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ABSTRACT

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser
system for high energy density physics experiments. Sophisticated diagnostics have been designed around key
performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is
the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system
utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove
these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies
(NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift
over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses
to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop
a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then
applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex
nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of
the TPS warp-correction algorithm for the use in a production environment.

Keywords: visar, streak camera, warp-correction, thin-plate splines

1. INTRODUCTION

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser
system for high-energy density physics experiments. The NIF is the world’s largest and most powerful laser
system, and it is capable of creating high pressures, temperatures, and densities similar to those found during
thermonuclear burn, in the cores of stars, and in supernovae. A primary goal of the NIF is to achieve ignition
of a deuterium-tritium (DT) fuel capsule [1]. The NIF target is typically a gold hohlraum containing a DT
fuel capsule. During a DT shot, NIF’s 192 laser beams heat the hohlraum which converts the energy into x-
rays. The x-rays heat the outer surface of the DT capsule, causing it to ablate and launch a series of shock
waves into the capsule. These overlapping shock waves force the DT fuel layers inward, compressing it into a
hotspot of extremely high temperature and density. Fusion reactions occur when the temperature and density
are sufficiently high [2].

One of the key performance metrics for the optimization of the NIF’s performance to achieve ignition is the
timing of shocks induced into the DT capsule during a shot [2]. The Velocity Interferometry System for Any
Reflector (VISAR) is used to infer the velocity of a moving surface by measuring its Doppler wavelength shift, and
it is the primary optical diagnostic for measuring shock timing [3-4]. The VISAR diagnostic utilizes three streak
cameras [5] to measure the Doppler wavelength shift. Streak cameras are inherently nonlinear, meaning that
the streak camera’s recordings in the space and time direction are displaced in a systematic nonlinear fashion,
distorting the spatial and temporal measurements of the streak camera data [6].

To meet the timing accuracy requirements, the streak cameras in the VISAR system require warp corrections
to remove the nonlinear effects. A detailed calibration procedure has been developed with National Securities
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Figure 1. A typical ten-comb streak camera image after standard NSTec warp-corrections in production. The comb
generator is split into ten different fibers. The two outer fibers are fixed, marking the boundary of the active spatial
region. The remaining eight middle fibers can be retracted on demand before the full shot. The timing fiducial is shown,
labeled FIDU and is represented by a single pulse.

Technologies (NSTec) and applied to the camera correction analysis in production [7]. However, the streak
camera nonlinearities drift over time due to sweep rate jitter and slow thermal drift, negatively affecting the
performance of this method. An additional warp correction is therefore required to meet the timing accuracy
requirements of VISAR for key measurements [8]. To perform this additional correction, a multi-comb injection
system is mounted outside the streak camera to generate a comb of pulses. Comb generators are available to
produce frequencies of 0.5 GHz, 1 GHz, 3 GHz, or 10 GHz; the frequency is chosen to provide sufficient coverage of
the sweep window. The output of the comb generator is split and delivered to the streak camera via ten different
fibers. The resulting comb pulses cover the active spatial area and temporal sweep window which creates a
two-dimensional grid from which the streak camera nonlinearities can be approximately characterized. Figure 1
shows a typical ten-comb streak camera image after the NSTec production warp. The comb pulse positions are
calculated by a two-dimensional peak detection algorithm in production providing the (x, y)-coordinates of the
comb pulses. This procedure provides data that allows for an in-situ calibration within minutes of a shot [8].

Thin-plate splines (TPS) are ideal for modeling complicated local distortions over irregularly sampled points,
making it a good candidate for use as an in-situ warp-correction algorithm for VISAR. Before the TPS warp-
correction algorithm can be applied, identification of the landmark points is required. The calculated comb pulse
positions are used as the landmark points in our warp-correction map. The comb pulse data is preprocessed to
improve the algorithms robustness by removing erroneous comb pulse positions reported by the peak-detection
algorithm (see section 3.1). To prevent the image from resizing, an additional pre-processing step that identifies
the boundary points in both the uncorrected and corrected image spaces is performed (see section 3.3). Once the
landmark points from the comb pulses and boundaries are calculated, the warp-correction map is generated. A
flowchart summarizing the main components of the warp-correction algorithm is given in figure 2. In this paper,



Figure 2. A flowchart summarizing the main components of the in-situ warp-correction algorithm. Each component will
be explained in detail in section 3

a mathematical formalization for the TPS warp-correction algorithm is presented. Details required for a robust
implementation in a production environment are then described. Finally, results for VISAR streak camera data
are presented. The mathematical constructions written in this paper are self-contained assuming only a basic
background in real analysis. For the reader not familiar with real analysis, necessary definitions are provided in
section 7.

2. MATHEMATICAL PRELIMINARIES AND NOTATION

In this section, we present some mathematical notation and concepts that will be necessary for the development
of the theory of the TPS warp-correction algorithm. Informally, we can consider the uncorrected image as an
“irregularly shaped” region of R2. The corrected image is a square region in R2 of known length. The warp
correction is a mapping that transforms the uncorrected image to the corrected image. The following discussion
will make these notions more precise.

The TPS warp-correction algorithm performs an additional correction to the NSTec warp correction already
in production. As mentioned in section 1, the streak camera nonlinearities drift over time, negatively impacting
the performance of the NSTec warp correction. Throughout the rest of our paper, we will refer to the NSTec-
corrected images as uncorrected images. The result of the TPS warp-correction algorithm when applied to
those images will be referred to as the corrected images. We will always denote an uncorrected image by I ′

and a corrected image by I. Following this convention, points in the images will be denoted by (x′, y′) and
(x, y) for points in I ′ and I respectively. We assume that I ′ is a closed, simply-connected subset of R2, and
I = [0, N − 1]× [0, N − 1] ⊂ R2 where N is the size of the corrected image∗. Note that the precise shape of I ′ is
unknown. We also assume that area (I ′) = area (I); that is, the area of I ′ is the same as the area of I. The warp

correction can be viewed as a mapping f : R2 → R2 where I ′
f7→ I. The mapping f is given by the method of

thin-plate splines. One can show that f is continuous, smooth, and surjective [9]. If there is no folding (i.e., if f
is injective), then f is bijective and hence is a diffeomorphism. Unfortunately for thin-plate splines, bijectivity
is not guaranteed. Some characterizations of the restrictions necessary to ensure bijectivity are presented in [9],
but this is still largely an open problem in mathematics. Bijective TPS maps are ideal since they preserve the
topology of the image. As we will see in our application of the thin-plate splines, folding does not occur since
parts of the corrected images are not smeared or folded onto each other. Thus to simplify the theory, we will
assume that for the TPS warp-correction algorithm, the resulting map f is diffeomorphic. Figure 3 is a schematic
illustration of the warp correction map on I ′.

∗the image size for the NIF VISAR is 1365 × 1365 pixels; so for our implementation, N = 1365.



Figure 3. A schematic representation of the warp-correction map. The X’s represent the landmark points and their
homologs in the I ′ and I respectively. Note that the nonlinear distortion on I ′ is exaggerated for illustrative purposes; in
practice, the nonlinear drifts are very small and difficult to see qualitatively.

2.1 Thin-Plate Splines

The method of thin-plate splines is a convenient tool to use for image warp corrections. They are ideal for
modeling local nonlinear distortions that are difficult to model using polynomial-based interpolation techniques.
The thin-plate spline has a very natural physical interpretation; it can be thought of like bending a thin sheet of
metal in the vertical direction as a displacement of the x or y direction in a plane so that the metal sheet is least
bent in the sense that its bending energy is minimized. In this subsection, we present the method of thin-plate
splines more precisely. A beautiful introduction to thin-plate splines on R2 can be found in [10]. Duchon’s
original paper [11] and Meinguet’s generalization [12] provide a more rigorous introduction.

Definition 1. Suppose we have a set of points {(x′k, y′k)} ⊂ R2 that we want to map to {(xk, yk)} ⊂ R2 such
that (x′k, y

′
k) 7→ (xk, yk). We will refer to the points (x′k, y

′
k) as landmark points and their image (xk, yk) as their

homologs or corrected homologs.

In the context of image warp-corrections, the landmark points are typically points in the image whose location
we can measure. Since we can measure the comb pulse positions in the uncorrected image, we take those points
to be our landmark points. To index the landmark points, let

(
x′ij , y

′
ij

)
∈ I ′ denote the coordinates of the comb

pulse in the i-th comb and j-th pulse in comb i. As a convention, we start the index at 0. So for example,(
x′3,4, y

′
3,4

)
is the comb pulse circled in figure 1. The corrected homolog points are indexed in the same way; for

example, (x3,4, y3,4) is the homolog for the landmark point
(
x′3,4, y

′
3,4

)
.

Definition 2. Suppose that there are n landmark points. A thin-plate spline on R2 is a vector-valued function
f : R2 → R2 defined by (x, y) 7→ (fx(x, y), fy(x, y)) mapping each landmark point to its homolog in such a way
that the resulting component surfaces fx and fy are least bent in the sense that the quadratic functional

I(f) =

∫
R2

[(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
]
dxdy, (1)

is minimized over all such interpolating functions fx and fy. The component surfaces are of the form

fx(x, y) = a1 + a2x+ a3y︸ ︷︷ ︸
affine part

+

n∑
k=1

wkU (‖(x′k, y′k)− (x, y)‖)︸ ︷︷ ︸
fully nonlinear part

, (2)

where U(r) = r2 log r, r =
√
x2 + y2, and ‖·‖ denotes the standard Euclidean metric. The y-component surface

fy is of a similar form.

Finding the coefficients for fx and fy so that the conditions in Definition 2 are satisfied requires solving a
linear system which is presented in section 8. The resulting thin-plate spline map f(x, y) = (fx(x, y), fy(x, y))
satisfies the following properties:



1. f(x′k, y
′
k) = (xk, yk) for all k.

2. The component functions fx and fy are least bent according to equation (1).

3. f(x, y) is a diffeomorphism so long as there are no folds. This means that the restriction of f to the interior
of I ′, f |intI′ : intI ′ → intI is a diffeomorphism so long as there are no folds.

4. The component functions fx and fy are the sum of an affine part and fully nonlinear part as given in
equation (2). It can be shown that the fully nonlinear part is bounded and asymptotically flat, and the
affine part describes the behavior at infinity. Thus, in the context of image warp corrections, the thin-plate
spline method can be thought of as a local correction method; that is, the nonlinear corrections occur in a
small neighborhood around the landmark points.

To see that fully nonlinear corrections occur around a small neighborhood of the landmark points, consider
the example in figure 4. In this example, one landmark point is translated by +1 in the x-direction. In (a),
two copies of R2 are shown. The left graph shows the landmark points ((1, 4), (4, 4), (1, 1), (4, 1)) denoted by
X’s and the right graph shows the corresponding homolog points ((1, 4), (5, 4), (1, 1), (4, 1)). All the landmark
points are identically mapped to their homolog points with the exception of (4, 4) 7→ (5, 4). Since only the
(4, 4) landmark point is translated to (5, 4), the thin-plate spline mapping is f(x, y) = ((fx(x, y), fy(x, y)) =
(fx(x, y), y) where fx(x, y) = −0.5833 + 1.167x + 0.667y − 0.02U (‖(1, 4)− (x, y)‖) + 0.02U (‖(4, 4)− (x, y)‖) +
0.02U (‖(1, 1)− (x, y)‖) − 0.02U (‖(4, 1)− (x, y)‖), and fy(x, y) = y is the identity mapping in y since none of
the landmark points are translated in the y-direction. Part (b) shows the fully nonlinear part of fx(x, y) (the
linear combination of U(x, y)’s). The fully nonlinear part is asymptotically flat and bounded. This is seen more
clearly in the next graph. In part (c), the full f(x, y) is plotted. Although difficult to see, the fully nonlinear
part only contributes to the surface in small neighborhoods around the landmark points. The rest of the surface
is dominated by the affine part. This demonstrates that fully nonlinear warp corrections are only applied to a
small neighborhood around the landmark points.

The TPS algorithm satisfies several requirements needed in a warp-correction algorithm. The next section
discusses how the TPS warp correction can be made robust.

3. WARP-CORRECTION ALGORITHM DERIVATION

In this section, we explain in detail each module of our warp-correction algorithm shown schematically in figure 2.

3.1 Processing for Missing and Invalid Comb Pulse Data

The comb pulse (x, y)-positions in the uncorrected image I ′ (e.g. such as in figure 1) are given by a two-
dimensional peak-detection algorithm in production. The detected comb pulses can be classified into three
categories defined by the following definitions.

Definition 3. A comb pulse that is in I ′ but is not detected by the peak-detection algorithm is a missing comb
pulse.

Definition 4. A comb pulse that is not in I ′ but is detected by the peak-detection algorithm is an invalid comb
pulse.

Definition 5. A comb pulse that is in I ′ and is detected by the peak-detection algorithm is a valid comb pulse.

Suppose that there are mi detected comb pulses in comb i, where i = 0, . . . , 9. Enumerate the detected
comb pulses by P ′ =

{(
x′ijk , y

′
ijk

)
| i = 0, . . . , 9 and jk ∈ Ji

}
where Ji = {jk | k = 0, . . . ,mi − 1 and jk+1 > jk}

is the detected comb pulse index set for comb i. Also, let P ′i denote the detected comb pulses in comb i, so that⋃9
i=0 P ′i = P ′. We assume that the streak camera nonlinearities result in small displacements. In particular, the

y-coordinate of a detected comb pulse can be written as y′ijk = bi + ∆jk + εijk where bi is the fiber-bundle delay
associated with comb i, ∆ corresponds to the comb generator frequency, and |εijk | is small (see Figure 1). The
quantity |εijk | is small in the sense that |εijk | << ∆; i.e., the nonlinear displacement in the y-direction is small
relative to the comb pulse period.



Figure 4. A simple example of a thin-plate spline mapping where one landmark point is translated by +1 in the x-direction
demonstrating that the fully nonlinear warp-corrections are only applied to a small neighborhood around the landmark
points.

We can further categorize the missing comb pulses: missing middle comb pulses and missing comb pulses at
the end of a comb.

Definition 6. Consider a sequence of comb pulses D =
{(
x′ij1 , y

′
ij1

)
, . . . ,

(
x′ijk , y

′
ijk

)
| y′ij1 < · · · < y′ijk

}
in comb

i in I ′ that are not detected by the peak-detection algorithm. If there are valid comb pulses

(
x′
ij

(v)
0

, y′
ij

(v)
0

)
and(

x′
ij

(v)
1

, y′
ij

(v)
1

)
such that y′

ij
(v)
0

< y′ij1 and y′ijk < y′
ij

(v)
1

in P ′i, then the comb pulses in D are missing middle comb

pulses.

Consider the difference between the y-coordinate of two successive comb pulses
(
x′ijk , y

′
ijk

)
and

(
x′ijk+1

, y′ijk+1

)
in P ′i.

y′ijk+1
− y′ijk = ∆ (jk+1 − jk) +

(
εijk+1

− εijk
)

= ∆r + εijk+1,k
,

where r = jk+1− jk and
∣∣εijk+1,k

∣∣ =
∣∣εijk+1

− εijk
∣∣ is small. Thus we see that there are r−1 missing middle comb

pulses between the jk-th and jk+1-th detected comb pulses in comb i if we can write y′ijk+1
−y′ijk = ∆r+ εijk+1,k

.
Solving for r, we have that

r =
y′ijk+1

− y′ijk
∆

−
εijk+1,k

∆
. (3)

Hence r can be computed from the data by

r = round

(
y′ijk+1

− y′ijk
∆

−
εijk+1,k

∆

)
≈ round

(
y′ijk+1

− y′ijk
∆

)
, (4)



where round (·) is the nearest integer function; the approximation is exact provided that the inequality∣∣∣∣∣
{
y′ijk+1

− y′ijk
∆

}
− 1

2

∣∣∣∣∣ > ∣∣∣εijk+1,k

∆

∣∣∣ , (5)

holds where {x} = x− bxc is the fractional part of x. Since
∣∣∣ εijk+1,k

∆

∣∣∣ << 1, the inequality almost always holds

in practice, so equation 4 can be used to calculate the number of missing middle comb pulses from the data.

Since the comb generator is split into ten fibers, it is a reasonable requirement that each comb have the same
number of comb pulses. This prompts the following definition.

Definition 7. Suppose that comb i has mi detected comb pulses and r − 1 missing middle comb pulses. Let
M = maxi mi. If mi + r − 1 < M , then comb i has M −mi − r + 1 missing comb pulses at the end of comb i.

A general way for characterizing invalid comb pulses is much more difficult. A very heuristic but sometimes
unreliable way to identify an invalid comb pulse in comb i is to assume that the difference of the comb pulses’
x-coordinate and the average of the comb pulses’ x-coordinates in comb i are normally distributed with mean
0 and standard deviation 1. Under this heuristic approach, an invalid comb pulse in comb i is one that is
an outlier. Let δ be the difference of the x-coordinate value of a particular comb pulse in comb i and the
average of the x-coordinates in comb i. We say that that comb pulse is an outlier if δ is outside the range of
[Q1 − 3/2 (Q3 −Q1) , Q3 + 3/2 (Q3 −Q1)] where Q1 and Q3 are the upper and lower quartile of the standard
normal distribution respectively.

3.2 Determining Corresponding Homolog Positions in I

Recall that to create a TPS mapping, we need to define corresponding homolog points (xij , yij) ∈ I for each
valid (x′ij , y

′
ij) ∈ I ′. In this section, we present our method of determining the corrected homolog points in I.

Let P ′(v)
i =

{(
x′
ij

(v)
k

, y′
ij

(v)
k

)
| j(v)
k ∈ J (v)

i

}
denote the set of valid comb pulses as defined in Definition 5 in comb

i in I ′, where J
(v)
i is the index set for the valid comb pulses in comb i. Note that P ′(v)

i ⊂ P ′i and J
(v)
i ⊂ Ji for

i = 0, . . . , 9. Also let P ′(v) =
⋃9
i=0 P ′(v). To avoid confusion, we will associate the superscript (v) with valid

comb pulses.

The homolog x-coordinates are calculated in a straightforward manner. For each comb i, we set

xij =

∑
(x′,y′)∈P′(v)

i
x′∣∣∣P ′(v)

i

∣∣∣ for all j ∈ J (v)
i , (6)

where
∣∣∣P ′(v)
i

∣∣∣ is the number of elements in P ′(v)
i . In other words, the homolog x-coordinates for comb i is the

mean of the x-coordinates of the valid comb pulses in comb i in I ′.

Recall from section 3, we assume that y′ij = bi + ∆j + εij where bi is the fiber-bundle delay associated with
comb i, ∆ is the comb frequency in pixels, and |εij | << ∆. The quantity εij represents the small nonlinear shifts
in the y-direction (temporal direction). To assign the homolog y-coordinates, we need to choose a valid comb
pulse in I ′ to serve as a reference point. Let(

x′
irj

(v)
r
, y′
ir,j

(v)
r

)
= argmin

(x′,y′)∈P′(v)

∥∥∥∥(N2 , N2
)
− (x′, y′)

∥∥∥∥ (7)

be the reference point in I ′; that is,
(
x′
irj

(v)
r

, y′
irj

(v)
r

)
is the point closest to the center of I. This is based on

the belief that the center of the image is usually the least distorted region. For comb ir, we define the homolog
y-coordinates to be

yirk = y′
irj

(v)
r

+ ∆
(
k − j(v)

r

)
for all k ∈ J (v)

ir
. (8)



Figure 5. An illustration to demonstrate the method for choosing the homolog points.

For all other combs i 6= ir, we also choose a reference comb pulse to generate the other homolog points. For

each comb i 6= ir, let

(
x′
ij

(v)
ri

, y′
ij

(v)
ri

)
be the valid comb pulse in comb i in I ′ such that

y′
ij

(v)
ri

= argmin
y′∈

{
ŷ′ | (x′,ŷ′)∈P′(v)

i

} |α′i − y′| , (9)

where α′i = y′
irj

(v)
r

+ (bi − bir ). That is, choose the reference comb pulse in comb i to be the pulse whose y-

coordinate is closest to the y-coordinate of the center reference point in I ′ given by equation 7 relative to the
difference in the fiber-bundle delays associated with combs i and ir. Now the homolog y-coordinate for each
comb i 6= ir is given by

yik = α′i + ∆
(
k − j(v)

ri

)
for all k ∈ J (v)

i . (10)

Figure 5 illustrates the method for choosing the homolog y-coordinates in I given in equations 8 and 9. At this

point we have the valid landmark points
(
x′
ij(v) , y

′
ij(v)

)
∈ I ′ and their homologs

(
xij(v) , yij(v)

)
as required by the

TPS algorithm. Under the thin-plate splines mapping f , we have the mapping
(
x′
ij(v) , y

′
ij(v)

)
f7−→
(
xij(v) , yij(v)

)
for all i = 0, ..., 9 and j(v) ∈ J (v)

i .

3.3 Determining Landmark Boundary Points for I ′ and I

To prevent the image from resizing, we need to approximate the boundary of I ′ and enforce the mapping ∂I ′ 7→ ∂I
under the TPS warp-correction map. Here the notation ∂A means the boundary of the set A ⊂ R2. Enforcing
the mapping ∂I ′ 7→ ∂I in a careful way will ensure that area (I ′) = area (I). To see that a boundary mapping is
necessary, consider the following example.



Figure 6. (a) landmark and homolog points not including the boundary; (b) landmark and homolog points including the
boundary.

Example 1. Suppose that I ′ = [0, 5] × [0, 5], and let {(1, 1), (1, 4), (4, 4), (4, 1)} ⊂ I ′ be the set of landmark
points. Choose the corresponding homolog points to be {(2, 1), (2, 4), (3, 4), (3, 1)} ⊂ I. We will construct a
TPS mapping so that (1, 1) 7→ (2, 1), (1, 4) 7→ (2, 4), (4, 4) 7→ (3, 4), and (4, 1) 7→ (3, 1). Notice that each
y-coordinate is identically mapped so fy(x, y) = y. See figure 6a. Solving equation 14 in section 8 yields
the following mapping for the x-coordinates, fx(x, y) = 1.667 + 0.333x + 10−16

[
0.1128U (‖(1, 1)− (x, y)‖) −

0.0954U (‖(1, 4)− (x, y)‖) − 0.1691U (‖(4, 4)− (x, y)‖) + 0.0867U (‖(4, 1)− (x, y)‖)
]
. We thus have the TPS

mapping f(x, y) = (fx(x, y), fy(x, y)). Notice that f(0, y) = (1.6667, y)), and f(5, y) = (3.3333, y). This means
that the left and right boundary of I shift by +1.6667 and −1.6667 respectively, shrinking the resulting image
of I. See figure 7a.

Now consider the same set of landmark and homolog points, but include the boundary landmark points
{(0, 1), (0, 4), (5, 1), (5, 4)} ⊂ ∂I ′ and map them identically in I. See figure 6b. The resulting TPS mapping for
the x-coordinates is given by

fx(x, y) = −1.2768 + 1.5107x+

0.1950
[
U (‖(1, 1)− (x, y)‖) + U (‖(1, 4)− (x, y)‖)− U (‖(4, 4)− (x, y)‖)− U (‖(4, 1)− (x, y)|)

]
−

0.1170
[
U (‖(5, 1)− (x, y)‖) + U (‖(0, 4)− (x, y)‖)− U (‖(5, 1)− (x, y)‖)− U (‖(5, 4)− (x, y)‖)

]
Again, the y-coordinates are mapped identically. The left and right boundaries of I are given parametrically
as (fx(0, y), y) and (fx(5, y), y), respectively; see figure 7b. We see from figure 7 that the including landmark
boundary points better preserves the area of I.

Since we do not know the exact shape of I ′, we have to estimate the boundary of I ′. To estimate the top and
bottom boundaries of I ′, introduce two functions gx(x, y) = a0 + a1x + a2y and gy(x, y) = b0 + b1x + b2y. For
each comb i, we associate the valid x and y-coordinates of the landmark points in I ′ with gx and gy respectively,
and minimize the difference in the least-squares sense to obtain the coefficients for gx and gy. More formally, we
minimize the function

χ
(
βx,βy

)
=
∑
j∈J(v)

i

[(
x′ij − gx

(
x′ij , y

′
ij ;βx

))2
+
(
y′ij − gy

(
x′ij , y

′
ij ;βy

))2]
, (11)



Figure 7. (a) Resulting image after the TPS mapping with no boundary points; and (b) resulting image after TPS mapping
with boundary points. We see that the TPS mapping with boundary preserves the area better.

where βx = (a0, a1, a2) and βy = (b0, b1, b2) are the parameter vectors for gx and gy respectively. This mini-
mization is done for each comb i = 0, . . . , 9, obtaining 10 different polynomials. The estimated top and bottom
landmark boundary points for I ′ are thus given by (gx (xij , 1364) , gy (xij , 1364)) and (gx (xij , 0) , gy (xij , 0)) re-

spectively for each comb i and for some j ∈ J (v)
i . Note that the actual choice of j ∈ J (v)

i is irrelevant since all
xij ’s are equal (recall from equation 6 that they are the average the x-coordinates of the valid landmark points
in I ′). The corresponding homolog points for the top and bottom boundaries of I are given by (1364, xij) and

(0, xij) respectively for each comb i and for some j ∈ J (v)
i .

The method for estimating the left and right boundaries is similar except that it is more difficult to write
down formally. Let

m(v) = max
i=0,...,9

J
(v)
i

That is, m(v) is the largest valid comb pulse index. For each comb i and for each j = 0, 1, . . . ,m(v)−1, construct

the set Rij =
{(
x′
ij(v) , y

′
ij(v)

)
| j(v) = j and j(v) ∈ J (v)

i

}
. Let Rj =

⋃9
i=0Rij . Informally, Rj is the set of valid

comb pulses in the same row. Similarly, to the top and bottom boundary case, we fit the polynomials gx and gy
to the x and y-coordinates of Rj in the least-squares sense. That is, we minimize the function

χ
(
βx,βy

)
=

∑
(x′,y′)∈Rj

[
(x′ − gx (x′, y′;βx))

2
+
(
y′ − gy

(
x′, y′;βy

))2]
, (12)

for each j = 0, . . . ,m(v)− 1. We thus end up with m(v) polynomials, one for each row of valid comb pulses. The
estimated left and right boundary landmark points for I ′ are given by (gx (0,∆j) , gy (0,∆j)) and
(gx (1364,∆j) , gy (1364,∆j)) respectively for each j = 0, 1, . . . ,m(v) − 1, and where ∆ is the fiber-bundle delay.
The corresponding homolog points for the left and right boundary points in I are given by (0,∆j) and (1364,∆j)
respectively for each j = 0, 1, . . . ,m(v) − 1.

The interior landmark and homolog points as well as the boundary landmark and homolog points are used
for the generation of the TPS warp-correction mapping.



Figure 8. The resulting image from subtracting the uncorrected image from shot N130120-001-000 501 from the corrected
image from shot N130120-001-000 501 using the warp-correction map generated from the reference image from shot
N130120-001-000 508. Notice that the resulting correction is very small and difficult to see qualitatively.

4. PERFORMANCE OF THE THIN-PLATE SPLINES WARP CORRECTION

In this section, the performance of the thin-plate splines warp-correction algorithm on ten-comb streak camera
images with various sweep durations are examined.

The comb frequency is known to 0.01% [8]. The comb frequency thus provides a good baseline to evaluate
the performance of the TPS warp correction. We consider shots in which there are multiple ten-comb images
available. Suppose that a particular NIF shot X has n ten-comb images I ′0, I

′
1, . . . , I

′
n−1 with a particular comb

frequency. We arbitrarily choose one of the n ten-comb images, say image I ′k, which we call the reference image.
The TPS warp-correction algorithm is then performed on image I ′k, generating the associated warp-correction
map fk. The warp-correction map fk is then applied to all the other ten-comb images I ′j for j 6= k. The comb
pulses on the resulting warp-corrected images Ij are measured by a peak-detection algorithm and the frequency
is inferred and compared to the known comb frequency.

The comb generator has fundamental jitter in its trigger electronics, and pulses emitted by the comb generator
vary randomly in timing with a root mean square of about 15 picoseconds. The VISAR system requires the
measurement accuracy to be within one pixel in the temporal direction. Let S be the standard deviation of
the difference between the measured comb frequency for ten-comb image I ′j and the known comb frequency. If
S < max {1 pixel, 15 picosecond pixel equivalent}, then we say that the warp-correction for I ′j is successful.

The warp-corrections are very small and difficult to see qualitatively. Let us examine the results of the TPS
warp-correction on ten-comb image shot N130120-001-000 501 (streak camera A) in detail. Figure 8 shows a
typical warp-correction using a reference image. For the ten-comb shots in N130120-001-000, the known comb
frequency is 0.5 Ghz with a sweep duration of 31.59 ns. Converting nanoseconds to pixels, we have that the comb
period for the ten-comb shots in N130120-001-000 is about 86.42 pixels. Measuring the deviation of the measured



Figure 9. Comparison of the PDFs in the temporal and spatial directions for the uncorrected and corrected images. The
histograms used to approximate the PDFs are displayed as the dashed lines.

Table 1. Comparison of the mean and standard deviation for the corrected and uncorrected image for shot N130120-001-
000 501 with a sweep duration of 31.586 ns and comb frequency of 0.5 Ghz.

shot N130120-001-000 501 (streak A) ref. * 508
temporal (pixels) spatial (pixels)

mean stddev mean stddev

uncorrected -0.89179 1.7958 -0.40934 1.3886
corrected -0.18679 0.82125 0.20697 0.26444

comb period to 86.42 and organizing the deviation data into normalized histograms, we get an approximation
to the probability density function (PDF) of the measured comb period deviations. The PDF of the measured
comb period deviations is assumed to be normal, so we fit a Gaussian function to the normalized histogram
to extract the mean and standard deviation. The left graph of figure 9 compares the PDF of the comb period
deviation of the uncorrected and corrected images. The mean and standard deviation are displayed in table 1.
We see that under the TPS warp correction, we have improvement in both the mean and standard deviation.

The same analysis can be done in the spatial direction, measuring the comb pulse deviations of the pulses in
comb i to the average of the x-coordinates of comb i. The right graph of figure 9 shows the resulting probability
density functions of the aggregate all the combs for the corrected and uncorrected images of N130120-001-000.
The mean and standard deviation are displayed in table 1. Again, we see improvement in both the mean and
the standard deviation of the comb pulse deviation from the average of the x-coordinates.

Tables 1-4 summarize the performance of the TPS warp-correction algorithm in the temporal and spatial
direction on ten-comb images of various sweep durations and comb frequencies; the sweep duration (nanoseconds)
and comb frequency (Ghz) are provided with the tables. We see that for all four shots, the TPS warp-correction
algorithm improves the temporal and spatial mean and standard deviation with the exception of shot N130124-
002-000 508 listed in table 4. For shot N130124-002-000 508, the mean decreases in both the temporal and spatial
directions and the standard deviation decreases for the spatial direction; but, the standard deviation increases in
the temporal direction. However, this is still a successful warp correction since the standard deviation is below
the pixel equivalent of 15 picoseconds.

5. SUMMARY AND CONCLUDING REMARKS

VISAR is the primary diagnostic used for measuring the timing of shocks—one of the key performance metrics for
the NIF’s performance to achieve ignition. Correcting for the nonlinear temporal and spatial distortions present
in the diagnostics three streak cameras are essential for accurately measuring the shock timing. A detailed



Table 2. Comparison of the mean and standard deviation for the corrected and uncorrected image for shot N130120-001-
000 502 with a sweep duration of 31.586 ns and comb frequency of 0.5 Ghz.

shot N130120-001-000 502 (streak A) ref. * 508
temporal (pixels) spatial (pixels)

mean stddev mean stddev

uncorrected -0.89179 1.7959 -0.40934 1.3886
corrected -0.34115 0.86976 0.13326 0.22522

Table 3. Comparison of the mean and standard deviation for the corrected and uncorrected image for shot N140123-004-
000 514 with a sweep duration of 45.45 ns and comb frequency of 1 Ghz.

shot N140123-004-000 514 (streak B) ref. * 506
temporal (pixels) spatial (pixels)

mean stddev mean stddev

uncorrected -0.26731 0.45082 -0.35006 1.0760
corrected -0.09050 0.36832 0.08430 0.16976

calibration procedure developed with NSTec has been applied to the production camera correction analysis for
over eight years. However, since the streak camera nonlinearities drift over time due to sweep date jitter and
slow thermal drift, an additional in-situ warp correction is needed to measure the shock timing to within the
required resolution.

In this paper, a robust in-situ warp correction algorithm was developed utilizing thin-plate splines. Thin-plate
splines provide a smooth functional correction that models complex local distortions over scattered and irregularly
sampled points—properties needed in an in-situ warp correction for VISAR. The algorithm was made robust by
accounting for invalid and missing comb pulses and estimating the image boundary points. We demonstrated
improved timing and spatial accuracy for four shots with various sweep durations and comb frequencies. The
preliminary results are promising. Future work will involve gathering detailed statistics on the performance
of the TPS warp-correction algorithm when applied to ten-comb images of various sweep durations and comb
frequencies; and determining a more reliable way to characterize invalid comb pulses.
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7. APPENDIX A

Basic definitions from real analysis that are used in this paper are presented here for convenience.

Definition 8. Let X ⊂ R2. A path in X is a mapping f : [a, b]→ X such that f is continuous.

Table 4. Comparison of the mean and standard deviation for the corrected and uncorrected image for shot N130124-002-
000 508 with a sweep duration of 11.05 ns and comb frequency of 1 Ghz.

shot N130124-002-000 508 (streak B) ref. * 501
temporal (pixels) spatial (pixels)
mean stddev mean stddev

uncorrected -1.3182 1.0495 -50226 1.2724
corrected -0.50226 1.2724 -0.35902 0.53561



Definition 9. A space X is path-connected if for any two points x, y ∈ X, there exist a path from x to y; more
precisely, if there exist a continuous function f : [a, b]→ X such that f(a) = x and f(b) = y.

Definition 10. Let S1 and D2 denote the unit circle and unit disk in R2 respectively. A space X is simply-
connected if it is path-connected and for any continuous map f : S1 → X, there exist a continuous map
g : D2 → X such that g|S1 = f ; i.e., the restriction of g to S1 is f . In other words, X is simply connected if
there are no “holes”; i.e., we can always contract a closed loop to a single point in a continuous fashion without
leaving X.

Definition 11. Let A ⊂ R2. The interior of A, denoted intA, is the set of all points x ∈ A such that there exist
an open neighborhood N ⊂ X containing x.

Definition 12. Let A ⊂ R2 such that A is closed. The boundary of A, denoted ∂A, is defined to be the
set-theoretic difference between A and intA; that is, ∂A = A\intA.

Definition 13. Let A,B ⊂ R2. A homeomorphism is a continuous bijective map f : A→ B whose inverse is also
continuous. The map f is a diffeomorphism if it and its inverse are differentiable on intA and intB respectively.

8. APPENDIX B

In this section, we present a method for finding the coefficients of the component functions fx and fy in the
thin-plate splines mapping f(x, y) = (fx(x, y), fy(x, y)). A relationship that is useful for calculating the bending
energy (equation 1) is also presented.

The following algebra is presented in Bookstein’s paper [10]. Suppose that we have n landmark points
{(x′k, y′k) | k = 1, . . . n} and n homolog points {(xk, yk) | k = 1, . . . n}. In order for the integrand in equation (1)
to be integrable, we require that

n∑
k=1

wk =

n∑
k=1

wkx
′
k =

n∑
k=1

wky
′
k = 0. (13)

Let Mat (R, n,m) denote the vector space of matrices with entries in R and dimensions n × m (n rows, m
columns). Construct the following matrices:

K ∈ Mat (R, n, n) , (K)ij = U
(∥∥(x′i, y

′
i)− (x′j , y

′
j)
∥∥)

P ∈ Mat (R, n, 3) , (P )ij = (1, x′i, y
′
i)

S ∈ Mat (R, n, 2) , (S)ij = (xi, yi)

O ∈ Mat (R, 3, 3) , (O)ij = (0)

W ∈ Mat (R, n, 2) , W =
(

(wx1 , . . . , wxn)
T
, (wy1 , . . . , wyn)

T
)

A ∈ Mat (R, 3, 2) , A =
(

(ax1 , ax2 , ax3)
T
, (ay1 , ay2 , ay3)

T
)

Ô ∈ Mat (R, 3, 2) , (Ô)ij = (0)

Where T denotes the matrix transpose operator; and U(r) = r2 log r, r =
√
x2 + y2, and ‖·‖ denotes the standard

Euclidean metric. Requiring that f(x′k, y
′
k) = (xk, yk) so that each landmark point is mapped to its homolog

and the conditions in equation (13), yield the following linear system.(
K P
PT O

)(
W
A

)
=

(
S

Ô

)
(14)

Solving this linear system, gives the coefficients for the affine and fully nonlinear parts of the interpolating
surfaces fx(x, y) and fy(x, y) in (2). Let L be the (n+ 3)× (n+ 3) matrix in the system, and let Ln denote the
upper-left n× n sub-block of L. It can be shown that

I(f) ∝ V TL−1
n V = WTKW (15)

The proportional relationship is shown in [13].
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