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Abstract

In a high-gain free-electronlaser, strong bunching at the fundamentalwavelength
can drive substantial harmonic bunching and sizabIepower levels at the harmonic
frequencies.In this paper, we investigatethe three-dimensionalevolution of the har-
monic fieldsbased on the coupled MaxweI1-Vlasovequations that take into account
the nonlinearharmonic interaction.Eachharmonicfield is the sumof a self-ampllkd
term and a term drhen by the nonlinearharmonic interaction. In the exponential
gain regime, the growth rate of the dominant nonlinear term is much faster than
that of the sehmplified harmonic field, As a result, the gain length and the trans-
verse profile of the first few harmonics are completely determined by those of the
fundamental.A percentageof the fundamentalpower level is found at the third har-
monic frequency right before saturation for the current se~-amp~ed spontaneous
emissionprojects.

Key words: Harmonic generation; High-gainfree-electronlaser; Self-amplified
spontaneousemission
PA CS: 41.60.Cr; 42.55.VC;42.65.Ky

1 Introduction

In a planar wiggler, spontaneous emissions at the fundamental resonant fre-

quency and its higher harmonics induce bunching at

length scales, leading to amplified emissions [1]. Such
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favor of the fimdamental frequency and is the underlying principle for the de-

sign of the fourth-generation light sources [2,3]. However, a one-dimensional

model [4] and a three-dimetiional simulation study [5] indicate that strong

buntilng at the fundamental wavelength can also drive substantial harmonic “’

bunching and sizable harmonics power. In this paper, we attempt to make a

three-dimensional analysis of harmonic generation by taking into account the

nonlinear harmonic interaction. Starting from the fundamental, we determine

the dominant contribution to the first few harmonics. Explicit calculation

based on the current self-amplified spontaneous emission (SASE) projects is

used to demonstrate the character”ktics of the third harmonic radiation.

2 The Coupled Maxwell-Vlasov System

For an electron in a planar wiggler (with the wiggler parameter K), the trans-

verse wiggling motion is accompanied by a longitudinal oscillation (at twice

the transverse frequency ckW) about the average longitudinal motion z*. This

figure-eight motion (in the comoving frame) can give rise to harmonic emis-

sions. In the forward z direction, the radiation field is a series of (nearly)

monochromatic waves at odd harmonics (h = 1,3, 5, ...) of the fundamental

resonant frequency ckl [1], i.e.,

(1)

where r = (z, y) represents the transverse coordinates and the field amplitude

Ah is assumed to be varying slowly with z. In order to have a nonvanishing

radiation at the h~~harmonic, the electron distribution function j(e, q, r, p, z)

must have a component with the ei~odependence, where O= (IcW+ kl)z* – cklt

is the longitudinal phase coordinate, q = (~ – TO)/yO, and p = dr/d.z are the
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conjugate variables to Oand r. Using the Pierce parameter p [6], we introduce

the following scaled variables:

vz =Zpkwz, 4= -,
P

rT&F =r 2k1kwp, p = p
2kwp’

(2)

and the scaled fieId amplitude ah = *, where

m = K(–l)@-1)/2 J[ (&-1)/2(M) - 4h+l)/2(M)l

with f = @/(4+ 2K2). The Maiwell-Vlasov equations can be written as [7]

%(8+4@ - 2), q, i’, p’,q,xq (3)

We have extended the summation of h to –1, –3, –5, ... to include the com-

plex conjugate terms by introducing the notation a_h = –a;. The electron

beam is assumed to be round and matched to the wiggler channel with a fo-

cusing strength k. = 2pkwin equally distributed in both transverse planes.

The smooth part of the initial distribution function ~. is modeled by

‘- ‘Xp[-(’x’r]ex))2m@k;
(4)

where tir and dn are the scaled beam size and scaled energy spread.
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3 Harmonic Interaction

We solve Eq. (3) by a perturbation method. It is well known that the FEL

reaches saturation [6] when Ial(r = O)12N 1. In the small signal regime before

saturation, we postulate that

. . . < Iahl< ICZRZI<... < Iasl < Ialt<1. (5)

We can then expand ~ in Eq. (3) as a power series of ~~ a~ei~e. Collect-

ing terms of arbitrary order in t that give an overall ei~o dependence (i.e.,

Em& = h) and inserting them into the field part of Eq. (3), we obtain [7]

where r~ = Sm— 3~–1 for m = 1,2, 3, ... (50 = Z), and FL = TCOS(&Tm) +

~ sin(&7m). ‘The first term in the square bracket is the linearbunching due
n

to the harmonic field itself, and the second term is the nonlinear bunching due

to higher-order harmonic interaction. The general solution to Eq. (6) is in the

form

where a~ is the solution to the homogeneous equation in the absence of the

nonlinear terms, representing the self-amplified spontaneous emission, and a#L

is the particular solution that satisfies the inhomogeneous Eq. (6), representing

the nonlinear harmonic interaction. Let af = b~(f)e~~z (Re(A~) > O) be the
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dominant mode with the largest growth rate. The dispersion relation for the

complex eigenvalue Ah and the transverse field profile ~ is similar to the

one at the fundamental frequency” [8]. The higher harmonics not only have

lower coupling coefficients than the fundamental (i.e., (X)2 <1 for h > 1),

but also suffer much worse warm-beam effects (ener& spread and erriittance)

at shorter wavelength. Hence, we have Re(Al) > Re(A3,5,...), and the SASE

process is predominantly the growth of the fundamental radiation power.

.

Nevertheless, significant power levels for the first few harmonics cti still de-

velop through nonlinear harmonic interaction. l?rom Eq. (6), the ?rder of the

inhomogeneous solution is the same as the lowest-order terms of ahl x... x a~~.

‘L << at because of Eq. (5), and alFor the fundamental radiation, we have al

is guided by a single fastest-growing mode t$ (~)e~lz in the exponential gain

regime. At the third h’iirmonic frequency, the leading nonlinear term is al,

since any other combination such as a1a_1a3 or a~a_l is necessarily smaller

due to Eq. (5). Assuming an effective noise level l/~ for the fundamental

and third harmonic emissions, we can write

If Re(A3) << Re(Jl), then we have

(8)

where zs~~W ~ge~-)c is the saturation length.
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The equation ‘for & can be obtained from I@ (6):

>

Thus, the radiation field at the third harmonic is completely driven by the

third power of the fundamental field when z > ~Z,Gt.As a result, both the

growth rate and the transverse pro~le of the third harmonic radiation are com-

pletely determined by those of the fundamental. For the fifth harmonic, the

leading nonlinear terms are afa3 and a!. Since as is eventually dominated by

a?, both terms of a~L are of the same order as a! and are the dominant com-

ponents for a5 after 2?> $.&. In general, the dominant nonlinear terms for ah

are of the same order as a;, with a growth rate given by hA1. Such a growth

rate scaling was pointed out for the third harmonic using a one-dimensional

model [4] and was observed up to the ninth harmonic using a three-dimensional

simulation code [5]. Here we present a three-dimensional analysis for this scal-

ing by taking into account all possible harmonic interactions. The inequality

of Eq. (5) we postulate is also consistent with the ordering of each harmonic

In passing, we note that this perturbation analysis is not valid when z is too

close to z~~t.

4 Third Harmonic Radiation

The z-dependence of Eq. (9) can be explicitly factored out by writing a#L =

b~~(F)e3~’z to obtain a transverse mode equation. Furthermore, we neglect the
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first term in the square bracket because the linear-bunching effect is weak for

any higher harmonics. Approximating the fundamental radiation profile by a

Gaussian mode bf = bOexp(-F2/wf), we arrive at [7]

by(r) = 27ri
(%)2 /

b:
~ gdqJJ(27r@9j(q)

o 3A~+ 2ilr2qy3 ‘

where

(lo)

and

‘= E1sti2’’nTm’l[s1c0s2(L’m’l

L 1
- ~ sin(kn~~) COS(&T~) 2+ S2 + 3S,

w’ ‘: -s=* + ~k;a;(q+2-2+ 73),

r

T
(12)

Q = S + &-~,2,3 sin2(i.T~)”

Since both Al and WI are functions of 5., @v, and & [9], the transverse beam

size of the third harmonic field is again a function of these three scaled pa-

rameters, determined by Eq. (10).

Using a quasi-fast Hankel transform algorithm [10], Z#~(7) can be calculated

numerically. For example, the initial stage of the low-energy undulator test

line (LEUTL) FEL at the Advanced Photon Source [11] will use an electron

beam with energy of 220 MeV, normalized emittance of 57Tmm mrad, peak

current of 150 A, energy spread of O.lYo. The external quadruples distribute

the natural wiggler focusing equally in the horizontal and the vertical planes,
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so that the average beta function is 1.5 m in both transverse phnes. This

yields @, = 0.56, Bq = 0.25, and & = 0.46. For the fimdamental radiation

at the optimal wavelength (around %20 rim), we find that Wl/Er = 2.6 and

Al = 0.5+0.li [7]. Using these parameters, the normalized intensity of the third

harmonic (13 - l~L(?)/~L(P = 0)12) is obtained .as shown in Fig. 1, with “the

optical waist given by w3/dr = 1.4 and the peak value lby~(~ = 0)12= 0.17b~.

Integrating over the transverse cross section to obtain the third harmonic

‘L from the nonlinear harmonic interaction, we obtainpower P3

(13)

where PI is the FEL power at the fundamental frequency, and &~ is the

total beam power. Equation (13) is in good agreement with MEDUSA simu-

lations [5] using a single-segmented wiggler. When PI approaches ~pb~~ just

before saturation, the power in the third harmonic is a significant fraction

(roughly 1%) of the power in the fundamental. A similar calculation yields a

similar fractional power level for the third harmonic of the proposed LCLS

project [2] (at 0.5 A).

5 Conclusions

We have presented a perturbation method to analyze the harmonic radiation

in self-amplified spontaneous emission, with explicit calculation of the third

harmonic radiation based on the current SASE projects. In addition to other

harmonic generation schemes proposed in the literature [12,13], the nonlinear

harmonic interaction studied here could be a promising mechanism to generate

coherent radiation at short wavelengths.
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Fig. 1. The normalized intensityof the third harmonic (13), the electron beam (1.),
and the fundamental (11) as functions of the radius in units of the electron beam
size, using the nominal LEUTL parameters.
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