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ABSTRACT

A new and efficient direct numerical method with second-order convergence accuracy was
developed for fully resolved simulations of incompressible viscous flows laden with rigid
particles. The method combines the state-of-the-art immersed boundary method (IBM), the
multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct
forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration
(ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid
from the surface towards the interior of particles with a fraction of the Eulerian grid spacing
helps increase the convergence accuracy of the method.

An over-relaxation technique in the procedure of multi-direct forcing method and the classical
fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use
of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second
order accuracy and provides more accurate predictions of the translational and rotational motion
of particles. The preexistent code with the first-order convergence rate is updated so that the
updated new code can resolve the translational and rotational motion of particles with the
second-order convergence rate. The updated code has been validated with several benchmark
applications.

The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the
number of the Lagragian markers on particles by using a new formula for the number of
Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (1B-
LBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining
drag force exerted on a cluster of particles, the updated IB-LBM code along with the new
formula for the number of Lagrangian markers has been further validated by solving several
theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is
accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The
simulation results agree well with the theories for the short- and long-time behavior of the drag
force.

Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are
simulated over the entire range of packing fractions, and both low and moderate particle
Reynolds numbers to compare the simulated results with the literature results and develop a new
drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid
particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid
crystallization of solid particles over high solid volume fractions.

A new drag force formula was developed with extensive simulated results to be closely applicable
to real processes over the entire range of packing fractions and both low and moderate particle
Reynolds numbers. The simulation results indicate that the drag force is barely affected by
rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis
varies.



A new lift force formula was developed with simulation results comprehensively over the
rotational Reynolds numbers of 0.1 to 500, and solid volume fractions up to the close-packed
limits, and low and moderate particle Reynolds numbers. The simulation results indicate that the
lift force produced by the rotation movement is directly proportional to rotational Reynolds
numbers defined by the angular velocity perpendicular with the flow direction. The lift force is
very insignificant for ordered arrays and random arrays at the rotational Reynolds number below
1. However, the lift force at especially low solid volume fractions can be larger than the drag
force as the rotational Reynolds number increases.

The torque exerted on spheres by a fluid phase was investigated to fully understand and quantify
particle-fluid interactions. The torque is also very essential to advance the angular momentum
equation for solid particles in discrete particle simulations (DPM). A formula for the torque
exerted on spheres in random arrays was developed with simulation results over the solid volume
fraction range of effective zero up to the close-packed limits, and low to intermediate particle
Reynolds numbers. The normalized torque keeps nearly constant with low rotational Reynolds
numbers, whereas slight deviation is observed at high rotational Reynolds numbers.

The proposed formulas for drag forces, Magnus lift forces, and torques exerted on solid particles
in random arrays were installed in the open source software Multiphase Flow with Interphase
eXchanges (MFiX) (version 2014-1). Both the discrete element model (DEM) and the
interpolation suite in it need to be invoked to use the proposed formulas. The interpolation suite
is used to calculate the drag force on each particle based on particle location rather than cell
averages. Simulations for a bubbling fluidized bed are performed with the proposed formulas
through the MFiX.
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EXECUTIVE SUMMARY

A new direct numerical method with second-order convergence rate was developed for
fully resolved simulations of incompressible viscous flows laden with rigid particles. The
method was developed by combining the state-of-the-art immersed boundary method (IBM), the
multi-direct forcing method, and the lattice Boltzmann method (LBM). Previously, the
combination of IBM and LBM could only achieve first-order accuracy, though LBM is a second-
order method. The IBM was recently improved based on the traditional solver of incompressible
Navier-Stokes equations.

In this study, the multi-direct forcing method is adopted in the improved IBM to better
approximate the no-slip/no-penetration (ns/np) condition on the surface of particles, and a slight
retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction
of the Eulerian grid spacing helps increase the convergence rate of the direct numerical method.
The method is further improved by an over-relaxation technique in the procedure of multi-direct
forcing method and an implementation of the classical fourth order Runge-Kutta scheme in the
coupled fluid-particle interaction. The over-relaxation technique is demonstrated to yield higher
orders of convergence.

The main difficulty in combining LBM and fourth order Runge-Kutta scheme is that the
flow information such as density and velocity cannot be obtained directly at a fractional time
step from LBM, since LBM only provides the flow information at integer time step. To
overcome this problem, the flow field around a particle at a fractional time step is obtained by
simply extrapolating the known flow field at the previous integer time step. The extrapolation is
only implemented locally in cubic computational domains that circumscribe particles without
significant computational efforts.

The classical fourth order Runge-Kutta scheme helps the overall I1B-LBM achieve the
second order accuracy and provides more accurate predictions of the translational and rotational
motion of particles. A proper choice of the retraction distance allows the direct numerical
method to reach a super-convergence of around fourth order.

The preexistent first-order accurate code applicable to only translational motion of
particles has been updated by incorporating these new improvements into the preexistent code.



The updated new code, which can resolve the translational and rotational motion of particles
with the second-order accuracy, has been validated with several benchmark applications.

The efficiency of IB-LBM can be easily improved by reducing the number of the
Lagragian markers on particles. A new formula is proposed to determine the number of
Lagrangian markers on particle surfaces. The new formula is designed to prevent overlapping
force exerted on Eulerian grid points around particle surfaces. Less Lagrangian markers are
needed with the new Lagrangian formula than that used in the previous literature to achieve a
desired computational accuracy. Second-order convergence rates of numerical solutions can be
achieved by slightly retracting Lagrangian markers from the surface towards the interior of
particles with a fraction of the Eulerian grid spacing.

The immersed boundary-lattice Boltzmann method (IB-LBM) has been shown to predict
correctly angular velocity of a particle. Prior to examining the drag force exerted on a cluster of
particles, the updated 1B-LBM code containing the new formula for the number of Lagrangian
markers has been further validated by solving several theoretical problems. A set of simulations
with low Reynolds numbers are executed to calculate the drag force on spheres in simple cubic
arrays. The simulation results are found in good agreement with theoretical predictions.
Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by
a constant average pressure gradient toward a steady Stokes flow. The simulation results agree
well with the theories for the short- and long-time behavior of the drag force.

Flows through non-rotational and rotational spheres in simple cubic arrays and random
arrays are simulated over the entire range of packing fractions, and both low and moderate
particle Reynolds numbers to compare the simulated results with the literature results and
develop a new drag force formula, a new lift force formula, and a new torque formula. Random
arrays of solid particles in fluids are generated with Monte Carlo procedure (Metropolis N. et al.
(1953)) and Zinchenko's method (Zinchenko, A. Z. (1994)) to avoid crystallization of solid
particles over high solid volume fractions. Particle Reynolds number are kept very low to ensure
flows of fluids around solid particles in the Stokes regime.

The simulated drag force exerted on the non-rotational spheres shows excellent
agreement with the existing theories. Simulated drag forces of non-rotational particles as well as

rotational particles are found to follow well the drag law proposed by Van Der Hoef et al. (2005)
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except at the packing-limit solid volume fractions. A new drag force law is developed with
extensive simulated results to be closely applicable to real processes over the entire range of
packing fractions, and both low and moderate particle Reynolds numbers. The simulation results
indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is
basically unchanged as the angle of the rotating axis varies.

A new lift force formula was developed with comprehensive simulated results as a
function of arbitrary rotational Reynolds numbers over the entire range of packing fractions, and
low and moderate particle Reynolds numbers. The lift force also is very insignificant at
rotational Reynolds numbers below 1. The lift force can be larger than the drag force as the
rotational Reynolds numbers get higher especially at low solid volume fractions. Lift force
exerted on rotational solid spheres is proportional to rotational Reynolds numbers defined by the
angular velocity perpendicular with the flow direction.

The torque exerted on spheres by a fluid phase was investigated as another important
factor to fully understand and quantify particle-fluid interactions. The torque is also very
essential to advance the angular momentum equation for solid particles in discrete particle
simulations (DPM). The torque exerted on spheres in random arrays is determined over the solid
volume fraction range of effective zero up to the close-packed limits, and both low and
intermediate particle Reynolds numbers. A formula for the torque exerted on spheres in random
arrays was developed with simulation results over the solid volume fraction range of effective
zero up to the close-packed limits and low to intermediate particle Reynolds numbers. The
normalized torque keeps nearly constant with low rotational Reynolds numbers, whereas slight
deviation is observed at high rotational Reynolds numbers.

The most recent version of the MFiX code (version 2014-1) has been downloaded and
installed on a personal computer. The proposed formulas for drag forces, Magnus lift forces, and
torques exerted on solid particles in random arrays are installed in the open source software
Multiphase Flow with Interphase eXchanges (MFiX). Both the discrete element model (DEM)
and the interpolation suite in it need to be invoked to use the proposed formulas. The
interpolation suite is used to calculate the drag force on each particle based on particle location

rather than cell averages.



Simulations for a bubbling fluidized bed are performed, using the proposed new formulas
through the MFiX. The proposed new drag formula for the bubbling fluidized bed with lower
superficial gas velocity gives similar results compared to the previous drag laws such as
Gidaspow and BVK, whereas the proposed new drag formula for a bubbling bed with higher
superficial gas velocity predicts better void fraction at one side of the bubbling bed than the other
side, and the void fraction profiles produced by the present drag formula appears to be
asymmetric. The better prediction of the void fractions at one side of the bed is very promising.
More comprehensive numerical studies are needed to fully understand the performance of the

proposed formulas.



INTRODUCTION

Particulate flows are involved in a great number of engineering applications. The direct
numerical simulation (DNS) method has been demonstrated to be a capable and popular
approach in particulate flows. The conventional DNS methods, such as the finite volume (FVM)
and the finite element methods (FEM) are not very efficient in simulations of particulate flows
with a large number of particles. The main obstacle with these methods comes from the frequent
need of generating new and geometrically adapted grids at very advancing step. This is a very
time-consuming task especially in three-dimensional flows.

Ladd [1, 2] was believed to be the first one who successfully adopted the lattice
Boltzmann method (LBM) for the DNS study of particulate flows. In his study, a fixed Eulerian
grid system is implemented to represent the flow field. The “bounce-back” rule [2] is applied to
realize the no-slip condition on the solid-fluid interface. Therefore, the need of generating new
adapted grids at very time step is eliminated. However, based on the “bounce-back” rule, the
boundary of a particle is captured in a step-wise way, making the solid-fluid interface rough. To
overcome this problem, Peskin [3] developed the immersed boundary method (IBM). The basic
idea of the IBM is to employ a fixed Cartesian grid for the discretization of the fluid phase and to
resolve the solid-fluid interface by adding additional force terms to the governing equations.

Feng & Michaelides [4] combined desired elements of the immersed boundary method,
the direct forcing method [5], and the lattice Boltzmann method. They added a forcing term in
the momentum equation to enforce the no-slip condition on the boundary of a moving particle.
The method was demonstrated to generate a smooth boundary for particles and to be capable of
achieving higher Reynolds number flows. Uhlmann [6] also presented an improved method
through the use of IBM in a traditional incompressible viscous flow solver. The main idea is to
incorporate Peskin’s regularized delta function approach [7] into a direct formulation of the
fluid-solid interaction force in order to allow for a smooth transfer between Eulerian and
Lagrangian representations. This technique was implemented in a finite-difference and
fractional-step context.

Recently, Kempe & Frohlich [8] proposes several enhancements of IBM which

considerably improve accuracy and extend the range of applicability. An important step is a



simple low-cost iterative procedure for the Euler—Lagrange coupling yielding a substantially
better imposition of boundary conditions at the interface, even for large time steps. The
procedure they adopted is indeed the multi-forcing method addressed by Luo et al. [9].
Furthermore, they designed an efficient integration step for the artificial flow field inside the
particles, making the accessible ratios of particle density and fluid density down to 0.3 from
around 1.0.

Breugem [10] demonstrated that accuracy of the immersed boundary method could be
increased to second order by adopting several new developed techniques. The method is based
on the computationally efficient direct-forcing method adopted by Uhlmann [6]. Specifically,
the original IBM was improved by a multi-direct forcing scheme, a slight retraction of the
Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian
grid spacing, and a new procedure to lower the accessible particle—fluid mass density ratios by a
direct account of the inertia of the fluid contained within the particles. The numerical examples
performed by Breugem [10] have shown that the retraction distance (rg) has a strong influence on
the effective particle diameter and little influence on the error in the no-slip/no-penetration
(ns/np) condition, while exactly the opposite holds for the number of iterations (Ns). The choice
of ry=0.3 Ax was found to yield second-order accuracy compared to first-order accuracy of the
original method that corresponds to rg=0.

Our original code only allows a particle to translation in a fluid phase with the first-order
accuracy. Our code was upgraded by incorporating the state-of-the-art improvements into our
old code. Two quality papers addressing the most recent improvements are published by Kempe
& Frohlich [8] and Breugem [10] in 2012, where the IBM is proven to be second-order accuracy.
We would like to mainly refer to the work of Breugem for the code update since the IBM, for the
first time, was proven to be second-order accurate by Breugem [10]. In his study, the IBM is
combined with a traditional incompressible solver. This type of solver can be executed in a
fractional-step context using high-order time advancing techniques, such as the Runge-Kutta
scheme. However, the fractional-step technique cannot be directly embedded in the framework
of LBM. We developed a novel approach to combine the IBM and LBM. Our upgraded code is
able to accommodate the translational and rotational movements of particles. Besides, an over-

relaxation technique is adopted in the procedure of multi-direct forcing method to further
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improve the accuracy of the combined IB-LBM. The upgraded code is capable of achieving the
second-order accuracy that was verified by solving several bench-mark problems. Moreover, a
novel finding in this study is that the retraction allows the direct numerical method to reach a
super-convergence of around fourth order over a proper range of the retraction distance.

To examine the drag force exerted on clusters of particles, the efficiency of the present
immersed boundary — lattice Boltzmann method (IB-LBM) became a concern since lots of
particles are involved in the simulation. The LBM has been updated and tested over decades,
and its computational efficiency has been established. However, new techniques for IBM still
appear in recent years. In this study, it is found the efficiency of IBM and thus the efficiency of
IB-LBM can be easily improved by reducing the number of the Lagragian markers on particles.
The number of the Lagragian markers on particles is determined by a new formula, which is
designed to avoid overlapping the force on Eulerian grid points around particle surfaces.

The IB-LBM code along with the new formula for the number of Lagrangian markers has
been validated by solving several theoretical problems such as simple cubic lattice of fixed
spheres, rotation of a sphere in linear shear flow, and a freely moving sphere in plane Poiseuille
flow. Simulations under the Stokes flow regime are executed to calculate the drag force on
spheres in simple cubic arrays. The simulation results are found in good agreement with
theoretical predictions. Moreover, the unsteadiness of the drag force is examined when a fluid is
accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The
simulation results agree well with the theories for the short- and long-time behavior of the drag
force. Furthermore, the code has been upgraded even further to be capable of simulating
simultaneously multiple particles. The parallelization of the code has also been done. The
accuracy of the parallel code has been fully validated by comparing the results to those generated
by the original serial code.

Steady Stokes flows through non-rotational and rotational multiple spheres in ordered
arrays are examined extensively to simulate drag force and lift force exerted on spheres at
various solid volume fractions up to 0.6 and the rotational Reynolds numbers of 0.1, 1, 10, 50
and 100, verify simulation results by comparing our simulation results with literature results,
develop a formula for the drag force and a formula for the lift force, and examine simulation

capabilities and efficiencies of the upgraded code. The rotational Reynolds number described
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with the angular velocity (w) and the diameter (D) of rotational spheres, and kinematic viscosity
(v) of a fluid around spheres, defined as Rer = wD?v, is used to characterize rotational
movement of spheres. Steady Stokes flows through non-rotational and rotational multiple (93 -
186) spheres in various random arrays generated with Monte Carlo procedure (Metropolis N. et
al. (1953)) [11] are examined to simulate drag force and lift force exerted on spheres.

Richardson extrapolation method [12] is adopted to obtain the final simulation results for
each simulation case, based on the results on the three finest meshes. The simulation results on
5-8 configurations at each solid volume fraction are usually averaged to obtain final simulation
results. It is still desirable to simulate at least five configurations at each solid volume fraction to
obtain accurate simulation results, though the computation of each configuration is time
consuming.

A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration to develop the final proposed formulas. The simulated grid resolutions are
64x64x64,80x80x80, 108x108x108, 144x144x144 , and 192x192x192. The numbers of
the spheres simulated in the computational domain are all fixed to 144. The combination of
Monte Carlo (MC) procedure and Zinchenko’s method (1994) [13] for the final proposed
formulas is employed to generate random configurations of spheres. Zinchenko's method
generates random sphere configurations as close as possible to the close-packed limit, which is
around 0.637. The radius of a sphere in a packed configuration is first decreased and then MC
equilibration steps are applied to obtain small solid volume fractions. The configuration can be
randomized without possible crystallization of small solid spheres by using this procedure.

Steady Stokes flows through non-rotational and rotational multiple (144) spheres in
random arrays generated with Zinchenko's method (Zinchenko, A. Z. (1994)) [13] are examined
to simulate drag force and lift force exerted on spheres over the entire range of packing fractions
and the rotational Reynolds numbers of 1, 10 and 100. The particle Reynolds number is kept
small to ensure the flow of a fluid under the Stokes regime in simulating drag forces and lift
forces of non-rotational and rotational spheres in the fluid.

The drag forces exerted on non-rotational spheres show an excellent agreement with the
existing theory. Drag force is barely affected by the rotational Reynolds number. However, drag

force also decreases as rotational Reynolds number increases at low solid volume fractions. The
8



drag force is basically unchanged as the angle of the rotating axis varies. The simulation results
indicate that the lift force produced by the rotation movement is directly proportional to
rotational Reynolds numbers defined by the angular velocity perpendicular with the flow
direction. Lift forces are affected by the angle between the rotating axis of solid spheres in
ordered arrays and the flow direction of fluids. Lift force exerted on rotational spheres in the
ordered array and random arrays is very insignificant at rotational Reynolds numbers below 0.1
and 1, respectively. Lift force exerted on rotational solid spheres in ordered and random arrays
can be larger than the drag force at high rotational Reynolds numbers and especially low solid
volume fractions.

Drag force, Magnus lift force, and torque exerted on solid particles in both simple cubic
arrays and random arrays are simulated for solid volume fractions up to the close-packed limits
over the low to intermediate particle Reynolds number range, using a second-order accurate
immerse boundary - lattice Boltzman method (IB-LBM). The proposed final formulas for drag
force, Magnus lift force, and torque exerted on solid particles in simple cubic arrays were
developed, based on simulation results, and compared with literature formulas and simulation
data.

Simulated drag forces exerted on non-rotational solid spheres as well as rotational solid
spheres are found to follow well the drag law proposed by Van Der Hoef et al (2005) [14] except
at the packing-limit solid volume fractions. A new drag formula is proposed to fit drag force of
spheres in random arrays over the entire range of packing fraction. The new drag force formula
for sold particles in random arrays was developed with extensive simulated results to be closely
applicable to real processes over the entire range of packing fractions and low and moderate
particle Reynolds numbers.

Lift forces are simulated at the rotational Reynolds numbers of 0.1, 1, 10, 50, 100, 200
and 500, and various solid volume fractions and various particle Reynolds numbers. A new lift
force formula for solid particles in random arrays was developed with comprehensive simulated
results as a function of arbitrary rotational Reynolds numbers over the entire range of packing
fractions and low and moderate particle Reynolds numbers.

The torque exerted on spheres by a fluid phase was investigated as another important

factor to fully understand and quantify particle-fluid interactions in addition to the drag force and
9



the Magnus lift force exerted on solid spheres. The torque is also very essential to advance the
angular momentum equation for solid particles in discrete particle simulations (DPM). The
torque exerted on spheres in random arrays is determined over the solid volume fraction range of
effective zero up to the close-packed limits and both low and intermediate particle Reynolds
numbers. A formula for the torque exerted on solid particles in random arrays was developed
with simulation data. The normalized torque keeps nearly constant with low rotational Reynolds
numbers, whereas slight deviation is observed at high rotational Reynolds numbers.

The most recent version of the MFiX code (version 2014-1) has been downloaded and
installed on a personal computer. The proposed formulas for drag forces, Magnus lift forces, and
torques exerted on solid particles in random arrays were installed in the open source software
Multiphase Flow with Interphase eXchanges (MFiX). Both the discrete element model (DEM)
and the interpolation suite in it need to be invoked to use the proposed formulas. The
interpolation suite is used to calculate the drag force on each particle based on particle location
rather than cell averages.

Simulations for a bubbling fluidized bed are performed with the proposed formulas
through the MFIX. The proposed new drag formula for the bubbling fluidized bed with lower
superficial gas velocity gives similar results compared to the previous drag laws, whereas the
proposed new drag formula for a bubbling bed with higher superficial gas velocity predicts better
void fraction at one side of the bubbling bed than the other side, and the void fraction profiles
produced by the present drag formula appears to be asymmetric. The better prediction of the void
fractions at one side of the bed is very promising. More comprehensive numerical studies are
needed to fully understand the performance of the proposed formulas.

EXPERIMENTAL METHODS

Several computers and software were utilized to validate the proposed IB-LBM and
develop a new drag force formula, a new Magnum lift formula, and a new torque formula with
extensive simulation data. The most recent version of the open source software Multiphase Flow
with Interphase eXchanges (MFiX) code (version 2014-1) has been downloaded and installed on
a personal computer. Simulations for a bubbling fluidized bed were performed with the

proposed formulas through the MFIX.

10



THEORY

1. Governing equations
The governing equations for the fluid-particle composite read:

p(g—? +u-Vu) =uVu—Vo— Vp, +f (1a)
g—f+ Ve(pu) = 0 (or, Veu = 0), (1b)
f(x,1) =j|:(s,t)5(x— X (s,t))ds (1c)
and r

SX (1d)

W:_fu(x,t)é(x— X (s,1))dx

Nomenclature is as usual, with u=(u,v,w)" designating the velocity vector in Cartesian
components, i.e., along the Cartesian coordinates, X, y, z, while p represents the fluid pressure,
p the fluid density and g the fluid viscosity. It is noted that p, is the contribution to the total

pressure from a constant pressure gradient that is possibly imposed to drive a flow. The particle

surface force density and the fluid body force density are referred to as F(s,t) and f(x,t),

respectively. The boundary surface of a particle is denoted by T" with the Lagrangian parametric
coordinate s. The immersed domain of the particle is denoted by Q, represented by the Eulerian

coordinates x. Any position on the particle surface can be written as x = X(s,t). The no-slip

boundary condition is satisfied by enforcing the velocity at all boundaries to be equal to the

velocity of the fluid at the same location:

OX(s,t)
U0 2

To solve the fluid field with a body force density f (x,t) (if a constant pressure gradient Vp,
exists, the termVp, can be simply included in f(x,t)), the fundamental LBM equation is

modified by adding a term to the collision function and becomes as follows:
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mi(x+ei,t+1)—mi(x,t):—l[mi—mi‘eq’]+ = )
T

where, ¢, is the lattice directions, t is the lattice simulation time, - is the relaxation time, m,(X,t)
is fluid particle distribution function in the ith direction, m®®is the equilibrium distribution
function, and F ; is the added force term, whose relation with f (x,t) can be found in (Luo et al.

2007) [9]. Luoetal. (2007) [9] addressed the detailed procedure to incorporate the force density
f(x,t) into the LBM. The LB equation with their procedure has been proven to give the
accurate recovery of the incompressible Navier-Stokes equations. Therefore, their procedure is
adopted in this work to account for the solid-fluid forces.

In this report, a three dimensional D3Q19 model is used. For the details of this lattice
model, the reader can refer to Ref. (Sui et al. 2008) [15].
2. Direct forcing scheme

To discuss the general concepts of the direct forcing scheme, we first write the time-

discretized Eq. (1a) in the following form:

un+1 _un (4)
" =rhs"+ "™
P At
where,
rhs = uV*u— Vo — Vp, — pue Vu (5)

Following the procedure proposed by Uhlmann (2005) [6], we evaluate the force term on any

Lagrangian marker X ( X" denotes the location of the Ith marker on the ith particle), by

n+l n
LU -y

F n+1 —
r» At

—RHS" (6)

In Eq. (6) and henceforth the upper-case letters for quantities are evaluated at the locations of the

Lagrangian marker X", The desired velocity U, of the Lagrangian marker is given by the rigid-

body motion of the particle:
U, (X)) =u +a@l x (X" = x) (7)
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where u!,@!, x" are the translational and rotational velocity and center coordinates of the ith

c?

particle, respectively.

The terms on the right-hand side of Eq. (6) can be collected as

’ﬁ”g+1 — an;1+1 (8)
and
Un*l = U™ + rhs™ At 9)

In Eq. (9), U™** corresponds to a preliminary velocity obtained without applying a force term.
Now, Eq. (6) has been reduced to
7 n+1 _ 7rn+1
v U U (10)
At

Once F™" has been obtained, it can be spread to Eulerian nodes to get f"*. For the spreading

procedure, we use the regularized Dirac delta function ¢, of Roma et al. (1999) [16], due to its

compact support and computational efficiency. The detailed spreading procedure of (G, U) and

( £™*, F") between Lagrangian and Eulerian locations can be found in Ref. (Uhlmann 2005)
[6].

Feng & Michaelides (2005) [4] adopted the direct forcing scheme of Eq. (6) for their
Proteus code. They reported that usage of this scheme, along with the spreading technique, only
gives the IB-LBM the first-order accuracy.

3. Improvements on the state-of-the-art immersed boundary - lattice Boltzmann method
(1B-LBM)

3.1 Formulation to obtain flow information at fractional steps

In the framework of LBM, the flow information such as fluid density p and fluid velocity

vector u cannot be obtained directly in the fractional time step. However, in order to achieve
higher accuracy of the overall IB-LBM, higher order time schemes with fractional steps, such as
Runge-Kutta schemes, are required. To overcome this problem, the flow field around a particle

is advanced by

13



PHHe = p' — Ve(pu)aAt (11)
and

(pu)™ = p"u" +(rhs" + f"aAt . (12)
Note, Egs. (11) and (12) can be readily derived from Eqgs. (1a) and (1b). These two equations are
only implemented locally in cubic computational domains that circumscribe particles. For
convenience, the influenced cubes are placed with their edges parallel with the Eulerian grid
lines. The center of every cube collapses with that of the circumscribing particle. The length of
every cube is set to be eight lattice units wider than the particle diameter to make sure that some
differentiating operations in Egs. (11) and (12) can be executed with enough neighbor nodes.
3.2 Relaxation technique for multi-direct forcing scheme

It has been demonstrated that the use of a Dirac delta function for the interpolation and
spreading operations results in a diffuse distribution of the IBM force around the interface of a
particle [9, 10]. This brings errors to the desired particle velocity at the Lagrangian grid points.
The basic idea of a multi-direct forcing scheme is to iteratively determine the IBM forces to the
involved Eulerian grid points so that the no-slip condition is better satisfied on the particle

surface. A typical multi-direct forcing scheme reads (Luo et al. 2007 [9], Breugem 2012 [10]),

dos=1, N;

U7 = Y5715, (x — XM AxAyAz (13a)
s o prdlssly ﬁ?fl—f:ﬂ's_l (13b)
£ = BT, (x— XAV, (13c)
0° = 0+ Atf ™S (13d)

enddo

where N; is the total number of force iterations and G° is the velocity at the current time step. In
order to accelerate the convergence rate of IBM forces, we embed a relaxation technique in the
multi-direct forcing scheme. The relaxed multi-direct forcing scheme is basically the same as

the original one, except that the Eq. (13d) is updated to
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O =0+ AL(F™ T 4 o £71° — £M1) (13e)
where, o is the relaxation coefficient. Generally, @ =1.40rw=1.5 gives appreciable
convergence acceleration of IBM forces. The values greater than 1.5 may make the simulation
unstable. As one can see, the modification for relaxed multi-direct forcing scheme is rather
simple. It does not incur any significant increase of computation time.

The relaxation coefficient was not adopted in extensive simulations to obtain the drag
force, Magnus lift force and the torque in ordered and random arrays of spheres (i.e., @ =1 is
used through these simulatiosn), though the relaxation coefficient was developed, reported and
has been found to be effective. The Runge-Kutta scheme applied to combine the IBM and the

LBM is already sufficiently accurate for these computations.
3.3 Combination of IBM and LBM using a Runge-Kutta scheme

The Newton equations for particles are advanced using the classical four-stages, fourth-
order Runge-Kutta scheme. In order to couple the particle movements with the flow field of a
fluid phase resolved by LBM, Egs. (11) and (12) are adopted to retrieve a flow information from

the fluid phase. Considering that a constant pressure gradient Vp, also exists in the fluid phase,

the advancement of the solution from the time step n to the time step n + 1 reads:

f =Vp, (14a)
dog=1,4

M=n+a, (14b)
n=n+a,, (14c)
=Pt = Ve(pu)agAt (14d)
(pu)" = p"u" +(rhs" + ") At (14e)
0" = (pu)" +rhs"At = p"u" +(rhs" + f ") At + rhs"At (14f)
UM = 2™ 5, (x — X)) AxAyAz (149)
g2 ol _ i (14h)
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fﬁ+l — Z |:|ﬁ+15d (X _ x|ﬁ+l)A\/l (14')

aﬁ+l,0 — Gﬁ +Atf n+l (14])
dos=1,N;
U|ﬁ+l,s—l _ Zuﬁ+l,s—15d (X . X|ﬁ+l)AXAyAZ (l4k)
F lﬁ+1,s _F lﬁ+1,s—1 n oy ‘Aﬁtlﬁﬂ's_l’ (141)
fﬁ+1,s — ZFIH+1,55d (X— X|ﬁ+1)AVI (14m)
fﬁ+1,s — f n+1,s-1 + Cl)( f n+ls f ﬁ+l,s—1) (14”)
l:iﬁ+l’5 — uﬁ +Atf n+l,s (140)
enddo
f=f+pf" (14p)
enddo
m(x+e“t+D—4m(xty:—l[mr—mfm]+Fﬂxf) (14q)
T
pn _)pn+1,un N un+1’ pn N pn+l (14r)

wherea, =0, =0,00,=1/2,0,=1/2,0, =1, f,=1/6, 3, =1/3, f, =1/3,and 3, =1/6.

The governing equations for each solid particle are as follows,

dx, /dt =u, (15a)
dp/dt=F (15b)
dL/dt=T (15c)
dg/dt=w.q/2 (15d)

where, p and L denote the linear momentum (M ju,) and the angular momentum (1 @) of the

particle, respectively, and F and T represent the force and the torque exerted on the particle. In

Eq. (15d), g is a unit quaternion used to record the three-dimensional orientation of the particle
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(for details, refer to Ref. (Diebel 2006) [17]), and @ represents the angular velocity of the
particle. It is remarked that there is no need to calculate g for spheres, since in this case, rotating
the Lagrangian markers along with the rotation of the particle is not necessary. We only need to
impose appropriate velocities on these markers. The detailed advancing procedure of each
particle with the same Runge-Kutta scheme, following directly after Eq. (14p) in the do loop, is

shown as follows,

= _ZI: FrNAV, + ({J’Vp pudV }M - {J:/p pudV }nj | At + (1—/;—;)M s (16a)
T _an K EN A +U jvp rx pudV }M —{ jvp rx pudV }] / At (16b)
Ai=n+l+a,, (16c)
Xg = X0+ U AL (16d)
p"=p" +a,, FAL (16e)
L' = L™ + g, LAt (16f)
9" =9" +a,.,@; q" AL 2 (169)
ui=p"/M, (16h)
@, =1 (161)

b= ul+alx (X - 20) asi

where,V ,p,,M jand | are the particle’s volume, density, mass and rotational inertia,
respectively. It is remarked that p, represents the constant formal density of the fluid phase. We
use it to get the buoyancy of the particle. This is because p, the instantaneous density of the
incompressible fluid phase, always keeps changing around p, , even though very slightly. This is

determined by the intrinsic property of LBM, which solves a flow with very low compressibility

flow to mimic the incompressible flow. The use of p, to obtain the buoyancy simplifies the
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simulation and does not incur any appreciable accuracy loss since the solving flow is
incompressible.

In the advancement of the particle’s motion, the techniques such as the determination of
the Lagrangian marker number, the direct account of fluid inertia within particle, and inward
retraction of Lagrangian markers are adopted. To make this report more concise, we do not brief
them here. The reader can refer to the Ref. (Breugem 2012) [10] for the details.

Egs.(14a-14r) and Egs.(16a-16j) compose the complete procedure that advances the flow
field from time step n to n+1, and also upgrades simultaneously the motion of a particle from
time step n+1 to n+2. This is a fully explicit coupling of the LB equation and Newton-Euler
equations. It is expected that this coupling will result in increased accuracy of the overall 1B-
LBM.

4. A new formula for the number of Lagragian markers on a particle surface

Breugem [10] examined the relation between the Eulerian grids and the Lagrangian
markers (note, Lagrangian markers can also be referred as Lagrangian grid cells). In order to
ensure the resolutions match each other, Breugem designed the following rules for the volume

AV, of the Lagrangian markers:
(@) AV, is as close as possible equal to Ax®;
(b) the number N, of Lagrangian markers over the surface of a sphere is an integer number;

(c) the radial thickness of the Lagrangian grid cells is equal to Ax.

Following those rules, N, and AV, are defined as

\ [ (R=r+AX/2 —(R—r, ~Ax/2)’ an
. 3AC  (47)
AVI=(R—rd+Ax/2)‘°’—(R—rd—Ax/2)3 18)

3N,/ (47)
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where Rand r, are the radius of the particle and the retraction distance from the surface towards

the interior of the particle, respectively. The square brackets in Eq. (17) denote the nearest
integer value of the enclosed expression. It should be noted that the method of Leopardi [18] is
employed to produce the “evenly” distribution of the Lagrangian markers on particle surfaces.
The three rules proposed by Breugem [10] were examined closely. It’s hard to find some
solid theories that support the first rule from the aspects of computational flow dynamics and
numerical stability. Therefore, the first rule may be relaxed without affecting the simulation
results. Generally, the resolution of particle motions strongly depends on the resolution of a flow
field. If the flow field is not well resolved on Eulerain grids, there is no way to predict the
motion of the immersed body accurately. This actually indicates that the Eulerian grids need to
be relatively finer than the Lagrangian markers distributed on surfaces of particles. This principle

givesAV, > Ax®. It is noted that, ensuring AV, > AX® is very essential if a deformable surface is
solved. The relative movement between Lagrangian markers on a deformable surface would
result in AV, < AX® occasionally, that will introduce numerical errors into the quantities generated

on the first or the second spatial derivatives of the distances between Lagrangian markers. The
simulation will become unstable due to the numerical errors accumulated by the differentiation
of very short distances between Lagrangian markers. Here, there’s no such numerical instability
problem for the rigid particle. Still, the principle that a good prediction of the motion of an
immersed body relies on the well resolved fluid flow should be applied.

The other important aspect leading us to reduce the number of Lagrangian markers on the
surface of a particle is that the forcing overlap on Eulerain grids should be avoided. The problem
of the forcing overlap has been investigated by both Breugem [10] and Luo et al. [9]. They
pointed out that the same Eulerian grid points are involved to force the velocity on different
Lagrangian markers. At these Eulerian grid points the forcing required for the desired particle
velocity at one of the Lagrangian grid points is perturbed by the forcing needed for the other and
vice versa. Due to this overlap in forcing, the distribution of the IBM force around the interface
of the particle may not very well enforce the desired particle velocity on the Lagrangian markers.

Luo et al. [9] first proposed a multidirect forcing scheme as a remedy for this problem.
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The basic idea is to do the direct forcing scheme iteratively to reduce the errors of the
desired velocities on Lagrangian markers. Actually this problem can be mitigated or even
completely circumvented by a very simple way. Evidently, the reason that causes the overlap in
the forcing procedure is that the Lagrangian markers are too close to each other. Therefore, the
direct solution for this forcing overlap is to increase the distances between the Lagrangian

markers. This can be done easily by increasing the volume AV, of the Lagrangian markers. The

volume of the Lagrangian markers cannot be arbitrarily large, since in that case, some Eulerian
grid points in the neighborhood of the particle surface will never be used, which would be a
waste of the computation efforts for the flow field. In order to make best use of the flow
information obtained by LB simulation on the Eulerain grid points, the volume of the Lagrangian
markers should not be larger than the domain that covered by the forcing procedure. At this

stage, the first rule proposed by Breugem [10] can be modified so that the ideal AV, allows the

Lagrangian markers to fully use the Eulerian grid points around particle surfaces without any

forcing overlap.

Since the size of the domain covered by the forcing procedure is determined by the
spreading function used in this procedure, the property of the spreading function should be
examined carefully. For most recent IBM, the regularized Dirac delta function developed by

Roma et al. [16] serves as the spreading function. It reads

(5—3|| Fll—=30- | r [)? +1)/6, 05<|r|l<15

o= (1+«/-3|| rIP +1)/3, I rll<05 (19)

0, otherwise

where ris the distance between Lagrangian markers and Eulerian grid points normarlized by
Eulerian grid spacing Ax. A salient quality of this delta function is that it only has a width of
three grid cells, which means the radius of influence of a Lagrangian marker is only1.5Ax. Note,
the function ¢ vanishes when the radius of influence reaches1.5Ax. Owing to this small radius

of influence, this delta function gives a thinner porous shell around the actual particle surface

than other delta functions.
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To determine AV, for the Lagrangian markers, the distance between two adjacent

Lagrangian markers needs to be examined. For simplicity, the distribution of Lagrangian markers
on a flat surface is examined. This is equivalent to the case with the particle of very large radius.
Figure 1(a) shows one special case of the closest displacement of two adjacent Lagrangian
markers. It can be seen that the shortest distance to avoid the use of the same Eulerian grid points
by two adjacent Lagrangian markers is 2Ax. The coordinates of the markers a and b shown in
the figure are (n-1.5, m) and (n+0.5, m), respectively. If the markers are moved even closer, for
example, marker a is moved towards marker b, the Eulerian grid point (n,m) used in the forcing
procedure for marker b will also be used for marker a. This means the forcing overlap occurs on
the Eulerian grid point (n,m) and the disturbed forcing on (n,m) may not well enforce the desired
particle velocity on the markers a and b.

Figure 1(b) shows the possible longest distance (3.5AX) to make the two adjacent
Lagrangian markers fully use the Eulerian grid points between them. In this case, the Eulerian
grid point (n ,m) is critically used by marker b. If marker b is moved slightly away from marker
a, the point (n,m) will be left unused by either marker.

Figure 1(c) shows the case with a distance of 3Ax. Note that, the distance 3AX is
determined inherently by the delta function shown in Eq. (19). This case is very desirable
because it ensures that the two adjacent Lagrangian markers can fully use the Eulerian grid
points between them without any overlap. This case leaves one Eulerian grid point critically
unused only when both marker a and marker b are in the half way of Eulerian grid points, as

shown in Figure 1(d).
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Figure 1. The schematic diagrams for the distribution of Lagrangian markers on a plane surface.
Solid symbols denotes the Eulerian grid points, while a and b denote two adjacent Lagrangian
markers. (a) the shortest distance (2Ax) allowed to avoid the use of the same Eulerian grid
points by two adjacent Lagrangian markers; (b) the longest distance (3.5Ax) allowed to make the
two adjacent Lagrangian markers to fully use the Eulerian grid points between them. (c) the
distance (3Ax) that ensures the two adjacent Lagrangian markers to fully use the Eulerian grid
points between them; (d) a special case of (c), in this case, the Eulerian grid point (n,m) is
critically not used by either marker a or marker b.

The above analysis shows that the horizontal distance between two adjacent Lagrangian
markers on a flat surface is larger than 2Ax, and smaller than 3.5Ax. The distance of 3Ax is the
most desirable one since it ensures that the two adjacent Lagrangian markers fully use the
Eulerian grid points between them without any overlap. If the Lagrangian markers are applied to

the horizontal direction and the vertical direction of the flat plane, the predicted area influenced

by a Lagrangian marker can be simply (3Ax)>. Now, extending the analysis on a sphere surface,
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it is assumed that the volume occupied by a Lagrangian marker satisfy AV, = 7*AX® | provided the

thickness of the surface is Ax (the third rule proposed by Breugem [10]). This gives the new

formula for determining the number of the Lagrangian marker number, as shown in Equation 20.

N, {(R—rd +Ax/2)* = (R—r, —AX/ 2) } (20)

3y°AX% [ (47)

One can estimate that 2.0 < ¥ < 3.5 based on previous analysis on a flat plane. The exact

y would depend on the radius of the sphere and on the distribution of the Lagrangian markers on
the sphere surface. Therefore, it is hard to give a theoretical prediction for y . However, the value
of » can be obtained through extensive computational tests. The y value of 2.824 works very

well for all the tested applications according to our computational test. The y value of 2.824 can
reduce the error between the actual velocity and the desired velocity to around 1< 10 in the test

of Darcy problem, whereas, the previous y =1 used by Breugem [10] can only reduce the error to

around 1X 10 . The efficiency of the overall IB-LBM can also be improved significantly since
the number of the Lagrangian marker is only 1/8 of that used in previous simulation. The
detailed data of these tests will be given elsewhere since this report is focused on the validation
of the code.

This technique using less Lagrangian markers is another technique that is developed,
reported but not adopted in the extensive simulations obtaining the drag force, Magnus lift force
and the torque in both ordered and random arrays of spheres (still Eq.(17) is used). Certainly, this
technique will benefit simulations in which very large spheres are involved, e.g., simulations for
poly-dispersed suspensions in which spheres with greater size become extremely large when
spheres with smaller size are sufficiently resolved.

5. Existing analytical equations and simulation data on drag forces exerted on solid
spheres in simple cubic arrays over low particle Reynolds numbers at various solid volume
fractions.

From the fundamental periodic solution of the Stokes equations, Hasimoto [19]

calculated the drag force exerted on spheres in dilute simple cubic, body-centred cubic and face-
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centred cubic arrays. For simple cubic arrays, the non-dimensional drag force is given by
Equation 21.

F =(1-¢)[1-1.7601c"® + ¢ —1.5593¢? + O(c**)]™* (21)

Sangani and Acivos [20] modified Hasimoto’s method and calculated drag force in cubic arrays
over the complete porosity range. Their extended equation for simple cubic lattices is shown in

Equation 22.

F = (1-c)[1-1.7601c"® + ¢ —1.5593c?

813 _ 10/3 11/3y7-1 (22)
+3.9799¢%° - 3.0734¢™% + O(c*)]

Zick & Homsy [21] calculated the drag force on the spheres in ordered arrays at solid volume
fractions up to their respective close-packed limits. It is believed that the error in their
computations for close-packed arrays was less than 2%. Therefore, their results are used as the
benchmark for the comparison with those of our lattice-Boltzmann simulations at largest solid

volume fractions.

6. Existing analytical formulas on the drag force exerted on solid spheres in random arrays
for comparison with our simulated results with those from previous studies over low
particle Reynolds numbers

Existing analytical formulas on the drag force are selected to compare our simulated
results with those from previous studies. The Carman equation [22] described the drag force of

spheres in terms of practical dense packing, as shown in Equation 23.

C

F,=10—— .
° T (-c)

(23)

Koch & Sangani (1999) [23] proposed the following expression for the drag force in the entire

range of solid volume fractions:

24



(1—c)(1+j’§cl’2 +163;clnc+16.14c)
, €6<04
Fo = 1+0.681c —8.48¢c* +8.16¢° (24)
10 _(1 Cc)2 ’ c>04

Recently, the most accurate formula on the drag force is proposed by Van Der Hoef et al. (2005)

[14] based on their extensive LBM simulations, as shown in Equation 25.

c

o’ +(1-c)?(1+1.5Vc) (25)

F, =10

7. Calculations of torque on spheres

The torque T exerted on a rotating sphere by a fluid is simulated. The torque Tis very
desirable in practical numerical simulations such as computational fluid dynamics-discrete

element method (CFD-DEM), because it is needed along with torques from other origins to

advance the equations that govern the rotational motion of individual particles. Here, Tin stage

q of a time step can be calculated, as shown in Equation 26.

7= _Z‘ = x FYNAY, +%U\/p r x(pu)dvj, (26)

where V_is the sphere volume, u is the velocity vector of the flow, AV, is the volume for the | th

Lagrangian marker, F"™" is the force experienced by the | th Lagrangian marker, N_represents
the total number of the force iterations in the multi-direct forcing method, r is the position vector

relative to the sphere centroid. The final value of T is obtained in the following expression,

F=> 87", 27)
k=1
where £, denotes the coefficients of the Runge-Kutta scheme. Here, i =4 since the four stages

of the fourth order Runge-Kutta scheme is used.

The torque T due to particle rotation for the near zero solid volume fraction at low
Reynolds numbers has been analytically obtained by Kirchhoff (1876) [24] and Rubinow &
Keller (1961) [25]. It reads
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Tk =—nud’e. (28)
where @ is the angular velocity of the sphere, d is the diameter of the sphere, and x is the
dynamic viscosity of the fluid. It is appropriate to normalize the torque T with the magnitude of

T - Hence, the normalized torque T can be calculated as

T=Tn, =7/nud’|a, (29)
where T represents the magnitude of the normalized torque T and n; is the unit direction vector
of T. In low and intermediate particle Reynolds number flows, the simulations show that the
direction of the torque T is indistinguishable from the opposite direction of the angular velocity

o even when the rotational Reynolds number reaches up toO(10?) . Therefore, n, can be simply

defined by the following expression

, = o/ o . (30)

RESULTS AND DISCUSSIONS
1. Validation of the proposed IB-LBM

1.1 Simple cubic lattice of fixed spheres

The accuracy of the present IB-IBM is demonstrated for both fixed and freely moving
spheres. Here, only flows containing just one sphere are considered. The extension to simulating
flows with multiple spheres can be done easily without any significant difficulties. The
influence of the relaxation coefficients in the multi-direct forcing scheme and of the retraction
distance (rg) on the numerical accuracy is discussed. In all the following simulations, the total
multi-direct forcing loop number is set to Ns=2 to give better no penetration/no slip (np/ns)
condition without incurring too much computational efforts.
1.1.1 Effects of retraction distances on convergence order rate

To the best of our knowledge, this numerical problem has been tested, for the first time,
by Breugem [10]. This problem describes a laminar flow going through a simple cubic lattice of
fixed spheres. Therefore, it suffices to simulate a single sphere positioned in the center of a fully

periodic cubical flow domain. Since the sphere is held fixed in space, the Newton-Euler
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equations do not need to be solved. The desired velocity at the position of the Lagrangian grid
points is simply zero. For the detailed description of this problem, refer to the Ref. [10].

The simulations with D/Ax = 16, 24 and 36 are executed to get the convergence rate of
the current IB-LBM, where D denotes the diameter of the simulated sphere. The error
percentage in Darcy number D, is calculated based on the computational results. From Figure 2,
we can see that the simulation with no retraction (r4=0.0) only gives a 1.17 order accuracy. As
the retraction distance increases, the convergence rate increases first, and then decreases

dramatically after the distance goes beyond 0.35.

—F=—— rd=0.00,»=1.0
—F=— rd=0.30,0=1.0
—H— rd=1/3, w=1.0
—ft—— rd=0.35,m=1.0
10" slope=1.17 — £ —  rd=0.40,0=1.0
[ rd=0.50,w=1.0

C [T RN A W
16 20 24 28 32 36

Figure 2, Error percentages in Darcy number D, as function of the grid resolution at different
retraction distances. The error is relative to the value of the Darcy number D, obtained from
Richardson extrapolation [12] using the data points of D/ Ax = 16, 24 and 36.

It shows that, when ry is between 0.30 and 0.35, the numerical methods become more
than second order accurate. Very surprisingly, rs=0.35 yields a convergence rate higher than
fourth order. It is remarked that, this super convergence will not persist if we refine our Eulerain
grid further. This is because the LBM only predicts the flow field with the second-order

accuracy. However, the super convergence can be very useful since it gives more accurate
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results with the same Eulerain grids. Breugem [10] has shown that the retraction distance
r4=0.30 yields the second-order results. This is confirmed by our simulation.
1.1.2 Effects of relaxation coefficients on convergence order accuracy

In order to evaluate the influence of the relaxation coefficient, the simulations with
different relaxation coefficients are also performed. Figure 3 shows that the convergence rate of
the simulation increase slightly as the relaxation coefficient goes from 1.0 to 1.6. This result
indicates that a value greater than 1 of the relaxation coefficient does help accelerate the multi-
direct forcing procedure. Our simulations also show that the value larger than 1.6 tends to bring
in numerical instabilities to the simulation. Therefore, for general use, ®=1.4 oro=15 is

readily recommended.

2[_
15| = 1d=0.30,0=1.0
i —F— rd=0.30,0=1.4
i —&— rd=0.30,0=1.6
1
. I slope=2.02
[m]
=
Qlﬁ
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=)
=]
-
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TR R [ [ T IR
16 20 28 32 356

24
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Figure 3. Error percentages in Darcy number D, as function of the grid resolution at the same
retraction distance (rq=0.3) with different relaxation coefficients in the multi-direct forcing
scheme. The error is relative to the value of the Darcy number D, obtained from Richardson
extrapolation [12] using the data points of D/Ax =16, 24 and 36.
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1.2 Rotation of a sphere in linear shear flow

This numerical problem has been tested by Bagchi & Balachandar [26] and Kempe &
Frohlich [8]. It presents the rotational motion of a spherical particle in a linear shear flow given
by
u(y)=U, +Sy (31)
The position of the particle is fixed. The particle is free to rotate around the fixed position of its
center, experiencing only torque generated by the surrounding fluid. There are two following
essential dimensionless numbers controlling the flow.

2
Re, = 35’ (32)
G=SD/U, (33)

Res and G are the Reynolds number and the shear parameter, respectively. In the following
simulations, the Reynolds number and the shear parameter are kept 4 and 0.2, respectively.
The retraction distance is fixed to r4=0.3 in the simulations.

Figure 4 shows that the second-order accuracy of resolving the rotational motion of
particles is achieved with the present IB-LBM. We can also see a slight decrease of the accuracy
when the relaxation coefficient increases from 1.0 to 1.4. However, the simulation with o =1.4
still outperforms that with @ =1.0 (no relaxation), in the sense that the former gives smaller error

at the same grids.

2k =] rd=0.30,=1.0
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Figure 4. Error percentages in the angular velocity €,of the particle as function of the grid
resolution at the same retraction distance (r4=0.3) with different relaxation coefficients in the
multi-direct forcing scheme. The error is relative to the value of the angular velocity €, obtained

from Richardson extrapolation [12] using the data points of D/Ax = 6.4, 8 and 10.
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1.3 Freely moving sphere in plane Poiseuille flow

This problem, a freely moving sphere in an upward plane Poiseuille flow, has been tested
by Uhlmann [27] and also by Breugem [10]. This problem serves the good purpose of
demonstrating the accuracy of the present IB-LBM for freely moving particles. To save space,
the description of this problem is omitted here. For details, one can refer to Ref. [10] or [8].

The convergence rates of the simulations on different grids with two different relaxation
coefficients are shown in Figure 5. We can see that both relaxation coefficients give the
numerical methods the third-order accuracy, demonstrating the success of the present

combination of IB-LBM. Here the influence of the relaxation coefficient is very marginal.

2 i slope=3.03

100]U-U_U,,

slope=3.11

13 14 15 16 17

Figure 5. Error percentages in the linear velocity U, of the particle as function of the grid
resolution at the same retraction distance (r4=0.3) with different relaxation coefficients in the
multi-direct forcing scheme. The error is relative to the value of the linear velocity U obtained
from Richardson extrapolation [12] using the data points of D/Ax =12.8, 16, and 20.

2. Final Formulas

2.1. Drag Force

2.1.1 The drag force exerted on solid spheres in simple cubic arrays over low particle Reynolds
numbers and arbitrary solid volume fractions up to the clos-packed limits (7/6)

Drag force exerted on solid particles in simple cubic arrays is simulated for solid volume
fractions up to the close-packed limits in the low particle Reynolds number range, using a
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second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formulas for
drag force exerted on solid particles in simple cubic arrays were developed, based on the
simulation results.

The drag force of a solid particle in simple cubic arrays only needs to be calculated for a
single direction at a constant pressure gradient. Hasimoto (1959) [19] calculated the drag force
on the spheres in dilute ordered arrays. The formula for the normalized drag force exerted on the
spheres in simple cubic arrays was developed as a function of solid volume fractions c, as shown
in Equation 21. Sangani & Acrivos (1982) [28] extended Hasimoto’s results to a higher-order
approximation, as shown in Equation 22.

Almost at the same time, Zick & Homsy (1982) [21] calculated the drag force on spheres
in simple cubic arrays at solid volume fractions up to the close-packed limit. The maximum error
in their computations for around close-packed arrays was believed to be less than 2%, making
their results the benchmark to which the numerical simulation results are often compared
especially at high solid volume fractions (Hill et al. 2001) [29].

The simulations of the drag force exerted on solid particles are performed for each solid

volume fraction at the grid resolutions L/h of 32, 48, 72 and 108, where L denotes the dimension

of the computational domain and h is the grid interval. Simulated drag forces exerted on solid
particles are determined by using the Richardson extrapolation method. The difference between

the simulated drag force results generated at the grid resolutions L/h of 32, 48 and 72 and those

at the grid resolutions L/h of 48, 72 and 108 is only around 0.1%. These simulated drag forces
show that simulations on even finer meshes are not necessary. The simulated results generated
from L/h= 48, 72 and 108 are described in this section. The normalized drag force on the
spheres in a simple cubic array is shown in Figure 6. Our simulation results are in excellent
agreement with the theory of Zick & Homsy. The differences between our simulation results and
those of Zick & Homsy are 0.7%, 0.5%, 0.8%, 0.5%, 1.3%, 1.1%, 1.3% and 1.6% at the solid
volume fractions of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45 and 0.5, respectively. These simulation
results indicate that the difference between our simulation results and those of Zick & Homsy
[21] increases as the solid volume fraction increases. However, all the differences are below 2%,
which is the maximum error percentage claimed in Zick & Homsy’s results. It is believed that
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the present results are more accurate than Zick & Homsy’s at high solid volume fractions, where
their analytical computations suffer from limited order approximations. The computational
results from Hill et al. (2001) [29] also are shown in Figure 6. Their data scatter around the
results of Zick & Homsy [21] due to the insufficient grid resolutions adopted in their simulations.

Zick & Homsy (1982) [21] did not formulate an explicit formula as did Hasimoto (1959)
[19] and Sangani & Acrivos (1982) [28], though they calculated the drag force for the entire
range of the solid volume fraction.

A simple formula for the drag force over the entire packing range and the low particle
Reynolds number range is proposed with the present simulation data for high solid volume
fractions and literature theoretical data for low solid volume fractions, as shown Equation 34.

£ (1-c)[1-1.7601c"® + ¢ —1.5593c? + 3.9799c®* —3.0734c"°*T* ¢<0.2 (34)
° |2.812+2.621c +47.99¢? +16.99¢ 0.2<c<n/6

where the part for ¢ <0.2is from Sangani & Acrivos’s theory and 7/6 ~ 0.524 represent the

theoretical packing limit of simple cubic arrays of spheres. It can be seen that the proposed
formula well reproduces the drag force in the entire packing range, as shown in Figure 6. The
slight deviation of the proposed formula from the dashed line that interpolates the results from
Zick and Homsy is visible for high solid volume fractions. This deviation, as mentioned
above, comes from the limited order approximations adopted in their analytical calculations.
Equation 34, described the drag force as a function of solid volume fractions, still be
applicable to evaluating drag force exerted on rotational solid particles regardless of the values of

rotational Reynolds numbers Re, and rotating axis directions &, since the drag force is not

sensitive with these rotation-related parameters.
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Figure 6. The normalized Stokes-flow drag force on non-rotational spheres in simple cubic
arrays as a function of the solid volume fraction at low particle Reynolds numbers. The
simulation result of Hill et al. (2001) [29] and the results from the theories of Hasimoto (1959)
[19] and Sangani & Acrivos (1982) [28] are also shown. The dashed line interpolates the discrete
results of Zick and Homsy (1982) [21]. The solid line represents the fomula proposed based on
the present simulation data and literature theories.

2.1.2. The drag force on non-rotational solid particles in random arrays over wide-range
packing fractions and low particle Reynolds numbers.

Drag forces exerted on solid particles in random arrays are smulated for solid volume
fractions up to the close-packed limits over the low particle Reynolds number range, using a
second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formulas for
drag force exerted on non-rotational solid particles in random arrays were developed, based on
the simulation results.

The combination of Monte Carlo (MC) [11] procedure and Zinchenko’s method (1994)
[13] is employed to generate random configurations of spheres. Zinchenko's method generates
random sphere configurations as close as possible to the close-packed limit, which is around
0.637. The radius of a sphere in a packed configuration is first decreased and then MC
equilibration steps are applied to obtain small solid volume fractions. The configuration can be
randomized without possible crystallization of small solid spheres by using this procedure.

A series of simulations (at least three) with increasing sphere diameters are conducted for

each configuration. The simulated grid resolutions are 64 x 64x 64, 80x80x80, 108 x108x108,
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144x144x144 , and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144. Richardson extrapolation method is adopted to obtain the final
simulation results for each simulation case, based on the results on the three finest meshes. The
simulation results on 5-8 configurations at each solid volume fraction are usually averaged to
obtain final simulation results. It is still desirable to simulate at least five configurations at each
solid volume fraction to obtain accurate simulation results, though the computation of each
configuration is time consuming.

The solid volume fractions (c) chosen for the simulation of the drag force of solid spheres
are 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.615, 0.63, 0.6340 and 0.6345.

Several existing formulas on drag force are chosen to compare our simulated results with
literature studies. The Carman equation [22] describes the drag force for spheres in practical
dense packing, as shown in Equation 23. Koch & Sangani (1999) [23] proposed the following
formula for the drag force in the entire range of solid volume fractions, as shown in Equation 24.
Recently, Van Der Hoef et al. (2005) [14] has developed the most accurate formula for the drag
force from their extensive LBM simulation data, as shown in Equation 25.

The normalized Stokes-flow drag force F, exerted on non-rotational spheres in random

arrays at various solid volume fractions (c) is shown in Figure 7. The present simulation results
are compared to several sets of numerical data from the literatures. Our simulation results agree
well with the formula proposed by Van Der Hoef et al. (2005) [14]. The present simulation at
the close-packing limit gives slight smaller drag compared to that predicted by Van Der Hoef et
al.’s formula. The simulated drag forces for dense systems actually tend to get close to the
experimental results reported by Ergun (1952) [33].

A new drag formula is proposed to fit the present simulation results over low Reynolds
numbers and full-range packing fractions, as shown in Equation 35.

9.9¢/(1-c)? + (1-c)*(1+3c"®) c<0.55
FD|R%=O =15.87sin((c/0.637)"" 7/2) /(1— c)? 0.55<c<0.637 (35)
(5.87/0.637)c/(1-c)? c>0.637

where 0.637 is the packing limit of the randomly packed bed of monodisperse spheres in

experiments (Scott & Kilgour,1969) [34]. In the range of ¢ <0.55, the present expression takes
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a similar form of Van Der Hoef et al.’s equation. It is found that the maximum difference

between Van Der Hoef et al.’s equation and the present data is less than 3%. The third line in
Equation 35 indicates that Fpl|rep=0 IS equal to (5.87/0.637)c/(1—c)2 for very large solid volume

fraction ¢ above 0.637. This line is added since the solid volume fraction may be beyond the
packed limit for perfectly spherical particles in practical simulation.

Figure 7 shows that the proposed drag law formula, shown in Equation 35, fits our
simulation results very well. The drag force exerted on rotational particles still follows the drag
force formula described in Equation 35, since the drag force is almost unaffected by the

rotational motion of the spheres.
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Figure 7. The normalized Stokes-flow drag force F, (multiplied by the porosity squared) on the
non-rotational spheres in random arrays as a function of the solid volume fraction over low
Reynolds numbers. The simulation results of Ladd (1990) [31], Hill et al. (2001a,b) [30, 32] and
Van Der Hoef et al. (2005) [14] are represented by symbols. The formula proposed by Van Der
Hoef et al. (2005) is represented by a dash dotted line. The results from the theories of Carmen
[22] and Koch & Sangani (1999) [23] are also shown.
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2.1.3 The drag force on solid particles in random arrays at arbitrary variables such as particle
Reynolds numbers, rotational Reynolds numbers and packing fractions

Drag forces exerted on solid particles in random arrays are simulated for solid volume
fractions up to the close-packed limits over the particle Reynolds number range of low to
intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-
LBM). The formula for drag force was developed, based on the simulation results.

A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration. The simulated grid resolutions are 64 x 64 x 64, 80x80x80, 108x108x108,
144x144x144 | and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144.

Richardson extrapolation method is adopted to obtain the final simulation results for each
simulation case, based on the results on the three finest meshes. The simulation results on 5-8
configurations at each solid volume fraction are usually averaged to obtain credible simulation
results. It is still desirable to simulate at least five configurations at each solid volume fraction to
obtain accurate simulation results, though the computation of each configuration is time
consuming.

The drag force formula at arbitrary Reynolds numbers was developed with extensive
simuation results, as shown in Equation 36.

(0.256+1.41c —5.61c” +6.04c)Re, | (1-c)™ +3c(1—c) +8.4Re,***
+
Re, =0 24(1_ C)Z 1+1030 Re;(l+4c)/2

Fo(c,Re,) = Fp| (36)

where FD|Re _, Is the drag force relation at low Reynolds numbers, as shown in Equation 35.
-

The normalized drag force F is simulated over the particle Reynolds number range of

effectively zero to approximately 100, as shown in Figure 8. The proposed drag formula agrees
well with the present simulation results. The drag formulas proposed by Beetstra et al.(2007)
[35] and Tenneti et al.(2011) [36] are compared with the proposed drag formula, as shown in

Figure 8.
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Figure 8. The normalized drag force F, over the particle Reynolds number range of effectively

zero to approximately 100. The drag laws proposed by Beetstra et al. (2007) [35] and Tenneti et
al. (2011) [36] are also shown for comparison.

The drag forces from Beetstra et al.’s law (2007) [40] over-predict those from the
proposed drag force formula, whereas the drag forces from Tenneti et al.’s law (2011) [36]
under-predict those from the proposed drag force formula, as shown in Equation 36.

Figure 9 shows the normalized drag force F, on the spheres in random arrays as a
function of the particle Reynolds number Rep at various solid volume fractions. The error bars

represent the standard deviations in F,. The solid lines from bottom to top are computed for ¢

=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively, using Equation 36.
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Figure 9. The normalized drag force F, on the spheres in random arrays as a function of the

particle Reynolds number Rep at various solid volume fractions. The error bars represent the
standard deviations in F,. The solid lines from bottom to top are computed for ¢=0.1, 0.2, 0.3,

0.4, 0.5 and 0.6, respectively, using Equation 36.
2.2. Magnus Lift Force

2.2.1 The Magnus lift force on rotational solid spheres in simple cubic arrays at low particle
Reynolds numbers, arbitrary rotational Reynolds numbers, and arbitrary packing fractions up to
the close-packed limits

Magnus lift force exerted on solid particles in simple cubic arrays is simulated for solid
volume fractions up to the packed limit over the low particle Reynolds number range, using a
second-order accurate immerse boundary - lattice Boltzman method (IB-LBM). The formula for
Magnus lift force exerted on solid particles in simple cubic arrays was developed, based on the

simulation results.
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The Magnus lift force F_ on rotational solid spheres for various solid volume fractions ¢

was developed solely at low rotational Reynolds numbers due to the linear dependence of the lift

forces on the rotational Reynolds numberRe,. Figure 10(a) depicts the lift force F_as a
function of the solid volume fraction ¢ at Re, =0.1. Figure 10(b) depicts F_ (1-c)? (lift force
multiplied by the porosity squared) as a function of the solid volume fraction ¢ at Re, =0.1. The
data points are computed atRe, =0.1, which provides accurate proportionalities for highRe, .

Using the standard least-squares algorithm, a tentative fit of the data points up to third order
approximation can be developed, as shown in Equation 37.

F_(1-c)?/Re, =(-0.252¢® +0.197¢* —0.0827¢ +0.0412) . (37)

Equation (37), developed solely based on the simulated data for the discrete solid volume
fractions, has a good agreement with the theoretical result developed by Rubinow & Keller
(1961) [25], as shown in Equation 38, as the solid volume fraction c is approaching zero, where
the error is as small as 1.1%, as shown in Equation 38.
F./Re, =1/24. (38)

This good agreement indeed demonstrates that the accuracy of the present numerical methods is
excellent. Our simulation result is compared with the theoretical result of Rubinow & Keller in
Figure 10. This is simply because no results of the Magnus lift force over low particle Reynolds
numbers can be found at non-zero solid volume fractions in the literature and all previous
empirical formulass (e.g., Oesterle & Dinh 1998; Loth 2008) [37] for the Magnus lift force were
not develop over low particle Reynolds numbers.

Equation 37 is modified in order to best fit the present simulation data with the theoretical
result of Rubinow & Keller and also have the correct limiting behavior forc — 0, as shown in
Equation 39.

F_(1-c)?/Re, = (-0.287¢® +0.228¢* - 0.0904c +1/24) . (39)
This proposed formula naturally produces the correct results at the limit of vanishing ¢ and the
largest deviation of this formula with the present numerical data is less than 1%. Thus, Equation
50 can be used in the entire range of ¢ from zero up to the packed limit of simple cubic arrays,
which is7t/6 ~ 0.524 .
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For arbitrary rotating axis directions, arbitrary rotational Reynolds numbers, and arbitrary
solid volume fractions over low particle Reynolds number range, the dependence of the Magnus
lift force on the rotational Reynolds number can be well described as

F_(Re,;6;c) = Re, sin(8)(-0.287¢® + 0.228¢* — 0.0904c +1/24)/(1-c)* c<n/6. (40)
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Figure 10. (a) The normalized Magnus lift force F on the rotational spheres in simple cubic
arrays as a function of the solid volume fraction atRe, =0.1; (b) F.(1-c)?/Rer of the rotational

spheres in simple cubic arrays as a function of the solid volume fraction. The solid line
represents the best fit to the present data atRe, =0.1. The theoretical result calculated by

Rubinow & Keller (1961) [25] at zero solid volume fraction also is shown in Figure 10 (a) and

(b).

2.2.2. The lift force exerted on rotational spheres in random arrays at arbitrary variables such
as rotational Reynolds numbers, particle Reynolds numbers, and packing fractions

Magnus lift forces exerted on solid particles in random arrays are simulated for solid
volume fractions up to the close-packed limits over the particle Reynolds number range of low to
intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-

LBM). A new formula for lift force was developed, based on the simulation results.
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A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration. The simulated grid resolutions are 64 x 64 x 64, 80x80x80, 108x108x108,
144x144x144 , and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144.

Richardson extrapolation method is adopted to obtain the final results for each simulation
case, based on the results on the three finest meshes. The simulation results on 5-8
configurations at each solid volume fraction are usually averaged to obtain credible simulation
results. It is still desirable to simulate at least five configurations at each solid volume fraction to
obtain accurate simulation results, though the computation of each configuration is time
consuming.

The lift force of rotational spheres with the solid volume fractions of 0.1, 0.3 and 0.6 is
simulated over the rotational Reynolds number ranges of 0.1 - 500. The lift force exerted on
rotational spheres for each solid volume fraction is simulated at a rotational Reynolds number of
0.1. The lift force exerted on solid spheres is simulated at the particle Reynolds number range of
effective zero to approximately 100 to explore inertia effects on the lift force.

Figure 11 depicts the normalized lift force F_exerted on the rotational spheres in random

arrays as a function of particle Reynolds numbers at the rotational Reynolds number of 0.1.
The lift force decreases progressively at a fixed rotational Reynolds number as the particle
Reynolds number increases. The lift force at the lower solid volume fraction 0.1 tends to
approach a steady value at the particle Reynolds number above 50, whereas the lift force at the
larger solid volume fraction 0.6 decreases even at the particle Reynolds number above 100.
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0.008 1= [u} present sinmulation D008 = u] present simulation 0.008 1= [u} present sinmulation
present lift law present lift law present lift law
0.006 - 0.006 0.006 [~
= & =
0.004 - 0 UN&\E\E\E\J_Q 0.004
0 U[)ZM 0002 0.002
jinf
0 I | L I I ) 0 ! I ! ! ) 0 I L I
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Rep Rep Rep

Figure 11. The normalized lift force F_ exerted on the rotational spheres in random arrays as a
function of particle Reynolds numbers at the rotational Reynolds number of 0.1.
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The lift forces were simulated at the solid volume fraction 0.3 and various particle
Reynolds numbers over the rotational Reynolds number range of 0.1 - 500 to investigate the

dependence of the lift force on the rotational Reynolds number, as shown in Figure 12.
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Figure 12. The normalized lift force F_ exerted on the rotational spheres in random arrays as a

function of rotational Reynolds numbers at the solid volume fraction of 0.3 and various particle
Reynolds numbers.
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The lift force produced by the rotation movement is directly proportional to the rotational
Reynolds number. The lift force is very insignificant at the rotational Reynolds number below
than 1. However, the lift force can be larger than the drag force as the rotational Reynolds
number becomes larger at especially low solid volume fractions.

2.2.3 The Magnus lift force on solid spheres in random arrays at arbitrary variables such as
particle Reynolds numbers, rotational Reynolds numbers and packing fractions

Magnus lift forces exerted on solid particles in random arrays were simulated for solid
volume fractions up to the close-packed limits over the particle Reynolds number range of low to
intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-
LBM). The formulas for Magnus lift force was developed with the simulation results..

A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration. The simulated grid resolutions are 64 x 64 x 64, 80x80x80, 108x108x108,
144x144x144 | and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144.

Richardson extrapolation method is adopted to obtain the final simulation results for each
simulation case, based on the results on the three finest meshes. The simulation results on 5-8
configurations at each solid volume fraction are usually averaged to obtain credible simulation
results. It is still desirable to simulate at least five configurations at each solid volume fraction to
obtain accurate simulation results, though the computation of each configuration is time
consuming.

Figure 13 depicts F, (1—c)2/Rer of solid spheres in random arrays as a function of the solid
volume fraction c over low particle Reynolds numbers at Re, =0.1. Also shown in Figure 13 are
the error bars that represent the standard deviations of the data points. This figure shows that the
dependence of F, (1—c)2/Rer on c is approximately linear.

The best fit to describe this dependence is proposed, as shown in Equation 41.

F (1- c)Z/Rer =-0.0398c +0.0317 ¢<0.637. (41)

The standard least-squares algorithm is adopted to calculate the coefficient in the new formula
from extensive simulation results. The maximum difference in the entire range of packing

fractions between Equation 41 and the simulation data is only around 5%, providing a good
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support of the observed linear dependence. It is noted that the Magnus lift force exerted on solid
particles in random arrays is relatively smaller than that in simple cubic arrays at all solid volume
fractions. This is because the random positioning allows some of spheres to stay closer to each
other, and making spheres hidden behind others experiences smaller flow velocity and

consequently produce less Magnus lift force.
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Figure 13. The normalized Magnus lift force F_ (multiplied by the porosity squared over the

rotational Reynolds number) on the rotational spheres in random arrays as a function of the solid
volume fraction over low particle Reynolds numbers. The error bars represent the standard
deviations AF, inF_. The simulation data of F_ come from the simulations at Re, =0.1. A line

is shown to fit the simulation results in the entire range of packing fractions.

A formula for the Magnus normalized lift force was proposed with extensive simulation

results, as shown in Equation 42.

F_=0.02Re, +(F_ |z, - —0.02Re, ) exp((—0.106 +0.132c)Re;°), (42)
where Re, is the rotational Reynolds number and F_ |, _, is the Magnus lift force at low particle

Reynolds numbers, as shown in Equation 41.
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Figure 14 compares the proposed formula with the simulation results, where the lift force
values from the proposed formula are fairly agreeable with those from simulated results. The
normalized Magnus lift force F__ at each solid volume fraction in Figure 14 approaches a constant

value of 0.02 as the particle Reynolds number increases.
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Figure 14. The normalized Magnus lift force F_on the rotational spheres in random arrays as a
function of the particle Reynolds number at Re, =0.1. The error bars represent the standard
deviations in F,_. The solid lines for ¢=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are generated from Equation
42.

The above normalized Magnus lift force formulas as shown in Equations 41 and 42 were
proposed when the rotating axis direction of particles is perpendicular with the flow direction.
For arbitrary rotating axis directions, our simulation results show that the dependence of the
Magnus force on the rotational Reynolds number can be well described by simply changing the
Re, toRe, sin(d), where @ is the angle between the rotating axis direction and the flow
direction, as shown in Equations 43 and 44. It needs to be mentioned that, the change of & does
not significantly affect the expressions for the normalized torque and drag force.

F_(Re,;0;c) = Re, sin(8)(-0.0398c + 0.0317)/(1—0)2 c<0.637. (43)
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Therefore, for arbitrary particle Reynolds number and packing fractions, the dependence of the
lift force on the rotational Reynolds number can be well described as

F,(Re,; 0;¢) = sin(0) [ 0.02Re, + (FLlRep=0 — 0.02Re; ) exp ((=0.106 + 0.132c)Re®)]  (44)
2.3. The ratio of the Magnus lift force to the drag force

The ratio of F_ to F, is calculated in the entire range of solid volume fractions ¢ based
on the simulation results as well as the proposed formulas to clearly identify the importance of
the Magnus lift force F, relative to the drag force F, on spheres in random arrays,.

The values of F_at @=m/2 only are used for simplicity. The ratios of F_to F, of solid

partices in random arrays at low particle Reynolds numbers are shown in Figure 15. The line in
Figure 15 is calculated from dividing the lift force formula (see Equation 41) by the drag force
formula (see Equation 35). The ratio of F_ to F, first decreases steeply in the range of ¢<0.1,

and then gradually, as ¢ further increases. Most of the simulation results agree well with the
solid line data calculated from proposed formulas except those at Re, > 50 for low solid volume

fractions, which is due to the nonlinearity of the flow at Re, >50. Figure 15 demonstrates that
the lift force can be very significant and even greater than the drag force when Re, is up to

0O(10%), which is still in the practical range. Close observation reveals that the lift-to-drag ratio
will be over unity in the solid volume fraction range of ¢ < approximately 0.17 at the rotational
Reynolds number Re, of 100.
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Figure 15. The ratio of the normalized Magnus lift force F_to the normalized drag force F, on

the rotational spheres in random arrays over low particle Reynolds numbers as a function of the
solid volume fraction. The solid lines are calculated from the proposed relations for K and F;.
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The lift force can be safely ignored in the high solid volume fraction range of ¢ > 0.3and
the rotational Reynolds number range of Re, < 10, where the lift-to-drag ratio is generally less

than 0.07. However, the lift force of rotating spheres is significant at high rotation rates. For
instance, the lift-drag-ratios for ¢ =0.3and 0.5 at the rotational Reynolds number Re, =100 are

around 0.58 and 0.23 respectively.

Figure 16 shows the lift-to-drag ratios at various solid volume fractions in the particle
Reynolds (Rep) number range of low to intermediate. The lines in Figure 16 are calculated from
dividing the lift force formula (see Equation 42) by the drag force formula (see Equation 36).
Ratios of the lift force to the drag force decrease with increased particle Reynolds numbers.
However, the lift force still can be very significant when the rotational Reynolds number is

around O(10%). The lift-to-drag ratios with the rotational Reynolds number Re, =100 and the
particle Reynolds number Re = 10 are 0.85 at c=0.1 and 0.11 at c=0.6, while the lift-to-drag
ratios with the particle Reynolds number Re = 100 and the particle Reynolds number Re = 100

are 0.26 at ¢c=0.1 and 0.03 at c=0.6.

Overall, it is believed that the Magnus lift force appearing in a direction perpendicular to
the drag force with a non-negligible magnitude may appreciably affect and complicate the
particle fluid dynamics in practical flow systems. Thus, the inclusion of the Magnus lift force in
flow simulations is practically important.
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Figure 16. The ratio of the normalized Magnus lift force F_to the normalized drag force F, on

the rotational spheres in random arrays as a function of the solid volume fraction in the particle
Reynolds number (Rep) range of low to intermediate. The solid lines are calculated with the
proposed formulas for F_(Equation 42) and F, (Equation 36).

47



2.4. Torque

2.4.1 The normalized torque on solid spheres in simple cubic arrays over low particle Reynolds
numbers.

Torque exerted on solid particles in simple cubic arrays was simulated for solid volume
fractions up to the close-packed limits over the particle Reynolds number range of low to
intermediate, using a second-order accurate immerse boundary - lattice Boltzman method (IB-
LBM). The formula for torque force was developed, based on the simulation results.

A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration. The simulated grid resolutions are 64 x 64 x 64, 80x80x80, 108x108x108,
144x144x144 | and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144.

Richardson extrapolation method is adopted to obtain the final simulation results for each
simulation case, based on the results on the three finest meshes. The simulation results on 5-8
configurations at each solid volume fraction are usually averaged to obtain credible simulation
results. It is still desirable to simulate at least five configurations at each solid volume fraction to
obtain accurate simulation results, though the computation of each configuration is time
consuming.

The simulation results of the normalized torque exerted on spheres in simple cubic arrays
are shown in Figure 17. The simulated torque value extrapolated to the zero solid volume
fraction agrees with that predicted by Rubinow & Keller’s theory [25]. This observation further
validates the present numerical method. A formula for the normalized torque acting on the
sphere in simple cubic arrays is proposed based on the present simulation results, as shown in
Equation 45.

T =(-14.09c* +10.26¢° — 2.916¢* —0.7480c +1)*. (45)
This formula naturally produces correct torque values at the limit of vanishing c. The torque
formulas of Rubinow & Keller (1961) [25] and Kirchhoff (1876) [24] predict that the torque
value T is 1 at the zero solid volume fraction. The largest deviation of this formula with the

present numerical simulation results is less than 1%. Though this formula is developed based on
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the simulation torque data at the rotational Reynolds number Re, =0.1, it is valid for Re, up to

O(10%) due to the simple linear dependence of the torque on the rotational Reynolds number.
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Figure 17. The normalized torque T exerted on the rotational spheres in simple cubic arrays as a
function of the solid volume fraction c. The solid line represents the formula (Eq. (45)) to the
present simulation results at Re, =0.1. Also shown is the theoretical result calculated by

Rubinow & Keller (1961) [25] at zero solid volume fraction.

2.4.2 The normalized torque exerted on rotational spheres in random arrays over low and
intermediate particle Reynolds numbers

Torque exerted on solid particles in random arrays was simulated for solid volume
fractions up to the close-packed limits of random arrays in the particle Reynolds number range of
low to intermediate, using a second-order accurate immerse boundary - lattice Boltzman method
(IB-LBM). The formula for torque was developed, based on the simulation results.

A series of simulations (at least three) with increasing sphere diameters are conducted for
each configuration. The simulated grid resolutions are 64 x 64x 64, 80x80x80, 108 x108x108,
144x144x144 | and 192x192x192 . The numbers of the spheres simulated in the computational
domain are all fixed to 144.

Richardson extrapolation method is adopted to obtain the final simulation results for each
simulation case, based on the simulation results on the three finest meshes. The simulation

results on 5-8 configurations at each solid volume fraction are usually averaged to obtain
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credible simulation results. It is still desirable to simulate at least five configurations at each solid
volume fraction to obtain accurate results, though the computation of each configuration is time
consuming.

The normalized torque T on the rotational spheres in random arrays as a function of the
solid volume fraction over low particle Reynolds numbers is depicted in Figure 18. The

simulation results of T shown in Figure 18 also come from the simulations at Re, =0.1. It is
remarked that the normalized torque T keeps nearly constant with increasing Re, up to O(10%)
and only slight deviation is observed at large Re, . Therefore, the simulation results of T at a

small Re, such asRe, = 0.1 are good enough to represent those of T at Re, up to O(10%) for each

solid volume fraction. The following formula of normalized torque T over low particle Reynolds

numbers is proposed to best fit simulation results for the entire packing fractions

T =(-13.19¢* +14.41c® - 4.291c* - 0.9747c +0.9465) ™ (46)

The largest deviation of this fit from the present numerical simulation results is less than 1% for
¢ <0.5 and around 5% forc > 0.5. The larger deviation at high capparently is related to the
sharp increase of T in that range (see Figure 18), which essentially is caused by the dramatically

shrinking space among spheres as ¢ approaches the packing limit.
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Figure 18. The normalized torque T on the rotational spheres in random arrays as a function of
the solid volume fraction over the low particle Reynolds number range atRe, =0.1. The error

bars represent the standard deviations in T . The solid line (Eq. 46) is shown to fit the simulation
results in the entire range of packing fractions.
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For intermediate particle Reynolds numbers, the normalized torque T on the rotational

spheres in random arrays as a function of the particle Reynolds number are shown in Figure 19.

The following expression is proposed to fit the torque results simulated at various solid volume

fractions and particle Reynolds numbers,

T =9(C) +(T |, o —9(c)) exp(f (c)Re,"), (47)
where

g(c) =exp(3.01c +0.137), (48)

f (c) =—0.0462 +0.174c —0.184c?, (49)

and T, orepresents the torque at low particle Reynolds numbers, which is from

Equation 46. The agreement between Equation 58 and the simulation results is fairly good, as

shown in Figure 19.
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Figure 19. The normalized torque T on the rotational spheres in random arrays is shown as a
function of particle Reynolds numbers. The error bars represent the standard deviations in T .
The solid lines for ¢=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 are generated from Equation 47.
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3. Installation of the proposed formulas in MFiX

Three new subroutines must be created to install the proposed formulas for the drag
force, Magnus lift force, and the torque in the open source software MFiX. The three new
subroutines in the file drag_gs.f are added to the framework of the original MFiX. The details of
the three subroutines are listed, as shown in the Appendix.

4. Bubbling bed simulated with proposed formulas through MFiX

This numerical example has been tested by many researchers, such as Muller et al. (2009)
[38] and Li et al. (2012) [39]. The parameter used can be found in detail in Li et al. (2012), thus,
is omitted here.

Figure 20 depicts the lateral void fraction (¢ =1-c) at 31.4 mm above the distributor and
the superficial gas velocity of 0.6 m/s. Li et al. [44] also used the MFIX but with
DES_INTERP_ON turned off. It can be seen that, after turning DES_INTERP_ON on, the
present results and Gidaspow drag law (Gidaspow, 1994) [40] gives better prediction at the two
sides of the bed but worse prediction at the middle particle of the bed. It can also be seen that, the
present drag law gives similar results to those from Gidaspow drag law.
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Figure 20. Lateral void fraction (¢ =1-c) profiles at 31.4 mm above the distributor and the
superficial gas velocity of 0.6 m/s. x: vertical distance from the wall of the boiling bed.
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The BVK (Beetstra et al. 2007) [35] drag law is also tested. It also produces similar
results compared to Gidaspow drag law and the present drag law. The Magnus lift law and the
torque law are also simulated with the present drag law. However, no visible difference is
produced compared to the case without invoking the Magnus lift law and the torque law. It might
be because the current collision model cannot produce high spinning rates for particles and hence
the lift force is very insignificant compared to the drag force.

Figure 21 depicts the lateral void fraction (¢ =1—c ) at 31.4 mm above the distributor and
the superficial gas velocity of 0.9 m/s. The present drag law predicts best the void fraction at one
side of the bubbling bed, and underestimates void fractions in the middle of the bed in
comparison with the experimental data (Muller et al. 2009) [38]. However, the void fraction
profiles produced by the present drag law appear to be asymmetric. Nevertheless, the better
prediction of void fractions at one side of the bed is very promising. Comprehensive numerical
studies are needed to fully understand the performance of the proposed formulas.
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Figure 21. Lateral void fraction (¢ =1-c) profiles at 31.4 mm above the distributor and the
superficial gas velocity of 0.9 m/s. x: vertical distance from the wall of the boiling bed.
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CONCLUSIONS

The multi-direct forcing method is adopted in the improved IBM to better approximate
the no-slip/no-penetration (ns/np) condition on the surface of particles, and a slight retraction of
the Lagrangian grid from the surface towards the interior of particles with a fraction of the
Eulerian grid spacing helps increase the convergence rate of the direct numerical method. The
method is further improved by an over-relaxation technique in the procedure of multi-direct
forcing method and an implementation of the classical fourth order Runge-Kutta scheme in the
coupled fluid-particle interaction. The over-relaxation technique is demonstrated to yield higher
orders of convergence when the retraction distance is fixed.

An over-relaxation technique in the procedure of multi-direct forcing method and the
classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied
to upgrade our old code by improving the accuracy of the combined IB-LBM. The use of the
classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order
accuracy and provides more accurate predictions of the translational and rotational motion of
particles. The old code with the first-order convergence rate is updated so that the updated new
code can resolve the translational and rotational motion of particles with the second-order
convergence rate. The updated code has been validated with several benchmark applications.

The new IB-LBM code has been further improved by the adoption of a new formula for
the number of Lagrangian markers. Less Lagrangian markers are needed with the new formula
than those used in the previous literature to achieve a desired computational accuracy. The
simulation results with less Lagrangian markers in this study are in good agreement with
literature results with more Lagrangian markers. Second-order convergence rate of numerical
solutions can be achieved by slightly retracting Lagrangian markers from the surface towards the
interior of particles with a fraction of the Eulerian grid spacing. In order to accomplish the major
task of examining the drag force exerted on a cluster of particles, the IB-LBM code along with
the new formula for the number of Lagrangian markers has been further validated by solving a
set of theoretical problems.

The code has been upgraded even further to be capable of simulating simultaneously

multiple particles. Besides that, the parallelization of the overall IB-LBM, which is very crucial
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to speed up the further simulations, has also been done. The accuracy of the parallel code has
been fully validated by comparing the results to those generated by the original serial code.

Flows through non-rotational and rotational spheres in simple cubic arrays and random
arrays are simulated over the entire range of packing fractions, and both low and moderate
particle Reynolds numbers to compare the simulated results with the literature results and
develop a new drag force formula, a new lift force formula, and a new torque formula. Random
arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's
method to avoid crystallization of solid particles with high solid volume fractions. Particle
Reynolds number are kept very low to ensure flows of fluids around solid particles in the Stokes
regime.

The simulated drag force exerted on the non-rotational spheres shows excellent
agreement with the existing theories. Simulated drag forces of non-rotational particles as well as
rotational particles are found to follow well the drag law proposed by Van Der Hoef et al except
at the packing-limit solid volume fractions. A new drag force law is developed with extensive
simulated results to be closely applicable to real processes over the entire range of packing
fractions and both low and moderate particle Reynolds numbers. The simulation results indicate
that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically
unchanged as the angle of the rotating axis varies.

A new lift force formula was developed with comprehensive simulated results as a
function of arbitrary rotational Reynolds numbers over the entire range of packing fractions, and
low and moderate particle Reynolds numbers. The lift force exerted on the rotational spheres is
directly proportional to the rotational Reynolds number. The lift force also is very insignificant at
rotational Reynolds numbers below 1. The lift force can be larger than the drag force as the
rotational Reynolds numbers get higher especially at low solid volume fractions. In previous
simulations, effects of the particle rotation on lift forces are not considered significant and thus
the lift force is totally ignored in their drag law. This study demonstrated that the lift force
caused by the particle rotation can be very significant compared to the drag force and must be
considered in further study on two-fluid simulations.

The torque exerted on spheres by a fluid phase was investigated as another important

factor to fully understand and quantify particle-fluid interactions in addition to the drag force and
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the Magnus lift force exerted on solid spheres. The torque is also very essential to advance the
angular momentum equation for solid particles in discrete particle simulations (DPM). A
formula for the torque exerted on spheres in random arrays was developed with simulation
results over the solid volume fraction range of effective zero up to the close-packed limits and
low to intermediate particle Reynolds numbers. The normalized torque keeps nearly constant
with low rotational Reynolds numbers, whereas slight deviation is observed at high rotational
Reynolds numbers.

Simulations for a bubbling fluidized bed were performed, using the proposed new
formulas through the MFiX. The proposed new drag formula for the bubbling fluidized bed with
lower superficial gas velocity gives similar results compared to the previous drag laws such as
Gidaspow and BVK, whereas the proposed new drag formula for a bubbling bed with higher
superficial gas velocity predicts better void fraction at one side of the bubbling bed than the other
side, and the void fraction profiles produced by the present drag formula appears to be
asymmetric. The better prediction of the void fractions at one side of the bed is very promising.
More comprehensive numerical studies are needed to fully understand the performance of the
proposed formulas.
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PUBLICATION

We plan to publish the proposed new formulas in a timely manner. These new formulas
can be accessed and tested by the public. Readers of this report are also encouraged to explore
the features with freedom. All the new files for the installation of the three laws into MFiX will

be provided upon the request.
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APPENDIX

Three new subroutines were created to install the proposed formulas for the drag force, Magnus
lift force, and the torque in the open source software MFiX. The three new subroutines in the file
drag_gs.f were added to the framework of the original MFiX. The details of the three

subroutines are listed
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|

Subroutine: DRAG NEW
Purpose: Calculate the gas—solids drag coefficient

oNoNeNeNe

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVYVVY VYV VYV

SUBROUTINE DRAG_NEW (1DgA, EPg, Mug, ROPg, VREL, &
DPM, DPA, PHIS)

Modules

USE param

USE paraml

USE constant, only : PI
IMPLICIT NONE

Dummy arguments

drag coefficient

DOUBLE PRECISION, INTENT(OUT) :: 1DgA
gas volume fraction

DOUBLE PRECISION, INTENT(IN) :: EPg
gas laminar viscosity

DOUBLE PRECISION, INTENT(IN) :: Mug
gas density*EP g

DOUBLE PRECISION, INTENT(IN) :: ROPg
magnitude of gas—solids relative velocity

DOUBLE PRECISION, INTENT(IN) :: VREL
particle diameter of solids phase M or

DOUBLE PRECISION, INTENT(IN) :: DPM
average particle diameter

DOUBLE PRECISION, INTENT(IN) :: DPA
total solids volume fraction of solids phases

DOUBLE PRECISION, INTENT(IN) :: PHIS

Local variables

Reynolds number

DOUBLE PRECISION :: RE
Stokes Drag Force

DOUBLE PRECISION :: F_STOKES
dimensionless drag force F

DOUBLE PRECISION :: F

IF (Mug > ZERO) THEN
Note the presence of gas volume fraction in ROPG
RE = DPA*VREL*ROPg/Mug ! use DPA
ELSE
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RE = LARGE_NUMBER
ENDIF

F STOKES = 18D0Mug#EPg/DPM#%2 | use DPM

IF (phis <= 0.55D0) THEN

F = 9.9d0*phis/EPg#*2 + EPg#*3% (ONE+3d0* (phis) **0. 6d0)
ELSEIF (phis <= 0. 637D0) THEN

F = 5.87d0%sin((phis/0. 637d0)**1. 75d0*PI/2. d0) /EPg+**2
ELSE

F = 5.87d0/EPg#*2
ENDIF

F = F + (0.256d0+1. 41d0*phis—5. 61d0%phis**2+6. 04d0*phis**3)*RE/ (24. d0*EPg**2) * &
(ONE/EPg + 3d0*EPg#phis + 8.4d0/RE**0.343d0) / &
(ONE+10. dOs* (3d0*phis) /RE#* (0. 5d0+2. dO*phis))

1DgA = F#F STOKES
IF (RE == ZER0) 1DgA = ZERO

RETURN
END SUBROUTINE DRAG_NEW

I VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VYV VYV VYV VYV VY YVC
Subroutine: MLIFT NEW

I
!
I Purpose: Calculate the Magnus lift force coefficient due to
! particle rotation
I
I

oNeoNeNeNe

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVYYVVE

SUBROUTINE MLIFT NEW(1DgA, EPg, Mug, ROPg, VREL, MOMEGA, &
sinVOMEGAtheta, DPM, DPA, PHIS)

! Modules

USE param
USE paraml
IMPLICIT NONE

|
! Dummy arguments
|
|

| drag coefficient

DOUBLE PRECISION, INTENT(OUT) :: 1DgA
! gas volume fraction

DOUBLE PRECISION, INTENT(IN) :: EPg
! gas laminar viscosity

DOUBLE PRECISION, INTENT(IN) :: Mug
! gas density*EP g

DOUBLE PRECISION, INTENT(IN) :: ROPg
! magnitude of gas—solids relative velocity
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DOUBLE PRECISION, INTENT(IN) :: VREL
! magnitude of particle angular velcoity
DOUBLE PRECISION, INTENT(IN) :: MOMEGA
! sin of the angle between gas—solids relative velocity and particle angular velcoity
DOUBLE PRECISION, INTENT(IN) :: sinVOMEGAtheta
| particle diameter of solids phase M or
DOUBLE PRECISION, INTENT(IN) :: DPM
| average particle diameter
DOUBLE PRECISION, INTENT(IN) :: DPA
! total solids volume fraction of solids phases
DOUBLE PRECISION, INTENT(IN) :: PHIS

Local variables

Reynolds number
DOUBLE PRECISION :: RE

! Rotational Reynolds number

DOUBLE PRECISION :: RER
I Stokes Drag Force

DOUBLE PRECISION :: F _STOKES
! dimensionless drag force F
DOUBLE PRECISION :: F

IF (Mug > ZERO) THEN
! Note the presence of gas volume fraction in ROPG

RE = DPA*VREL*ROPg/Mug ! use DPA
RER =sinVOMEGAtheta*DPA**2+MOMEGA*ROPg/Mug
ELSE

RE = LARGE_NUMBER
RER = LARGE_NUMBER
ENDIF

F STOKES = 18D0*Mug#EPg/DPM#%2 | use DPM

F = (-0.0398d0*phis+0. 0317d0) /EPg#*2 *RER

9]
I

RER:* (0. 02d0+ (F-0. 02d0) *exp ((=0. 106d0+0. 132d0*phis) #RE#*0. 9d0) )

1DgA = F*F STOKES*VREL !direction is from V cross OMEGA
IF (RE == ZERO. or. RER == ZER0) 1DgA = ZERO

RETURN
END SUBROUTINE MLIFT NEW

I VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVV VYV VC

Subroutine: TORQUE NEW
Purpose: Calculate the Torque coefficient due to particle rotation

SN oNeoNeNe

!
!
!
!
1
I VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VYV VYV VYV YV VY YVC
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SUBROUTINE TORQUE_NEW (1DgA, EPg, Mug, ROPg, VREL, MOMEGA, &

DPM, DPA, PHIS)

Modules

USE param

USE paraml

USE constant, only : PI
IMPLICIT NONE

Dummy arguments

drag coefficient

DOUBLE PRECISION, INTENT(OUT) :: 1DgA
gas volume fraction

DOUBLE PRECISION, INTENT(IN) :: EPg
gas laminar viscosity

DOUBLE PRECISION, INTENT(IN) :: Mug
gas density*EP g

DOUBLE PRECISION, INTENT(IN) :: ROPg
magnitude of gas—solids relative velocity

DOUBLE PRECISION, INTENT(IN) :: VREL
magnitude of particle angular velcoity

DOUBLE PRECISION, INTENT(IN) :: MOMEGA
particle diameter of solids phase M or

DOUBLE PRECISION, INTENT(IN) :: DPM
average particle diameter

DOUBLE PRECISION, INTENT(IN) :: DPA
total solids volume fraction of solids phases

DOUBLE PRECISION, INTENT(IN) :: PHIS

Local variables

Reynolds number

DOUBLE PRECISION :: RE
Rotational Reynolds number

DOUBLE PRECISION :: RER
Stokes Torque

DOUBLE PRECISION :: Torque STOKES
dimensionless toque Tor

DOUBLE PRECISION :: Tor
dimensionless function for torque

DOUBLE PRECISION :: Torg, Torf

IF (Mug > ZERO) THEN
Note the presence of gas volume fraction in ROPG

RE = DPA*VREL*ROPg/Mug ! use DPA
RER =DPA#*2:4MOMEGA*ROPg/Mug
ELSE
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RE = LARGE_NUMBER
RER = LARGE_NUMBER
ENDIF

Torque_STOKES = PI*Mug*DPM#*3 ! use DPM

Tor = 1.d0/(=13. 19d0*phis**4+14. 41d0%phis**3-4. 291d0*phisk*2-&
0. 9747d0*phis+0. 9465d0)

Torg=exp (3. 01d0*phis+0. 317d0)

Torf=(-0. 0462d0+0. 174d0*phis—0. 184d0%*phis**2)

Tor =Torg+ (Tor-Torg)*exp (Torf*RE**x0. 9d0)

1DgA = Tor*Torque STOKES
IF (RER == ZERO) 1DgA = ZERO

RETURN
END SUBROUTINE TORQUE_ NEW

To use the new formulas, modification must be made in the subroutine named
DES_DRAG_GP, which is in the file drag_fgs.f. The new subroutine of DES_DRAG_GP is
pasted as follows,

IVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVV VYV VYV VY VYV VYV

! C
! Subroutine: DES DRAG GP C
! Purpose: Calculate the gas—particle drag coefficient using C
! the gas velocity interpolated to the particle position C
! and the particle velocity. C
! Invoked from des drag gs and calc des drag gs C
! C
! Comments: The BVK drag model and all drag models with the C
! polydisperse correction factor (i.e., suffix PCF) C
! require an average particle diameter. This has been C
! loosely defined for discrete particles based on their C
! solids phase C
! C
! Variables referenced: C
I Variables modified: C
! Local variables: C
! C
|T T nnnnnnnnn et C

ISUBROUTINE DES_DRAG_GP(LL, FLUID VEL, PARTICLE VEL)
SUBROUTINE DES DRAG_GP(LL, FLUID_VEL, PARTICLE_VEL, PARTICLE OMEGA)

! Modules
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USE param
USE paraml
USE fldvar
USE geometry
USE indices
USE physprop
USE run

USE constant
USE compar
USE drag
USE sendrecv
USE discretelement
USE ur facs

IMPLICIT NONE

Dummy arguments

particle number id
INTEGER , INTENT(IN) :: LL

! fluid velocity interpolated to particle position

DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: FLUID VEL
! particle velocity

DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: PARTICLE_VEL
| particle angular velocity
DOUBLE PRECISION, DIMENSION(3), INTENT(IN) :: PARTICLE OMEGA

Local variables

indices, associated with current particle
INTEGER :: IJK
! solids phase index, associated with current particle
INTEGER :: M
! magnitude of gas—solids relative velocity
DOUBLE PRECISION :: VREL
I components of gas—solids relative velocity
DOUBLE PRECISION, DIMENSION(3) ::VRELcom
I magnitude of relative particle angular velocity
DOUBLE PRECISION :: MOMEGA
! components of the cross production between gas—solids relative velocity
! and relative particle angular velocity
DOUBLE PRECISION, DIMENSION(3) ::VcrossOMEGA
! magnitude of the above cross production
DOUBLE PRECISION :: MVcrossOMEGA
!sin of the angle between gas—solids relative velocity and particle angular velcoity
DOUBLE PRECISION :: sinVOMEGAtheta
| gas laminar viscosity redefined here to set viscosity at pressure
! boundaries
DOUBLE PRECISION :: Mu
! drag coefficient
DOUBLE PRECISION :: DgA
I Lift coefficient
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DOUBLE PRECISION :: MDgA

! Torque coefficient

DOUBLE PRECISION :: TDgA

! current value of F gs (i.e., without underrelaxation)
DOUBLE PRECISION F_gstmp

! current value of F gsM (i.e., without underrelaxation)
DOUBLE PRECISION F_gsMtmp

! indices of solids phases (continuous, discrete)

INTEGER :: CM, DM, L

! temporary shift of total number of solids phases to account for both
I discrete and continuous solids phases used for the hybrid mdoel
INTEGER :: MAXM

! tmp local variable for the particle diameter of solids

! phase M (continuous or discrete)

DOUBLE PRECISION :: DP loc (2%DIM M)

! tmp local variable for the solids volume fraction of solids
! phase M (continuous or discrete)

DOUBLE PRECISION :: EPs loc (2+DIM M)

! tmp local variable for the particle density of solids

! phase M (continuous or discrete)

DOUBLE PRECISION :: ROs loc (2+DIM M)

I correction factors for implementing polydisperse drag model
| proposed by van der Hoef et al. (2005)

DOUBLE PRECISION :: F cor, tmp sum, tmp fac

| average particle diameter in polydisperse systems

DOUBLE PRECISION :: DPA

! diameter ratio in polydisperse systems

DOUBLE PRECISION :: Y i

I total solids volume fraction

DOUBLE PRECISION :: phis

I aliases for void fraction, gas density, gas bulk density

! solids volume fraction, particle diameter, particle density
DOUBLE PRECISION :: EPG, ROg, ROPg, EP_SM, DPM, ROs

! Include statement functions

INCLUDE ' .. /function. inc
INCLUDE .. /ep sl.inc
INCLUDE .. /ep s2.inc

! values based on current particle

1JK = PIJK(LL, 4)

I solids phase index of current particle
M = PIJK(LL, 5)

! Assign local variables DP loc, EPs loc, and MAXM. These
! represent arrays for the particle diameter, solids volume
| fraction, and number of particle types (i.e., phases).
IF (.NOT.DES_CONTINUUM HYBRID) THEN

MAXM = DES_MMAX

DO DM = 1, MAXM
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DP_loc(DM) = DES D pO(DM)
EPs_loc (DM) = DES_ROP_S (I1JK, DM) /DES_RO_S (DM)
ROs_loc (DM) = DES RO_S (DM)
ENDDO
ELSE ! des continuum hybrid branch
For the hybrid model the diameters and solids volume fractions of
of both discrete and continuous are stored in this single quantity
Any loops of solids phases will include all solids phases (discrete
and continuum)
MAXM = SMAX + DES_MMAX
! populate DP, EPS starting with discrete phases
DO DM = 1, DES_MMAX
DP_loc (DM) = DES_D_pO (DM)
EPs loc (DM) = DES ROP_S(IJK,DM)/DES RO S (DM)
ROs loc(DM) = DES RO S(DM)
ENDDO
DO CM = 1, SMAX
L = DES_MMAX + CM
DP_loc (L) = D _P(IJK, CM)
EPs loc(L) = EP_S(IJK, CM)
ROs_loc(L) = RO_S(IJK, CM)
ENDDO
ENDIF ! end if/else (.not.des continuum hybrid)

! magnitude of gas—particle relative velocity
! IF (NO_K) THEN
! VREL = SQRT ((FLUID_VEL (1) — PARTICLE_VEL(1))**2 +&
! (FLUID VEL(2) — PARTICLE VEL(2))s#%2)
! ELSE
! VREL = SQRT ((FLUID_VEL (1) — PARTICLE_VEL(1))**2 +&
! (FLUID VEL(2) — PARTICLE VEL(2))%%2 +&
! (FLUID VEL(3) - PARTICLE VEL(3))#%2)
! ENDIF
i

IF (NO_K) THEN
VRELcom (1)=FLUTD_VEL (1) - PARTICLE_VEL(1)
VRELcom (2) =FLUID_VEL(2) - PARTICLE_VEL(2)
VRELcom (3) =ZERO
ELSE
VRELcom (:)=FLUID VEL(:) - PARTICLE VEL(:)
ENDIF
VREL =SQRT (VRELcom (1) *#2+VRELcom (2) #*2+VRELcom (3) **2)
! magnitude of particle anguler velocity
MOMEGA=SQRT (PARTICLE_OMEGA (1) #*2+PARTICLE_OMEGA (2) **2+&
PARTTCLE_OMEGA (3) #+2)
I cross product between gas—particle relative velocity and particle anguler velocity
VerossOMEGA (1) =VRELcom (2) *PARTICLE_OMEGA (3) —&
VRELcom (3) *PARTICLE OMEGA (2)
VerossOMEGA (2) =VRELcom (3) *PARTICLE OMEGA (1) —&
VRELcom (1) *PARTICLE OMEGA (3)
VerossOMEGA (3) =VRELcom (1) *PARTICLE_OMEGA (2) —&
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VRELcom (2) *PARTICLE_OMEGA (1)

! magnitude of the cross product
MVerossOMEGA=SQRT (VerossOMEGA (1) #*2+VcrossOMEGA (2) *%2+&

VerossOMEGA (3) *%2)

Isin of the angle between gas—solids relative velocity and particle angular velcoity
sinVOMEGAtheta=MVcrossOMEGA/ (VREL*MOMEGA+SMALL NUMBER)

I Laminar viscosity at a pressure boundary is given the value of the
! fluid cell next to it. This applies just to the calculation of the
! drag, in other routines the value of viscosity at a pressure boundary

I always has a zero value

I for fluid at cells (does not include flow boundaries)

! This points to an inconsitency in calculation of drag between

! continuum and discrete models that is probably not addressed in the

|
|
!
|
! This will never happen since this subroutine is currently only called
|
|
|
|

I solution of the gas phase momentum balances
IF (P OUTFLOW AT(IJK)) THEN

IF( FLUID AT (EAST OF(IJK) )) THEN
Mu = MU_G (EAST_OF (1JK))

ELSE IF ( FLUID AT(WEST OF(IJK)) ) THEN
Mu = MU_G(WEST_OF (1JK))

ELSE IF ( FLUID AT (NORTH OF (IJK)) ) THEN
Mu = MU G (NORTH OF (I1JK))

ELSE IF ( FLUID_AT (SOUTH_OF(IJK)) ) THEN
Mu = MU G (SOUTH OF (1JK))

ELSE IF ( FLUID_AT(TOP_OF(IJK)) ) THEN
Mu = MU_G (TOP_OF (1JK))

ELSE IF ( FLUID AT (BOTTOM OF (IJK)) ) THEN
Mu = MU G (BOTTOM OF (I1JK))

ENDIF
ELSE

Mu = MU G (1JK)

ENDIF

I calculate the total solids volume fraction

phis = ZERO
DO L =1, MAXM

! this is slightly /= one-ep g due to round-off
phis = phis + EPs_loc (L)

ENDDO

! calculate the average paricle diameter and particle ratio

DPA = ZERO
tmp _sum = ZERO
tmp fac = ZERO
DO L =1, MAXM
IF (phis .G
tmp fac
tmp sum
ELSE
tmp_sum
ENDIF

T.

ZERO) THEN
EPs loc(L)/phis
tmp_sum + tmp fac/DP_loc (L)

tmp_sum + ONE/DP loc(L) ! not important, but will avoid NaN's in empty cells
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ENDDO
DPA = ONE / tmp sum
Y i = DP loc(M) * tmp sum

| assign

variables for short dummy arguments

EPg = EP_G(IJK)
ROg = RO_G(IJK)
ROPg = ROP_G(IJK)

EP

SM = EPs_loc (M)

DPM = DP_loc (M)
ROs = ROs_loc (M)

I determine the drag coefficient

IF

(EP_SM <= ZERO) THEN

! this won’ t happen in DEM case since routine is performed over
| particles not cells as in continuum case

DgA = ZERO

ELSEIF (EPg == ZERO) THEN
I this case will already be caught in most drag subroutines whenever
| RE==0 (for correlations in which RE includes EPg). however, this will
! prevent potential divisions by zero in some models by setting it now.

DgA = ZERO

ELSE
I determine the drag coefficient

lour new

SELECT CASE (DRAG TYPE ENUM)
CASE (SYAM OBRIEN)

CALL DRAG SYAM OBRIEN (DgA, EPG, Mu, ROg, VREL, DPM)
CASE (GIDASPOW)

CALL DRAG GIDASPOW (DgA, EPg, Mu, ROg, ROPg, VREL, DPM)
CASE (GIDASPOW PCF)

CALL DRAG GIDASPOW(DgA, EPg, Mu, ROg, ROPg, VREL, DPA)
CASE (GIDASPOW BLEND)

CALL DRAG GIDASPOW BLEND (DgA, EPg, Mu, ROg, ROPg, VREL, DPM)
CASE (GIDASPOW BLEND PCF)

CALL DRAG GIDASPOW BLEND (DgA, EPg, Mu, ROg, ROPg, VREL, DPA)
CASE (WEN YU)

CALL DRAG WEN YU (DgA, EPg, Mu, ROPg, VREL, DPM)
CASE (WEN YU PCF)

CALL DRAG WEN YU (DgA, EPg, Mu, ROPg, VREL, DPA)
CASE (KOCH HILL)

CALL DRAG KOCH HILL (DgA, EPg, Mu, ROPg, VREL, DPM, DPM, phis)
CASE (KOCH HILL PCF)

CALL DRAG KOCH HILL (DgA, EPg, Mu, ROPg, VREL, DPM, DPA, phis)
CASE (BVK)

CALL DRAG BVK (DgA, EPg, Mu, ROPg, VREL, DPM, DPA, phis)
drag
CASE (OURNEW)

CALL DRAG NEW (DgA, EPg, Mu, ROPg, VREL, DPM, DPA, phis)

CASE (USER_DRAG)
CALL DRAG_USR(IJK, M, DgA, EPg, Mu, ROg, VREL, DPM, ROs)
CASE DEFAULT
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CALL START LOG
IF(DMP_LOG) WRITE (x, ~ (A, A0)’) &
" Unknown DRAG TYPE: ’, DRAG TYPE
WRITE (UNIT LOG, ’ (A,A)’) ’Unknown DRAG TYPE: ’, DRAG TYPE
CALL END_LOG
CALL mfix_exit (myPE)
END SELECT ! end selection of drag type
ENDIF ! end if/elseif/else (ep sm <= zero, ep g==0)

IF (DES_MAGNUS_LIFT) THEN
IF (EP_SM <= ZERO) THEN

MDgA = ZERO
ELSEIF (EPg == ZERO) THEN
MDgA = ZERO

ELSE

CAll MLIFT NEW(MDgA, EPg, Mu, ROPg, VREL, MOMEGA, &
sinVOMEGAtheta, DPM, DPA, phis)

ENDIF
ELSE
MDgA = ZERO
ENDIF

IF (DES FLUID TORQUE) THEN
IF (EP SM <= ZERO) THEN
TDgA = ZERO
ELSE
CAll Torque NEW(TDgA, EPg, Mu, ROPg, VREL, MOMEGA, &
DPM, DPA, phis)

ENDIF
ELSE
TDgA = ZERO
ENDIF

! Modify drag coefficient to account for possible corrections and

I for differences between Model B and Model A

IF (DRAG_TYPE ENUM == GIDASPOW PCF .OR. &
DRAG_TYPE_ENUM == GIDASPOW_BLEND PCF .OR. &
DRAG _TYPE ENUM == WEN YU PCF .OR. &
DRAG_TYPE ENUM == KOCH_HILL PCF .OR. &
DRAG TYPE ENUM == BVK .OR. &
DRAG TYPE ENUM == OURNEW ) THEN
see erratum by Beetstra et al. (2007) : the correction factor differs
for model A versus model B.
application of the correction factor for model A is found from
the correction factor for model B and neglects the Y i**3 term
IF (Model B) THEN
IF (M == 1) THEN
F cor = (EPg*Y i + phis*Y i%%2)
ELSE
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F cor = (BPg*Y i + phis*Y i*x2 + &
0. 064d0*EPg*Y_i%%3)

ENDIF
ELSE

F cor =Y i
ENDIF
DgA = ONE/(Y i*Y i) * DgA * F cor !
MDgA = ONE/ (Y i*Y i) * MDgA * F cor !byZhou assume similar as DgA
TDgA = ONE/ (Y _i*Y i) * TDgA * F cor

ENDIF

! Calculate the drag coefficient (Model B coeff = Model A coeff/EP g)
IF (MODEL B) THEN
F gstmp = DgA * PVOL(LL) /EP_G(IJK)
F gsMtmp = MDgA * PVOL(LL) /EP_G(IJK)
ELSE
F gstmp = DgA * PVOL(LL)
F gsMtmp = MDgA * PVOL (LL)
ENDIF
!does torque need multiply volume?? no
! Determine drag force coefficient accounting for any under relaxation
! f gp() = single particle drag excluding vector(v_g — v p)
F gp(LL) = (ONE -~ UR F gs) * F gp(LL) + UR F gs * F_gstmp
'byZhou the relaxation is done with the value at previous time step
F gpM(LL) = (ONE - UR_F gs) * F gpM(LL) + UR F gs * F_gsMtmp
T gp(LL) = (ONE - UR F gs) * T gp(LL) + UR F gs * TDgA
'F gpM(LL)=ZERO
I'T gp(LL)=ZERO
RETURN
END SUBROUTINE DES_DRAG_GP

In this section, only the major changes to the MFIX are provided. Many other minor
changes, which are necessary to make the modified MFIX compile successful, will be provided
upon the request. To invoke the proposed drag law, the keywords
DES_CONTINUUM_COUPLED and DES_INTERP_ON must be assigned with .T.. To invoke
the proposed Magnus lift formula and the torque formula, two new keywords,

DES _MAGNUS_LIFT and DES_FLUID_TORQUE also are needed to attain the value of .T..
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