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ABSTRACT 

A new and efficient direct numerical method with second-order convergence accuracy was 
developed for fully resolved simulations of incompressible viscous flows laden with rigid 
particles. The method combines the state-of-the-art immersed boundary method (IBM), the 
multi-direct forcing method, and the lattice Boltzmann method (LBM).  First, the multi-direct 
forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration 
(ns/np) condition on the surface of particles.  Second, a slight retraction of the Lagrangian grid 
from the surface towards the interior of particles with a fraction of the Eulerian grid spacing 
helps increase the convergence accuracy of the method.   
 
An over-relaxation technique in the procedure of multi-direct forcing method and the classical 
fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied.  The use 
of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second 
order accuracy and provides more accurate predictions of the translational and rotational motion 
of particles.  The preexistent code with the first-order convergence rate is updated so that the 
updated new code can resolve the translational and rotational motion of particles with the 
second-order convergence rate. The updated code has been validated with several benchmark 
applications. 
 
The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the 
number of the Lagragian markers on particles by using a new formula for the number of 
Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IB-
LBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining 
drag force exerted on a cluster of particles, the updated IB-LBM code along with the new 
formula for the number of Lagrangian markers has been further validated by solving several 
theoretical problems.  Moreover, the unsteadiness of the drag force is examined when a fluid is 
accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The 
simulation results agree well with the theories for the short- and long-time behavior of the drag 
force.  
 

Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are 
simulated over the entire range of packing fractions, and both low and moderate particle 
Reynolds numbers to compare the simulated results with the literature results and develop a new 
drag force formula, a new lift force formula, and a new torque formula.  Random arrays of solid 
particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid 
crystallization of solid particles over high solid volume fractions.   
 
A new drag force formula was developed with extensive simulated results to be closely applicable 
to real processes over the entire range of packing fractions and both low and moderate particle 
Reynolds numbers. The simulation results indicate that the drag force is barely affected by 
rotational Reynolds numbers.  Drag force is basically unchanged as the angle of the rotating axis 
varies. 
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A new lift force formula was developed with simulation results comprehensively over the 
rotational Reynolds numbers of 0.1 to 500, and solid volume fractions up to the close-packed 
limits, and low and moderate particle Reynolds numbers.  The simulation results indicate that the 
lift force produced by the rotation movement is directly proportional to rotational Reynolds 
numbers defined by the angular velocity perpendicular with the flow direction. The lift force is 
very insignificant for ordered arrays and random arrays at the rotational Reynolds number below 
1.  However, the lift force at especially low solid volume fractions can be larger than the drag 
force as the rotational Reynolds number increases.  
 
The torque exerted on spheres by a fluid phase was investigated to fully understand and quantify 
particle-fluid interactions. The torque is also very essential to advance the angular momentum 
equation for solid particles in discrete particle simulations (DPM). A formula for the torque 
exerted on spheres in random arrays was developed with simulation results over the solid volume 
fraction range of effective zero up to the close-packed limits, and low to intermediate particle 
Reynolds numbers. The normalized torque keeps nearly constant with low rotational Reynolds 
numbers, whereas slight deviation is observed at high rotational Reynolds numbers. 
 
The proposed formulas for drag forces, Magnus lift forces, and torques exerted on solid particles 
in random arrays were installed in the open source software Multiphase Flow with Interphase 
eXchanges (MFiX) (version 2014-1).  Both the discrete element model (DEM) and the 
interpolation suite in it need to be invoked to use the proposed formulas. The interpolation suite 
is used to calculate the drag force on each particle based on particle location rather than cell 
averages. Simulations for a bubbling fluidized bed are performed with the proposed formulas 
through the MFiX.  
  



 

 

v 

 

TABLE OF CONTENTS 
 
 Page 
DISCLAIMER ii 
ABSTRACT iii 
LIST OF FIGURES viii 
EXECUTIVE SUMMARY 1 
INTRODUCTION 5 
EXPERIMENTAL METHODS 10 
THEORY 11 
1. Governing equations 11 
2. Direct forcing scheme 12 
3. Improvements on the state-of-the-art immersed boundary - lattice Boltzmann 
    method (IB-LBM)             13 

3.1 Formulation to obtain flow information at fractional steps 13 

3.2 Relaxation technique for multi-direct forcing scheme 14 
3.3 Combination of IBM and LBM using a Runge-Kutta scheme 15 

4. A new formula for the number of Lagragian markers on a particle surface   18 

5. Analytical equations and simulation data on drag forces exerted on solid 
spheres in simple cubic arrays over low particle Reynolds numbers at various 
solid volume fractions  

23 

6.  Existing analytical formulas on the drag force exerted on solid spheres in 
random arrays for comparison with our simulated results with those from 
previous studies over low particle Reynolds numbers   

24 

7. Calculation s of torque on spheres 25 

RESULTS AND DISCUSSIONS 26 

1. Validation of the proposed IB-LBM  26 

1.1 Simple cubic lattice of fixed spheres   26 

1.1.1 Effects of retraction distances on convergence order rate   26 

1.1.2 Effects of relaxation coefficients on convergence order accuracy    27 

1.2 Rotation of a sphere in linear shear flow    29 

1.3 Freely moving sphere in plane Poiseuille flow     30 

   



 

 

vi 

 

TABLE OF CONTENTS – Continued 1 
 

 Page 

2. Final Formulas   30 
2.1. Drag Force 30 
2.1.1 The drag force exerted on solid spheres in simple cubic arrays at low particle 
 Reynolds numbers and arbitrary solid volume fractions up to the clos-packed limits 
(/6)  

30 

2.1.2. The drag force on non-rotational solid particles in random arrays over wide 
-range packing fractions and low particle Reynolds numbers.  33 

2.1.3 The drag force on solid particles in random arrays at arbitrary variables such 
 as particle Reynolds numbers, rotational Reynolds numbers and packing fractions 36 

2.2. Magnus Lift Force 38 

2.2.1 The Magnus lift force on rotational solid spheres in simple cubic arrays at low 
 particle Reynolds numbers, arbitrary rotational Reynolds numbers, and arbitrary 
 packing fractions up to the close-packed limits 
 

38 

2.2.2. The lift force exerted on rotational spheres in random arrays at arbitrary 
 variables such as rotational Reynolds numbers, particle Reynolds numbers, and 
 packing fractions 
 

40 

2.2.3 The Magnus lift force on solid spheres in random arrays at arbitrary variables 
 such as particle Reynolds numbers, rotational Reynolds numbers and packing 
 fractions 
 

43 

2.3. The ratio of the Magnus lift force to the drag force 46 

2.4. Torque 48 

2.4.1 The normalized torque on solid spheres in simple cubic arrays at low particle 
 Reynolds number 

48 

2.4.2 The normalized torque exerted on rotational spheres in random arrays over low 
 and intermediate particle Reynolds numbers 

 

49 

3. Installation of the proposed formulas in Multiphase Flow With Interphase 
Exchanges (MFiX) 

52 

4. Bubbling bed simulated with the proposed formulas through MFiX 52 

   



 

 

vii 

 

TABLE OF CONTENTS – Continued 2 
 

 Page 

CONCLUSIONS 
 

54 

REFERENCES 
 

56 

PUBLICATION 
 

59 

APPENDIX 60 

Subroutine: DRAG_NEW  
Purpose: Calculate the gas-solids drag coefficient   61 

Subroutine: MLIFT_NEW                                                
Purpose: Calculate the Magnus lift force coefficient due to particle rotation   62 

Subroutine: TORQUE_NEW                                               
Purpose: Calculate the Torque coefficient due to particle rotation  63 

Subroutine: DES_DRAG_GP                                              
Purpose: Calculate the gas-particle drag coefficient using the gas velocity interpolated to 
the particle position and the particle velocity.  Invoked from des_drag_gs and 
calc_des_drag_gs                                                               

65 

 
  



 

 

viii 

 

LIST OF FIGURES 
 

Figure  Page

1 

The schematic diagrams for the distribution of Lagrangian markers on a plane 
surface. Solid symbols denotes the Eulerian grid points, while a and b denote two 
adjacent Lagrangian markers. (a) the shortest distance ( 2 x ) allowed to avoid 
the use of the same Eulerian grid points by two adjacent Lagrangian markers; (b) 
the longest distance (3.5 x ) allowed to make the two adjacent Lagrangian 
markers to fully use the Eulerian grid points between them. (c) the distance 
(3 x ) that ensures the two adjacent Lagrangian markers to fully use the Eulerian 
grid points between them; (d) a special case of (c), in this case, the Eulerian grid 
point (n,m) is critically not used by either marker a or marker b 
 

22 

2 

Error percentages in Darcy number Da as function of the grid resolution at 
different retraction distances. The error is relative to the value of the Darcy 
number Dar obtained from Richardson extrapolation [14] using the data points of 

/D x  = 16, 24 and 36.   
  

27 

3 

Error percentages in Darcy number Da as function of the grid resolution at the 
same retraction distance (rd=0.3) with different relaxation coefficients in the 
multi-direct forcing scheme. The error is relative to the value of the Darcy 
number Dar obtained from Richardson extrapolation [12] using the data points of 

/D x  = 16, 24 and 36.    
 

28 

4 

Error percentages in the angular velocity z of the particle as function of the grid 

resolution at the same retraction distance (rd=0.3) with different relaxation 
coefficients in the multi-direct forcing scheme. The error is relative to the value 
of the angular velocity z obtained from Richardson extrapolation [12] using the 

data points of /D x  = 6.4, 8 and 10. 
 

29 

5 

Error percentages in the linear velocity cU  of the particle as function of the grid 

resolution at the same retraction distance (rd=0.3) with different relaxation 
coefficients in the multi-direct forcing scheme. The error is relative to the value 
of the linear velocity cU obtained from Richardson extrapolation [12] using the 

data points of /D x  = 12.8, 16, and 20.    
  

30 

   



 

 

ix 

 

LIST OF FIGURES – Continued 1 
 

Figure  Page

6 

The normalized Stokes-flow drag force on non-rotational spheres in simple cubic 
arrays as a function of the solid volume fraction at low particle Reynolds 
numbers. The simulation result of Hill et al. (2001) and the results from the 
theories of Hasimoto (1959) and Sangani & Acrivos (1982) are also shown. The 
dashed line interpolates the discrete results of Zick and Homsy (1982). The solid 
line represents the fomula proposed based on the present simulation data and 
literature theories. 
 

33 

7 

The normalized Stokes-flow drag force DF  (multiplied by the porosity squared) 

on the non-rotational spheres in random arrays as a function of the solid volume 
fraction over low Reynolds numbers. The simulation results of Ladd (1990), Hill 
et al. (2001a,b) and Van Der Hoef et al. (2005) are represented by symbols. The 
formula proposed by Van Der Hoef et al. (2005) is represented by a dash dotted 
line. The results from the theories of Carmen and Koch & Sangani (1999) are 
also shown.  
 

35 

8 

The normalized drag force DF  over the particle Reynolds number range of 

effectively zero to approximately 100. The drag laws proposed by Beetstra et al. 
(2007) and Tenneti et al. (2011) are also shown for comparison. 
 

37 

9 

The normalized drag force DF  on the spheres in random arrays as a function of 

the particle Reynolds number ReP at various solid volume fractions. The error 
bars represent the standard deviations in DF . The solid lines from bottom to top 

are computed for c =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively, using Equation 
36.  

38 

10 

(a) The normalized Magnus lift force LF  on the rotational spheres in simple 

cubic arrays as a function of the solid volume fraction at 0.1rRe  ; (b) LF (1-

c)2/Rer of the rotational spheres in simple cubic arrays as a function of the solid 
volume fraction. The solid line represents the best fit to the present data at

0.1rRe  . The theoretical result calculated by Rubinow & Keller (1961) at zero 

solid volume fraction also is shown in Figure 10 (a) and (b).  

40 

11 

The normalized lift force LF  exerted on the rotational spheres in random arrays 

as a function of particle Reynolds numbers at the rotational Reynolds number of 
0.1.  

41 

 
  



 

 

x 

 

 
LIST OF FIGURES – Continued 2 

 

Figure  Page 

12 

The normalized lift force LF  exerted on the rotational spheres in random arrays 

as a function of rotational Reynolds numbers at the solid volume fraction of 0.3 
and various particle Reynolds numbers. 
 

42 

13 

The normalized Magnus lift force LF  (multiplied by the porosity squared over 

the rotational Reynolds number) on the rotational spheres in random arrays as a 
function of the solid volume fraction over low particle Reynolds numbers. The 
error bars represent the standard deviations LF  in LF . The simulation data of 

LF  come from the simulations at 0.1rRe  . A line is shown to fit the simulation 

results in the entire range of packing fractions 
 

44 

14 The normalized Magnus lift force LF  on the rotational spheres in random arrays 

as a function of the particle Reynolds number at 0.1rRe  . The error bars 

represent the standard deviations in LF . The solid lines for c =0.1, 0.2, 0.3, 0.4, 

0.5 and 0.6 are generated from Equation 42. 

45 

15 The ratio of the normalized Magnus lift force LF  to the normalized drag force 

DF  on the rotational spheres in random arrays over low particle Reynolds 
numbers as a function of the solid volume fraction. The solid lines are calculated 
from the proposed relations for LF  and DF . 

46 

16 The ratio of the normalized Magnus lift force LF  to the normalized drag force 

DF  on the rotational spheres in random arrays as a function of the solid volume 
fraction in the particle Reynolds number (ReP) range of low to intermediate. The 
solid lines are calculated with the proposed formulas for LF  (Equation 42) and 

DF  (Equation 36). 

47 

17 

The normalized torque T  exerted on the rotational spheres in simple cubic 
arrays as a function of the solid volume fraction c. The solid line represents the 
formula (Eq. (45)) to the present simulation results at 0.1rRe  . Also shown is 
the theoretical result calculated by Rubinow & Keller (1961) at zero solid 
volume fraction. 

49 

   



 

 

xi 

 

LIST OF FIGURES – Continued 5 
 

Figure  Page 

18 

The normalized torque T  on the rotational spheres in random arrays as a 
function of the solid volume fraction over the low particle Reynolds number 
range at 0.1rRe  . The error bars represent the standard deviations in T . The 

solid line (Eq. 46) is shown to fit the simulation results in the entire range of 
packing fractions.  

50 

19 

The normalized torque T  on the rotational spheres in random arrays is shown as 
a function of particle Reynolds numbers. The error bars represent the standard 
deviations in T . The solid lines for c =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are 
generated from Equation 47. 

51 

20 
Lateral void fraction ( 1 c   ) profiles at 31.4 mm above the distributor and 
the superficial gas velocity of 0.6 m/s. x: vertical distance from the wall of the 
boiling bed. 

52 

21 
Lateral void fraction ( 1 c   ) profiles at 31.4 mm above the distributor and 
the superficial gas velocity of 0.9 m/s.  x: vertical distance from the wall of the 
boiling bed. 

53 

 
 



 

 

1 

 

EXECUTIVE SUMMARY 

A new direct numerical method with second-order convergence rate was developed for 

fully resolved simulations of incompressible viscous flows laden with rigid particles. The 

method was developed by combining the state-of-the-art immersed boundary method (IBM), the 

multi-direct forcing method, and the lattice Boltzmann method (LBM).  Previously, the 

combination of IBM and LBM could only achieve first-order accuracy, though LBM is a second-

order method.  The IBM was recently improved based on the traditional solver of incompressible 

Navier-Stokes equations.   

In this study, the multi-direct forcing method is adopted in the improved IBM to better 

approximate the no-slip/no-penetration (ns/np) condition on the surface of particles, and a slight 

retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction 

of the Eulerian grid spacing helps increase the convergence rate of the direct numerical method.  

The method is further improved by an over-relaxation technique in the procedure of multi-direct 

forcing method and an implementation of the classical fourth order Runge-Kutta scheme in the 

coupled fluid-particle interaction.  The over-relaxation technique is demonstrated to yield higher 

orders of convergence.   

The main difficulty in combining LBM and fourth order Runge-Kutta scheme is that the 

flow information such as density and velocity cannot be obtained directly at a fractional time 

step from LBM, since LBM only provides the flow information at integer time step.  To 

overcome this problem, the flow field around a particle at a fractional time step is obtained by 

simply extrapolating the known flow field at the previous integer time step. The extrapolation is 

only implemented locally in cubic computational domains that circumscribe particles without 

significant computational efforts.  

The classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the 

second order accuracy and provides more accurate predictions of the translational and rotational 

motion of particles. A proper choice of the retraction distance allows the direct numerical 

method to reach a super-convergence of around fourth order.  

The preexistent first-order accurate code applicable to only translational motion of 

particles has been updated by incorporating these new improvements into the preexistent code. 
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The updated new code, which can resolve the translational and rotational motion of particles 

with the second-order accuracy, has been validated with several benchmark applications.  

  The efficiency of IB-LBM can be easily improved by reducing the number of the 

Lagragian markers on particles. A new formula is proposed to determine the number of 

Lagrangian markers on particle surfaces. The new formula is designed to prevent overlapping 

force exerted on Eulerian grid points around particle surfaces. Less Lagrangian markers are 

needed with the new Lagrangian formula than that used in the previous literature to achieve a 

desired computational accuracy.  Second-order convergence rates of numerical solutions can be 

achieved by slightly retracting Lagrangian markers from the surface towards the interior of 

particles with a fraction of the Eulerian grid spacing.   

The immersed boundary-lattice Boltzmann method (IB-LBM) has been shown to predict 

correctly angular velocity of a particle.  Prior to examining the drag force exerted on a cluster of 

particles, the updated IB-LBM code containing the new formula for the number of Lagrangian 

markers has been further validated by solving several theoretical problems.  A set of simulations 

with low Reynolds numbers are executed to calculate the drag force on spheres in simple cubic 

arrays. The simulation results are found in good agreement with theoretical predictions.  

Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by 

a constant average pressure gradient toward a steady Stokes flow. The simulation results agree 

well with the theories for the short- and long-time behavior of the drag force. 

Flows through non-rotational and rotational spheres in simple cubic arrays and random 

arrays are simulated over the entire range of packing fractions, and both low and moderate 

particle Reynolds numbers to compare the simulated results with the literature results and 

develop a new drag force formula, a new lift force formula, and a new torque formula.  Random 

arrays of solid particles in fluids are generated with Monte Carlo procedure (Metropolis N. et al. 

(1953)) and Zinchenko's method (Zinchenko, A. Z. (1994)) to avoid crystallization of solid 

particles over high solid volume fractions.  Particle Reynolds number are kept very low to ensure 

flows of fluids around solid particles in the Stokes regime.  

The simulated drag force exerted on the non-rotational spheres shows excellent 

agreement with the existing theories.  Simulated drag forces of non-rotational particles as well as 

rotational particles are found to follow well the drag law proposed by Van Der Hoef et al. (2005) 
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except at the packing-limit solid volume fractions. A new drag force law is developed with 

extensive simulated results to be closely applicable to real processes over the entire range of 

packing fractions, and both low and moderate particle Reynolds numbers. The simulation results 

indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is 

basically unchanged as the angle of the rotating axis varies. 

A new lift force formula was developed with comprehensive simulated results as a 

function of arbitrary rotational Reynolds numbers over the entire range of packing fractions, and 

low and moderate particle Reynolds numbers. The lift force also is very insignificant at 

rotational Reynolds numbers below 1.  The lift force can be larger than the drag force as the 

rotational Reynolds numbers get higher especially at low solid volume fractions.  Lift force 

exerted on rotational solid spheres is proportional to rotational Reynolds numbers defined by the 

angular velocity perpendicular with the flow direction.     

  The torque exerted on spheres by a fluid phase was investigated as another important 

factor to fully understand and quantify particle-fluid interactions. The torque is also very 

essential to advance the angular momentum equation for solid particles in discrete particle 

simulations (DPM). The torque exerted on spheres in random arrays is determined over the solid 

volume fraction range of effective zero up to the close-packed limits, and both low and 

intermediate particle Reynolds numbers.  A formula for the torque exerted on spheres in random 

arrays was developed with simulation results over the solid volume fraction range of effective 

zero up to the close-packed limits and low to intermediate particle Reynolds numbers. The 

normalized torque keeps nearly constant with low rotational Reynolds numbers, whereas slight 

deviation is observed at high rotational Reynolds numbers. 

The most recent version of the MFiX code (version 2014-1) has been downloaded and 

installed on a personal computer.  The proposed formulas for drag forces, Magnus lift forces, and 

torques exerted on solid particles in random arrays are installed in the open source software 

Multiphase Flow with Interphase eXchanges (MFiX).  Both the discrete element model (DEM) 

and the interpolation suite in it need to be invoked to use the proposed formulas. The 

interpolation suite is used to calculate the drag force on each particle based on particle location 

rather than cell averages.  
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Simulations for a bubbling fluidized bed are performed, using the proposed new formulas 

through the MFiX.  The proposed new drag formula for the bubbling fluidized bed with lower 

superficial gas velocity gives similar results compared to the previous drag laws such as 

Gidaspow and BVK, whereas the proposed new drag formula for a bubbling bed with higher 

superficial gas velocity predicts better void fraction at one side of the bubbling bed than the other 

side, and the void fraction profiles produced by the present drag formula appears to be 

asymmetric. The better prediction of the void fractions at one side of the bed is very promising. 

More comprehensive numerical studies are needed to fully understand the performance of the 

proposed formulas.  
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INTRODUCTION 

Particulate flows are involved in a great number of engineering applications. The direct 

numerical simulation (DNS) method has been demonstrated to be a capable and popular 

approach in particulate flows.  The conventional DNS methods, such as the finite volume (FVM) 

and the finite element methods (FEM) are not very efficient in simulations of particulate flows 

with a large number of particles.  The main obstacle with these methods comes from the frequent 

need of generating new and geometrically adapted grids at very advancing step.  This is a very 

time-consuming task especially in three-dimensional flows. 

Ladd [1, 2] was believed to be the first one who successfully adopted the lattice 

Boltzmann method (LBM) for the DNS study of particulate flows.  In his study, a fixed Eulerian 

grid system is implemented to represent the flow field. The “bounce-back” rule [2] is applied to 

realize the no-slip condition on the solid-fluid interface.  Therefore, the need of generating new 

adapted grids at very time step is eliminated.  However, based on the “bounce-back” rule, the 

boundary of a particle is captured in a step-wise way, making the solid-fluid interface rough.  To 

overcome this problem, Peskin [3] developed the immersed boundary method (IBM). The basic 

idea of the IBM is to employ a fixed Cartesian grid for the discretization of the fluid phase and to 

resolve the solid-fluid interface by adding additional force terms to the governing equations. 

Feng & Michaelides [4] combined desired elements of the immersed boundary method, 

the direct forcing method [5], and the lattice Boltzmann method. They added a forcing term in 

the momentum equation to enforce the no-slip condition on the boundary of a moving particle. 

The method was demonstrated to generate a smooth boundary for particles and to be capable of 

achieving higher Reynolds number flows.  Uhlmann [6] also presented an improved method 

through the use of IBM in a traditional incompressible viscous flow solver. The main idea is to 

incorporate Peskin’s regularized delta function approach [7] into a direct formulation of the 

fluid-solid interaction force in order to allow for a smooth transfer between Eulerian and 

Lagrangian representations. This technique was implemented in a finite-difference and 

fractional-step context. 

Recently, Kempe & Frohlich [8] proposes several enhancements of IBM which 

considerably improve accuracy and extend the range of applicability.  An important step is a 
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simple low-cost iterative procedure for the Euler–Lagrange coupling yielding a substantially 

better imposition of boundary conditions at the interface, even for large time steps. The 

procedure they adopted is indeed the multi-forcing method addressed by Luo et al. [9].  

Furthermore, they designed an efficient integration step for the artificial flow field inside the 

particles, making the accessible ratios of particle density and fluid density down to 0.3 from 

around 1.0.    

Breugem [10] demonstrated that accuracy of the immersed boundary method could be 

increased to second order by adopting several new developed techniques. The method is based 

on the computationally efficient direct-forcing method adopted by Uhlmann [6].  Specifically, 

the original IBM was improved by a multi-direct forcing scheme, a slight retraction of the 

Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian 

grid spacing, and a new procedure to lower the accessible particle–fluid mass density ratios by a 

direct account of the inertia of the fluid contained within the particles. The numerical examples 

performed by Breugem [10] have shown that the retraction distance (rd) has a strong influence on 

the effective particle diameter and little influence on the error in the no-slip/no-penetration 

(ns/np) condition, while exactly the opposite holds for the number of iterations (Ns). The choice 

of rd=0.3 x  was found to yield second-order accuracy compared to first-order accuracy of the 

original method that corresponds to rd=0.  

Our original code only allows a particle to translation in a fluid phase with the first-order 

accuracy.  Our code was upgraded by incorporating the state-of-the-art improvements into our 

old code.  Two quality papers addressing the most recent improvements are published by Kempe 

& Frohlich [8] and Breugem [10] in 2012, where the IBM is proven to be second-order accuracy.   

We would like to mainly refer to the work of Breugem for the code update since the IBM, for the 

first time, was proven to be second-order accurate by Breugem [10].  In his study, the IBM is 

combined with a traditional incompressible solver.  This type of solver can be executed in a 

fractional-step context using high-order time advancing techniques, such as the Runge-Kutta 

scheme.  However, the fractional-step technique cannot be directly embedded in the framework 

of LBM.  We developed a novel approach to combine the IBM and LBM.  Our upgraded code is 

able to accommodate the translational and rotational movements of particles.  Besides, an over-

relaxation technique is adopted in the procedure of multi-direct forcing method to further 



 

 

7 

 

improve the accuracy of the combined IB-LBM.  The upgraded code is capable of achieving the 

second-order accuracy that was verified by solving several bench-mark problems. Moreover, a 

novel finding in this study is that the retraction allows the direct numerical method to reach a 

super-convergence of around fourth order over a proper range of the retraction distance.  

To examine the drag force exerted on clusters of particles, the efficiency of the present 

immersed boundary – lattice Boltzmann method (IB-LBM) became a concern since lots of 

particles are involved in the simulation.  The LBM has been updated and tested over decades, 

and its computational efficiency has been established.  However, new techniques for IBM still 

appear in recent years.  In this study, it is found the efficiency of IBM and thus the efficiency of 

IB-LBM can be easily improved by reducing the number of the Lagragian markers on particles. 

The number of the Lagragian markers on particles is determined by a new formula, which is 

designed to avoid overlapping the force on Eulerian grid points around particle surfaces.  

The IB-LBM code along with the new formula for the number of Lagrangian markers has 

been validated by solving several theoretical problems such as simple cubic lattice of fixed 

spheres, rotation of a sphere in linear shear flow, and a freely moving sphere in plane Poiseuille 

flow. Simulations under the Stokes flow regime are executed to calculate the drag force on 

spheres in simple cubic arrays. The simulation results are found in good agreement with 

theoretical predictions.  Moreover, the unsteadiness of the drag force is examined when a fluid is 

accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The 

simulation results agree well with the theories for the short- and long-time behavior of the drag 

force. Furthermore, the code has been upgraded even further to be capable of simulating 

simultaneously multiple particles. The parallelization of the code has also been done. The 

accuracy of the parallel code has been fully validated by comparing the results to those generated 

by the original serial code. 

Steady Stokes flows through non-rotational and rotational multiple spheres in ordered 

arrays are examined extensively to simulate drag force and lift force exerted on spheres at 

various solid volume fractions up to 0.6 and the rotational Reynolds numbers of 0.1, 1, 10, 50 

and 100, verify simulation results by comparing our simulation results with literature results, 

develop a formula for the drag force and a formula for the lift force, and examine simulation 

capabilities and efficiencies of the upgraded code.  The rotational Reynolds number described 
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with the angular velocity () and the diameter (D) of rotational spheres, and kinematic viscosity 

() of a fluid around spheres, defined as Rer = D2/, is used to characterize rotational 

movement of spheres.  Steady Stokes flows through non-rotational and rotational multiple (93 - 

186) spheres in various random arrays generated with Monte Carlo procedure (Metropolis N. et 

al. (1953)) [11] are examined to simulate drag force and lift force exerted on spheres.  

Richardson extrapolation method [12] is adopted to obtain the final simulation results for 

each simulation case, based on the results on the three finest meshes.  The simulation results on 

5-8 configurations at each solid volume fraction are usually averaged to obtain final simulation 

results. It is still desirable to simulate at least five configurations at each solid volume fraction to 

obtain accurate simulation results, though the computation of each configuration is time 

consuming. 

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration to develop the final proposed formulas.  The simulated grid resolutions are

64 64 64  ,80 80 80  , 108 108 108  , 144 144 144  , and 192 192 192  .  The numbers of 

the spheres simulated in the computational domain are all fixed to 144. The combination of 

Monte Carlo (MC) procedure and Zinchenko’s method (1994) [13] for the final proposed 

formulas is employed to generate random configurations of spheres. Zinchenko's method 

generates random sphere configurations as close as possible to the close-packed limit, which is 

around 0.637.  The radius of a sphere in a packed configuration is first decreased and then MC 

equilibration steps are applied to obtain small solid volume fractions. The configuration can be 

randomized without possible crystallization of small solid spheres by using this procedure. 

Steady Stokes flows through non-rotational and rotational multiple (144) spheres in 

random arrays generated with Zinchenko's method (Zinchenko, A. Z. (1994)) [13] are examined 

to simulate drag force and lift force exerted on spheres over the entire range of packing fractions 

and the rotational Reynolds numbers of 1, 10 and 100.  The particle Reynolds number is kept 

small to ensure the flow of a fluid under the Stokes regime in simulating drag forces and lift 

forces of non-rotational and rotational spheres in the fluid.   

The drag forces exerted on non-rotational spheres show an excellent agreement with the 

existing theory.  Drag force is barely affected by the rotational Reynolds number.  However, drag 

force also decreases as rotational Reynolds number increases at low solid volume fractions. The 
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drag force is basically unchanged as the angle of the rotating axis varies. The simulation results 

indicate that the lift force produced by the rotation movement is directly proportional to 

rotational Reynolds numbers defined by the angular velocity perpendicular with the flow 

direction. Lift forces are affected by the angle between the rotating axis of solid spheres in 

ordered arrays and the flow direction of fluids.  Lift force exerted on rotational spheres in the 

ordered array and random arrays is very insignificant at rotational Reynolds numbers below 0.1 

and 1, respectively.   Lift force exerted on rotational solid spheres in ordered and random arrays 

can be larger than the drag force at high rotational Reynolds numbers and especially low solid 

volume fractions.  

Drag force, Magnus lift force, and torque exerted on solid particles in both simple cubic 

arrays and random arrays are simulated for solid volume fractions up to the close-packed limits 

over the low to intermediate  particle Reynolds number range, using a second-order accurate 

immerse boundary - lattice Boltzman method (IB-LBM). The proposed final formulas for drag 

force, Magnus lift force, and torque exerted on solid particles in simple cubic arrays were 

developed, based on simulation results, and compared with literature formulas and simulation 

data.  

Simulated drag forces exerted on non-rotational solid spheres as well as rotational solid 

spheres are found to follow well the drag law proposed by Van Der Hoef et al (2005) [14] except 

at the packing-limit solid volume fractions.  A new drag formula is proposed to fit drag force of 

spheres in random arrays over the entire range of packing fraction.  The new drag force formula 

for sold particles in random arrays was developed with extensive simulated results to be closely 

applicable to real processes over the entire range of packing fractions and low and moderate 

particle Reynolds numbers.  

Lift forces are simulated at the rotational Reynolds numbers of 0.1, 1, 10, 50, 100, 200 

and 500, and various solid volume fractions and various particle Reynolds numbers.   A new lift 

force formula for solid particles in random arrays was developed with comprehensive simulated 

results as a function of arbitrary rotational Reynolds numbers over the entire range of packing 

fractions and low and moderate particle Reynolds numbers.   

The torque exerted on spheres by a fluid phase was investigated as another important 

factor to fully understand and quantify particle-fluid interactions in addition to the drag force and 
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the Magnus lift force exerted on solid spheres. The torque is also very essential to advance the 

angular momentum equation for solid particles in discrete particle simulations (DPM). The 

torque exerted on spheres in random arrays is determined over the solid volume fraction range of 

effective zero up to the close-packed limits and both low and intermediate particle Reynolds 

numbers. A formula for the torque exerted on solid particles in random arrays was developed 

with simulation data.  The normalized torque keeps nearly constant with low rotational Reynolds 

numbers, whereas slight deviation is observed at high rotational Reynolds numbers. 

The most recent version of the MFiX code (version 2014-1) has been downloaded and 

installed on a personal computer.  The proposed formulas for drag forces, Magnus lift forces, and 

torques exerted on solid particles in random arrays were installed in the open source software 

Multiphase Flow with Interphase eXchanges (MFiX).  Both the discrete element model (DEM) 

and the interpolation suite in it need to be invoked to use the proposed formulas. The 

interpolation suite is used to calculate the drag force on each particle based on particle location 

rather than cell averages.  

Simulations for a bubbling fluidized bed are performed with the proposed formulas 

through the MFIX. The proposed new drag formula for the bubbling fluidized bed with lower 

superficial gas velocity gives similar results compared to the previous drag laws, whereas the 

proposed new drag formula for a bubbling bed with higher superficial gas velocity predicts better 

void fraction at one side of the bubbling bed than the other side, and the void fraction profiles 

produced by the present drag formula appears to be asymmetric. The better prediction of the void 

fractions at one side of the bed is very promising. More comprehensive numerical studies are 

needed to fully understand the performance of the proposed formulas. 

EXPERIMENTAL METHODS 

Several computers and software were utilized to validate the proposed IB-LBM and 

develop a new drag force formula, a new Magnum lift formula, and a new torque formula with 

extensive simulation data.  The most recent version of the open source software Multiphase Flow 

with Interphase eXchanges (MFiX) code (version 2014-1) has been downloaded and installed on 

a personal computer.  Simulations for a bubbling fluidized bed were performed with the 

proposed formulas through the MFIX. 
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THEORY 

1. Governing equations 

The governing equations for the fluid-particle composite read: 

ߩ ൬
߲࢛
ݐ߲
	൅ ࢛࢛׏൰ ൌ ଶ࢛ െ ݌ െ ݌௘ ൅  (1a) ࢌ

߲
ݐ߲

൅ ሺ࢛ሻ ൌ 0	ሺor,࢛ ൌ 0ሻ,  ሺ1ܾሻ 

( , ) ( , ) ( ( , ))t t t d


 f x F s x X s s  ሺ1ܿሻ 

and  

( , ) ( ( , ))t t d
t

 
 

 
X

u x x X s x  
ሺ1݀ሻ 

Nomenclature is as usual, with ( , , )Tu v wu  designating the velocity vector in Cartesian 

components, i.e., along the Cartesian coordinates, x, y, z, while p  represents the fluid pressure, 

  the fluid density and   the fluid viscosity.  It is noted that ep is the contribution to the total 

pressure from a constant pressure gradient that is possibly imposed to drive a flow.  The particle 

surface force density and the fluid body force density are referred to as ( , )tF s  and ( , )tf x , 

respectively.  The boundary surface of a particle is denoted by  with the Lagrangian parametric 

coordinate s. The immersed domain of the particle is denoted by  , represented by the Eulerian 

coordinates x.  Any position on the particle surface can be written as ( , )tx X s .  The no-slip 

boundary condition is satisfied by enforcing the velocity at all boundaries to be equal to the 

velocity of the fluid at the same location: 

( , )
( ( , ), )

t
t t

t





X s

u X s  ሺ2ሻ 

To solve the fluid field with a body force density ( , )tf x  (if a constant pressure gradient ep  

exists, the term ep  can be simply included in ( , )tf x ), the fundamental LBM equation is 

modified by adding a term to the collision function and becomes as follows: 
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( )
,

1
( , 1) ( , ) eq

i i i i im t m t m m F

        i fx e x  

ሺ3ሻ 

where, ie is the lattice directions, t is the lattice simulation time, is the relaxation time, ( , )im tx  

is fluid particle distribution function in the ith direction, ( )eq
im is the equilibrium distribution 

function, and ,iF f  is the added force term, whose relation with ( , )tf x  can be found in (Luo et al. 

2007) [9].   Luo et al. (2007) [9] addressed the detailed procedure to incorporate the force density

( , )tf x  into the LBM. The LB equation with their procedure has been proven to give the 

accurate recovery of the incompressible Navier-Stokes equations.  Therefore, their procedure is 

adopted in this work to account for the solid-fluid forces. 

In this report, a three dimensional D3Q19 model is used.  For the details of this lattice 

model, the reader can refer to Ref. (Sui et al. 2008) [15].  

2. Direct forcing scheme 

To discuss the general concepts of the direct forcing scheme, we first write the time-

discretized Eq. (1a) in the following form: 

1
1

n n
n n nrhs

t





 


u u
f  

ሺ4ሻ 

where, 

ݏ݄ݎ ൌ 	ଶ࢛ െ ݌ െ ݌௘ െ ࢛ • ࢛ (5) 

Following the procedure proposed by Uhlmann (2005) [6], we evaluate the force term on any 

Lagrangian marker ( )i
lX  ( ( )i

lX denotes the location of the lth marker on the ith particle), by 

1
1

n n
pn n nRHS

t



 
 



U U
F  (6) 

In Eq. (6) and henceforth the upper-case letters for quantities are evaluated at the locations of the 

Lagrangian marker ( )i
lX .  The desired velocity pU  of the Lagrangian marker is given by the rigid-

body motion of the particle: 

( ) ( ) ( )( ) ( )i i i i i
p l c c l c   U X u X x  (7) 
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where i
cu , i

c , ( )i
cx  are the translational and rotational velocity and center coordinates of the ith 

particle, respectively. 

The terms on the right-hand side of Eq. (6) can be collected as  

෪௣	ࢁ
௡ାଵ ൌ ௡ࢁ	௣௡ାଵ ሺ8ሻ 

and 

෩௡ାଵࢁ ൌ ௡ࢁ௡ ൅  ሺ9ሻ ݐ௡ݏ݄ݎ

In Eq. (9), ࢁ෩௡ାଵ corresponds to a preliminary velocity obtained without applying a force term. 

Now, Eq. (6) has been reduced to 

௡ାଵࡲ ൌ
෪௣	ࢁ

	௡ାଵ െ	ࢁ	෪௡ାଵ

ݐ
. (10) 

Once 1nF  has been obtained, it can be spread to Eulerian nodes to get 1nf .  For the spreading 

procedure, we use the regularized Dirac delta function d  of Roma et al. (1999) [16], due to its 

compact support and computational efficiency.  The detailed spreading procedure of ( u, ࢁ෩	) and 

( 1nf , 1nF ) between Lagrangian and Eulerian locations can be found in Ref. (Uhlmann 2005) 

[6]. 

Feng & Michaelides (2005) [4] adopted the direct forcing scheme of Eq. (6) for their 

Proteus code.  They reported that usage of this scheme, along with the spreading technique, only 

gives the IB-LBM the first-order accuracy.  

3. Improvements on the state-of-the-art immersed boundary - lattice Boltzmann method    
(IB-LBM)             

3.1 Formulation to obtain flow information at fractional steps 

In the framework of LBM, the flow information such as fluid density  and fluid velocity 

vector u  cannot be obtained directly in the fractional time step.  However, in order to achieve 

higher accuracy of the overall IB-LBM, higher order time schemes with fractional steps, such as 

Runge-Kutta schemes, are required.  To overcome this problem, the flow field around a particle 

is advanced by 
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௡ା ൌ ௡ െ  •(u)t (11) 

and 

1( ) ( )n n n n nrhs t      u u f . (12) 

Note, Eqs. (11) and (12) can be readily derived from Eqs. (1a) and (1b).  These two equations are 

only implemented locally in cubic computational domains that circumscribe particles.  For 

convenience, the influenced cubes are placed with their edges parallel with the Eulerian grid 

lines.  The center of every cube collapses with that of the circumscribing particle.  The length of 

every cube is set to be eight lattice units wider than the particle diameter to make sure that some 

differentiating operations in Eqs. (11) and (12) can be executed with enough neighbor nodes. 

3.2 Relaxation technique for multi-direct forcing scheme 

It has been demonstrated that the use of a Dirac delta function for the interpolation and 

spreading operations results in a diffuse distribution of the IBM force around the interface of a 

particle [9, 10].  This brings errors to the desired particle velocity at the Lagrangian grid points.  

The basic idea of a multi-direct forcing scheme is to iteratively determine the IBM forces to the 

involved Eulerian grid points so that the no-slip condition is better satisfied on the particle 

surface.  A typical multi-direct forcing scheme reads (Luo et al. 2007 [9], Breugem 2012 [10]),  

dos=1, Ns 

෩௟ࢁ
௦ିଵ ൌ ∑ũ௦ିଵௗሺ࢞ െ ௟	ࢄ

	௡ାଵሻݔݕݖ (13a) 

௟ࡲ
௡ାଵ,௦ ൌ ௟ࡲ

௡ାଵ,௦ିଵ	+	
෩೛,೗ࢁ
೙శభି	ࢁ෩೗

೙శభ,ೞషభ

௧
 (13b) 

1, 1, 1( )n s n s n
l d l lV    f F x X , (13c) 

0 1,s n st    u u f  (13d) 

enddo 

where Ns is the total number of force iterations and 0u  is the velocity at the current time step.  In 

order to accelerate the convergence rate of IBM forces, we embed a relaxation technique in the 

multi-direct forcing scheme.  The relaxed multi-direct forcing scheme is basically the same as 

the original one, except that the Eq. (13d) is updated to  
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0 1, 1 1, 1, 1( ( ))s n s n s n st         u u f f f  (13e) 

where,   is the relaxation coefficient.  Generally, 1.4  or 1.5   gives appreciable 

convergence acceleration of IBM forces.  The values greater than 1.5 may make the simulation 

unstable.  As one can see, the modification for relaxed multi-direct forcing scheme is rather 

simple.  It does not incur any significant increase of computation time.  

The relaxation coefficient was not adopted in extensive simulations to obtain the drag 

force, Magnus lift force and the torque in ordered and random arrays of spheres (i.e., 1   is 

used through these simulatiosn), though the relaxation coefficient was developed, reported and 

has been found to be effective. The Runge-Kutta scheme applied to combine the IBM and the 

LBM is already sufficiently accurate for these computations. 

3.3 Combination of IBM and LBM using a Runge-Kutta scheme 

The Newton equations for particles are advanced using the classical four-stages, fourth-

order Runge-Kutta scheme.  In order to couple the particle movements with the flow field of a 

fluid phase resolved by LBM, Eqs. (11) and (12) are adopted to retrieve a flow information from 

the fluid phase.  Considering that a constant pressure gradient ep  also exists in the fluid phase, 

the advancement of the solution from the time step n to the time step n + 1 reads: 

ep f  (14a) 

doq=1,4 

qn n    (14b) 

1qn n     (14c) 

௡ത ൌ ௡ െ ሺ࢛ሻ௤ݐ (14d) 

1( ) ( )n n n n n
qrhs t     u u f  (14e) 

1 1( ) ( )n n n n n n n n
qrhs t rhs t rhs t           u u u f  (14f) 

෩௟ࢁ
	௡ାଵ ൌ ෥࢛௡ାଵௗሺ࢞ െ ௟ࢄ

௡ାଵሻݔݕݖ (14g) 

௟	ࡲ
௡തାଵ ൌ

෪௣,௟	ࢁ
	௡ഥାଵ െ		ࢁ෩	௟

	௡തାଵ	

ݐ
 (14h) 
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1 1 1( )n n n
l d l lV    f F x X  (14i) 

1,0 1n n nt    u u f  (14j) 

dos=1,Ns 

1, 1 1, 1 1( )n s n s n
l d l x y z        U u x X  (14k) 

௟	ࡲ
௡തାଵ,௦ ൌ ௟	ࡲ

௡തାଵ,௦ିଵ ൅
෩೛,೗ࢁ
೙ഥశభ	ି		ࢁ෩೗

	೙ഥశభ,ೞషభ

௧
, (14l) 

1, 1, 1( )n s n s n
l d l lV    f F x X  (14m) 

1, 1, 1 1, 1, 1( )n s n s n s n s       f f f f  (14n) 

1, 1,n s n n st   u u f  (14o) 

enddo 

1, sn N
q

 f f f  (14p) 

enddo 

( )
,

1
( , 1) ( , ) ( )eq

i i i i im t m t m m F

        i fx e x f  (14q) 

1n n   , 1n nu u , 1n np p   (14r) 

where 0 0  , 1 0  , 2 1/ 2  , 3 1/ 2  , 4 1  , 1 1 / 6  , 2 1/ 3  , 3 1/ 3  , and 4 1/ 6  .  

The governing equations for each solid particle are as follows, 

/c cd dt x u  (15a) 

/d dt p F  (15b) 

/d dt L T  (15c) 

/ / 2cd dt q q  (15d) 

where, p and L denote the linear momentum ( p cM u ) and the angular momentum ( p cI  ) of the 

particle, respectively, and F andT represent the force and the torque exerted on the particle.  In 

Eq. (15d), q  is a unit quaternion used to record the three-dimensional orientation of the particle 
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(for details, refer to Ref. (Diebel 2006) [17]), and ࣚ represents the angular velocity of the 

particle. It is remarked that there is no need to calculateq for spheres, since in this case, rotating 

the Lagrangian markers along with the rotation of the particle is not necessary.  We only need to 

impose appropriate velocities on these markers.  The detailed advancing procedure of each 

particle with the same Runge-Kutta scheme, following directly after Eq. (14p) in the do loop, is 

shown as follows, 

   1
1, / (1 )s

p p

n n
fn N

l l pV V
l p

V dV dV t M g


 



  

        
 

  F F u u  (16a) 

   1
1,1 /s

p p

n n
n Nn

l l l V V
l

V dV dV t 


  
         

 
  T r F r u r u  (16b) 

11 qn n      (16c) 

1
1

n n
c c q c t

  x x u  (16d) 

1
1

n n
q t
  p p F  (16e) 

1
1

n n
q t
  L L L  (16f) 

1 1 1
1 / 2n n n n

q c t  
  q q q  (16g) 

/n n
c pM u p  (16h) 

1n n
c p

 I L  (16i) 

෪௣,௟	ࢁ
ñ ൌ 	࢛	௖ñ ൅ ࣚ௖

ñ	ݔ	൫ࢄ௟
ñ െ ࢞௖ñ൯ (16j) 

where, pV , p , pM and pI are the particle’s volume, density, mass and rotational inertia, 

respectively.  It is remarked that f represents the constant formal density of the fluid phase.  We 

use it to get the buoyancy of the particle.  This is because  , the instantaneous density of the 

incompressible fluid phase, always keeps changing around f , even though very slightly.  This is 

determined by the intrinsic property of LBM, which solves a flow with very low compressibility 

flow to mimic the incompressible flow.  The use of f to obtain the buoyancy simplifies the 
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simulation and does not incur any appreciable accuracy loss since the solving flow is 

incompressible.  

In the advancement of the particle’s motion, the techniques such as the determination of 

the Lagrangian marker number, the direct account of fluid inertia within particle, and inward 

retraction of Lagrangian markers are adopted.  To make this report more concise, we do not brief 

them here.  The reader can refer to the Ref. (Breugem 2012) [10] for the details.  

Eqs.(14a-14r) and Eqs.(16a-16j) compose the complete procedure that advances the flow 

field from time step n to n+1, and also  upgrades simultaneously the motion of a particle from 

time step n+1 to n+2.  This is a fully explicit coupling of the LB equation and Newton-Euler 

equations.  It is expected that this coupling will result in increased accuracy of the overall IB-

LBM. 

4. A new formula for the number of Lagragian markers on a particle surface 

Breugem [10] examined the relation between the Eulerian grids and the Lagrangian 

markers (note, Lagrangian markers can also be referred as Lagrangian grid cells). In order to 

ensure the resolutions match each other, Breugem designed the following rules for the volume 

lV  of the Lagrangian markers: 

(a) lV  is as close as possible equal to 3x ; 

(b) the number LN  of Lagrangian markers over the surface of a sphere is an integer number; 

(c)  the radial thickness of the Lagrangian grid cells is equal to x . 

Following those rules, LN  and lV  are defined as 

3 3

3

( / 2) ( / 2)

3 / (4 )
d d

L

R r x R r x
N

x 
     

   
 (17) 

3 3( / 2) ( / 2)

3 / (4 )
d d

l
L

R r x R r x
V

N 
    

   (18) 
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where R and dr  are the radius of the particle and the retraction distance from the surface towards 

the interior of the particle, respectively. The square brackets in Eq. (17) denote the nearest 

integer value of the enclosed expression. It should be noted that the method of Leopardi [18] is 

employed to produce the “evenly” distribution of the Lagrangian markers on particle surfaces. 

The three rules proposed by Breugem [10] were examined closely. It’s hard to find some 

solid theories that support the first rule from the aspects of computational flow dynamics and 

numerical stability. Therefore, the first rule may be relaxed without affecting the simulation 

results. Generally, the resolution of particle motions strongly depends on the resolution of a flow 

field.  If the flow field is not well resolved on Eulerain grids, there is no way to predict the 

motion of the immersed body accurately. This actually indicates that the Eulerian grids need to 

be relatively finer than the Lagrangian markers distributed on surfaces of particles. This principle 

gives 3
lV x   .  It is noted that, ensuring 3

lV x    is very essential if a deformable surface is 

solved. The relative movement between Lagrangian markers on a deformable surface would 

result in 3
lV x   occasionally, that will introduce numerical errors into the quantities generated 

on the first or the second spatial derivatives of the distances between Lagrangian markers. The 

simulation will become unstable due to the numerical errors accumulated by the differentiation 

of very short distances between Lagrangian markers. Here, there’s no such numerical instability 

problem for the rigid particle. Still, the principle that a good prediction of the motion of an 

immersed body relies on the well resolved fluid flow should be applied. 

The other important aspect leading us to reduce the number of Lagrangian markers on the 

surface of a particle is that the forcing overlap on Eulerain grids should be avoided. The problem 

of the forcing overlap has been investigated by both Breugem [10] and Luo et al. [9]. They 

pointed out that the same Eulerian grid points are involved to force the velocity on different 

Lagrangian markers.  At these Eulerian grid points the forcing required for the desired particle 

velocity at one of the Lagrangian grid points is perturbed by the forcing needed for the other and 

vice versa. Due to this overlap in forcing, the distribution of the IBM force around the interface 

of the particle may not very well enforce the desired particle velocity on the Lagrangian markers.  

Luo et al. [9] first proposed a multidirect forcing scheme as a remedy for this problem.  
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The basic idea is to do the direct forcing scheme iteratively to reduce the errors of the 

desired velocities on Lagrangian markers. Actually this problem can be mitigated or even 

completely circumvented by a very simple way.  Evidently, the reason that causes the overlap in 

the forcing procedure is that the Lagrangian markers are too close to each other. Therefore, the 

direct solution for this forcing overlap is to increase the distances between the Lagrangian 

markers. This can be done easily by increasing the volume lV  of the Lagrangian markers. The 

volume of the Lagrangian markers cannot be arbitrarily large, since in that case, some Eulerian 

grid points in the neighborhood of the particle surface will never be used, which would be a 

waste of the computation efforts for the flow field.  In order to make best use of the flow 

information obtained by LB simulation on the Eulerain grid points, the volume of the Lagrangian 

markers should not be larger than the domain that covered by the forcing procedure. At this 

stage, the first rule proposed by Breugem [10] can be modified so that the ideal lV  allows the 

Lagrangian markers to fully use the Eulerian grid points around particle surfaces without any 

forcing overlap.  

Since the size of the domain covered by the forcing procedure is determined by the 

spreading function used in this procedure, the property of the spreading function should be 

examined carefully. For most recent IBM, the regularized Dirac delta function developed by 

Roma et al. [16] serves as the spreading function. It reads 

 
 

2

2

5 3 || || 3(1 || ||) 1 / 6, 0.5 || || 1.5

1 3 || || 1 / 3, || || 0.5

0, otherwise

r r r

r r

       

    




 (19) 

where r is the distance between Lagrangian markers and Eulerian grid points normarlized by 

Eulerian grid spacing x . A salient quality of this delta function is that it only has a width of 

three grid cells, which means the radius of influence of a Lagrangian marker is only1.5 x . Note, 

the function  vanishes when the radius of influence reaches1.5 x . Owing to this small radius 

of influence, this delta function gives a thinner porous shell around the actual particle surface 

than other delta functions.  
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To determine lV  for the Lagrangian markers, the distance between two adjacent 

Lagrangian markers needs to be examined. For simplicity, the distribution of Lagrangian markers 

on a flat surface is examined. This is equivalent to the case with the particle of very large radius. 

Figure 1(a) shows one special case of the closest displacement of two adjacent Lagrangian 

markers. It can be seen that the shortest distance to avoid the use of the same Eulerian grid points 

by two adjacent Lagrangian markers is 2 x . The coordinates of the markers a and b shown in 

the figure are (n-1.5, m) and (n+0.5, m), respectively. If the markers are moved even closer, for 

example, marker a is moved towards marker b, the Eulerian grid point (n,m) used in the forcing 

procedure for marker b will also be used for marker a. This means the forcing overlap occurs on 

the Eulerian grid point (n,m) and the disturbed forcing on (n,m) may not well enforce the desired 

particle velocity on the markers a and b.  

Figure 1(b) shows the possible longest distance (3.5 x ) to make the two adjacent 

Lagrangian markers fully use the Eulerian grid points between them. In this case, the Eulerian 

grid point (n ,m) is critically used by marker b.  If marker b is moved slightly away from marker 

a, the point (n ,m) will be left unused by either marker.  

Figure 1(c) shows the case with a distance of 3 x .  Note that, the distance 3 x  is 

determined inherently by the delta function shown in Eq. (19). This case is very desirable 

because it ensures that the two adjacent Lagrangian markers can fully use the Eulerian grid 

points between them without any overlap. This case leaves one Eulerian grid point critically 

unused only when both marker a and marker b are in the half way of Eulerian grid points, as 

shown in Figure 1(d).  
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(a) (b) 

 

  

(c) (d) 

Figure 1. The schematic diagrams for the distribution of Lagrangian markers on a plane surface. 
Solid symbols denotes the Eulerian grid points, while a and b denote two adjacent Lagrangian 
markers. (a) the shortest distance ( 2 x ) allowed to avoid the use of the same Eulerian grid 

points by two adjacent Lagrangian markers; (b) the longest distance (3.5 x ) allowed to make the 
two adjacent Lagrangian markers to fully use the Eulerian grid points between them. (c) the 
distance (3 x ) that ensures the two adjacent Lagrangian markers to fully use the Eulerian grid 
points between them; (d) a special case of (c), in this case, the Eulerian grid point (n,m) is 
critically not used by either marker a or marker b. 

The above analysis shows that the horizontal distance between two adjacent Lagrangian 

markers on a flat surface is larger than 2 x , and smaller than 3.5 x . The distance of 3 x  is the 

most desirable one since it ensures that the two adjacent Lagrangian markers fully use the 

Eulerian grid points between them without any overlap.  If the Lagrangian markers are applied to 

the horizontal direction and the vertical direction of the flat plane, the predicted area influenced 

by a Lagrangian marker can be simply 2(3 )x .  Now, extending the analysis on a sphere surface, 
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it is assumed that the volume occupied by a Lagrangian marker satisfy 2 3
lV x   , provided the 

thickness of the surface is x  (the third rule proposed by Breugem [10]).  This gives the new 

formula for determining the number of the Lagrangian marker number, as shown in Equation 20. 

3 3

2 3

( / 2) ( / 2)

3 / (4 )
d d

L

R r x R r x
N

x 
     

   
 (20) 

One can estimate that 2.0 3.5   based on previous analysis on a flat plane. The exact 

  would depend on the radius of the sphere and on the distribution of the Lagrangian markers on 

the sphere surface. Therefore, it is hard to give a theoretical prediction for . However, the value 

of   can be obtained through extensive computational tests. The  value of 2.824 works very 

well for all the tested applications according to our computational test.  The  value of 2.824 can 

reduce the error between the actual velocity and the desired velocity to around 1×10-9 in the test 

of Darcy problem, whereas, the previous 1   used by Breugem [10] can only reduce the error to 

around 1×10-3 .  The efficiency of the overall IB-LBM can also be improved significantly since 

the number of the Lagrangian marker is only 1/8 of that used in previous simulation. The 

detailed data of these tests will be given elsewhere since this report is focused on the validation 

of the code. 

This technique using less Lagrangian markers is another technique that is developed, 

reported but not adopted in the extensive simulations obtaining the drag force, Magnus lift force 

and the torque in both ordered and random arrays of spheres (still Eq.(17) is used). Certainly, this 

technique will benefit simulations in which very large spheres are involved, e.g., simulations for 

poly-dispersed suspensions in which spheres with greater size become extremely large when 

spheres with smaller size are sufficiently resolved. 

5.  Existing analytical equations and simulation data on drag forces exerted on solid 
spheres in simple cubic arrays over low particle Reynolds numbers at various solid volume 
fractions.  

 

From the fundamental periodic solution of the Stokes equations, Hasimoto [19] 

calculated the drag force exerted on spheres in dilute simple cubic, body-centred cubic and face-
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centred cubic arrays.  For simple cubic arrays, the non-dimensional drag force is given by 

Equation 21.  

1/3 2 8/3 1(1 )[1 1.7601 1.5593 ( )]F c c c c O c                                                          (21)  

Sangani and Acivos [20] modified Hasimoto’s method and calculated drag force in cubic arrays 

over the complete porosity range.  Their extended equation for simple cubic lattices is shown in 

Equation 22.  

1/3 2

8/3 10/3 11/3 1

(1 )[1 1.7601 1.5593

3.9799 3.0734 ( )]

F c c c c

c c O c 

    

  
                                                               (22)  

Zick & Homsy [21] calculated the drag force on the spheres in ordered arrays at solid volume 

fractions up to their respective close-packed limits.  It is believed that the error in their 

computations for close-packed arrays was less than 2%.  Therefore, their results are used as the 

benchmark for the comparison with those of our lattice-Boltzmann simulations at largest solid 

volume fractions. 

6.  Existing analytical formulas on the drag force exerted on solid spheres in random arrays 
for comparison with our simulated results with those from previous studies over low 
particle Reynolds numbers 
 

Existing analytical formulas on the drag force are selected to compare our simulated 

results with those from previous studies.  The Carman equation [22] described the drag force of 

spheres in terms of practical dense packing, as shown in Equation 23.   

2
10

(1 )D

c
F

c



 .                                                                                                     (23)  

Koch & Sangani (1999) [23] proposed the following expression for the drag force in the entire 

range of solid volume fractions: 
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                                        (24)   

Recently, the most accurate formula on the drag force is proposed by Van Der Hoef et al. (2005) 

[14] based on their extensive LBM simulations, as shown in Equation 25.   

2
2

10 (1 ) (1 1.5 )
(1 )D

c
F c c

c
   


                                                                         (25)   

7. Calculations of torque on spheres 

The torque �T exerted on a rotating sphere by a fluid is simulated. The torque �T is very 

desirable in practical numerical simulations such as computational fluid dynamics-discrete 

element method (CFD-DEM), because it is needed along with torques from other origins to 

advance the equations that govern the rotational motion of individual particles. Here, �T in stage 

q  of a time step can be calculated, as shown in Equation 26.  

� ,1 ( )s

p

q q Nq
l l l V

l

d
V dV

dt
        

  T r F r u ,                                           (26) 

where pV is the sphere volume, u  is the velocity vector of the flow, lV  is the volume for the l th 

Lagrangian marker, �
, sq N

lF is the force experienced by the l th Lagrangian marker, 
sN represents 

the total number of the force iterations in the multi-direct forcing method, r is the position vector 

relative to the sphere centroid. The final value of �T is obtained in the following expression, 

� �
1

i k

ik
k




 T T ,                                                                                              (27) 

where ik  denotes the coefficients of the Runge-Kutta scheme. Here, 4i   since the four stages 

of the fourth order Runge-Kutta scheme is used.  

The torque �T due to particle rotation for the near zero solid volume fraction at low 

Reynolds numbers has been analytically obtained by Kirchhoff (1876) [24] and Rubinow & 

Keller (1961) [25].  It reads 
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3
RK d T  .                                                                                           (28) 

where   is the angular velocity of the sphere, d  is the diameter of the sphere, and  is the 

dynamic viscosity of the fluid. It is appropriate to normalize the torque �T with the magnitude of 

RKT .  Hence, the normalized torque T can be calculated as 

� 3
TT d  T n T  ,                                                                                (29) 

where T  represents the magnitude of  the normalized torque T and Tn is the unit direction vector 

of T .  In low and intermediate particle Reynolds number flows, the simulations show that the 

direction of the torque T  is indistinguishable from the opposite direction of the angular velocity 

  even when the rotational Reynolds number reaches up to 2(10 )O .  Therefore, Tn can be simply 

defined by the following expression 

T n �    .                                                                                          (30) 

 
RESULTS AND DISCUSSIONS 

1. Validation of the proposed IB-LBM  

1.1 Simple cubic lattice of fixed spheres  

The accuracy of the present IB-IBM is demonstrated for both fixed and freely moving 

spheres. Here, only flows containing just one sphere are considered.  The extension to simulating 

flows with multiple spheres can be done easily without any significant difficulties.  The 

influence of the relaxation coefficients in the multi-direct forcing scheme and of the retraction 

distance (rd) on the numerical accuracy is discussed.  In all the following simulations, the total 

multi-direct forcing loop number is set to Ns=2 to give better no penetration/no slip (np/ns) 

condition without incurring too much computational efforts. 

1.1.1 Effects of retraction distances on convergence order rate 

To the best of our knowledge, this numerical problem has been tested, for the first time, 

by Breugem [10].  This problem describes a laminar flow going through a simple cubic lattice of 

fixed spheres.  Therefore, it suffices to simulate a single sphere positioned in the center of a fully 

periodic cubical flow domain. Since the sphere is held fixed in space, the Newton-Euler 
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equations do not need to be solved. The desired velocity at the position of the Lagrangian grid 

points is simply zero.  For the detailed description of this problem, refer to the Ref. [10]. 

The simulations with /D x  = 16, 24 and 36 are executed to get the convergence rate of 

the current IB-LBM, where D denotes the diameter of the simulated sphere.  The error 

percentage in Darcy number Da is calculated based on the computational results.  From Figure 2, 

we can see that the simulation with no retraction (rd=0.0) only gives a 1.17 order accuracy.  As 

the retraction distance increases, the convergence rate increases first, and then decreases 

dramatically after the distance goes beyond 0.35.  

 

Figure 2, Error percentages in Darcy number Da as function of the grid resolution at different 
retraction distances. The error is relative to the value of the Darcy number Dar obtained from 
Richardson extrapolation [12] using the data points of /D x  = 16, 24 and 36.  

It shows that, when rd is between 0.30 and 0.35, the numerical methods become more 

than second order accurate. Very surprisingly, rd=0.35 yields a convergence rate higher than 

fourth order.  It is remarked that, this super convergence will not persist if we refine our Eulerain 

grid further.  This is because the LBM only predicts the flow field with the second-order 

accuracy.  However, the super convergence can be very useful since it gives more accurate 
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results with the same Eulerain grids.  Breugem [10] has shown that the retraction distance 

rd=0.30 yields the second-order results.  This is confirmed by our simulation. 

1.1.2 Effects of relaxation coefficients on convergence order accuracy 

In order to evaluate the influence of the relaxation coefficient, the simulations with 

different relaxation coefficients are also performed.  Figure 3 shows that the convergence rate of 

the simulation increase slightly as the relaxation coefficient goes from 1.0 to 1.6.  This result 

indicates that a value greater than 1 of the relaxation coefficient does help accelerate the multi-

direct forcing procedure.  Our simulations also show that the value larger than 1.6 tends to bring 

in numerical instabilities to the simulation.  Therefore, for general use, 1.4   or 1.5   is 

readily recommended. 

 

Figure 3. Error percentages in Darcy number Da as function of the grid resolution at the same 
retraction distance (rd=0.3) with different relaxation coefficients in the multi-direct forcing 
scheme. The error is relative to the value of the Darcy number Dar obtained from Richardson 
extrapolation [12] using the data points of /D x  = 16, 24 and 36.  
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1.2 Rotation of a sphere in linear shear flow 

This numerical problem has been tested by Bagchi & Balachandar [26] and Kempe & 

Frohlich [8].   It presents the rotational motion of a spherical particle in a linear shear flow given 

by 

0( )u y U Sy   (31) 

The position of the particle is fixed. The particle is free to rotate around the fixed position of its 

center, experiencing only torque generated by the surrounding fluid.  There are two following 

essential dimensionless numbers controlling the flow.  
2

Res

SD

v
   (32) 

/ cG SD U  (33) 

Res and G are the Reynolds number and the shear parameter, respectively.  In the following 

simulations, the Reynolds number and the shear parameter are kept 4 and 0.2, respectively. 

The retraction distance is fixed to rd=0.3 in the simulations.   

Figure 4 shows that the second-order accuracy of resolving the rotational motion of 

particles is achieved with the present IB-LBM.  We can also see a slight decrease of the accuracy 

when the relaxation coefficient increases from 1.0 to 1.4.  However, the simulation with 1.4 
still outperforms that with 1.0  (no relaxation), in the sense that the former gives smaller error 

at the same grids.  

 

Figure 4. Error percentages in the angular velocity z of the particle as function of the grid 
resolution at the same retraction distance (rd=0.3) with different relaxation coefficients in the 
multi-direct forcing scheme. The error is relative to the value of the angular velocity z obtained 
from Richardson extrapolation [12] using the data points of /D x  = 6.4, 8 and 10.  
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1.3 Freely moving sphere in plane Poiseuille flow 

This problem, a freely moving sphere in an upward plane Poiseuille flow, has been tested 

by Uhlmann [27] and also by Breugem [10].  This problem serves the good purpose of 

demonstrating the accuracy of the present IB-LBM for freely moving particles.  To save space, 

the description of this problem is omitted here. For details, one can refer to Ref. [10] or [8]. 

The convergence rates of the simulations on different grids with two different relaxation 

coefficients are shown in Figure 5.  We can see that both relaxation coefficients give the 

numerical methods the third-order accuracy, demonstrating the success of the present 

combination of IB-LBM.  Here the influence of the relaxation coefficient is very marginal. 

 

Figure 5. Error percentages in the linear velocity cU  of the particle as function of the grid 
resolution at the same retraction distance (rd=0.3) with different relaxation coefficients in the 
multi-direct forcing scheme. The error is relative to the value of the linear velocity cU obtained 
from Richardson extrapolation [12] using the data points of /D x  = 12.8, 16, and 20. 

2.  Final Formulas 

2.1. Drag Force 

2.1.1 The drag force exerted on solid spheres in simple cubic arrays over low particle Reynolds 
numbers and arbitrary solid volume fractions up to the clos-packed limits (/6) 
 

Drag force exerted on solid particles in simple cubic arrays is simulated for solid volume 

fractions up to the close-packed limits in the low particle Reynolds number range, using a 
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second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formulas for 

drag force exerted on solid particles in simple cubic arrays were developed, based on the 

simulation results.  

The drag force of a solid particle in simple cubic arrays only needs to be calculated for a 

single direction at a constant pressure gradient.  Hasimoto (1959) [19] calculated the drag force 

on the spheres in dilute ordered arrays. The formula for the normalized drag force exerted on the 

spheres in simple cubic arrays was developed as a function of solid volume fractions c, as shown 

in Equation 21.  Sangani & Acrivos (1982) [28] extended Hasimoto’s results to a higher-order 

approximation, as shown in Equation 22. 

Almost at the same time, Zick & Homsy (1982) [21] calculated the drag force on spheres 

in simple cubic arrays at solid volume fractions up to the close-packed limit. The maximum error 

in their computations for around close-packed arrays was believed to be less than 2%, making 

their results the benchmark to which the numerical simulation results are often compared 

especially at high solid volume fractions (Hill et al. 2001) [29]. 

The simulations of the drag force exerted on solid particles are performed for each solid 

volume fraction at the grid resolutions L h of 32, 48, 72 and 108, where L denotes the dimension 

of the computational domain and h is the grid interval.  Simulated drag forces exerted on solid 

particles are determined by using the Richardson extrapolation method. The difference between 

the simulated drag force results generated at the grid resolutions L h  of 32, 48 and 72 and those 

at the grid resolutions L h  of 48, 72 and 108 is only around 0.1%. These simulated drag forces 

show that simulations on even finer meshes are not necessary. The simulated results generated 

from L h = 48, 72 and 108 are described in this section. The normalized drag force on the 

spheres in a simple cubic array is shown in Figure 6. Our simulation results are in excellent 

agreement with the theory of Zick & Homsy. The differences between our simulation results and 

those of Zick & Homsy are 0.7%, 0.5%, 0.8%, 0.5%, 1.3%, 1.1%, 1.3% and 1.6% at the solid 

volume fractions of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45 and 0.5, respectively. These simulation 

results indicate that the difference between our simulation results and those of Zick & Homsy 

[21] increases as the solid volume fraction increases. However, all the differences are below 2%, 

which is the maximum error percentage claimed in Zick & Homsy’s results. It is believed that 
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the present results are more accurate than Zick & Homsy’s at high solid volume fractions, where 

their analytical computations suffer from limited order approximations. The computational 

results from Hill et al. (2001) [29] also are shown in Figure 6. Their data scatter around the 

results of Zick & Homsy [21] due to the insufficient grid resolutions adopted in their simulations.  

Zick & Homsy (1982) [21] did not formulate an explicit formula as did Hasimoto (1959) 

[19] and Sangani & Acrivos (1982) [28], though they calculated the drag force for the entire 

range of the solid volume fraction.   

A simple formula for the drag force over the entire packing range and the low particle 

Reynolds number range is proposed with the present simulation data for high solid volume 

fractions and literature theoretical data for low solid volume fractions, as shown Equation 34. 

1/3 2 8/3 10/3 1

2 3

(1 )[1 1.7601 1.5593 3.9799 3.0734 ] 0.2

2.812 2.621 47.99 16.99 0.2 6
D

c c c c c c c
F

c c c c

        
     

      (34) 

where the part for 0.2c  is from Sangani & Acrivos’s theory and 6 0.524  represent the 

theoretical packing limit of simple cubic arrays of spheres. It can be seen that the proposed 

formula well reproduces the drag force in the entire packing range, as shown in Figure 6. The 

slight deviation of the proposed formula from the dashed line that interpolates the results from 

Zick and Homsy is visible for high solid volume fractions. This deviation, as mentioned 

above, comes from the limited order approximations adopted in their analytical calculations. 

Equation 34, described the drag force as a function of solid volume fractions, still be 

applicable to evaluating drag force exerted on rotational solid particles regardless of the values of 

rotational Reynolds numbers rRe and rotating axis directions  , since the drag force is not 

sensitive with these rotation-related parameters. 
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Figure 6. The normalized Stokes-flow drag force on non-rotational spheres in simple cubic 
arrays as a function of the solid volume fraction at low particle Reynolds numbers. The 
simulation result of Hill et al. (2001) [29] and the results from the theories of Hasimoto (1959) 
[19] and Sangani & Acrivos (1982) [28] are also shown. The dashed line interpolates the discrete 
results of Zick and Homsy (1982) [21]. The solid line represents the fomula proposed based on 
the present simulation data and literature theories. 
 
2.1.2. The drag force on non-rotational solid particles in random arrays over wide-range 
packing fractions and low particle Reynolds numbers.  

 
Drag forces exerted on solid particles in random arrays are smulated for solid volume 

fractions up to the close-packed limits over the low particle Reynolds number range, using a 

second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formulas for 

drag force exerted on non-rotational solid particles in random arrays were developed, based on 

the simulation results.  

The combination of Monte Carlo (MC) [11] procedure and Zinchenko’s method (1994) 

[13] is employed to generate random configurations of spheres. Zinchenko's method generates 

random sphere configurations as close as possible to the close-packed limit, which is around 

0.637.  The radius of a sphere in a packed configuration is first decreased and then MC 

equilibration steps are applied to obtain small solid volume fractions. The configuration can be 

randomized without possible crystallization of small solid spheres by using this procedure. 

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 
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144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144.  Richardson extrapolation method is adopted to obtain the final 

simulation results for each simulation case, based on the results on the three finest meshes.  The 

simulation results on 5-8 configurations at each solid volume fraction are usually averaged to 

obtain final simulation results.  It is still desirable to simulate at least five configurations at each 

solid volume fraction to obtain accurate simulation results, though the computation of each 

configuration is time consuming. 

The solid volume fractions (c) chosen for the simulation of the drag force of solid spheres 

are 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.615, 0.63, 0.6340 and 0.6345.  

Several existing formulas on drag force are chosen to compare our simulated results with 

literature studies. The Carman equation [22] describes the drag force for spheres in practical 

dense packing, as shown in Equation 23.  Koch & Sangani (1999) [23] proposed the following 

formula for the drag force in the entire range of solid volume fractions, as shown in Equation 24. 

Recently, Van Der Hoef et al. (2005) [14] has developed the most accurate formula for the drag 

force from their extensive LBM simulation data, as shown in Equation 25.  

The normalized Stokes-flow drag force DF  exerted on non-rotational spheres in random 

arrays at various solid volume fractions (c) is shown in Figure 7. The present simulation results 

are compared to several sets of numerical data from the literatures. Our simulation results agree 

well with the formula proposed by Van Der Hoef et al. (2005) [14].  The present simulation at 

the close-packing limit gives slight smaller drag compared to that predicted by Van Der Hoef et 

al.’s formula. The simulated drag forces for dense systems actually tend to get close to the 

experimental results reported by Ergun (1952) [33].  

A new drag formula is proposed to fit the present simulation results over low Reynolds 

numbers and full-range packing fractions, as shown in Equation 35. 
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                           (35) 

where 0.637 is the packing limit of the randomly packed bed of monodisperse spheres in 

experiments (Scott & Kilgour,1969)  [34]. In the range of 0.55c  , the present expression takes 



 

 

35 

 

a similar form of Van Der Hoef et al.’s equation. It is found that the maximum difference 

between Van Der Hoef et al.’s equation and the present data is less than 3%. The third line in 

Equation 35 indicates that FDRep=0 is equal to 2(5.87 / 0.637) (1 )c c for very large solid volume 

fraction c above 0.637. This line is added since the solid volume fraction may be beyond the 

packed limit for perfectly spherical particles in practical simulation. 

Figure 7 shows that the proposed drag law formula, shown in Equation 35, fits our 

simulation results very well. The drag force exerted on rotational particles still follows the drag 

force formula described in Equation 35, since the drag force is almost unaffected by the 

rotational motion of the spheres. 

 

 

Figure 7. The normalized Stokes-flow drag force DF  (multiplied by the porosity squared) on the 

non-rotational spheres in random arrays as a function of the solid volume fraction over low 
Reynolds numbers. The simulation results of Ladd (1990) [31], Hill et al. (2001a,b) [30, 32] and 
Van Der Hoef et al. (2005) [14] are represented by symbols. The formula proposed by Van Der 
Hoef et al. (2005) is represented by a dash dotted line. The results from the theories of Carmen 
[22] and Koch & Sangani (1999) [23] are also shown.  
  



 

 

36 

 

2.1.3 The drag force on solid particles in random arrays at arbitrary variables such as particle 
Reynolds numbers, rotational Reynolds numbers and packing fractions 
 

Drag forces exerted on solid particles in random arrays are simulated for solid volume 

fractions up to the close-packed limits over the particle Reynolds number range of low to 

intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-

LBM). The formula for drag force was developed, based on the simulation results.  

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 

144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144.  

Richardson extrapolation method is adopted to obtain the final simulation results for each 

simulation case, based on the results on the three finest meshes.  The simulation results on 5-8 

configurations at each solid volume fraction are usually averaged to obtain credible simulation 

results.  It is still desirable to simulate at least five configurations at each solid volume fraction to 

obtain accurate simulation results, though the computation of each configuration is time 

consuming. 

The drag force formula at arbitrary Reynolds numbers was developed with extensive 

simuation results, as shown in Equation 36.   

2 3 1 0.343

2 3 (1 4 )/20

(0.256 1.41 5.61 6.04 ) (1 ) 3 (1 ) 8.4
( , )

24(1 ) 1 10p

p p
D p D c cRe
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c c c Re c c c Re
F c Re F

c Re

 

 

       
   

   
(36) 

where 
0p

D Re
F


 is the drag force relation at low Reynolds numbers, as shown in Equation 35. 

The normalized drag force DF  is simulated over the particle Reynolds number range of 

effectively zero to approximately 100, as shown in Figure 8. The proposed drag formula agrees 

well with the present simulation results. The drag formulas proposed by Beetstra et al.(2007) 

[35] and Tenneti et al.(2011) [36] are compared  with the proposed drag formula, as shown in 

Figure 8.   

  



 

 

37 

 

 

 

                    (a) c=0.1                                                 (b) c=0.2                                               (c) c=0.3 

                    (d) c=0.4                                                 (e) c=0.5                                              (f) c=0.6 

Figure 8. The normalized drag force DF  over the particle Reynolds number range of effectively 

zero to approximately 100. The drag laws proposed by Beetstra et al. (2007) [35] and Tenneti et 
al. (2011) [36] are also shown for comparison.  
 

The drag forces from Beetstra et al.’s law (2007) [40] over-predict those from the 

proposed drag force formula, whereas the drag forces from Tenneti et al.’s law (2011) [36] 

under-predict those from the proposed drag force formula, as shown in Equation 36.    

Figure 9 shows the normalized drag force DF  on the spheres in random arrays as a 

function of the particle Reynolds number ReP at various solid volume fractions. The error bars 

represent the standard deviations in DF . The solid lines from bottom to top are computed for c

=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively, using Equation 36. 
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Figure 9. The normalized drag force DF  on the spheres in random arrays as a function of the 

particle Reynolds number ReP at various solid volume fractions. The error bars represent the 
standard deviations in DF . The solid lines from bottom to top are computed for c =0.1, 0.2, 0.3, 

0.4, 0.5 and 0.6, respectively, using Equation 36. 
 
2.2. Magnus Lift Force 
 
2.2.1 The Magnus lift force on rotational solid spheres in simple cubic arrays at low particle 
Reynolds numbers, arbitrary rotational Reynolds numbers, and arbitrary packing fractions up to 
the close-packed limits 
 

Magnus lift force exerted on solid particles in simple cubic arrays is simulated for solid 

volume fractions up to the packed limit over the low particle Reynolds number range, using a 

second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formula for 

Magnus lift force exerted on solid particles in simple cubic arrays was developed, based on the 

simulation results.  
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The Magnus lift force LF  on rotational solid spheres for various solid volume fractions c  

was developed solely at low rotational Reynolds numbers due to the linear dependence of the lift 

forces on the rotational Reynolds number rRe .  Figure 10(a) depicts the lift force LF  as a 

function of the solid volume fraction c  at rRe =0.1. Figure 10(b) depicts LF (1-c)2 (lift force 

multiplied by the porosity squared) as a function of the solid volume fraction c  at rRe =0.1. The 

data points are computed at 0.1rRe  , which provides accurate proportionalities for high rRe . 

Using the standard least-squares algorithm, a tentative fit of the data points up to third order 

approximation can be developed, as shown in Equation 37.  

2 3 2(1 ) ( 0.252 0.197 0.0827 0.0412)L rF c Re c c c      .                                      (37) 

Equation (37), developed solely based on the simulated data for the discrete solid volume 

fractions, has a good agreement with the theoretical result developed by Rubinow & Keller 

(1961) [25], as shown in Equation 38, as the solid volume fraction c is approaching zero, where 

the error is as small as 1.1%, as shown in Equation 38. 

1 24L rF Re  .                                                                                                        (38) 

This good agreement indeed demonstrates that the accuracy of the present numerical methods is 

excellent. Our simulation result is compared with the theoretical result of Rubinow & Keller in 

Figure 10. This is simply because no results of the Magnus lift force over low particle Reynolds 

numbers can be found at non-zero solid volume fractions in the literature and all previous 

empirical formulass (e.g., Oesterle & Dinh 1998; Loth 2008) [37] for the Magnus lift force were 

not develop over low particle Reynolds numbers.  

Equation 37 is modified in order to best fit the present simulation data with the theoretical 

result of Rubinow & Keller and also have the correct limiting behavior for 0c  , as shown in 

Equation 39. 

2 3 2(1 ) ( 0.287 0.228 0.0904 1 24)L rF c Re c c c      .                                         (39) 

This proposed formula naturally produces the correct results at the limit of vanishing c  and the 

largest deviation of this formula with the present numerical data is less than 1%. Thus, Equation 

50 can be used in the entire range of c  from zero up to the packed limit of simple cubic arrays, 

which is 6 0.524  .  
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For arbitrary rotating axis directions, arbitrary rotational Reynolds numbers, and arbitrary 

solid volume fractions over low particle Reynolds number range, the dependence of the Magnus 

lift force on the rotational Reynolds number can be well described as 

3 2 2( ; ; ) sin( )( 0.287 0.228 0.0904 1 24) (1 ) 6L r rF Re c Re c c c c c         .   (40) 

                                      (a)                                                                     (b) 
 
Figure 10. (a) The normalized Magnus lift force LF  on the rotational spheres in simple cubic 

arrays as a function of the solid volume fraction at 0.1rRe  ; (b) LF (1-c)2/Rer of the rotational 

spheres in simple cubic arrays as a function of the solid volume fraction. The solid line 
represents the best fit to the present data at 0.1rRe  . The theoretical result calculated by 

Rubinow & Keller (1961) [25] at zero solid volume fraction also is shown in Figure 10 (a) and 
(b). 
 
2.2.2. The lift force exerted on rotational spheres in random arrays at arbitrary variables such 
as rotational Reynolds numbers, particle Reynolds numbers, and packing fractions 
 

Magnus lift forces exerted on solid particles in random arrays are simulated for solid 

volume fractions up to the close-packed limits over the particle Reynolds number range of low to 

intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-

LBM). A new formula for lift force was developed, based on the simulation results.  
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A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 

144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144. 

Richardson extrapolation method is adopted to obtain the final results for each simulation 

case, based on the results on the three finest meshes.  The simulation results on 5-8 

configurations at each solid volume fraction are usually averaged to obtain credible simulation 

results. It is still desirable to simulate at least five configurations at each solid volume fraction to 

obtain accurate simulation results, though the computation of each configuration is time 

consuming. 

The lift force of rotational spheres with the solid volume fractions of 0.1, 0.3 and 0.6 is 

simulated over the rotational Reynolds number ranges of 0.1 - 500.  The lift force exerted on 

rotational spheres for each solid volume fraction is simulated at a rotational Reynolds number of 

0.1.  The lift force exerted on solid spheres is simulated at the particle Reynolds number range of 

effective zero to approximately 100 to explore inertia effects on the lift force.  

Figure 11 depicts the normalized lift force LF  exerted on the rotational spheres in random 

arrays as a function of particle Reynolds numbers at the rotational Reynolds number of 0.1.  

The lift force decreases progressively at a fixed rotational Reynolds number as the particle 

Reynolds number increases. The lift force at the lower solid volume fraction 0.1 tends to 

approach a steady value at the particle Reynolds number above 50, whereas the lift force at the 

larger solid volume fraction 0.6 decreases even at the particle Reynolds number above 100. 

 

                  a. c=0.1                                      b. c=0.3                                        c. c=0.6 

Figure 11. The normalized lift force LF  exerted on the rotational spheres in random arrays as a 

function of particle Reynolds numbers at the rotational Reynolds number of 0.1. 
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The lift forces were simulated at the solid volume fraction 0.3 and various particle 

Reynolds numbers over the rotational Reynolds number range of 0.1 - 500 to investigate the 

dependence of the lift force on the rotational Reynolds number, as shown in Figure 12. 

  

                               a. Rep=16.4                                                       b. Rep=38.2            

                              c. Rep=88.4                                                        d. Rep=115 

Figure 12. The normalized lift force LF  exerted on the rotational spheres in random arrays as a 

function of rotational Reynolds numbers at the solid volume fraction of 0.3 and various particle 
Reynolds numbers. 
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The lift force produced by the rotation movement is directly proportional to the rotational 

Reynolds number. The lift force is very insignificant at the rotational Reynolds number below 

than 1. However, the lift force can be larger than the drag force as the rotational Reynolds 

number becomes larger at especially low solid volume fractions.  

2.2.3 The Magnus lift force on solid spheres in random arrays at arbitrary variables such as 
particle Reynolds numbers, rotational Reynolds numbers and packing fractions 
 

Magnus lift forces exerted on solid particles in random arrays were simulated for solid 

volume fractions up to the close-packed limits over the particle Reynolds number range of low to 

intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-

LBM). The formulas for Magnus lift force was developed with the simulation results.. 

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 

144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144.  

Richardson extrapolation method is adopted to obtain the final simulation results for each 

simulation case, based on the results on the three finest meshes.  The simulation results on 5-8 

configurations at each solid volume fraction are usually averaged to obtain credible simulation 

results. It is still desirable to simulate at least five configurations at each solid volume fraction to 

obtain accurate simulation results, though the computation of each configuration is time 

consuming. 

Figure 13 depicts 2(1 )L rF c Re of solid spheres in random arrays as a function of the solid 

volume fraction c over low particle Reynolds numbers at 0.1rRe  . Also shown in Figure 13 are 

the error bars that represent the standard deviations of the data points. This figure shows that the 

dependence of 2(1 )L rF c Re on c  is approximately linear.  

The best fit to describe this dependence is proposed, as shown in Equation 41.  

2(1 ) 0.0398 0.0317 0.637L rF c Re c c     .                                                    (41) 

The standard least-squares algorithm is adopted to calculate the coefficient in the new formula 

from extensive simulation results. The maximum difference in the entire range of packing 

fractions between Equation 41 and the simulation data is only around 5%, providing a good 
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support of the observed linear dependence. It is noted that the Magnus lift force exerted on solid 

particles in random arrays is relatively smaller than that in simple cubic arrays at all solid volume 

fractions. This is because the random positioning allows some of spheres to stay closer to each 

other, and making spheres hidden behind others experiences smaller flow velocity and 

consequently produce less Magnus lift force.   

 

Figure 13. The normalized Magnus lift force LF  (multiplied by the porosity squared over the 

rotational Reynolds number) on the rotational spheres in random arrays as a function of the solid 
volume fraction over low particle Reynolds numbers. The error bars represent the standard 
deviations LF  in LF . The simulation data of LF  come from the simulations at 0.1rRe  . A line 

is shown to fit the simulation results in the entire range of packing fractions.  
 

A formula for the Magnus normalized lift force was proposed with extensive simulation 

results, as shown in Equation 42.  

0.9
00.02 ( | 0.02 )exp(( 0.106 0.132 ) )

pL r L Re r pF Re F Re c Re     ,                (42) 

where rRe is the rotational Reynolds number and 0|
pL ReF   is the Magnus lift force at low particle 

Reynolds numbers, as shown in Equation 41. 
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Figure 14 compares the proposed formula with the simulation results, where the lift force 

values from the proposed formula are fairly agreeable with those from simulated results. The 

normalized Magnus lift force FL at each solid volume fraction in Figure 14 approaches a constant 

value of 0.02 as the particle Reynolds number increases. 

 

Figure 14. The normalized Magnus lift force LF  on the rotational spheres in random arrays as a 

function of the particle Reynolds number at 0.1rRe  . The error bars represent the standard 

deviations in LF . The solid lines for c =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are generated from Equation 

42. 
 

The above normalized Magnus lift force formulas as shown in Equations 41 and 42 were 

proposed when the rotating axis direction of particles is perpendicular with the flow direction. 

For arbitrary rotating axis directions, our simulation results show that the dependence of the 

Magnus force on the rotational Reynolds number can be well described by simply changing the 

rRe  to sin( )rRe  , where   is the angle between the rotating axis direction and the flow 

direction, as shown in Equations 43 and 44.  It needs to be mentioned that, the change of   does 

not significantly affect the expressions for the normalized torque and drag force. 

 
2( ; ; ) sin( )( 0.0398 0.0317) (1 ) 0.637L r rF Re c Re c c c      .                          (43) 
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Therefore, for arbitrary particle Reynolds number and packing fractions, the dependence of the 

lift force on the rotational Reynolds number can be well described as 

;௅ሺܴ݁௥ܨ ;ߠ ܿሻ ൌ sinሺߠሻ ሾ	0.02ܴ݁௥ ൅ ቀܨ௅ ோ௘೛ୀ଴ െ 0.02ܴ݁௥ቁ exp ቀሺെ0.106 ൅ 0.132ܿሻܴ݁௣଴.ଽቁሿ     (44) 

2.3. The ratio of the Magnus lift force to the drag force 

The ratio of LF  to DF  is calculated in the entire range of solid volume fractions c  based 

on the simulation results as well as the proposed formulas to clearly identify the importance of 

the Magnus lift force LF  relative to the drag force DF  on spheres in random arrays,.  

The values of LF at 2    only are used for simplicity. The ratios of LF  to DF  of solid 

partices in random arrays at low particle Reynolds numbers are shown in Figure 15. The line in 

Figure 15 is calculated from dividing the lift force formula (see Equation 41) by the drag force 

formula (see Equation 35). The ratio of LF  to DF  first decreases steeply in the range of c<0.1, 

and then gradually, as c  further increases. Most of the simulation results agree well with the 

solid line data calculated from proposed formulas except those at 50rRe  for low solid volume 

fractions, which is due to the nonlinearity of the flow at 50rRe  .  Figure 15 demonstrates that 

the lift force can be very significant and even greater than the drag force when rRe  is up to

2(10 )O , which is still in the practical range.  Close observation reveals that the lift-to-drag ratio 

will be over unity in the solid volume fraction range of c < approximately 0.17 at the rotational 

Reynolds number rRe  of 100.  

 

Figure 15. The ratio of the normalized Magnus lift force LF  to the normalized drag force DF  on 

the rotational spheres in random arrays over low particle Reynolds numbers as a function of the 
solid volume fraction. The solid lines are calculated from the proposed relations for LF  and DF . 
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The lift force can be safely ignored in the high solid volume fraction range of 0.3c  and 

the rotational Reynolds number range of rRe < 10, where the lift-to-drag ratio is generally less 

than 0.07.  However, the lift force of rotating spheres is significant at high rotation rates. For 

instance, the lift-drag-ratios for 0.3c  and 0.5 at the rotational Reynolds number 100rRe  are 

around 0.58 and 0.23 respectively.  
Figure 16 shows the lift-to-drag ratios at various solid volume fractions in the particle 

Reynolds (ReP) number range of low to intermediate. The lines in Figure 16 are calculated from 
dividing the lift force formula (see Equation 42) by the drag force formula (see Equation 36). 
Ratios of the lift force to the drag force decrease with increased particle Reynolds numbers.  
However, the lift force still can be very significant when the rotational Reynolds number is 

around 2(10 )O . The lift-to-drag ratios with the rotational Reynolds number rRe =100 and the 

particle Reynolds number pRe = 10 are 0.85 at c=0.1 and 0.11 at c=0.6, while the lift-to-drag 

ratios with the particle Reynolds number pRe = 100 and the particle Reynolds number pRe = 100 

are 0.26 at c=0.1 and 0.03 at c=0.6. 
Overall, it is believed that the Magnus lift force appearing in a direction perpendicular to 

the drag force with a non-negligible magnitude may appreciably affect and complicate the 
particle fluid dynamics in practical flow systems. Thus, the inclusion of the Magnus lift force in 
flow simulations is practically important.  

 
Figure 16. The ratio of the normalized Magnus lift force LF  to the normalized drag force DF  on 

the rotational spheres in random arrays as a function of the solid volume fraction in the particle 
Reynolds number (ReP) range of low to intermediate. The solid lines are calculated with the 
proposed formulas for LF  (Equation 42) and DF  (Equation 36).  
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2.4. Torque 
 
2.4.1 The normalized torque on solid spheres in simple cubic arrays over low particle Reynolds 
numbers. 
 

Torque exerted on solid particles in simple cubic arrays was simulated for solid volume 

fractions up to the close-packed limits over the particle Reynolds number range of low to 

intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-

LBM). The formula for torque force was developed, based on the simulation results.  

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 

144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144.  

Richardson extrapolation method is adopted to obtain the final simulation results for each 

simulation case, based on the results on the three finest meshes.  The simulation results on 5-8 

configurations at each solid volume fraction are usually averaged to obtain credible simulation 

results. It is still desirable to simulate at least five configurations at each solid volume fraction to 

obtain accurate simulation results, though the computation of each configuration is time 

consuming. 

The simulation results of the normalized torque exerted on spheres in simple cubic arrays 

are shown in Figure 17.  The simulated torque value extrapolated to the zero solid volume 

fraction agrees with that predicted by Rubinow & Keller’s theory [25]. This observation further 

validates the present numerical method.  A formula for the normalized torque acting on the 

sphere in simple cubic arrays is proposed based on the present simulation results, as shown in 

Equation 45. 

4 3 2 1( 14.09 10.26 2.916 0.7480 1)T c c c c       .                                     (45) 

This formula naturally produces correct torque values at the limit of vanishing c.  The torque 

formulas of Rubinow & Keller (1961) [25] and Kirchhoff (1876) [24] predict that the torque 

value T is 1 at the zero solid volume fraction. The largest deviation of this formula with the 

present numerical simulation results is less than 1%. Though this formula is developed based on 
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the simulation torque data at the rotational Reynolds number 0.1rRe  , it is valid for rRe up to 

2(10 )O due to the simple linear dependence of the torque on the rotational Reynolds number. 

 

Figure 17. The normalized torque T  exerted on the rotational spheres in simple cubic arrays as a 
function of the solid volume fraction c. The solid line represents the formula (Eq. (45)) to the 
present simulation results at 0.1rRe  . Also shown is the theoretical result calculated by 

Rubinow & Keller (1961) [25] at zero solid volume fraction. 
 
2.4.2 The normalized torque exerted on rotational spheres in random arrays over low and 
intermediate particle Reynolds numbers 
 

Torque exerted on solid particles in random arrays was simulated for solid volume 

fractions up to the close-packed limits of random arrays in the particle Reynolds number range of 

low to intermediate, using a second-order accurate immerse boundary - lattice Boltzman method 

(IB-LBM). The formula for torque was developed, based on the simulation results.  

A series of simulations (at least three) with increasing sphere diameters are conducted for 

each configuration.  The simulated grid resolutions are 64 64 64  , 80 80 80  , 108 108 108  , 

144 144 144  , and 192 192 192  .  The numbers of the spheres simulated in the computational 

domain are all fixed to 144.  

Richardson extrapolation method is adopted to obtain the final simulation results for each 

simulation case, based on the simulation results on the three finest meshes.  The simulation 

results on 5-8 configurations at each solid volume fraction are usually averaged to obtain 
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credible simulation results. It is still desirable to simulate at least five configurations at each solid 

volume fraction to obtain accurate results, though the computation of each configuration is time 

consuming. 

The normalized torque T  on the rotational spheres in random arrays as a function of the 

solid volume fraction over low particle Reynolds numbers is depicted in Figure 18. The 

simulation results of T  shown in Figure 18 also come from the simulations at 0.1rRe  .  It is 

remarked that the normalized torque T keeps nearly constant with increasing rRe  up to 2(10 )O

and only slight deviation is observed at large rRe . Therefore, the simulation results of T at a 

small rRe such as 0.1rRe   are good enough to represent those of T  at rRe up to 2(10 )O for each 

solid volume fraction.  The following formula of normalized torque T over low particle Reynolds 

numbers is proposed to best fit simulation results for the entire packing fractions 

4 3 2 1( 13.19 14.41 4.291 0.9747 0.9465)T c c c c                                     (46) 

The largest deviation of this fit from the present numerical simulation results is less than 1% for 

0.5c   and around 5% for 0.5c  . The larger deviation at high c apparently is related to the 

sharp increase of T in that range (see Figure 18), which essentially is caused by the dramatically 

shrinking space among spheres as c approaches the packing limit.  

 

Figure 18. The normalized torque T  on the rotational spheres in random arrays as a function of 
the solid volume fraction over the low particle Reynolds number range at 0.1rRe  . The error 

bars represent the standard deviations in T . The solid line (Eq. 46) is shown to fit the simulation 
results in the entire range of packing fractions.   
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For intermediate particle Reynolds numbers, the normalized torque T on the rotational 

spheres in random arrays as a function of the particle Reynolds number are shown in Figure 19. 

The following expression is proposed to fit the torque results simulated at various solid volume 

fractions and particle Reynolds numbers, 

0.9
0( ) ( | ( ))exp( ( ) )

pRe pT g c T g c f c Re   ,                                                   (47) 

where 

( ) exp(3.01 0.137)g c c  ,                                                                           (48) 

2( ) 0.0462 0.174 0.184f c c c    ,                                                             (49) 

 and 0|
pReT  represents the torque at low particle Reynolds numbers, which is from           

Equation 46.  The agreement between Equation 58 and the simulation results is fairly good, as 

shown in Figure 19. 

 

Figure 19. The normalized torque T  on the rotational spheres in random arrays is shown as a 
function of particle Reynolds numbers. The error bars represent the standard deviations in T . 
The solid lines for c =0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are generated from Equation 47. 
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3. Installation of the proposed formulas in MFiX 

Three new subroutines must be created to install the proposed formulas for the drag 

force, Magnus lift force, and the torque in the open source software MFiX. The three new 

subroutines in the file drag_gs.f are added to the framework of the original MFiX. The details of 

the three subroutines are listed, as shown in the Appendix. 

4. Bubbling bed simulated with proposed formulas through MFiX 

This numerical example has been tested by many researchers, such as Muller et al. (2009) 

[38] and Li et al. (2012) [39]. The parameter used can be found in detail in Li et al. (2012), thus, 

is omitted here. 

Figure 20 depicts the lateral void fraction ( 1 c   ) at 31.4 mm above the distributor and 

the superficial gas velocity of 0.6 m/s.  Li et al. [44] also used the MFIX but with 

DES_INTERP_ON turned off. It can be seen that, after turning DES_INTERP_ON on, the 

present results and Gidaspow drag law (Gidaspow, 1994) [40] gives better prediction at the two 

sides of the bed but worse prediction at the middle particle of the bed. It can also be seen that, the 

present drag law gives similar results to those from Gidaspow drag law.  

 

Figure 20. Lateral void fraction ( 1 c   ) profiles at 31.4 mm above the distributor and the 
superficial gas velocity of 0.6 m/s. x: vertical distance from the wall of the boiling bed. 
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The BVK (Beetstra et al. 2007) [35] drag law is also tested. It also produces similar 

results compared to Gidaspow drag law and the present drag law. The Magnus lift law and the 

torque law are also simulated with the present drag law. However, no visible difference is 

produced compared to the case without invoking the Magnus lift law and the torque law. It might 

be because the current collision model cannot produce high spinning rates for particles and hence 

the lift force is very insignificant compared to the drag force. 

Figure 21 depicts the lateral void fraction ( 1 c   ) at 31.4 mm above the distributor and 

the superficial gas velocity of 0.9 m/s.  The present drag law predicts best the void fraction at one 

side of the bubbling bed, and underestimates void fractions in the middle of the bed in 

comparison with the experimental data (Muller et al. 2009) [38].  However, the void fraction 

profiles produced by the present drag law appear to be asymmetric. Nevertheless, the better 

prediction of void fractions at one side of the bed is very promising. Comprehensive numerical 

studies are needed to fully understand the performance of the proposed formulas.  

 

Figure 21. Lateral void fraction ( 1 c   ) profiles at 31.4 mm above the distributor and the 
superficial gas velocity of 0.9 m/s.  x: vertical distance from the wall of the boiling bed. 
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CONCLUSIONS 

The multi-direct forcing method is adopted in the improved IBM to better approximate 

the no-slip/no-penetration (ns/np) condition on the surface of particles, and a slight retraction of 

the Lagrangian grid from the surface towards the interior of particles with a fraction of the 

Eulerian grid spacing helps increase the convergence rate of the direct numerical method.  The 

method is further improved by an over-relaxation technique in the procedure of multi-direct 

forcing method and an implementation of the classical fourth order Runge-Kutta scheme in the 

coupled fluid-particle interaction.  The over-relaxation technique is demonstrated to yield higher 

orders of convergence when the retraction distance is fixed.   

An over-relaxation technique in the procedure of multi-direct forcing method and the 

classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied 

to upgrade our old code by improving the accuracy of the combined IB-LBM.  The use of the 

classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order 

accuracy and provides more accurate predictions of the translational and rotational motion of 

particles.  The old code with the first-order convergence rate is updated so that the updated new 

code can resolve the translational and rotational motion of particles with the second-order 

convergence rate. The updated code has been validated with several benchmark applications. 

The new IB-LBM code has been further improved by the adoption of a new formula for 

the number of Lagrangian markers. Less Lagrangian markers are needed with the new formula 

than those used in the previous literature to achieve a desired computational accuracy. The 

simulation results with less Lagrangian markers in this study are in good agreement with 

literature results with more Lagrangian markers.  Second-order convergence rate of numerical 

solutions can be achieved by slightly retracting Lagrangian markers from the surface towards the 

interior of particles with a fraction of the Eulerian grid spacing.  In order to accomplish the major 

task of examining the drag force exerted on a cluster of particles, the IB-LBM code along with 

the new formula for the number of Lagrangian markers has been further validated by solving a 

set of theoretical problems. 

The code has been upgraded even further to be capable of simulating simultaneously 

multiple particles.  Besides that, the parallelization of the overall IB-LBM, which is very crucial 
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to speed up the further simulations, has also been done. The accuracy of the parallel code has 

been fully validated by comparing the results to those generated by the original serial code.   

Flows through non-rotational and rotational spheres in simple cubic arrays and random 

arrays are simulated over the entire range of packing fractions, and both low and moderate 

particle Reynolds numbers to compare the simulated results with the literature results and 

develop a new drag force formula, a new lift force formula, and a new torque formula.  Random 

arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's 

method to avoid crystallization of solid particles with high solid volume fractions.  Particle 

Reynolds number are kept very low to ensure flows of fluids around solid particles in the Stokes 

regime.  

The simulated drag force exerted on the non-rotational spheres shows excellent 

agreement with the existing theories.  Simulated drag forces of non-rotational particles as well as 

rotational particles are found to follow well the drag law proposed by Van Der Hoef et al except 

at the packing-limit solid volume fractions.  A new drag force law is developed with extensive 

simulated results to be closely applicable to real processes over the entire range of packing 

fractions and both low and moderate particle Reynolds numbers. The simulation results indicate 

that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically 

unchanged as the angle of the rotating axis varies. 

A new lift force formula was developed with comprehensive simulated results as a 

function of arbitrary rotational Reynolds numbers over the entire range of packing fractions, and 

low and moderate particle Reynolds numbers.  The lift force exerted on the rotational spheres is 

directly proportional to the rotational Reynolds number. The lift force also is very insignificant at 

rotational Reynolds numbers below 1.  The lift force can be larger than the drag force as the 

rotational Reynolds numbers get higher especially at low solid volume fractions.  In previous 

simulations, effects of the particle rotation on lift forces are not considered significant and thus 

the lift force is totally ignored in their drag law.  This study demonstrated that the lift force 

caused by the particle rotation can be very significant compared to the drag force and must be 

considered in further study on two-fluid simulations. 

 The torque exerted on spheres by a fluid phase was investigated as another important 

factor to fully understand and quantify particle-fluid interactions in addition to the drag force and 
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the Magnus lift force exerted on solid spheres. The torque is also very essential to advance the 

angular momentum equation for solid particles in discrete particle simulations (DPM).  A 

formula for the torque exerted on spheres in random arrays was developed with simulation 

results over the solid volume fraction range of effective zero up to the close-packed limits and 

low to intermediate particle Reynolds numbers. The normalized torque keeps nearly constant 

with low rotational Reynolds numbers, whereas slight deviation is observed at high rotational 

Reynolds numbers. 

 Simulations for a bubbling fluidized bed were performed, using the proposed new 

formulas through the MFiX. The proposed new drag formula for the bubbling fluidized bed with 

lower superficial gas velocity gives similar results compared to the previous drag laws such as 

Gidaspow and BVK, whereas the proposed new drag formula for a bubbling bed with higher 

superficial gas velocity predicts better void fraction at one side of the bubbling bed than the other 

side, and the void fraction profiles produced by the present drag formula appears to be 

asymmetric. The better prediction of the void fractions at one side of the bed is very promising. 

More comprehensive numerical studies are needed to fully understand the performance of the 

proposed formulas.  
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PUBLICATION 

We plan to publish the proposed new formulas in a timely manner. These new formulas 

can be accessed and tested by the public. Readers of this report are also encouraged to explore 

the features with freedom. All the new files for the installation of the three laws into MFiX will 

be provided upon the request.  
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APPENDIX 
 
Three new subroutines were created to install the proposed formulas for the drag force, Magnus 

lift force, and the torque in the open source software MFiX. The three new subroutines in the file 

drag_gs.f  were added to the framework of the original MFiX. The details of the three 

subroutines are listed  
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!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

!                                                                      C 

!  Subroutine: DRAG_NEW                                                C 

!  Purpose: Calculate the gas-solids drag coefficient                  C 

!                                                                      C 

!                                                                      C 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

 

      SUBROUTINE DRAG_NEW(lDgA,EPg,Mug,ROPg,VREL,& 

                 DPM,DPA,PHIS) 

 

!----------------------------------------------- 

! Modules 

!----------------------------------------------- 

      USE param  

      USE param1 

      USE constant, only : PI 

      IMPLICIT NONE 

!----------------------------------------------- 

! Dummy arguments 

!----------------------------------------------- 

! drag coefficient 

      DOUBLE PRECISION, INTENT(OUT) :: lDgA 

! gas volume fraction  

      DOUBLE PRECISION, INTENT(IN) :: EPg 

! gas laminar viscosity  

      DOUBLE PRECISION, INTENT(IN) :: Mug 

! gas density*EP_g 

      DOUBLE PRECISION, INTENT(IN) :: ROPg       

! magnitude of gas-solids relative velocity  

      DOUBLE PRECISION, INTENT(IN) :: VREL 

! particle diameter of solids phase M or 

      DOUBLE PRECISION, INTENT(IN) :: DPM 

! average particle diameter  

      DOUBLE PRECISION, INTENT(IN) :: DPA 

! total solids volume fraction of solids phases  

      DOUBLE PRECISION, INTENT(IN) :: PHIS       

!----------------------------------------------- 

! Local variables 

!----------------------------------------------- 

! Reynolds number  

      DOUBLE PRECISION :: RE 

! Stokes Drag Force 

      DOUBLE PRECISION :: F_STOKES 

! dimensionless drag force F 

      DOUBLE PRECISION :: F       

!----------------------------------------------- 

 

      IF(Mug > ZERO) THEN 

! Note the presence of gas volume fraction in ROPG 

         RE = DPA*VREL*ROPg/Mug        ! use DPA 

      ELSE 
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         RE = LARGE_NUMBER  

      ENDIF       

 

      F_STOKES = 18D0*Mug*EPg/DPM**2   ! use DPM 

 

      IF(phis <= 0.55D0) THEN 

        F = 9.9d0*phis/EPg**2 + EPg**3*(ONE+3d0*(phis)**0.6d0) 

      ELSEIF(phis <= 0.637D0)THEN 

        F = 5.87d0*sin((phis/0.637d0)**1.75d0*PI/2.d0)/EPg**2 

      ELSE 

        F = 5.87d0/EPg**2 

      ENDIF 

     

      F = F + (0.256d0+1.41d0*phis-5.61d0*phis**2+6.04d0*phis**3)*RE/(24.d0*EPg**2) * & 

             (ONE/EPg + 3d0*EPg*phis + 8.4d0/RE**0.343d0) / & 

             (ONE+10.d0**(3d0*phis)/RE**(0.5d0+2.d0*phis)) 

 

      lDgA = F*F_STOKES 

      IF (RE == ZERO) lDgA = ZERO       

    

      RETURN 

      END SUBROUTINE DRAG_NEW 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

!                                                                      C 

!  Subroutine: MLIFT_NEW                                               C 

!  Purpose: Calculate the Magnus lift force coefficient due to         C 

!  particle rotation                                                   C 

!                                                                      C 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

 

      SUBROUTINE MLIFT_NEW(lDgA,EPg,Mug,ROPg,VREL,MOMEGA,& 

                   sinVOMEGAtheta,DPM,DPA,PHIS) 

 

!----------------------------------------------- 

! Modules 

!----------------------------------------------- 

      USE param  

      USE param1 

      IMPLICIT NONE 

!----------------------------------------------- 

! Dummy arguments 

!----------------------------------------------- 

! drag coefficient 

      DOUBLE PRECISION, INTENT(OUT) :: lDgA 

! gas volume fraction  

      DOUBLE PRECISION, INTENT(IN) :: EPg 

! gas laminar viscosity  

      DOUBLE PRECISION, INTENT(IN) :: Mug 

! gas density*EP_g 

      DOUBLE PRECISION, INTENT(IN) :: ROPg       

! magnitude of gas-solids relative velocity 
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      DOUBLE PRECISION, INTENT(IN) :: VREL 

! magnitude of particle angular velcoity 

      DOUBLE PRECISION, INTENT(IN) :: MOMEGA 

! sin of the angle between gas-solids relative velocity and particle angular velcoity 

      DOUBLE PRECISION, INTENT(IN) :: sinVOMEGAtheta 

! particle diameter of solids phase M or 

      DOUBLE PRECISION, INTENT(IN) :: DPM 

! average particle diameter  

      DOUBLE PRECISION, INTENT(IN) :: DPA 

! total solids volume fraction of solids phases  

      DOUBLE PRECISION, INTENT(IN) :: PHIS       

!----------------------------------------------- 

! Local variables 

!----------------------------------------------- 

! Reynolds number  

      DOUBLE PRECISION :: RE 

! Rotational Reynolds number  

      DOUBLE PRECISION :: RER       

! Stokes Drag Force 

      DOUBLE PRECISION :: F_STOKES 

! dimensionless drag force F 

      DOUBLE PRECISION :: F       

!----------------------------------------------- 

 

      IF(Mug > ZERO) THEN 

! Note the presence of gas volume fraction in ROPG 

         RE = DPA*VREL*ROPg/Mug        ! use DPA 

         RER =sinVOMEGAtheta*DPA**2*MOMEGA*ROPg/Mug 

      ELSE 

         RE = LARGE_NUMBER  

         RER = LARGE_NUMBER 

      ENDIF       

 

      F_STOKES = 18D0*Mug*EPg/DPM**2   ! use DPM 

 

      F = (-0.0398d0*phis+0.0317d0)/EPg**2        *RER 

 

      F = RER*(0.02d0+(F-0.02d0)*exp((-0.106d0+0.132d0*phis)*RE**0.9d0)) 

 

      lDgA = F*F_STOKES*VREL !direction is from V cross OMEGA 

      IF (RE == ZERO.or.RER == ZERO) lDgA = ZERO       

    

      RETURN 

      END SUBROUTINE MLIFT_NEW 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

!                                                                      C 

!  Subroutine: TORQUE_NEW                                              C 

!  Purpose: Calculate the Torque coefficient due to particle rotation  C 

!                                                                      C 

!                                                                      C 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 
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      SUBROUTINE TORQUE_NEW(lDgA,EPg,Mug,ROPg,VREL,MOMEGA,& 

                   DPM,DPA,PHIS) 

 

!----------------------------------------------- 

! Modules 

!----------------------------------------------- 

      USE param  

      USE param1 

      USE constant, only : PI 

      IMPLICIT NONE 

!----------------------------------------------- 

! Dummy arguments 

!----------------------------------------------- 

! drag coefficient 

      DOUBLE PRECISION, INTENT(OUT) :: lDgA 

! gas volume fraction  

      DOUBLE PRECISION, INTENT(IN) :: EPg 

! gas laminar viscosity  

      DOUBLE PRECISION, INTENT(IN) :: Mug 

! gas density*EP_g 

      DOUBLE PRECISION, INTENT(IN) :: ROPg       

! magnitude of gas-solids relative velocity 

      DOUBLE PRECISION, INTENT(IN) :: VREL 

! magnitude of particle angular velcoity 

      DOUBLE PRECISION, INTENT(IN) :: MOMEGA 

! particle diameter of solids phase M or 

      DOUBLE PRECISION, INTENT(IN) :: DPM 

! average particle diameter  

      DOUBLE PRECISION, INTENT(IN) :: DPA 

! total solids volume fraction of solids phases  

      DOUBLE PRECISION, INTENT(IN) :: PHIS       

!----------------------------------------------- 

! Local variables 

!----------------------------------------------- 

! Reynolds number  

      DOUBLE PRECISION :: RE 

! Rotational Reynolds number  

      DOUBLE PRECISION :: RER       

! Stokes Torque 

      DOUBLE PRECISION :: Torque_STOKES 

! dimensionless toque Tor 

      DOUBLE PRECISION :: Tor      

! dimensionless function for torque 

      DOUBLE PRECISION :: Torg,Torf          

!----------------------------------------------- 

 

      IF(Mug > ZERO) THEN 

! Note the presence of gas volume fraction in ROPG 

         RE = DPA*VREL*ROPg/Mug        ! use DPA 

         RER =DPA**2*MOMEGA*ROPg/Mug 

      ELSE 
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         RE = LARGE_NUMBER  

         RER = LARGE_NUMBER 

      ENDIF       

 

      Torque_STOKES = PI*Mug*DPM**3   ! use DPM 

 

      Tor = 1.d0/(-13.19d0*phis**4+14.41d0*phis**3-4.291d0*phis**2-& 

           0.9747d0*phis+0.9465d0) 

      Torg=exp(3.01d0*phis+0.317d0)      

      Torf=(-0.0462d0+0.174d0*phis-0.184d0*phis**2) 

      Tor =Torg+(Tor-Torg)*exp(Torf*RE**0.9d0) 

 

      lDgA = Tor*Torque_STOKES 

      IF (RER == ZERO) lDgA = ZERO       

    

      RETURN 

      END SUBROUTINE TORQUE_NEW 

       

 

To use the new formulas, modification must be made in the subroutine named 

DES_DRAG_GP, which is in the file drag_fgs.f. The new subroutine of DES_DRAG_GP is 

pasted as follows, 

 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 

!                                                                      C 

!  Subroutine: DES_DRAG_GP                                             C 

!  Purpose: Calculate the gas-particle drag coefficient using          C 

!           the gas velocity interpolated to the particle position     C 

!           and the particle velocity.                                 C 

!           Invoked from des_drag_gs and calc_des_drag_gs              C 

!                                                                      C 

!  Comments: The BVK drag model and all drag models with the           C 

!            polydisperse correction factor (i.e., suffix _PCF)        C 

!            require an average particle diameter. This has been       C 

!            loosely defined for discrete particles based on their     C 

!            solids phase                                              C 

!                                                                      C 

!  Variables referenced:                                               C 

!  Variables modified:                                                 C 

!  Local variables:                                                    C 

!                                                                      C 

!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^C 

 

      !SUBROUTINE DES_DRAG_GP(LL, FLUID_VEL, PARTICLE_VEL) 

      SUBROUTINE DES_DRAG_GP(LL, FLUID_VEL, PARTICLE_VEL,PARTICLE_OMEGA) 

 

!----------------------------------------------- 

! Modules 

!----------------------------------------------- 
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      USE param 

      USE param1 

      USE fldvar 

      USE geometry 

      USE indices 

      USE physprop 

      USE run 

      USE constant 

      USE compar 

      USE drag 

      USE sendrecv 

      USE discretelement 

      USE ur_facs 

 

      IMPLICIT NONE 

!----------------------------------------------- 

! Dummy arguments 

!----------------------------------------------- 

! particle number id. 

      INTEGER , INTENT(IN) :: LL 

! fluid velocity interpolated to particle position 

      DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: FLUID_VEL 

! particle velocity 

      DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: PARTICLE_VEL 

! particle angular velocity 

      DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: PARTICLE_OMEGA 

!----------------------------------------------- 

! Local variables 

!----------------------------------------------- 

! indices, associated with current particle 

      INTEGER :: IJK 

! solids phase index, associated with current particle 

      INTEGER :: M 

! magnitude of gas-solids relative velocity 

      DOUBLE PRECISION :: VREL 

! components of gas-solids relative velocity       

      DOUBLE PRECISION, DIMENSION(3) ::VRELcom    

! magnitude of relative particle angular velocity 

      DOUBLE PRECISION :: MOMEGA          

! components of the cross production between gas-solids relative velocity       

! and relative particle angular velocity 

      DOUBLE PRECISION, DIMENSION(3) ::VcrossOMEGA 

! magnitude of the above cross production 

      DOUBLE PRECISION :: MVcrossOMEGA         

!sin of the angle between gas-solids relative velocity and particle angular velcoity                                 

      DOUBLE PRECISION :: sinVOMEGAtheta                  

! gas laminar viscosity redefined here to set viscosity at pressure 

! boundaries 

      DOUBLE PRECISION :: Mu 

! drag coefficient 

      DOUBLE PRECISION :: DgA 

! Lift coefficient 
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      DOUBLE PRECISION :: MDgA       

! Torque coefficient 

      DOUBLE PRECISION :: TDgA           

! current value of F_gs (i.e., without underrelaxation) 

      DOUBLE PRECISION F_gstmp 

! current value of F_gsM (i.e., without underrelaxation) 

      DOUBLE PRECISION F_gsMtmp 

! indices of solids phases (continuous, discrete) 

      INTEGER :: CM, DM, L 

! temporary shift of total number of solids phases to account for both 

! discrete and continuous solids phases used for the hybrid mdoel 

      INTEGER :: MAXM 

! tmp local variable for the particle diameter of solids 

! phase M (continuous or discrete) 

      DOUBLE PRECISION :: DP_loc(2*DIM_M) 

! tmp local variable for the solids volume fraction of solids 

! phase M (continuous or discrete) 

      DOUBLE PRECISION :: EPs_loc(2*DIM_M) 

! tmp local variable for the particle density of solids 

! phase M (continuous or discrete) 

      DOUBLE PRECISION :: ROs_loc(2*DIM_M) 

! correction factors for implementing polydisperse drag model 

! proposed by van der Hoef et al. (2005) 

      DOUBLE PRECISION :: F_cor, tmp_sum, tmp_fac 

! average particle diameter in polydisperse systems 

      DOUBLE PRECISION :: DPA 

! diameter ratio in polydisperse systems 

      DOUBLE PRECISION :: Y_i 

! total solids volume fraction 

      DOUBLE PRECISION :: phis 

! aliases for void fraction, gas density, gas bulk density, 

! solids volume fraction, particle diameter, particle density 

      DOUBLE PRECISION :: EPG, ROg, ROPg, EP_SM, DPM, ROs 

!----------------------------------------------- 

! Include statement functions 

!----------------------------------------------- 

      INCLUDE '../function.inc' 

      INCLUDE '../ep_s1.inc' 

      INCLUDE '../ep_s2.inc' 

!----------------------------------------------- 

 

! values based on current particle 

      IJK = PIJK(LL,4) 

! solids phase index of current particle 

      M = PIJK(LL,5) 

 

! Assign local variables DP_loc, EPs_loc, and MAXM.  These 

! represent arrays for the particle diameter, solids volume 

! fraction, and number of particle types (i.e., phases). 

      IF (.NOT.DES_CONTINUUM_HYBRID) THEN 

         MAXM = DES_MMAX 

         DO DM = 1,MAXM 
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            DP_loc(DM) = DES_D_p0(DM) 

            EPs_loc(DM) = DES_ROP_S(IJK,DM)/DES_RO_S(DM) 

            ROs_loc(DM) = DES_RO_S(DM) 

         ENDDO 

      ELSE   ! des_continuum_hybrid branch 

! For the hybrid model the diameters and solids volume fractions of 

! of both discrete and continuous are stored in this single quantity. 

! Any loops of solids phases will include all solids phases (discrete 

! and continuum) 

         MAXM = SMAX + DES_MMAX 

! populate DP, EPS starting with discrete phases 

         DO DM = 1,DES_MMAX 

            DP_loc(DM) = DES_D_p0(DM) 

            EPs_loc(DM) = DES_ROP_S(IJK,DM)/DES_RO_S(DM) 

            ROs_loc(DM) = DES_RO_S(DM) 

         ENDDO 

         DO CM = 1,SMAX 

            L = DES_MMAX + CM 

            DP_loc(L) = D_P(IJK,CM) 

            EPs_loc(L) = EP_S(IJK,CM) 

            ROs_loc(L) = RO_S(IJK,CM) 

         ENDDO 

      ENDIF   ! end if/else (.not.des_continuum_hybrid) 

 

 

! magnitude of gas-particle relative velocity 

 !     IF(NO_K)THEN 

 !        VREL = SQRT((FLUID_VEL(1) - PARTICLE_VEL(1))**2 +& 

 !                    (FLUID_VEL(2) - PARTICLE_VEL(2))**2) 

 !     ELSE 

 !        VREL = SQRT((FLUID_VEL(1) - PARTICLE_VEL(1))**2 +& 

 !                    (FLUID_VEL(2) - PARTICLE_VEL(2))**2 +& 

 !                    (FLUID_VEL(3) - PARTICLE_VEL(3))**2) 

 !     ENDIF 

 !      

       IF(NO_K)THEN 

         VRELcom(1)=FLUID_VEL(1) - PARTICLE_VEL(1) 

         VRELcom(2)=FLUID_VEL(2) - PARTICLE_VEL(2) 

         VRELcom(3)=ZERO 

      ELSE 

         VRELcom(:)=FLUID_VEL(:) - PARTICLE_VEL(:) 

      ENDIF 

         VREL =SQRT(VRELcom(1)**2+VRELcom(2)**2+VRELcom(3)**2) 

! magnitude of particle anguler velocity          

         MOMEGA=SQRT(PARTICLE_OMEGA(1)**2+PARTICLE_OMEGA(2)**2+& 

                     PARTICLE_OMEGA(3)**2)       

! cross product between gas-particle relative velocity and particle anguler velocity 

         VcrossOMEGA(1)=VRELcom(2)*PARTICLE_OMEGA(3)-& 

                        VRELcom(3)*PARTICLE_OMEGA(2) 

         VcrossOMEGA(2)=VRELcom(3)*PARTICLE_OMEGA(1)-& 

                        VRELcom(1)*PARTICLE_OMEGA(3) 

         VcrossOMEGA(3)=VRELcom(1)*PARTICLE_OMEGA(2)-& 
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                        VRELcom(2)*PARTICLE_OMEGA(1) 

! magnitude of the cross product 

         MVcrossOMEGA=SQRT(VcrossOMEGA(1)**2+VcrossOMEGA(2)**2+& 

                           VcrossOMEGA(3)**2)      

!sin of the angle between gas-solids relative velocity and particle angular velcoity                                 

         sinVOMEGAtheta=MVcrossOMEGA/(VREL*MOMEGA+SMALL_NUMBER) 

 

! Laminar viscosity at a pressure boundary is given the value of the 

! fluid cell next to it. This applies just to the calculation of the 

! drag, in other routines the value of viscosity at a pressure boundary 

! always has a zero value. 

! This will never happen since this subroutine is currently only called 

! for fluid_at cells (does not include flow boundaries) 

! This points to an inconsitency in calculation of drag between 

! continuum and discrete models that is probably not addressed in the 

! solution of the gas phase momentum balances 

      IF (P_OUTFLOW_AT(IJK)) THEN 

         IF( FLUID_AT(EAST_OF(IJK) )) THEN 

            Mu = MU_G(EAST_OF(IJK)) 

         ELSE IF ( FLUID_AT(WEST_OF(IJK)) ) THEN 

            Mu = MU_G(WEST_OF(IJK)) 

         ELSE IF ( FLUID_AT(NORTH_OF(IJK)) ) THEN 

            Mu = MU_G(NORTH_OF(IJK)) 

         ELSE IF ( FLUID_AT(SOUTH_OF(IJK)) ) THEN 

            Mu = MU_G(SOUTH_OF(IJK)) 

         ELSE IF ( FLUID_AT(TOP_OF(IJK)) ) THEN 

            Mu = MU_G(TOP_OF(IJK)) 

         ELSE IF ( FLUID_AT(BOTTOM_OF(IJK)) ) THEN 

            Mu = MU_G(BOTTOM_OF(IJK)) 

         ENDIF 

      ELSE 

         Mu = MU_G(IJK) 

      ENDIF 

 

! calculate the total solids volume fraction 

      phis = ZERO 

      DO L = 1, MAXM 

! this is slightly /= one-ep_g due to round-off 

         phis = phis + EPs_loc(L) 

      ENDDO 

 

! calculate the average paricle diameter and particle ratio 

      DPA = ZERO 

      tmp_sum = ZERO 

      tmp_fac = ZERO 

      DO L = 1, MAXM 

         IF (phis .GT. ZERO) THEN 

            tmp_fac = EPs_loc(L)/phis 

            tmp_sum = tmp_sum + tmp_fac/DP_loc(L) 

          ELSE 

            tmp_sum = tmp_sum + ONE/DP_loc(L) ! not important, but will avoid NaN's in empty cells 

          ENDIF 
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      ENDDO 

      DPA = ONE / tmp_sum 

      Y_i = DP_loc(M) * tmp_sum 

 

! assign variables for short dummy arguments 

      EPg = EP_G(IJK) 

      ROg = RO_G(IJK) 

      ROPg = ROP_G(IJK) 

      EP_SM = EPs_loc(M) 

      DPM = DP_loc(M) 

      ROs = ROs_loc(M) 

 

! determine the drag coefficient 

      IF (EP_SM <= ZERO) THEN 

! this won't happen in DEM case since routine is performed over 

! particles not cells as in continuum case 

         DgA = ZERO 

      ELSEIF (EPg == ZERO) THEN 

! this case will already be caught in most drag subroutines whenever 

! RE==0 (for correlations in which RE includes EPg). however, this will 

! prevent potential divisions by zero in some models by setting it now. 

         DgA = ZERO 

      ELSE 

! determine the drag coefficient 

         SELECT CASE(DRAG_TYPE_ENUM) 

         CASE (SYAM_OBRIEN) 

            CALL DRAG_SYAM_OBRIEN(DgA,EPG,Mu,ROg,VREL,DPM) 

         CASE (GIDASPOW) 

            CALL DRAG_GIDASPOW(DgA,EPg,Mu,ROg,ROPg,VREL,DPM) 

         CASE (GIDASPOW_PCF) 

            CALL DRAG_GIDASPOW(DgA,EPg,Mu,ROg,ROPg,VREL,DPA) 

         CASE (GIDASPOW_BLEND) 

            CALL DRAG_GIDASPOW_BLEND(DgA,EPg,Mu,ROg,ROPg,VREL,DPM) 

         CASE (GIDASPOW_BLEND_PCF) 

            CALL DRAG_GIDASPOW_BLEND(DgA,EPg,Mu,ROg,ROPg,VREL,DPA) 

         CASE (WEN_YU) 

            CALL DRAG_WEN_YU(DgA,EPg,Mu,ROPg,VREL,DPM) 

         CASE (WEN_YU_PCF) 

            CALL DRAG_WEN_YU(DgA,EPg,Mu,ROPg,VREL,DPA) 

         CASE (KOCH_HILL) 

            CALL DRAG_KOCH_HILL(DgA,EPg,Mu,ROPg,VREL,DPM,DPM,phis) 

         CASE (KOCH_HILL_PCF) 

            CALL DRAG_KOCH_HILL(DgA,EPg,Mu,ROPg,VREL,DPM,DPA,phis) 

         CASE (BVK) 

            CALL DRAG_BVK(DgA,EPg,Mu,ROPg,VREL,DPM,DPA,phis) 

!our new drag             

         CASE (OURNEW) 

            CALL DRAG_NEW(DgA,EPg,Mu,ROPg,VREL,DPM,DPA,phis)             

                            

         CASE (USER_DRAG) 

            CALL DRAG_USR(IJK, M, DgA, EPg, Mu, ROg, VREL, DPM, ROs) 

         CASE DEFAULT 
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            CALL START_LOG 

            IF(DMP_LOG) WRITE (*, '(A,A)') & 

               'Unknown DRAG_TYPE: ', DRAG_TYPE 

            WRITE (UNIT_LOG, '(A,A)') 'Unknown DRAG_TYPE: ', DRAG_TYPE 

            CALL END_LOG 

            CALL mfix_exit(myPE) 

         END SELECT   ! end selection of drag_type 

      ENDIF   ! end if/elseif/else (ep_sm <= zero, ep_g==0) 

 

 

       IF(DES_MAGNUS_LIFT)THEN 

             IF (EP_SM <= ZERO) THEN 

             MDgA = ZERO 

             ELSEIF (EPg == ZERO) THEN 

             MDgA = ZERO 

             ELSE 

                  CAll MLIFT_NEW(MDgA,EPg,Mu,ROPg,VREL,MOMEGA,& 

                   sinVOMEGAtheta,DPM,DPA,phis)  

             ENDIF 

       ELSE 

         MDgA = ZERO 

       ENDIF 

        

        

       IF(DES_FLUID_TORQUE)THEN 

             IF (EP_SM <= ZERO) THEN 

             TDgA = ZERO 

             ELSE 

                  CAll Torque_NEW(TDgA,EPg,Mu,ROPg,VREL,MOMEGA,& 

                   DPM,DPA,phis)   

             ENDIF 

       ELSE 

         TDgA = ZERO 

       ENDIF        

        

 

! Modify drag coefficient to account for possible corrections and 

! for differences between Model B and Model A 

      IF(DRAG_TYPE_ENUM == GIDASPOW_PCF .OR. & 

         DRAG_TYPE_ENUM == GIDASPOW_BLEND_PCF .OR. & 

         DRAG_TYPE_ENUM == WEN_YU_PCF .OR. & 

         DRAG_TYPE_ENUM == KOCH_HILL_PCF .OR. & 

         DRAG_TYPE_ENUM == BVK .OR. & 

         DRAG_TYPE_ENUM == OURNEW ) THEN 

! see erratum by Beetstra et al. (2007) : the correction factor differs 

! for model A versus model B. 

! application of the correction factor for model A is found from 

! the correction factor for model B and neglects the Y_i**3 term 

         IF(Model_B) THEN 

            IF (M == 1) THEN 

               F_cor = (EPg*Y_i + phis*Y_i**2) 

            ELSE 
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               F_cor = (EPg*Y_i + phis*Y_i**2 + & 

                  0.064d0*EPg*Y_i**3) 

            ENDIF 

         ELSE 

            F_cor = Y_i 

         ENDIF 

         DgA = ONE/(Y_i*Y_i) * DgA * F_cor ! 

        MDgA = ONE/(Y_i*Y_i) * MDgA * F_cor !byZhou assume similar as DgA 

        TDgA = ONE/(Y_i*Y_i) * TDgA * F_cor  

      ENDIF 

 

! Calculate the drag coefficient (Model B coeff = Model A coeff/EP_g) 

      IF(MODEL_B) THEN 

         F_gstmp = DgA * PVOL(LL)/EP_G(IJK) 

         F_gsMtmp = MDgA * PVOL(LL)/EP_G(IJK) 

      ELSE 

         F_gstmp = DgA * PVOL(LL) 

         F_gsMtmp = MDgA * PVOL(LL) 

      ENDIF 

!does torque need multiply volume?? no 

! Determine drag force coefficient accounting for any under relaxation 

! f_gp() =  single particle drag excluding vector(v_g - v_p) 

      F_gp(LL) = (ONE - UR_F_gs) * F_gp(LL) + UR_F_gs * F_gstmp 

!byZhou the relaxation is done with the value at previous time step       

      F_gpM(LL) = (ONE - UR_F_gs) * F_gpM(LL) + UR_F_gs * F_gsMtmp       

      T_gp(LL) = (ONE - UR_F_gs) * T_gp(LL) + UR_F_gs *  TDgA   

      !F_gpM(LL)=ZERO 

      !T_gp(LL)=ZERO 

      RETURN 

      END SUBROUTINE DES_DRAG_GP 

 

In this section, only the major changes to the MFIX are provided.  Many other minor 

changes, which are necessary to make the modified MFIX compile successful, will be provided 

upon the request. To invoke the proposed drag law, the keywords 

DES_CONTINUUM_COUPLED and DES_INTERP_ON must be assigned with .T..  To invoke 

the proposed Magnus lift formula and the torque formula, two new keywords, 

DES_MAGNUS_LIFT and DES_FLUID_TORQUE also are needed to attain the value of .T.. 

 


