Bayesian computational approaches for gene regulation studies
of bioethanol and biohydrogen production

Abstract: It has recently become clear that regulatory RNAs play a major role in regulation of
gene expression in bacteria. RNA secondary structures play a major role in the function of many
regulatory RNAs, and structural features are often key to their interaction with other cellular
components. Thus, there has been considerable interest in the prediction of the secondary
structures for RNA families. A paper describing our new algorithm, RNAG, to predict
consensus secondary structures for unaligned sequences using the blocked Gibbs sampler has
been published[1]. This sampling algorithm iteratively samples from the conditional probability
distributions: P(Structure | Alignment) and P(Alignment | Structure). Subsequent to publication
of the RNAG paper we have employed the technology from RNAG in the development of an
RNA motif finding algorithm. To develop and RNA motif finding algorithm, RGibbs, we
capitalized on our long experience in DNA motif finding and RNA secondary structure
prediction. We applied RGibbs to three data sets from the literature and compared it to existing
methods: one for training and two others for tests sets. In both test sets we found RGibbs out
performed existing procedures.

In so doing, it refines the models of both Alignment and Structure. This iterative algorithm has
theoretical advantage in convergence time, which stems from our application of the collapsing
theorem of Liu[2]. Our use of this theorem capitalizes on the grouping of high-dimensional
random variables in both the structure and alignment spaces to accelerate convergence, and on
efficient recursive computations available for each of these spaces. The resulting samples permit
a characterization of the shape of the full posterior space. We use a hierarchical clustering
method to characterize its shape, y-centroid estimator[3] to generate a prediction from sampled
structures, and credibility limits[4, 5] to characterize the uncertainty associated with each
estimate. In addition, we find that sampled structures are compact around their ensemble
centroids for all but two families, and that there are well separated classes of structures in at least
11 of the 17 families. Also, while the distances between the reference structures and the
predicted structures were small, they are substantially larger than the variation among structures
within clusters.

Subsequent to publication of the RNAG paper we have employed the technology from RNAG in
the development of an RNA motif finding algorithm. To develop and RNA motif finding
algorithm we plan to capitalize on our long experience in DNA motif finding and RNA
secondary structure prediction. We expect that nearly all of the issues that we and others have
confronted in DNA ab-initio motif finding will again need to be confronted in RNA motif
finding with one major extension: the inference of RNA secondary structure. We now have a
preliminary version of a new RNA motif finding algorithm, that we call RGibbs.

We have developed and implemented a preliminary version of RGibbs. To test it, we compared it
to the well-known CMfinder algorithm and chose sequences from the 19 Rfam families that the
CMfinder paper used to test their algorithm[6].



Because we found in our studies of RNAG that 10 diverse sequences were sufficient, we selected
ten sequences, except only 9 in one family, from each family so as to minimize the similarities
between these ten. As was done in the CMfinder paper, we embedded the Rfam sequences in
200 bp of flanking sequence. We predicted at most one site in each sequence with both CMfinder
and RGibbs using the default parameter settings for both, where the defaults for RGibbs were
those of RNAG. Predictions were counted as true if they overlapped the known Rfam target by at
least 50%, and the predicted structure had at least one pair of nucleotides that where predicted to
be paired. We found that both procedure do well in finding the Rfam targets, and have no false
positives. In order to control false positives, both procedures include provisions to not make
predictions in a sequence unless there is sufficient supporting evidence.

We conducted additional analyses of false positives, because control of false positives
becomes increasing important when number of potential negatives increases, for example when
there is more flanking sequence , an RNA-seq study returns many candidates, or in genome wide
phylogenetic footprinting. Specifically, we did studies with two negative control sets. First we
applied both procedures to the flanking sequences by removing the Rfam target sequences.
CMfinder finds 4.5 (134/30) times more false positives than RGibbs. However, using flanking
sequences as a control is problematic because there may be unreported structural elements within
flanking regions. To obtain controls that avoid this problem we aligned the sequences including
flanking and targets using a structurally unaware algorithm (Muscle), and shuffled the columns
of this alignment 100 times. We then applied both procedures to each shuffled set of sequences.
In this way we sought to preserve sequence conservation, but break up any real structures.
Analyses of these data shows false positives in these shuffled data are 5.7 (142/25) fold higher
on average in CMfinder than in RGibbs, and their ranges do not overlap. As in each of the 100
shuffled sequence RGibbs found fewer false sites than CMfinder the differences in false positive
identification between the two are very unlikely under this permutation null. Also, the
probability of RGibbs finding 167 structured targets in the test set under this permutation null is
estimated from this sample to be <0.01.

Because adding sequences from related families almost always improves motif finding
we plan to include sequences from related species in all of the applications with our collaborators
and we will encourage users of RGibbs to do likewise. To investigate performance in this more
appropriate circumstance we compared RGibbs to CMfinder using the twelve Drosophila species
in fly base. For these we compared RGibbs with optimal weights described by Newberg et.al.[7]
to CMfinder on a set of 36 Rfam families that only had sequence from Drosophila species. On
average we found sequences from 10.8 of these species per family. Again we found that both
procedures did very well at finding the true sites, and correspondingly because both procedures
were limited to no more than one site per sequence, both procedures had a small number of false
positives. However in the flanking controls CMfinder had 2.4 fold more false positives, and in
the shuffled controls CMfinder reports many false positives and has 4.8 fold more false positives
than RGibbs, and again the ranges of results from all the shuffles don’t overlap. This study also
showed that the use of optimal weights, instead of the relative weights that are the default for
Infernal, played a major role in reducing the number of false positives predicted by RGibbs in
these fly only data. Results when counting at the family level instead of at sequence level are
very strongly similar.



These results show that combining RNAG with DNA motif finding methods provide a promising
path for the development of improved methods for finding RNA motifs. Furthermore, because
RGibbs is based on the CM model there is a clear path to the development of a combinatorial
RNA motif finder.
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