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Abstract

Typically, when three or more antenna beams along a single axis are required, the answer
has been multiple antenna phase-centers, essentially a phase-monopulse system. Such
systems and their design parameters are well-reported in the literature. Less appreciated
is that three or more antenna beams can also be generated in an amplitude-monopulse
fashion. Consequently, design guidelines and performance analysis of such antennas is
somewhat under-reported in the literature. We provide discussion herein of three beams
arrayed in a single axis with an amplitude-monopulse configuration.
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Foreword

This report details the results of an academic study. It does not presently exemplify any
modes, methodologies, or techniques employed by any operational system known to the
authors.

Classification

The specific mathematics and algorithms presented herein do not bear any release
restrictions or distribution limitations.

This distribution limitations of this report are in accordance with the classification
guidance detailed in the memorandum “Classification Guidance Recommendations for
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to
Randy Bell (US Department of Energy, NA-22), February 23, 2004. Sandia has adopted
this guidance where otherwise none has been given.

This report formalizes preexisting informal notes and other documentation on the subject
matter herein.



1 Introduction & Background

It has been appreciated since the early days of radio that direction finding was easiest to
achieve by directing a null in an antenna pattern towards a signal source that otherwise
exhibits good Signal-to-Noise Ratio (SNR). Nulls are typically sharper than the antenna
mainlobe peak, ideally being singular points with zero response in a particular direction,
and sharp sidewall (to the notch surrounding the null) responses.

In the classical monopulse tracking radar, this means pointing the antenna such that a null
in some ‘difference’ beam is directed towards the target being tracked. Classically this
means a difference signal between two otherwise identical beams, with a characteristic
allowing knowledge of which side of the null a target signal manifests to allow steering
the null in the proper direction.

A definitive text on dual-beam (in any one direction or axis) monopulse antennas is by
Sherman and Barton.! We note that although their text analyzes antennas with more than
two beams, they are generally referring to dual-axis monopulse, where nevertheless any
one axis is limited to only two beams.

In a classical monopulse tracking radar, we are generally concerned with but a single
target echo signal, presumed to be unperturbed by any other neighboring target echo
signals.

However, for airborne Ground Moving Target Indicator (GMTI) radar, and its derivative
Dismount Moving Target Indicator (DMT]) radar, the single target echo signal paradigm
fails, and a target must be detected and located in the presence of clutter, i.e. other
undesired target-like signals. The overwhelmingly popular antenna architecture for this
condition is a multi-aperture (a.k.a. multi-subaperture, multi-phase-center) antenna.
These antennas fall within the definition of a phase-monopulse antenna, albeit with more
than two phase centers, but phase-monopulse antenna nevertheless.

Among others, Doerry and Bickel discuss Direction of Arrival (DOA) measurements
from multiple phase centers in an earlier report.> Doerry and Bickel also discuss limits to
clutter cancellation using multiple phase centers in another report.?

Equivalent to a two-aperture phase-monopulse antenna, the dual-beam amplitude
monopulse antenna is generally well understood, and in fact a popular architecture,
especially with dish reflector antenna configurations. However, less well appreciated is
that just as N phase centers can steer N —1 nulls, so too can more nulls be generated by
more simultaneous beams along a common axis in a general amplitude monopulse
antenna. Amplitude monopulse antennas with more than two beams in any one axis are
not well-reported in the literature.

In this report we will analyze and characterize a 3-beam amplitude monopulse antenna,
concerning ourselves with all beams in a single axis as might be useful for GMTI/DMTI
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applications. We will generally assume a dish reflector antenna with feeds offset from
the focal point to yield squinted beams.

Our interest is in the characteristics of the antenna that allow useful processing for the
GMTI/DMTI applications. We will not concern ourselves with the details of the physical
design of the electro-mechanical antenna instrument itself. In that sense, this report is not
about “how to build the antenna right,” but rather this report is about “building the right
antenna.” Our Figure-of-Merit (FOM) will be the noise in the angle estimate for a target
signal within the principal, or main reference beam of the antenna. This is consistent
with the dual-beam analysis in the Sherman and Barton text.

However, before we examine three beams, we will first review the dual-beam amplitude
monopulse antenna characteristics.

Figure 1. Fred Noonan and Amelia Earhart board their Lockheed Electra aircraft at San Juan,
Puerto Rico, on 2 June 1937. Note the Radio Direction Finding (RDF) loop antenna just above the
cockpit windshield. The loop antenna has a figure-8 gain pattern, and was employed by steering a
null towards a radio signal source at a known location, giving the aircraft a bearing towards the
source. Null-steering remains an essential direction finding technique. (Bettmann/CORBIS)



2 Dual-Beam Amplitude Monopulse
Let us assume that the antenna is capable of a beam-shape defined as

9o (6) = generalized beam shape, (1)

where

6 = off-boresight angle. (2)
We will for convenience assume that this is symmetric, i.e. an even function, that is

9o (€)= 9o(-0)- (3)

For further convenience, we will define the beamwidth of g, (6) as

0, = constituent beamwidth, nominally at the —3 dBc level. 4)

9

We now assume that the monopulse antenna pattern is composed of two beams of
identical shape, but equally squinted in opposite directions, that is

091(0) =99 (0+ qu) = beam #1, and
9,(0)= go(a—asq) = beam #2, (5)
where we will assume these patterns to be real-valued, with

+0sq = squint angle offset of the two beams from boresight. (6)

A target echo will be received by both of these beams, albeit generally with different
amplitudes. Accordingly, we define voltage measurements from the antennas as

my = Ay 91(6y ) = signal at first beam, and
My = Ay 92 (6, ) = signal at second beam, (7)

where these quantities are real-valued, and

6y = the direction of arrival of a received signal, and
Ay, = some real scale factor with respect to the beam patterns. (8)

Now we wish to steer a null in the direction of the received signal by linearly combining
these signals. Accordingly we can set up the matrix equation



IMEH

where

w = weight vector,

with real-valued weights. The purpose of the top row in the matrix of Eg. (9) is to

guarantee the non-trivial solution (other than all zero weights).

2.1 Optimal Weight Solution

The matrix equation can be solved for the optimum weight vector as

A !
P m my | (0]

which can be reduced to

my T
= l _— ,
Wopt { m, }

where the superscript “T” denotes transpose. Note that we can equate

Consequently, our optimum weight solution reduces to

gl(Hm)T_

Wopt =|1 —
o]t o

Note that in the boresight direction, where 6, =0, and my =m,, we calculate

Wopt =[1 —1]T = optimum weight vector for a boresight null.

©)

(10)

(11)

(12)

(13)

(14)

(15)

This simply says that if we wish to steer a null in the direction of boresight, we do so by
taking the difference of the voltages from the two beams, as we might have intuitively

already guessed.
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2.2 Difference Signal and Monopulse Slope

Now consider the case where we wish to filter (use weights Wopt ) for the boresight case

6y =0, but in fact have m; for something slightly offset from this angle. We will of
course generate an error due to this mismatch, which we calculate as

g=[m mZ]Wopt:(ml_mZ):_'Am (92(9m)—91(9m))- (16)
It is convenient for us to define a difference pattern such that

_92(9)-9:(9)
72

The ~/2 in the denominator is somewhat traditional for dual-beam monopulse, and is
meant to address a conservation of power concern with difference and sum patterns. We
discuss sum patterns later. Clearly, in the boresight direction,

d(0) = difference signal. (17)

d (0) =0 = difference signal in boresight direction. (18)

Let us use a first-order Taylor series expansion of the difference signal about the
boresight direction. We can write this as

d(e)z(d(em%£)+[§%d(9)

}9 = difference signal approximation.  (19)
0=0

We calculate the linear term as, and identify it as,

ks = (6)

= monopulse slope. 20
90 p p (20)

6=0

This lets us write the difference signal in the neighborhood of the null as approximately
d (0)~ kg6 = difference signal approximation. (21)

This relationship lets us estimate the offset angle for a received signal by calculating

em:—d(%):ﬁ(gz(em)—gl(am)), (22)

where here d (6,,) is essentially derived from the data. The offset angle estimate can
also be written in terms of signal voltages as
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0" 1

m :W(mz—ml)- (23)

It is often convenient to define the complex monopulse ratio (or simply “monopulse
ratio”) as the normalized function

r(0)= 400) _ monopulse ratio (24)
5(9) |
where
s(0) = reference beam, which we keep generic for the moment. (25)

The convenience is in the fact that r (&) can be calculated from measurements directly,

with any influence from scale factor A, essentially dividing out, and therefore mitigated.

Furthermore, the monopulse slope is likewise often scaled to a reference signal level, and
written relative to a reference beamwidth, to yield a normalized quantity

k 0 d Oret ki = .
m = Oref —er(e) =——Kq = normalized monopulse slope, (26)

d 9=0 S0
where from the reference beam s(6), we identify

O, = reference antenna beamwidth, and
sp = s(0) = reference signal level. (27)

2.3 Sum Signal

For a dual-feed amplitude monopulse system, the reference beam typically refers to the
sum of the constituent beam patterns, calculated as

s(0)= 92 (9)\/%91(0) = sum signal. (28)

In this case, we identify

Oref = —3 dB beamwidth of the sum beam, and
sp = s(0) =sum signal in the boresight direction. (29)

We emphasize that other feed structures exist, for which Eqg. (28) and Eqg. (29) are not
true. Some of these are illustrated in Figure 2, particularly (b) and (c).
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(a)

Figure 2. Dual-beam amplitude monopulse feed configurations.
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2.4 Noise in DOA Angle Estimate
Now let us assume that we have noisy measurements, where

X{ =My +ny, and
Xp =My +Ny, (30)

where

i = noise voltage perturbing the first beam signal, and
N, = noise voltage perturbing the second beam signal, (31)

where the noise voltages are independent zero-mean Gaussian, with variance
2 2 2
of = EflmP|=E{n,P?}. (32)

In this case, the estimate of the received signal’s DOA is

A (my +np —my —y ) B (mp—my) (np—ny)
6 = = + , (33)
Ankg~2 AnkgN2  Apkg~/2
which of course will be in error with variance
2
2 On
Og="—7% 5" (34)
Ankg
This can be transmogrified to the expression for RMS DOA angle noise as
eref eref (35)

O‘e = = y
[a2 2/ 2 J
K A So/Un Km+v2SNR

where, because we are dealing with the real-valued components of signal and noise, we
identify

2.2
SNR =m0~

20'%

Signal-to-Noise power ratio. (36)

Note that the SNR is a ratio of the received power in the reference beam to the noise
power in the squinted beams, evaluated in the boresight direction. Any improvement to
the transmitted signal, such as the gain of a transmit antenna, are embodied in the scale
factor A,,. Eq. (35) is the same expression given in Sherman and Barton.
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2.5 Figure of Merit for Optimum Squint Angle

We desire to minimize the variance of the DOA angle estimate ag, specifically in the

boresight direction. The individual measurement noise variance aﬁ is presumed to be

constant. Consequently, we desire a monopulse antenna design that maximizes Apky -

The factor A,, embodies the signal gain factors that include transmitter power, transmit

antenna gain, range, and other miscellaneous gains and losses. We shall concern
ourselves here only with the transmit antenna gain component. Accordingly, we define

st = transmit antenna signal in the receive antenna boresight direction. (37)

For a monostatic antenna, which we will assume hereafter, we typically equate

ST =9p- (38)
Consequently, we define the figure of merit for our antenna as

FOM = spky . (39)

Our intent now is to select a squint angle Osq that maximizes the FOM. We stipulate that

this will depend on the individual beam shapes. Nevertheless, we emphasize a key point
that anything that reduces the transmitted signal strength st without a corresponding

increase in monopulse slope ky will reduce the FOM and increase DOA noise. This is
undesirable.

We examine two cases. For both, we shall assume a beam-shape from Sherman and
Barton, namely

cos(7Ky6
90(9)=—( 0 3 (40)
1—(2K9¢9)
where
Kg :1.189/0ref . (41)

This value for K, guarantees that the reference beamwidth 6, is in fact the one-way
-3 dBc beamwidth for a constituent beam.

-15 -



Case 1.

We duplicate here the case presented in Sherman and Barton where for this case our
reference beam is the sum beam, namely

s(0) = 92 (0)\/291(0) = sum signal. (42)

This corresponds to a feed configuration illustrated in Figure 2(a).

Numerical analysis indicated a peak FOM of approximately 1.4749 at a squint angle of
approximately 0.453 constituent beamwidths. That is

Osq,0ptimum ~ 0.453 6y = optimum squint angle. (43)

Note that this means that the two squinted beams are equal at a point where their relative
gain is —2.45 dBc. The corresponding squinted beams are plotted in Figure 6. Their
monopulse ratio is plotted in Figure 7, and the two-way patterns are plotted in Figure 8.

Case 2.

We present here the case where our reference beam is the constituent beam shape itself,
aligned with the boresight direction, namely

s(6)=+/2gy(8) = reference signal. (44)

This is equivalent to a sum of beams with zero squint angle, and accounts for the +/2
factor. This corresponds to a feed configuration illustrated in Figure 2(c).

Numerical analysis indicated a peak FOM of approximately 2.245 at a squint angle of
approximately 0.681 constituent beamwidths. That is

Osq,optimum =~ 0.681 68y = optimum squint angle. (45)

Note that in this case sy is constant, and the FOM depends only on kq . Furthermore,
since G,¢ Is also constant, the peak in the FOM is also a peak in normalized monopulse

slope ki, .
Note that this means that the two squinted beams are equal at a point where their relative
gain is about —5.9 dBc. With respect to Case 1, these beams are squinted a little wider.

The corresponding squinted beams are plotted in Figure 12. Their monopulse ratio is
plotted in Figure 13, and the two-way patterns are plotted in Figure 14.
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Figure 3. Figure of Merit for Case 1. The peak is indicated with the red “*’.
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Figure 4. Reference (Sum beam) beamwidth for Case 1. The red “*’ corresponds to the squint angle
with maximum FOM.

10

0 |

1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8
squint angle - constituent beamwidths

normalized volts per sum beamwidth

Figure 5. Normalized monopulse slope for Case 1. The red “*’ corresponds to the squint angle with
maximum FOM.
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Figure 6. Beam patterns with maximum FOM for Case 1.
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Figure 7. Monopulse ratio for Case 1.
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Figure 8. Two-way antenna patterns for Case 1.
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2.5

FOM
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Figure 9. Figure of Merit for Case 2. The peak is indicated with the red “*’.
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Figure 10. Reference beamwidth for Case 2. The red “*’ corresponds to the squint angle with
maximum FOM. Clearly, the reference beamwidth is constant as stipulated.
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Figure 11. Normalized monopulse slope for Case 2. The red “*’ corresponds to the squint angle with
maximum FOM.
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Figure 12. Beam patterns with maximum FOM for Case 2.
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Figure 13. Monopulse ratio for Case 2.
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Figure 14. Two-way antenna patterns for Case 2.
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2.6 Comments and Notes

We make several comments in no particular order.

The useable range of angles for estimating DOA is some fraction of the null-to-
null beamwidth of the reference beam.

The monopulse slope is fairly linear over a range of DOA angles within the -3 dB
beamwidth of the reference beam.

If also used as a transmit beam, a narrower reference beam will provide more
signal gain and a more accurate/precise estimate DOA angle, but will also limit
the useable range of DOA angles to something less than a wider reference beam.
Nevertheless, the corresponding less noise in the DOA estimate with a narrower
reference beam is generally preferred.

The two-way patterns also show a difference in sidelobe levels for the difference
channel. Clearly we desire low sidelobes. However an analysis of “optimum”
with respect to constraining sidelobe levels is beyond the scope of this report.

We have made the tacit assumption that there are no issues with cross-polarization
response. It is well-known that offset-fed dish reflectors are susceptible to cross-
polarization error signals. Furthermore, we are treating the antenna in a free-
space environment, without contamination from multipath signals. Techniques
are available to assist in mitigating these error sources.* Specifics are beyond the
scope of this report.

Although also beyond the scope of this report, we do mention that various error
sources do exist in practical monopulse systems. Some of these are addressed in a
report by Bickel.®> Mitigating these errors is typically a calibration function,
although signal processing techniques can be employed for some of them.®
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“The difference between fiction and reality? Fiction has to make sense.”
-- Tom Clancy
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3 Three-Beam Amplitude Monopulse

As with the dual-beam analysis, let us again assume that the antenna is capable of a
symmetric beam-shape defined as

do (@) = generalized beam shape, (46)

where
6 = off-boresight angle, (47)
and again for convenience,

6, = constituent beamwidth of gq (#), nominally at the -3 dBc level. (48)

9

Now, however, we assume that the monopulse antenna pattern is composed of three
beams, with a center beam and two more equally squinted in opposite directions, that is

01(0)= o (0+6yq) = beam #1,

92(6) =90 () = beam #2, and

03(0) = 9o (0~ Osq ) = beam #3, (49)
where

+0sq = squint angle offset of outer beams from boresight. (50)

A single target’s echo will be received by each of these beams, albeit generally with
different amplitudes. Accordingly, we define voltage measurements from the antennas as

my = Ay 91 (6 ) = target signal at first beam,
my = Ay 02 (6 ) = target signal at second beam, and
mg = Ay, 93 (6 ) = target signal at third beam, (51)

where these are all real-valued, and

6y, = the direction of arrival of a received signal, and
A, = some scale factor with respect to the beam patterns. (52)

Based on these responses, we define the vector

m=[m m m3]T = real-valued signal vector. (53)
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We furthermore define a weight scaling vector to avoid a trivial solution as
ve=[0 1 O]T = scaling constraint vector. (54)

Our constraint to a solution for an optimal weight vector is then

vSTw =1 = the scale constraint for the weights, (55)

where
w=[w W w3]T = weight vector. (56)

Now we wish to steer a null in the direction of the received signal by linearly combining
these signals. Accordingly we can set up the matrix equation

T
% 0 1 0 1
s
m' momy mg 0
We observe that since the weight vector is combining only real-valued quantities, it may

also be limited to real-valued elements.

Note that we effectively have two equations with three unknowns. Therefore, no unique
solution exists for Eq. (57). We will next proceed by stipulating that we seek the weight
vector that provides a null with minimum noise.

3.1 Minimum-Noise Weight Solution

We now identify the following vectors, namely

T _ .
n=[m n, ng] =real-valued noise vector,
X =m+n =noisy measurement vector, (58)

where the noise voltages are zero-mean Gaussian, independent of each other, but
identically distributed with variance

of = E{|m? | =E{Inof*} = E{Imsf*}. (59)

We desire to select weights such that

xTw =0, or at least minimum in the statistical sense, (60)
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but subject to the aforementioned constraints. This is embodied in the matrix equation

VST 1
X' "o L } | Y

which may also be written as
w'[vs x]=[1 ], (62)
where we define the error term
T

& =w ' x =error that we wish to minimize in the statistical sense. (63)

We stipulate that the optimal weights occur when |g|2 is minimized in the statistical
sense. To proceed, we recognize that

E<‘WTX‘2>=WTE<XXT>W=WTRXXW, (64)
where

E<y> = is the expected value of y, and

Ry =E <x X' > = the covariance matrix of x. (65)

We employ the method of Lagrange multipliers and formulate the Lagrange function with
the single constraint as

A=wTR W - 20 (WT Vg —1), (66)
where
as = Lagrange multiplier associated with the scaling constraint. (67)

We may then find the optimum weight vector by taking the derivative of the Lagrange
function with respect to w' and setting it to zero. Doing so yields

2R 3y Wopt — 25V = 0. (68)
This may be solved for the optimal weights as

-1 -1
Wopt:Rxx (asvs):astx Vs (69)
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The earlier constraint may now be employed to derive the equation
T -1 T -1
Ve (astx vs):ozs (vs R «x vs)zl, (70)

which can be solved to yield

1

o - | (71)
T -1
(VS R XX VS )
This in turn can be used to solve for the optimal weight vector to be
R, tv . .
XX___S___ = optimal weight vector. (72)

Wopt =
(VsT Rxx_lvs )

At this point, we have the optimal weight vector to minimize the expected value of |g|2 .
We still have an issue in determining the covariance matrix R,, and finding its inverse.

Evaluating the Covariance Matrix Inverse

First we examine the covariance matrix, which we recall and expand to
RXX=E<xxT>=E<mmT+nnT>. (73)
We expand this in turn and evaluate it to

mm mmy;  Mmmg

T

Ry =mm' +o2l=|mym mom, momg |+c2l. (74)

mzMmy  Mzmy  MzMj

Note that it is the noise that makes this covariance matrix invertible. We may rearrange
some things to equate

Rxxzaf{H%mmTJ. (75)

Onp

The inverse can be calculated using the Sherman—Morrison formula to be identically
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T T
1 1 mm 1 mm
Ry = I - > T = I - (76)

5 .
Onq (Gn-l-m m) On (0'2+Z|m'|2]
n ; |

Back to the Optimal Weight Vector

We plug this covariance matrix inverse into Eq. (72) and manifest the optimal weights as

1 mm?' mmTvS
— 1= Vs Vg —
On 2 2 2 2
[an+Z|mi| ] (0n+2|mi| ]
| 1
Wopt = = (77)
2
T
T 1 mm' Vs m‘
Vg —| I - Vg 1-

For the specific defined vector v, this can be simplified to

([aﬁ +Z|mi|2JvS —mzm]
Wopt = : ' (78)
[aﬁ 3 —|m2|2}

and simplified some more to

—MoMy —MpMs

Wopt = (79)

o2 +|my[? +|mg g +|myf? + |mgf?

Note that the outside beams are weighted inversely proportional to the noise level present
in their signals, and proportional to their beam gains. For noisier signals, the outside
beams are discounted more. This suggests that for the outside beams to contribute
meaningfully to generating a null, we need to maintain a good SNR in those beams.
Since noise is fixed, this means we need a significant contribution from their signals.
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Another interesting fact is that with noise, the optimum weight vector does not in fact
create an absolute null. That is, if we account for noise, and end up with a noise-free
input, then no absolute null is created. This is because as we recall the goal was to
minimize the expected error for an expected amount of noise, not necessarily to guarantee

no signal, i.e. an absolute null. Said another way, the optimal weights attempt to only

suppress the signal down to the noise level. For large SNR, corresponding to aﬁ <<1,

the optimum weight vector approaches

T
—M-oM —m2m3
Wopt = [%J 1 [ﬁJ . (80)
[ma|” -+ |mg| [ma|” -+ |mg]
In the boresight direction we have real-valued responses with mg =m,; , and the optimal
weight vector for large SNR approaches

T
o= 2] 1 (2]

In terms of the beam patterns, this reduces to

o = [g_mJ , [g_w)J | &)

290 (esq) 29g (qu)

This solution does guarantee an absolute null for the signal, but not necessarily a
minimum noise solution.

3.1.1 Monopulse Slope for Minimum-Noise Weight Solution

Now consider the case where we wish to filter (use weights Wopt ) for the case 6, =0,

but in fact have actual m; for something slightly offset from this angle, namely 6, #0.

We will of course then have a mismatch, and therewith generate an error, which we
calculate as

&m = ngtm = (wqmy +my +wmg ) = Ay, (ngl(em)"‘ 92 (6m)+wi03 (6 )) , (83)
where we recall that the high SNR weight solution approaches

_ —Jo (O) (84)

" 290 (0sq)
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Note that this error is due simply to the mismatched weights, and contains no
contribution due to measurement noise. The error contribution due to noise is calculated
as

&n = wgptn =(wym +ny +wWyn3). (85)

The question we now have is “What offset &,, will statistically yield the same error as
noise with error &, ?” We now define a function related to the mismatch error as

d(0)=w0;(0)+92(8)+wg3(6). (86)
This function is analogous to the difference signal of a dual-beam monopulse
configuration, but will hereafter be referred to as the “DOA function.” We expand this
into a second-order Taylor series as

2
d }9+ 29 4(0)
0=0 2do

d(0)=d (0)+[@d (0)

]02, (87)
=0

which we expand to

w91 (0)+92(0)+wg3(0)
d(9)= +{W1%91(9)+%92(9)"“/"1;_‘993(6’)}0:0‘9 , (88)

d2 2

1| d? d 2
2w (0)+ L g, (0) w2 gs(6)| 6
2|: d6?2 1( ) d02 2( ) W d92 3( ):|90

and then simplify to only the non-zero terms as

1|  d? d? d? 5
~ Vﬁ;ﬂ;g91(9)+-——-92(9)+Wﬁ-——-93(9) Za8 (89)

d(o
(6) d6? d6? )0

We now define a quadratic component factor

d2 d2 d2
g =W ——= 1 (0)+——= 0o (0)+W——= 03¢ , 90
d l: d(92 l( ) d92 2( ) Wldﬁz 3( ) o ( )
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such that the DOA function can be written as

d(e)z%dez. (91)

The mismatch error itself can then be written as

Em =Amd(6?)zAﬂﬂ7d92. (92)

The net result is that d (@) is an even function, both in its expansion, and more generally

by definition. Consequently there is no way to distinguish negative phase offsets from
positive phase offsets based on a value for d (6). This furthermore means that the

monopulse slope is zero in the boresight direction, and hence unusable for estimating
DOA.

That is not to say that this particular weight solution isn’t useful for ‘detecting’ target
energy. It justisn’t particularly useful for ‘locating’ a target, i.e. determining DOA.

3.1.2 Multiple-Lobing of Minimum Noise Weight Solutions

In the previous section we determined that filtering to the beam center provided us with a
mismatch error that was an even function of DOA angle, which proved ambiguous to
determine the DOA angle.

We do note that if a target signal is offset from boresight, then we should be able to
achieve a better null by steering the weight vector to one side of broadside than the other.
Consequently, we ask ourselves now “can we get direction information by using two
weight vectors, each steered in opposite directions from broadside, and combining the
results in some fashion?” Accordingly, we define two “test” angles as

+6, = the test angle offsets from boresight, (93)
and we define corresponding responses from the two different test directions, or lobes, as
T
Mg = [gl(et) 92(6) 93 (Gt)] , and
T
mp=[01(-6) 92(-6) 93(-6)] - (94)

Without loss of generality, since these are simply test angles, we will assume a unit
amplitude scaling for these specific vectors.

The two weight vectors to be employed are then correspondingly calculated as
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-92(6)01(6) ~92(61)93(4)

Wa = 2 2 2 7 || »and
oz (@) +|os (a0)) ] (\91(@)\ +93(a1)) ]]
W = _ ~02(-6) 91 (-4) ] 1 [ ~92(-6) 93 (‘6’t)‘2 HT . (95)

ou (-0 +[oa (-6)f o1 (6" +]s (-1)

From symmetry, we identify

92(-6)=92(6 ), and
93(-6)=9:1(&)- (96)

This lets us simplify our weight vectors to

[ m@u@ | [ ce@eaca) || .
oe(@)f +ox(-0)f ) [Joa (@) +|os (-0

Wy = P (et)gl(_‘gt) 1 —0> (gt)gl(‘gt) . (97)
os(@)f +[or (=60 )  LJoa (@) +[os (-0

Clearly, the two weight vectors are just reversed sequences from each other, which is as
we might expect from symmetry arguments.

Now consider a new signal with unknown direction 6,, and unknown amplitude A, .
The two weight vectors will yield two different errors for this signal given by

gazwgm,and

& = WE)— m. (98)

An offset in test angles +4 will generate a difference in these measures. Consequently,

we are interested in how the difference in these errors changes with test angles. That is,
we wish to identify

T T
- wym-w,m 1
_~% _Wp a_ - (Wb—Wa)T m, (99)

26 26 26

which can be expanded and then reduced to

4
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9 (4)-%u(-4)
91(a)” o1 (-)
£=1 0 m.
5, (4) 0 (4)-9:1(-4)
‘gl(‘gt)‘z""gl(_@t)

92(&)

‘2

‘2
If we take the limit as the test angle goes to zero, we calculate
- T
g- (0 d
L)z(@ 0.(6) J
2|91(0) 0=0

lim &= 0 m:wﬁetm,

60 92—(0)(;_991(0)9=J

I 2‘91(0)‘2
Whet = [Wnet,l 0 _Wnet,l]T , and

292—(0)( d 9)020].

—— %
2‘91(0)‘2 do

From this we make several important observations.

where

(100)

(101)

(102)

e This analysis is for a single unknown signal in the vicinity of the boresight angle.

e The difference in the errors does not depend on the received signal from the

center beam. Only the outer beams contribute a sensitivity to the DOA angle for

an unknown signal.

e The important quantity of the outer beams is the slope of their beam patterns in

the vicinity of the target direction.

e The “net’ weight vector in Eq. (101) clearly exhibits an ‘odd’ symmetry.

This suggests that a minimum-noise criterion for choosing a weight vector is by itself

inadequate. Improved criteria would include forcing an odd symmetry to the weight

vector. Having learned what we needed here, we examine the odd-symmetry weight

solution in the next section.
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3.2 Odd-Symmetry Weight Solution

We now limit the DOA function d (&) to be an odd function. This means that we want
to discount, in fact even zero, any even constituents in d (¢), where more generally

d(0)=w0;(0)+wy9,(0)+wz93(0)- (103)

Since g, (6)=go (@) is inherently even, this means that we need to constrain w, =0.

Consequently, we define a new constraint to our weight solution embodied in a zero
response with the vector

Vo=[0 1 O]T = odd-symmetry constraint vector, (104)
while our scaling constraint vector now becomes

ve=[1 0 O]T = odd-symmetry constraint vector. (105)

Our matrix equation now becomes
vi lw=|1]. (106)

This matrix is generally of full rank, meaning it can be inverted. Furthermore, we have
constrained w; =1, and w, =0. Full rank of course requires that we have a non-zero ms

response.

Note that since m; is irrelevant due to W, =0, the matrix equation can be reduced to the

. ( O )

Note further that this is essentially Eq. (9) for the two outside beams. This means that the
analysis for the dual-beam configuration applies. The optimum weights are therefore
identified as

]
wopt{l 0 —gl(em)} . (108)
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Note further yet that in the boresight direction, where 6,, =0, and m; =mjz, we calculate

Wopt =[1 0 —1]T = weight vector for a boresight null. (109)

3.2.1 Monopulse Slope for Odd-Symmetry Weight Solution
The analysis of sections 2.2 and 2.4 apply here.

As with the dual-beam monopulse analysis, we allow here that the DOA function
becomes

d(0)= w = difference signal. (110)

As before, in the boresight direction,

d (0) =0 = difference signal in boresight direction. (111)

We again write this signal in terms of a first-order Taylor series expansion and calculate
the linear term as

Ky :id (6))  =monopulse slope. (112)
dd " oo

This lets us again linearize the difference signal as
d (0)~ kg6 = difference signal. (113)

This relationship lets us estimate the offset angle for a received signal by calculating

A 1 1
Om :Ed(‘gm): kd\/E

(93 ()~ 1.(0mn)). (114)

where here d (6y,) is derived from the data. This can also be written as

- 1

- =W(m3—ml). (115)

We repeat that the monopulse slope is often scaled to be relative to a reference
beamwidth and reference signal level to yield a normalized quantity

-34 -



0
K =r—efkd = normalized monopulse slope, (116)

So
where

O, = reference antenna beamwidth, and

so = reference signal level. (117)

Recall that we are dealing with the real-valued components of signal and noise, and we
still identify

2.2
SNR =m0~

20'%

Signal-to-Noise power ratio. (118)

Note that the SNR is a ratio of the received power in the reference beam to the noise
power in the squinted beams, evaluated in the boresight direction. Any improvement to
the transmitted signal, such as the gain of a transmit antenna, are embodied in the scale
factor A,.

The DOA noise can then still be written as

[
__ ref (119)

Op = .
¥ kyV2SNR

3.2.2 Figure of Merit for Optimum Squint Angle

The analysis in section 2.5 applies here.

We again desire to minimize the variance of the angle estimate ag. The individual

measurement noise variance Ur% is still presumed to be constant. Consequently, we

desire a monopulse antenna design that maximizes A,ky -

The factor A,, embodies the signal gain factors that include transmitter power, transmit

antenna gain, range, and other miscellaneous gains and losses. We shall concern
ourselves here only with the transmit antenna gain component. Accordingly, we define

st = transmit antenna signal in the receive antenna boresight direction. (120)

For a monostatic antenna, which we will assume hereafter, we typically equate

ST =959
T =g (121)
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Consequently, we define the figure of merit for our antenna as
FOM = spky . (122)

Our intent now is to select a squint angle 6, that maximizes the FOM. We stipulate that

this will depend on the individual beam shapes. Nevertheless, we emphasize a key point
that anything that reduces the transmitted signal strength sy without a corresponding

increase in monopulse slope kq will reduce the FOM and increase DOA noise.

We shall again assume a beam-shape from Sherman and Barton, namely

cos(zK,6
g (0) = K00 3 (123)
1-(2K 0)
where
Kg =1.189/9ref . (124)

Since we have the additional beam g, (&), we can readily adopt case 2 in section 2.5 as
our monopulse architecture, with g, (@) as our reference beam.

Numerical analysis indicates a peak FOM at a squint angle of approximately 0.681
constituent beamwidths. That is

Osq,0ptimum ~ 0.681 6y = optimum squint angle. (125)
Note that in this case s; is constant, and the FOM depends only on Ky .

This also means that the two squinted beams are equal at a point where their relative gain
is about —5.9 dBc. This means that the ‘outside’ beams need to have their gains intersect
at a relative gain of about —5.9 dBc. These beams are plotted in Figure 15.

Furthermore, since the factor A,, needs to be maximized, this means that we need

maximum transmit power directed in the boresight direction. This implies that given the
choice of spreading the transmit power among the several individual beams, we achieve
optimum by applying the transmit power all to the single center beam g, (¢). Spreading

the power evenly to all beams is clearly not at all optimal, and in fact hurts performance.
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antenna patterns - dBc

DOA - contituent beamwidths

Figure 15. Optimal beams for maximum FOM for a single target DOA estimation.

The preferred architecture is illustrated in Figure 16. Other architectures also exist.

Figure 16. Three-beam amplitude monopulse feed configuration.
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3.3 Constrained-Null Weight Solution

The purpose of three beams is after all to provide essentially two nulls. We now seek a
solution that provides two distinct nulls at specific test angles. With this solution, we ask
“What is the sensitivity of the second null’s position to noise given the first null’s known
position?”

Accordingly, we define two “test” angles as

6y, = first test angle offset from boresight, and
6o = second test angle offset from boresight, (126)

with the constraint that these angles are different, that is
6o # 6. (127)
Therewith, we define responses from the two different test directions as
T
my=[01(61) 92(6u) 93(Gu)] ~and
T
M =0 (62) 92(62) 93(62)] - (128)

Without loss of generality, since these are simply test angles, we will assume a unit
amplitude scaling for both of them. Furthermore, we define

Vg :[0 1 O]T = scaling constraint vector. (129)

We shall furthermore assume that both angles are located within the center beam, i.e.
both g, (6 ) and g, (6, ) offer a significant response. More on this later.

Consequently, we may construct the matrix equation

.
Vs 1

my (w=[0]. (130)
T

Mt2 0

We will constrain ourselves to the condition that this matrix is invertible, which means
T
det([vS My M) );t 0, (131)

in which case the optimum weight vector is calculated as
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1 [92(9t1)93(9tz)—93(9t1)92(9t2)]
93 (1) 91(62) - 91(61) 93(&2)
Wopt =| My | 0= 1 . (132)

mf, | LO [91(9t1)92(etz)—gz(@l)gl(@tz)J
93(f1)91(62)—91(61)93(62)

Note that if this filter is applied to a noise vector given by
n=[m n, ng ]T = real-valued noise vector, (133)

where the noise voltages are zero-mean Gaussian, independent of each other, but
identically distributed with variance

2 2 2
of = E{|mf| = E{Ins} =€ g’ . (134)
then the output noise power is calculated as

2 2(n, T 2 2
On,total = %n (WoptWopt ) =0n ZWi . (135)
i

3.3.1 Monopulse Slope for Constrained-Null Weight Solution

We now define the DOA function in the neighborhood of &, as

d(6)=Wope [ 01(6h2+6) 02(62+6) 03(B2+6)] . (136)

We define a monopulse slope as the slope of d (¢) at &, givenanull at 6. The
monopulse slope will then be a function of both test angles. Accordingly, we define

Kg (th|9t1)=;—9d (0) o (137)

We may expand this monopulse slope slightly as
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— d -— B d B
—01(6+6 — (0
dggl( t2 )gzo do ( )9=49t2
d d
Kg (9t2|‘9t1):W-c|)—pt @92(6}2 +0) :ngt @92(9) (138)
6=0 0=67
d d
—03(Go+6 el
4o 3(62 )0:0_ degs( )0=9t2

From this we observe

e The answer is a weighted sum of the slopes of the antenna beams at the null angle
of interest.

e The weight vector is a function of both null angles.
e This s clearly a 2-dimensional function.

Nevertheless, our estimate of the DOA function in the vicinity of &, is calculated as

d(0)~d(0)+|kq (6h2|0u)]0 = ka (6r2]6a) |0 (139)
where 6 is an offset from &, .

The monopulse slope can still be scaled to be relative to a reference beamwidth and
reference signal level to yield a normalized quantity

_ Oref kd (9t2 |‘9t1)

km (k2 |6a) — = normalized monopulse slope, (140)
S04/ WoptWopt
from which we identify
sp =1 = reference beam gain with respect to constituent beam. (141)

We elaborate on this later.
3.3.2 Noisein the Angle Estimate
Consider a received signal in noise
X=m;+my,+n, (142)

where
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mi=Al0(6) 92(6) §l3(t91ﬂT , and
My =Ap[01(02+0m) 2(02+0m) 03(02+0m)] . (143)
where

6, = known first signal DOA angle,

Ay =unknown scale factor of first signal,

6, = presumed second signal DOA angle,

6y = actual offset of second signal DOA angle from &, , and

A, =unknown scale factor of second signal. (144)

We shall presume that wgpt is calculated based on 6 and 6, , but without knowledge of
6y - Note that since &, is precisely known, it can be precisely nulled, leaving

T T T
WoptX =WoptMp +Wop . (145)

The error contribution due to noise is calculated as
LT

The error contribution due to angle offset 6, is

Em =WoptMa = Ao | kg (62161) [0 (147)

Setting these errors equal to each other yields the equation to estimate the equivalent
offset DOA due to the noise as

6 = Wopt . (148)
Pol kg (62]0)]

If we estimate &, in this manner, we will do so with a statistical variance of the DOA
noise calculated to be

2 2., T
(o) oWt W
Ug _ n,total _ nYWoptYWopt . (1 49)

Bl (@la)] Mk(ela)]
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Some substitutions allow us to write this as

02
o4 = e , (150)
Ot [ Ka (621)] [ A3sé ]
(W;ertWopt ) 35 O-r%

from which we recall and otherwise identify

_ eref kd (92 |91)

ke (62]61) =
m( 2| ) SO\/ngtWopt

2.2
SNR =[ﬂJ and

= normalized monopulse slope,

20,%

sp =1 = reference beam gain with respect to constituent beam, (151)

and then write the DOA angle RMS noise in the familiar form

6 ref

o0 ke (62]61)V2SNR

(152)

The SNR is the reference beam signal power to constituent beam noise. The absolute
value is used to acknowledge that the normalized monopulse slope may be of either sign,
depending on individual null positions.

3.3.3 Figure of Merit for Optimum Squint Angle

Recall that the signal amplitude is a function of the transmit beam gain, which means it
includes its pattern for off-boresight angles. Consequently, our figure of merit for 6,

given 6 which we wish to maximize is based on minimizing the RMS DOA noise, and
becomes

(9)]ks (¢2ler)
ZI:Z

FOM (6, |91) (153)

The absolute value notation is required because the monopulse slope may be either
positive or negative depending on which side of 8, we are calculating.

We shall again assume a beam-shape from Sherman and Barton, namely
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_ cos(zKy0)
1-(2Kg0)*

90 (0)

(154)

where

Ko =1.189/6 o - (155)

Figure 17 plots contours of the maximum FOM for various combinations of & and 6, .
Figure 18 plots the corresponding squint angle that yields the maximum FOM. From
these plots we make the following observations.
e The ‘best’ squint angle depends very much on the specific null angles 8, and 6,
for which we are optimizing.

e The farther apart the two null angles are, the greater is the optimum squint angle.

e For null angles that are near each other, there still is a dependence on just where
in the beam the two angles are, although there is a maximum at a squint angle in
the neighborhood of the nominal beamwidth.

The question remains “How do we choose ‘which’ optimal squint angle to choose?” To
gain some insight to an answer, we choose to plot the monopulse slope over intervals of
6, and 6, for two sample squint angles.

Figure 19 illustrates contours of local monopulse slope at &, for squint angles of +0.55

constituent beamwidths. Note that no singularities are apparent over the entire domains
of & and 6,. The local monopulse slope does not blow up.

Figure 20 illustrates contours of local monopulse slope at &, for squint angles of +1.05
constituent beamwidths. Note the behavior in the region of 6, =8, =~ £0.43. We explore

this somewhat in Figure 21, where we identify arcs of extremely high values of
monopulse slope. These represent angle combinations where the matrix in Eg. (130)
becomes ill-conditioned. The bad behavior comes about from an interaction of
mainlobes with sidelobes of the squinted beams. This arc of angle combinations needs to
be avoided.

In order to keep the local monopulse slope well-behaved, we may adjust some
combination of the following.

1. We may reduce the squint angles to lesser magnitudes to push the arcs farther
away from boresight.

2. We may restrict the allowable interval of angles for 8, and &, to domains inside
of the arc of ill-conditioning.
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Figure 17. Maximum FOM over all squint angles.
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Figure 18. Optimal squint angle in constituent beamwidths to maximize FOM.
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Figure 19. Monopulse slope for squint angles of £0.55 constituent beamwidths.
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Figure 20. Monopulse slope for squint angles of +1.05 constituent beamwidths.
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Figure 21. Monopulse slope for squint angles of £1.05 constituent beamwidths, limited to values
greater than 100.

Consequently, we desire the largest squint angles possible subject to the constraint that
we avoid ill-conditioning for intervals of interest for angles for 8, and &,. This of

course means that we need to define intervals of interest for angles for &, and &, .

We point out that the solution for a closed-loop tracking radar is probably something
quite different than for, say, an airborne GMT]I radar. We are herein more interested in
the latter.

We propose to define the intervals of interest 6 and &, to be 6, that is, an interval of

+1 constituent beamwidth on either side of boresight for each null angle. This represents
the approximately —15 dBc beamwidth of a constituent beam for the shape given in Eq.
(154). With these criteria, we identify the optimum squint angle as approximately

Osq.optimum =~ 0-657 6. (156)

Figure 22 plots contours of local monopulse slope at 8, for squint angles of +0.657

constituent beamwidths, and Figure 23 plots contours of FOM for the same conditions.
Recall that the FOM is proportional to the inverse of DOA angle estimation RMS noise.

Figure 24 plots the corresponding one-way receive antenna patterns.
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Figure 22. Monopulse slope for squint angles of £0.657 constituent beamwidths.
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Figure 23. FOM for squint angles of +0.657 constituent beamwidths.
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Figure 24. One-way antenna patterns with squint angles of £0.657 constituent beamwidths.
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Figure 25. Two-way antenna patterns with squint angles of £0.657 constituent beamwidths.
Assumes transmit from the center beam only.
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3.4 Comments and Notes

We make several comments in no particular order.

e We reiterate that the foregoing analysis is based on maximizing our ability to
determine the DOA angle for a second target signal with the constraint of having
a null placed in a precise first DOA direction.

e We contrast Figure 16 with Figure 2(b) and observe that they are essentially the
same, except that the middle feed is also employed to receive in the three-beam
case.

e We note that the angle combinations where the matrix in Eq. (130) becomes ill-
conditioned depends on the scaling vector vg. A different scaling factor yields a

different determinant, and hence different behavior of where Eq. (130) becomes
ill-conditioned. However, the FOM divides this by the RMS weight values such
that in the limit the FOM is independent of the particular scaling vector employed.
The scaling vector then has no influence on FOM, and in fact no influence on

DOA angle noise power ag. Furthermore, it has no influence on the normalized

monopulse slope kp, (6,(6;).

e Since the choice of scaling vector doesn’t influence DOA angle noise power 05

anyway, this raises the question of whether the optimum squint angle limit in Eq.
(156) is a valid concern. We argue that since the matrix inversion in Eq. (132) is
a necessary step to find wgp , a necessary intermediate step, and we desire to

keep Wopt bounded and well-behaved, then we do in fact wish to avoid Eg. (130)
becoming ill-conditioned, requiring a corresponding limit on squint angle.
e The scaling vector does influence the particular optimum weight vector Wy and

any potential constraints that would keep the weight vector well-behaved. This
raises the possibility of increasing the specific optimum squint angle limit in Eq.
(156) by choosing a different scaling vector. Anecdotal evidence suggests that
while a larger squint angle can indeed sometimes be allowed, this does not
translate to an improved FOM for all angle combinations, and can in fact reduce
FOM in large swaths of useful angle combinations. There is no free lunch. We
argue that the scaling vector in Eq. (129) offers an attractive symmetry in the
monopulse slope plots, and overall more desirable performance with less
monopulse slope variation with target signal DOA angle difference.

The bottom line is that our choices do have consequences that we need to understand as
we make them.
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3.5 Target Angles

Consider two samples from a uniform distribution with zero mean. The Probability
Density Function (PDF) is given by

1 |x<1/2

157
0 else (157)

b (0=ret(s) - |

The question is “What is the PDF (and its statistics) for the difference between two
samples from this distribution?”

We can straight-forwardly calculate the PDF of the difference between two samples from
the uniform distribution as

1+x -1<x<0
fg (x)=A(x)=41-x 0<x<1 . (158)
0 else

The absolute value of the difference has a PDF that is described by

2-2x 0<x<1
fd(X)={ 0 s (159)

This has a mean value calculated as

M| =1—g:0.3. (160)

This suggests that the probability of being less than 0.3 is about 50% for the difference
between two samples with PDFs given by Eq. (157). More generally, for uniform PDFs
of some other common width, the mean difference is about 30% of the width of the
uniform distribution.

With respect to two target signals uniformly distributed between +1 constituent
beamwidths from boresight, this means the mean difference between target signal DOA
angles is approximately 0.6 constituent beamwidths.
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4 Processing Three Amplitude Channels for DOA

Here we wish to make three measurements on each of three beams, and from them
calculate the unknown direction of a target signal in the presence of another target signal
in a known direction. We begin by defining several vectors as follows, namely
T . .
my = [ml,l m 2 ml’g} = real-valued signal vector for first signal,
T : .
my=[my; my, mys] =real-valued signal vector for second signal,

M =m; +m, = combined signal vector,

n=[m n, ng ]T = real-valued noise vector,
x =M +n = measurement vector, and
ve=[0 1 O]T = scaling constraint vector. (161)

Furthermore, we define the signal vectors in terms of antenna gain parameters as

my=Al0(6) 92(6) g3(@)] . and
my = A [01(62) 92(02) 05(62)] (162)

where

6, = DOA of known target signal with amplitude A, and
6, = DOA of unknown target signal with amplitude A,. (163)

Essentially, vector m, is unknown both in amplitude and DOA angle. We shall
furthermore assume that both angles are located within the center beam, i.e. both g, (6;)
and g, (6, ) offer a significant response. Consequently, we may construct the matrix
equation

v§
m] lw=|0]. (164)
X" €
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We make several observations.

e For the second row of the Matrix, we may assume an arbitrary A #0.

e Because of noise, we may assume that the matrix is of full rank. Consequently
the matrix is invertible.

e Since the matrix is invertible, a solution exists for £=0.

Consequently, we may calculate the optimum weight vector as

-1
.
Vs 1
w=[m] | [0]. (165)
XT 0

An implicit assumption here is that the beams are sufficiently close together that there is
a reasonable response in more than the center beam, that is

mI # 3 vl for any scalar S . (166)

This means we need a significant response in more than one beam, essentially in all of
them, for all target directions of interest. Otherwise the matrix is not invertible.

Once we have a weight vector solution, we may plot its response to various target signal
angles by calculating the filter response

T
& =Migst W, (167)
where

Mest =| 01 (Gest) 92 (Ghest) 3 (hest) | »
Gest = the test angle over an interval of interest. (168)

From this filter response, we should readily identify the known null at &, since this is a

constraint of the weight vector solution. In addition, with good SNR, a second null may
manifest in the vicinity of 6, .

We now offer an example to illustrate this.
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Example

We shall assume a beam-shape consistent with earlier examples, namely

cos(7Ky6
go(e)z(—ag’ and
1—(2K9¢9)
Ky =1.189. (169)

Note that the beam-shape has unity gain and a unity —3 dB beamwidth. The beams are
squinted with angle

Osq = 0.657 beamwidths. (170)

The unit “beamwidths” refers to the —3 dB beamwidth of g (&), which for this example
is unity. Now consider the conditions

¢ =0.1 beamwidths,
6, =-0.2 beamwidths,

2 2 2 A
of = E (P} = E{Inof*} = E{jnaf} 5o (171)

Note that the noise is —30 dBc with respect to the signal at the DOA of 6, .

The three beams are illustrated in Figure 26. An example filter response for these
conditions is illustrated in Figure 27. Two more examples are given in each of Figure 28
and Figure 29.

Of course, better SNR will cause less wandering of the second estimated null position.
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Figure 26. Example beam patterns for three beams.
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Figure 27. Example filter response. Note the specified null precisely at 0.1 beamwidths, and the
calculated null at about —0.23 beamwidths, displaced by noise from the true DOA at —0.2
beamwidths.
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Figure 28. Example filter response due to different noise vector.
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Figure 29. Example filter response due to yet a different noise vector.
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“I'll try anything once, twice if I like it, three times to make sure.”
-- Mae West
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5 Conclusions

We summarize herein the following key points.

Three beams can null two signals from different DOA angles.

Three beams allow determining the DOA angle of a target signal in the presence
of a second target signal.

Maximizing the accuracy and precision of DOA calculations requires maximizing
SNR as well as monopulse slope, and perhaps trading between the two.

For three-beam monopulse, the transmit signal should use the center beam, and
only the center beam, and not include any sum of other beams. Even in dual-
beam monopulse, transmitting on the sum beam is merely a consolation if no
center reference beam exists.

Maximizing the accuracy and precision of DOA calculations requires significant
overlap of the outside beam patterns.

The optimum beam squint angles can be readily calculated from constituent beam
patterns and the DOA interval of interest.
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“Facts are stubborn things.”
-- Ronald Reagan
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