skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of s-Channel Single Top Quark Production at the Tevatron

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1182550· OSTI ID:1182550
 [1]
  1. Univ. of Oxford (United Kingdom)

Testing the Standard Model (SM) and looking for new phenomena have been the focus of generations of particle physicists in the last decades. Following this spirit, this thesis presents two searches. The first is the search for single top quark production from the exchange of an s-channel virtual W boson using events with an imbalance in the total transverse energy, b-tagged jets, and no identified leptons. Assuming the electroweak production of top quarks of mass 172.5 GeV/c2 in the s-channel, a cross section of 1.12+0.61 -0.57 (stat+syst) pb, with a significance of 1.9 standard deviations, is measured. This measurement is combined with the result obtained from events with an imbalance in total transverse momentum, b-tagged jets, and exactly one identified lepton, yielding a cross section of 1.36+0.37 -0.322 (stat+syst) pb, with a significance of 4.2 standard deviations. The first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements is also reported. The measured cross section is σs = 1.29+0.26 -0.244 pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8 10-10, corresponding to a significance of 6.3 standard deviation. The second is the search for W'-like resonances decaying to tb. No significant excess above the SM prediction is found. Using a benchmark W' → tb left-right symmetric model, 95% C.L. mass-dependent upper limits are placed on the W0 boson production cross section times branching ratio to tb. Assuming a W' boson with SM-like couplings and allowed (forbidden) decay to leptons, W' → tb is excluded with 95% C.L. for W' boson masses below 860 (880) GeV/c2. Relaxing the hypothesis on SM-like couplings, we exclude W' boson coupling strength values as a function of the W' boson mass above 10% of the SM coupling strength for MW' = 300 GeV/c2. The constraints obtained with the present analysis are the most stringent for charged resonance masses below 570 GeV/c2 decaying to a top and a bottom quark.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1182550
Report Number(s):
FERMILAB-THESIS-2014-34
Country of Publication:
United States
Language:
English

Similar Records