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DOE Award DE-SC0006527 “Atomistic Time-Domain Simulations of Light-Harvesting and Charge-
Transfer Dynamics in Novel Nanoscale Materials for Solar Energy Applications”

During the previous DOE funding cycle, our research focused on materials for two types of solar cells
(SC): interfaces involving bulk inorganic semiconductors® and quantum dots”*" (QD). In close
connection with experiment, we applied our state-of-the-art ab initio time-domain approaches in order to
model the photoinduced dynamics in these materials. Additionally, we investigated solvent effects,'824
and worked on public release of the simulation methodologies®®>28 developed in our group. The complete
list of the 30 DOE sponsored publications*° is presented below. The research results were reported at
over 30 invited conference presentations and university seminars.

Electron dynamics at semiconductor interfaces play a central role in photovoltaics and photo-
catalysis. Describing electron behavior in these systems is difficult because it requires a union between
disparate interface components, infinite solid-state materials and finite systems such as molecules,
studied by different communities, chemists and physicists. Our theoretical efforts bridged the gap by
analyzing systems that serve as good general models of the interfacial electron dynamics.
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Figure 1. Energy diagram and competing processes in (a) photovoltaic and (b) photochemical cells.*

The electron and energy dynamics at semiconductor surfaces are surprisingly rich and involve many
processes.* In a Gratzel photovoltaic cell, Fig. 1a, a chromophore absorbs a photon, hv. The
photoexcited electron evolves along many pathways: injection into the conduction band (CB) of the
semiconductor, . relaxation to a lower state of the chromophore, r or to its ground state,

inject ? relax,1?

T2+ Quenching by electrolyte, 7. .. The last two routes should be avoided to maximize the SC

efficiency. Once injected into the semiconductor CB, the electron can diffuse to bulk, 7, , and be used

to perform work — this pathway maximizes solar-to-electric energy conversion. Alternatively, the
electron can be captured by surface trap states,r and recombine with the positive charge by

trap !

interacting with electrolyte, or the chromophore, = The latter two processes decrease

recomb,1? recomb,2 *
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efficiency by reducing the number of charge carriers. The electrolyte serves to close the electrical chain
by transferring electrons from the opposite electrode to the chromophore. Diffusion of bulk electrolyte
affects chromophore regeneration, r and ultimately light-to-electric energy conversion. The basic

regen !
principle of operation in the photocatalytic (photochemical) cell is similar to that of the photovoltaic
cell, Fig. 1b, with some differences.*

We formulated the general principles governing the complex electron dynamics at bulk-semiconductor
interfaces, Fig. 1, by considering specific examples.!® The ultrafast time-scale of the electronic and
vibrational processes at the interfaces makes it difficult to invoke traditional theories. Instead, we
performed explicit time-domain simulations with an atomistic representation of the interface. Our
approach directly mimics the time-resolved experimental data and provides a detailed description of the
processes as they occur in real time. We took into consideration chemical structure, determined the role
of the vibrational motions and electron-phonon coupling, uncovered a variety of electron dynamics
scenarios, and ultimately, established the basic criteria that provided an understanding of this
complicated process. The insights attained in our theoretical studies let us formulate practical
suggestions for improving SC properties and for controlling dynamics at semiconductor interfaces.
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Excited state dynamics in nanoscale semiconductors determine their utility in SC applications. QDs
exhibit both molecular and bulk characteristics. Unlike either bulk or molecular materials, QD properties
can be modified continuously by changing QD shape and size. However, the chemical and physical
properties of molecular and bulk materials often contradict each other, which can lead to differing
viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole
and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic
energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of
quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak,
and that the relaxation through quasi-continuous bands is rapid. Our simulations allowed us to bridge the
bulk and molecular viewpoints, to clarify controversies, and to provide a unified atomistic picture of the
photoexcited state dynamics in semiconductor QDs.”'”  Our atomistic description of QDs
complemented the phenomenological models and provided important atomistic details. The ab initio
approach is particularly useful for studying geometric and electronic structure of QDs, because it treats
bulk, surface, ligands, and defects on equal footing and incorporates electron correlation effects. Our
simulations most closely mimicked the complex light-induced evolutions of charges and phonons,? Fig.
2. We showed that the underlying atomic structure, thermal fluctuations, and surface effects lift
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electronic state degeneracies predicted by phenomenological models and that excitonic electron-hole
interactions are strong in small QDs. Stoichiometric surfaces self-heal. However, only molecular ligands
and core/shell designs can eliminate traps associated with dangling chemical bonds, missing atoms, and
other defects. We showed that ligands can create charge traps® and provide high frequency phonons.*®
Our simulations indicated that phonon-induced dephasing® 1% ° of electronic excitations is ultrafast,
ranging from tens to hundreds of femtoseconds. The dependence of the relaxation on the excitation
energy and the density of states clarified the controversies regarding the phonon bottleneck in the
photoexcited electron relaxation.® We rationalized the ultrafast generation of multiple-excitons without
the phonon bottleneck by strong Coulomb interactions between the charge carriers.® The QD charging
and defects explained the large variation in the experimental data.

Public domain software for non-adiabatic molecular dynamics was released during the past funding
cycle. DOE is encouraging efforts aimed at large-scale computational screening and prediction of
materials properties. Such efforts involve multiple scientists, who need
. accesses to necessary software. With this goal in mind, we released
py a I PYXAID (PYthon eXtention of Ab Initio Dynamics), making available the key
methods developed and used in our group to study excited state dynamics

in SC materials at the time-domain, atomistic level of description.?> 2
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