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Abstract

In a high-gain free-electron laser, strong bunching at the fundamental wavelength
can drive substantial harmonic bunching and sizable power levels at the harmonic
frequencies. In this paper, we investigate the three-dimensional evolution of the har-
monic fields based on the coupled Maxwell-Vlasov equations that take into account
the nonlinear harmonic interaction. Each harmonic field is the sum of a self-amplified
term and a term driven by the nonlinear harmonic interaction. In the exponential
gain regime, the growth rate of the dominant nonlinear term is much faster than
that of the self-amplified harmonic field. As a result, the gain length and the trans-
verse profile of the first few harmonics are completely determined by those of the
fundamental. A percentage of the fundamental power level is found at the third har-
monic frequency right before saturation for the current self-amplified spontaneous
emission projects.
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1 Introduction

In a planar wiggler, spontaneous emissions at the fundamental resonant fre-
quency and its higher harmonics induce bunching at their respective wave-

length scales, leading to amplified emissions [1]. Such a process is heavily in
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favor of the fundamental frequency and is the underlying principle for the de-
sign of the fourth-generation light sources {2,3]. However, a one-dimensional
model [4] and a three-dimensional simulation study [5] indicate that strong
bunching at the fundamental wavelength can also drive substantial harmonic
bunching and sizable harmonics power. In this paper, we attempt to make a
three-dimensional analysis of harmonic generation by taking into account the
nonlinear harmonic interaction. Starting from the fundamental, we determine
the dominant contribution to the first few harmonics. Explicit calculation
based on the current self-amplified spontaneous emission (SASE) projects is

used to demonstrate the characteristics of the third harmonic radiation.

2 The Coupled Maxwell-Vlasov System

For an electron in a planar wiggler (with the wiggler parameter K), the trans-
verse wiggling motion is accompanied by a longitudinal oscillation (at twicg
the transverse frequency ck,) about the average longitudinal motion 2*. This
figure-eight motion (in the comoving frame) can give rise to harmonic emis-
sions. In the forward z direction, the radiation field is a series of (nearly)
monochromatic waves at odd harmonics (b = 1,3,5,...) of the fundamental

resonant frequency ck; [1], i.e.,
1 .
E=23 [5Aur,2)e e 1c o, )
h

where r = (z, y) represents the transverse coordinates and the field amplitude
Ap is assumed to be varying slowly with z. In order to have a nonvanishing
radiation at the A** harnionic, the electron distribution function f(6,n,r, p, 2)
must have a component with the e dependence, where 8 = (k,, +k;)z* ;cklt

is the longitudinal phase coordinate, 7 = (v — 75)/7, and p = dr/dz are the




conjugate variables to 6 and r. Using the Pierce parameter p [6}, we introduce

the following scaled variables:

zZ =2pkyz, = % _
k .

£ =r\/2kikup, D=pP T (2)
. ,

and the scaled field amplitude a, = 8—73%(%7, where

K = K(-1)"D2[Jg1)2(h8) = Jns1ya (hE)]

with € = K2/(4 + 2K?). The Maxwell-Vlasov equations can be written as (7]

(2 3)on= () e [anr).

f=lf+ /0 ds 3" M-y, (¥, 5)
h
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where ¢ = 7j — (9% + k272)/2, k, = K/(4vop), and

¥ =F cos(kn(5 — 7)) + % sin(k, (3 — 2)),

P’ = — knTsin(k,(3 — 2)) + p cos(k, (3 — 2)).

We have extended the summation of A to —1, -3, —5, ... to include the com-
plex conjugate terms by introducing the notation a_, = —aj}. The electron
beam is assumed to be round and matched to the wiggler channel with a fo-
cusing strength k, = 2pk,k, equally distributed in both transverse planes.

The smooth part of the initial distribution function fy is modeled by

=2 4 1272 -7%/(252)
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where &, and &, are the scaled beam size and scaled energy spread.




3 Harmonic Interaction

We solve Eq. (3) by a perturbation method. It is well known that the FEL
reaches saturation [6] when |a;(r = 0)|? ~ 1. In the small signal regime before

saturation, we postulate that
. <lan| < lap-z| < ... < las] < |a1] < 1. (5)

We can then expand f in Eq. (3) as a power series of ¥, apei™. Collect-
ing terms of arbitrary order in f that give an overall e dependence (i.e.,

Ym bm = h) and inserting them into the field part of Eq. (3), we obtain [7]
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where T, = 8 — 5oy for m = 1,2,3,... (5 = 2), and ¥/, = Fcos(knT) +
ﬁ- sin(EnTm). The first term in the square bracket is the linear bunching due
to the harmonic field itself, and the second term is the nonlinear bunching due
to higher-order harmonic interaction. The general solution to Eq. (6) is in the

form
an = af +ap 7, (7)

where af is the solution to the homogeneous equation in the absence of the
nonlinear terms, representing the self-amplified spontaneous emission, and o' ©
is the particular solution that satisfies the inhomogeneous Eq. (6), representing

the nonlinear harmonic interaction. Let af = bf(¥)e*? (Re(\s) > 0) be the




dominant mode with the largest growth rate. The dispersion relation for fhe'
complex eigenvalue A, and the transverse field profile &f is similar to the
one at the fundamental frequency (8]. The higﬁer harmonics not only have
lower coupling coefficients than the fundamental (i.e., (7’?;)2 <1for h>1),
but also suffer much worse warm-beam effects (eneréy s;prea.d and emittance) ..
at shorter wavelength. Hence, we have Re(\;) > Re()As3,..), and the SASE

process is predominantly the growth of the fundamental radiation power.

Nevertheless, significant power levels for the first few harmonics can still de-
velop through nonlinear harmonic interaction. From Eq. (6), the order of the
inhomogeneous solution is the same as the lowest-order terms of az, X ... X ap,,.
For the fundamental radiation, we have al'% << af because of Eq. (5), and q,;
is guided by a single fastest-growing mode bF(F)e*? in the exponential gain
regime. At the third harmonic frequency, the leading nbnlinear term is ad,
since any other combination such as a;a_ia; or a‘fa_l is necessarily smaller

due to Eq. (5). Assuming an effective noise level 1//N, for the fundamental

and third harmonic emissions, we can write

If Re(A3) << Re()1), then we have

al, when 2z < %Zsat
a3~ NL S 25 (8)
az'”, when  Z > $Zs0,

where Zg ~ % is the saturation length.




L can be obtained from Eq. (6):

The equation for al |
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Thus, the radiation field at the third harmonic is completely driven by the
third power of the fundamental field when z > %E,m. As a result, both the
growth rate and the transverse proﬁle of the third harmonic radiation are com-
pletely determined by those of the fundamental. For the fifth harmonic, the
leading nonlinear terms are a2a; and af. Since a3 is eventually dominated by
a3, both terms of alY* are of the same order as a$ and are the dominant com-
ponents for a5 after Z > —g-z?,at. In general, the dominant nonlinear terms for ay,
are of the same order as o”, with a growth rate given by h);. Such a growth
rate scaling was pointed but for the third harmonic using a one-dimensional
model [4] and was observed up to the ninth harmonicvusing a three-dimensional
simulation code [5]. Here we present a three-dimensional analysis for this scal-
ing by taking into account all pbssible harmonic interactions. The ihequality
of Eq. (5) we postulate is also consistent with the ordering of each harmonic.
In passing, we note that this perturbation analysis is not valid when Z is too

close to z44;.

4 Third Harmonic Radiation

The z-dependence of Eq. (9) can be explicitly factored out by writing al'* =

bYL(F)e 7 to obtain a transverse mode equation. Furthermore, we neglect the




first term in the square bracket because the linear-bunching effect is weak for

any higher harmonics. Approximating the fundamental radiation profile by a

Gaussian mode bF = by exp(—72/w?), we arrive at [7]

Ks % gdgJo(27q7)§(q)
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Since both ); and w; are functions of &,, 5,, and &, [9], the transverse beam

size of the third harmonic field is again a function of these three scaled pa-

rameters, determined by Eq. (10).

Using a quasi-fast Hankel transform algorithm [10], 8YX(7) can be calculated

numerically. For example, the initial stage of the low-energy undulator test

line (LEUTL) FEL at the Advanced Photon Source [11] will use an electron

beam with energy of 220 MeV, normalized emittance of 57 mm mrad, peak

current of 150 A, energy spread of 0.1%. The external quadrupoles distribute

the natural wiggler focusing equally in the horizontal and the vertical planes,




so that the average beta function is 1.5 m in both transverse planes. This '
yields 5, = 0.56, 5, = 0.25, and k, = 0.46. For the fundamental radiation
at the optimal wavelength (around $20 nm), we find that w,/5, = 2.6 and
A1 = 0.5+0.14 [7]. Using these parameters, the normalized intensity of the third
harmonic (I3 = |bYX(7) /bYX (7 = 0)|?) is obtained as shown in Fig. 1, with the
optical waist given by ws/5, = 1.4 and the peak value [bY*(F = 0)|2 = 0.178§.
Integrating over the transverse cross section to obtain the third harmonic
power PYL from the nonlinear harmonic interaction, we obtain

PNt ( P, )3 :
=0.017 , 13
PPoeam PPbea.m , ( )

where P, is the FEL power at the fundamental frequency, and Poeam is the
total beam power. Equation (13) is in good agreement with MEDUSA simu-
lations [5] using a single-segmented wiggler. When P, approaches pPpeam just
before saturation, the power in the third harmonic is a significant fraction
(roughly 1%) of the power in the fundamental. A similar calculation yields a |
similar fractional power level for the third harmonic of the proposed LCLS

project [2] (at 0.5 A).

5 Conclusions

We have presented a perturbation method to analyze the harmonic radiation
in self-amplified spontaneous emission, with explicit calculation of the third
harmonic radiation based on the current SASE projects. In addition to other
harmonic generation schemes proposed in the literature [12,13], the nonlinear
harmonic interaction studied here could be a promising mechanism to generate

coherent radiation at short wavelengths.




6 Acknowledgments

We wish to thank S. Biedron, H. Freund, and S. Milton for discussing their
simulation results. This work was supported by the U. S. Department of En-
ergy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

References

[1] W.B. Colson, IEEE J. Quantum Electron. QE-17, 1417 (1981).
[2] LCLS Design Study Report, SLAC-R-521, 1998.

[3] TESLA-FEL Conceptual Design, DESY 1997-048, 1997.

(4] R. Bonifacio et al., Nucl. Instr. Meth. A 293, 627 (1990).

[5] H.P. Freund et al, submitted to IEEE J. Quantum Electron., and thes
proceedings. '

[6] R. Bonifacio et al., Opt. Comm. 50, 373 (1984).

(7] Z. Huang and K.-J. Kim, in preparation.

(8] K.-J. Kim, Phys. Rev. Lett., 57, 1871 (1986).

[9] L.-H. Yu et al., Phys. Rev. Lett., 64, 3011 (1990).

[10] A.E. Siegman, Opt. Lett., 1, 13 (1977).

[11] S.V. Milton et el., Nucl. Instr. Meth. A 407, 210 (1998).
[12] R. Bonifacio et al., Nucl. Instr. Meth. A 293, 787 (1990).

[13] L.-H. Yu, Phys. Rev. A, 44, 5178 (1991).




>\10. '
-+
» 0.8l ]
-
L o6l |
e

0.4 ]
& 0.2 ]
(-
O
= 0.0} _ |

2 3 4 5
r/o,

Fig. 1. The normalized intensity of the third harmonic (I3), the electron beam (1),
and the fundamental ([;) as functions of the radius in units of the electron beam
size, using the nominal LEUTL parameters.




