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OVERVIEW & PROJECT GOALS

The bottleneck of achieving higher rates & titers of toxic metabolites (such as solvents and
carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering
the stress response system. Thus, understanding & modeling the response of cells to toxic
metabolites is a problem of great fundamental and practical significance. In this project, our goal
is to dissect at the molecular systems level and build models (conceptual and quantitative) for the
stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) &
butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic & fluxomic data and
their analysis are key requirements for this goal.

Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH &
BA stress was obtained using both microarrays (Papoutsakis group) & deep sequencing
(RNAseq; Meyers & Papoutsakis groups). These two sets of data do not only serve to validate
each other, but are also used for identification of stress-induced changes in transcript levels,
small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group),
collected using the iTRAQ technology, are essential for understanding of protein levels and
turnover under stress & the various protein-protein interactions that orchestrate the stress
response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide
important information on the re-allocation of energy & carbon resources under metabolite stress,
were examined using *C-labelled chemicals. Omics data are integrated at different levels and
scales. At the metabolic-pathway level, omics data are integrated into a 2" generation genome-
scale model (GSM) (Maranas group). Omics data are also integrated using bioinformatics (Wu
& Huang group), whereby regulatory details of gene & protein expression, protein-protein
interactions & metabolic flux regulation are incorporated. The PI (Papoutsakis) facilitated project
integration through monthly meeting & reports, conference calls, and collaborative manuscript
preparation. The five groups collaborated extensively and made a large number of presentations
in national and international meetings. It has also published several papers, with several more in



the preparation stage. Several PhD, MS and postdoctoral students were trained as part of this
collaborative and interdisciplinary project.

SUMMARY OF RESULTS & FINDINGS

The Papoutsakis group

Summary

The Papoutsakis group was responsible for the overall project coordination, resource and funds
management, and reporting. Most importantly, it had the necessary expertise regarding the
experimental design of the microbial stress experiments and the collection of biological samples
(RNA and proteins) for the omics data collection. It also carried out most of the omics analysis at
the RNA level (RNAseq and microarray analyses; for RNAseq analysis, the Meyers group
played a critical role method development and training), as well as the development of the omics
analysis pipeline. The group carried out an exceptionally large number of well-controlled culture
experiments with the two metabolite stressors (butanol and butyrate), collected all the RNA
omics data, coordinated proteome analysis with the Lee group, bioinformatics analyses with the
Wu and Huang groups, 13C flux analysis and model building with the Antoniewicz group, and
the model building efforts with the Maranas group. It also coordinated integrated omics (RNA
and proteomic) analyses.

Methods and Results

We carried out cultures of Cac in 4 L bioreactors for the 4 stress levels for each metabolite to
collect samples (at several time points: 0, 15, 30, 45, 60 & 75 min post stress) for for
transcriptomic (microarray and RNAseq) & proteomic analyses. Each set of experiments was
carried out with 3-6 biological replicates, and RNAseq analysis was carried out at both the
standard method as well as with strand-specific RNAseq. These data were used to build several
stories described below as organized in publications (published, in press or in preparation).

The Clostridium small RNome that responds to stress: the paradigm and importance of toxic
metabolite stress in C. acetobutylicum (in collaboration with the Meyers group. Publication:
BMC Genomics 2013, 14:849). Small non-coding RNAs (sRNA) are emerging as major
components of the cell’s regulatory network, several possessing their own regulons. A few
sRNAs have been reported as being involved in general or toxic-metabolite stress, mostly in
Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of SRNAs in
the stress response remains poorly understood at the genome-scale level. Using RNA deep
sequencing (RNA-seq) we examined the sSRNome of C. acetobutylicum in response to the native
but toxic metabolites, butanol and butyrate. 50% of the RNA-seq reads mapped to genome
outside annotated ORFs, thus demonstrating the richness and importance of the small RNome.
We used comparative expression analysis of 113 sSRNAs we had previously computationally
predicted, and of annotated mRNAs to set metrics for reliably identifying SRNAs from RNA-seq
data, thus discovering 46 additional SRNAs. Under metabolite stress, these 159 sRNAs displayed
distinct expression patterns (Figure 1), a select number of which was verified by Northern
analysis. We identified stress-related expression of SRNAs affecting transcriptional (6S, S-box &
solB) and translational (tmRNA & SRP-RNA) processes, and 65 likely targets of the RNA
chaperone Hfq.




Transcription factors and genetic circuits orchestrating the response of Clostridium
acetobutylicum to butanol and butyrate stress (in collaboration with the Wu and Huang group.
Publication: BMC Systems Biology 2013, 7:120). Chemical and in particular toxic metabolite
stress engages the general stress response as well as specialized programs. However, the
transcriptional regulatory network underlying the stress response remains largely unexplored at
the systems level. We generated a total of 192 individual set of high-resolution microarray data
examining the transcriptional changes in C. acetobutylicum in response to three levels of
chemical stress from the native metabolites, butanol and butyrate. We identified 164
significantly differentially expressed transcription regulators and detailed the cellular programs
that are linked to either general stress response or stressor-specific response. Comparisons to
several previous studies were made and allowed new insight derived, e.g., stressor dose-
dependent and culture condition-dependent genes and pathways are revealed. Mining of our new
comprehensive data and conduction of comparative genomic analyses allowed the construction
of a detailed picture of the genetic circuitry underlying the stress response. In particular, the
regulons involving stress-related transcription factors such as HrcA, CtsR, LexA, Rex and PerR
are defined, together with those for select amino acid and purine metabolism (i.e., ArgR, HisR,
CymR and PurR) that were found to be stress responsive.

Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated
Genome-scale metabolic model (in collaboration with the Maranas group. Publication:
Biotechnology for Biofuels, 7(1), 144). This paper and story describe the construction, validation,
and integration of a GSM model for C. acetobutylicum ATCC 824, iCac802, with experimental
gene expression data to predict the cellular responses to two chemical stressors: butanol and
butyrate. More details are provided under the report of the Maranas group.

Integrative proteomic and transcriptomic analysis of Clostridium acetobutylicum's response to
butanol and butyrate stress reveals complex post transcriptional regulation (in collaboration
with the Lee group. Publication: Biotechnology for Biofuels 2015, in press, DOI:
10.1186/513068-015-0260-9). Integrative analysis of proteomic and RNAseq data may provide
novel insights into post-transcriptional regulation of Clostridium acetobutylicum under both
stress and health. The identified iTRAQ-based quantitative stress proteome is made up of 616
proteins with a15% genome coverage (Figure 2). The differentially expressed proteome
correlated poorly with the corresponding differential RN Aseq transcriptome. Up to 31% of the
differentially expressed proteins under stress displayed patterns opposite to those of the
transcriptome (see, e.g., Figure 3), thus suggesting significant post-transcriptional regulation.
The differential proteome of the translation machinery suggests that cells employ a different
subset of ribosomal proteins under stress. Several highly upregulated proteins but with low
mRNA levels possessed mRNAs with long 5’UTRs and strong RBS scores, thus supporting the
argument that regulatory elements on the long 5’UTRs control their translation.

Strand-specific RNAseq analysis of Clostridium acetobutylicum enables accurate
transcriptome assembly revealing new genes and the transcriptional intricacies of large and
small RNAs, in health and under stress (Manuscript in preparation).

Next Generation Sequencing (NGS) of RNA can produce hundreds of millions of sequenced
reads. RNAseq relies on the proportionality between expression levels and the number of
sequenced reads. Transcriptome assembly is rarely used in bacterial RNA-seq studies;
frequently, depth alone informs the researchers decision on transcript boundaries with no




discussion of background signals. We carried out a transcriptome assembly from Clostridium
acetobutylicum using high-depths strand-specific RNAseq data. The resulting assembly was
optimized with functional transcriptomic metrics and previous work in C. acetobutylicum in
mind. Cross validation of this assembly demonstrates the robustness of the integrative assembly
and curation method used here. We identified several new transcripts as well TSSs, 5’UTRs,
3’UTRs and several other novel molecular features of the assembled transcriptome.

DNA methylation in Clostridium acetobutylicum is altered under metabolite stress, in
stationary phase and in the absence of the megaplasmid (in collaboration with the Wu and
Huang group. Publication: in preparation). With the development of the PacBio SMRT (Single
Molecule Real Time) sequencing technology, it is now feasible to study the whole genome
epigenetic changes in the bacterial genome. In this study, we identified, for the first time, the
methylation pattern in C. acetobutylicum in response to two metabolite stressors (butyrate and
butanol), between two strains (WT and M5; M5 lacks the pSOL1 megaplasmid that contains the
solventogenic genes), and between two growth phases (exponential and stationary phase) using
PacBio’s RS II platform.

Conclusions:

1. Our results support an important role for SRNAs for understanding the complexity of the
regulatory network that underlies the stress response in Clostridium organisms, whether related
to normophysiology, pathogenesis or biotechnological applications.

2. Using a large set of temporal transcriptional data, we were able to successfully build a
regulatory network model for the general and specialized metabolite stress response in C.
acetobutylicum. A large part of this network is applicable to other Clostridium organisms. This
network will facilitate the construction of genome-scale models with added regulatory-network
dimensions to guide future development of tolerant and productive strains.

3. The regulation placed on the model for the two stresses using CoreReg identified differences
in the respective responses, including distinct core sets and the restriction of biomass production
similar to experimental observations. Given transcriptomic data the CoreReg method can be used
to predict an organism’s response to other stressors by identifying core sets of reactions whose
down-regulation propagates through stoichiometry to the remaining metabolic network causing
flux changes consistent with experimentally observed trends.

4. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns
of a large fraction of the proteome. Such patterns could not have been detected with one or the
other omics analyses. Our analysis proposes the involvement of specific molecular mechanisms
of post-transcriptional regulation to explain the observed complex stress response.

5. We completed a transcriptome assembly from Clostridium acetobutylicum using high-depths
strand-specific RNAseq data. As a result, we identified several new transcripts as well TSSs,
5’UTRs, 3’UTRs and several other novel molecular features of the assembled transcriptome.

6. We found that a set of methylation patterns is always present with almost 100% methylation
under all culture conditions. In contrast, two other methylation motifs are under-methylated and



display higher methylation under metabolite stress, but lower methylation in stationary phase or
in strain M5. More details are provided under the Wu and Huang report below.

Meyers Group

Summary: The Meyers group focused on transcriptional analysis of Clostridium acetobutylicum,
generating RNA data for use within the project. Using RNA deep sequencing (RNA-seq), we
demonstrated a rich abundance and diversity of transcripts and small RNAs in C.
acetobutylicum, regulated in response to the metabolites butanol and butyrate. We found 159
sRNAs that displayed distinct expression patterns, validated them, and identified stress-related
expression affecting transcriptional and translational processes.

Goals: sSRNAs in bacteria span a wider size range between 50 to 500 nts. Regulation of gene
expression at post-transcriptional level by sSRNAs has been established, so we sought to
characterize these on a genome-wide scale in C. acetobutylicum.

Methods: Using RNA-seq, we aimed to identify SRNAs (previously predicted and novel) that are
differentially expressed under butanol and butyrate stress. To do so, we aimed to collect a large
set of temporal data, which, based on our experience are more likely to lead to robust discovery
outcomes. Cultures of C. acetobutylicum were grown in batch mode in 4-L bioreactors up to the
mid-exponential phase of growth (O.D ~ 1.0), at which point the cultures were stressed with
three different concentrations of butanol and butyric acid, respectively, in three biological-
replicate experiments. This work was done with the Papoutsakis lab. Following RNA isolation,
mRNA and sRNA enrichment, cDNA generation, adapter ligations and indexing, libraries were
deep sequenced using [llumina’s second generation HiSeq 2000 with a read length of 50 bp.
Sequencing data were obtained for 84 sequenced libraries from samples representing 7 distinct
culture conditions with 4 time points and 3 biological replicates each. RNAseq data were
analyzed computationally to identify differentially expressed genomic elements (genes, non-
coding small RNAs & interoperonic regions) using the DESeq program of the R Bioconductor
package. These data are being integrated with the microarray data from the Papoutsakis group
for validation & confirmation of differentially regulated loci.

Results: We examined the expression profiles of the 159 (113 previously identified and the
newly identified 46) sSRNAs aiming to identify which are expressed and differentially expressed
under the various metabolite-stress conditions. Butyrate stress gave rise to more (45)
differentially upregulated sSRNAs than butanol stress (33), while butanol stress had more
differentially downregulated sSRNAs (51) compared to butyrate (44). 42 SRNAs were
differentially expressed under both metabolite stresses: 21 were upregulated and 21 were
downregulated under both stresses. Although the two metabolite stresses result in differential
expression of specific sets of SRNAs that are stress and dose dependent, we found a considerable
conservation of expression patterns for the two stressors among these SRNAs, thus suggesting a
possible role of these SRNAs in the general stress response.

Expression patterns under metabolite stress of the 159 sSRNAs were compared against the
non-stressed control cultures (pair-wise & point-by-point) and analyzed using hierarchical
clustering. Both butyrate and butanol stress data displayed distinct clusters. The clustered data
were analyzed to identify shared regulatory elements, such as promoter sequences and
transcription factor binding sites (TFBS) upstream of the SRNAs in the same cluster.



Identification of regulatory elements in the differentially expressed SRNA clusters revealed the
presence of both general stress responsive elements (6B) and the more specific oxidative stress
response regulators (FNR, ArgR and Rex) supports the clustering of co-regulated stress
responsive SRNAs.

Conclusions: Our results support an important role for SRNAs for understanding the complexity
of the regulatory network that underlies the stress response in Clostridium organisms, whether
related to normophysiology, pathogenesis or biotechnological applications.

The Lee group

Summary: The Lee developed a workflow for quantitative proteomic analysis of Clostridia
acetobutylicum (Cac) using iTRAQ tags. The workflow was applied to Cac cells under either
butanol (BuOH) or butyrate (BA) stress, and no stress. A total of 440 and 589 proteins were
identified under BuOH and BA stress, respectively. Among these, 149 and 167 proteins had
statistically significant differential expressions.

Goals: In this study, iTRAQ label and LC/LC-MS/MS were employed to identify and quantify
proteomic changes in Cac under BuOH and BA stress.

Methods: Cac cells were grown and exposed to no, low, medium and high levels of either BuOH
(0, 30, 60 & 90 mM) or BA (0, 30, 40 & 50 mM). SolRH, a Cac strain with superior tolerance to
metabolite stress, were grown at high levels of BuOH (90 mM) and BA (50 mM) stress. Cells
were collected at 15, 45 and 75 min after stress exposure. For proteomic analysis, proteins from
different stress levels and time points were extracted after lysing cells with sonication with the
aid of calcium carbonate; then proteins were digested with trypsin. Digested samples from the
same stress levels at the three different time points and a common reference sample were labeled
with 4 different iTRAQ tags, then pooled together and subjected to multidimensional liquid
chromatography and mass spectrometry (LC/LC-MS/MS). Protein identification and
quantification were performed with Protein Pilot v3. Protein expression levels in different levels
of metabolite stress were compared to corresponding no stress control using SAM analysis with
MeV v4.8 to identify proteins with significantly different expression. Protein identifications were
based on 95% confidence or above. Protein expression changes of =2.0 fold were considered as
significant.

Results: We developed and published a workflow for quantitative proteomic analysis using
iTRAQ tags [1]. With this workflow, 440 and 588 unique proteins were identified and quantified
under BuOH and BA stress, respectively; 413 proteins were identified under both BuOH and BA
stress. Among these, 48, 76 and 75 proteins had significantly differential expressions under low,
medium and high BuOH stress, respectively; 55, 64 and 58 proteins had significantly differential
expressions under low, medium and high BA stress. In addition, there were proteins detected
only under stress conditions, including heat shock proteins (HSPs), UV-stress response proteins,
transcriptional regulators, response regulators involved in signal transduction, and chemotaxis
proteins. An example of the data collected from BA stressed cells is shown in Figure 4, which
depicts a COG breakdown of proteins observed in a typical experiment. Proteins were identified
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and quantified from nearly every COG category. Figure 5 shows the COG classification of
identified proteins compared to proteins with significantly differential expressions upon BA
stress. There are more COG groups with increased expression levels than decreased expression
levels. The main COG groups that showed increased expression included COG groups C (energy
production and conversion), E (amino acid transport and metabolism), F (nucleotide transport
and metabolism), G (carbohydrate transport and metabolism), J (translation, ribosomal structure
and biogenesis), O (posttranslational modification, protein turnover, chaperones). Then we
worked with the Papoutsakis group and compared the stress proteomic data with the
corresponding transcriptomic data from microarray analysis [2] and RNAseq [3] to identify the
post-transcriptional regulations. The paper was recently accepted for publication in
Biotechnology for Biofuels [4].

In the So/RH strain, proteomic analysis identified 38 and 41 proteins with significant
changes under high levels of BA and BuOH stress, respectively. Under BA stress, the expression
levels of 21 and 17 proteins were significantly increased and decreased, respectively. Under
BuOH stress, the expression levels of 22 and 19 proteins were significantly increased and
decreased, respectively. In contrast to WT, the expression levels of chaperone protein groEL
(CA_C2703) and molecular chaperone hsp 18 (CA_C3714) in SolRH were significantly
decreased under BuOH and BA stress.

To understand the different trends for the chaperone proteins, protein expression levels in
SolRH were compared to the WT. Under no stress, the expression levels of 58 and 52 proteins in
SolRH were significantly increased and decreased, respectively; proteins with significant
changes constituted 50% of all commonly quantified proteins. Despite the differences between
the two strains, protein expression levels under BuOH and BA stress are very similar between
WT and So/RH, and 95% of commonly quantified proteins did not show significant changes.

Conclusions: A workflow for quantitative proteomic analysis using iTRAQ tags was developed
and applied to Cac. This method will be applicable to Cac studies by any laboratory and is likely
useful also to teams studying any Gram-positive organism. With this workflow, we identified
and quantified the proteomic changes in Cac under BuOH and BA stress.

The Antoniewicz group

Summary: The Antoniewicz group studied the effects of butanol and butyric acid stress on the
metabolism of C. acetobutylicum. First, a detailed metabolic model was established through the
use of °C-labeling experiments, mass spectrometry analysis, and *C-flux quantification.
Metabolic fluxes were then determined under various levels of butanol and butyric acid stress
and compared to no-stress condition. The results revealed robust metabolism of C.
acetobutylicum under stress.

Goals: Our goal in this project was to quantify what effects butanol and butyric acid stress have
on intracellular metabolic fluxes in C. acetobutylicum. Measurements at the bioreactor level,
including external metabolite concentrations (acetate, butyrate, butanol, ethanol, acetone), cell



growth data, and off-gas analysis revealed that overall metabolic rates are reduced under stress.
However, these macroscopic measurements provide only limited information on re-distribution
of intracellular metabolic fluxes. In order to quantify changes at the intracellular metabolism
level in response to stress *C-labeling experiments were applied.

Methods and Results: First, we had to establish a validated model of metabolism of C.
acetobutylicum in order to apply *C-flux analysis for flux quantification. While the biochemistry
of C. acetobutylicum had been extensively studied in the past, central metabolic pathways
remained only partially resolved. For example, several published genome-scale model provided
inconsistent reconstruction of central metabolic pathways in C. acetobutylicum. Thus, we
developed a new approach for validating metabolic network models by applying the concept of
parallel *C-labeling experiments. In this approach, multiple labeling experiments are performed
in parallel and the results of the parallel experiments are rigorously integrated through model-
based *C-metabolic flux analysis ('*C-MFA) and further validated through statistical analysis. In
contrast to previous qualitative studies, we used the power of integrated model-based data
analysis to conclusively establish the structure of central metabolic pathways and the direction of
carbon flow in the TCA cycle and through amino acid biosynthesis pathways in C.
acetobutylicum. For this study, cells were grown on defined medium in four parallel cultures
with two isotopic tracers, [1-">C]glucose and [U-">C]glucose, with two biological replicates for
each tracer. "C-flux analysis was then applied using the Metran software (developed by
Antoniewicz) to determine intracellular metabolic fluxes. For this purpose, a detailed metabolic
network model of C. acetobutylicum metabolism was developed based on the available genome-
scale models and other metabolic pathway databases. Results suggested that none of the genome-
scale models could accurately reproduce experimental *C-measurements. Guided by these
results and through statistical analysis, we constructed an updated network model that was able
to fit all experimental data with 286 redundant measurements.

Using C-flux analysis, we found that the TCA cycle is effectively incomplete in C.
acetobutylicum. Specifically, there is no flux between a-ketoglutarate & succinyl-CoA, succinate
& fumarate, & malate & oxaloacetate. Contrary to previously proposed hypotheses, we found
that while the TCA cycle runs in the oxidative direction, the conversion of succinyl-CoA to
succinate proceeds independently (Figure 6). As a novel finding, we identified a new growth
dependent pathway in C. acetobutylicum that proceeds from pyruvate to fumarate. This pathway
has not been observed in other organisms to our knowledge. The driving force for this pathway is
the growth dependent conversion of aspartate to fumarate, as part of the biosynthesis of arginine
and histidine. Our flux results also suggested that isoleucine is not produced from aspartate (or
from threonine) as was previously proposed, but is instead produced exclusively from pyruvate
and acetyl-CoA via the citramalate synthase pathway. Until now, no citramalate synthase gene
has been reported for C. acetobutylicum. To identify a putative citramalate synthase gene, we
performed BLASTp analysis to identify a putative citramalate synthase gene (CAC3174;
currently annotated as a-isopropylmalate synthase), which is the first step in the citramalate
pathway. Our flux analysis results further suggested that there may be additional metabolic
cycles operating in C. acetobutylicum that link central carbon metabolism and amino acid
metabolism. To further investigate this prediction, additional *C-labeling experiments were



performed with '*C-aspartate and '*C-serine tracers. We demonstrate that C. acetobutylicum
indeed has an active metabolic cycle where carbon atoms flow from aspartate to threonine, to
serine, to pyruvate, to oxaloacetate and back to aspartate. This newly identified metabolic cycle
depends on two amino acid degradation reactions that are active in C. acetobutylicum, namely
the degradation of threonine to glycine and degradation of serine to pyruvate (Figure 6). We
believe that this cycle allows C. acetobutylicum to rapidly interconvert several key amino acids
that are needed for cell growth. Two of the six reactions in this cycle were determined to be
reversible.

With the metabolic model of C. acetobutylicum now firmly established, it was applied to
investigate intracellular metabolism of C. acetobutylicum under different stress conditions: low,
medium and high butanol stress (30, 60, 90 mM, respectively); and low, medium and high
butyrate stress (30, 40, 50 mM, respectively). Cells were first grown on defined medium to mid-
exponential growth phase (ODgo ~1.0). At that point, butanol or butyrate was added at the
desired concentration together with a *C-tracer, either [U-""C]glucose or [4-"*CJaspartate.
Following the addition of butanol/butyrate and the tracer, cell growth was monitored by
measuring optical density, overall metabolic rates were monitored by off-gas analysis (CO, and
H, production rates), and intracellular metabolism was monitored by measuring the incorporation
of °C-labeling into biomass using mass spectrometry. Cell growth and overall metabolic rates
were significantly reduced under butyrate stress, and to a lesser extent under butanol stress
(Figure 7). However, the ratio of H, production to CO, production, which is indicative of
relative intracellular pathway utilization, was unaffected by butanol and butyrate stress (Figure
7). Similarly, *C-labeling incorporation into biomass was unaffected by butanol and butyrate
stress (Figure 8).

Conclusions: Overall, these results demonstrate that C. acetobutylicum displays an intracellular
metabolism whereby relative intracellular utilization of central pathways is maintained relatively
constant at low and high levels of butanol and butyrate stress, despite a significant reduction of
overall metabolic rates. This suggests that the cells employ multiple levels of regulation to
maintain essential central pathways at constant relative ratios for balancing cell metabolism in
health and under stress.

The Maranas group

Summary: A genome-scale metabolic (GSM) model is a powerful tool for understanding the
metabolic capacities of an organism and developing metabolic-engineering strategies for strain
development. The inclusion of condition-specific regulatory information to a GSM model
provides additional capabilities for phenotypic predictions. We constructed and validated, and a
regulated GSM model for C. acetobutylicum ATCC 824, iCac802, which was used with
experimental gene expression data to predict the cellular responses to two chemical stressors:
butanol and butyrate. iCac802 spans 802 genes and includes 1137 metabolites and 1462
reactions, along with gene-protein-reaction associations. Both *C-MFA and gene deletion data
in the ABE fermentation pathway were used to test the predicted flux ranges allowed by the
model.



Goals: The goal of this project was to understand and model the stress response of Clostridium
acetobutylicum to two important toxic metabolites: butanol and butyrate. CoreReg method was
developed to place regulation on a genome-scale metabolic model for the two stresses and
identified differences in the respective responses, including distinct core sets and the restriction
of biomass production similar to experimental observations. Given the core sets predicted by the
CoreReg method, remedial actions can be taken to counteract the effect of stress on metabolism.
The specific Aim was to develop two types but complementary models to capture essential
elements of the metabolite stress responses, and build a 2nd generation Genome-Scale Model
(GSM) as required for both types of modeling efforts.

Methods & Results: The 2nd generation GSM model iCac802 was constructed for C.
acetobutylicum ATCC 824. It spans 802 genes and includes 1,137 metabolites participating in
1,462 reactions. All reactions present are elementally and charge balanced. GPR associations
were determined from the available functional annotation information and homology predictions
accounting for monofunctional proteins, multifunctional proteins, isozymes, and protein
complexes. The model was curated to remove any thermodynamically infeasible cycles. While
all previous models contained an aggregate reaction for the production of hexadecanoyl-acp and
hexadecanoyl-CoA from acetyl-acp and crotonyl-CoA, respectively, iCac802 includes all
participating reactions in fatty acid synthesis and metabolism pathways building up to these
metabolites. iCac802 also contains additional reactions from purine, pyrimidine metabolism, and
cobalamin biosynthesis pathways. Both ’C-MFA and gene deletion data in the ABE
fermentation pathway were used to test the predicted flux ranges allowed by the model.

Regulation was incorporated into the model by a stepwise procedure that modified the
minimum and maximum flux bounds of reactions based on fold change values of corresponding
gene expression values by a new method called CoreReg. Gene expression data for each stress
condition were used to calculate the fold change from unstressed conditions using significance
analysis of microarrays (SAM). Transcriptomic data were collected for three concentrations each
of butyrate and butanol. We refer to these as low (30 mM butyrate, 30 mM butanol), medium (40
mM butyrate, 60 mM butanol), and high (50 mM butyrate, 90 mM butanol) stress conditions.
The fold change for each reaction under each stress condition was calculated from gene
expression fold changes under stressed conditions by using GPRs. In the case of multiple
enzyme subunits, the minimum expression value for the genes associated with the subunits was
considered for calculating the reaction fold change. In the case of isozymes the total transcript
level, obtained by summation of all isozyme transcripts, was considered. The unregulated model
reaction bounds without any biomass constraint represent the minimum and maximum possible
bounds of each reaction. Thus, a further increase in these bounds does not affect any maximum
yield calculations, as the bounds are not active. Thus, only down-regulated genes were
considered for evaluating the regulated model. The procedure for implementing regulation can
be divided into five steps as explained below (see Figure 9).

Step 1: FVA is performed on the unregulated (UR) model to obtain lower VJF’UR and upper ij’UR

reaction flux bounds. The value of k is set equal to one to indicate primary core set.
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Step 2: FVA upper and lower bounds for the unregulated model are multiplied by the fold
LR

change value (¢;) obtained using the transcriptomic data. The lower y»* and upper v}”‘ bounds

for the regulated (R) model are evaluated as follows:

U.,R U,UR

v, =y e 5
Vjsuchthate, <1—1¢ 7. /. 7 ©)

Vit =V (6)

Note that the updated lower bound is non-zero only for reversible reactions, effectively lowering
the maximum possible flux value in the reverse direction.

Step 3: FBA is performed on the unregulated and the regulated model to obtain maximum

1 ] max,UR max,R 5 max,R 1 max,UR 0
biomass yields v and v , respectively. If vl varies from v by less than 2%,

then the process is terminated, because the effect of the remaining regulation in the model is too
small to cause any significant changes in metabolism as exemplified by the max biomass yield.
Therefore, no additional regulatory core sets are extracted.

Step 4: FVA is performed at max biomass VEZ;’R on the regulated (R) model to obtain lower v;ﬁR
u,R
J

regulatory constraints from Step 2.

and upper y"" reaction flux bounds. These bounds are next compared with the imposed

Step 5: Reactions j whose flux bounds are equal to the regulatory constraints (that is, v‘;’R =

V}LR or vler = v}’R ) are assembled into the core set of reactions (of order k). To identify

secondary, tertiary, and higher order core sets, the fold change values (c;) for the previously
determined k core sets are set to one, thus removing their regulatory role in the model. The
process is repeated from Step 2 with the value of k increased by one.

Conclusions: The regulation placed on the model for the two stresses using CoreReg identified
differences in the respective responses, including distinct core sets and the restriction of biomass
production similar to experimental observations. Given transcriptomic data the CoreReg method
can be used to predict an organism’s response to other stressors by identifying core sets of
reactions whose down-regulation propagates through stoichiometry to the remaining metabolic
network causing flux changes consistent with experimentally observed trends. The CoreReg
method can be applied to time varying transcriptomic data to find core sets for each time point
by assuming the first time point as the basis condition. This could provide insight into the
various growth phases highlighting the key changes in transcriptome. CoreReg method can also
be used on the proteomic data and to analyze the proteome based on core sets and compare
against experimental data.

The Wu & Huang group
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Summary: Omics data are integrated, whereby regulatory details of gene & protein expressions
and interactions, and DNA modifications are incorporated. A network of regulons was identified
to play significant roles in stress response. Moreover, methylome study unveiled motifs that are
either ubiquitously or differentially modified throughout the genome. The differential DNA
modifications under stress suggest a novel regulatory layer for stress orchestration.

Goals: Integration of omics data to understand stress response of C. acetobutylicum (Cac).

Methods: pattern-based DNA-binding motif analysis (de novo motif prediction with
MOTIFATOR, phylogenetic footprinting), in combination with transcriptome data and
comparative genomics; methylome analysis (PacBio, SMRT Portal software (v2.2.0)); protein
interaction data mining; functional characterization & enrichment analysis (with FIVA software);

Results: Determination of stress response network model integrating important players for the
general and specialized metabolite stress response in Cac was achieved as shown in [1], using an
exceptionally large set of temporal transcriptional data and regulon analyses. In particular, by
extracting the expression patterns in transcriptome data from butanol (BuOH) & butyrate (BA)
stressed cultures (through clustering via the MeV software), both common & stress specific
genes are revealed. We identified 164 significantly differentially expressed transcriptional
regulators and detailed the cellular programs associated with general and stressor-specific
responses, many previously unexplored [1]. Pattern-based, comparative genomic analyses
enabled us, for the first time, to construct a detailed picture of the genetic circuitry underlying the
stress response (Figure 10). Notably, a list of the regulons and DNA binding motifs of the stress-
related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR;
the SOS response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR.
Moreover, several transcriptional regulators controlling stress-responsive amino acid and purine
metabolism and their regulons were also identified, including ArgR (arginine biosynthesis and
catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine metabolism
repressor) and PurR (purine metabolism repressor).

Based on our analysis of the single molecule real-time (SMRT) (PacBio) sequencing data
of Cac under various culture conditions, we predicted potential DNA modification sites and
DNA modification motifs. Among those motifs, three are ubiquitously methylated throughout
the tested culture conditions (i.e., CTGA™®AG, CTTC™AG and CAAAA™®AR). Two motifs,
G™®ASTC and G™CNGC, show different level of partial differential methylation throughout the
samples tested and notably under stress, under stationary phase of culture and a degenerate strain
(M5) which cannot produce solvents (Figure 11). The differential modification of the latter two
motifs led to a hypothesis of epigenetic regulation of gene expressions under stress. In particular,
the differential modification of G"™®ASTC and G™CNGC were not only found to be associated
with certain protein-coding genes, but also some ncRNA genes (including SRNA genes [2]).
Moreover, a comparison of late-stationary-phase sample versus the mid-exponential sample
enabled the identification of the genes with both differential gene expression and growth-stage
specific motif modifications. For the poorly understood epigenetic regulations of Cac, plausible
regulatory loops can be suggested around the affected metabolic reactions, and the hypotheses
can be tested experimentally.

We have worked with the Papoutsakis group and the Meyers group on the analysis and
interpretation of the transcriptome (microarrays) and methylome (PacBio sequencing) of cultures
under non-stressed, butyrate- and butanol- stressed conditions. The methylome data also include
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cultures at a late-stationary phase and a mutant strain M5 (in which the megaplasmid is missing).
In addition, we assisted the analysis of the RNAseq data (Illumina), by employing TPM
(transcript per million) normalization for identifying high quality sequencing data.

Conclusions: Since the majority of the transcription factors and their target genes are highly
conserved in other organisms of the Clostridium genus, the network discovered in our study
(Figure 10) would be largely applicable to other Clostridium organisms. The network revealed
in our study inform the molecular basis of Clostridium responses to toxic metabolites in natural
ecosystems and the microbiome, and has already facilitated the construction of genome-scale
models with added regulatory-network dimensions to guide the development of tolerant strains

[3].
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REPORT OF PRODUCTS DELIVERED:

We developed a website for the project: http://www.clostress.org/index.html. This website is
accessible by everybody. Only two sub sites are password protected. These are for the monthly
reports and the new data that will be first available to the project researchers.

During the 2013 Genomic Science meeting (25-27 Feb., Bethesda, MD), the Papoutsakis and
Maranas groups had interactions with Dr. Chris Henry, the Microbial Science Team Co-lead of
the DOE Systems Biology Knowledgebase (KBase) for incorporation of the current second
generation genome scale model (GSM) of Clostridium acetobutylicum into KBase.

Also, the Papoutsakis and Wu & Huang groups interacted with the other DOE grantees, KBase
collaborators and developers of the regulation network prediction webserver tool (RegPredict)
and database (RegPrecise), Dr. Dmitri Rodionov (Sanford - Burnham Medical Research
Institute) and Dr. Pavel Novichkov (Lawrence Berkeley National Laboratory). Following
extensive interactions, Dr. Novichkov created an account for the Papoutsakis group to work and
save the regulatory network analysis using the webserver tool, RegPredict. Also, Dr. Novichkov
and Dr. Rodionov proposed to include the small regulatory RNA discovery data (consisting of
159 sRNA) in their RegPredict to facilitate robust analysis of the regulatory network in
Clostridia.
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1. Hou S, Jones SW, Choe LH, Papoutsakis ET, Lee KH: Workflow for quantitative proteomic
analysis of Clostridium acetobutylicum ATCC 824 using iTRAQ tags. Methods 2013, 61:269-
276.

2. Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH: Transcription factors and
genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum
to butanol and butyrate stress. BMC Systems Biology 2013, 7:120.

3. Venkataramanan, KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC,
Papoutsakis ET: The Clostridium small RNome that responds to stress: the paradigm and
importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 2013, 14:849.

4. AuJ, Choi J, Jones SW, Venkataramanan KP, Antoniewicz MR: Parallel labeling experiments
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Metab Eng 2014, 26:23-33.
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Integrative proteomic and transcriptomic analysis of Clostridium acetobutylicum's response to

14
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Bacteriol (In Preparation).
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Preparation).
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Figure 1. Analysis of the expression of small regulatory non-coding RNA (sRNA) in C.
acetobutylicum under metabolite stress using RNA deep sequencing. A to F represents the
hierarchical clustering of the 159 sRNAs in C. acetobutylicum under butanol stress. The 159
sRNAs consists of two subsets: 113 previously predicted & 46 newly identified (Papoutsakis &
Meyers group) using RNA-seq data. 124 of these SRNAs were found to be differentially
expressed under stress. Northern analysis of the selected SRNAs from (G) 113 previously
predicted sSRNAs & (H) 46 newly identified SRNAs.
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Figure 2. Clostridial proteomic summary under metabolite stress. (Panel 1) Comparison of
the butanol (red) and butyrate (blue) stress proteome. Comparison of proteome between non-
stress control condition and (Panel 2) butanol stress. Comparison of proteome between non-
stress control condition and (Panel 3) butyrate stress. Distribution of the stress proteome into
various COG functional groups (Panel 4) butanol stress and (Panel 5) butyrate stress. Differential
expression within COG categories (Panel 6) butanol stress and (Panel 7) butyrate stress * - OCG
gcategory enriched with upregulated proteins; * - COG category enriched in downregulated
proetins; * - COG category equally enriched in up- and down-regulated proteins. C: Energy
production and conversion; D: Cell division and chromosome partitioning; E: Amino acid
transport and metabolism; F: Nucleotide transport and metabolism; G: Carbohydrate transport
and metabolism; H: Coenzyme metabolism; I: Lipid metabolism; J: Translation, ribosomal
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structure and biogenesis; K: Transcription; L: DNA replication, recombination and repair; M:
Cell envelope biogenesis, outer membrane; N: Cell motility and secretion; O: Posttranslational
modification, protein turnover, chaperones; P: Inorganic ion transport and metabolism; Q:
Secondary metabolites biosynthesis, transport and catabolism; R: General function prediction
only; S: Function unknown; T: Signal transduction mechanisms; U: Intracellular trafficking,
secretion, and vesicular transport; V: Defense mechanisms.
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Figure 3. Comparison and correlation between proteomic and transcriptomic data under
high butanol stress. A) Microarray vs proteomic comparison. B) RNAseq vs proteomic
comparison. C) Microarray vs RNAseq comparison. D) Pearson correlation. All significant
expression are with respect to proteomic data only. Red — differentially upregulated proteins;
Green — differentially downregulated proteins; Black — non-significant proteins; Blue — proteins
expressed only under non-stress control; Orange — proteins expressed only under stress.
Genes/proteins lacking expression were represented by gray color.
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Figure 4. The distribution of COG categories for identified proteins in C. acetobutylicum
ATCC 824 upon butyrate stress. Annotations: J, Translation; K, Transcription; L, Replication,
recombination & repair; D, Cell division & chromosome partitioning; O, Posttranslational
modification, protein turnover, chaperones; M, Cell envelope biogenesis, outer membrane; N,
Cell motility & secretion; P, Inorganic ion transport & metabolism; T, Signal transduction
mechanisms; C, Energy production & conversion; G, Carbohydrate transport & metabolism; E,
Amino acid transport & metabolism; F, Nucleotide transport & metabolism; H, Coenzyme
metabolism; I, Lipid metabolism; Q, Secondary metabolites biosynthesis, transport &
catabolism; R, General function prediction only; S, Function unknown; U: Intracellular
trafficking, secretion, and vesicular transport; V: Defense mechanisms;
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Figure 5. The distribution of COG categories for identified proteins and proteins with
differential expressions in Cac under butyrate stress.
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Figure 6. (A) Schematic of the metabolism of Clostridium acetobutylicum, including the
metabolic cycle between central carbon metabolism and amino acid metabolism identified in this
study (highlighted with blue arrows). (B) Relative abundances of M+1 mass isotopomer in
intracellular metabolites from tracer experiments with [4-">CJaspartate, [1-'>C]aspartate and [1-
PClserine. The *C-labeling data validated the presence of the metabolic cycle and the
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Figure 7. Off-gas analysis of Clostridium acetobutylicum cultures under different levels of
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butanol or butyrate was added to the culture. The absolute metabolic rate of CO, production was
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CO; production was not affected by butanol or butyrate stress.

25



25%

20%

—_

(%

15%

ing

10%

13C-Label

5%

0%

25%

20%

(%)

15%

ing

Label

10%

13C.

5%

0%

Figure 8. Incorporation of *C-labeling into biomass amino acids under high butanol stress (C)
and high butyrate stress (D) compared to respective no-stress controls (A and B). The time
profiles of °C-labeling incorporation followed the expected labeling trends (black lines)
assuming no changes in intracellular metabolic fluxes. Thus, these results suggest that relative

No Stress

2.0 25
0OD600

3.0

3.5

High Butanol Stress

_

1.0

1.5

2.0 25
0D600

3.0

3.5

—Ala
-=-Gly
—-+Val
—<Leu
—lle
-o-Pro
——Ser
—Thr
Phe
——Asp
-#Glu
Lys
Tyr
-=—Expected Labeling

——Ala
-=-CGly
-+Val
—<Leu
—lle
-o-Pro
——Ser
—Thr
Phe
—-Asp
-#Glu
Lys

Tyr
-=-Expected Labeling

No Stress
25%
20% -
(2]
c
% 15%
o2
©
=
O 10%
@
5% /
0% o : :
0.5 1.5 25
D 0D600
High Butyrate Stress
25%
20%
(=2}
c
= 15% -
2
©
-
O 10%
@
5%
0%

metabolic fluxes are not affected by butanol and butyrate stress.

—-Ala
-=-CGly
—+Val
—<Leu
—lle
-e-Pro
——Ser
—Thr
Phe
—Asp
-#-Glu
Lys
Ty

v
-=-Expected Labeling

——Ala
-=-Gly
-+Val
—<Leu
—lle
-e-Pro
——Ser
—Thr
Phe
——Asp
-%-Glu
Lys
Ty

v
-=-Expected Labeling

26



Step 1-2 Step 3 Step 4 Step 5

Available information Model regulation Termination criteria Range comparisons Results
b,
| I
- '< LR R
] )
\ Cl' <1
\ GSM UR
LUR: 0 S uuR vngnx,llk - vmax.k
Q / " 1 gt Dlom _—biom 0 IHI j € Core Set
\../ \ { Upiom
LR, UR
. a
LR UR
o0
R = v}l.lm_ P
UR vlu,lm_ P
LR R
Vi Y
k=k+1 )
¢ =1V j€Core Set
Transcriptomic data of order k

Figure 9: Graphical representation of the CoreReg procedure

27



e LexA
CtsR Q‘.‘ } e mc‘cm

ne S,
- 8
oe : AP c‘@“ :
ArgR
- e®_
e :
o g
calfps WM
cACHi1e
cAcH hisC .
e
iR cysN QA”
HisR Q“, cA‘m
cafcie @ >
A= AP Uouecﬁ“ 4 ‘\\YB OH A
u
cn.oo c:.n cneu CA_coa21 DD BA @
CymR

Figure 10. Stress response regulations. On the top, the STRING-based regulatory protein
interaction network with 8 key regulons identified in this study. Transcription factors are in
triangle, and target genes in circle. Filled color or edge color corresponds to up-, down-,

bimodal- gene expression under butanol or butyrate stress. The edges connecting nodes are

derived from STRING database. The differential expression of stress-responsive SRNA genes
and differential modification of DNA motifs can integrate with the above regulon network to

synergistically orchestrate stress response.

28



methylated GACTC motif y === experi t methylated GAGTC motif summary ---- experiment
1400 -
1400 -
1200
1200
1000
3 % 1000 -
3 3
% 800 % 800
§ 600 § 600
Qo o
400 - 400 —
200 I 200 —
o _- ]
2 I §=2332§§=§~-2
| |
: ERRREEE : s g B
H =
GAGTC_NS1 GAGTC_BA3 GAGTC_NS11 GAGTC_BA9
BA

GAGTC_BuOH4 GAGTC_NS11 GAGTC_OH10

29



GACTC

GACTC_NS1 GACTC_BA3 GACTC_NS11 GACTC_BAS

GACTC_BuOH4 GACTC_NS11 GACTC_BuOH10

GCNGCAGC

NS1_GCNGCAGC BA3

NS1_GCNGCAGC BuOH4 NS11_GCNGCAGC BuOH10

Figure 11. (A) methylation of GASTC under different culture conditions. (B-D) Venn diagrams
for differentially methylated GAGTC (B), GACTC (C), and GCNGCAGC (D) sites under
butyrate and butanol stresses, with non-stressed sample as control. Results from wo biological
replicates are shown.
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