributions:  P(Structure | Alignment) and P(Alignment | Structure).  Subsequent to publication 
of the RNAG paper we have employed the technology from RNAG in the development of an 
RNA motif finding algorithm.  To develop and RNA motif finding algorithm, RGibbs, we 
capitalized on our long experience in DNA motif finding and RNA secondary structure 
prediction. We applied RGibbs to three data sets from the literature and compared it to existing 
methods: one for training and two others for tests sets. In both test sets we found RGibbs out 
performed existing procedures. 
 
 
 
In so doing, it refines the models of both Alignment and Structure. This iterative algorithm has 
theoretical advantage in convergence time, which stems from our application of the collapsing 
theorem of Liu[2].  Our use of this theorem capitalizes on the grouping of high-dimensional 
random variables in both the structure and alignment spaces to accelerate convergence, and on 
efficient recursive computations available for each of these spaces. The resulting samples permit 
a characterization of the shape of the full posterior space. We use a hierarchical clustering 
method to characterize its shape, γ-centroid estimator[3] to generate a prediction from sampled 
structures, and credibility limits[4, 5] to characterize the uncertainty associated with each 
estimate.  In addition, we find that sampled structures are compact around their ensemble 
centroids for all but two families, and that there are well separated classes of structures in at least 
11 of the 17 families. Also, while the distances between the reference structures and the 
predicted structures were small, they are substantially larger than the variation among structures 
within clusters. 
 
Subsequent to publication of the RNAG paper we have employed the technology from RNAG in 
the development of an RNA motif finding algorithm.  To develop and RNA motif finding 
algorithm we plan to capitalize on our long experience in DNA motif finding and RNA 
secondary structure prediction. We expect that nearly all of the issues that we and others have 
confronted in DNA ab-initio motif finding will again need to be confronted in RNA motif 
finding with one major extension: the inference of RNA secondary structure. We now have a 
preliminary version of a new RNA motif finding algorithm, that we call RGibbs.  
 
We have developed and implemented a preliminary version of RGibbs. To test it, we compared it 
to the well-known CMfinder algorithm and chose sequences from the 19 Rfam families that the 
CMfinder paper used to test their algorithm[6].  



 
Because we found in our studies of RNAG that 10 diverse sequences were sufficient, we selected 
ten sequences, except only 9 in one family, from each family so as to minimize the similarities 
between these ten.  As was done in the CMfinder paper, we embedded the Rfam sequences in 
200 bp of flanking sequence. We predicted at most one site in each sequence with both CMfinder 
and RGibbs using the default parameter settings for both, where the defaults for RGibbs were 
those of RNAG. Predictions were counted as true if they overlapped the known Rfam target by at 
least 50%, and the predicted structure had at least one pair of nucleotides that where predicted to 
be paired. We found that both procedure do well in finding the Rfam targets, and have no false 
positives. In order to control false positives, both procedures include provisions to not make 
predictions in a sequence unless there is sufficient supporting evidence.  

We conducted additional analyses of false positives, because control of false positives 
becomes increasing important when number of potential negatives increases, for example when 
there is more flanking sequence , an RNA-seq study returns many candidates, or in genome wide 
phylogenetic footprinting. Specifically, we did studies with two negative control sets. First we 
applied both procedures to the flanking sequences by removing the Rfam target sequences.  
CMfinder finds 4.5 (134/30) times more false positives than RGibbs. However, using flanking 
sequences as a control is problematic because there may be unreported structural elements within 
flanking regions. To obtain controls that avoid this problem we aligned the sequences including 
flanking and targets using a structurally unaware algorithm (Muscle), and shuffled the columns 
of this alignment 100 times. We then applied both procedures to each shuffled set of sequences. 
In this way we sought to preserve sequence conservation, but break up any real structures. 
Analyses of these data shows false positives in these shuffled data are 5.7 (142/25) fold higher 
on average in CMfinder than in RGibbs, and their ranges do not overlap.  As in each of the 100 
shuffled sequence RGibbs found fewer false sites than CMfinder the differences in false positive 
identification between the two are very unlikely under this permutation null.  Also, the 
probability of RGibbs finding 167 structured targets in the test set under this permutation null is 
estimated from this sample to be 0.01≤ .  

Because adding sequences from related families almost always improves motif finding 
we plan to include sequences from related species in all of the applications with our collaborators 
and we will encourage users of RGibbs to do likewise. To investigate performance in this more 
appropriate circumstance we compared RGibbs to CMfinder using the twelve Drosophila species 
in fly base.  For these we compared RGibbs with optimal weights described by Newberg et.al.[7] 
to CMfinder on a set of 36 Rfam families that only had sequence from Drosophila species.  On 
average we found sequences from 10.8 of these species per family. Again we found that both 
procedures did very well at finding the true sites, and correspondingly because both procedures 
were limited to no more than one site per sequence, both procedures had a small number of false 
positives.  However in the flanking controls CMfinder had 2.4 fold more false positives, and in 
the shuffled controls CMfinder reports many false positives and has 4.8 fold more false positives 
than RGibbs, and again the ranges of results from all the shuffles don’t overlap. This study also 
showed that the use of optimal weights, instead of the relative weights that are the default for 
Infernal, played a major role in reducing the number of false positives predicted by RGibbs in 
these fly only data. Results when counting at the family level instead of at sequence level are 
very strongly similar.  
 



These results show that combining RNAG with DNA motif finding methods provide a promising 
path for the development of improved methods for finding RNA motifs. Furthermore, because 
RGibbs is based on the CM model there is a clear path to the development of a combinatorial 
RNA motif finder. 
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