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Directly probing antiferromagnetic order in
HoMnO, on an ultrafast time scale

Pamela Bowlan!, Stuart Trugman?!, Namjung Hur?,
Antionette Taylor!, Dmitry Yarotskit and Rohit Prasankumar?

1Center for Integrated Nanotechnologies
Los Alamos National Lab, Los Alamos, NM
?Department of Physics, Inha University, Icheon Korea
pambowlan@]Ianl.gov

HM\} I [ \f VAVAVANAVGN oV R oo o
U

N
)
» Los Alamos

NATIONAL LABORATORY

LAUR-14-28523


mailto:pambowlan@lanl.gov

Ultrafast probing of material properties
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Ultrashort THz pulses overlap with resonances through which
magnetism or ferroelectricity can be probed or controlled.

Kamba et. al, PRB 75, (2007), Standard et. al, PRB 85, (2012), Sushkov et. al., PRL 98, (2007)



What is HOMnO;?

Hexagonal Lattice
T<T.(FE) =875K

Rai, et. al, PRB, 75 (2007).

Frustrated antiferromagnet
below 78 K

z=0,c/2 @&
Mn**@ O T—)b

R

P6;cm P6scm
T<Tr=42K T<T
Fiebig, et. al, JAP, 91 (2002).
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Magnons in HOMnO,

Mode 1, Modes 2 and 3
a depends on K, (degenerate).
T—)b Depends on K, and A

Mn3* @
Uniaxial In-plane
anisotropy anisotropy Exchange
E=-K, z cos?0; — K, z cos*3¢; + )lz M; - M;
L i i<j

Penny et. al, JAP 40, (1969), and Talbayev et. al., PRL 101, (2008).



Optical-pump, THz-probe experimental setup

Incident THz pulse

Amplifier, 1 kHz, _ Oscillator E®
Optical-pump 3 mJ, 40 fs, 800 nm 1
delay
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v (THz)

By removing the GaSe crystal and Si filter we can do all
optical-pump, probe measurements for comparison.




Steady state THz transmission in HOMnO,

Measured THz transmission
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As the temperature increases, the restoring forces and order
are weaker, so the mode broadens and lowers in frequency.



Photoexciting HoMnO, modifies the magnon
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Optically pumping affects the magnons and not free catrriers.

Optical absorption in HMO: Souchkov et. al. PRL 91 2003 and Rai, et. al, PRB, 75 (2007).



Optically induced transparency vs delay
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The signal slowly rises over 5-15 ps. Its amplitude
decreases with temperature and is gone by T,«g-



Optically pumping Is consistent with
steady state heating

Photoinduced changes versus fluence and T
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Also, more pumping fluence results in a faster decay time.



Electrons transfer energy to spins via phonons
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The faster decay at higher temperature occurs since there
are more excited phonons for the spins to gain energy from.



Comparison to probing the optical refl

ectivity
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Unlike the optical reflectivity, THz probes only a single magnon.



Conclusions

* Optically pumping and THz probing HOMnO, directly
reveals the electron-magnon coupling and its dynamics.
e This occurs on a 5-15 ps time scale and appears like

steady state heating indicating that phonons, electrons
and spins are all in equilibrium.

* Therefore the electrons transfer their energy to spins via
phonons.

o Optical reflectivity probing is very different since it is
sensitive to the magnetic order in general and not
specific magnon modes as in the THz case.

This work was supported by LANL's LDRD program.
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