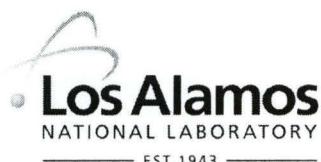


LA-UR-


12-01443

Approved for public release;
distribution is unlimited.

Title: Gamma Spectrometer Measurements of Microgram Quantities of Plutonium

Author(s):
Steven C. Myers
Lav Tandon
Donivan R. Porterfield
Khalil J. Spencer
Mariam R. Thomas
Patrick T. Martinez

Intended for: Methods and Applications in Radioanalytical Chemistry IX
Conference, Kailua Kona, Hawaii, March 25-30, 2012

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

Gamma Spectrometer Measurements of Microgram Quantities of Plutonium

Steven C. Myers, L. Tandon, D. Porterfield,
P. Martinez, K. Spencer, M. Thomas, LANL

MARC IX Conference

March 28, 2012

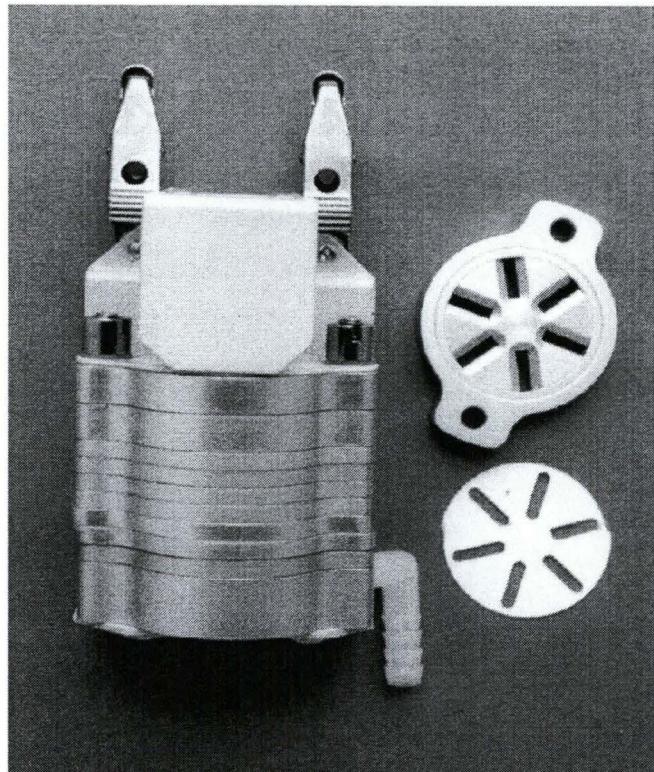
UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Acknowledgements

- The authors would like to acknowledge the contributions and support of Ning Xu and her Plasma Spectrometry team at LANL

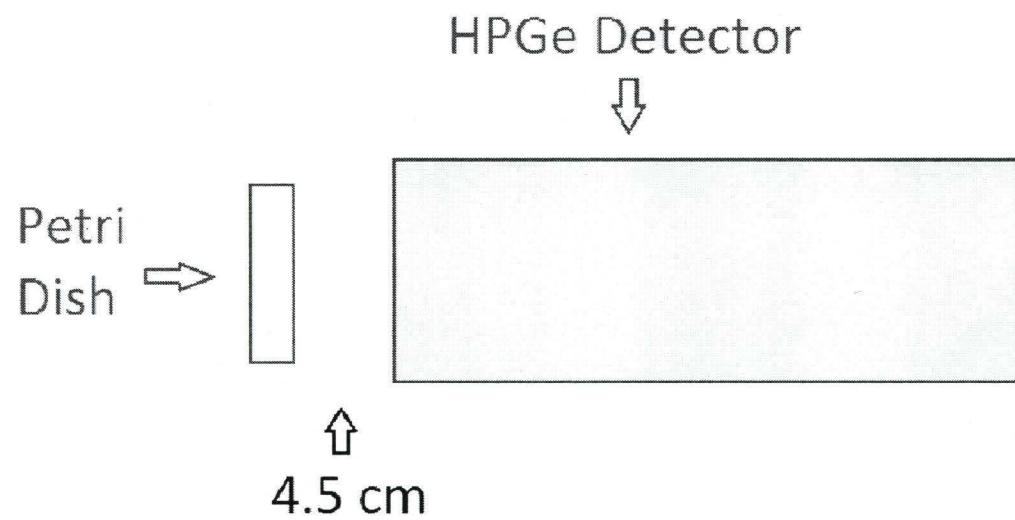
Introduction/Project Goals



- Identifying the particle size distribution of a plutonium operation can enhance the ability to calculate inhalation dose
- Collect plutonium aerosols during actual glovebox operations with a Marple cascade impactor
- Measure the plutonium content on the filters using both gamma spectrometry and thermal ionization mass spectrometry
- Challenge was to determine how well we could determine Pu mass using low energy uranium L x-ray emissions

Marple Cascade Impactors

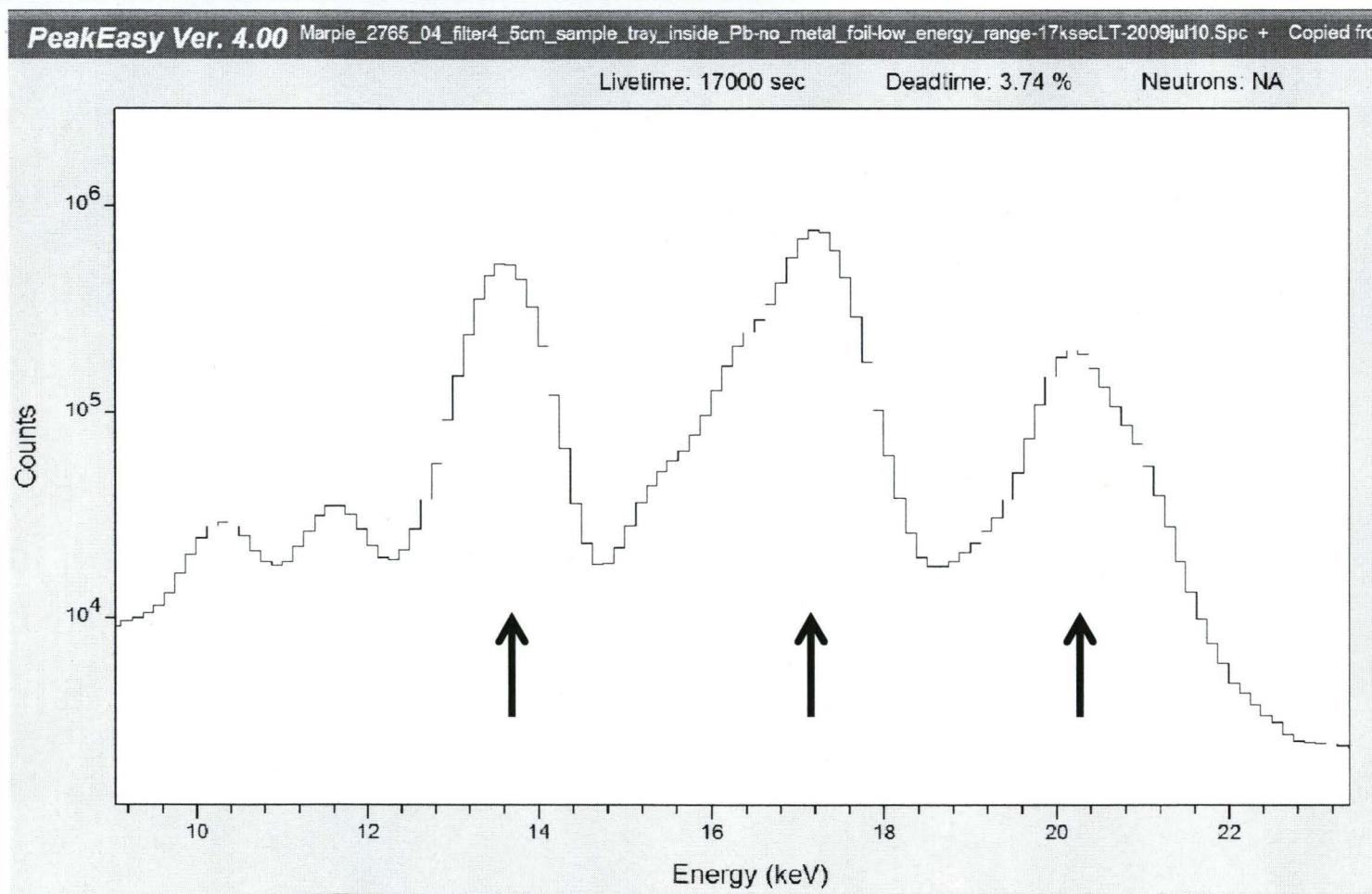
MARPLE Cascade Filter


Particle Size Fractions
(AMAD)

Stage	μm
1	21.3
2	14.8
3	9.8
4	6
5	3.5
6	1.55
7	0.93
8	0.52
9	< 0.52

AMAD = activity median aerodynamic diameter

Sample Geometry



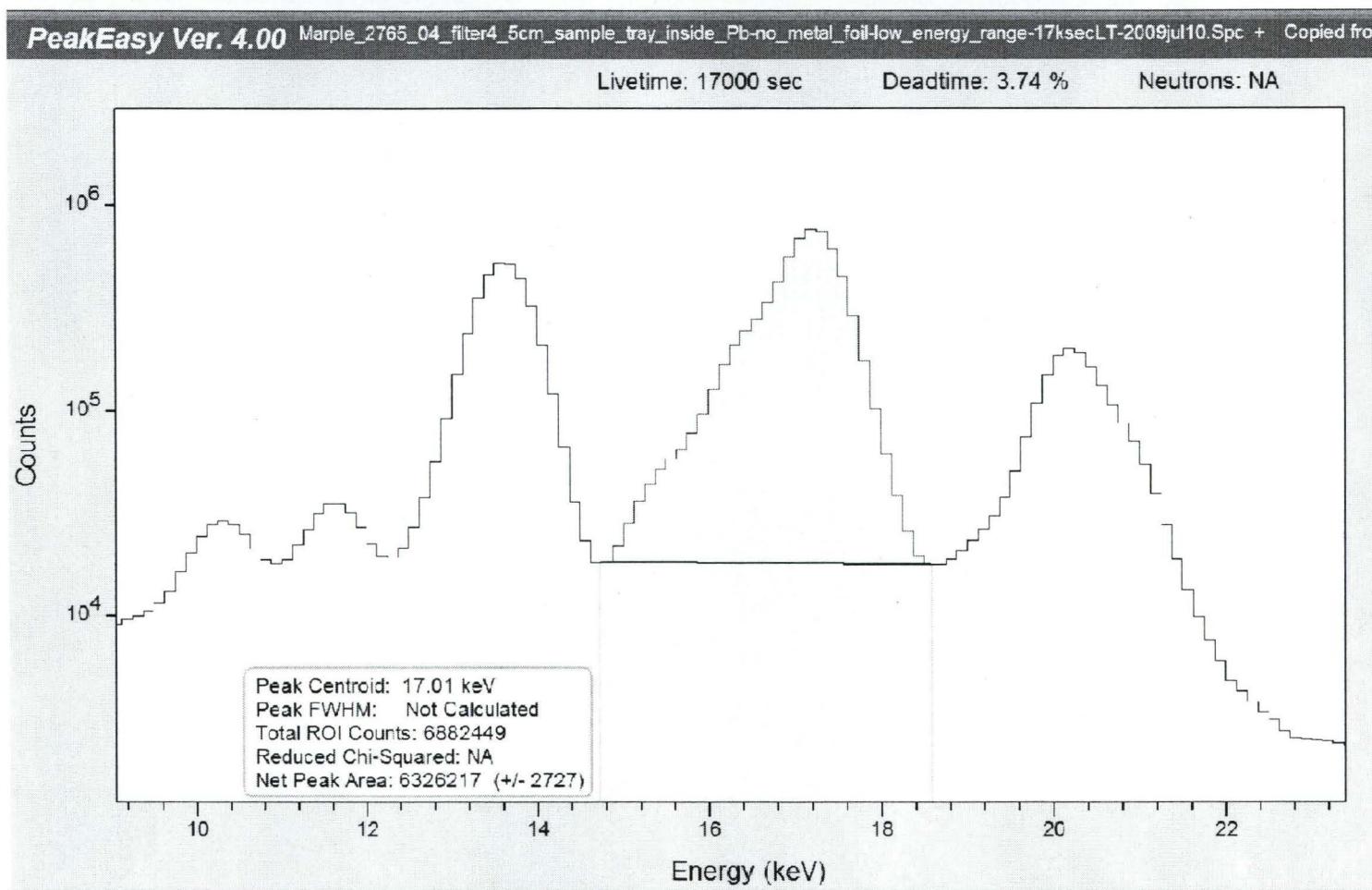
Relevant Photon Intensities

Energy (keV)	^{239}Pu	^{240}Pu	^{241}Am
13-21	4.66%	10.35%	37.39%
59.54			35.90%
129.29	6.29E-03%		

U N C L A S S I F I E D

Uranium L X-Ray Regions

 Los Alamos
NATIONAL LABORATORY
EST. 1943



Operated by the Los Alamos National Security, LLC for the DOE/NNSA

U N C L A S S I F I E D

U N C L A S S I F I E D

Fitting Net Counts in L x-ray regions

U N C L A S S I F I E D

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Project Details

- Spectra were collected for 19 sets of 9 filters each
 - Plus one background count per set
 - Plus one process blank per set
 - Plus one replicate per set
- Count times ranged from a few thousand seconds to > 300,000 seconds live time
- After gamma counting, filters were cut in half and one half was used for TIMS analysis
 - 10 half filters were counted to determine the level of symmetry in the Pu material distribution

Gamma Assay of Plutonium Mass

1. Subtract background counts in 3 regions of interest
2. Assay ^{241}Am based upon net counts in 59.5 keV
3. Subtract ^{241}Am contribution in L x-ray region
4. Sum the nets counts in three x-ray regions to determine total $^{239/240}\text{Pu}$ mass (assume 6% ^{240}Pu by mass)
5. Perform independent ^{239}Pu mass determination with net counts in 129.29 keV peak

Results: Errors with Half-Filters

Filter	Whole Filter 17 keV Rate	Half Filter 17 keV Rate	Half Filter % of Whole
1	464.2 (± 0.10)	303.2 (± 0.07)	65.3%
2	2306.2 (± 0.23)	958.3 (± 0.33)	41.6%
3	1333.1 (± 0.15)	337.1 (± 0.08)	25.3%
4	156.0 (± 0.05)	83.9 (± 0.16)	53.8%
5	1011.6 (± 0.13)	325.9 (± 0.44)	32.2%
6	875.1 (± 0.13)	354.5 (± 0.61)	40.5%
7	478.3 (± 0.08)	237.8 (± 0.50)	49.7%
8	414.2 (± 0.16)	207.6 (± 0.46)	50.1%
9	347.0 (± 0.08)	124.6 (± 0.36)	35.9%
10	1788.0 (± 0.38)	793.6 (± 0.92)	44.4%

UNCLASSIFIED

Non-Homogenous Particle Distribution

PUL

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

UNCLASSIFIED

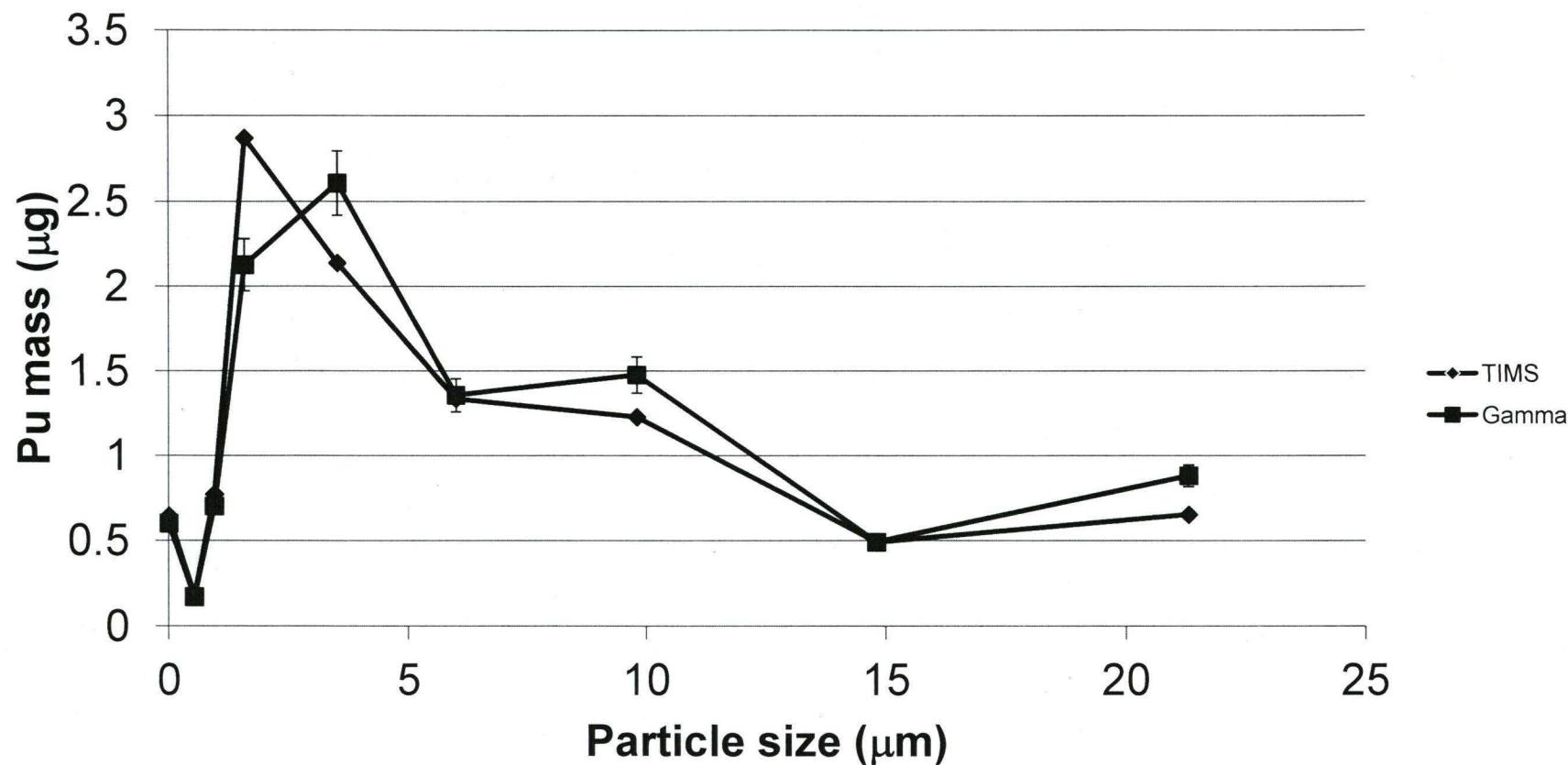
Summary of Replicate Results

- Average replicate bias of 18 counts was -0.27%
 - Range from -25.0% to +22.6%
 - The largest biases could be explained by statistical uncertainties as quantities were in the nanogram range
- 15 of 18 replicates had biases $< \pm 10\%$
 - 11 replicates were $< \pm 5\%$
- Sample positioning errors were reasonable given the 4.5 cm distance

Sample Dissolution Process: Pre and Post

- The dissolution used a weak HNO₃ acid that did not completely destroy the filter media
- Pre- and post-dissolution measurements of 6 filters indicated the average material remaining was 2.7% with a range from 0.47% to 8.22%
- Summary: The dissolution process could create a small negative bias in TIMS results relative to gamma

Internal Consistency of Gamma Results


- Two sets of filters exhibited alpha induced x-ray fluorescence effects, so their x-ray and 129 gamma results do not match well (more on this later)
- However, there were 10 sets with 73 total filters with enough Pu that the 129 keV gamma from ^{239}Pu could also be used to estimate mass
 - This generally required $> 1.0\text{E-}05$ grams (10 micrograms)
 - We assumed *a priori* 6% ^{240}Pu by mass
- The average bias between x-ray region results to 129 keV region results was 0.83%
 - The range was -20.6% to +21.3%

Alpha Induced X-Ray Fluorescence

- For two sets of filters the x-ray assay results were considerable larger than the 129 gamma assay result
 - The average difference was +54.5%
 - The range was from +19.3% to +96.2%
- The ^{241}Am concentration in these two sets of filters was considerably larger than any of the others:
 - $^{241}\text{Am}:\text{Pu}$ was 8.0E-03 to 1.0
 - Total ^{241}Am alpha activity was as high as 200,000 Bq
 - Other sets had concentrations less than 3.0E-03 to 1.0 and often less than 1.0E-03 to 1.0
- α -induced x-ray fluorescence can strongly bias results

Gamma vs TIMS Results: Typical Comparison

UNCLASSIFIED

Set Number	Pu Mass Range (μ g)	Ratio of Summed Pu Mass γ to TIMS
1	0.01 - 0.035	0.401
2	0.02 - 0.37	0.846
3	0.03 - 0.41	1.359
4	0.17 - 2.61	1.011
5	0.22 - 2.3	1.333
6	0.4 - 60.6	1.308
7	1.36 - 94	0.967
8	3.43 - 81.3	1.150
9	1.94 - 182	2.510
10	11.4 - 241	0.992
11	15.0 - 301	1.175
12	28.7 - 818	1.186

NATIONAL LABORATORY

EST. 1943

UNCLASSIFIED

Slide 17

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Conclusions

- The L x-ray region can be successfully exploited to quantify Pu particulate masses in the 10^{-8} to 10^{-4} range
 - Sample configuration must be carefully controlled and have low attenuation properties
 - A low self-absorption calibration standard is necessary
- Alpha induced x-ray fluorescence effects can create a strong positive bias
 - Using other ^{239}Pu gamma rays to confirm the mass can rule out whether this effect is occurring