
LA-UR-13-29094
Approved for public release; distribution is unlimited.

Title: “PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS”

Author(s): Garanin, Sergey F
Reinovsky, Robert E.

Intended for: “PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS”, RFNC-VNIIEF (in
Russian)   LANL (in English)

Issued: 2015-03-23 (rev.1)



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Physical Processes
in the MAGO/MTF Systems

P
h

ysical P
ro

cesses in
 th

e M
A

G
O

/M
T

F S
ystem

s

Editor: 
Reinovsky  

w
2 = B

1
2

4
1

1 B
2

B
1

ff
t +v ff

r + F ff
p =St f

v
t
+ (v(v( )v)v) +

p
x

1
c
[ j B ] = x

S
LB = 4 z 2e 4

m 2v 4
d k
k d x exp( x 2 / 2)2 | (k ,x ) |2

v
t
+ (v(v( )v)v) +

p
x

1
c

[ j B ] =
x

(U ee / )2 ~ N 2/3 / Z 2

m
i

dv
y

dt = eE
y

v
x

c B
e j

B
x
=

4
c

j



Physical Processes in the MAGO/MTF Systems

Sergey F. Garanin
All Russian Research Institute

of Experimental Physics
Sarov Russia

Editor
Robert E. Reinovsky, Los Alamos National Laboratory 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 

iii 

ABSTRACT 
The Monograph is devoted to theoretical discussion of the physical effects, 
which are most significant for the alternative approach to the problem of 
controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book 
includes the description of the approach, its difference from the major CTF 
systems—magnetic confinement and inertial confinement systems. General 
physical methods of the processes simulation in this approach are considered, 
including plasma transport phenomena and radiation, and the theory of 
transverse collisionless shock waves, the surface discharges theory, important 
for such kind of research. Different flows and magneto-hydrodynamic plasma 
instabilities occurring in the frames of this approach are also considered. In 
virtue of the general physical essence of the considered phenomena the 
presented results are applicable to a wide range of plasma physics and 
hydrodynamics processes.  

The book is intended for the plasma physics and hydrodynamics specialists, 
post-graduate students, and senior students-physicists. 
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PREFACE 
Controlled Thermonuclear Fusion (CTF) research has evolved into two 
mainline approaches—magnetic confinement and inertial confinement fusion. 
Over the last decades an alternative approach to controlled fusion has also been 
evolving known in the USA as Magnetized Target Fusion and in Russia as 
MAGO (MAGnitnoye Obzhatiye—magnetic compression). This approach is 
characterized by high energy densities, as in inertial fusion, and by the use of 
magnetic fields, as in magnetic confinement systems. The parameters of the 
MAGO/MTF plasma differ considerably from those in the conventional 
systems. Moreover, the computations for the MAGO/MTF systems should 
include physical processes that either have not been studied previously or 
exhibit new properties. In essence, a whole new plasma-physics field with 
abundant and diverse physics is being developed in this approach.  

The aim of this book is theoretical discussion of the physical effects, which are 
most significant for the MAGO/MTF. The book includes the description of the 
approach, its difference from the major controlled thermonuclear fusion (CTF) 
systems—magnetic confinement and inertial confinement systems. General 
physical methods for the simulation of the processes in this approach are 
considered, including plasma transport phenomena and radiation, the theory of 
transverse collision less shock waves, the surface discharges theory— all 
important for such kind of research. Different flows and magnetohydrodynamic 
plasma instabilities occurring in the frames of this approach are also considered.  

We hope that the monograph will help young scientists who are embarking on 
research in the MAGO/MTF field to get their bearings in the new field of 
physics. The monograph might be also useful for interdisciplinary specialists, 
since, given the significance of the phenomena discussed to general physics, 
the results presented can be applied to a broad range of plasma physics and 
hydrodynamics effects.  

The references are distributed over the Chapters and are provided with the 
titles of the papers. The references include the papers that we needed for 
explanation and for obtaining the results presented in the book; thus, we have 
not attempted to show all the available papers relevant to the material 
discussed in each Chapter. A more detailed list of references can be built up 
basing on the given papers.  

The author would like to thank the Los Alamos National Laboratory for its 
support of the writing of the book via the partner ISTC Project #3164p and 
Project Collaborator R.E. Reinovsky, Responsible Project Official 
V.V. Kirichenko, and Project Participants N.Yu. Belyakova, A.M. Buyko, 
E.M. Kravets, S.D. Kuznetsov, V.I. Mamyshev, V.N. Mokhov, and 
V.B. Yakubov for their enormous assistance in organizing the project and 
working on it. Special thanks are addressed to the translators—Yu.V. Panova 
and T.V. Zezyulina—for their terrific job in translating the book into English. 
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1. INTRODUCTION 
The rapid development of plasma physics in the second half of the 
twentieth century, and is still under way at present, came about because of 
the need for intensive research in a broad array of areas. Those areas 
involved a large range of technical and technological issues whose study 
began with gas-discharge research, which resulted in the development of 
effective and reliable light fixtures and plasma television sets. Also under 
intensive study are methods for the direct conversion of heat energy into 
electrical energy, plasma rocket engines, plasma-based tools for materials 
processing, etc. The study of plasma behavior is essential to astrophysical 
and geophysical research. The study of controlled thermonuclear fusion 
(CTF) has contributed greatly to the advancement of plasma physics, 
which has resulted in the development of fundamentally new plasma 
physics fields of research. 

Worldwide, the efforts of most laboratories in the area of CTF are directed 
mainly at studying two types of physical systems: stationary systems, in which 
the thermal insulation of low-density, hot plasma, and its confinement are 
provided by magnetic fields (magnetic confinement fusion, or MCF) and 
inertial confinement systems, in which deuterium-tritium (DT) plasma is 
compressed quite rapidly to high densities (inertial confinement fusion, or ICF). 

Although certain conditions (called the Lawson criterion [1.1]) must be 
fulfilled for plasma parameters in order to have thermonuclear ignition in 
each of these systems, namely, 

1) the plasma must be heated to thermonuclear temperatures⎯about 
10 keV; 

2) the plasma must be confined long enough to allow the energy 
released during the fusion to be higher than that spent on plasma 
heating and confinement⎯the condition for the product of the final 
fuel density, n, and confinement time, τ, is nτ >1014 s/cm3; 

the actual plasma parameters differ considerably. For example, the density 
of the thermonuclear plasma differs in these systems by 11 orders of 
magnitude. Moreover, in the magnetic confinement approach, the 
substantial effect of the magnetic fields and the stationary nature of the 
system lead to qualitative differences between this system and the inertial 
plasma confinement system (for example, the characteristic dimensions of 
the thermonuclear plasmas in the these systems differ by five orders of 
magnitude). As a result, the plasma physics fields of study referring to 
magnetic plasma confinement systems and inertial plasma confinement 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 10 

systems have developed their own specific issues: in magnetic confinement 
systems, issues such as equilibrium and stability, transport problems in 
magnetic fields, etc.; and in inertial confinement systems, issues such as the 
interaction of intense radiation and matter, laser compression of 
thermonuclear targets, conversion of laser radiation into x-ray radiation, etc.  

In 1976−1979, an alternative approach [1.2, 1.3] to the generally accepted ways 
of solving the CTF problem was proposed: the possibility of solving this 
problem on the basis of a nonstationary system with magnetic compression 
(MAGO [from the Russian, MAGnitnoye Obzhatiye]) was demonstrated. This 
approach consists of using a thermonuclear target and one or several cylindrical 
or spherical magnetic-field−driven liners to compress it. An important 
advantage of this approach is the possibility of conducting full-scale 
experiments for meeting the principal scientific challenge of CTF⎯achieving 
ignition of thermonuclear fusion without using expensive stationary energy 
sources such as powerful lasers, charged-particle accelerators, or large 
tokamaks (such facilities are required only at the stage of power-plant 
development). The MAGO system experiments can be conducted using 
relatively cheap explosive magnetic generators (EMG) [1.4, 1.5]. Subsequently, 
[1.6-1.9] such a system was labeled in the United States as Magnetized Target 
Fusion (MTF), in which preheated magnetized plasma was compressed. Unlike 
direct hydrodynamic compression of the initially cold fuel (as in ICF), the 
MAGO/MTF approach consists of two stages:  

 Initially magnetized plasma is created that is suitable for further 1.
compression (with a magnetic field of ~0.1 MG that has a closed 
configuration of the field lines, a density of ~1018 cm-3, a 
temperature of ~300 eV, and a rather low content of impurities, 
since impurities may increase radiation losses).  

 Then, with powerful magnetic drivers (e.g., EMG), the plasma is 2.
quasi-adiabatically compressed by liners (with velocities on the 
order of 1 cm/µs) and the plasma parameters are brought to levels 
that meet the Lawson criterion. 

The combination of two essential elements is needed to use this approach 
for preheated targets: a system for the generation of hot magnetized 
plasma, and a compression system with sufficiently high energy. In 1981, 
All-Russian Scientific Research Institute of Experimental Physics 
(VNIIEF) proposed a new method for generating thermonuclear 
magnetized plasma with a special MAGO plasma chamber, and that 
method was implemented experimentally in 1982. The results of that work 
were published in [1.6, 1.7]. Experiments with the MAGO chamber 
powered by megajoule-range EMG produced plasma with kiloelectron-volt 
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temperatures and a neutron yield of up to 4−5⋅1013 per shot. It was 
computationally shown that ignition can be achieved with this system at 
energies of 100−500 MJ, energies which can be obtained using the disc 
EMGs already on hand at VNIIEF [1.10]. For this system, the degree of 
fuel compression need not be very high, and, accordingly, the implosion 
symmetry is truly achievable, which means that the principal ICF ignition 
difficulty⎯the stringent requirements for the implosion symmetry⎯is 
absent in MAGO. VNIIEF and Los Alamos National Laboratory (LANL) 
have collaborated extensively in the MAGO-MTF field [1.11, 1.12], 
studying liner systems and plasma obtained in the MAGO chamber.  

In terms of its time and space scales, as well as the plasma density scales, 
MAGO system occupies an intermediate position between MCF and ICF 
(see Table 1.1). 

Table 1.1. Approximate values of some plasma parameters for MCF, ICF, and 
MAGO thermonuclear plasmas 
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MCF 10 1014 1 300 0.05 3⋅105 0.03 2⋅108 

MAGO 10 1020 10-6 1 10 100 1 5⋅104 

ICF 10 1025 10-11 0.01 0 0.1 ∝ 0 

When comparing MAGO with MCF and ICF, we should note that, although 
the presence of magnetic fields is common to MAGO and MCF, the vastly 
different characteristic plasma parameters result in the need to place 
emphasis on different physical effects. Only some of the instabilities that 
are dangerous in MCF are important in MAGO because of the relatively 
short characteristic times. Only the most rapidly growing instabilities, 
primarily magneto-hydrodynamic (MHD), need be taken into account in 
MAGO. The degree of the system’s connectivity (stationarity) can be 

characterized by the quantity cτ
R

 (c is the characteristic speed of sound in 

the system, equal to ∼108 cm/s for T = 10 keV), which shows how many 
times the sound waves go around the system in its confinement time. The 
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force effect of the magnetic fields can be characterized by the quantity β 
given in the Table 1.1⎯the thermal-to-magnetic pressure ratio. For the 
characterization of the magnetization of the heat conductance, we can use 
the quantity (ωτ)e. 

When comparing MCF, ICF, and MAGO plasma parameters, we should, of 
course, bear in mind that it is not just the thermonuclear plasma with 
T ∼ 10 KeV and nτ ~ 1014 cm-3s that plays an important role in each system. 
For example, peripheral plasma and near-wall plasma are important for 
tokamaks (MCF), and the plasma corona plays an essential role for ICF, 
whereas the role of the cold plasma in the MAGO chamber (which includes 
plasmas heated by the shock waves during the chamber operation and 
plasmas remaining relatively cold or attaining moderate temperatures) is 
crucial in the MAGO system, as is the role of the any plasma associated 
with the liners compressing the hydrogen plasma. The parameters of these 
types of plasmas differ quite substantially, and consideration of the different 
physical effects is important for the different plasma-parameter ranges. 

Thus, the parameters of the MAGO/MTF plasma differ considerably from 
those in the conventional systems. Moreover, the computations for the 
MAGO/MTF systems should include physical processes that either have not 
been studied previously or exhibit new properties. In essence, a whole new 
plasma-physics field with abundant and diverse physics is being developed 
in this approach. 

The history of MAGO/MTF development extends back over more than 
20 years, and a large number of experimental and theoretical papers have 
been published in that time. Among the publication are also reviews (see, 
for example, Kirkpatrick and Lindemuth [1.13], Garanin [1.14], Siemon 
et al. [1.15], and Garanin et al. [1.16]) that enunciate the concepts 
themselves and integral efforts, i.e., efforts devoted to relating the 
experiments in MAGO/MTF performance and their simulation. There are 
virtually no reviews devoted to specific effects characteristic of 
MAGO/MTF. Meanwhile, a good deal of work done in this area has 
developed theoretical approaches for describing the radiation properties of 
MAGO/MTF plasma, a theory of the collisionless shockwaves that are 
essential to those systems, a theory of surface discharges that is important 
for this research area since the plasma is confined with walls, etc. 

In view of that, there is a need for a monograph that would present those 
effects. This book is devoted to the theoretical consideration of the most 
essential of them. 
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2. MAGO/MTF SYSTEMS 

2.1. Plasma Formation Schemes  

A number of ways have been proposed to generate a plasma that can be 
used for subsequent compression to achieve ignition or a large neutron 
yield. They differ considerably both in the plasma parameters (density, 
temperature, and magnetic-field configuration and intensity) and in the 
methods of plasma formation. Here we discuss three variants: cryogenic 
fiber z-pinch, MAGO plasma formation chamber, and field-reversed 
configuration (FRC). 

2.1.1. Cryogenic Fiber Z-Pinch 

In a cryogenic fiber z-pinch, a plasma is formed simply by passing a high 
current through a fiber (Fig. 2.1, [2.1]). In the past, such z-pinch was of interest 
when early experiments showed its “anomalous stability” [2.2]. With such 
anomalous stability, it appeared possible to directly heat a fiber-formed z-pinch 
to fusion temperatures through an electrical discharge using modest energy 
readily available from modern pulsed-power facilities of that time. Subsequent 
experiments and detailed two-dimensional computations [2.3], however, 
showed that m = 0 instabilities prevented such a z-pinch from reaching fusion 
conditions immediately. Nonetheless, later computations [2.4] showed that the 
m = 0 instabilities provide a mechanism for the pinch to fill an implosion vessel 
by forming a Kadomtsev-stable, wall-confined plasma. Since such plasma 
could be suitable for subsequent compression with liners, it was proposed to 
experimentally study it on the Colt facility (capacitor bank with a voltage of 
100 kV, a current of 2 MA, and an energy of 200 kJ) at LANL. The proposed 
fiber was a thin polyethylene filament. Unfortunately, experiments [2.5, 2.6] 
showed that the plasma produced was strongly radiating and short-lived.  

Fig. 2.1. Cryogenic fiber z-pinch. Left, plasma formation; right, implosion of a 
cylindrical liner. 
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2.1.2. MAGO Plasma Chamber 

The MAGO chamber [2.7, 2.8] consists of two toroidal sections connected 
by a narrow annular nozzle (a design variant [2.9] is shown in Fig. 2.2). 
The chamber is filled with a low-density gas (deuterium or DT). 

 

Fig. 2.2. Plasma chamber: 1) first section; 2) second section; 3) equivalent EMG 
scheme with the closing switch, K, and opening switch Ω(t); 4) inductive probes; 
5) insulator. 

It is assumed that at the start of chamber operation, an initial azimuthal, 
“bias” magnetic field has been generated by an initial current introduced 
into the walls of the chamber (the arrows show the direction of the 
current). This can be done using an additional source or the main source 
connected with the input of the first section⎯the left section in Fig. 2.2 
(the switch K in Fig. 2.2 is open). The preliminary current should be 
introduced quite slowly to avoid a premature gas breakdown.* 

When the main, relatively fast current-source is switched on (after the start of 
the operation of the opening switch Ω(t) in Fig. 2.2; the switch K is closed), a 
high electric field arising in the chamber initiates a gas discharge that results in 
the initial magnetic field being frozen into the generated cold plasma. 
(A conductance in the plasma capable of freezing the initial magnetic field into 
the plasma can also be generated using a special pulsed source of ionizing 
__________________________ 
*The results of research [2.10, 2.11] have shown that the MAGO chamber can also operate in a 
regime as described with no rod in the second section and, consequently, without preliminary 
powering. 
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radiation.) Driven by the rising magnetic field from the fast source, the plasma 
starts to move together with the magnetic field lines and to flow through the 
nozzle from the first chamber section to the second section. 

If the Alfven velocity in plasma cA =
B
4πρ

is high enough that cA τ >> L, 

where τ is time of the source operation and L is the characteristic chamber 
size, and the nozzle is sufficiently narrow, then there is enough time for the 
total pressure to equalize in the most of the volume of each section; 
however, a pressure difference arises between the sections. In this case, a 
quasi-stationary plasma flow forms in the nozzle and in the adjacent 
chamber regions; the plasma velocity at the nozzle outlet becomes 
supersonic; and a shock wave in which plasma deceleration and heating take 
place is generated at the nozzle outlet. 

Thus, in the device under consideration, the first section and the nozzle 
work as a plasma accelerator that is basically similar to a coaxial plasma 
accelerator [2.12]. The second section serves as a chamber for the 
deceleration and heating of the supersonic plasma jet. 

It is easy to construct a picture of the quasi-stationary, one-dimensional, 
magneto-hydrodynamic (1D MHD) plasma flow. The plasma flow rate 
through the nozzle is limited to the maximum value [2.13] 

Q =
4
3 3

d B1
2

8π
ρ1 , (2.1.1)

where d is the minimum cross section of the nozzle and B1 and ρ1 are the 
magnetic field and the plasma density at the nozzle inlet. In that flow, plasma is 
accelerated and rarefied while passing through the nozzle; then it is decelerated, 
compressed and heated in the shock wave; and then it is finally stopped by the 
pressure gradient and compressed to the total pressure in the second section. 

It is remarkable, however, that it is possible to correlate the plasma states at 
the nozzle inlet in the first section and at the outlet in the second section 
after the complete stop if one does not care about the processes that take 
place in the plasma. Due to its generality, that should also be true when 
ideal hydrodynamics are not applicable in the nozzle region, such as, for 
example, when the flow is turbulent or if viscosity or some kinetic 
phenomena play an important role in the process. This relationship follows 
from the energy conservation law and is expressed as the condition of total 
enthalpy conservation (the Joule-Thomson process). Since the thermal 
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pressure in the first section (cold plasma with a temperature in the electron-
volt range) is assumed to be small relative to the magnetic pressure, and the 
plasma’s kinetic energy in each section is small relative to the magnetic 
energy (the nozzle is assumed to be sufficiently narrow), the condition of 
total enthalpy conservation of each plasma element in the flow has the form 

B1
2

4πρ1
=w2 +

B2
2

4πρ 2
 , 

where B2 and ρ2 are magnetic field and plasma density in the second section 
(after complete stop) and w2 is the plasma enthalpy in the second section. 

Given that the magnetic field is frozen into the plasma 
B1
ρ1

=
B2
ρ 2

, the 

enthalpy w2 is determined with the formula 

w2 =
B1
2

4π ρ 1
1− B2
B1

"

#
$$

%

&
''  . (2.1.2) 

For total pressure P2 << P1, B2, will be much smaller than B1, which means 

that w2 ≈
B1
2

4 pr 1
, i.e., most of the magnetic energy can be converted to the 

thermal energy of the plasma. 

From the formula (2.1.2) it follows that, for a given maximum magnetic field 
generated by the fast current-source, the temperature of the heated plasma is 
inversely proportional to its initial density. Thus, for the fast source and given 
chamber sizes, one can increase the plasma temperature by reducing its initial 
density. To preserve the consistency of the time of plasma outflow through the 
nozzle with the fast source operation time, according to (2.1.1), the nozzle 
width should be scaled (reduced) as a square root of the density. 

To reach a temperature in the kiloelectron-volt range requires an outflow speed 

of ∼ 108 cm/s and, similarly, an Alfven velocity of cA =
B
4πρ

. To reach such 

velocities with, for example, a magnetic field of B ~ 0.5 MG (which 
corresponds to a current of ∼5 MA at a radius 2 cm), a density of 
ρ ~ 3 • 10-6 g/cm3 is needed. It should be noted that, because of the freezing-in, 
when the plasma is lifted from the smaller radius to a larger radius: from the 
insulator region at the chamber inlet to the nozzle region (Fig. 2.2), the velocity 
cA is preserved.  
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The chamber will operate as described if the nozzle is sufficiently narrow. 
Otherwise, wave propagation processes will play a large role in the dynamics 
of the chamber operation, and the plasma flow may be unable to become 
quasi-stationary. In this case, however, if the nozzle is not very wide (if the 
chamber can still be regarded as consisting of two sections), the plasma can 
be heated as follows. If the insulator evaporation at the first section inlet is 
minor or completely absent (in the “H-thrown” discharge (see Section 6.5), 
then the plasma flowing out of the first section to the second is followed by a 
nearly pure magnetic field or a very-low-density residual plasma. During the 
plasma flow from the first section to the second, the pressure of that magnetic 
field, which is sustained by the current source, can become noticeably higher 
than the total average pressure in the second section (the total pressure in the 
second section may not be uniform, which is why one should speak of 
average pressure). After the plasma boundary (magnetic piston) has passed 
through the nozzle to the second section, the difference in the pressures on the 
magnetic piston and in the plasma in front of the piston generates a shock 
wave that will result in plasma heating. Since that shock wave propagates 
downstream, we refer to this chamber operating regime as a direct wave 
regime, in contrast to the quasi-stationary regime or the backward wave 
regime, where most of the heating takes place in the shock wave propagating 
upstream and, in the quasi-stationary case, slowly changing its position 
relative to the chamber. 

The plasma heating can also occur, not only in shock waves, but also as a 
result of turbulent or near-wall processes associated with the plasma passing 
through the nozzle (see Section 5.3). This heating regime is similar to that of 
the backward wave regime in terms of its dynamic properties (with regard to 
the effect on the processes for establishing the total pressure), the location of 
the heating zone, and the fact that, in this case, it is the flowing plasma that is 
being heated (rather than plasma which has already entered the second 
section), which means that the common relation is applicable (2.1.2). 

In most of the experiments conducted, the nozzle was not very narrow, and 
the experiments cannot be placed unequivocally in a given regime. 
However, the calculated and experimental data indicate that magnetized hot 
plasma can be generated using the MAGO chamber.  

Calculations coupled with experimental data provide the following 
qualitative picture of the processes occurring in the chamber. 
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In the very beginning of the current rise, breakdowns take place in the first-
section and the nozzle regions. The shock waves propagating from the 
breakdown locations and, maintained by the rising current at the chamber 
inlet, cause plasma ionization. Given that the characteristic rise times of the 
current are long by comparison with the times of magnetosonic wave 
propagation, those waves are relatively weak (though they manifest 
themselves conspicuously as the magnetic field oscillations in the chamber; 
see Fig. 2.3) and heat the plasma up to the electron-volt-range temperatures. 

Fig. 2.3. Currents obtained using inductive probes: I0 is the current at the chamber 
inlet; I1 is the current in the first section; I2 is the current in the second section.  

Following the main plasma, driven by the growing magnetic field pressure, 
is a residual rarefied plasma perhaps made of ionized insulator vapors 
formed in the H-thrown discharge.  Similarly, desorption of impurities 
from the chamber walls can also cause the appearance of an additional 
mass of plasma. The density of those vapors is higher than the density of 
the hydrogen plasma, and their motion maintains magnetic field 
oscillations in the chamber with a rather large period (on the order of a 
microsecond (see Fig. 2.3, curve I1(t) at the times t ~3−4 µs).  The 
oscillation period is proportional to the square root of the density) and a 
high amplitude.  

As the current rises, the difference between the magnetic pressures in the 
first and the second section increases, and if the nozzle is sufficiently 
narrow, a quasi-stationary plasma flow is formed with a shock wave at the 
second-section outlet. The Alfven-Mach number in the shock wave grows 
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initially, reaches 3−5, and then decreases. After the hydrogen plasma flows 
to the second section, the residual plasma or the insulator vapors start 
flowing through the nozzle. The Mach numbers continue to decrease, the 
shock wave disappears, and the flow becomes subsonic. If the nozzle is 
insufficiently narrow, the plasma is heated in the direct wave regime with a 
considerable effect on the heating caused by the anomalous friction of low-
density plasma in the nozzle (see Section 5.3). 

Plasma cooling due to classical electron and ion heat conduction during the 
times of interest to us is negligible as a result of the strong magnetization, 
and even the intensification of heat transport processes at the interfaces of 
the plasma and the insulator or at the exploding metal wall (see Sections 6.3 
and 6.4) to values on the order of Bohm diffusion [2.14] is unable to cool 
the plasma. The influence of bremsstrahlung radiation losses is even 
weaker, provided there is no severe contamination of the hydrogen with 
impurities. But mixing of plasma with the denser insulator vapors drawn, 
following the main plasma, by convective instability development, can have 
a substantial effect on the cooling of the plasma. The development of such 
an instability is caused by the fact that the insulator vapors displacing 
plasma from large radii pass through a less intensive shock wave and cool 
down faster because of the radiation. As a result, they have a smaller β, and 
the situation becomes unstable. According to estimates (see Section 7.3.2), 
the convection processes that develop at the interface of the plasma and the 
cold chamber walls can also produce a noticeable effect on the cooling of 
the plasma.  

The characteristic system parameters in the experiments varied within the 
following ranges, which corresponded to the chosen main regime of 
chamber operation: the preliminary powering current was 1−3 MA; the final 
current at the chamber inlet was 3−9 MA; the current rise time was 1−3 µs; 
the deuterium, or DT, density corresponded to pressures of 1−20 Torr; the 
chamber radius was 6−10 cm; the first section width was 1.5−3 cm; the 
second chamber width was 4−10 cm; and the nozzle width was 0.5−2 cm. 

According to the calculations for these initial parameters, the maximum 
plasma velocity at the nozzle outlet is (0.5−3)⋅108 cm/s, the maximum 
plasma ion temperature is 2−30 keV, the maximum electron temperature is 
0.6−2 keV, the yield of thermonuclear DT-neutrons is 1011−1013, and the 
neutron pulse duration is 0.5−2 µs. 

The measured currents obtained in the MAGO-2 experiment [2.9] are 
shown in Fig. 2.3. The peak current flowing in the chamber was 
I0max = 7.7 MA at its maximum derivative I 0max = 3.8 MA/µs. If we compare 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 22 

the current oscillations observed in the chamber, I 1  and I 2 , with the MHD 
computation results, we can relate these oscillations to the excited magneto-
sonic waves, as well as their start with the arrival of the first MHD 
compression waves at the probe locations. The arrival time of the first MHD 
waves and the period of magneto-sonic oscillations agree with the MHD 
computation results [2.9]. 

An idea of the processes that take place in the MAGO chamber is provided 
by the pictures in Fig. 2.4 of the distribution of density, temperature and 
neutron yield in the chamber volume obtained for different moments in time 
in one of the two-dimensional simulations of plasma generation (initial 
pressure of 10 Torr, preliminary powering current of 1.6 MA, final current 
at the chamber inlet of 5.5 MA, current rise time of 2 µs, neutron yield of 
4·1012, and average plasma temperature of 0.55 keV). 

Fig. 2.4. Distributions of density ρ, ion temperature T, and neutron yield N in the 
MAGO chamber space, obtained in 2D simulation. 
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Figure 2.4 shows that the shock waves propagating from the locations of the 
initial gas breakdown (from the insulator at the chamber inlet and the nozzle 
region), push the plasma into the second section. The low-density residual 
plasma behind the magnetic piston in the first section is accelerated, when 
passing through the nozzle, to high velocities (0.5−2)⋅108 cm/s) and is heated 
during its deceleration, to ion temperatures of 5−20 keV. This hot, low-
density plasma is the major source of neutrons and, according to Fig. 2.4, 
occupies a considerable proportion of the chamber space. Note, that although 
the mechanisms shown in Fig. 2.4 for heating plasma to the high temperatures 
are mainly collisionless (such as collisionless shock waves, see Chapter 4), 
they can be modeled with simulations using numerical viscosity. That is 
because the Hugoniot and other general energy relations (see above) do not 
depend on the real physical mechanisms of dissipation, which determine only 
the widths of the shock wave fronts and transient layers. 

The extent to which the results of the two-dimensional simulations match 
the experimental results can be illustrated by comparing, as in Fig. 2.5, the 
experimentally measured and the calculated time dependences of the current 
derivative dI/dt in the MAGO chamber and the neutron yield from the 
chamber obtained for one of the experiments [2.9]. On the dI/dt plot, 
modeled times for current features agree with the experimental times, but 
their amplitudes differ considerably after current sheath penetration into the 
second section (for t >2.5 µs). That could be because certain physical 
processes were not taken into account in the model: the Hall effect, which 
can result in a more profound negative spike of dI/dt, and the evolution of 
gas from the electrode material or insulator evaporation, which could shield 
current probe readings from the processes in the second section and result in 
subsequent smoother behavior of dI/dt. 

The experimental pinhole images of the neutron generation region (Fig. 2.6) 
also demonstrate the qualitative agreement of the calculation results for 
neutron spatial distribution (see Fig. 2.4) with the experiment. 

Interferometric measurements [2.9] have shown that, in the first section, 
plasma density turns out to be lower than the initial particle density in the 
chamber. This agrees with the MHD computation results in which low 
plasma density at the beginning of the process indicates incomplete 
ionization and then plasma “floating up” from the smaller radii to the larger 
with decreasing density (see above). The appearance of the plasma in the 
second section also agrees with the MHD computations, demonstrating the 
arrival of the ionizing shock wave.  
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Fig. 2.5. Calculated and experimental time dependences of the current derivatives 
in the MAGO chamber and the neutron yield from the chamber.  
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Fig. 2.6. Pinhole image of the neutron generation region. The chamber contours 
are shown: 1) the first section; 2) the second section. 

The two-dimensional computations have shown that at any moment in time 
in the nozzle region, there is a considerable non-uniformity of plasma 
velocity and density across the flow, as a result of which the temperature of 
the heated plasma decreases from the internal electrode to the external 
electrode by more than an order of magnitude. This non-uniformity is 
related to the fact that the density of the plasma “floating up” from smaller 
radii decreases ~1 / r2, and the plasma path to the nozzle from smaller radii 
(that is, from the insulator in the first section) along the internal electrode is 
considerably shorter than that along the external electrode, and the less-
dense plasma arrives at the nozzle earlier along the internal electrode. 

Note that when the chamber is filled with the DT-mixture, a number of 
additional effects may appear during the operation of the device, in contrast 
with the case of pure deuterium:  

1. The tritium beta-decay electrons produce the initial volume 
ionization. Therefore during preliminary powering, free charges will 
be distributed throughout the chamber volume, and all that can affect 
the discharge development after the fast source is switched on. 

2. The presence of two ion species can affect the structure of the 
collisionless shock wave front (see Section 4.4) and, thus, the ion 
temperature (in the plasma containing two ion species, the ion 
temperature should be higher). 
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2.1.3. Field-Reversed Configuration (FRC) 

The FRC has closed poloidal magnetic field lines in a cylindrically 
symmetric plasma and open magnetic field lines between the plasma and its 
confinement/compression wall (Fig. 2.7). Such a configuration can be 
formed with a suitable theta-pinch discharge in the following way. An axial 
bias magnetic field is first created in a gas, and the gas is ionized. Then the 
main theta discharge injects a field opposite in polarity to the bias field, 
causing the original bias field lines to connect to the injected field lines to 
form closed flux surfaces. Further flux injection compresses the field-
plasma ensemble and introduces open vacuum field lines into the region 
between the wall and the plasma. Such magnetized-plasma configurations 
have a number of advantages. One is that the plasma β is relatively high and 
the lifetime can be equal to many Alfven times, although the reasons for 
that are not entirely clear. Another is that, under radial compression, the 
effective magnetic field line tension causes the plasma to contract axially as 
well, leading to volume compression that is roughly proportional to the 
radius to the 2.4 power. Finally, the vacuum magnetic field between the 
plasma separatrix and the wall creates a natural divertor for escaping 
plasma, and helps buffer the plasma core from impurities introduced from 
the wall. 

 

Fig. 2.7. Formation and compression of FRC as an MTF target. 
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The FRC plasma densities and temperatures of ~1017 cm-3 and 100−300 eV, 
respectively, [2.15−2.17] are necessary, according to computational results, to 
reach fusion-relevant conditions (n ~ 1019 cm-3, T ~ several keV) after liner 
compression. At present, the studies of FRC formation and their compression 
by liners are being conducted in the United States jointly by several 
laboratories, including the Air Force Research Laboratory (AFRL), in Kirtland, 
N.M.; Los Alamos National Laboratory (LANL), in Los Alamos, N.M.; and the 
University of Nevada, Reno, in Reno, N.V. FRC stability, transportation and 
compression are being studied with the use of various MHD codes. At LANL 
and AFRL, experimental studies of FRC formation and its translation into the 
interior of a liner are under way. At AFRL, the implosion of compressing liners 
is being studied experimentally, and FRC compression experiments are 
expected to be performed after the plasma formation work is completed. 

2.2. Liner Implosion Drivers 

Although a large variety of drivers, such as lasers and particle beams can 
be used for the implosion of liners in the second stage of operation of the 
MAGO/MTF system, the fundamental attractiveness of the system consists 
in the fact that it can employ comparatively lower-velocity liners and, 
accordingly, drivers with relatively long characteristic times. To achieve 
ignition in MAGO-MTF, the drivers must have a rather high energy of 
100−500 MJ. Such energy levels can be provided by using the disc 
explosive magnetic generator (EMG) already available at VNIIEF [2.18]. 

The magnetic implosion of liners, however, including “laser−plasma” 
experiments, can be studied on smaller stationary facilities. An example of such 
a facility is the Shiva-Star facility at AFRL, with a characteristic energy of 
about 9 MJ and a current level on the order of 15 MA. The magnetic implosion 
of condensed quasi-spherical [2.19] and cylindrical [2.16, 2.20, 2.21] liners, 
which may be of interest to MTF, is being studied on that facility. 

Higher energy (20 MJ, 20 MA) is provided by LANL’s Atlas facility. That 
facility has been used for a large number of liner-implosion studies in which 
the stability of condensed liners played an important role [2.20, 2.21]. At 
present, that facility is mothballed. 

A considerable contribution to the study of liner physics has been made by 
smaller-scale facilities. Thus, the Pegasus capacitor bank (4 MJ, 12 MA) at 
LANL [2.22−2.23] has been used for liner-implosion experiments and for 
the investigation of condensed-liner stability. A typical cylindrical 
aluminum liner for experiments on Pegasus had a diameter of 4.8 cm, a 
length of 2 cm, and a thickness of 0.4 mm. 
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Even smaller facilities⎯such as Zebra at the University of Nevada, Reno, 
with a characteristic current of 1 MA, but with a short rise time of 
~100 ns⎯are being used efficiently for the study of the interaction of 
megagauss magnetic fields with metal surfaces and of the plasma formation 
resulting from such interactions [2.24−2.27], i.e., for problems that are 
important for MAGO/MTF systems. 

It would be rather interesting to use the ZR facility (26 MA, 100 TW, 
100−300 ns) at Sandia National Laboratories [2.28] for MAGO-MTF and 
for the study of liner-implosion physics.  

EMGs represent a potential type of driver that can be used both for research 
purposes and for full-scale experiments involving plasma compression. The 
Los Alamos Procyon system couples a helical EMG with an explosively 
operated opening switch to develop approximately 20 MJ of inductively 
stored energy [2.29]. Procyon has been used in liner experiments to deliver 
a 16 MA, 3-µs-rise pulse to a 2-cm-long, 8-cm-diameter, 1-mm-thick 
cylindrical aluminum liner, which reached a velocity greater than 1 cm/µs. 

VNIIEF has developed a broad spectrum of various EMGs (see, for 
example, [2.30 and 2.31]), both helical and disc, that are capable of 
delivering currents from 1 МА to hundreds of MAs over times ranging from 
several microseconds to hundreds of microseconds and are outfitted with 
various types of opening switches that can be used to shorten current pulses 
to the times of less than 1 µs. VNIIEF-developed EMGs provide a means 
for driving target implosions at energy levels more than an order of 
magnitude higher than any other existing target drivers and appear to 
provide sufficient energy for testing the MAGO/MTF concept on the scale 
required for the thermonuclear ignition. Generators delivering more than 
200 MJ of magnetic energy [2.32] have been demonstrated. A joint 
VNIIEF/LANL experiment, HEL-1 [2.33], used a VNIIEF five-module, 
1-m-diameter disc EMG to drive a massive cylindrical aluminum liner that 
had an initial radius of 24 cm, a thickness of 4 mm, and an initial length 
10 cm. Because the z-pinch electrodes, delivering current to the liner during 
implosion converged with a 6° slope, the length of the liner was less than 
6 cm when the liner reached the measuring unit (diagnostic package) at a 
radius of 5.5 cm. The EMG delivered a current pulse in excess of 100 MA 
to the liner. The experimental results showed that the liner had a velocity of 
0.8 cm/µs and a kinetic energy about 25 MJ when it contacted the 
measuring unit. The results of such experiments will provide the basis for 
projecting the utility of ultrahigh-energy liners in a MAGO/MTF context.  
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3. PHYSICAL PROCESSES AND SIMULATION 
TECHNIQUES 

3.1. Basic Physical Processes 

As mentioned in the introduction, plasma parameters in MAGO-MTF 
systems differ significantly from those in conventional systems. This 
difference applies to space and time scales and plasma densities. MAGO-
MTF occupies an intermediate position between magnetic confinement and 
inertial confinement fusion systems separated by about ten orders of 
magnitude in density and time, and about five orders of magnitude in 
characteristic space sizes. Correspondingly, simulations of MAGO-MTF 
systems require including the physical effects, which either have not been 
studied before, or display new properties. 

One of the basic plasma heating mechanisms in MAGO-MTF systems is 
heating in transverse shock waves, which are most often collisionless under 
low-density and strongly magnetized plasma conditions. For the MAGO 
plasma, transverse collisionless shock waves (CSW) with moderate Mach 
numbers need to be considered; including the effects of plasma resistance 
and Joule heating, and 2D effects resulting from the growth of instabilities. 
Also of importance is the issue of plasma conditions downstream from the 
CSW front (i.e., the relation between electronic and ion heating and the ion 
spectrum downstream from the front), and the consideration of CSW in 
plasma with several ion components (i.e.,, CSW in DT plasma). 

In the plasma of a MAGO system, essential processes include the Hall effect 
and other collisionless transport processes. For these processes, one can 
distinguish several major effects. First, the Hall effect results in a 
considerable increase of magnetized plasma resistance. In order to quantify 
magnetic field penetration into plasma, one needs to consider the Hall effect 
and associated voltage. Second, accounting for the Hall effect leads to a 
difference between the anode and the cathode, whereas conventional 
magnetic hydrodynamics is invariant with respect to electrode polarity. 
Experiments demonstrate that MAGO chamber performance is essentially 
dependent on the polarity of electrodes. For example, neutron yield generated 
in the chamber varies several orders of magnitude with the alteration in 
electrode polarity. In order to understand the physics of the processes that 
take place there, one has to analyze the flows, primarily those that occur near 
electrodes, subject to the Hall effect. An important challenge here is the 
essentially two-dimensional character of the Hall effect, so the possibility of 
reduction of some flows to the one-dimensional case might considerably 
simplify their analysis. Third, the Hall effect and other collisionless transport 
processes may affect plasma cooling. In the MAGO system, plasma cooling 
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due to classic electron and ion heat conduction is insignificant because plasma 
is strongly magnetized. A more important role is played by drift-related heat 
and particle flows. They need to be evaluated both at the stage of pre-heating, 
and at the stage of further compression and ignition. 

Numerical simulations of the MAGO system require using plasma transport 
coefficients and quantities that determine radiation/matter interaction. 
Braginskii coefficients [3.1] are often used as transport coefficients, and 
standard formulas or Post-Jensen tables [3.2] are typically used as 
radiation/matter interaction coefficients. However, MAGO plasma is often 
rather dense and non-ideal, and electron occupancy of levels can be closer 
to the thermodynamic one (or Fermi one for multiply charged ions), rather 
than to the coronal. For low dense coronal MAGO plasma apart from 
radiation losses, one should also take into account, and estimate for arbitrary 
heavy impurities, the spectra that are important for plasma diagnostics by 
emitting radiation flux measurements. Therefore, one has to deal with the 
non-ideal case for transport coefficients (first of all, for conductivity), and 
with approximate calculations of radiation properties of hydrogen and 
multiply charged plasma in local thermodynamic or coronal equilibrium.

Of importance for MAGO-MTF systems is the matter of surface discharges 
that occur when the magnetic flux enters plasma or an insulator (H-pressed 
discharges) or escapes through the insulator surface (H-thrown discharge), 
and of magnetized plasma cooling at the plasma/condensed matter interface. 
These discharges result in magnetic flux and energy losses (in H-pressed 
discharges), or constrain energy fluxes delivered to the system, and can lead 
to penetration of the insulator material into hydrogen plasma (in the 
H-thrown discharge). 

When considering and accounting for various plasma instabilities and their 
effects on plasma flows and plasma cooling processes in MAGO-MTF, as their 
characteristic times are relatively short, it is important to take into account only 
the most rapidly growing instabilities, such as MHD instabilities. 

2D plasma flows are often characterized by high velocity contrast across the 
flow (cases close to tangential discontinuities or tangential discontinuities 
themselves). In the supersonic case, these discontinuities can be stable with 
respect to the perturbations in the plane velocity/normal to the discontinuity 
surface, i.e, in 2D simulations in this plane. However, a question of stability 
of respective flows for arbitrary perturbations arises. 

Plasma flows at the plasma preheating stage and at the liner acceleration 
can produce conditions for the development of Rayleigh-Taylor and 
sausage instabilities that can be treated as manifestations of the general 
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MHD interchange instability. It is important to ascertain conditions for its 
development and calculate its increment. Nonlinear development of this 
instability results in the growth of characteristic wavelengths and 
formation of some self-similar solutions that – in spite of their being 
unstable – under experimental conditions can persist for a relatively long 
time. Considering these solutions might make it possible to explore not 
only MHD flows that occur under certain conditions, but also some 
properties of turbulence that evolve in such unstable cases and turbulent 
plasma cooling mechanisms. 

For the MHD plasma flows in the magnetic field present in the MAGO-MTF 
systems, turbulence may have a two-dimensional character, because the 
magnetic field precludes bending of magnetic field lines. Turbulence, per se, is 
important in considering material wash-out from the walls and plasma 
contamination with impurities. Therefore, one has to address the matters of 
two-dimensional turbulence, its relaxation and effects on the wash-out 
processes. 

3.2. Kinetic Approach 

The most detailed description of plasma is provided by the kinetic approach, 
which relies upon the use of a particle distribution functions in “phase 
space” (spatia and momentum coordinates) f (t , r , p ) . In thermodynamic 
equilibrium, this function takes the form of a Maxwell distribution (or 
Fermi distribution for electrons accounting for degeneracy), and in a general 
case its variation is described by a set of kinetic equations (Boltzmann 
equations) for each species of particles (electrons, ions, atoms or molecules) 
written as: 

∂f
∂t

+v ∂f
∂r

+

F ∂f
∂
p
=St f , (3.2.1)

where F is the force acting on a particle, which is equal to 
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
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for charged particles with a charge ze in the electric field 

E  and magnetic 

field 

B , and St f is the integral of collisions of a given species of particles 

with particles of all species. The integral of charged particles collisions of 
logarithmic accuracy (accuracy on the order of l / ln(l / λ), where λ is the so 
called plasma parameter, see Section 3.3.3), was derived by L.D. Landau, 
and a more accurate expression for the integral of collisions that enables 
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calculations of many processes with an accuracy on the order of λ was 
obtained by B. Balescu and A. Lenard. 

To describe plasma flows with large space and time scales, one can obtain 
from the kinetic approach, a less detailed hydrodynamic description, or—if 
electric and magnetic fields are taken into account—a magneto-
hydrodynamic description. Then, the kinetic description will allow 
calculating the so-called transport coefficients, such as electrical 
conductivity, viscosity, thermal conductivity, etc, that need to be included in 
MHD equations, when these should account for the effect of corrections due 
to the contribution of collisional paths and other transport lengths. 

In some cases, for plasma flow description, it is convenient to use the so-
called hybrid approach, when one of the species of particles is described by 
the hydrodynamic equations, and the other by using the kinetic equations. 
Such an approach typically suggests a hydrodynamic description of the 
electronic component, because electrons have small characteristic times of 
collisions and small kinetic scales in space and time determined by Larmor 
gyration in the magnetic field. Ions, however, should be treated within the 
kinetic approach to describe processes on scales of the ion Larmor radius 
and the period of ion Larmor gyration. Such an approach will be used in this 
work to model collisionless shock waves (Chapter 4). 

3.3. Magnetohydrodynamic (MHD) Approach 

3.3.1. Equations and Validity Conditions of Magnetohydrodynamics 

If characteristic space lengths of the problem and time scales in question are 
large enough (specific criteria for MAGO system simulations are discussed 
below), such plasma flows can be described using a set of MHD equations. 
In this case, plasma is treated as a continuum characterized by macroscopic 
parameters: density, velocity, pressure and temperature. Due to the large 
difference in masses of electrons and ions, energy exchange as a result of 
their collisions proves to be relatively slow, and in a number of cases 
temperatures of electrons and ions can be considered different. A set of 
MHD equations for a two-component system of electrons and ions can be 
derived from the set of kinetic equations (3.2.1) and written as follows: 

continuity equation for mass density ρ  

 ∂ρ
∂t

+divρ v = 0  , (3.3.1) 

equation of motion 
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ρ
∂vα
∂t

+ ( v∇)vα
#

$
%

&

'
(+

∂p
∂xα

−
1
c
[

j

B ]α = −

∂παβ

∂xβ
, (3.3.2)

equations of heat balance for electrons and ions 

3
2
ne

∂
∂t
+ ( ve∇)

#

$
%

&

'
(Te + pediv

ve = −div
qe +Qe  

3
2
ni
dTi
dt

+ pidiv
v = −div qi −παβ

∂vα
∂xβ

+Qi  , (3.3.3)

where παβ is viscous stress tensor, pe = neTe, pi = niTi, p = pe + pi, 
ve =
v −

j / ene

, qe, qi are heat fluxes transferred by electrons and ions, Qe, Qi is heat gained by 
the electrons and ions as a result of their collisions with other particles 
(including interaction with radiation or radiation losses for electrons). 

Equations (3.3.1–3) need to be supplemented with Maxwell equations for a 
quasi-stationary electromagnetic field 

rot

E = −

1
c
∂

B
∂t

 , 

div

B = 0  , (3.3.4)

rot

B =

4π
c

j  

and joined with an equation that expresses the “generalized Ohm law” of 
the form 


E +

1
c
[ v

B ]=


F  , (3.3.5)

where 

F  is linear combination of current 


j  and gradients of 

thermodynamic quantities. The quantities παβ, qe, qi, Qe, Qi should be 
expressed through the factors that create departure from equilibrium, and in 
this case they define transport processes, and respective coefficients, called 
transport coefficients or kinetic coefficients. All transport effects provide 
for corrections due to the finite lengths of kinetic processes (for example, 
due to the corrections related to the finite path length of particles in plasma). 
So-called ideal magnetohydrodynamics ignores such corrections, and e.g., 
the quantities παβ, qe, qi are not taken into account. Note that the difference in 
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velocities of electrons and ions, which is included in the MHD equations 
(3.3.3) and should therefore be incorporated in the generalized Ohm law 
(3.3.5) in this case, is also one of transport effects and it should not be taken 
into account in ideal magnetohydrodynamics. 

The MHD equations underlie techniques and codes that enable simulations 
of different processes in MAGO-MTF systems. In particular, 1D and 2D 
(typically, in the r, z coordinates due to the axial symmetry of initial 
geometries, see Fig. 2.2) MHD techniques are widely used to simulate the 
performance of the MAGO chamber [3.3-3.6]. 

The criteria for the validity of the MHD approach [3.1] for description of 
plasma flows in the MAGO chamber at temperatures below one kilo-
electron-volt are satisfied, except regions with high gradients (shock waves 
or near-anode zones). As for plasma heated to kilo-electron-volt 
temperatures, the condition of smallness of spatial gradients ril / R2 << 1 (ri 
is ion Larmor radius, l is particle path length, R is chamber radius) holds 

here, but the condition of slowness of values variation in time d
dt

<<
1
τ aa

 

(τaa is a collisional time) is satisfied for the electron component and is not 
for ions. Since this MHD description is not quite correct, we ask, what 
physical consequences may result.  

First, the MHD calculations assume an isotropic distribution of ion 
velocities along the directions along and across the magnetic field. This 
distribution does not have time to be established due to infrequentcollisions, 
and in our geometry ions attaining “thermal” velocities across the field in 
heating (in the shock wave, see Chapter 4) should have had almost no 
velocities along the field, and the effective adiabatic index of the hot ion 
component might have been close to two rather than equal to 5/3. However, 
this change does not seem to severely affect the flow dynamics and, that is 
more essential, this ion distribution is unstable (see Section 4.2). Instability 
evolution should lead to effective “isotropization” of the distribution during 
the characteristic times ~ω i

−1  small under our conditions. Second, as by 
virtue of rare collisions, the Maxwellian distribution of ions cannot have 
time to be settled, the real ion spectrum should be used to evaluate the 
thermonuclear fusion rates and neutron yield. Clearly, it is important to 
specify the ion spectrum, mainly for diagnostics of plasma by its neutron 
emission [3.7]. As for the effect of the real ion spectrum on the neutron 
yield value, in the kiloelectrovolt region, the ion spectrum specification 
changes the neutron yield not very considerably, by several times (see 
Section 5.3).  
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Thus, 1D and 2D calculations in the MHD approximation can be considered 
as quite a good approach to describe plasma in the MAGO chamber on the 
whole [3.8].  

The approximations used in the MHD calculations do not take into account 
some effects, which, however, can play an important role in the chamber 
operation. Among them the following can be mentioned. 

1) As initially the chamber is filled with cold DT-gas, its conversion to 
plasma occurs due to gas breakdown in the magnetic field. It is 
difficult to describe the breakdown phenomena evolution with the 
MHD approximation because an important role can be played by 
plasma non-quasi-neutrality and quite a complex combination of 
atom kinetic ionization and excitation processes, as well as the 
differences in motion between the plasma (electron-ion) component 
and neutrals (plasma slipping relative to the neutrals) at low 
ionization degrees. The problem complexity increases due to the 
important role played by radiation transport and the influence of 
impurities on the discharge formation. When the breakdown evolves, 
the azimuthal asymmetry and the discharge filamentation may 
develop, processes that are significant for Z-pinch [3.9]. To describe 
breakdown processes, in the MHD calculations one can use 
phenomenological models, such as the electron cost model [3.9]. This 
model can be modernized to take into account the conductivity 
magnetizing at low degrees of ionization. When describing the 
breakdown development using this model, we can assume that for 
low degrees of ionization, apart from usual energy expenditure in 
creating ionization, which are taken into account by the Saha 
equation, additional energy losses due to radiation and energy 
exchange between electrons and neutral atoms, require an additional 
expenditure of ∼100 eV for the generation of each electron (also 
including the expenditure related to inelastic molecular processes, 
dissociation, etc.). However, this model, being phenomenological, 
hardly can work in a wide range of conditions without a change in the 
phenomenological parameters. 

2) Plasma contamination with impurities from the walls and the 
insulator, wall evaporation: The conditions of contamination have 
much in common with the conditions existing in the plasma 
accelerators, plasma focus and other dynamical plasma devices; 
however, in our case the issue of contamination is more acute 
because of the need for subsequent compression. In modern codes it 
is possible to introduce models of material evolution from electrodes 
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into plasma; at present such models are successfully employed 
(see Section 7.3.3). 

 

3) Development of MHD-instabilities: The set of the available 
experimental data shows that the azimuthally asymmetric 
instabilities do not noticeably affect the chamber operation. The 
situation here is similar to that in the Z-pinch where the main 
instability is the convective one, m = 0 [3.9, 3.10]; however, here 
we have an additional favorable circumstance: presence of the 
preliminary magnetic field. The m = 0 instability in 2D calculations 
is taken into account automatically; in 1D calculations, which are 
usually conducted in the channel approximation (i. e., along some 
centerline in the chamber, with the dependences of the channel 
mean radius and its cross-section width on the total path along the 
channel, corresponding to the chamber geometry) it can be 
simulated using exponential factors ch(ʃγdt) in the coefficients of 
magnetic diffusion and heat conductivity (γ is the instability 
increment). The instability development conditions and the 
increment, γ, calculation in the presence of acceleration (that is in 
the conditions of both the Rayleigh-Taylor and sausage instabilities) 
is considered in Section 7.1.2. As for the development of 
azimuthally asymmetric perturbations, they may occur yet in the 
zones of tangential discontinuities or high velocity gradients (in the 
nozzle region), though their growth increments are small compared 
with the hydrodynamic ones (see Section 7.1.1). Apart from this, 
the azimuthally asymmetric instabilities in longer times can cause 
forceless configurations of the magnetic field [3.11] and lead to fast 
plasma cooling in them. 

4) Kinetic phenomena arising in plasma flow along electrodes 
(Chapter 5): When plasma flows along electrodes, plasma can be 
heated due to its friction on an electrode. This heating is most 
significant for the nozzle region, where the velocity of plasma is 
∼108 cm/s. Here the processes can take place at the scales of the ion 
Larmor radius. Analysis of the situation analysis is complicated by 
the Hall effect, which carries magnetic flux to the anode, rarefying 
the plasma and, on the contrary, the magnetic flux is removed from 
the cathode increasing the plasma density. Near the anode, the 
hydrodynamic approach may be invalid due to the appearance of 
vacuum regions. Near the cathode, the situation remains controlled 
by hydrodynamics; however, it seems difficult to describe such 
dense layers of the near-cathode plasma in the direct computations 
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of the chamber operation. These kinetic phenomena lead to 
asymmetry relative to the electrodes’ polarity.  

5) Collisionless shock waves (CSW) (Chapter 4): Since downstream 
from the shock wave front the plasma is strongly magnetized 
(ωτ) >> 1, such a shock wave is collisionless, i. e. the effective 
heating takes place, not due to particle collisions, but due to 
randomization and ionization and the development of instabilities. 
At these conditions for one-component plasma, the fraction of the 
electron heating is the main up to the Alfven-Mach numbers 
MA ~ 8, but for the two-component plasma (DT), the fraction of the 
ion heating considerably increases and becomes equal to the 
electron one at MA ~ 4. CSW are a widespread phenomenon in 
space and laboratory plasmas. The MAGO chamber plasma is a 
new venue for their manifestation where unique conditions are 
provided. 

3.3.2. Equations of State 

In the equations of heat balance of electrons and ions (3.3.3–4), for each of 
these components, it is assumed that pa = naTa (a = e or i), and the number of 
charged particles for the given plasma component is considered to be constant 
(degree of ionization does not change). The gas of particles described by such 
an equation of state is called an ideal gas. In a general case, however, the 
equation of state has a more complex form: pa = pa (ρ,Ta), εa = εa (ρ, Ta), and 
the equations of heat balance will have some changes. Let us write the equation 
of heat balance for the case when electron and ion temperatures can be 
considered equal and hence one can use a general equation of state, p = p(ρ,T), 
ε = ε(ρ,T), for the whole set of particles constituting each plasma component: 
electrons, ions of all possible kinds, and neutrals 

ρ
d ε
dt

+ p div v = −div q +Q .

As to the equations of state needed for MAGO-MTF system simulations, for 
low-density hydrogen (DT) plasma with temperatures that are not too low, 
one can use the Saha equation [3.12-3.13], and, if necessary, add 
dissociation losses into the energy equation. As a result, this equation can at 
low ionization transform into the electron cost model [3.9]. 

A more complicated issue is that related to the equations of state of liners 
that compress plasma, metal walls that confine plasma, and other involved 
materials that are originally condensed and then—as they get heated—
transform to plasma, as they get compressed and as they expand in MHD 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 44 

flows. The plasma state of the materials in the region of multiple ionization 
can be described rather efficiently and accurately using the approximate 
Raizer method [3.13]. 

However, MHD simulations often require that wide-range equations of state 
be used to describe the behavior of materials starting from low temperatures 
(around room temperature) and condensed state up to high temperatures 
(dozens or even hundreds of electron-volts) and plasma state. In this case, 
quite a straightforward way to describe the equation of state will be to 
represent pressure p and specific internal energy ε as a sum of three 
temperature and pressure dependent terms: cold, or elastic, term, hot term 
coinciding with the equation of state of multiply ionized plasma, and the 
lattice term describing the contribution of the condensed material to the 
thermal capacity and getting relatively smaller at higher temperatures in the 
plasma region. This way is in general the same as the three-term equation of 
state [3.13], with the only essential difference in the forms of the plasma 
term. Perhaps, such a description of the equation of state can prove to be 
less accurate, but it is wide-range, and it can be helpful as applied to the 
cases where no accurate description of intermediate states (between 
condensed state and plasma) is required. Since such equations of state are 
semi-empirical and contain phenomenological parameters, they can be set 
up using other, more accurate, equations of state for narrower ranges. 
Examples of equations of state set up for aluminum and copper include 
[3.14–3.15], where the equation of state for copper [3.15] was generated 
using the data of [3.16], resting on experimental results obtained for 
electrically exploding wires. 

At present, equations of state are explored actively – both experimentally 
and theoretically – especially in high energy density regions (see e.g., 
[3.17]). Quantum Molecular Dynamics (QMD) [3.17–3.18], in which 
electrons are treated in the quantum mechanics framework (using the 
density functional theory) and nuclei are treated in a classical way, proved 
to be a fruitful approach to designing equations of state in this region. 

Since experimental data and theoretical and computational results obtained 
using various models build up with time, it is convenient to use tables for data 
representation. The SESAME database [3.20] is an example of such tables. 

Note that considerations of equations of state often produce additional 
information that can be used for calculations of electrical conductivity or other 
transport coefficients. For example, ionization degree obtained in calculations 
of the plasma term of the wide-range equation of state [3.14–3.15] can be used 
to calculate electrical conductivity in the plasma region, and in QMD 
simulations of equations of state one can use the Kubo-Greenwood formula to 
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calculate electrical conductivity and opacity in the low-frequency region. In 
addition, phenomenological parameters for equations of state that are used to 
describe experimental data are also often chosen in conjunction with 
conductivity, as was the case in choosing phenomenological parameters of the 
equations of state [3.14–3.16], where the equation of state–conductivity system 
was used to describe the results of electrical explosions of wires. Thus, it is 
often more reasonable to address the issue associated with equations of state in 
a more comprehensive manner, together with conductivity and other transport 
coefficients and properties of materials. 

3.3.3. Plasma Transport Coefficients. Electrical Conductivity of Multiply 
Ionized Non-Ideal Plasma 

As mentioned above, within the hydrodynamic plasma description, one 
should take into account different transport processes and respective transport 
coefficients. As plasma is magnetized, along with plasma properties, such as 
electrical and thermal conductivity, viscosity, and electron and ion 
temperature balancing, one should also take into account Hall, Nernst, Leduc-
Righi effects etc. In addition, transport coefficients in a magnetic field turn 
out to be anisotropic and dependent on the direction of the magnetic field. 
Detailed calculations of transport coefficients for plasma based on the Landau 
kinetic equation were performed by S.I. Braginsky [3.1], and these constitute 
the most widely used results in the classical theory of transport in plasma. For 
the case of highly magnetized plasma, transport coefficients are derived in 
[3.21], which complements [3.1], because [3.21] provides coefficients 
calculated analytically for arbitrary ion charge z. 

Note, however, that the presence of strong fields or currents and high 
gradients of quantities in plasma in many cases can disturb thermodynamic 
equilibrium and result in so-called plasma turbulence. In such cases, 
effective transport coefficients may grow considerably and result in 
anomalous transport coefficients. An example of such an anomalous 
transport coefficient is anomalous resistance, which plays an essential role 
in many plasma systems. For example, in plasma focus devices, it is 
important as an acceleration mechanism for neutron generation [3.22]. 

As already mentioned, the Landau collision integral has a logarithmic 
accuracy (on the order of l / ln(l / λ), where λ is the plasma parameter), 
which is inherited by the transport coefficients calculated on its basis. Low-
density hydrogen plasma in MAGO-MTF systems is ideal enough, i.e., its 
plasma parameter is very small; so the logarithmic accuracy in determining 
its transport coefficients may prove to be quite sufficient. However, as for 
the relatively dense plasma of liners or walls, the logarithmic accuracy may 
turn out to be not enough. The key transport coefficient of such plasma 
might be electrical conductivity, because the role of other coefficients can 
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be small due to the effects of radiation transport, in contrast with which 
electron and ion heat conductivities may prove to be inessential. Radiation 
transport brings down the temperature of plasma making it less magnetized 
and, consequently, suppressing the role of other transport coefficients. 

Therefore, it is required to calculate electrical conductivity with an accuracy 
better than the logarithmic one. Let us perform higher-accuracy calculations of 
electrical conductivity for the case of Lorentz plasma, i.e., plasma with z >> 1. 

Thus, let us consider a multiply ionized plasma with the plasma parameter 

 λ =
z e 2

DT
  (3.3.6) 

(D =
T

4π nz 2e 2
 is Debye radius; n is ion density, T is temperature), which 

can be not very small. Plasma with λ<1 is called non-ideal. Corrections 
related to this non-ideal property influence many quantities, including 
thermodynamic ones; but as distinct from thermodynamics quantities, when 
these corrections prove to be on the order of λ [3.12], corrections for plasma 
being non-ideal are expected to have a particularly strong impact on 

transport coefficients calculated with an accuracy ~ 1

ln 1
λ

. It is therefore 

worth doing to calculate electrical conductivity with a higher accuracy, 

λ

λ
1ln

~ . 

In [3.23], such calculations were performed using the Sonin polynomial 
expansion of the solution to the transport equations within the Chapman-
Enskog approach; but the resulting expression for conductivity becomes 
infinite for the non-ideal plasma parameter λ ≅ 0.8. Thus, the range of 
validity of calculations [3.23] is in fact rather narrow (for comparison let us 
note that, e.g., corrections to thermodynamic quantities are small for 
λ >> 6). Therefore, when considering the case of Lorentz plasma z >> 1 and 
ignoring electron-electron collisions in this section, we will be able to do 
without Sonin polynomial expansion of the transport equation and expand 
the validity range of the approximation. For z ~ 1, the accuracy of the 
"Coulomb logarithm” obtained below will be ~ 1

ln 1
λ

; thus, if we use the  
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below Coulomb logarithm in expressions for electrical conductivity 
[3.1, 3.21] taken into account electron-electron collisions but calculated 

with accuracy ~ 1

ln 1
λ

, the accuracy of such electrical conductivity 

calculations can be estimated as 1

z ln 1
λ

+
λ

ln 1
λ

. 

It is known [3.21] that electrical conductivity of the Lorentz gas is 

 σ =
z e 2

3T
v
S tr

 , (3.3.7) 

where v is the velocity of electrons, Str is the transport cross section of 
electron scattering on ions, and the bar means averaging over the electron 
distribution function. The problem thus reduces to calculating the transport 
cross section. In order to ensure the improved logarithmic accuracy of such 
calculations, we can use the Lenard-Balescu integral for the cross section* 

 S LB =
4π z 2e 4

m 2v 4
d k
k∫ d∫ x exp(−x 2 / 2)

2π |ε(k ,x ) |2
 (3.3.8) 

m is electron mass, 

 ε(k ,x ) =1+ 1
k 2
1+ x

π

!

"
#

$

%
& d z
−∞

∞

∫ exp(−z 2 )
z − x − i 0

 

is dielectric permittivity, where electron screening is neglected because 
z >> 1. The integral (3.3.8), however, diverges at a large transfer of 
momentum k, because it has been derived assuming that k’s are small (small 
scattering angles). In order to eliminate this divergence, one can subtract 
from the integral (3.3.8) the cross section of scattering on any static 
potential with Coulomb center obtained within the same assumption of 
small k’s (Fokker-Planck cross section SFP). If one then adds the cross 
section on this potential without the assumption about small k’s that 
correctly accounts for close collisions, one can obtain a solution with a  
_________________________________ 
*Here we will consider a quasi-classical cross section. For incomplete ionization, e.g., when 

T < I < z
2e 4m
2

 (I is ionization potential), the quasi-classical approximation is appropriate. 
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relevant accuracy. There is a known classical transport cross section for 

scattering on the Debye potential z e
2

r
exp(−r / D )  [3.24] 

S = 4π z
2e 4

m 2v 4
ln mv

2

T λ
2
γ
−
1
2

"

#
$

%

&
'  (3.3.9)

(λ = 1.78…). Subtracting the Fokker-Plank integral for the Debye potential 
SFP from (3.3.8) and integrating over x as in [3.25], one obtains 

S LB − S FP =
1
2
4π z 2e 4

m 2v 4
 . (3.3.10)

The transport cross section Str is a sum of (3.3.9) and (3.3.10) 

S tr =
4π z 2e 4

m 2v 4
ln mv

2

T λ
2
γ

 , (3.3.11)

and, hence, electrical conductivity 

σ =
4
π

2
π
T
z e 2

T
m
ln−1  , (3.3.12)

where 

ln−1 = 1
6

dy y 3 exp(− y )

ln 4
γ
y
λ

0

∞

∫  . (3.3.13)

The accuracy of expression (3.3.13) is ~ λ

ln 1
λ

+
1

z ln 1
λ

. If we restrict ourselves 

to the accuracy of ~ 1

(ln 1
λ
)2
+

1

z ln 1
λ

, expression (3.3.13) can be written in the 

form of a logarithm with a corrected coefficient under the logarithm sign 

ln−1 ≅ 1

ln 4exp(11/ 6)
γ 2λ

≅
1

ln 7,89
λ

 . (3.3.14)
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Integral (3.3.13) is improper, but it is easy to understand that the way of 
divergence elimination with y = γλ

4
 is not important, because the region y ~ λ 

contributes ~ λ4. Therefore, one can consider this integral, for example, as a 
principal value. The results of integral calculations are given in Table 3.1. For 
comparison, this table also gives the values of logarithm (3.3.14). 

Table 3.1. Comparison of two Logarithmitic Approximations. 

λ  0.1 0.2 0.5 1 2 3 4 5 6 

1ln/1 −  4.30 3.58 2.62 1.86 1.13 0.815 0.692 0.678 0.762 

λ
89.7ln  4.37 3.68 2.76 2.07 1.37 0.967 0.679 0.456 0.274 

 

Table 3.1 shows that the integral (3.3.13) starts to drop at λ  ≥  5, so 
expression (3.3.13) cannot be used in this range. Comparing (3.3.13) and 
(3.3.14) indicates that (3.3.14) is quite accurate. 

For z >> 1 and not very small λ, it may turn out that ion locations strongly 
correlate, because the ion parameter of non-ideality equals to zλ. Since the 
screening radius in this case will be on the order of the distance between 
ions, in order to provide higher generality, one should supplement formulas 
(3.3.13-14) with a plasma parameter reading as 

 D =max T
4π n z 2e 2

, 1
4

3
4π n
!

"
#

$

%
&

1/3'
(
)

*)

+
,
)

-)
 . 

3.4. Plasma Radiation 

Radiation transport and emissive processes play an important role in 
MAGO-MTF systems. One should account for both radiation losses in 
hydrogen plasma with impurities, and radiation transport in dense plasma of 
liners and walls. Therefore, approximate methods are required for 
calculations of radiation properties of hydrogen and multiply charged 
plasma in local thermodynamic or coronal equilibrium. 
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3.4.1. The Rate of Energy Exchange Between Planck Radiation and 
Hydrogen-Like Thermodynamic Equilibrium (LTE) Plasma 

In simulations of radiation/plasma interaction, one often encounters the 
case, when plasma is situated in a Planck radiation field, where Planck 
temperature is different from that of plasma electrons. In this case, an 
important characteristic is the rate of energy exchange between radiation 
and matter. Formulas to describe energy transfer due to the Compton effect 
and free-free transitions in the field of nuclei are given in [3.26, 3.27]. 

In this section, along with free-free transitions, we will also include free- In 
In this section, along with free-free transitions, we will also include free-
bound and discrete transitions for hydrogen-like plasma and obtain simple 
approximate formulas for the energy exchange rate to extend the range of 
applicability of the energy exchange rate formulas to the low temperature 
region, on the order of ionization potential or lower. In doing so, we 
consider plasma to be in local thermodynamic equilibrium* (LTE). 

Let us consider optically thin plasma with electron temperature T; plasma 
interacts with black body radiation of temperature θ. Then, the rate of 
energy transfer from the matter to the radiation in unit volume S(T,θ) will be 
defined by the formulas from [3.13] 

S (T ,θ ) = d ω S (ω)
0

∞

∫  , (3.4.1)

S (ω) = ω
3

π 2c 2

exp −
ω
T

"

#
$

%

&
'− exp −

ω
θ

"

#
$

%

&
'

1− exp −
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θ

"

#
$

%

&
'

κω (T )  , (3.4.2)

where κω(T) is spectral absorption coefficient, ω is frequency. 

Let us first address the bremsstrahlung mechanism of energy transfer. 

                                               
* The formal criterion of thermodynamic equilibrium [3.28] ne >>

m 3e 6

6
e 6

3c 3
Z 7  for 

hydrogen plasma corresponds to ne >> 3 ⋅ 1018 cm-3 , but this criterion applies only to the 
equilibrium of levels n = 1, 2. If the whole spectrum of levels will be taken into account, the 
actual range of applicability of the formulas below will be wider. 
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In the quasi-classical approximation, when T, θ << I (I = 13.6 Z 2 eV is 
ionization potential of the hydrogen-like ion with charge Z), the 
bremsstrahlung absorption coefficient reads as (Kramers formula) 

 κω
K =

16π 2

3
2π
3mT
!

"
#

$

%
&

1/2
Z 2e 6

cmω 3
nZ ne  (3.4.3) 

(nZ is density of ions with charge Z, ne is electron density, m is electron 
mass). By substituting (3.4.3) into (3.4.1–2), we obtain 

 S K = J K (T )φK
θ
T
!

"
#

$

%
&  , (3.4.4) 

where JK (T) is intensity of classical bremsstrahlung 

 J K (T )=
16
3
2π T
3m

!

"
#

$

%
&

1/2
Z 2e 6

mc 3
nZ ne  , (3.4.5) 

 φK (x ) = x dt exp(−x t )− exp(−t )
1− exp(−t )0

∞

∫ = −x[lnγ +ψ(x )]  , (3.4.6) 

(lnλ = 0.577…, and ψ(x) is logarithmic derivative of the Γ-function, 
ψ(x) = Γ'(x)/Γ(x)). An interpolation formula for ϕK(x) with correct behavior 
at 0, 1 and ∞ can be written as 

 φK =1− x ln x +
12−π 2

π 2 −6

"

#
$

%

&
'+ x ln 6

π 2 −6
−1

"

#
$

%

&
'  . (3.4.7) 

In the Born approximation, when T or θ >> I, the absorption factor becomes 
accompanied with the Gaunt factor 

 g ω
T

!

"
#

$

%
&=

3
π
exp ω

2T
!

"
#

$

%
&K 0

ω
2T
!

"
#

$

%
&  

(K0(x) is Macdonald function), and then, in accordance with [3.26] we 
obtain for bremsstrahlung energy transfer 

 S B = J K (T )φB
θ
T
!

"
#

$

%
&  ,  (3.4.8) 
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φB (x ) = d t
0

∞

∫ g (t ) exp(−t )− exp(−t / x )
1− exp(−t / x )

 .  (3.4.9)

The interpolation formula to describe ϕB(x) to within better than 0.5 % can 
be expressed as follows: 

ϕB (x ) =
2 3
π

1− 4.52 x 2

1+1.69 x +1.83x

"

#
$$

%

&
'' . (3.4.10)

Let us note that functions ϕK(x) and ϕB(x) in a wide range of x are close to 
each other and differ significantly only when x >> 1. 

Let us now proceed to considering recombination radiation and lines. 

As we assume plasma to be in thermodynamic equilibrium, concentrations 
of ions and electrons will meet the Saha equation 

nZ −1 = nZ ne
2π 2

mT
"

#
$

%

&
'

3/2

exp I
T
"

#
$

%

&
'  .  (3.4.11)

For Z ≠ 1, let us assume nZ–1 << nZ to be able to include only hydrogen-like 
energy levels and ignore radiation absorption on ions with a charge less than 
Z-1. For Z=1 (hydrogen plasma), the degree of ionization can be arbitrary. 

For approximate radiation/matter interaction description, the discrete 
spectrum of levels starting from some negative energy E0 can be replaced by 
a continuous one, and other levels can be accounted for explicitly. We will 
include explicitly two lower levels n = 1, 2, and all the spectrum from 

E0 = −
I
2.52

= −0.16 I will be considered continuous. This will allow us to 

obtain an approximate expression for S(T,θ) for any ratios between T, θ, I 
using semi-classical Kramers formulas. 

As a result of such lowering of the “continuous” spectrum bound, the 
density of free electrons near the nucleus and, consequently, the intensity of 
free-free transitions will grow a factor of exp(–E0 / T). As we use a semi-
classical description, the contribution of free-free transitions to the rate of 
radiation/matter energy exchange will be given by 

S ff = J K (T )φK
θ
T
!

"
#

$

%
&exp(−E0 /T )  .  (3.4.12)
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Similarly to (3.4.12), using the Saha equation (3.4.11), we obtain the 
intensity of “bound-free” transitions from levels n = 1, 2 

 S fb = J K (T )
2I θ
T 2

exp I
T
!

"
#

$

%
& dt

exp −
θ t
T

!

"
#

$

%
&− exp(−t )

1− exp(−t )I +E0
θ

∞

∫ +

*

+

,
,
,
,

 

 +
1
8
exp I

4T
!

"
#

$

%
& dt

exp −
θ t
T

!

"
#

$

%
&− exp(−t )

1− exp(−t )I /4+E0
θ

∞

∫

*

+

,
,
,
,

 .  (3.4.13) 

Finally, the contribution of discrete transitions that will be represented here 
only by the line La can be written as 

Sbb = J K (T )
1
2
I
T
!

"
#

$

%
&

2

exp I
T
!

"
#

$

%
&

exp −
3I
4T

!

"
#

$

%
&− exp −

3I
4θ

!

"
#

$

%
&

1− exp −
3I
4θ

!

"
#

$

%
&

 .  (3.4.14) 

One can obtain an approximate formula for integrals (3.4.13) that describes 
the range of T ~ θ  ≥  I to within about 20 % and yields correct asymptotic 
forms in other ranges 

 S fb = J K (T )
2I θ
T 2

9
8
exp −

E0
T

"

#
$

%

&
'
T
θ
−1

"

#
$

%

&
'+ exp

I
T
"

#
$

%

&
'ln
1− exp −

I + E0
θ

"

#
$

%

&
'

1− exp −
I + E0
T

"

#
$

%

&
'

+

(

)

*
*
*
*
*

 

 +
1
8
exp I

4T
!

"
#

$

%
&ln
1− exp −

0.25I + E0
θ

!

"
#

$

%
&

1− exp −
0.25I + E0

T
!

"
#

$

%
&

(

)

*
*
*
*
*

 . (3.4.15) 

To improve the accuracy of the contribution of discrete transitions, one can 
use an exact value of oscillator strength; the factor of 0.5 in expression 
(3.4.14) will then be replaced by 0.358. 
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Note that free-free transitions have a considerable contribution into S only 
when T  ≥  I. Consequently to increase the accuracy, for ϕ in (3.4.12) one 
can use formula (3.4.10) instead of (3.4.7). 

Finally, summing (3.4.12), (3.4.14) and (3.4.15) with the above changes, we 
obtain 

S = J K (T ) φB
θ
T
#

$
%

&

'
(exp(−E0 /T )+

*

+
,,

-
,
,

 

+
2I θ
T 2

9
8
exp −

E0
T

#

$
%

&

'
(
T
θ
−1

#

$
%

&

'
(+ exp

I
T
#

$
%

&

'
(ln
1− exp −

I + E0
θ
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&

'
(
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T

#

$
%

&

'
(

+

)
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+
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exp I

4T
!
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0.25I + E0
θ

!
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&

1− exp
0.25I + E0

T
!

"
#

$

%
&

(

)

*
*
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*
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+0.358 I
T
!
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&

2

exp I
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!
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&

exp −
3I
4T

!
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3I
4θ
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1− exp −
3I
4θ
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)
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+
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 . (3.4.16)

For θ = 0, formula (3.4.16) reduces to a formula for radiation intensity of 
optically thin plasma, 

S = J K (T ) 1.10+
9I
4T

!

"
#

$

%
&exp

0.16I
T

!

"
#

$

%
&+0.358

I
T
!

"
#

$

%
&

2

exp I
4T
!

"
#

$

%
&

'

(

)
)

*

+

,
,

 . (3.4.17)

In order to evaluate the accuracy of the formulas, radiation intensity 
calculated using formula (3.4.17) with interpolations was compared with 
calculations without such interpolations. The maximum difference of 15% 
was observed at T ≈ 8I. The maximum error of formula (3.4.16) can be 
expected to be approximately the same. 
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For T >> I, the primary role in formula (3.4.16) is played by the first term, 
and the formula reduces to (3.4.8)*. The terms in formula (3.4.16) that do 
not appear in (3.4.8) are particularly important in the range of T ≤ I. Fig. 3.1 
shows an illustrative dependence of the expression in braces in (3.4.16) (and 
isolated summands “ff”, “fb”, “bb”) on radiation temperature θ for T = 0.5I. 
Fig. 3.1 shows that throughout the range of temperatures θ, the primary role 
in this case is played by summand (3.4.15) (“fb”). At small θ it follows from 
(3.4.17) that the role of summand “bb” grows as temperature T decreases, 
whereas the major contribution to S(T,θ) at θ >> I >>T will still be made by 
summand (3.4.15), which yields in this limiting case 

 S (T ,θ ) = −J K (T )
2I θ
T 2

exp I
T
"

#
$

%

&
'ln

θ
I + E0

 . (3.4.18) 

 

 
Fig. 3.1. Radiation/matter energy exchange rate (including free-free “ff”, free-
bound “fb” and bound-bound “bb” transitions) as a function of radiation 
temperature θ for T = 0.5I.

                                                
* Note that formula (3.4.16) cannot be used to determine corrections to the Bremsstrahlung 
formula (3.4.8) at T >> I because of the introduced interpolations. 
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3.4.2. Recombination Radiation and Bremsstrahlung of Multiply Ionized 
Plasma 

For multiply charged ions in plasma, along with free-free transitions 
(bremsstrahlung), one should also take into account free-bound 
(recombination radiation) and bound-bound (line radiation) transitions. As 
for recombination radiation and bremsstrahlung, when for ions with charge 
z in plasma the number of electrons of the ion is large enough N >> 1, but is 
small compared to the charge of the nucleus Z, i.e., 1 << N = Z – z << Z, it is 
possible to obtain rather simple formulas to describe this radiation. In this 
case, one can consider the potential, where bound electrons are moving, to 
be Coulomb potential, and use formulas obtained for the Coulomb problem. 

Let us find the intensity of recombination radiation: radiation generated in 
plasma when a free electron is captured by an ion with photon emission. If 
the initial velocity of the electron is ν = p, and it is captured to the level with 
the principal quantum number n, energy of the photon emitted in this case 
will be given by (here and in Section 3.4 below we will use atomic units 
e =m =  =1 ) 

ω = E + En =
p 2

2
+
Z 2

2n 2
 . 

In the quasi-classical approximation, when n ~ N1/3 >> 1, it follows from 
this formula that emission of photons in a small range of frequencies dω
corresponds to electron capture to a small range of levels 

dn = − n
3

Z 2
dω  . 

Energy emitted per unit volume of plasma per unit time in the small range 
of frequencies (energies) dω is equal to 

dIω
R( ) = −nenZω dn vσ n f E( )d v∫ = nenZω

n 3

Z 2
dω v 2σ n f E( )dE d Ω v∫ ,(3.4.19) 

where ne and nz are concentrations of free electrons and positive ions with 
nuclear charge Z, σn is an effective cross-section of free electron capture to 
the level n equal to [3.13] 

σ n =
16π
3 3

Z 4

c 3v 2ω
1
n 3

 , 
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f (E)is the distribution function of free electrons in plasma with temperature 
T of the form 

 f E( ) = 2πT( )
−
3
2 e

−
E
T , (3.4.20) 

and dΩ v  is the elementary solid angle of the emitted photon. The 
maximum electron energy that can contribute to recombination radiation of 
frequency ω is equal to the photon energy of this frequency Emax = ω, and 
the minimum energy is 

 Emin =
0 for  ω < I ,

ω − I for  ω > I .

"
#
$

%$
 

Integration of expression (3.4.19) in the given range accounting for the 
isotropic character of electron distribution yields 

 dIω
R( ) = nenZ

16Z 2

3c 3
2π
3T

e
−
max 0,ω−I( )

T −e
−
ω
T

"

#

$
$

%

&

'
'
dω . (3.4.21) 

The intensity of bremsstrahlung is found using the formula [3.13] 

 dIω
B( ) = nenZ

16Z 2

3c 3
2π
3T
e
−
ω
T dω . (3.4.22) 

Summing expressions (3.4.21) and (3.4.22) we obtain the total intensity of 
recombination radiation and bremsstrahlung: 

 dIω
BR( ) = nenZ

16Z 2

3c 3
2π
3T
e
−
max 0,ω−I( )

T dω . 

 

For ω < I, 
dIω

BR( )

dω
 is constant, and for ω > I it exponentially decays with 

frequency. The total intensity of continuous (bremsstrahlung plus 
recombination radiation) equals 

 I BR( ) =
16 2π
3 3c 3

Z 2 T 1+ I /T( ) . (3.4.23) 
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3.4.3. Line Radiation of Multiply Ionized LTE Plasma 

Bound-bound transitions (line radiation) often play a decisive role in 
transport problems. In particular, they have the major contribution to 
radiation losses of low temperature plasma (T < Z2). 

It is particularly difficult to account for bound-bound transitions, because this 
requires incorporating ion distribution by ionization degree and numerous 
transitions between complex quantum states of ions with a large number of 
electrons. Such a program is conducted in quantum-statistics models [3.29]. 
Simulations of radiation properties of materials using such programs are rather 
complicated and are not easily accessible. It would be desirable to have simple 
formulas providing a correct description of physics in some ranges of plasma 
parameters and giving satisfactory results in these ranges. In particular, such a 
necessity exists in calculations of radiation of dense multiply charged plasma, 
which is typical of compressed MAGO-MTF target shells, where plasma can 
be in the state of local thermodynamic equilibrium LTE. 

A noticeable simplification of the problem can be attributed to the fact that 
characteristic electron energy levels for multiply charged ions have large 
quantum numbers. The motion of electrons occupying these levels is quasi-
classical. Therefore, radiation of the ions can be calculated in the quasi-
classical limit. In addition to this simplification we consider the case of high 
temperatures, when the potential, in which electrons are moving, can be 
considered Coulomb potential. This problem was solved in [3.30]. 

For the potential, in which electrons are moving, to be treated as Coulomb 
potential, should either the number of electrons in the ion N be small 
compared to the nuclear charge N << Z, or T >> Z, because – as one can show 
– the major contribution in this case will be made by electrons flying near the 
nucleus, which are deflected by the field that can be considered Coulomb 
field. Since the frequency of electron orbiting in the Coulomb field is 

ωn =
Z 2

n 3
[3.31, 3.32], where n is the principal quantum number, and N ~ n3, 

both conditions can be written as max(T, ωn) >> Z. As discussed, we consider 
the range of validity of the quasi-classical approach max (T, ωn) << Z 2, in 
which the role of line spectrum in radiation is particularly important. 

The intensity of radiation of the k-th harmonic of electrons moving in the 
Coulomb field with a negative energy E, is [3.31] 

I k =
64k 2E 4

3c 3Z 2
!J k
2 (kε)+1−ε

2

ε 2
J k
2 (kε)

#

$
%

&

'
(  ,  (3.4.24)
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where ε is eccentricity of the elliptical motion of an electron. 

To obtain the average intensity of radiation I k  of electrons in the electron 
shell with the energy E, the expression (3.4.24) should be averaged over the 
values of electron orbital momenta keeping in mind that the number of 
electrons with given angular momentum l is proportional to l, i.e., (3.4.24) 
should be integrated over dε2 (within the limits from zero to unity). Taking 
the integral as indicated in [3.31], we obtain 

 I k =
128kE 4

3c 3Z 2
J k (k ) !J k (k )  .  (3.4.25) 

The quantity 

 ξk ≡ π 3kJ k (k ) "J k (k )   (3.4.26) 

for large k has an asymptotic form of 

 ξk ≅1−
Γ (1/ 3)

5⋅61/3Γ (2 / 3)
1
k 2/3

≈1− 0,21775
k 2/3

 , 

which also provides a good description of these quantity values for 
moderate values of k. 

Since the major contribution into emission of ions is made by electron shells 
with energies close to the ionization potential, one can ignore the 
dependence of the frequency ωn on n, taking its frequency ωn = ωI at the 
energy level equal to the ionization potential I determined by the Saha 
equation for multiple ionization [3.13] 

 I =T ln 2
ne

T
2π
!

"
#

$

%
&

3/2

, (3.4.27) 

where nε is electron density. Then, intensity of radiation of the k-th harmonic 
from all electron shells will be equal to

 J k = 2n 2I k f (En )[1− f (En − k ω I )]
n
∑  . (3.4.28) 

Here, 2n2 is the number of electrons on the n-th shell, 

 f (En ) =
1

exp
En −µ
T

"

#
$

%

&
'+1
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is Fermi-Dirac electron distribution function corresponding to the 
occupancy of the n-th level, and the factor 1 – f (En – kωI) accounts for the 
occupied energy levels. 

As we assume that T << Z 2, the factor 2n2Ik in formula (3.4.28), weakly 
depends on n compared to the product f (En)[1 – f (En – kωI)], and we can 
withdraw it from under the sum sign, taking its value at the energy level 
equal to the ionization potential (3.4.27). 

The sum 

S k = f (En )[1− f (En − k ω I )]
n
∑  (3.4.29)

is calculated as follows. Let us designate η = exp
E0 −µ
T

"

#
$

%

&
' , where E0 is 

some energy level close to the ionization potential. Then, En = E0 + nωI and 

S k =
ηexp[ω I (n − k ) /T ]

[ηexp(ω I n /T )+1]{ηexp[ω I (n − k ) /T ]+1}n
∑  . 

Note that 

S k = exp(−ω I k /T ) [1− f (En )] f (En − k ω I )
n
∑  . (3.4.30)

Then, multiplying (3.4.30) by exp(kwI / T) and subtracting (3.4.29) from it, 
we obtain 

[exp(k ω I /T )−1]S k = [ f (En − kω I )− f (En )]
n
∑ =  

=
1

ηexp[ω I (n − k ) /T ]+1
−

1
ηexp(ω I n /T )+1

"

#
$

%

&
'

n=−∞

∞

∑ .  (3.4.31)

The right-hand sum of (3.4.31) is easy to calculate, if we notice that the 
contributions to it from the first and the second term are canceled out in the 
n-th and (n-k)-th sum elements. The sum becomes finite and equal to 

n→−∞
lim

1
ηexp(ω I l /T )+1l =n

n+k −1
∑ = k . 
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As a result, 

 S k =
k

exp(k ω I /T )−1
. (3.4.32) 

Substitution of (3.4.32) into intensity (3.4.28) gives spectral radiation 
intensity per ion 

 J k =
16

3 3π

Z 2

c 3
ω I
2ξk

k

exp
kω I

T
!

"
#

$

%
&−1

 . (3.4.33) 

For ωI << T, the discrete spectrum in the formula (3.4.33) can be replaced 
with the continuous spectrum ω=kωI and (3.4.33) converts to the formula of 
Ref. [3.33] 

 J ω =
16

3 3π

Z 2

c 3
ω

exp ω
T
!

"
#

$

%
&−1

 , 

derived assuming that intervals between levels ωn are small compared to the 
temperature T, which is valid for very dense plasma.

The total radiation intensity is equal to 

 J = J k =
8π
9 3

Z 2

c 3
T 2F (ω I /T )

k
∑  , (3.4.34) 

where 

 F (x ) = 6x
2

π 2
kξk

exp(kx )−1k =1

∞

∑ , (3.4.35) 

and ξk is defined as (3.4.26). The plot of F(x) is shown in Fig. 3.2. At x = 0, 
we have F = 1 and formula (3.4.34) transforms into the formula of Ref. [3.33] 
in the limit of high densities, when radiation intensity per ion does not depend 
on the density and is proportional to the square of temperature; i.e., in the 
limit of high densities, the plasma radiation is the radiation of a population of 
ions, each of which is heated to temperature T. For large values of x (low 
densities), radiation intensity is determined only by one harmonic (3.4.33). 
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Fig. 3.2. Function F(x) defined by formulas (3.4.35), (3.4.26). 

The accuracy of formulas (3.4.33–34) for the case T < ωI can be estimated 
as O N

Z
+
1
N 2/3

!

"
#

$

%
& , where the first term is associated with the assumption of the 

potential being close to the Coulomb potential, and the second term is 
related to the quasi-classical approximation. Such accuracy is not very high, 
and because of real numerical factors, formulas (3.4.33-34) can be expected 
to describe ion radiation with an error of several times. Nevertheless, it makes 
sense to use these formulas in problems where this accuracy is sufficient and it 
is not necessary to use complex calculations [3.29] providing accuracy on the 
order of O N

Z
!

"
#

$

%
&  (the error is attributed to the fact that the approach of Ref. 

[3.29] does not include polarization effects∗ [3.34–3.35]). 

Let us compare results of plasma radiation calculations using formulas 
(3.4.33–34) with an example of calculations for gold given in Ref. [3.29]. In 
accordance with [3.29], Planck-averaged absorption coefficients κP that are 
related to radiation intensity J as 

κP =
nZ

4σ T 4ρ
J  (cm2/g)  (3.4.36)

                                               
∗Indeed, since electron density in an atom is on the order of Z 3 / N, the square of the plasma 

frequency for the electron gas within the atom will be on the order of 
2 3~ /pe Z Nω . One can 

expect that the neglect of polarization effects leads to an error estimated as the ratio of the 
square of the plasma frequency to the square of the characteristic frequency ω ~ Z 2 N, i.e. 
on the order of N / Z. 
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(σ is the Stefan-Boltzmann constant, ρ is the density of matter in g/cm3, and 
nz is the ion density), are κP = 150 cm2/g and κP = 440 cm2/g for T = 1 keV 
and densities ρ = 0.1 and 1 g/cm3, respectively. Judging from the spectra 
presented in the graphs, most of emitted energy is contained in lines of energy 
3, 11, and 12 keV. Calculations by formula (3.4.27) using the ionization 
potentials of Ref. [3.36] yield I = 9.12 keV and average degree of ionization 
z = 69.6 for ρ = 0.1 g/cm3. If we define the principal quantum number n at an 
energy level corresponding to the ionization potential from relationship 

 I = z 2

2n 2
 , 

then energy ωI can be considered equal to ωI = 2I / n, which for ρ = 0.1 g/cm3 
gives n = 2.69, and ωI = 6.8 keV. In this case, F = 0.0248 and calculations using 
formulas (3.4.34–3.4.36) give κP = 180 cm2/g (somewhat better agreement with 
the results of [3.29] will be obtained if Z in formula (3.4.34) is replaced with z 
yielding κP = 140 cm2/g ). According to (3.4.33), 99.7% of all emitted energy is 
contained in line ωI= 6.8 keV. Similarly, for ρ = 1 g/cm3, we obtain n = 2.9, ωI 
= 4.8 keV, F = 0.0949 and κP = 670 cm2/g (subject to z being used instead of Z 
in formula (3.4.34) κP = 440 cm2/g ). Line ωI = 4.8 keV contains 98 % of all 
emitted energy. Thus, for the given plasma parameters, Planck absorption 
coefficients differ from calculations [3.29] by not more than the factor of 1.5 
and provide reasonable information on the spectrum (emitted lines are some 
average representatives of the lines emitted in calculations [3.29]), which is 
quite acceptable for such an approximate approach. 

For rather low plasma densities and small optical thicknesses, when 
radiation is not in equilibrium with matter, the plasma radiation is described 
by the coronal approximation (see below). A question arises, for what 
densities should we use formulas (3.4.33–34), and when should we use 
formulas and tables of the coronal approximation? A rough approach to 
answering this question can be formulated as follows: one should use the 
approximation that gives the smallest radiation intensity. For example, as 
shown by the above Planck absorption coefficients for gold plasma at 
T=1 keV, radiation intensity in the region of ρ = 0.1 g/cm3 turns out 
approximately 500 times smaller than the value in coronal radiation tables 
[3.37]. Thus, formulas (3.4.33–34) should provide reasonable results for 
these plasma parameters. 
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3.4.4. Coronal Model Line Radiations of Multiply Charged Impurities in 
Plasma. Statistic Approach 

Line radiation of impurities of heavy elements can result in considerable 
cooling of hydrogen plasma in MAGO/MTF systems; it is therefore essential 
to know the intensity of their radiation. In addition, one should be able to 
calculate the emitted spectra predict plasma properties based on the 
measurements of such spectra. Low-density plasma, which does not stay in the 
outer radiation fluxes and which is transparent to intrinsic radiation, is 
typically in the state of “coronal equilibrium,” when the rate of electron 
collisional ionization is counterbalanced by the rate of recombination, which 
for partly ionized ions is mostly dielectronic. An absence of equilibrium 
radiation and transitions induced by it leads to the deviation of a level 
population distribution from thermodynamic one. In the coronal limit we can 
assume that ions in the exited states are not present, since in a low-density 
plasma with low collisions frequency, radiation transitions (or Auger 
processes) are much more probable for the exited states than collisions with 
free electrons, the ions finally decay to the ground state due to these 
transitions. 

In order to describe radiation properties of coronal plasma, one should 
consider kinetics of interactions between free electrons and ions with different 
charges and different configurations, accounting for different transitions 
between levels and changes in the occupancy of states during such transitions. 
This problem is rather complicated, and requires that a large number of ion 
states and transitions between them be taken into account for multiply 
charged plasma (Z, N >>1, Z is nuclear charge, N is number of electrons in the 
ion) (see e.g. [3.37-3.40]). However, one can apply the statistical model of the 
atom for many-electron ions, and use a small parameter present there – the 
inverse value of the quantum number - for description of kinetics and the 
model of electron gas based on this parameter using—for description of 
electrons in the ion. This approach was proposed in Ref. [3.40], where it 
yielded ionization and recombination rates and ionization balance in plasma 
with any many-electron ions given that Z >> N >> 1. 

In the statistical model of the atom, electrons move in a self-consistent field 
determined by the Coulomb field of the nucleus and the bulk charge of the 
whole set of electrons. The relative quantity of pair (correlation) interactions 
compared to the self-consistent field is estimates as [3.40] 

(U ee / ε)
2 ~ N 2/3 / Z 2 . 
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For heavy ions, Z >> 1, this parameter is rather small, and one can therefore 
consider individual movements of electrons or holes (states unoccupied by 
electrons). Thus, one can ask a question about the number of electrons and 
holes formed per unit time as a result of collisions of free electrons in 
plasma with bound ones, and about the probability of radiation relaxation of 
excited electrons and lifetime of holes with respect to their filling with 
electrons from higher shells. These holes can be filled as a result of 
radiation transitions of electrons from higher levels (making a contribution 
to line radiation, which in this case is usually called characteristic radiation) 
and as a result of released energy transfer to the electron from a higher shell 
and transition of this electron to the continuous spectrum (the process that 
determines the Auger widths of X-ray terms [3.32]). 

When considering characteristic radiation, one should take into account that 
for a deep hole the probability of the Auger effect that does not result in 
photon emission is dominating. If we consider complex ions with a large 
number of electrons N >> 1, motion of electrons can be described in the 
quasi-classical framework, because characteristic quantum numbers n ~ N1/3 
are large in this case. In this approximation, hole formation and the Auger 
effect can be represented as the outcome of pair collisions of electrons, and 
electrons in the atom can be represented as electron gas. Considering these 
processes, we will address separately the high-frequency part of characteristic 
radiation hω > I, where I is ionization potential, because only characteristic 
radiation contributes to this part of the line spectrum. 

Collisions of electrons should be treated in the Born approximation [3.32], 
because in the range of temperatures and bound electron energies of interest 
T, ε >> 1, 1 / ν << 1 (v is relative velocity of electrons). For collisions of 
identical particles (electrons), scattering cross section is given as [3.32] 

 dσ =
1
v 4

1
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2
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"

#

$
$
$$
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&

'
'
''
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where χ is scattering angle, ο is solid angle. 

In this case, relative accuracy of the approach in question can be estimated 
as accuracy of the quasi-classical approach, in which the spectrum of levels 
is considered continuous and the distance between levels Z 2 / n3 is ignored 
compared to energy levels Z 2 / n2, i.e. ~1 / n ~ N–1/3. Note that radiation 
spectra obtained within the proposed approach prove to be continuous due 
to the quasi-classical approximation we use, i.e., it is suggested that the 
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number of emitted lines is large enough, and the spectrum yields a pattern 
averaged over a large number of lines. 

In addition to the high-frequency part of characteristic radiation, we will 
also consider collision of free electrons with a multiply charged ion, which 
results in ion excitation and subsequent radiation relaxation contributing 
to the low-frequency part of the line spectrum (ω < I). The channel 
considered should make the major contribution to the total radiation 
intensity and agree in the order of magnitude with radiation intensity 
calculations using the multi-level coronal model. One can expect that the 
calculated line radiation spectra in this case will correctly reproduce 
dependencies on the problem’s basic parameters (they depend on the 
quasi-classical parameter of the problem determined by the principal 
quantum number n of electrons at the level of ionization potential of ions 
being considered and ratio I / T). 

The resulting spectra of coronal plasma will be used in our analysis of data 
obtained in one of the MAGO experiments. 

Now, let us start by finding the intensity of high-frequency radiation 
produced when a free electron kicks out a bound one from a deep level of 
the atom. The resulting hole in the deep level is occupied by an electron 
either as a result of the Auger effect, or as a result of photon emission by an 
electron from the higher level and transition of this electron to the hole 
location; thus, the intensity of characteristic radiation will be determined by 
the competition of two processes: Auger effect and radiation hole filling. 
Therefore, before we consider characteristic radiation intensity, we should 
find the probability of the Auger effect. 

To find this probability, let us consider a potential well of depth U occupied 
by electrons up to the level—I (ionization potential). Let there be a hole 
formed in the level—ε as a result of collisional ionization. After the 
collision of two electrons from the potential well with energies ε1 and ε2, as 
a result of the Auger effect, the hole is occupied by one electron, whereas 
the other transits into the continuous spectrum (Fig. 3.3). Fig. 3.3 shows that 
the Auger effect is possible only if the hole energy is ε > 2I. 
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Fig. 3.3. Transitions between levels for the Auger effect. 

The rate of hole filling (Auger width) is obtained from the kinetic equation 
[3.21]: 

 w =
1
2
(2π )3 df 2

dt
=
1
2
(2π )3 v d σ f 2 f1∫ d 3 "p1 . (3.4.38) 

Here, !p1  is the momentum of the outgoing electron, f1 and f2 are 
equilibrium functions of electron distribution in the well, accounting that 
there may be two electrons in each cell of the phase space: 

 f1 = f 2 =
1
4π 3

. (3.4.39) 

For the ion, the role of potential well depth at this radius is played by 
potential energy U(r), which in the case of interest, N << Z can be treated as 
Coulomb energy. To find the Auger width in this case, one should take the  
integrals in expression (3.4.38) and average it over the trajectory of hole 
motion. The calculations yield: 
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where q = ε / I, 

dilog x( ) =
ln t( )
1− t

dt
1

x

∫ . 

Close to the Auger effect threshold, the Auger width grows with q 
quadratically, and for q >> 1, it grows linearly. 

Let us now find the intensity of high-frequency radiation produced after the 
kick-out of a bound deep-level electron by a free electron. When a hole 
forms at the deep level, e > 2I, with dominating probability, it will be 
occupied as a result of the Auger effect, rather than due to photon emission 
by the electron from the higher level and transition of this electron to the 
hole location. Therefore, the total rate of hole filling can be considered 
equal to w , and spectral intensity of radiation from unit volume will be 

dIω
(Ch ) = nZω

dWω

w
d N h

dM d ε
dM d ε∫ , (3.4.41)

where dWω is the probability of photon emission of energy ω in the range 

dω, 
d N h

dM d ε
 is the number of holes of energy –ε and angular momentum M 

that form in the ion per unit time. 

Since high-frequency photons ω ~ ε correspond to high harmonics and are 

emitted by holes with small angular momenta [3.31], probability dWω can 
be found using an asymptotic formula of Ref. [3.31] for the intensity of very 
high harmonics for moving along a nearly parabolic orbit. 

The number of holes with energy module ε and the small angular 
momentum M, locating at the radius r2, that form in the ion per unit time 
will be determined by the number of collisions of free electrons with bound 
ones [3.21] 

d N h

dMd εdr2
= ne

M
p2
2r2
2
v d σ f1 f 2 p2r2

2d 3 p1d Ω p2
d Ω r2∫ ,

where 1f  is the free electron distribution function (3.4.20), 2f  is the 
distribution function of electrons in the ion (3.4.39), 1p  and 2p  are free and 
bound electron momenta. 
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Radiation intensity is found after substituting expressions for the hole 
generation rate, photon emission probability dWω, and the Auger effect 
probability (3.4.40) into the general formula (3.4.41). Integration over 
angular momenta and hole energies gives 

dIω
Ch( ) = dω 8 2π

9 3
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 (3.4.42) 

Here, we introduce designations y = ε / T, s = I / T, ξ = ω / T. 

On approach to the Auger effect threshold 2Iε = , intensity (3.4.42) is 

proportional to (ω – I)–1. Thus, (3.4.42) defines dIω
Ch( )  for frequencies ω > I, 

at which the probability of the Auger effect exceeds the probability of 
radiative relaxation. At higher frequencies ω >> T, dIω

Ch( )  decreases in 
accordance with 

 
dIω

Ch( )

dω
=
44 2π
3 3

nenZ Z
2

c 3 T
s
ξ 3
e s−ξ . 

As a result of the presence of the power factor that decreases with 
frequency, for very high frequencies the contribution of the characteristic 
spectrum proves to be smaller than that of bremsstrahlung and 
recombination radiation. 

Total intensity of high-frequency radiation diverges logarithmically as ω 
approaches I. This divergence is attributed to the fact that we consider the 
probability of hole filling to be determined only by the Auger effect; the 
probability vanishes as the hole energy approaches I. Including the probability 
of radiative hole filling will suppress this divergence. To calculate total 
intensity with logarithmic accuracy, one can cut off the divergence at           
ω–I = δII, where the small value of δI is taken such as to meet the condition 
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dIω
Ch( )

dω
ωδ( ) ~ I

L( )

ωδ

in the order of magnitude, where I(L) is the characteristic 

intensity of line radiation, ωδ = (1 + δI)I. Thus, the value of δI turns out to be 
on the order of 0.001. The value of intensity of high-frequency characteristic 
radiation with respect to the sum of bremsstrahlung and recombination 
radiation (3.4.23) for several values of I /T is given in Table 3.2. 

 Table 3.2. Relative value of I(Ch) and I(BR). 

I / T 0.5 1 1.5 2 2.5 3 
I(Ch) / I(BR)  1.90 2.03 1.92 1.77 1.62 1.48 

Let us now consider line radiation of the range ω < I, where the contribution 
to total radiation is dominant. For the copper plasma under consideration, 
this contribution exceeds 97%. It is particularly difficult to account for it, 
because within our approach it requires considering all possible 
distributions of excited ions, complex competition of radiation and Auger 
processes, including those with triple collisions (see [3.40]).

When a bound electron is kicked out from the ion by a free electron, a 
hole forms at the bound electron site, and electrons—depending on the 
energy redistribution as a result of their collision—transit into the 
continuous spectrum or to vacant ion levels. This is accompanied by 
ionization, recombination (dielectronic) or 
ion excitation, while excited electrons emit 
energy as they move and descend to lower 
energy levels until they reach ionization 
potential. Emitting holes will in a similar 
way ascend in energy. The process of hole 
radiation emission can be described using 
the same formulas that are used for 
electrons, because their trajectories are the 
former trajectories of kicked-out bound 
electrons. 

Let us use numeral 1 to denote the range of 
positive electron energies, and numerals 2, 3, 
4 for energy ranges (– I, 0), (–2I, – I), (– ∞,  
– 2I), respectively (see Fig. 3.4). 

Fig. 3.4. Denotation of energy 
ranges. 
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Numerous channels contribute to line radiation (transition of electrons and 
holes into different energy ranges), and calculations of line radiation in 
these is rather a complicated task, especially given the competition between 
the Auger and radiation processes and the necessity to take into account 
triple collisions for a number of channels. The simplest way is to calculate 
the contribution to line radiation in the channel 1+3→1+2, in which, 
following the collision of a free electron with an electron from range 3, one 
of them moves to the continuous spectrum, and the other gets excited, i.e. 
moves to range 2. A hole forms instead of the electron from range 3. The 
same channel makes the major contribution to the intensity of line radiation, 
because it allows for the possibility of small energy transfer (the free 
electron remains free), and, consequently, will lead to logarithmically large 
integrals, and because at small energy transfer the excited state of the atom 
will have no Auger decay possibility (i.e., the Auger channel will not 
compete with the radiation channel). We restrict ourselves to calculating the 
intensity of plasma line radiation produced by this channel alone. 

Let us denote energy of the hole in range 3 as –εh, and energy of the excited 
electron in range 2 as eε− . If the energy difference between the electron 
from range 2 and the hole is smaller than I (here we consider only such 
transitions in order to ignore the competition of the Auger effect), the 
resulting excited state will only have the possibility of radiative relaxation; 
hence, in this case, inelastic electron-ion collision will take place without 
change in the charge state of the ion. In the course of relaxation, the electron 
will move down to the level—I losing its energy for emission. The hole, on 
the opposite, will rise to the level—I and also emit energy. The emitted 
energy will concentrate in the frequency range ω < I. 

Total intensity of emitted energy is found using formula 

 I 0 = εh −εe( ) d N
d εed εh

d εe d εh∫ . (3.4.43) 

Distribution of forming holes and excited electrons in energies and angular 
momenta is found by analogy with characteristic radiation. The integrals 
obtained in the calculations of these quantities diverge as hole energy tends 
to I. This divergence is attributed to the fact that a large contribution to the 
scattering cross-section is made by far Coulomb collisions that take place at 
small energies of free electrons E and values of εh close to I. In reality, the 
divergence will be cut off, because energy transferred to the bound electron  
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cannot be smaller than the distance between neighbor levels in the ion. To get 
rid of this divergence (and perform calculations with logarithmic accuracy), we 
assume that excited electron and hole energies cannot differ from I less than by 

ΔI = I
2n

,

which has the same order of magnitude as the distance between neighbor 
energy levels near I. Here, n is the principal quantum number at the energy 
level I. 

In the calculations to obtain more accurate data, one should use some 
effective charge Zeff instead of nuclear charge Z. For this quantity, one can 
suggest the following interpolation formula [3.40] that provides a 
reasonable description of limiting cases z << Z and z ≈ Z: 

Zeff = z +1( )
2
Z3 . 

Fig. 3.5 shows the value of (3.4.43) and radiation intensity from [3.2] 
for a number of temperatures for copper plasma. Fig. 3.5 shows that the 
calculated radiation intensity agrees with [3.2], and differences do not 
exceed a factor of 2.5. 

 
Fig. 3.5. Values of I0 and radiation intensity from [3.2] (IPJ) for copper plasma. 
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During the finite motion in the field of charge Z, the electron or the hole 
with energy module E  emits a set of frequencies [3.31] 

 ωk =
k
Z
2 E( )

3
2 , 

where k is a harmonic number. 

The spectrum of radiation emitted by the particle is obtained using the 
formula for spectral intensity and the relationship between momentum and 
energy of particles during radiation descend or ascend from [3.31]. The 
sought spectrum of line radiation is found by integrating the spectra of all 
forming particle pairs. 

The resulting radiation spectrum depends on two quantities, s = I / T and 
ω / ω0, and consists of weak peaks near the harmonics, being multiples of 
the main radiation frequency at the energy level I 

 ω0 =
1
Z
2I( )

3/2
. 

Fig. 3.6 shows a spectrum of plasma line radiation per one ion and one free 
electron for the case of s = 1.93, n = 3.16. (Such parameters present, e.g., 
copper plasma at a temperature of T = 0.3 keV, with Zeff  = 20.6, ω0 = 366 
eV, I = 578 eV.) Fig. 3.6 shows that spectral intensity of radiation decreases 
with frequency growth rather slowly (theoretical analysis suggests that it 
decreases according to the law ω –5/3). Integration over the range ω < I for 
real ions with a not very large number of electrons gives only a small part of 
total emitted energy, therefore the question as to how to distribute the 
remaining energy over the spectrum remains open. 

 
Fig. 3.6. Spectrum of plasma line radiation for s = 1.93 and n = 3.16. 
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To describe the MAGO experiments, we have considered hydrogen plasma 
with copper impurities and impurities of light elements (C, N, O) with 
temperatures around hundreds of electronvolts. The total radiation spectrum 
of such plasma was built as follows. 

For copper plasma, the difference between the total intensity of emitted 
energy (3.4.43) and integral over the calculated spectrum in the range ω < I 
was located at two lines emitted during radiative relaxation after collisional 
electron transitions n → n +1 and n – 1→ n. The line spectrum in the range 
ω > I was calculated using formulas for characteristic radiation. The 
resulting total line spectrum was summed up with the continuous spectrum, 
the formulas for which are given in Section 3.4.2. 

The spectrum of copper impurities for T = 0.3 keV is shown in Fig. 3.7. 

Fig.3.7. Radiation spectrum of copper plasma at T = 0.3 keV. 

Ionization potential of hydrogen plasma at the temperatures of interest is 
IH << T, so the spectrum of its radiation reduces to the bremsstrahlung 
spectrum. 

The number of bound electrons in the light elements in question for 
considered temperatures does not exceed 2. Therefore, to describe the 
continuous part of the light elements’ spectrum, we have used more 
accurate – compared to Section 3.4.2 – formulas from Ref. [3.13]. The 
difference between the value from [3.2] and the integral over the continuous 
spectrum (line spectrum intensity) was placed into the line 2p →1s. 
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In the МАГО-IX experiment, time-resolved spectrometry of soft x-rays was 
performed in one of the chamber compartments using the DANTE 
spectrometer in the range of 0.2–1.5 keV using vacuum x-ray diodes. 

To simulate values of signals, 2D MHD simulations of plasma motion in 
this experiment were performed in two different setups: one under the 
assumption of purely hydrogen plasma without impurities, and the other 
with washing out of copper and light elements (CO) from walls by plasma, 
with hydrogen plasma containing 3% of nitrogen impurities (by weight). 
The calculated radiation intensity was obtained by integrating radiation 
intensity per unit volume of plasma over the chord, along which the 
detectors were directed in the experiment. 

Experimental and simulated signals of the x-ray diodes are given in 
Table 3.3. Table 3.3 shows that the agreement between simulated and 
experimental signals improves, if the simulations suggest plasma 
contamination with copper from the walls. In addition, whereas the duration 
of simulated signals with copper wash-out is fractions of a microsecond as 
in the experiment, simulated signals for pure hydrogen plasma last many 
microseconds at an approximately constant level.

Table 3.3. Simulated and experimental x-ray diode signals in the MAGO-IX 
experiment. All quantities are given relative to their values in the 0.2 keV channel. 

Channel Experimental 
signal Jexp  

Simulated 
signal for 

plasma with 
impurities J 

 
J / J exp 

Ratio of simulated 
signal for pure plasma 

to Jexp 

0.2 keV 1 1 1 1 

0.4 keV 0.052 0.027 0.51 1.6 

1.25 keV 0.086 0.030 0.34 5.8 

 

Thus, we can state that the radiation spectrum of multiply charged plasma 
found for the coronal equilibrium helps analyze experimental data and 
obtain information on impurities in plasma. 
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4. TRANSVERSE COLLISIONLESS SHOCK WAVES  
AND PLASMA HEATING IN THEM 

In many cases, magnetohydrodynamic flows, like hydrodynamic flows, 
because of the nonlinearity of their governing equations, result in 
discontinuities⎯shock waves. In low-density plasma, the free paths of ions 
and electrons behind the shock front, which, in collisional plasma, determine 
the width of the shock front, may prove to be very large and, in any case, 
markedly exceeding the Larmor radii of the respective particles. In this case, 
the width of the shock waves is determined by the Larmor radii of the 
particles, rather than by their free paths; and energy dissipation mechanisms 
in the shock wave become collisionless and are governed by the development 
of various instabilities at the front and by the reflection of particles from the 
front region. 

Collisionless shock waves (CSW) occur in such astrophysical events as the 
encounter between solar wind and the earth’s magnetic field and the 
interaction between flows of matter ejected by galaxies and exploding 
supernovae and the interstellar medium. In the laboratory, CSWs occur in the 
low-density plasma of Z- and Θ - pinches, and they also play an important 
role in plasma heating in an approach to controlled thermonuclear fusion like 
MAGO/MTF. 

One can point to several aspects that promote interest in CSWs. First, they 
are of fundamental interest as an example of a phenomenon in which we see 
the dissipation of energy and the efficient growth of entropy in the absence 
of particle collisions. Second, unlike with collisional shock waves, plasma 
conditions downstream of the CSW front are not determined merely by the 
conservation laws (Hugoniot) and remain non-equilibrium. That raises the 
question, In what state is plasma downstream of the CSW front, and what is 
the hierarchy of scales for the further relaxation of the plasma to 
equilibrium? Finally, there is practical interest in CSWs because, in various 
cases, different plasma components (electrons, ions, or, in multi-component 
plasma, different ion species) may be heated in CSW. In controlled fusion 
systems, heating of the ion component is of primary importance, which 
means the CSW can be used to accomplish that task. 

We shall consider the simplest, though, perhaps, the most frequent and 
instructive, configuration of a perpendicular CSW, i.e., a configuration where 
the direction of the shock wave movement x is perpendicular to the magnetic 
field directed initially along z. In addition, for simplicity, the CSW will be 
assumed to propagate in cold plasma with zero temperature and zero thermal 
pressure. In that case, shock waves can be regarded as collisionless, if the ion 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 82 

component (and even more so, the electron component) of the plasma 
downstream of the front is magnetized (ωτ)i >> 1 (ωi is the Larmor frequency 
of ions, and τi is ion−ion collision time). Although particle distribution 
downstream of the CSW front for collisionless plasma must differ from the 
Maxwell distribution, one can use, instead of temperature, the average energy 
of random motion of particles obtained using the Hugoniot to assess the 
degree of magnetization (ωτ)i downstream of the front. 

The largest length that will determine the structure of the CSW front for 
collisionless plasma will be the ion Larmor radius, which, for a shock wave 
with a Mach number of MA ~ 1 (since we are working with cold plasma, we 
will use the Alfven-Mach number MA, which is equal to the ratio of the shock 
wave velocity to the Alfven velocity upstream of the front, as the measure of 
shock wave strength) is, in terms of order of magnitude, equal to c/ ωpi (ωpi is 
plasma ion frequency). For cold plasma with a small MA, however, ions are 
not reflected off the CSW front, and for a single-component plasma, we have 
a single-stream flow with cold ions (having almost no velocity relative to one 
another) downstream of the front. Here, the CSW structure forms on smaller 
scales that are determined by the current velocity of electrons. According to 
the first CSW model [4.1], that scale can be determined by electron inertia 
and can be equal to ~ c / ωpe, and the front will have an oscillatory structure (a 
wave determined by electron dispersion). But in fact, current 
instabilities⎯primarily, the ion-acoustic instability⎯should develop at the 
CSW front, resulting in anomalous plasma resistivity and a resistive front 
width larger than the width due to electron dispersion, although much smaller 
that the ion Larmor radius c / ωpi. Anomalous Joule heating goes mainly to 
the electron component of the plasma. 

Thus, one can use, as the basic model for describing the CSW, the so-called 
hybrid model, in which ions are described kinetically, and electrons, 
hydrodynamically as a gas with temperature and pressure. Friction between 
electrons and ions results in electric resistance, which, at the leading edge of 
the CSW front, can create a resistive jump (with the influence of some 
effective electron thermal conductivity), with scales that are small by 
comparison with those of the ion Larmor gyration. 

The CSW can be studied with this model in the following sequence: we first 
consider a one-dimensional (1-D) case, assuming that the distribution of all 
quantities in the CSW depends on only one coordinate perpendicular to the 
front, and look at the results obtained in that case; then we evaluate stability 
of the solution obtained, and if the solution is unstable, we attempt to obtain 
turbulent state of the CSW, taking the growing instabilities into account in a 
2D formulation. 
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Note that there are many papers devoted to the study of CSWs (see, for 
example, [4.2−4.5]). In this section, for consistency and convenience of 
description, we will focus on our results [4.6−4.9]. 

The CSW modeling problems that we examined were solved for non-
stationary conditions, with the assumption that, for x = 0 , there is an 
ideally conducting, rigid piston toward which an initially uniform semi-
infinite plasma is flowing at a given velocity –µ. The initial plasma density 
is n0, and the initial magnetic field is B0. The following units of 
measurement were used: n0 for density, B0 for magnetic field, initial Alfven 
velocity for velocity, inverse initial ion Larmor frequency ωi 0

−1  for time, and 
c / ωpi for the coordinate, where ωpi is the initial ion plasma frequency.

4.1. One-Dimensional Hybrid Simulations 

Biskamp, Berezin and Vshivkov, Leroy et al., Bashurin et al., and Garanin 
and Golubev [4.2−4.4, 4.10, and 4.11] studied CSWs with 1D hybrid 
numerical modeling (with a coordinate perpendicular to the wave front) and 
took into account various physical processes. Since classical plasma 
resistivity due to Coulomb collisions is negligible under CSW conditions, it 
was generally ignored in the simulations. Bashurin et al. [4.10] performed 
CSW modeling that took into account ion gyration for the infinite Alfven-
Mach number MA, and Garanin and Golubev’s modeling [4.11] took ion 
gyration into account for finite supercritical numbers MA, with additional 
accounting for electron dispersion. However, as already mentioned, under 
most experimental conditions, current-driven instabilities should develop at 
the CSW front, leading to anomalous resistivity, which results in a resistive 
shock-front width that is larger than the scale c / ωpe attributed to electron 
dispersion. CSW modeling with account taken of anomalous resistivity was 
performed by Leroy et al. [4.3]. Note that the ion distribution obtained in 
the 1D simulations downstream of the CSW front proved to be unstable 
[4.12] (see Section 4.2), which means that the shock wave itself is also 
unstable and is distorted on a scale length on the order of ~ c / ωpi, which 
was demonstrated by Thomas [4.5] for CSWs with large Mach numbers. 
Plasma resistivity was not taken into account in that paper, on the strength 
that it should be insignificant at large Mach numbers, and relatively small 
spatial scales need to be resolved in order to take it into account. 

Electron heating and ion heating are important shock-wave characteristics, 
as is the ion distribution downstream of the wave front. The ion distribution 
in an MHD flow can be seen as preserving its shape and adiabatically 
changing with density for times that are short by comparison with ion−ion 
collision time (after the relaxation due to the onset of the instability 
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associated with anisotropy of the distribution function), whereas the ratio of 
electron heating to ion heating can be regarded as constant for times that are 
short by comparison with the time for equalization of the electron and ion 
temperatures; the electron and ion energies themselves change adiabatically 
with density. The issue of the ratio of electron heating to ion heating and the 
ion distribution function (IDF) are also of practical importance to plasma 
facilities in which plasma is heated by means of CSWs, particularly in the 
MAGO facility. The plasma diagnostics used in such facilities, which is 
based on the measurement of the spectrum of thermonuclear neutrons 
[4.13], are directly related to the ion spectrum, especially to its high-energy 
range. Unfortunately, those characteristics have not always been considered 
in CSW studies, and there are no reliable direct data for perpendicular 
waves with intermediate Mach numbers in cold plasma. 

We will consider CSWs with an initially zero electron β and a low ion β, 
with account taken of anomalous resistivity in a 1D model for different 
Alfven-Mach numbers [4.6], focusing primarily on the relative roles of 
electron and ion heating and IDF, as well as on the mechanism of ion 
heating. Since, for the CSWs of interest, it is impossible to determine the 
plasma state downstream of the front by using merely the conservation laws 
(Hugoniot), our approach of direct modeling of the CSW and analysis of the 
effective heating of the different plasma components makes it possible to 
obtain the missing information. The results obtained in this study allow us 
to proceed to a hydrodynamic description of the behavior of plasma with 
CSWs, with a substantiated redistribution of energy among the various 
plasma components. 

4.1.1. Physical model 

In the 1D model in question, the magnetic field preserves its original 
direction along the z-axis. We will describe the electrons using 
hydrodynamic variables⎯density n, velocity 

ve , temperature Te, and 
pressure pe ⎯ and will assume that pe = nTe and that the adiabatic index is 
γ = 5 /3. Ions, however, are described kinetically, particle velocities are 
designated as v , and ion density and velocity averaged over the distribution 
function are ni and 


U . Plasma is assumed to be quasi-neutral (n = ni, and 

from the continuity equation in the 1D formulation, νex = Ux). 

Equations of ion motion have the following form: 

 
mi
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where mi is the ion mass, j = en(Uy – νey) is the current density, and η is the 
plasma resistivity. We will ignore electron dispersion compared to resistivity 
and write the equations of electron motion as follows (in the form of the 
generalized Ohm’s law that relates the electric field and the current density) 
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The equation for electron energy is 

∂
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where χ is the electron thermal conductivity. Joule heating of electrons in 
(4.1.5) is reduced because, under the assumption of an anomalous 
ion−acoustic resistivity, a fraction of the Joule heating is spent on ion heating; 
here we assume that fraction to be equal to α. At present, the existing theory 
of ion−acoustic resistivity contains no detailed description of ion heating and 
the corresponding change in the IDF under conditions when the ion-acoustic 
turbulence causes anomalous plasma resistivity. To provide a qualitative 
description of ion heating, we assume that the IDF changes in a self-similar 
fashion, i.e., the change of local velocities of ions relative to their center of 
mass is proportional to the velocities themselves, which results in the addition 
of the following term to the right-hand sides of equations (4.1.1−4.1.2): 

mi
αη j 2

2nTi
( v −


U )  , (4.1.6)

where Ti is the local ion energy averaged over the distribution function. The 
quantity α is assumed to be small and independent of the plasma parameters 
such that ion heating via this particular mechanism is much lower than 
electron heating. This mechanism, however, affects the spreading of the IDF 
and, consequently, the reflection of some of the ions off the CSW front, 
which means that this mechanism is essential. 
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Maxwell equations are expressed as 

 

∂B
∂ x

= −
4π
c
j  ,  (4.1.7) 

 

∂B
∂ t

= −c
∂E y

∂ x
 .  (4.1.8) 

Equations (4.1.1−4.1.8) define the problem if the quantities η, χ, and α, 
which are treated here as phenomenological parameters, are known. We 
assume that, for sufficiently small η and χ, which mainly determine the 
width of the resistive jump, their value and specific dependence on the 
plasma parameters should not affect the basic characteristics of a CSW. 
Therefore, in simulations, we assume that η = const and consider χ to be 

related to the magnetic diffusion coefficient κ = c
2

4π
η  by the relationship 

 χ =1.5nβeκ  , 

where βe =
8π pe
B 2

. Anomalous-resistivity assessment based on the theory of 

a weak turbulence for the ion−acoustic instability [4.14] yields 

 
κ ~ acA

c
ω p i

 , 

where cA is the Alfven velocity and a is the dimensionless factor. The same 
factor determines ion heating via induced scattering of ion−acoustic noise 
by ions. The quantities a and α depend weakly on the plasma parameters 

a ~ α ~ n mc 2
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 and contain a small numerical factor. For our 

simulations, we took a = 0.2 and α = 0.1, basing on the plasma parameters 
in the CSW in the MAGO chamber. 

At the initial time, the plasma is assumed to be cold: βe0 = 0, βi0 = 0.01. 
Plasma heating in CSW, of course, will be considerably higher than βi0. The 
non-zero value of βi0 is required only to specify the initial Maxwellian IDF, 
which would remain Maxwellian if ion heating occurred solely due to (4.1.6). 
The simulations were performed for the velocities µ corresponding to both 
subcritical (u = 1 and 2) and supercritical ( u = 3, 4, 6, and 10) CSW regimes. 
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4.1.2. Simulation results 

Figures 4.1−4.3 show the ion distribution in the χ, νx and χ, νy phase planes and 
the magnetic field profiles for the times t = 5 and t = 10 for u = 1 (subcritical 
regime, in which there is almost no ion reflection off the resistive jump at the 
front, MA ≅ 2), u = 3 (supercritical regime, MA ≅  4.4) and u = 6 (supercritical 
regime, MA ≅ 8.5). One can clearly see the difference between the subcritical 
and supercritical CSWs, which is also observed in the phase planes (Fig. 4.1 
has no reflected ions, and Figs. 4.2 and 4.3 do), and in the magnetic field 
profiles (profiles B(χ) in Fig. 4.1 are monotone and steady-state; whereas in 
Figs. 4.2 and 4.3 they have a pedestal and an overshoot associated with the 
reflected ions, as well as an oscillatory structure downstream of the front; they 
are time-dependent, such that the wave propagation in this case is pulsating).  

 

Fig. 4.1. The ion distribution in the χ, νx and χ, νy phase planes, and the magnetic 
field profiles B(x) in a CSW for the plasma flow velocity µ =1 at times a) t = 5; 
b) t = 10.

a) t = 5 b) t = 10 
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             a)  t = 5  b)  t = 10 

Fig. 4.2. The ion distribution in the xvx,  and yvx,  phase planes, and the 
magnetic field profiles B(x) in a CSW for the plasma flow velocity u =3 at times 
a) t = 5; b) t = 10. 
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            a)  t = 5 b)  t = 10 

Fig. 4.3. The ion distribution in the xvx,  and yvx,  phase planes, and the 
magnetic field profiles B(x) in a CSW for the plasma flow velocity u = 6 at times 
a) t = 5; b) t =10. 

The presence or absence of ions reflected from the front also determine the 
IDFs downstream of the front, which are shown in Fig. 4.4 for these CSWs 
for the time t = 10. To exclude the effects of the near-piston and near-front 
regions, the IDF was defined for the region x1 = 0.1xF < x < 0.9 xF = x2. 
Since the Larmor gyration leads to equalization of velocities vx  and v y , the 

figure shows IDFs in the total velocity f(ν), which are defined such that 
f(ν)dν is the fraction of ions in the velocity interval dν. Along with the 
IDFs, Fig. 4.4 shows the velocity distributions of the ion kinetic energy, 
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ν2 f(ν). Figures 4.4b and 4.4c, for supercritical CSWs, show that ions 
reflected from the front have very high velocities, and although the fraction 
of such ions is small, they make the main contribution to the thermal energy 
of ions downstream of the front. 

a) u = 1                             b) u = 3                     c) u = 6 

Fig. 4.4. The velocity IDFs, f(ν), and velocity distribution of the ion kinetic energy, 
ν2 f(ν), downstream of the CSW front for plasma flow velocities a) u = 1; b) u = 3; 
and c) u = 6. 

 

The basic results of the simulations performed, which characterize the 
plasma state downstream of the CSW front, are presented in Table 4.1. For 
different plasma velocities u, the table shows the following quantities: 

• the computed Alfven-Mach number defined as MA = xF / t + u, where 
xF is the shock front coordinate at t = 10; 

• the average magnetic field B1  downstream of the shock front (in the 
region x1 < x < x2) or the compression ratio downstream of the front; 

• fractions of the internal energy downstream of the shock front for 
different degrees of freedom: thermal energy of the electron  
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component We, thermal energy of the ion component Wi, energy 
contained in the magnetic field oscillations downstream of the front 

WB ~ B 2

2
−
B1
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∫  dx  ;

• the ion velocity νm corresponding to the median kinetic energy (the 
velocity that bisects the area under the curve ν2 f (ν)). 

Table 4.1. Basic results of simulations performed. 

For comparison, the last two columns of Table 4.1 present the Alfven-Mach 
number corresponding to the shock Hugoniot with γ = 5/3 and the velocity 
νr (with respect to the mean ion velocity) of the ions that were reflected 
from the front and penetrated through the front after the Larmor gyration. 
The velocity νr is determined under the following assumptions: 

• The shape of the CSW profile is rectangular (with the exception of a 
narrow peak at the front, where the reflection occurs); 

• The reflected ions are a small fraction of the main-flow ions whose 
velocity (in the frame of reference related to the front) changes the 
sign from MA to – MA at the instant of reflection; and 

• The flow of reflected ions is rather weak and does not perturb the 
plasma. Therefore, these ions move in uniform electric and magnetic 
fields upstream and downstream of the front and, passing through the 
front, after Larmor gyration, are decelerated by the same potential as 
the main flow, i.e., in the frame of reference related to the front, vx

2 , 
decrease by the same value as for the ions from the main flow. 

u MA B1   We(%) Wi(%) WB(%) νm
 MA(γ = 5 / 3) ν1

 

1 1.95 2.05 84.7 15.3 0 0.33 1.94 4.1 
2 3.1 2.81 84.3 15.6 0.1 7.1 3.09 6.6 
3 4.35 3.18 78.7 21.1 0.2 8.2 4.32 9.3 
4 5.66 3.3 72.6 27.1 0.3 9.8 5.59 12 
6 8.46 3.23 52.7 46.7 0.6 13 8.18 18

10 14.5 3.13 29.1 70.4 0.5 15 13.4 29 
1, D/T 1.96 2.04 73.4 11.1/15.3 0.2 0.48/0.42 1.94 4.0 
3, D/T 4.45 3.01 55.5 31.5/12.5 0.5 7.5/1.6 4.32 9.1 
*The last two lines of Table 4.1 represent the results of CSW simulations for a plasma with two 
ion species. 
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It can be seen from Table 4.1 that the fraction of ion heating grows with 
velocity u and Mach number and equals about a half for u = 6 and 
MA = 8.5.  As a result, as follows from the comparison of MA and MA 
(γ = 5/3), the Hugoniot, which at small u coincides with that for γ = 5/3, 
starts to deflect from it with the growth of u and approaches the Hugoniot 
for γ = 2 corresponding to two degrees of freedom available in these 
simulations for ions. The fraction of the magnetic-field oscillations WB in 
the internal energy of plasma proves small for any u: for small u because of 
a rather uniform magnetic field downstream of the front, and, for large u 
because the contribution of the magnetic-field energy to the energy balance 
becomes negligible. The estimate for the velocity νr of the reflected ions 
agrees with the simulated characteristic ion velocity νm downstream of the 
front for the flow velocities u = 2, 3, and 4, for which there are ions 
reflected from the front, but their fraction is small, and they do not introduce 
strong perturbations in plasma. Note that the ion spectrum obtained proves 
to be enriched with “superthermal” particles for any supercritical CSW. For 

example, the ratio of median kinetic energy 
mivm

2

2
 to the average “thermal” 

energy of ions downstream of the front is 42 for u =3. 

CONCLUSION 

For plasma with a single ion species, the fraction of electron heating in the 
total plasma heating downstream of the CSW front within the 1D simulation 
approach remains dominates up MA ~ 8, whereas ion heating predominates 
for larger Mach numbers. Heating of the ion component is mainly determined 
by the ions that are reflected from the shock front and whose velocities 
downstream of the front are ~2MA, which greatly exceeds “thermal” 
velocities. The velocity of such ions can be assessed satisfactorily, if these are 
assumed to form from the main flow due to the reflection from the front and 
to move then in the electric and magnetic fields of the main flow. 

4.2. Instability of the Ion Distribution Function Downstream of the 
CSW Front. Time Evolution of the Distribution Function 

Ions driven by the Lorentz force and Larmor gyration in strictly perpendicular 
CSW would move in a plane perpendicular to the magnetic field. As a result, 
ions downstream of the shock would have no velocities along the field. Such a 
situation is realized in the 1D simulations of Section 4.1, where the occurrence 
of longitudinal velocities is impossible by virtue of the problem setup. 
However, the anisotropic ion distribution forming downstream of the front 
proves to be unstable relative to perturbations with the wave vectors that have a 
component along the magnetic field. The growth of such perturbations and their 
effects on the distribution function may lead to a decrease of the anisotropy. 
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The development of unstable oscillations downstream of the CSW front in 
the quasi-linear approximation were studied by Yoon [4.12], where the 
IDFs for transverse and longitudinal velocities were assumed to be bi-
Maxwellian, and oscillations and quasi-linear diffusion were assumed to 
result in changes of relevant temperatures and their equalization. The study 
showed that the anisotropy of such a distribution function decreases 
considerably. Nevertheless, if the real ion distribution is borne in mind, then 
the questions of whether the isotropization occurs for all regions of the IDF, 
how quickly this process runs for low and high velocities, and how real ion 
distribution affects the spectrum of oscillations remain unresolved. The 
question of the ion distribution function is also of practical importance to 
plasma facilities, including MAGO, where plasma is heated by means of the 
CSW, because in this case a large fraction of energy is contained in high-
velocity ions, for which collisions are not very essential. 

Heating of MAGO plasma as a result of “anomalous” friction against the 
anode, when the plasma passes through the nozzle, may also produce high-
energy ions that, generally speaking, have anisotropic ion distribution with 
prevailing velocity directions perpendicular to the magnetic field (see 
Section 5.3). The information on high-energy ions was obtained by 
Burenkov et al. [4.13] by spectral measurements of thermonuclear neutrons. 
Those measurements did not reveal any velocity anisotropy for most of the 
neutron spectrum and, consequently, for high-energy ions. The explanation 
given for the results is that the ion distribution function contains a large 
fraction of high-energy ions, which becomes isotropic rather quickly due to 
the noise produced by the growing instability. 

In this section, we will consider the development of the instability of the Alfven 
ion-cyclotron mode with a wave vector parallel to the magnetic field [4.8].

4.2.1. The Dispersion Relation for Oscillations Along the Magnetic Field 

For oscillations along the magnetic field, i.e., 

k ||

B || ez , the dispersion 

equation [4.15] 

k 2δij − ki k j −
ω2

c 2
εij = 0  , 

where eij is the tensor of dielectric permittivity, splits into two equations: 

k 2 = ω
2

c 2
(εxx ± iεxy )  , (4.2.1)

and 
ezz = 0 . 
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We will consider only transverse waves described by Eq. (4.2.1). For this 
case, using the known components of tensor eij [4.16] and noting that, for 

the range of wave vectors k ~ c/ωpi of interest, 
ωe
k vTe

>>1, and for the 

frequencies ω ~ ωi of interest, ω << ωe, we obtain the following dispersion 
equation: 

k 2 = ω
2

c 2
1±

ω pe
2

ωωe
+
2πe 2

ω 2
dp
(ω − kv|| )

∂ f
∂ p

⊥

+ kv
⊥

∂ f
∂ p||

ω − kv|| ωi
v
⊥∫

$

%

&
&
&
&&

'

(

)
)
)
))

 . (4.2.2) 

Assuming that wave velocities are small compared to the speed of light, we 
can ignore the 1 in the brackets of formula (4.2.2) (disregard of bias 

currents) and, proceeding to dimensionless units k = k
ω pi

c
, ω =

ω
ωi

, and 

v = v
cA

, rewrite Eq. (4.2.2) in the dimensionless form 

 
k 2 = ω + 1

2
d v
(ω − kv|| )

∂ f
∂v

⊥

+ kv
⊥

∂ f
∂v||

ω − kv|| 1
∫ v

⊥  ,  (4.2.3) 

where the function of velocity distribution is assumed to be normalized to 1 

 
f d∫ v =1  . 

Since, in an ideal case of a perpendicular perturbation-free CSW, ions move 
in the plane perpendicular to the magnetic field, parallel components of ion 
velocities right downstream of the front can be considered to be small. One 
can then expand the integral in the right-hand part of Eq. (4.2.3) in powers of 
k v||
1−ω

<<1  (here we treat only the case of the minus sign in (4.2.3); a solution 

for the plus sign can be obtained by replacing k with – k and ω with –ω) 

 
k 2 = ω 2

1−ω
− k 2 v

⊥
2

2(1−ω)2
+ k 2

v||
2

(1−ω)3
−3k 4

v||
2v

⊥
2

(1−ω)4
+ ...   (4.2.4) 

(the bar above the squared velocity components means averaging over the 
distribution function). 
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If we ignore v||  completely, Eq. (4.2.4) transforms into a cubic equation for ω 

k 2 = ω 2

1−ω
− k 2 v

⊥
2

2(1−ω)2
 , 

which has complex roots for sufficiently high k. As this equation has real 
coefficients, the imaginary part of one of the roots will be positive, i.e., such 

ion distribution is unstable. The roots of this equation for v⊥
2 = βi⊥ = 0.5  are 

shown in Fig. 4.5, which corresponds to the ion distribution downstream of 
the CSW obtained in the 1D simulation with the Mach number MA = 44 
(Fig. 4.4b). The unstable root of Eq. (4.2.4) at k >>1 equals 

ω =1−1−v⊥
2 / 2

2k 2
+ i v⊥

2

2
1− 1
k 2

−3k 2
v||
2v

⊥
2

v
⊥
2

#

$

%
%

&

'

(
(

 (4.2.5)

Fig. 4.5. Frequency ω and increment γ of the Alfven ion-cyclotron oscillation mode 
along the magnetic field for βi⊥ = 0.5 , βi || ≅ 0 . 

Thus, the anisotropic ion distribution in velocities with small v||  is unstable, 

with characteristic wave vectors of the unstable mode being k ~
ω p i

c
and 

characteristic increments for plasma with β ~ 1 being γ ~ ωi. 
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4.2.2. Quasi-Linear Diffusion of the Distribution Function 

The quasi-linear equation [4.17] that describes the variation of the IDF 
produced by noise with 


k ||

B  can be written as 

∂ f
∂ t

= π
e 2

mi
2
d k

1
v
⊥

R
∧ v

⊥

2
|

Ek (n =1) |2 (R

∧

f )
#

$
%

&

'
(δ(ω −Ωi − kv|| )+

       + 1
v
⊥

R
∧ v

⊥

2
|

Ek (n = −1) |2 (R

∧

f )
#

$
%

&

'
(δ(ω +Ωi − kv|| )

+

,

-
-

.

-
-

/

0

-
-

1

-
-

∫ , 

 (4.2.6)

where mi is the ion mass, 

 
R
∧

= 1−
kv||
ω

#

$
%%

&

'
((
∂
∂v⊥

+
kv

⊥

ω
∂
∂v||

 , 

and 

Ek is the amplitude of electric field oscillations that can be expressed 

through the amplitudes of magnetic field perturbations

 

Bk
1 =
c
ω
[

k

Ek ]  . 

If we focus primarily on the time history of the high-energy region of the 

IDF, for k v
ω x

>>1 , where x =
v||
v

, Eq. (4.2.6) can be written as 

 

∂ f
∂t

=
∂
∂x
|

Bk
1 |2

2
1− x 2

∂ω
∂k

−v x

∂ f
∂x

 , (4.2.7) 

 (oscillation frequency is assumed to satisfy the resonance condition of 
ω = 1 + k ν x, the imaginary part of frequency γ is assumed to be small), 
which corresponds to the diffusion over the angle variable with a fixed 
velocity modulus. The growth of magnetic field perturbations is described 
by the equation 

 

∂

Bk
1 2

∂t
= 2γ


Bk
1 2  . (4.2.8) 
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Solving equations (4.2.3), (4.2.7), and (4.2.8) for the initial distribution 
function of Fig. 4.4b with βi⊥ ~1  and small perturbations 


Bk
1  set in a wide 

range of wave numbers k has shown [4.8] that, in this case, the IDF 
becomes isotropic, although relatively slowly, over a period hundreds of 
times greater than the ion gyro time. The analysis of noise development has 
shown that the peak spectral noise density shifts from the initial wave 
number corresponding to the maximum increment in Fig. 4.5 towards 
smaller wave numbers k ~ 1.

As applied to the MAGO chamber plasma, that time is not very long and 
equals tenths of a microsecond, which is short compared with the 
characteristic time of a neutron pulse (see, for example, Fig. 2.5). In addition, 
if we consider plasma heating as a result of anomalous friction at the plasma 
chamber nozzle, this heating should result in predominant ion heating 
(Section 5.3), which should result in the growth of βi⊥  and, according to 
(4.2.5), correspondingly faster growth of the instability and hence faster 
isotropization of the distribution function. Thus, the investigated instability 
growth can explain the absence of anisotropy in the spectra of the main body 
of thermonuclear neutrons in Burenkov et al. [4.13]. 

4.3. Two-Dimensional Hybrid Simulations 

As we showed in Section 4.1, for Mach numbers that are not very large, the 
effects of plasma resistivity and Joule heating must be taken into account 
when considering CSW structure, and, according to Section 4.2, two-
dimensional (2D) effects can play a major role in that structure. In this 
section, we study CSWs in the 2D approximation, with allowance for 
anomalous resistivity for a plasma in which the initial β value is equal to 
zero for electrons and is small but nonzero for ions. 

4.3.1. Physical Model 

Plasma flow is assumed to be 2D, and a CSW is assumed to propagate along 
the x-axis; all of the quantities are functions of x and z because of the 
presence of perturbations in the z-directions. The magnetic field and particle 
velocities can have all three components. 

Electrons will be described using the same hydrodynamic variables as in 
Section 4.1, and ions will be treated within the kinetic approach with the 
same designations as in Section 4.1. As before, we assume that the plasma 
is quasi-neutral (n = ni) ( n ni= ). 
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Equations (4.1.1−4.1.5) in the 2D case are written as 

 
mi
d v
d t

= e

E +

1
c
[ v

B ]

!

"
#

$

%
&−eη


j , (4.3.1) 
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= div −

3
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vex pe + χ∇Te

"

#
$

%

&
'− pe div

ve + (1−α)η j
2  . (4.3.3) 

Similarly to the 1D simulations, we assume that a small fraction of Joule 
heating α is spent on ion heating, with the term of (4.1.6) added accordingly 
to the right-hand side of Eq. (4.3.1). 

The Maxwell equations have the usual form 

 
rot

B = −

4π
c

j  ,  (4.3.4) 

 

∂

B
∂ t

= −c rot

E  . (4.3.5) 

The 2D problem is defined by equations (4.3.1−4.3.5) written in 
x, z-coordinates with the quantities η, χ, and α as described in Section 4.1. 

4.3.2. Problem Statement 

We studied the problem of a CSW in time-dependent formulation and 
assume that, as with the 1D simulations, there is an ideally conducting, rigid 
piston at x = 0 with an initially uniform plasma flowing onto it at a velocity 
of –µ. To introduce perturbations, ions were assumed to be reflected off the 
piston as off a surface with a slope 

 

d x
d z

= 0.05sin π z
2z0

 , 

where 2 z0 is the width of the computation region in the z-direction and, 
despite the surface slope assumed for the process of ion reflection, the 
surface itself was considered flat. In simulations, the boundary points z = z0  
and z = –z0 were assumed to be related through the periodicity conditions. 
Due to the problem’s nonlinearity and instability, assigning a perturbation in 
the form of a single mode resulted in the generation of various shorter 
wavelength perturbation modes in the course of a run. 
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We shall express values in the units defined at the beginning of this 
Chapter, and as in Section 4.1, we assume that βe0 = 0, βi0 = 0.01. 

The major difficulty in the numerical simulations of this problem involves 
the necessity of resolving small spatial scales near the CSW front. 
According to the 1D simulations in Section 4.1, the spatial mesh Δx of the 
grid used to compute average plasma variables (density, velocity, 

temperature, etc.) should meet the condition Δ x ≤ 0.5a
u

 (for the units 

adopted). For the 2D simulations, this condition proves to be too 
cumbersome, so we did not adhere to it at all times, especially for CSW 
with high Mach numbers. 2D simulations with different meshes show that 
small departures from it do not lead to a considerable change in the results. 
That appears to be because CSW fronts in the 2D case are usually inclined 
with respect to the incident flow, and the effective velocity of the plasma 
flow onto the front proves to be smaller than MA. 

4.3.3. Simulation Results 

Numerical simulations have shown that 2D effects are negligible for CSWs 
with u = 1, MA≅ 2, which means that one can use 1D simulation results for 
CSWs with subcritical Mach numbers. 

Two-dimensional effects become more pronounced starting with u = 3. That 
is illustrated in Fig. 4.6, which shows 2D reliefs of the magnetic field 
component βz and plasma density n at the time t = 15, and Fig. 4.7, which 
shows the x-profiles of the following parameters: the z-averaged magnetic 
field component βz and plasma density, their maximum and minimum 
values along the z-axis, and the maximum values of the magnetic field 
components Bx,y along the z-axis (in our problem setup, these components 
are odd functions of z, and their maxima coincide in absolute value with 
their minima) for the same time. The results illustrated in Figs. 4.6 and 4.7 
were obtained in the simulation performed with z0 = 5, with the spatial steps 
of the mesh being Δx = 0.05 and Δz = 0.1. Figures 4.6−4.7 show that the 
magnetic field oscillations excited downstream of the CSW front are 
characterized by amplitudes δBx ~ δBy ~ 0.2, and the oscillations of δBz 
along the x-direction have approximately the same wavelength as those in 
the 1D case and a somewhat smaller amplitude. 
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Fig. 4.7. The x-profiles of the maximum values (along the z-axis) of the magnetic 
field components Bx,y, the maximum, minimum, and averaged values (along the 
z-axis) of magnetic field component Bz, and plasma density n for a CSW with u = 3 
at the time t = 15. 

Fig. 4.6. Reliefs of the 
magnetic field component 
Bz and plasma density n for 
a CSW with u =3 at the 
time t =15. 
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The amplitude distribution of the magnetic field oscillation modes 
downstream of the front as functions of the harmonic number m (reflecting 
dependence on z of the form exp(2πimz / z0) is depicted in Fig. 4.8a and 
shows that excited downstream of the front are, primarily, the first three 
harmonics of Bx, By oscillations with characteristic wave numbers of k ~ 1, 
which is in rough agreement with the results of quasi-linear approach of 
Section 4.2. The characteristic mode amplitudes of oscillations of different 
harmonics in the x and y directions differ by no more than a factor of two. In 
this sense, there is isotropy for oscillations in these directions downstream of 
the front. 

a)      b)

Fig. 4.8. Squared amplitudes of the modes of the magnetic field oscillations down-
stream of the front for CSWs with u = 3 (a) and u = 6 (b) at the time t =15. Solid, 
dashed, and dotted curves show the squared amplitudes of Bx, By, and Bz, respectively. 

The ion distributions in the phase planes (x, νx) and (x, ny) of Fig. 4.9 have 
an oscillatory structure and show the presence of ions reflected from the 
front. The ion distribution in the phase plane x, nz indicates a trend of 
broadening with distance from the front⎯the process of noise-induced 
isotropization of the distribution function discussed in Section 4.2. On the 
whole, however, the 2D wave propagation pattern in Figs. 4.6−4.9 for u = 3 
is qualitatively close to the 1D pattern, and for this supercritical CSW the 
reflected ions, as with the 1D simulations, are manifested both in the phase 
planes and on the graphs of the magnetic field Bz(x) and density n(x) 
profiles in the form of the foot and the overshoot. The 2D simulations, as 
with the 1D simulations, show the unsteady, pulsating nature of wave 
propagation. 
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Fig. 4.9. Ion distribution in the phase planes (x, νx), (x, νy), and (x, νz for a CSW 
with u = 3 at the time t = 15. 

In the case of a CSW with u = 6, the 2D effects become substantial. The 
reliefs of the magnetic field component Bz and plasma density (Fig. 4.10) 
from the simulations with z0=10.5, Δx =0.06, and ΔZ = 0.3 illustrate an 
essentially 2D CSW structure, which is particularly distorted in the front 
region and is similar to the wave structure calculated by Thomas [4.5] for 
MA ~13, βeo = 4, βi0 = 0.5 and zero plasma resistivity. The profiles of the 
maximum, minimum and average values for the magnetic field component Bk 
and plasma density along the z-axis in Fig. 4.11 show that the magnetic field 
oscillations excited at the CSW front have characteristic amplitudes of 
δBx ~ δBy ~ 3 and somewhat higher values of δBz, δn, (which is related to the 
z-nonuniformity of the density and Bz overshoot, which forms when the 
incident ion flow is reflected from the front, and to the distortion of the shape 
of the CSW front). Those oscillations are dampened downstream of the front 
and have a relatively small value of δBx ~ δBy ~ δBz ~ 0.8. Figures 4.10−4.11 
show the damping of oscillations with distance from the front. 
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Fig. 4.10. Reliefs of the magnetic field component Bz and plasma density n for a 
CSW with u = 6 at the time t = 15. 

Fig. 4.11. The x-profiles of the maximum values (along the z-axis) of the magnetic 
field components Bx, y and the maximum, minimum, and averaged values (along the 
z-axis) of the magnetic field component Bz and plasma density n for a CSW with 
u = 6 at the time t =15. 
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Figure 4.8b, which depicts the distribution of the modes of the magnetic 
field oscillations downstream of the front as functions of the harmonic along 
z, shows that the characteristic wave numbers of oscillations downstream, in 
this case k ~ 0.9, become somewhat smaller than those in the case of a CSW 
with u = 3, and similarly to the case of u = 3, there is isotropy for the 
oscillations of Bx, By. 

The ion distributions in the phase planes (x, νx) and (x, νy) for u = 6 
(Fig. 4.12) are seen to be more smeared than in the 1D case (Fig. 4.3) and 
when u = 3 (Fig. 4.9), and the reflected ion flows become less distinct as 
distance from the front increases. This is attributed to the larger role of the 
two-dimensionality in this case than in the case of u =3 and the loss of 
coherence for regions with different coordinates z. The ion distribution in 
the phase plane (x, νz) roughly maintains its width with increasing distance 
from the front (i.e., the ions acquire their velocities νz near the front and 
more or less maintain them at greater distances). 

Fig. 4.12. Ion distribution in the phase planes (x, νx), (x, νy), and (x, νz) for a CSW 
with u = 6 at the time u =15. 
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The presence/absence of ions reflected from the shock front is also 
established by the IDFs downstream of the front, which are shown in 
Fig. 4.13 for the two CSWs under discussion at the time t = 15. To eliminate 
the effect of the zones near the piston and the shock front, the distribution 
function was calculated for the region x1 = 0.1xF < x < 0.9xF = x2, where xF 
is the CSW front coordinate. Since the Larmor gyration results in the 
equalization of the velocity components νx and νy, the figure depicts the 
IDFs with respect to the total velocity, f (ν), and modulus νz, such that 
f (ν)dν and f (nz)dνz are equal to the proportions represented by the ions in 
the interval of velocities dν and d|νz|. Along with the IDFs, Fig. 4.13 shows 
the functions ν2 f (ν) and vz

2 f (vz ) , which represent the velocity distribution 
of the ion kinetic energy. One can see from Fig. 4.13 that, as with the 1D 
case (Fig. 4.4), the ions that have been reflected from the front have very 
high velocities, and, although the proportion represented by such ions is 
small, they make the principal contribution to the thermal energy of ions 
downstream of the front. By comparison with the 1D case, however, for a 
CSW with u = 6, the peak of the function ν2 f (ν), which corresponds to the 
reflected particles, is shifted towards smaller velocities v, possibly because 
of the 2D modulation of the CSW front and the corresponding reduction in 
the effective velocity of the plasma flow onto the front. The ion distribution 
over velocities νz shows that the distribution function for a CSW with u = 3 
undergoes almost no isotropization on the time scales under consideration, 
and that isotropization is pronounced only in the range of low velocities 
corresponding to the main (non-reflected) ion flow. For the case of a CSW 
with u = 6, the distribution function shows rather high isotropization, and, as 
the results in Section 4.2 suggest, the rate of the isotropization is higher for 
the small velocity range.  

The principal simulation results characterizing the plasma state downstream 
of the CSW front are summarized in Table 4.2, which shows the following 
quantities: 

the computed Alfven-Mach number defined as MA = xF / t + u, where xF is 
the shock front coordinate at t = 15; 

the average magnetic field B z  downstream of the shock front (in the region 
x1 < x < x2) or compression ratio downstream of the front; fractions of the 
internal energy downstream of the shock front for different degrees of 
freedom: thermal energy of the electron component We, the ion thermal 
energy Wi⊥  for velocity components x, y, the ion thermal energy Wiz for 
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velocity component z, and the energy contained in the magnetic field 

oscillations downstream of the front WB ~
x1

x2
∫ B 2

2
−
B z
2

2

#

$

%
%

&

'

(
(
d x  ; 

the ion velocity νm νm  corresponding to the median kinetic energy (the 
velocity that bisects the area under the curve ν2 f (ν)); the ratio of squared 
median velocity νm to the average squared thermal velocity of ions νTi

2 . 

Fig. 4.13. Ion distribution f (ν) over total velocity and the velocity distribution ν2 f 
(ν) of the ion kinetic energy (curves 2), and distributions f (νz) and vz

2 f (vz ) over 
the modulus νz (curves 1) downstream of the CSW front for the incident plasma 
flow velocities u =3 and u =6.

     Table 4.2. Plasma State Downstream of Collisional Shockwave (CSW). 

u MA
 Bz  We (%) Wi⊥ (%)  Wiz (%)  WB (%) νm

 
νm
2 /νTi

2  

3 4.36 3.18 75.4 22.4 1.9 0.3 7.2 29 
6 8.17 3.72 51.3 35.5 12.5 0.7 11 7.3 

 

The comparison of the data in Table 4.2 against the 1D simulation results 
presented in Table 4.1 shows that the 2D simulation for u = 3 yields nearly 
the same values for all the global plasma characteristics downstream of the 
front as does the 1D simulation. The results of the 1D and 2D simulations 
for u = 6, however, are considerably different. In the 2D simulations, the 
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values of MA and B z  are close to the values determined by the Hugoniot 
with γ = 5/3, which is a result of the considerable isotropization of the IDF 
(the proportion of energy contained in the z component of velocity Wiz 
begins to be comparable with the proportions of energy in the x and y 
components of Wi⊥ /2). As with the 1D simulations, the fraction accounted 
for by ion heating in the thermal energy of plasma equals about one-half for 
u = 6. As with the 1D simulations, the proportion represented by the 
magnetic field oscillations WB in internal plasma energy turns out to be 
small for any u, despite the excitation of oscillations downstream of the 
front. And again, as with the 1D simulations, the ion spectrum for 
supercritical CSWs is rich with “superthermal" particles, which is shown by 
the ratio νm

2 /νTi
2 , although the median velocity νm=11 for u = 6 is somewhat 

lower than in the 1D case, where it was νm =13. 

CONCLUSION 

The role of 2D effects in the CSW structure is not particularly substantive for 
MA < 5, and one can use 1D simulation results for such CSW (Section 4.1). 
For higher Mach numbers, the onset of instabilities and the 2D effects in the 
(x, z) plane play a very important role, especially in the vicinity of the CSW 
front, where large density and magnetic-field perturbations occur and 
magnetic-field components x and y are generated with an amplitude 
comparable to the perturbations of Bz. For large Mach numbers, the 2D effects 
cause isotropization of the IDF downstream of the CSW front and a decrease 
in the energy of the ions that have been reflected from the front. As with the 
1D case, heating of the ion component is governed primarily by the ions that 
are reflected from the shock front and whose velocities downstream of the 
front are much higher than the ion “thermal” velocities. 

4.4. Three-Dimensional Modeling 

As shown by the results of three-dimensional modeling of CSWs with high 
Mach numbers (and with some additional restrictions, e.g., with the 
exclusion of any accounting of plasma electrical resistivity) [4.5], the 
presence of a third dimension introduces no fundamentally new physics; the 
simulation results are qualitatively and quantitatively close to those of the 
2D simulations. In the 3D case, as with the 2D case, the instabilities 
developing downstream of the front leads to the equalization of the 
anisotropy of the ion temperature, which initially developed as a result of 
ion reflection from the front. We can hope that waiving the restrictions 
adopted by Thomas [4.5] would not change the conclusion on the 
qualitative and quantitative closeness of the 2D and 3D simulation results 
and that the 2D simulation results are applicable in the CSW description. 
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4.5. CSWs with Two Ion Species  

In a multi-component plasma, where ions of different species have different 
charge-to-mass ratios zi /mi, those ions, moving in the same fields, will 
acquire different velocities, and a multi-velocity flow forms downstream of 
the front. Garanin examined a CSW in plasma with two ion species, zero 
resistance, and allowance for electron dispersion [4.18]. With a more 
realistic assumption of the presence of anomalous resistivity and zero 
electron dispersion, we can study such CSWs using numerical simulations 
in a hybrid model, as well as consider the question of whether a stationary 
solution can exist downstream of the resistive front where ions of different 
species gyrate in self-consistent fields. The case of small Mach numbers is 
of most interest for a plasma with several ion species, since at high Mach 
numbers a considerable portion of ions is reflected from the front, and the 
presence of several ion species should not change the general picture 
qualitatively. Since 2D effects do not exert much influence on CSWs with 
fairly small Mach numbers (as shown in Section 4.3), we will study a CSW 
with several ion types within a 1D setup.  

4.5.1. Solution of Stationary Problem

A subcritical CSW in aninitially cold plasma with a single ion species is a 
resistive front (with the influence of some effective electron thermal 
conductivity). Downstream of the front, there is plasma with heated 
electrons and weakly heated ions, since the Joule heat for anomalous 
resistivity goes primarily to the heating of the electrons. The critical Alfven-
Mach number for a purely resistive wave (for the electron adiabatic index 
γ = 5/3) is M* = 2.76 (we will designate the Alfven-Mach numbers in this 
subsection by M), and when the electron thermal conductivity is taken into 
account, it is equal to M** = 3.46 (see, for example, [4.19]). 

We will consider the stationary structure of subcritical CSWs in plasma 
containing two ion species [4.7]. Downstream of the resistive front, those 
ions gyrate around each other. The multi-velocity flow that forms in such a 
solution should be unstable against stream instabilities; numerical 
simulations of CSWs in Section 4.5.2, however, show that such a solution 
lives for a long time. Important in that context is the question of the decay 
channels of such a solution and, accordingly, the final energy dissipation 
channels downstream of the front, i.e., the relative heating of the electron 
and ion components downstream of the front. 

We will consider the structure of a transversal CSW in the rest frame of the 
shock front. The magnetic field is directed, as usual, along the z-axis, and 
the wave propagates along the x-axis. The set of equations describing the 
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structure of a stationary CSW in plasma with two ion species with the initial 
relative concentrations α1 and α2, includes the Maxwell equations  

j
σ
=
c
4πσ

∂B
∂ x

=
vex B
c

− E y , (4.5.1)

E y = const=M
cA
c
B0  ; 

the continuity equations for the ion components 

n1v1x = const=α1McA n0  (4.5.2)

n2v2x = const=α2 McA n0  ; (4.5.3)

the continuity equation for the electron component, which, when the quasi-
neutrality condition n n ne = +1 2  is taken into account, can be written in the 
form:  

(n1 + n2 )vex =McA n0  ; (4.5.4)

the equations of motion for the ion components, 

mi vix
d vix
d x

= e Ex +
viy
c
B

!

"
##

$

%
&&  , (4.5.5)

mi vix
d viy
d x

= e E y −
vix
c
B

"

#
$

%

&
'−e j

σ
 ; (4.5.6)

the equation of motion for the electron component, 

−e ne E x +
ve y
c
B

"

#
$$

%

&
''−

∂ pe
∂x

= 0  , (4.5.7)

where 

ne vey = n1v1 y + n2v2 y −
j
e

 ; 

and the equation for the electron energy

∂
∂ x

−
3
2
ve x pe + χ

∂Te
∂ x

"

#
$

%

&
'− pe

∂vex
∂ x

+
j 2

σ
= 0  . 
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In these equations, j is the current density, σ is the conductivity, B and 

E  

are the magnetic and electric fields, ve  and ne are the electron velocity and 

electron density, vi  and ni are the velocity and density of the ions of the 
i-th species, pe and Te are the electron pressure and electron temperature, χ 
is the electron thermal conductivity, n0 and B0 are the initial density and 
initial magnetic field, M is the Alfven-Mach number, and cA is the initial 
Alfven velocity; it is assumed that for the electron gas γ = 5/3. Using the 
above basic equations, we can readily obtain the momentum and energy 
conservation laws:  

 
m1n1v1x

2 +m2 n2v2x
2 + pe +

B 2

8π
= M2 +

1
2

!

"
#

$

%
&
B0
2

4π
 , (4.5.8) 

 m1n1v1x v1 y +m2 n2v2x v2 y = 0  , (4.5.9) 

1
2
m1n1v1x (v1x

2 +v1 y
2 )+ 1

2
m2 n2v2x (v2x

2 +v2 y
2 )+ 5

2
pe ve − χ

d Te
d x

+
c
4π
E y B

     
=M 1+M

2

2

!

"
#

$

%
&cA

B0
2

4π
 . (4.5.10) 

For M ~ 1 and m1 ~ m2, the characteristic spatial scale corresponding to the 

ion Larmor gyration is ~ cA
Ωi

~ c
ω pi

. On the other hand, according to the 

estimates given in Section 4.1 for the anomalous resistivity (and the 
corresponding electron thermal conductivity χ), the width of the CSW 

resistive front is much smaller than c
ω pi

. This allows us to assume that a 

shock wave consists of a narrow resistive front where the ion gyration can 
be ignored and νiy = 0, and of a subsequent structure where, over many 
periods of the ion gyration, the plasma resistivity and the heat conduction 
can be disregarded.  

We will use the same dimensionless quantities as before: as the normalizing 
factors, we use density n0, magnetic field B0, velocity cA, and mean ion mass
m = α1 m1 + α2 m2. We express the time and length in units of the inverse 
initial ion gyrofrequency and of c / ωpi, respectively (here, the ion 
gyrofrequency and the initial plasma frequency ωpi are both expressed in 
terms of the mean ion mass). Using the condition of the magnetic field 
frozen into the electron component, which follows from disregarding the 
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resistance in (4.5.1), eliminating Ex by means of the equation (4.5.7), and 

disregarding the heat flux −χ
∂Te
∂ x

 in the energy conservation law (4.5.10), 

we can write the equations (4.5.1−4.5.6) and (4.5.8−4.5.10), which 
determine the CSW structure downstream of the resistive front, as follows: 

n1 + n2 = B , (4.5.11)

n1u1x = α1M , (4.5.12)

n2u2x = α2M , (4.5.13)

Buex = M , (4.5.14)

mi uix
d uix
d x

= −
d B
d x

−
1
B
d p
d x

+ (uiy −u y )B  , (4.5.15)

mi uix
d uiy
d x

= −(uix −uex )B  , (4.5.16)

m1n1u1x
2 +m2 n2 u2x

2 + pe +
B 2

2
=M2 +

1
2

 , (4.5.17)

α1m1u1 y +α2m2 u2 y = 0  , (4.5.18)

M
2
α1m1 (u1x

2 +u1 y
2 )+M

2
α2m2 (u2x

2 +u2 y
2 )+ 5

2
pe ue +MB =

M3

2
+M , (4.5.19)

where u y B = n1u1 y + n2 u2 y (we denote the dimensionless velocities by the 
letter u and keep the above notations for the remaining quantities). 

The plasma state immediately downstream of the resistive front can be 
determined from the condition uiy = 0, equations (4.5.7−4.5.14, 4.5.17, 4.5.19), 
and the condition 

m2u2
2 −m1u1

2 =M2 (m2 −m1)  , 

which follows from (4.5.5) when νiy is disregarded. Using this initial plasma 
state as a boundary condition, we can obtain the CSW structure downstream 
of the resistive front by integrating the equations (4.5.11-4.5.19) and taking 
into account the fact that the pressure changes adiabatically downstream of 
the resistive front ( pe ~ B

γ ). It is clear a priori that the wave structure will 
be periodic, since all of the quantities are determined from the conservation 
laws as functions of only one parameter (e.g., u1y); and correspond to the 
above boundary plasma state at one of the points, where u1y = 0. Integrating 
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the equation (4.5.16), divided by uix, we obtain the averaged density of each 
ion component (over the period of the wave structure), ni =αi B , which 
implies that there will be no separation of different ion species in the wave.  

In describing the ion motion downstream of the resistive front, we assume 
that the ion temperature is zero. It is of interest to consider what will happen 
with the ions whose energy is slightly different from the energy of the main 
stream. Linearizing the equations of motion (4.5.15−4.5.16), we obtain, for 
the purposes of describing the ions, a system of two first-order linear 
equations with periodic coefficients. This system can be reduced to the 
equation for small oscillations with periodically varying parameters. 
Depending on conditions, these equations may have either solutions with a 
nonincreasing amplitude or increasing solutions (the parametric resonance) 
[4.20]. In the first case we can determine how much, on average, the 
“temperature” (i.e., the energy spread) grows beyond the resistive front for 
each of the streams. The second case corresponds to the onset of an 
instability, and the increment of this instability can be determined. 

Let us consider a plasma with two ion species whose masses differ by a 
factor of 1.5, m1 = 0.8 and m2 = 1.2, and whose initial concentrations are the 
same α1 = α2 = 0.5 (e.g., a DT plasma). Our calculations show that, in such 
a plasma, the critical Alfven-Mach number for a purely resistive wave is 
M* = 2.637 and, with allowance for the electron heat conduction, it is equal 
to M** = 3.128.

Figures 4.14 and 4.15 show the profiles of the ion densities, magnetic field, 
and ion velocitiesm uix and uiy obtained by integrating the equations 
(4.5.11-19) numerically for CSWs with M = 2 and M = M** = 3.13. We can 
see that the ion densities and velocities uix  experience large-amplitude 
oscillations, whereas the amplitude of the magnetic filed oscillations is small. 
It is noteworthy that the oscillation amplitudes of the density and velocity ux  
of the heavier ion component exceed those of the lighter component, although 
intuitively it would seem more difficult to swing the heavier mass. This 
effect, however, can be explained if we consider that, owing to the 
momentum conservation law, the heavier component exerts more of an effect 
on the magnetic field, enhancing the field in the regions of its low velocities 
uix and, accordingly, its higher densities. But enhancing the field requires 
increasing the density of both components, thereby increasing the oscillation 
amplitude of the heavier component and reducing that of the lighter one.  
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Fig. 4.14. CSW with M = 2: (a) profiles of the ion densities n1 and n2 and magnetic 
field B(x), (b) profiles of the ion (u1x and u2x) and electron (uex) velocities, and 
(c) profiles of the ion velocities u1y and u2y. 
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Fig. 4.15. CSW with M = 3.13: (a) profiles of the ion densities n1 and n2 and 
magnetic field B(x), (b) profiles of the ion (u1x and u2x) and electron (uex) velocities, 
and (c) profiles of the ion velocities u1y and u2y. 

(a) 

(b)  

(с) 
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A study of the behavior of particles whose velocities differ slightly from the 
velocity of the main stream shows that, at small Alfven-Mach numbers M,  
their motion is stable. As M increases, the heavier ions first, and then the 
lighter ions, enter into parametric resonance with the wave. The critical 
Alfven-Mach numbers of these transitions are M2* = 2.278 and M1* = 2.605 
for the heavier and lighter ions, respectively. The deviation δux of the 
velocities of the both ion species from the velocities of the two main 
streams, as a function of the x coordinate for both stable ion motion and 
parametric resonance, is illustrated by Fig. 4.16 for the Alfven-Mach 
number M = 2.5, which is subcritical for the lighter ions and supercritical 
for the heavier ones. 

Fig. 4.16. Deviations δuix of the ion velocities from the velocities of the two main 
streams for lighter and heavier ion components for a CSW with M = 2.5. 
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Table 4.3 gives some of the calculated characteristics of the plasma state 
downstream of the CSW front, as functions of Alfven-Mach number: 

• the Alfven-Mach number M; 

• the oscillation period, Xp; 

• the mean magnetic field B downstream of the wave front;  

• the distribution of the internal plasma energy downstream of the wave 
front in terms of different degrees of freedom: the thermal energy of 
the electron component We, the mean kinetic energies Wix and Wiy of 
the ion species in the x and y directions relative to the mean plasma 
velocity downstream of the front, and the energy 

WB ~ ∫
B 2

2
−
B1
2

2

#

$
%%

&

'
((d x  of the magnetic field oscillations 

downstream of the front;  

• the amplification factors ki of the temperatures of ion components in 
the case of stable motion of perturbed particles (M < Mi) or 
increments γ i  (per unit of length) for parametric resonance ( M > Mi). 

  Table 4.3. Plasma State Downstream of CSW as Function of M. 

M Xp
 B (We %) W1x (%) (W2x %) W1Y(%) W2y(%) WB(%) k1 /γ1 k2 / γ2 

1.5 3.7 1.61 77.5 2.5 8.6 6.2 4.2 1.0 3 2.8 

2 3.0 2.10 83.5 2.5 5.5 4.9 3.2 0.4 5.9 7/0 

2.5 2.9 2.47 85.7 2.4 4.4 4.4 2.9 0.2 9.7/0 0.19 

2.64 2.8 2.56     86 2.3 4.3 4.3 2.9 0.2 0.08 0.24 

3 2.9 2.76 86.8 2.2 3.9 4.1 2.8 0.2 0.26 0.32 

3.13 2.9 2.83 87.1 2.2 3.8 4.1 2.7 0.1 0.28 0.33 

 

We should expect that as a result of the development of downstream instabilities 
and of dissipation, which leads to a homogeneous plasma state, the energy 
of the ion components will remain in the ions. Therefore, we can ascertain 
the final ratio of electron heating to ion heating in the CSW from the ratio of 
We to Wi. Table 4.3 shows that, for the Alfven-Mach numbers under 
consideration, the fraction accounted for by electron heating is the dominant 
fraction and even increases somewhat with M. 
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4.5.2. Results of One-Dimensional Simulations in the Hybrid Model 

For 1D simulation of CSWs with two ion species, we used the same 
physical model and problem formulation as in Section 4.1, although, of 
course, the specific mass for each species was used in the equations of 
motion for the ions (4.1.1–4.1.2). The value of the anomalous resistivity, a, 
and the parameter α, which determines the fraction of the Joule heat spent 
on the ion heating, were the same. As in Section 4.5.2, we considered CSWs 
in plasma consisting of two ion species that differed in mass by a factor of 
1.5 and had the same initial concentrations.  

Figures 4.17 and 4.18 show the ion distribution in the x, νx and x, νy phase 
planes and the magnetic-field and density profiles of both ion components at 
t = 10 for u = 1 and u = 3. 

 
Fig. 4.17. The distributions of ions in the x, νx and x, νy phase planes and the 
magnetic-field and ion density profiles for CSWs with two ion species with identical 
initial concentrations and a mass ratio of 1/1.5 for an incident plasma velocity of 
u =1 at t =10. On the graphs for the distribution of ions in the phase planes: 
left distribution of heavy ions; right, distribution of light ions. On the graph of the 
magnetic-field and density profiles: the dashed line represents the magnetic field 
B(x); the solid line represents the density of the heavy ions; the dotted line 
represents the density of the light ions. 
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Fig 4.18. The distributions of ions in the x, νx and x, νy phase planes and the 
magnetic-field and ion density profiles for CSWs with two ion species with identical 
initial concentrations and a mass ratio of 1/1.5 for an incident plasma velocity of 
u =3 at t =10. The dashed line represents the magnetic field B(x); the solid line 
represents the density of the heavy ions; the dotted line represents the density of the 
light ions. 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

119 

The functions of the ion velocity distribution downstream of the front for 
these CSWs at t = 10 are shown in Fig. 4.19. 

        (a)  u = 1 (b)  u = 3 

Fig. 4.19. Ion velocity distribution functions f (ν) and the velocity distribution of the 
ion kinetic energy ν2 f (ν), downstream of the CSW front, with two ion species with 
identical initial concentrations and a mass ratio of 1/1.5 for an incident plasma 
velocity of (a) u =1 and (b) u =3. The solid lines represent heavy ions, and the 
dashed lines represent light ions. 

The last two lines of Table 4.1 present the basic results of simulations of 
CSWs with two ion species, and νy was determined for the lighter ions, 
which are more readily reflected from the spikes of the magnetic field.  

Figure 4.17, for u = 1, shows that, in the subcritical regime, with two ion 
species, there are, just as in the problem with a single ion species, no 
reflected ions, and the CSW has a stationary structure. However, with ions 
of different species, the CSW pattern manifests substantive qualitative 
peculiarities. At the resistive front, different components that have different 
masses, when moving in the same field, acquire different velocities νx. As a 
result, in accordance with the stationary solution of Section 4.5.1, Larmor 
gyration of ions of different species downstream of the resistive front begins 
around a common center of mass, and a stationary, two-stream movement 
forms within the system of the front. Observed downstream of the wave 
front is a periodic structure with large periodic oscillations of the densities 
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of ions of different species and with the magnetic-field oscillations that are 
more noticeable than those in Fig. 4.1. The presence of the two-stream 
movement downstream results in a considerable increase in the ion-heating 
fraction by comparison with the case of one ion species, as is seen from data 
presented in the table. From Fig. 4.19, we see that there are no superthermal 
particles in the ion spectra, and that Fig. 4.19 and Table 4.1 show that the 
heating of the light ions and that of the heavy ions are of the same order.   

Figure 4.18 shows the reflection of ions at the front for supercritical CSWs 
(u = 3), and only the lighter ions are reflected from the front; whereas all the 
heavy ions passed through the CSW front are inside a diffuse beam in the 
phase plane. Figure 4.19 also shows the presence of a large fraction of the 
superthermal ions (in which most of the energy is contained) in the light 
component. As is shown in Table 4.1, the fraction of the ion heating is more 
than twice as large it is in the case of a single ion species and is about a half 
of the total plasma heating downstream of the CSW front. 

CONCLUSION 

In a plasma with two ion species a subcritical CSW has, downstream of the 
resistive front, a stationary, periodic structure with two flows corresponding 
to the two ion species. For plasma consisting of the ions that differ in terms of 
the charge-to-mass ratio by a factor of 1.5 and have the same concentrations, 
the critical Alfven-Mach number for a purely resistive wave is M* = 2.637 
and, when accounting for electron heat conduction, M** = 3.128. 

A two-stream CSW at the Alfven-Mach numbers above a certain value is 
unstable because of the onset of the parametric resonance, which leads to a 
thermal spread of the initially cold ions. 

In a supercritical CSW, only the lighter ion species is reflected from the 
front, and the reflection is more intense than in a single-species CSW.

For any type of CSW (subcritical and supercritical), the fraction of ion 
heating is larger than with a plasma with a single ion species. 
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5. HALL EFFECT, DRIFT STREAMS, AND NEAR-
ELECTRODE PLASMA FLOWS 

5.1. Dynamics of Magnetic Field Penetration into Magnetized Plasma 

An important role is played in the dynamics of magnetized plasma 
(ωeτe >> 1) by the Hall effect⎯magnetic flux transport by current. 
Estimations of this effect suggest that, generally speaking, for non-one-
dimensional problems, its influence on magnetic field dynamics should be 
ωeτe-times greater than magnetic diffusion influence. 

For plasma with small characteristic dimensions a << c / ωpi, at small 
characteristic times, t <<ωi

−1 , the ion motion can be disregarded (the case 
of electron magnetic hydrodynamics [5.1]) and, magnetic field dynamics are 
described by equations (4.3.4−4.3.5) and (4.3.2), which in the case of 
motionless ions has the form:  
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( pe is electron pressure). For simplicity, we restrict ourselves to the model 

of isothermal plasma with constant conductivity and pe << B
2 / 8π . In this 

case, the equation for the magnetic field is written as follows:  
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where the first term of the right-hand side describes the magnetic field 
transport by current, and the second term describes the magnetic diffusion. 
For this model, let us consider a 2D problem of magnetic field penetration 
into plasma [5.2]. Problems of this kind for some plasma density 
distributions have been solved analytically with a quasi-one-dimensional 
formulation [5.1] and numerically with a 2D stationary [5.3] formulation.  

The diffusion term in (5.1.2) can be disregarded everywhere except the 
zones with high magnetic-field gradients, that is, magnetic-field jumps. 
Thus, the role of the diffusion term is reduced to, primarily, the spreading of 
magnetic-field jumps. In the zero approximation, the solution with the 
jumps can be built while disregarding the diffusion. In the next 
approximation, the problem of the spreading of the jumps attributed to 
diffusion is simplified by the fact that, near the jumps, it is sufficient to take 
into account just the derivatives in the direction perpendicular to a jump, 
since they make the chief contribution.  
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Now we will show that the problem with a purely azimuthal magnetic field 
and a density depending solely on r and z is, in the zero approximation, 
reduced to a plane problem. In fact, in this case, equation (5.1.2), in the 
absence of the diffusion term, can be written as  
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or, after the substitutions I = rB , ν = nr2 , ξ = ln r , 

 ∂I
∂t

=
∂
∂ξ
I 2

2

"

#
$

%

&
'
∂
∂z

c
4πeν

"

#
$

%

&
'−

∂
∂z
I 2

2

"

#
$

%

&
'
∂
∂ξ

c
4πeν

"

#
$

%

&
'  , 

which is equivalent to the plane case  
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For that reason, we limit ourselves hereinafter to an analysis of a planar 
problem. 

Assume that, at the initial moment, a field B1 > B0 is applied to the boundary 
of plasma with the constant magnetic field B0. We look for the solution of 
the equation (5.1.3) in the form  

B = (B1 − B0 )η(t − f (
r ))+ B0  , 

η =
0 at t − f ( r ) < 0;
1 at t − f ( r ) > 0.
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which can be solved by integration along characteristics. If, we assume that 
f = f (x(t, s), y(t, s)), where s is the coordinate along the plasma boundary, 
and x(t, s), y(t, s), satisfies the equations  
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then (5.4) yields df
dt

=1. Since f = f (x(0, s), y(0, s)) = 0, then f = t. Thus, 

x(t, s), y(t, s), are the coordinates of the jump boundary, and the 2D problem 
for the magnetic field is reduced to a one-dimensional problem for the 
movement of the jump boundary along the density n isolines.  

In this zero approximation, it is also easy to determine the total voltage, U, 
across the jump. Integrating the electric field in equation (5.1) over the jump 
region perpendicular to the current, we find 

U =
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E d
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8πen
 , (5.1.5)

which for B0 = 0 coincides with the results Kingsep et al. and Gordeyev et al. 

[5.1, 5.3] and exceeds the ohmic voltage ~
c (B1 − B0 )

σ
 by a factor of ωeτe. 

Now let us consider how the resistance of the plasma bridge between two 
metal electrodes varies in this approximation. Such a problem is of interest 
in the analysis of the operation of plasma opening switches [5.3 and 5.4]. 
We take as an example the case in which the bridge is contained between 
two parallel walls, and density n depends solely on the coordinate 
perpendicular to the walls and instantly falls off at the boundaries to which 
magnetic fields B0  and B1  are applied (see Fig. 5.1). We assume that the 
density grows near the walls (the walls themselves in this approximation 
can be considered to be plasma with infinite density). The motion of the 
magnetic-field jump for this example is shown in Fig. 5.1. As for the 

voltage, on the left boundary it is constant and equals 
B1
2 − B0

2

8πenmin
 (nmin is the 

minimum density), while on the right boundary initially it is 
B1
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8πena
 (na is 

the plasma density at the anode interface), which is due to fast magnetic-
field penetration along the plasma-anode interface (∇(1/ n)  is infinite). 
Then, as the jump arrives along the isolines with smaller density, the 
voltage grows. If the maximum gradient 1/ n is realized not on the anode, 
but at an intermediate point, then after the jump arrives along this isoline the 
voltage on the right boundary equals  
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(n1(t) and n2(t) are the densities along whose isolines the jump arrived to the 
right boundary by the time t). With time, n1(t) approaches nmin, and n2(t) 
approaches na, and thus the voltage on the right boundary approach the 
voltage on the left boundary. As a result, a stationary distribution of the 
magnetic field with a jump passing along the density isoline, n = nmin, sets in. 

 
Fig. 5.1. Magnetic-field jump motion in the plasma bridge with the density growing 
towards the walls (A is the anode, K is the cathode). 

A similar qualitative consideration of the problem is also easy to perform 
for any other density distribution. Thus, in the case of plasma bridge 
whose density goes to infinity on the electrodes and to zero at the vacuum 
interface (such density distribution seems to be natural since the 
hydrodynamic motion should lead to the zero plasma density at the 
interface, and the processes of plasma cooling on metal walls should lead 
to the plasma pushing toward the walls), the isolines take the form shown 
in Fig. 5.2, and the distribution of the magnetic field with a jump is set 
along the density isoline⎯the separatrix, which starts from the left 
boundary intersection with the cathode and enters the point of the right 
boundary intersection with the anode, is set. The voltage that sets in here 
(5.1.5) will be determined by this density.  
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Fig. 5.2. Density isolines in the plasma bridge where the plasma density goes to 
infinity on the walls and to zero on the boundaries (A is the anode, K is the 
cathode).  

Note that the total electric resistance of the plasmoid in this approximation 
turns out to be independent of the conductivity, but is determined solely by 
the magnetic field and the density spatial distribution. Therefore, the 
original assumption about the constant plasma conductivity should have no 
influence on this result; it should be true for the real conductivity, which is 
dependent on the coordinates (only if the condition ωeτe>>1 is fulfilled). 
Here, the analogy with the shock wave in hydrodynamics, where the 
viscosity affects the front width only, but does not affect the Hugoniot, is 
appropriate.  

Thus, in the general case of nonhomogeneous plasma, the magnetic field 
evolution in electron magnetic hydrodynamics leads to occurrence of 
discontinuities spread over the width determined by the magnetic diffusion. 
There exist, however, degenerate cases in which the magnetic field in the 
main plasma volume is distributed continuously. Homogeneous plasma can 
serve as such an example for the plane problem. Let us consider the magnetic 
field dynamics in that case. The Hall terms in the equation (5.1.2) for this 
problem equal zero, and the equation (5.1.2) is reduced to ordinary magnetic 
diffusion  

∂B
∂t

=
c2

4πσ
ΔB ≡κ ΔB  . 
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The difference from a common diffusion problem consists in the boundary 
conditions on the metal surface, which follow from the condition that the 
tangent component of the electric field should be equal to zero  

∂B
∂ξ

=
σ B
enc

∂B
∂τ

=ωe τ e
∂B
∂τ

(5.1.6)

( ∂B
∂τ

, ∂B
∂ξ

 are the tangent and the normal magnetic field derivatives). 

Given that ωeτe >> 1, the current lines (magnetic field isolines) enter the 
electrodes at a small angle. After the magnetic field B1 is applied to the 
plasma boundary, there will be diffusive penetration of the magnetic field 

through the boundary as deep as ~ κ t , and rapid propagation of the 

magnetic field along the anode as far as ~ωe τ e κ t . After the wave goes 
out along the anode to the other boundary, we can assume that there is the 
magnetic field B1 on one boundary and on the anode, and the magnetic field 
B0 on the other boundary and on the cathode; the subsequent dynamics are 
determined by the diffusion problem with these boundary conditions. That 
is, for the main plasma volume, there will be slow relaxation with diffusion 
times to the ΔB = 0 state and with discontinuous boundary conditions on the 
intersections of one boundary with the cathode and the other boundary with 
the anode (points of inflow and outflow of magnetic flux). The magnetic 
field distributions in the vicinity of these points are qualitatively similar. Let 
us find, as an example, this distribution in the vicinity of the first boundary 
intersection with the cathode (inflow point). Let this boundary make the 
angle φ0 with the cathode. Since in accordance with (5.1.6) the magnetic 
field should slowly change along the electrode, we look for the solution in 
the form  

B = B1[1–φg(r)]  

(φ is the angle read from the plasma boundary; r is the distance from the 
boundary−cathode intersection; and g(r)  is the slowly changing function) 
which approximately satisfies the Laplace equation ΔB = 0 . Then, using the 
boundary condition (5.1.6) we get  

ln r
r0
=
φ0
χ
[ln(gφ0 )− gφ0 ]  . 
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The constant r0 is determined from the condition, which on the characteristic 

problem dimensions a gφ0 =1−
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, that is 
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coincides with (5.1.5), as expected.  

The qualitative consideration of the magnetic-field dynamics for other cases 
of density distribution (only if the density does not strongly fluctuate on small 
scales, as in Chukbar and Yankov [5.4]) also shows that these dynamics tend 
to generate discontinuities⎯current layers ⎯and voltage (5.1.5) at those 
discontinuities. Thus, if the Hall effect is taken into account in magnetized 
plasma, the plasma’s resistance increases by a factor of ~ωeτe. 

5.2. Near-Anode Detached Magnetized Plasma Flows 

The equations of magnetic hydrodynamics (3.3.1−3.3.2, 3.3.5) are widely 
used for the calculation of plasma flows in a magnetic field. In the case of 
ideal magnetic hydrodynamics, the equations can be written as follows: 

∂ρ
∂t

+divρ v = 0

ρ
d v
d t

= −∇ p +[

j ,

B ] / c

 ,  (5.2.1)


E = −[ v ,


B ] / c  , 

When kinetic phenomena are taken into account, additional terms are 
introduced into these equations. Evaluation of different kinetic effects [5.5] 
for flows of magnetized (ωeτ e>> 1) hydrogen plasma with low 
β = 16πnT / B2 in a transverse magnetic field shows that the most significant 
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role should be played by the Hall effect⎯magnetic flow transport by 
current. The influence of the Hall effect on the flow is characterized by the 
parameter c/ωpia (a is the characteristic spatial flow scale); however, as will 
be shown below, in a number of cases it can be considerably larger. 

The study of the role of the Hall effect in plasma flow in a transverse 
magnetic field is the focus of a large number of papers both of a general 
nature [5.6] and with respect to flows in plasma accelerators [5.7−5.10] and 
near-anode flows in plasma focus [5.11]. 

Taking into account the Hall effect is sometimes impossible without taking 
into account the finite plasma conductivity because otherwise, as is shown 
in Section 5.1, it can lead to the formation of jumps, infinitely fast plasma 
detachment from the anode (see below) and other paradoxical events. Since 
plasma conductivity depends on the temperature, heat transport must be 
calculated as well. As a result, the problem of flow calculation becomes 
rather complex, because the presence of the Hall effect makes it at least a 
2D problem, and the difficulties of calculating magnetothermal processes 
are added to the difficulties of the 2D calculations. 

Therefore, in this Section we limit our discussion to an isothermal plasma 
model with constant conductivity, which will allow us to perform a 
qualitative or semi-quantitative analysis of some flows. Taking into account 
the Hall effect and the finite conductivity leads to the generalized Ohm law 
(5.1.1), which, when the ion motion is taken into account, is written as 
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and to the following equation for the magnetic field, which follows from the 
Maxwell equations (4.3.4), (4.3.5) and (5.2.2)  
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(because the plasma is isotherma, pe = pe(n), the last term in the Ohm law 
(5.2.2) does not contribute to (5.2.3)). 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

131 

For this model, following Garanin and Mamyshev [5.12], we consider 
certain properties of plasma flows driven by a piston⎯magnetic or rigid, 
i.e., we assume that at the initial moment, there is a magnetic-field jump or 
a rigid, ideally conducting, moving wall at the interface of the plasma and a 
transverse magnetic field. 

If the ion motion is not taken into account, the dynamics of the magnetic 
field in magnetized plasma result in an increase in the magnetic field in the 
vicinity of the anode (see Section 5.1). But when the ion motion is taken 
into account, plasma should be driven away from the anode and its density 
decreased down to point of detachment.  

5.2.1. Near-anode plasma flow driven by a magnetic piston 

At the initial moment, we assume the plasma to be homogeneous, n = n0, with 
a constant magnetic field B = B0. The plasma thermal pressure is assumed to 
be proportional to the density p = βB0

2n / 8π n0  and low (β >> 1), and at the 
plasma boundary there is a constant magnetic field B = B1 > B0. We are going 
to seek a stationary solution for the near-anode flow.

Choosing the system of coordinates in which x is perpendicular to the anode 
surface and y is parallel to the surface, and using the dimensionless 
variables x = x4πσcA/c2, y = y4πσcA/c2, h = B/B0, ρ = ρ/ρ0, ux = νx/cA, and uy 
= νy/cA ( cA = B0 / 4π ρ0  ), we can write the system of equations (5.2.1 and 
5.2.3) in the form 

ρ ux
∂ux
∂x

+u y
∂ux
∂ y

"

#
$

%

&
'= −

∂
∂x

h 2

2
+
β
2
ρ

"

#
$

%

&
'  , 

ρ ux
∂u y
∂x

+u y
∂u y
∂ y

"

#
$$

%

&
''= −

∂
∂ y

h 2

2
+
β
2
ρ

"

#
$

%

&
'

∂
∂x
(ρux )+

∂
∂ y
(ρu y ) = 0

 ,  (5.2.4)

 ∂
∂x
(hux )+

∂
∂ y
(hu y ) = Δh +

1
χ

∂
∂x
1
ρ

%

&
'

(

)
*

∂
∂ y
h 2

2

%

&
'

(

)
*−

∂
∂ y
1
ρ

%

&
'

(

)
*

∂
∂x
h 2

2

%

&
'

(

)
*

,
-
.

/.

0
1
.

2.
 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 132 

(χ = e c n0/σ B0 ~ 1 ωeτe << 1). The boundary conditions on the metal 
surface⎯the normal velocity component and the tangential component of 
the electric field are equal to zero⎯in these variables are  
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(r is the fraction of the electron pressure in the total thermal pressure). 

Since the Hall effect leads to rapid movement of the magnetic field to the 
anode (χ << 1), and the thermal pressure is low and cannot hold the plasma 
near the wall for a long time, we should expect motion with a high velocity 
uy >> 1. Then we can assume that uy = D is constant and disregard the y 
derivatives in the term Δh. In this case, we can reduce the problem to a one-
dimensional non-stationary problem by introducing the notation y = Dt, 
after which the system (5.2.4−5.2.5) takes the form 
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d/dt is the Lagrangian derivative, and the subscript x is omitted in the 
velocity ux. The dimensionless quantities χ and D enter the system (5.2.6) 
only in the form of a product. Thus, the solution will depend solely on two 
dimensionless quantities: β  and γ ≡ χD .  
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Now let us analyze the qualitative behavior of the solution for the linearized 
system (5.2.6), i.e., we assume that h ≅1, ρ ≅1 , and u <<1 , which is true 
at the initial stage of the developing solution. The linearization of (5.2.6) 
yields the equations 
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and the boundary conditions 
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We look for the solution for δh = h−1 , δρ = ρ −1 , and u in the form 
proportional to exp(λt − k x) , exponentially attenuating away from the 
front. Then for the dependence k(λ)  we obtain from (5.2.7) the dispersion 
equation 
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which has two positive roots: 
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and we find the coefficients b1 and b2 from the boundary conditions (5.2.8). 
The condition of consistency of the resulting system of equations provides 
the equation for λ:  
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 . (5.2.11) 

 

Taking into account the fact that β is small, we can simplify the formula 
(5.2.11):  

 γ =
(1− r − r λ)
1+λ

βλ / 2(1+λ) +λ / 1+λ  .  (5.2.12) 

For λ >> 1 the equation (5.2.12) yields D ≅ λ / χ . Since in this case the 
main contribution to the magnetic-field derivatives in (5.2.8) is provided by 
the term 2b  from (5.2.10), for which in this limit k2 ≅ λ , this corresponds 
to the generation of shock wave propagating perpendicularly to the current 
flowing into the anode at a small angle χ ≅ λ / k2D ≅ λ / D .  

The solution (5.2.10) is applicable as long as δρ << 1. To determine the 
qualitative dependence of δh1 ≡ h1 −1≡ B1 / B0 −1  on γ and β, we can 
assume that this solution is true up to δρ = – 1 (ρ = 0). Using this condition, 
the condition that the velocity equals zero at the boundary (5.2.8), and 
equation (5.2.9), we find that 

δh1 =
β
2
+ λβ / 2 . (5.2.13)

The formulas (5.2.12−5.2.13) provide the connection between the wave 
velocity and the magnetic-field jump. For δh1 >> β it follows that 
λ = 2δh1

2 / β , and from (5.2.12) it follows that the wave velocity 

D = λ / χ 1+λ should be high because of both the smallness of χ and the 
smallness of β. 
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Thus, on large scales (by comparison with that of the wave structure), a 
narrow vacuum wedge that detaches the plasma is formed. The connection 
between the wedge apical angle (δh1 – β/2) and the motion velocity D is 
determined by solving the nonlinear system of equations (5.2.6), which has 
weak initial perturbations (5.2.10). Such a nonlinear problem has been 
solved numerically for γ = 0.74, β = 0.2, and r = 0.5. The flow lines of the 
obtained solution (the plasma particle trajectories) in the t, x variables are 
shown in Fig. 5.3. As a result of the numerical solution it was determined 
that δh1 = 0.27, while the formulae (5.2.12−5.2.13) yield for these 
parameters δh1 = 0.43. 

 
Fig. 5.3. Current flow lines of the detaching near-anode flow caused by the 
magnetic piston. 

Note that the supersonic propagation of the shock wave moving along the 
channel with low density had also been discovered in pure hydrodynamics 
[5.13]. The difference here in the solution with the motion along the anode 
consists in the fact that the wave itself makes the channel as it delivers the 
magnetic flux to the anode. 

5.2.2. Near-anode flow driven by a rigid, ideally conducting piston 

When a rigid, ideally conducting piston (high-density plasma can be such 
piston) moves in a plasma, the formation of a plasma-detaching vacuum 
wedge moving at a high velocity (higher than that of the shock wave created 
by the piston) is impossible, because, unlike with the preceding problem, 
there is no unlimited source of magnetic flux. Indeed, the magnetic flux 
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contained within the vacuum wedge should grow ~t2. However, the zone 
encompassed by the hydrodynamic motion and from which the magnetic 
flux may derive (the zone downstream of the shock wave beyond the near-
anode area) grows ~t. Therefore, in this problem, the stationary motion of 
the vacuum wedge growing unrestrictedly is impossible; the wedge must 
collapse for large times near the anode, and an MHD shock wave will be 
moving. That shock wave has, however, a specific near-anode structure in 
which the detaching magnetic pressure generates a vacuum region. 

We perform the evaluations of the characteristic parameters of the formation of 
a shock wave with a low Mach number D = 1 + ε, ε << 1. As before, we 
assume that the plasma thermal pressure is low (β << 1) and that the plasma is 
initially homogeneous. The formulae (5.2.12−5.2.13) show that applying a 
fairly small magnetic-field differential δh1 is sufficient for the plasma 
detachment. Therefore, we can suppose, that the near-anode shock wave 
structure has the form shown in Fig. 5.4: initially there is a tearing wedge with 
δh1 << ε (in this sense, the shock wave’s Mach number should not be too close 
to 1); then the vacuum region collapses. Thus, the entire stationary problem 
splits into two fragments with different characteristic scales, which should be 
connected with each other: the vacuum wedge generation, and the vacuum 
region collapse. 

 
Fig. 5.4. Near-anode shock wave structure (SWF – position of shock wave front,  
V – vacuum region) 
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The dynamics of the vacuum wedge formation are described by the 
equations (5.2.4−5.2.5), in which we cannot now assume uy to be constant. 
In the wave’s frame of reference, when y→∞ , uy → D . For a qualitative 
analysis of the solution, we can use, as before, the linearized system 
(5.2.4−5.2.5), in which ∂u/∂y is excluded from the equation of motion for uy 
and the continuity equation. As with the previous problem, if we take the 
perturbations of the form exp(λy – kx), we can get the equation for λ: 

β
2λ
(1− r )− χ

λ

"

#
$
$

%

&
'
'
] D −1−β / 2−λ +1= 0  . (5.2.14)

As with the derivation of (5.2.13), if we “extend” the solution of the 
linearized equations to δρ = – 1, we find  

δh1 =
r + χ 2 / βλ
2 / β − χ 2 / βλ

 

or, since it is assumed that δh1 << ε << 1, 

δh1 =
r β
2
+ χ β / 2λ  . (5.2.15)

The formulae (5.2.14−5.2.15) yield in parametric form (over λ) the 
dependence of δh1 on D. Here the apical angle of the vacuum wedge is now 
equal to (δh1 −β / 2) 2ε [5.14], and if its length is y0, then its width, which 
is collapsed by the shock wave, equals 

d = y0 (δh1 −β / 2) β / 2λ  . 

The problem of the collapse of the vacuum gap by the shock wave and its 
connection to the problem of the generation of the vacuum wedge [5.12] is 
rather complex, and we will not present its solution here. We will merely 
show the dependence obtained as a result of the solution of this problem:  

d =C ε6.5

χ 2β (δh1 −β / 2)
3

 , (5.2.16) 

where the constant C is determined from the solution of the problem of the 
collapse of the vacuum gap. Formula (5.2.16) provides the vacuum gap 
width if the quantity δh1 is known from the solution (5.2.4−5.2.5) 
(approximately it is (5.2.13)).
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Formation of the near-anode vacuum zone is also possible at the motion of a 
compressing (shockless) wave. The magnetic-field gradients needed for this 
can be estimated as ∂h/∂y ~ ε/y0. 

The considered qualitative features of plasma flows may occur in the MAGO 
chamber, plasma accelerators [5.15 and 5.7], a plasma focus with the 
discharge sliding along the anode [5.16], and other plasma facilities with 
substantial magnetic-field dynamics. Since taking into account the Hall effect 
leads to a distinction between the anode and the cathode, for a number of 
experimental facilities, including the MAGO chamber, it is possible to 
explain the change in their operation when the polarity of the electrodes 
changes. 

5.3. Formation of Electrode Sheaths in Connection with the 
Acceleration of a Magnetized Plasma 

In a facility such as a plasma accelerator, a plasma opening switch, or a dense 
plasma focus, plasma with frozen-in magnetic field moves along electrodes in 
a direction transverse to the magnetic field. A sheath (near-boundary layer) 
forms close to the plasma/surface interface, which can be examined either 
with an MHD approximation if problem distance and time scales are large 
enough or with the kinetic approach if particle collisions over the time and the 
distance scales of interest are rare and the plasma can be considered 
collisionless. 

Within the MHD approach to the examination of near-electrode layers and 
their structure, the problem can be set up as follows. Let plasma with a 
frozen-in magnetic field move along electrodes in a direction transverse to 
the magnetic field. One can then consider a one-dimensional electrode-
sheath problem, in which all quantities depend solely on the coordinate 
perpendicular to the electrode surface and on time. In the problem, one can 
take into account viscous heating of plasma, its cooling due to heat 
conductivity, and other kinetic processes, as well as the effects of plasma 
acceleration and the electric current normal to the electrode, which, thanks 
to the Hall effect, brings the magnetic flux toward the anode and away from 
the cathode. In this case, the plasma mass will build up in the near-cathode 
region and become depleted in the near-anode region. It turns out that the 
MHD approximation is inadequate for describing the situation near the 
anode: in this region, plasma density quickly drops to zero, whereas the 
current remains constant. In order to overcome this difficulty, one should 
incorporate some non-hydrodynamic effects (primarily, electron 
dispersion). 
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For the collisionless kinetic case, some of the ions from the electrode 
sheath, when they collide with the wall, are absorbed by the electrode 
material, and others return to the flow with a loss of momentum and energy.  
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A self-consistent collisionless interaction between reflected ions and those 
in the basic stream results in the ion gyration of the basic stream towards the 
electrode. A specific instability arises, as a result of which development an 
increasing number of ions collide with the wall, which leads to anomalous 
“viscosity” on a scale of the ion Larmor radius. As with the MHD approach, 
one can consider a one-dimensional problem of a near-electrode layer in a 
low-density plasma in which all quantities depend solely on the coordinate 
perpendicular to the electrode surface and solve it in this collisionless case 
with the particle-in-cell (PIC) method. 

5.3.1. MHD Approach 

As mentioned in Section 5.2, the applicability of the MHD approach is, 

generally speaking, determined by the smallness of the parameter ξ ≡ c
ω pi a

 

(a is the characteristic spatial scale of the flow). For ξ << 1, the plasma flow 
can be described by the ideal MHD equations, and the effect of the 
electrodes that bound the plasma region, by the boundary conditions that, in 
the case of the magnetic field that is parallel to the electrodes, amount to the 
ideal sliding condition. Near the electrodes, the plasma flows along the 
electrode surfaces, being accelerated or slowed down by the Lorentz force 
1
c
[

j

B ]  (the plasma is assumed to be cold, β ≡ 8π p

B 2
<<1). Sheaths are 

formed near the electrode surfaces, where viscous plasma heating and 
plasma cooling as a result of heat conductivity take place. An important role 
may be played in the electrode sheaths by the Hall effect, which brings the 
magnetic flux to the anode, thereby causing plasma rarefaction near the 
anode, and takes it away from the cathode, thereby causing plasma 
compression near the cathode. 

Interest in studying electrode sheaths in magnetohydrodynamics is due to 
three things. First, of interest are plasma characteristics in these sheaths and 
how they differ from those of bulk plasma, which can be important for 
diagnostics. Second, the sheath thickness and the mass of the plasma in the 
sheaths can be large enough to affect the operation of many plasma devices 
(for instance, MAGO chamber). Third, there is fundamental interest because 
MHD proves to be inadequate for describing the electrode sheaths, 
particularly for describing the near-anode plasma. As we will show, the 
density of plasma accelerated near the anode rapidly drops to zero, generating 
a vacuum similar to that formed by a shock wave front near the anode 
(Section 5.2). However, if, in the case of a shock wave, times were assumed 
to be long enough for the development of a steady-state two-dimensional 
structure with a current-free vacuum region, in the case of interest to us, when 
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a bulk plasma flow is determined by magnetic hydrodynamics and times are 
not too long, the current is governed by the MHD problem and it should flow 
across the region with zero density in the MHD approximation. The MHD 
approach, therefore, is inadequate in the near-anode region, and 
nonhydrodynamic effects need to be taken into account. 

An attempt to consider near-electrode layers with the approach discussed 
here was made by Garanin [5.17], who presented results corresponding to 
large plasma acceleration distances. That study, however, did not take into 
account such important phenomena as boundary-layer turbulence [5.14] or 
anomalous plasma resistivity stemming from the development of a lower 
hybrid drift instability. In this section, following Garanin [5.18], we will 
incorporate these effects and consider plasma acceleration over shorter 
distances. We will also consider the motion of low-density plasma along the 
electrodes, in which the plasma can become heated to high temperatures, 
thus making it possible to explain neutron generation near the nozzle in the 
MAGO chamber at high anisotropy of neutron energy distribution [5.19]. 

One-dimensional problem. We assume that the electrode sheath thickness 
is small by comparison with the characteristic spatial scales of the full MHD 
problem. Then, we can consider a nonsteady one-dimensional problem in 
which all of the quantities depend solely on the coordinate perpendicular to 
the electrode surface and on time. We assume that, far from the electrodes, 
the plasma is homogeneous, with density n0, temperature T0, a magnetic 
field 


B0  parallel to the electrode surface, and constant current density


j  

perpendicular to the surface. The Lorentz force 1
c
[

j

B ]  causes the 

acceleration of both surface and bulk plasma along the surface. 

Let the coordinate normal to the surface be x, and let the magnetic field be 
directed along the z-axis; then, the electric field and velocity acquired by the 
plasma will be directed along the y-axis. Since the electrode sheath is 
assumed to be rather thin, one can assume that the total pressure has enough 
time to be equalized along x; i.e., 

p+ B
2

8π
= P0  ,  (5.3.1)

where the total pressure P0 depends solely on time (in fact, we are solving 
problems, in which P0 is constant, and density n0, temperature T0 and 
magnetic field B0 experience slight time variations due to the Joule heating 
and thermal expansion). In addition to (5.3.1), the following MHD  
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equations will determine the electrode sheath dynamics: the equation of 
motion for the velocity ν along y, 

 ρ
dv
dt
=
jB
c
−
∂π xy
∂ x

 ,  (5.3.2) 

where πxy is the xy component of the viscous stress tensor, which is equal to 

 π xy = −η
∂v
∂ x

 ;  (5.3.3) 

the equation for the magnetic field 

 ρ
d(B / ρ)
dt

= −c∂E
∂ x

 ,  (5.3.4) 

where the Lagrangian electric field equals 

 E = −RjB− c
4πσ

∂B
∂ x

− N ∂T
∂ x

 ; (5.3.5) 

and the heat-transfer equations for plasma ions  

 3
2
n
dTi
dt

−Ti
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∂qi
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+η
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and plasma electrons 

 3
2
n
dTe
dt

−Te
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dt
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∂qe
∂ x

+
j2
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en
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where 

qi = −κ i
∂Ti
∂ x

, (5.3.8)

 qe = −κe
∂Te
∂ x

+
c
4π
NTeB

∂B
∂ x

− α +
5
2e

"

#
$

%

&
' jTe  .  (5.3.9) 
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Here η is the plasma viscosity; σ is the plasma conductivity; κ1 is the ion 
thermal conductivity; κe is the electron thermal conductivity; and R, N, and 
α describe the Hall and Nernst effects and heat carried by the current, 
respectively. All of these coefficients depend on the degree of plasma 
magnetization. The term Qi accounts for the energy exchange between 
electrons and ions. The formulas for all of these quantities are presented in 
Braginskii [5.20]. 

Note that, for our problem in a magnetized plasma, (ωτ)i >> 1, and the 
plasma viscosity and heat-conductivity spatial scales become, at a certain 
stage, smaller than the ion Larmor radii because of the smallness of the 
viscosity and heat conductivity plasma coefficients. Consequently, the 
MHD approximation and the relevant transport coefficients, strictly 
speaking, are not applicable. For a qualitative description of the resulting 
transport problem in the context of the MHD approach, we incorporated the 
following additional terms into the coefficients η and κi in equations (5.3.3) 
and (5.3.8) for (ωτ)i >> 1: 

ηan =
nTi
8ωi

x
rLi
1− x
rLi

"

#
$$

%

&
''  ,      

 (5.3.10)

κ ian =
nTi
4Miωi

x
rLi
1− x
rLi

"

#
$$

%

&
''  , 

which are nonzero for distances from the electrode surface x smaller than 
the ion Larmor radius rLi (Mi is the mass of an ion). Those terms should 
describe the kinetic ion fluxes that carry the momentum and heat from the 
wall plasma to the wall. 

Since high current velocities u can develop in the wall layer for Te ≤ Ti, a 
lower hybrid drift instability and the associated anomalous resistance can 
develop. We took the effect of that resistance into account by following the 
lead of Davidson and Gladd [5.21] and letting it, for a magnetized plasma, 
be equal to 

1
σ an

=

4π π
2
Mi u
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Ti
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PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 144 

and adding the relevant anomalous contribution to the electron thermal 
conductivity, 

(κe )an =1.5nβe
c2

4πσ an

 . 

MHD instability resulting from high velocity gradients (Section 7.1) may 
develop in the wall layers, resulting in a turbulent boundary layer [5.14]. To 
take those effects into account, we introduced a turbulent diffusion 
coefficient equal to 

 0.1xδv , (5.3.12) 

where δν is characteristic velocity variation in the vicinity of coordinate x. 
We took as well into account the contributions to the viscosity, to the 
magnetic diffusion coefficient, and to the coefficients for electron and ion 
thermal conductivities corresponding to that turbulent diffusion coefficient. 

The initial conditions for a deuterium plasma were chosen to be as follows: 
a spatially constant temperature Ti = Te = T0 = 2 eV=2, zero velocity ν = 0, 
constant magnetic field B = B0 = 105G, and densities n = n0 = 6 ⋅ 1017 cm-3 
(to describe the main plasma flow through the nozzle of the MAGO plasma 
chamber) and n = n0=1.5 ⋅ 1016 cm-3 (to describe the residual plasma flow 
through the nozzle). 

The boundary conditions for equations (5.3.2−5.3.3) are 

 v(x = 0) = 0 ,        ∂v
∂ x
(x =∞) = 0  . 

At the boundary x = 0, the electric field was specified to correspond to 
magnetic diffusion into a copper wall 

 E = − B
c

χCu
π t

 , (5.3.13) 

where χCu is the magnetic diffusion coefficient for copper. At x = ∞, the 
gradients were assumed to be absent, and from (5.3.5) the electric field was 
determined to be equal to 

 EH = − jBR  . (5.3.14) 

The temperatures Ti and Te, at the boundary x = 0 were set to be 

Ti =Te = 0  , 
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and for x =∞ , we assigned 

∂Ti
∂ x

=
∂Te
∂ x

= 0  

in which case, the electron heat flux is equal to 

qe = −αTe j  . 

Consideration of the anode and cathode problems with the use of equations 
(5.3.1−5.314) differs in the sign for j: for the anode, this sign is positive, and 
for the cathode, negative. The value of current j for our one-dimensional 

problems is chosen to be j = c
4π
B
L

, where L = 5 cm; i.e., j = ± 16 kA/cm2, 

which approximately corresponds to the MAGO chamber conditions. 

Cathode sheath. The mass of the plasma, from which the magnetic flux 
emanates and which is pressed against the cathode is determined by the 
relationship 

ndx = | j | t
e∫  .  (5.3.15)

For small times, while the plasma viscosity and viscous plasma heating are 
negligible, that plasma mass will be accumulated in the sheath, whose 
thickness is governed by magnetic diffusion and electron thermal 
conductivity. For that to happen, the rates of magnetic diffusion and 
electron heat conduction should be of the same order of magnitude. For a 
low-β plasma, that means that 

χ =
c2

4πσ
β ~

κe
n

 

or 

(ωτ )e ~1  . 

Since, in this case, the thickness x of the cathode sheath will be determined by 

x ~ χ t  , 
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the main plasma characteristics of the sheath will be described by the 
following self-similar dependences: 

T ~ ( j 4π )
1/2λ1/2e5/4m1/4c1/4

(B0 / 4π )
1/4

t1/4  , 

 

n ~ ( j 4π )
3/4 (B0 / 4π )

5/8

λ1/4e9/8c5/8m1/8
t3/8 , (5.3.16)

 

x ~ ( j 4π )
1/4λ1/4e1/8c5/8m1/8

(B0 / 4π )
5/8

t5/8  , 

where λ is Coulomb logarithm and m is the mass of the electron. 

The numerical solution results of our one-dimensional problem for 
n0 = 6 ⋅ 1017 cm-3 validates those dependences. For example, by the time 
t = 0.1 µs (when viscous plasma heating is still negligible), formulas 
(5.3.16) yield the characteristic quantities T = 4 eV, n = 9·1017 cm-3, and 
x = 0.04 cm, and the profiles of the respective quantities in Fig. 5.5a 
obtained in the one-dimensional simulation agree with those estimates. The 
electron and ion temperatures by that time are essentially the same. 
According to (5.3.2), the value for the bulk plasma velocity 

 v = jB0
cn0Mi

t  (5.3.17) 

by this time is ν∞= 0.8·107 cm/s. A decrease in the plasma velocity in the 
cathode sheath at that time is governed by the elevated plasma density and 
turbulent viscosity near the cathode (5.3.12). 

At the next stage, turbulent diffusion starts to dominate magnetic diffusion, 
and the mass of the plasma involved in turbulent mixing becomes greater 
than the mass from which the magnetic flux emanated (5.3.15). A 
comparison of (5.3.15) and the turbulent mixing zone with coefficient of 
(5.3.12), in which the scale of velocity is determined by (5.3.17), shows that 
this happens at t ~ 0.1ωi

−1 . The viscous plasma heating becomes substantial, 
but one can assume that β << 1, the electron and ion temperatures start to 
differ from one another, and the ion temperature is governed solely by 
viscous heating due to the friction of plasma moving with the velocity of 
(5.3.17) against the wall

 Ti ~
j2B0

2

Mi c
2n0
2
t 2 . (5.3.18) 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

147 

The characteristic scale of the electrode sheath is on the order of 0.1νt, 
where the velocity v is determined by (5.3.17), and it increases with the 
square of time. According to (5.3.15), the characteristic plasma density 
compression decreases in inverse proportion to t. The characteristic electron 
temperature is governed by the electron-ion heat exchange and has smaller 
growth than the ion temperature. 

 

 
Fig. 5.5. Cathode sheath plasma temperature, density, and velocity profiles for 
n0 =6 ⋅ 1017 cm-3, T0 =2 eV, B0 =105 G, and j = - 16 kA/cm2 at the times 
(а) t =0.1 µs ; (b) t =0.5 µs. 
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The profiles of the quantities that refer to this stage of the cathode sheath 
evolution in the one-dimensional problem for t = 0.5 µs are depicted in 
Fig. 5.5b. The bulk plasma velocity at this time is n∞ = 4·107 cm/s, and the 
maximum β = 0.46. 

In order to characterize plasma deposition onto the cathode surface, which 
may be of interest for many MHD problems as a measure of the cathode 
sheath influence on the MHD flow, Fig. 5.6 shows the decrease in the bulk 
plasma mass due to plasma deposition onto the cathode n0 Δx as a function 
of time. In accordance with (5.3.15), Δx grows approximately linearly with 
time until viscous plasma heating and the growth of β come into play, 
which results in plasma pushing back from the electrode. 

 
Fig. 5.6. Decrease in the bulk plasma mass n0Δx as a result of the deposition of 
plasma onto the cathode as a function of time. 

In the case of acceleration of a low-density plasma (n0=1.5⋅1016 cm-3), the 
thickness of the cathode sheath increases much more rapidly. An essential 
role in the formation of the sheath is played by anomalous ion viscosity and 
thermal conductivity (5.3.10) (near the cathode, at distances on the order of 
the ion Larmor radius) and anomalous electron resistivity and thermal 
conductivity (5.3.11). The profiles of the quantities for this case at the time 
t = 55 ns are shown in Fig. 5.7, when the velocity of the bulk plasma is 
ν∞ = 1.75·108 cm/s. Fig. 5.7 demonstrates that for such plasma flow 
velocities, the ions in the cathode sheath are heated to temperatures on the 
order of several keV, and electrons are heated to fractions of a kiloelectron-
volt, and the sheath thickness is several millimeters. 
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Anode sheath. At the initial stage of the evolution of the anode sheath, in the 
MHD approximation, the magnetic flux is carried toward the anode, thereby 
separating the plasma from the surface. As in the cathode sheath, the 
dependence of the main plasma parameters on time will be described for short 
times by the self-similar formulas (5.3.16), with the difference being that t is 
replaced with |t0 – t|, where t0 is a certain point of time, i.e., in this 
approximation, the plasma density will fall off to zero over a finite time 
interval. At the same time, it is stipulated in the problem setup that the current 
continues to flow through the sheath. This contradiction can only be resolved 
by introducing additional kinetic effects and by treating the problem on small 
spatial scales, for which the MHD approximation is, strictly speaking, 
inapplicable. In our study, we do that by taking electron inertia into account, 
i.e., considering the spatial scales of ~ c/ωpe. However, while preserving the 
MHD description, we do that in the following qualitative fashion. In Ohm’s law 
(5.3.5), we include terms related to electron inertia assuming that there is 
enough time for the quasi-steady-state approximation to get established for 

electrons; i.e., we will not include the time derivative term 
∂
ve
∂ t

 and will keep 

only the derivative vex
∂

ve
∂ x

. That will provide an additional term to (5.3.5)  

Eme =
mc
4πe 3

j
n
∂
∂ x

1
n
∂B
∂ x

!

"
#

$

%
& , (5.3.19) 

Fig. 5.7. Cathode sheath plasma temperature, density, and velocity profiles for 
n0 =1.5⋅1016 cm-3, T0 =2 eV, B0 =105 G, and j = - 16 kA/cm2 at the time 
t =55 ns. 
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and the corresponding contribution to the equation for the electron 
temperature 

 −
c
4π

j
n
∂B
∂ x
Eme  

As a result of the presence the additional term in Ohm’s law, the possibility 

of compensating for the first Hall term in equation (5.3.5) (which is ~ 1
n

, 

since, for a magnetized plasma, R = 1
nec

 ) opens up even for very small 

densities. Then, beginning with time t0, when, according to formulas 
(5.3.16) with |t0 – t| in place of t, a vacuum region must form, the region will 
contain plasma with a density exponentially decreasing from the 
hydrodynamic boundary (but not zero density). The width of that region 
will grow with the entry into it of magnetic flux from infinity. 

The presence of a current flowing through this low-density region may lead 
to its strong acceleration and, in the real 2D problem, its replacement with a 
higher-density plasma from a region with different coordinates y, where 
current j are weaker and where this vacuum region is smaller or not present 
at all. In order to describe this effect qualitatively, we will assume that the 
additional electric field is added to (5.3.13) at the wall interface: 

!E = −
4π
c 2
j (v −v

∞∫ ) 1− ρ
ρ
∞

'

(
))

*

+
,,dx ,

where ν∞ and ρ∞ are the velocity and the density of plasma far from the 
electrode.  

One-dimensional simulations of the evolution of the anode sheath were 
performed with account taken of the contribution of !E to the boundary 
condition at the anode surface and of the effect of electron inertia (5.3.19). 
To simplify the numerical solution, we increased the coefficient in (5.3.19) 
by a factor of 100 (otherwise, we would have had to resolve very small 
spatial scales). 

Fig. 5.8a shows profiles of temperature, density, and velocity at time 
t = 60 ns, which corresponds to the transition from self-similar dependences 
(5.3.16) to a linearly expanding, low-density region where electron inertia 
has a substantial effect. At this time, plasma velocity has a maximum 
νmax = 6.1·106 cm/s at the distance x = 9.5·10-3 cm from the anode surface, 
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the plasma velocity far from the anode being ν∞ = 4.8·106 cm/s. By this 
time, the impact of the additional field !E on the processes near the anode is 
still negligible and constitutes 0.01% of the Hall electric field EH (5.3.14), 
which delivers the magnetic flux from the depth of the plasma. The electric 
field (5.3.13), which corresponds to magnetic flux losses into the electrode 
material by this time, is 14 % of EH. 

 
 
  

 
Fig. 5.8. Anode sheath plasma temperature, density and velocity profiles for 
n0 =6⋅1017 cm-3, T0 =2 eV, B0 =105 G, and j =16 kA/cm2 at the times (а) t =60 ns; 
(b) t =0.5 µs. 

(b) 
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The plasma density in the anode sheath continues to decrease, and magnetic 
flux leakage due to the hydrodynamic motion represented by !E  plays no 
role of substance. The decrease in the plasma density results in a 
considerable growth of the plasma velocities and ion temperatures due to 
the friction between the plasma and the anode surface (see Fig. 5.8b, which 
corresponds to the time t =0.5 µs ). At this time, !E  is 58% of EH , and the 
electric field (5.3.13), because of diffusion into the copper wall, falls to just 
4.7% of EH . By this time, the electron component of the plasma gets also 
noticeably heated (to fractions of a kiloelectron-volt) due to electron 
acceleration by the Hall electric field. Plasma velocity near the wall 
νmax = 6·107 cm/s exceeds that of the bulk plasma, v

∞
= 4·107 cm/s. 

Fig. 5.9 shows the profiles of the anode sheath parameters for the case of 
acceleration of a low-density plasma at the same time, t = 55 ns, as that 
in Fig. 5.7 for the cathode sheath. We can see that the plasma velocities 
in direct proximity to the anode are extremely high, vmax = 5.1⋅108 cm/s, 
and exceed considerably the bulk velocity; the electron and ion 
temperatures are also high, Ti max = 160 keV and Te max = 48 keV. 
According to Fig. 5.9, DD fusion neutrons can be generated in the 
plasma sheath near the anode. If we assume that the anode area in the 
region of the nozzle of the MAGO chamber is S =170 cm2 and estimate 
the characteristic time during which a low-density plasma flows through 
the nozzle as ~ 3·10-7 s ⎯which is based on the time over which the 
current at the chamber input rapidly ramps down (Fig. 2.5)⎯then, for 
the temperature and density profiles shown in Fig. 5.9 and under the 
assumption that the plasma ions obey the Maxwellian distribution, we 
obtain a neutron yield of about ~ 1.6·109. That yield agrees with the 
yield measured experimentally in the “nose” region of a neutron pulse 
(5.5·109 neutrons, which is about 6% of the total number of neutrons in 
the pulse [5.19]) if we bear in mind that, by comparison with the 
Maxwellian spectrum, the ion spectrum should be enriched with a large 
number of high-energy ions produced when a high-velocity ion flow is 
scattered by the wall. The characteristic velocity =v 2.2·108 cm/s and 
characteristic temperature Ti =27 keV of the neutron-generating plasma 
also agree with the experimentally measured characteristics in this part 
of the neutron pulse obtained on the basis of the spectrum of emitted 
fusion neutrons [5.19]. 
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Fig. 5.9. Anode sheath plasma temperature, density and velocity profiles for 
n0 =1.5⋅1016 cm-3, T0 =2 eV, B0 =105 G, and j =16 kA/cm2 at the time t =55 ns. 

A comparison of the anode and cathode sheaths for low-density plasma in 
Figs. 5.7 and 5.9 show that the difference in the heating of the near-
electrode plasmas is quite considerable. For example, the neutron yield from 
the cathode sheath (Fig. 5.7) should be about two orders of magnitude lower 
than that from the anode sheath; accordingly, the ion temperature Ti ~ 4 keV 
and flow velocity =v 7·107 cm/s of the neutron-generating plasma in the 
cathode sheath should be lower than those in the anode sheath. 

Presumably, the great differences in the structure of the cathode and anode 
sheaths may explain the variation in the MAGO chamber operation and the 
drop in the neutron yield when electrode polarity is switched. 

CONCLUSION 

A numerical solution of the one-dimensional problem describing the 
evolution of the cathode sheath in the case of acceleration of a magnetized 
plasma by a current of constant density shows that, at small times (when 
plasma velocity is low and viscous plasma heating is negligible), a region of 
dense plasma forms near the cathode in which the plasma mass increases 
linearly with time and the electron magnetization parameter is (ωτ)e ~ 1. As 
the plasma velocity increases and plasma turbulence develops, for times 
t ~ 0.1ωi

−1 , viscous plasma heating becomes substantial, ion temperature 
begins to grow quadratically with time, and the characteristic spatial scale 
also grows quadratic ally with time and constitutes ~4 % of the entire path of 
the plasma along the electrode. 
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An analysis of the anode sheath shows that the MHD approach is 
inadequate to describe the sheath: in the MHD approximation, the plasma 
density in the sheath drops to zero, whereas the current density, as 
determined by the problem as a whole, remains constant. In order to 
overcome this difficulty, one must go beyond the scope of the MHD 
approach and take into account electron dispersion. Then, the plasma 
density in the anode sheath remains finite, although low. A low-density 
plasma in the anode sheath can be accelerated by the Lorentz force to 
velocities much higher than the plasma velocities far from the anode and 
can be heated to high temperatures as a result of the friction against the 
wall. As in the case of a cathode sheath, the characteristic ion temperatures 
in the anode sheath on long time scales are determined by the squared 
plasma velocity, and the characteristic spatial scales are governed by the 
zone of turbulent mixing. Plasma heating in the anode sheath can initiate 
fusion reactions, which may explain the generation of DD-neutrons with an 
anisotropic energy and direction distribution in MAGO experiments. 

5.3.2. Kinetic Approach as Applied to Collisionless Magnetized Plasma 

Thus, within the above MHD approximation, we assumed that there is an 

anomalous viscosity that, in terms of magnitude, is equal to 
nTi
ωi

 (n is 

plasma density, Ti is ion temperature, ωi – is ion cyclotron frequency) and 
that acts at distances from the electrode surface smaller than the ion Larmor 
radius rLi. This viscosity resulted in plasma flow deceleration on scales of 
the Larmor radius determined from the flow velocity v0, rLi = ν0/ωi. For the 
qualitative description of the near-electrode flow using viscosity in the 
MHD approximation on the rLi scales to be valid, one must know whether 
the entire flow on those scales will experience deceleration or whether only 
the ions located at a distance of the Larmor radius from the electrodes that 
corresponds to the thermal velocity of the plasma flow (which is considered 
smaller than v0) will be scattered on the electrodes. 

Using the MHD approach, it was shown that thermonuclear neutrons that, 
because of high flow velocities, have an anisotropic energy distribution that 
can be generated in the near-anode zone of the MAGO chamber nozzle, 
which agrees with time-of-flight neutron spectrum measurements [5.19]. 
However, the neutron yield calculated under the assumption of the 
Maxwellian ion distribution proved to be somewhat smaller (approximately 
by a factor of 3) than the experimentally measured yield. The question 
arises, can that difference be explained by the real ion distribution in the 
near-electrode plasma with account taken of the kinetics of the ions?
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Following Garanin et al. [5.22], we will now use particle-in-cell numerical 
simulations to consider the near-electrode plasma flows in order to answer 
these questions. 

Problem setup. Let us consider a time-dependent one-dimensional problem, 
in which all quantities depend solely on the coordinate perpendicular to the 
electrode surface and on time. For large distances from the electrodes, the 
plasma is assumed to homogeneous, having density n0  and moving at a 

velocity v0  across the magnetic field 

B0 . The velocity v0  and field 


B0  are 

parallel to the electrode surface. We will designate the coordinate 
perpendicular to the surface as x and assume that the magnetic field is 
directed along z ; then, the velocity v0  will be directed along y. We will 

assume the plasma to be cold: β ≡
8π p0
B0
2

<<1  (p0 is initial thermal pressure 

of the plasma). 

When ions collide with the electrode located at x= 0, they can be reflected 
back into the flux. We will assume that the ions scattered on the electrode 
fly out into the plasma with the Lambert angular distribution, and we will 
consider two options for the ion reflection off the electrode: elastic with 
conservation of energy, and inelastic, with loss of 90% of the energy. The 
plasma is assumed to be quasi-neutral, the magnetic diffusion coefficient is 
taken to be small, such that the magnetic field is essentially frozen into the 
matter, and the Joule heating is disregarded. 

Instability of initial plasma state. Let us assume that a small fraction of 
ions from the flow that have velocity components directed to the electrode 
due to thermal spreading is scattered elastically on the electrode. Initially, 
when the influence of these scattered particles is small, their motion can be 
considered as occurring against an assigned background of the main flow, 
i.e., they will move in the crossed electric and magnetic fields. For the main 
stream, the effect of these particles can be analyzed on the basis of 
perturbation theory, taking into account for it only the appearance of 
velocities νx, which originally were equal to zero. 

A qualitative analysis of such a linearized problem performed for high MA 
numbers under the assumption that the instability growth increment is larger 
than ωi yields the following expression for the increment 

λ =
3
2
ωi  . (5.3.20)
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Results of numerical simulations. Fig. 5.10 plots the distribution of the 
magnetic field (and, hence, the plasma density coinciding with it) and the 
average velocity v along the electrode for the flow of residual plasma 
through the MAGO chamber nozzle, with a bulk velocity of 
v0 = −2 ⋅10

8  cm/s, a density of 0n = 1.5⋅1016 cm-3, in the magnetic field 

B0 = 105 G (MA =1.57 ), at sequential times t = 0.5, 1, and 2⋅10-8 s for elastic 
reflection of the ions from the electrode. This figure shows that the mass of 
plasma reflected from the electrode grows with time, leading to ion flow 
deceleration on Larmor radius scales, i.e., the specific anomalous viscosity 
comes into effect near the electrodes. The magnetic field profiles display 
oscillations, which are indicative of an evolving two-stream instability. Note 
that, in the simulations, the role of these instabilities, in accordance with 
their theory, diminishes with increasing MA . 

 
Fig. 5.10. Distribution of magnetic field B and average velocity v along the electrode 
(in units of initial B0 and ν0) for the flow with bulk velocity ν0 = –2⋅ 108 cm/s, density 
n0 =1.5⋅1016 cm-3, in magnetic field B0 =105 G, at times t = 0.5, 1, and 2⋅10-8 s (curves 
1, 2, 3, respectively). 
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Figure 5.11 shows the resulting ion “thermal” velocity distribution f (ν) 
in the frame of reference system related to the local average velocity 
(f (ν) dv is equal to the fraction of the particles in the velocity interval 
dv) at a distance of 0.7 cm from the electrode, which equals 1.7 rLi, as 
well as the velocity distribution for ion kinetic energy (i.e., the quantity 
v2 f (v) ) obtained for the time t  = 2⋅10-8 s. It can be seen from the figure 
that ions that constitute a small fraction of the total number of the 
particles account for most of the “thermal energy” of the ion component. 
These are the ions that have been reflected off the wall, and it is those 
ions that make the principal contribution to thermonuclear reactions, 
when they collide with the main flow ions. What will that result in? 
First, the rate of thermonuclear reactions will become somewhat higher. 
Second, which is even more interesting in the context of neutron 
spectrum measurements in MAGO experiments [5.19], the velocity of 
neutron-generating plasma may exceed the average mass velocity. Thus, 
taking into account the kinetics to explain the results of Burenkov et al. 
[5.19], one must assume that the residual plasma density is higher than 
that used in the simulations in the hydrodynamic approximation (Section 
5.3.1), and, consequently, the plasma will acquire a lower velocity. As a 
result, the neutron yield from such plasma will increase in the 
simulations in proportion to, roughly speaking, the squared density will 
agree with the experiment. 

For early times, when the fraction of reflected particles is small, their 
number should increase exponentially in accordance with the linear theory 
of instability. In the simulations, we actually observed the exponential 
increase of the number of reflected particles with time. The increments of 
this growth proved close to the theoretical estimate (5.3.20), and the 
increments decreased somewhat with decreasing MA, i.e., magnetic pressure 
of the reflected ions impedes the inflow of new ions from the main flow to 
the wall. 

Figure 5.12 plots the dependence of the loss of the longitudinal component 
(along the electrode) of plasma momentum, converted to plasma layer 
thickness (measured in rLi) corresponding to a full plasma stop, on the 
Alfven-Mach number MA. We can see that this quantity remains nearly 
constant in a wide range of MA and equals ≈ 0.5rLi , i.e., this distance can be 
considered to be the point of full stop of the flow. 
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Fig. 5.11. Ion “thermal” velocity distribution f (ν), and the velocity distribution for 
ion kinetic energy v2 f (v)  for the simulation with MA = 1.57 at a distance of 0.7 cm 
from the electrode, at the time t = 2⋅10-8 s. Velocities are measured in the units of 0v . 

 

For very high flow velocities, the assumption that the ion scattering on the 
wall is inelastic may be valid. It turned out that in the simulations in this 
case, there was no linear stage of the flow swing instability development 
with the exponential growth due to a high density of reflected particles near 
the electrode; instead, there is immediate onset of a nonlinear stage. The 
simulation for MA = 1.57 revealed that the loss of the longitudinal 
component of plasma momentum in this case was equivalent to a plasma 
layer thickness of ≈ 0.46rLi . 
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Fig. 5.12. Dependence of loss of longitudinal plasma momentum component 

converted to plasma layer thickness (measured in rLi ), p = dx
rLi

n
n0
1- v
v0
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Alfven-Mach number MA . 

CONCLUSION 

The reflection off the electrode of ions of the moving stream leads to the 
turning of the flow fraction that is located at a distance of ~rLi from the 
electrode towards the electrode and results in effective deceleration of that 
part of the flow. The ions scattered from the electrode can generate 
thermonuclear neutrons when they collide with ions of the main flow, and 
the velocity of this neutron-generating plasma can be markedly higher than 
the average mass velocity. 

5.4. Role of Drifts in Magnetized Plasma of the MAGO System 

As shown in Section 2.1.2 above, the body of experimental and simulated 
data enables us to believe that DT plasma with the following parameters is 
reliably produced in experiments with the large MAGO chamber in a 
coaxial cylindrical volume having a height of 8 cm, an outer radius of 
R ~ 10 cm, and an inner radius of 1.2 cm:

average density n = 8⋅1017cm-3, 
average temperature T = 250 eV, 
characteristic current in the plasma I ~ 4 MA, 
characteristic magnetic field in the plasma B ~ 0.16 MG, 
characteristic β ~ 0.6. 
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Those parameters make the plasma suitable for ignition in its quasi-
spherical compression. If the plasma is compressed adiabatically to a 
radius of R ~1.7 cm and a characteristic height of ~1.4 cm (exposed to 
magnetic and thermal pressure, the radius of the metal rod decreases from 
1.2 cm to about 0.8 cm), the plasma will have a density of n = 2⋅1020 cm-3, 
a characteristic temperature of T =10 keV, a characteristic current in 
plasma of I ~ 70 MA, a characteristic magnetic field in plasma B ~ 10 MG, 
and a characteristic β ~ 2. If the plasma is compressed at a velocity of 
ν ~106 cm/s, the characteristic time of its compression will be τ ~9⋅10-7s, 
and the Lawson criterion, nτ ~ 2⋅1014 cm-3s, will be met. 
 
For the compression to be adiabatic, it is necessary that the various losses 
not be large. Classical electron and ion heat conductivities of magnetized 
plasma cause losses of the order of the Bohm heat conduction (see 
Section 6) and they can be taken into account in direct one-dimensional 
simulations (see Chapter 7). Other important losses include those associated 
with drifts of charged particles in the magnetic field and resulting in heat 
and magnetic flux transfer. These losses and their associated fluxes do not 
contain collision frequencies and are therefore collisionless. In studying the 
processes of thermonuclear energy release, it is also important to address 
the issue of α-particles confinement in a magnetic field so that their energy 
is released in the fuel, increasing its temperature and amplifying its 
reactivity or heating up the cold parts of the fuel. 

5.4.1. Role of Collisionless Losses in MAGO Plasma 

The simplest example of collisionless drift losses is heat transport by the 
current. In the MAGO chamber, currents flow from one metal electrode to 
the other. Low-temperature electrons emitted by the cathode, when they 
move with the current, replace hot electrons of the plasma, thereby cooling 
it. The current velocity of electrons is equal to u ~ I / eπ R2n , and the effect 
of their transport on plasma cooling can be estimated as the ratio of their 
displacement when they are transported by the current to the characteristic 
system size 

 uτ
2l
~ Iτ
2eπ R2nl

~ Iτ
2eN

 ,  (5.4.1) 

where N is the total number of particles in the chamber (the multiplier 2 
indicates that electrons carry only half of the energy). The number of 
particles does not change with plasma compression. If the quasi-spherical 
compression proceeds at a constant velocity, the duration of the 
characteristic inductance drop is shorter than the time τ of the plasma 
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compression, and the current grows faster than 1/τ. Hence, the stage of the 
highest compression is the most dangerous for plasma cooling by current 
transport. When we substitute the above plasma parameters of this stage 

into formula (5.4.1), we obtain uτ
l
~ 0.1. Thus, the effects of plasma 

cooling by the current under such conditions can be pronounced, but not 
fatal. 

One can easily estimate the effects of charged-particle drifts on 
plasma cooling. The drift velocities are equal to 

u ~
re ,i
R
vT e ,i ~

cT
eBR

~ β I
4π neR2

 . (5.4.2)

They differ from the current velocity by only a factor of β/4. Since β grows 
during quasi-spherical compression, the states of highest compression are, 
as in the case of plasma cooling by current transport, the most dangerous for 
plasma cooling. Since β/4 ~ 0.5 in this state, the role of these drifts can also 
be assessed as pronounced, at ~ 0.1, but not fatal. Magnetic flux transport 
by current (the Hall effect) has a comparable influence on the plasma state. 
Formula (5.4.2) shows that the drift-induced losses in a system with l ~ R 
produce losses that are literally the same as those associated with the Bohm 
diffusion, but they have no small numerical multiplier (1/16) appearing in 
the Bohm diffusion coefficient. 

It should be noted that in the MHD description of plasma in 2D simulations, 
all those drifts can be taken into account in the form of the Hall effect, 
Leduc−Righi effect, and heat transport by current [5.20]. 

5.4.2. Confinement of α-Particles in Magnetic Field 

The rate of α-particle deceleration in the plasma is determined by formula 
[5.23] 

γ (s-1) ~ 1.6 ⋅10−9n(cm-3)λ /T (eV )3/2 , 

where λ is the Coulomb logarithm. Since the residence time of α-particles 

in the DT plasma is limited by their drift, τ ~ l / u  (u ~ 2cε
3zeBr

 is the drift 

velocity of a charged particle with the charge ze  and energy ε  in the 
magnetic field B  decreasing in terms of the radius as l/r), the fraction of 
energy deposited by the particle in the plasma can be estimated as γl/u. To 
enable good confinement of α-particles, this fraction should be large. In our 
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case, for the above plasma parameters, this fraction is ~ 0.3 and depends on 
the parameters ~ Inl/T3/2. Thus, in order to improve α-particle confinement, 
one must increase the current in the plasma, the plasma density, or the 
dimensions of the plasma. 

But if the objective is to transfer the energy release from hotter layers to 
colder layers, α-particles will be capable of performing this function, 
because their energy release increases with decreasing plasma 
temperatures. One should keep in mind that α-particle drift takes place 
along the Z-axis, and therefore the hot and cold regions of the fuel after 
the compression should also be located along the Z-axis. It should be 
noted also that heat transport by the electron current proceeds along the 
Z-axis as well, but in the opposite direction, and both effects can offset 
each other to a certain extent. 
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6. SURFACE DISCHARGES IN STRONG  
MAGNETIC FIELDS  

In many problems of physics and engineering related to megagauss 
magnetic fields, situations are encountered in which magnetic fluxes cross 
interfaces between condensed matter (metal or insulator) and vacuum or 
plasma. If one restricts oneself to considering the case that is most 
commonly used in applications, in which the magnetic field is parallel to the 
interface and the magnetic flux is transferred perpendicularly to the surface, 
then schematically these situations can be depicted as they are in Fig. 6.1. 
The transition of magnetic flux through the interface may be accompanied 
by surface discharges or flows that, generally speaking, affect the operation 
of given units. In a number of cases, the space scale of such discharge areas 
can be small by comparison with the characteristic scale of the problem as a 
whole, and the physics of such discharges can be studied assuming that they 
can be described by a plane 1D problem (with a coordinate perpendicular to 
the interface). Let us list the particular situations corresponding to the 
schemes in Fig. 6.1 with different directions of the magnetic flux. 

 

 

Вакуум 
или 
плазма 

Металл 

В 

Вакуум 
или 
плазма 

Изолятор 

В 

 

Vacuum or 
plasma 

Vacuum or 
plasma Metal Insulator 

 

Fig. 6.1. Schemes of magnetic flux transfer through the interface between 
condensed matter and a vacuum or plasma. 
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 Magnetic flux flows from vacuum to metal. This is magnetic field 1.
diffusion into metal, which is important for the problems of 
obtaining megagauss magnetic fields, condensed liner implosion 
through the use of strong magnetic fields, etc. This problem will be 
considered in accordance with Garanin et al. [6.1]. 

 When plasma with a magnetic field comes in contact with metal, 2.
cooling processes begin that may amplify for a magnetized plasma 
if, as a result of magnetic diffusion, the plasma loses the magnetic 
flux and becomes demagnetized. Such problems are important for 
plasma confinement by walls in many applications, including the 
MAGO/MTF systems. Plasma cooling was considered by 
Vekshtein [6.2] for relatively low energy densities, when the metal 
does not explode, and by Garanin and Mamyshev [6.3] for higher 
energy densities, with account taken of the explosion of the metal 
wall caused by the heat flow from the plasma. 

 In the case in which the magnetic field outside the metal begins to 3.
decrease abruptly, and the metal, at least in the skin layer, contains a 
larger field, the magnetic flux tends to leave the metal. The diffusion 
starts and the material (if the metal is in a liquid state) escapes into 
the open space. Such a situation (magnetic spallation) sometimes 
occurs in the course of liner acceleration, and has a number of 
interesting features. This problem is considered in Garanin et al. 
[6.4]. 

 When magnetic flux is transferred through the insulator surface, a 4.
breakdown may occur on its surface, which restricts the energy flux 
delivered through the surface (the H-thrown discharge). In addition, 
evaporation of the insulator in the discharge and the presence of an 
ionized vapor moving together with magnetic field lines can be 
detrimental, if the magnetic flux delivered through the surface is 
used to drive liners or plasma. In the first case, the additional vapor 
mass will make the liner heavier and will slow its acceleration; in the 
second case, the vapor may contaminate the plasma with the 
insulator impurities, which is very significant in the approaches 
using pure hydrogen plasma, such as MAGO and plasma focus. H-
thrown discharge problems are considered in Garanin et al. [6.5] and 
Garanin and Karmishin [6.6]. 

 When magnetic flux from a vacuum or plasma region enters a more 5.
dense plasma or insulator, surface discharges (H-pressed discharges) 
that impede the movement of the magnetic flux through the surface 
may occur [6.7, 6.8]. Depending on the system, these discharges may 
play either a negative role—in systems in which the energy must be 
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delivered through the insulator surface—or a positive role—in 
systems in which the magnetic flux must be confined in the plasma 
area (magnetic flux losses associated with field reversal in theta-
pinch, magnetic flux confinement in the MAGO chamber, etc.). 
Related to the problem of H-pressed discharge is the problem of the 
cooling of magnetized plasma that is in contact with condensed 
material [6.9]. A general quantitative approach to consideration of a 
surface discharge at the interface between a plasma with arbitrary β 
and an insulator, which includes the problem of magnetic flux loss 
from a plasma into an insulator and the problem of plasma cooling, 
was developed by Garanin [6.10]. 

Surface discharges complicate the diagnostics of strong magnetic fields, 
because the probes that measure such fields (B-dot probes and Faraday 
loops) are usually placed in the insulator through whose surface the 
magnetic flux is transferred. As a result of the discharge, the field near the 
probe may turn out to be smaller than the field that needs to be measured. 
The rapid progress in modern high energy density and megagauss-field 
physics and engineering requires clear understanding of physical effects and 
characteristics of surface discharges in strong magnetic fields in order to 
include and simulate them in different systems. 

In this section, we will consider the surface discharges that are most 
important for applications, excluding only magnetic spallation, which is of 
narrower interest. First, let us consider the H-pressed discharges since their 
qualitative features also play important role for other surface discharges. 

6.1. Diffusion of Strong Magnetic Field into Plasma or Insulator 

In the development of systems that use strong magnetic fields and 
corresponding electromagnetic energy densities, the need arises in various 
units and devices to transfer electromagnetic energy through the surface of an 
insulator. Such a transfer may cause a surface breakdown of the insulator and 
its subsequent development. In this case, a part (or all) of the current is 
diverted to the discharge, with a resulting decrease in the power and magnetic 
flux being transferred to load through the insulator surface. If the magnetic 
flux leaves a vacuum or plasma towards the insulator, the surface discharge is 
called magnetopressed, or H-pressed, because, in this case, the magnetic 
pressure presses the ionized vapor in the discharge to the insulator surface. 

The following situation (see Fig. 6.2) can serve as an example of the 
H-pressed discharge problem: first, the current in a circuit surrounding some 
region with a magnetic field increases, with the magnetic flux entering this 
region through the insulator. Then the current powering the circuit begins to 
decrease, and the magnetic flux starts leaving the region. A voltage is 
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generated on the insulator surface, which can cause insulator surface 
breakdown. As a result of the development of a surface discharge (in which 
the magnetic pressure presses the material to the insulator, since the 
magnetic field in the circuit is stronger than that of the powering side), the 
discharge will impede the exit of the magnetic flux from the region. Another 
example of an H-pressed discharge is a discharge on the insulator surface 
occurring in the measurement of magnetic fields in some region with probes 
placed into the insulator. When the insulator or cold dense plasma are 
placed into a magnetic field and the magnetic field penetrates such a region, 
the formation of an H-pressed discharge is also possible.  

 

В0 1 2 

3 

I 

4 

I 

 

Fig. 6.2. Formation of H-pressed discharge on the insulator surface: 1) conductive 
walls; 2) insulator; 3)discharge plasma; 4) working space. 

In terms of dimensions, the magnetic field penetration into the insulator is 
described by the equation of diffusion, in which the magnetic diffusion 
coefficient, D, is inversely proportional to the conductivity (proportional to 
the electrical resistivity) of the wall material. Knowing the diffusion 
coefficient D, we can evaluate the depth of the magnetic field penetration 
into the material (the skin-layer thickness): 

δ  ~ Dt  ,  

where t is the characteristic time of magnetic field application to the wall 
boundary. In the majority of cases of interest in terms of applications, we 
can assume that the vapor plasma generated in the discharge manages to 
reach equilibrium with the forces from the magnetic field B; therefore, we 
can assume that the total pressure (of the matter and the magnetic field 
B2/8π)) at every moment in time is constant over the entire zone of the 
discharge. The discharge zone itself can be regarded as a flat layer, because 
its thickness is usually small by comparison with the size of the device. 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 170 

As the discharge develops, a plasma whose conductivity depends primarily 
on temperature and increases with temperature is generated on the insulator 
surface. The question arises: How does one determine the characteristic 
conductivity of the discharge for a given magnetic field level B, and thus the 
thickness of the zone of discharge, δ, and, accordingly, all the discharge 
parameters (discharge resistance, voltage across it, etc.)? With conductivity 
growing with temperature, the following scenario would seem to be 
possible: an increase in the heating of the discharge zone by Joule heating 
results in increased conductivity and further heating until the entire current 
begins to flow over a thin layer of extremely heated plasma. This scenario, 
which attempts to describe the discharge evolution solely in terms of 
conductivity without accounting for any other phenomena can be called 
infinitely fast discharge skinning into an infinitely thin layer.  

There exists, however, a process limiting the overheating of the current-
carrying plasma layer. That process is thermal conductivity. Because of 
thermal conductivity and plasma layer cooling due to radiation, the plasma 
is not overheated.  

The H-pressed discharge on the insulator surface can be looked upon as a 
special case of magnetic field diffusion into plasma of infinite density. 
Therefore, we can consider the general set-up of the problem of magnetic 
field diffusion into plasma. We will study the case of rather strong magnetic 
fields so that the discharge plasma can be regarded as completely ionized. 

We can distinguish three main phases in the process of magnetic field 
diffusion into dense plasma: 1) the radiation losses are small in comparison 
with the Joule heating, and the electron thermal conductivity and 
thermoelectric effects (Nernst effect) play the main role in limiting the 
skinning of the magnetic field; 2) the radiation losses start to offset the Joule 
heat release, and the discharge becomes stationary; 3) the discharge 
radiation heats the internal plasma layers, the heat diffusion is determined 
by the radiative heat conduction, and the magnetic diffusion and radiation 
temperature conductivity coefficients become of the same order. 

We assume that all the quantities depend on the X coordinate and time t, the 
magnetic field, B, and the electric field, E, are perpendicular to each other 
and the X axis, the characteristic times are larger by comparison with those 
of gas dynamic, such that the total pressure in the system managed to 
become equalized: 
 p + B 2 / 8π = B0

2 / 8π   (6.1.1) 

(p is the thermal pressure, B0 is the magnetic field at the interface with the 
vacuum).  
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The equations for magnetic and electric fields and the plasma thermal 
balance written in the Lagrangian variables have the following form:  

dB
dt

−
B
ρ
dρ
dt

= −c ∂E
∂X

 , 
 

∂B
∂X

= −
4π
c
j  , 

 

E = j
σ
−
βΛ

e
∂T
∂X

 , (6.1.2)
 

ρ
dε
dt
−
p
ρ
dρ
dt

= −
∂Q
∂X

+ jE − J  , 
 

Q = −χ ∂T
∂X

+
bΛT
e
j  , 

where ρ is the plasma density; ε is the internal energy; σ, χ, b
Λ

 are the 
transverse conductivity, the thermal conductivity and the thermoelectric 
coefficient, respectively; j is the bulk power of the radiation losses; Q is the 
heat flux density. We assume that at the initial moment, the magnetic field 
in plasma equals zero, and the plasma is homogeneous. 

6.1.1. Magnetic field diffusion into hydrogen plasma for small times 

First, let us consider magnetic field diffusion into plasma for small times, 
when the radiation is negligible, and electron transport coefficients play the 
principal role. In this case, the coefficients of magnetic diffusion and 
thermal conductivity are of the same order for the degree of electron 
magnetization ωeτe ~ 1, and it is convenient to choose as units of 
measurement for temperature T and electron density N  

[T ]= B0
8π
cλ ze3 m

!

"
#

$

%
&

2/5

 ,  (6.1.3)

 

[N ]= B0
2

8π
/ [T ]  (6.1.4)

(z is the ion charge, λ is the Coulomb logarithm). Using the self-similar 
variable  

ξ =
e1.1m0.1(λ z)0.2

(B0
2 / 8π )0.65

N dx∫

t
 (6.1.5)
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and introducing the dimensionless functions 

 T = [T ]Θ(ξ )  

  N = [N ]n(ξ ) , 

 B = B0 h(ξ )  

E = (em)
0.1(λ z)0.2 (B0

2 / 8π )0.35

c0.3 t
ε(ξ ) , (6.1.6)

 

Q = (em)
0.1c0.7 (λ z)0.2 (B0

2 / 8π )0.85

t
q(ξ )  , 

 

X =
(em)0.1c0.7 (λ z)0.2

(B0
2 / 8π )0.15

x(ξ )  , 

 
the system of equations (6.1.1 and 6.1.2) can be written as 

nΘ(1+1/ z)+ h2 =1 ,
 

dε
dξ

=
2πξ
n

dh
dξ

−
h
n
dn
dξ

"

#
$

%

&
'  , 

 
dh
dξ

= −
3Θ 3/2

4αn
ε +βn dΘ

dξ
"

#
$

%

&
'  , 

 

 q = − βnΘ
2π

dh
dξ

−
3γn
4 2π

Θ 5/2 dΘ
dξ

 , (6.1.7) 

 

ξ
5
4
(1+1/ z)n dΘ

dξ
+ h dh
dξ

!

"
#

$

%
&= n

dq
dξ

+
nε
2π

dh
dξ

 , 

 
dx
dξ

=1 / n  , 
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where α, β, and γ depend on the degree of magnetization  

y ≡ωeτ e =
3h
2n
Θ 3/2   (6.1.8)

and are determined by the approximate formulae [6.11] 

α =1−
α1
"y2 +α0

"

Δ
 , 

 

b = y(β1
!y2 +β0

!)
Δ

 ,  (6.1.9)
 

γ =
γ1
!y2 +γ0

!

Δ
 , 

 
Δ = y4 +δ1y

2 +δ0  
 

(the coefficients’ designations in (6.1.9) coincide with the those in 
Braginskii [6.11]). 

The boundary conditions of the system (6.1.7) are 

h(0) =1, h(∞) = 0  , 
 

n(∞) = n
∞

 ,  (6.1.10)

q(0) = q(∞) = 0  . 

Using the equations (6.1.7) and the boundary conditions (6.1.10), we can 
obtain the expansion n(ξ ),Θ(ξ ),q(ξ )  for 0→ξ , taking into account that 
for ξ→ 0  n→ 0, y→ 0 , and using the analytical expressions for the 
kinetic coefficients for high magnetization [6.12]: 

n ~ ξ k  , 
 

Θ ~ ξ 4k−2  , 
 

q ~ ξ 5k −2 ,  (6.1.11)
 

k = 5z
2 + 4( 2 −1)z + 4

9z2 + (8 2 −7)z +10
 . 
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The considered phase of the diffusion is important for hydrogen plasma 
(z = 1) only. For z > 1, because of the big radiation losses, the transition to 
the stationary discharge regime takes place too early, when the condition 
(6.1.1) is not yet satisfied and the material inertia cannot be disregarded. 

Now let us consider the solution (6.1.7) for z = 1. In this case the expansions 
of (6.1.11) yield the following:  

n ~ ξ 0.457  , 
 

Θ ~ ξ −0.172  , 
 

q ~ ξ 0.286  , 
 

that is, the temperature at the vacuum interface goes to infinity. The results 
of the numerical calculation of system (6.1.7) for n∞ = ∞ are shown in 
Fig. 6.3. The value of the electric field at the vacuum interface ε0 is shown 
in Fig. 6.4 as the function of n∞. The electric field ε0 for large n∞ tends to the 
constant value ε0 ≅ 2.04, whereas, for low n∞, it becomes proportional to 

n
∞
3/4 , as one would expect.  

 
Fig. 6.3. Profiles of the electric field ε, temperature Θ density n, magnetic field h, 
and heat flow q for magnetic field diffusion into a plasma with infinite density 
n∞ = ∞. 
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Fig. 6.4. Dependence of electric field at the vacuum interface on plasma density for 
magnetic field diffusion into plasma. 

It should be borne in mind, however, that for 

n
∞
<<

m
mi

"

#
$$

%

&
''

0.1

/ z0.4  

(m1 is the ion mass) the ion thermal conductivity is more important than 
electron thermal conductivity. In this case, the plasma can be regarded as 
isothermal with temperature Θ = 1/[n∞(1 + 1/z)]. The numerical solution of 
the magnetic field diffusion equations for this case shows, that the 
isothermality approximation is fulfilled quite well in low-density plasma 
and with account taken of electron transport coefficients only; thus, the 
solutions of the equations (6.1.7) can also be used for very low plasma 
densities. Thus, the value ε (0) = 1.58 coincides quite well with (Θ

∞
3/4ε(0)

for n
∞
→ 0, Θ

∞
→∞  in Fig. 6.4: (Θ∞

3/4ε(0))n∞→0 ≅ 1.51.  

6.1.2. Phase of Stationary Discharge  

As the thickness of the discharge zone increases, the rate of the Joule heat 
release per unit volume decreases, and the radiation losses determined by 
temperature (6.1.3) and density (6.1.4) remain unchanged. Therefore, over 
the course of time, the discharge transits to the stationary phase, where the 
Joule heat release is offset by the radiation losses. It is reasonable to 
consider this phase of the discharge only for plasma with infinite density n∞ 
= ∞ (or an insulator), because radiation cooling of the plasma not involved 
in the discharge leads to, sooner or later, Q∞ → 0 and, consequently, to 
n∞ = ∞. This transition process itself has a nonstationary character and is not 
self-similar. It is easy to ascertain that at the stationary phase the thickness 
of the discharge zone is small by comparison with the radiation path, so the 
radiation can be regarded as volume radiation.  
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In strong magnetic fields, bremsstrahlung radiation, whose volume power is  

JB =
32
3

2T
πm

zN 2e6

mc3
 

 
plays the main role for hydrogen plasma. The dimensionless quantities for 
this phase of the discharge can be selected conveniently in accordance with 
the formulae (6.1.3−6.1.6), where the time t is replaced by the quantity  

 τ =
B0
2

8π JB ([T ], [N ])
 . (6.1.12) 

 
In this stationary case, the second equation of the system (6.1.7) turns into 

 ε = const  ,   (6.1.13) 
the last equation is written as  

 dq
dξ

= −n Θ −
ε

2π
dh
dξ

 ,  (6.1.14) 

 
and the rest of the equations remain unchanged. The solution of the system 
(6.1.7) with the given changes is shown in Fig. 6.5. The electric field here is 
ε =1.16. 

 

 
 

Fig. 6.5. Profiles of temperature Θ, density n, magnetic field h, and heat flux q in 
the stationary discharge with energy sink by means of bremsstrahlung radiation. 
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Recombination and line radiation play an essential role for plasma with 
Z > 1. For the temperatures and densities (6.1.3 and 6.1.4) in the megagauss 
magnetic fields, the volume radiation of such plasma can be approximately 
written as the dependence [6.13]:  

JR (T , N ) = R
e10

3c3
Z 4

z
N 2

mT
  (6.1.15)

(R is the dimensionless constant). So, when the quantity  

τ =
B0
2

8π JR ([T ], [N ])
  (6.1.16)

is used instead of t in (6.1.7)⎯similarly to (6.1.12)⎯for the dimensionless 
quantities (6.1.3−6.1.6), all the equations (6.1.7) remain unchanged, with 
the exception of the second one, which turns into (6.1.13), and the last one, 
which has the form  

dq
dξ

= −n / Θ −
ε

2π
dh
dξ

 . (6.1.17)

The solution of the system (6.1.7) with those changes with the coefficients 
of (6.1.9) for z = ∞ is shown in Fig. 6.6. The electric field here is ε = 5.58. 
The discharge shown in Fig. 6.6 can be interpreted as an H-pressed 
discharge on the insulator surface. Note, that for large z, the temperature at 
the plasma-vacuum interface turns into 0, unlike z = 1. This behavior is 
governed by the expansion (6.1.11) and is a result of the more substantial 
effect (by comparison with that of z = 1) of thermoelectric heat fluxes on the 
heat balance near the boundary ξ = 0.  

 
Fig. 6.6. Profiles of temperature Θ, density n, magnetic field h, and heat flow q in 
the stationary discharge with the energy sink by means of recombination radiation 
and line radiation. 
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Let us present the characteristic numerical values of discharges in hydrogen 
and plexiglass H8C5O2 in magnetic fields of the megagauss range.  

For hydrogen in such fields, the Coulomb logarithm is λ =7.5  

[T ]= 74eV ⋅B0
0.4 (MG)  , 

 
[N ]= 3.3⋅1020 cm-3 ⋅B0

1,6 (MG)  . 

In Fig. 6.3, the unit of measurement for distance is  

[X ]= 0.19cm t(µs) / B0
0.3(MG)  , 

and for the electric field, it is 

[E]= 0.38 kV
cm

⋅B0
0.7 (MG) / t(µs)  . 

 
In Fig. 6.5, the unit of measurement for distance is  

[X ]= 0.095cm / B0 (M )  , 

and for the electric field, it is 

[E]= 0.78 kV
cm

⋅B0
1.4 (MG) .

If we assume that the start of the transition from the regime of Fig. 6.3 to 
the regime of Fig. 6.5 is determined by the coincidence of the electric fields 
E∞ in Fig. 6.3 and E in Fig. 6.5, and at the finish of the transition, the field 
E0 (Fig. 6.3) coincides with E, the characteristic times of the transition start, 
ts, and finish, tf, are the following: 

ts = 0.35µs/B0
1,4 (MG)  , 

 
t f = 0.75µs/B0

1.4 (MG) .

The setting time of the start of the Fig. 6.3 regime, when the material inertia 
can be disregarded and the condition (6.1.1) begins to be fulfilled is 

t = 6 ⋅10−3µs/B0 (MG)  . 
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6.1.3. Magnetic Field Diffusion Guided by Radiative Heat Conduction  

For a dense plasma or an insulator, the radiation from the stationary discharge 
area gradually heats the internal layers, where noticeable electric conductivity 
appears, and the magnetic field starts diffusing inwards, heating the plasma, 
which is accompanied by heat transfer to the next layers. Thus, the next phase 
of the magnetic field diffusion is formed, which will be considered using the 
example of strong field diffusion into plexiglass.  

Using the Saha equation with multiple ionization [6.15], radiation paths for 
multiple ionization [6.15] and electrical conductivity of the Lorentz electron 
gas (see Section 3.3.3) in the temperature range of 3−30 eV and density 
range of 10-3−10-5 g/cm3, we can obtain the power form of the temperature 
and density dependence of the equation of state, the radiation path l, and the 
magnetic diffusion coefficient κ : 

p / ρ = 0.17T 1.19 / ρ0.06  , 
 

l = 2 ⋅10−9T 2.14 / ρ1.86  , 
 

κ = 0.17 / (T 0.86ρ0.14 )  , 
 

the adiabatic index is p/ερ + 1 = 4/3 (the units are g, cm, µs, and 
temperature is in eV). 

Let us choose the units of measurement for the temperature [T] and density 
[ρ] such that the coefficients of temperature conductivity and magnetic 
diffusion are of the same order  

σ SB[T ]
4 l([T ],[ρ]) / (B0

2 / 8π ) =κ ([T ],[ρ])  

(σSB = 1.03 • 10-6 is the Stefan-Boltzmann constant), the heat pressure is of 
the order of the magnetic pressure  

p([T ],[ρ]) = B0
2 / 8π  . 

Then 
[T ]=17 eV ⋅B0

0.62 (MG) ,

[ρ]= 5.7 ⋅10−3 g
cm3

⋅B0
1.35(MG)  . 
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Using the self-similar variable 

ξ =
1000 ρ dx (g / cm2 )∫

B0
0.99 (MG) t(µs)

 

 
and introducing the dimensionless functions 

T = [T ]Θ(ξ )  , 
 

ρ = [ρ]n(ξ )  , 
 

B = B0 h(ξ )  ,  

E =1.8 kV
cm

⋅
B0
0.64 (MG)
t(µs)

ε(ξ )  , 

 

X = 0.88 cm ⋅ t(µs )
B0
0.36 (MG)

x(ξ )  

 

Q = 3.5⋅109 W
cm2

⋅
B0
1.64 (MG)
t(µs )

q(ξ )  , 

 
the system of the equations (6.1.1 and 6.1.2) can be presented as  

 Θ1.19 / n0.94 + h2 =1  , 

 dε
dξ

=
2πξ
n

dh
dξ

−
h
n
dn
dξ

"

#
$

%

&
'  , 

 dh
dξ

= −
1

2 2π
Θ 0.86

n0.86
ε  , 

 q = −16
3
Θ 5.14

n0.86
dΘ
dξ

 , (6.1.18) 

 

 dq
dξ

=
ε 2

4π
Θ 0.86

n0.86
+0.59ξ 3Θ

0.19

n0.06
dΘ
dξ

−
Θ1.19

n1.06
dn
dξ

"

#
$

%

&
'  , 

dx
dξ

=1 / n  . 
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From (6.1.18) and the boundary conditions h(0) = 1, ε(0) = const, and 
q(0) = const, we have the expansion for Θ(ξ) and n(ξ): 

Θ(ξ ) |ξ→0~ ξ
0.23  , 

 
n(ξ ) |ξ→0~ ξ

0.51  . 

The solution of the system (6.1.18) with the boundary condition n(∞) = ∞ is 
shown in Fig. 6.7. The characteristic times of the start, ts, and finish, tf, of 
the transition from the Fig. 6.6. regime to the Fig. 6.7. regime can be 
evaluated if we equate the Fig. 6.6 regime electric field to the Fig. 6.7 
electric fields E(∞) and E(0), respectively: 

ts = 0.029µs/B0
1.12 (MG)  , 

 
t f = 0.038µs/B0

1.12( MG)  . 
 

 
Fig. 6.7. Profiles of the electric field ε, temperature Θ, density n, magnetic field h, 
and heat flux q for the magnetic-field diffusion, guided by radiative heat 
conduction, into plasma with infinite density n∞ = ∞.  

For the magnetic-field diffusion into the insulator, the finite discharge 
resistance leads to penetration of the magnetic flux into the insulator and, if 
the circuit behind the insulator is closed, the magnetic field will grow there 
(and the magnetic fields at the inlet to the insulator and inside it will start 
getting equalized).  



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 182 

Note that the considerations developed above for ultrahigh magnetic-field 
penetration into material require more accurate quantitative determination, both 
with respect to theoretical models and simulations, and with respect to the 
comparison of theory and experiment. At present, there are almost no 
experimental studies devoted specifically to the H-pressed discharge, although it 
occurs in many experiments at different facilities and its effects prove to be 
important. To give an example that demonstrates the influence of the H-pressed 
discharge on experimental results, one can refer to the experiments in which a 
strong magnetic field was generated in a dielectric tube with magnetic flux 
compression by a plasma liner [6.16]. In these experiments, the H-pressed 
discharge on the outer surface of the tube impeded the magnetic-field generation 
inside the tube during magnetic flux compression by the liner. Thus, it played a 
negative role. As a result, in some shots, instead of a 1 MG field that could be 
expected if the magnetic flux could freely flow into the tube, the field 
penetrating into the tube with the first magnetic flux compression by the liner 
was as small as about 0.2 MG. However, after the flux compression, the H-
pressed discharge, this time produced on the inner tube surface, facilitated 
magnetic field containment inside the tube and consequently played a positive 
role. Another example showing the significance of the H-pressed discharge is 
the difference between the computed and measured magnetic field derivatives in 
the MAGO plasma chamber experiments (Section 2). While the experimental 
and calculated results agreed in general, the experimental waveforms were 
observed to be smoother and to have significantly smaller amplitudes of 
magnetic field derivatives. This can be attributed to the effects of the H-pressed 
discharges on the surface of the insulators, where the probes were installed. 

6.2. Diffusion of Megagauss Fields into a Metal 

Material conductivity changes due to the heating of the walls by the current 
flowing over the skin layer. As a result, the metal conductivity decreases, 
then with higher fields, the material vaporizes, and, if the substance 
transforms to plasma, its conductivity can increase again. 

The opinion is expressed at times in the literature to the effect that when a 
conductor explodes in strong fields, a cold nonconducting gas is generated, 
which expands from the metal boundary across the field. Physical 
observations borne out by corresponding calculations, however, show that, in 
reality, this does not happen in the fields on the order of several megagauss. 
Indeed, the radiation emitted from a hot metal surface with a temperature in 
the electronvolt range contains hard radiation quanta that ionize the vapor that 
is formed and thus produce seed ionization. For low densities, the degree of 
this ionization near the vapor boundary should be independent of the density. 
Thus, at the vapor boundary, there is constant conductivity within an 
arbitrarily small density. The presence of an electric field that forms as a 
result of diffusion into the metal and that is increased as a result of the vapor 
movement across the magnetic field leads to the Joule heat release in a unit of 
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volume that is independent of the density and, hence, infinitely large per unit 
mass for an arbitrarily small density at the vapor–vacuum interface. This 
leads to an inevitable gas breakdown, the creation of a plasma piston that 
prevents gas expansion, and the formation of a conducting plasma layer 
instead of a nonconducting expanding gas, just as the calculations show. 

Thus, the material transforms into a plasma whose conductivity grows with 
heating. As a result, the penetration of super-strong magnetic fields into 
materials turns out to be a rather complicated phenomenon accompanied by 
material vaporization and plasma formation. Although this penetration is 
diffusive, it is interesting to ask, What is the value of the effective diffusion 
coefficient, and what state of matter determines it? 

In seeking to answer these questions, some authors consider only the plasma 
forming at the boundary with the metal⎯even in fields on the order of one 
megagauss⎯similarly to the H-pressed discharge on the insulator surface that 
was discussed in Section 6.1.3, and without taking into account the presence 
of metal under the plasma layer. The reasoning of Section 6.1.3, however, 
cannot be applied to the plasma discharge on the metal surface, because the 
plasma discharge, shunted by the metal conductivity (even reduced as a result 
of Joule heating) sharply reduces the electric fields in the plasma, and, as a 
result, only a small fraction of the current flows over it even for the fields on 
the order of dozens of megagauss (with ideal metal conductivity, the 
discharge over the plasma is generally impossible because energy can be 
supplied to this discharge from the magnetic field only, and the magnetic field 
energy cannot decrease, since the magnetic flux has no place to expand). 

In many papers that consider the motion of liners driven by a strong magnetic 
field, the relevant MHD problems are considered without taking into account 
the heat conduction in plasma layers. In such consideration, numerical 
calculations (for grids not very fine) can be quantitatively correct for liner 
parameters on the whole; but one should bear in mind that this description has 
internal contradictions and will not yield correct results for rather fine grids. Let 
us show this with the example of a Lagrangian grid in a 1D calculation. 

Since, in a Lagrangian calculation that disregards heat conduction, the 
characteristic mass scale of the generated plasma ρx (ρ is the plasma density 
and x is the layer thickness) is determined by the grid resolution 

ρx ~ Δm ,  (6.2.1)
we examine the plasma behavior on that scale if the characteristic magnetic 
B and electric E fields are determined by the diffusion into the metal 
adjacent to the plasma. The characteristic plasma pressure is determined by 
its Joule heating: 

p ~ σE 2t ,    (6.2.2) 
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where σ is the plasma conductivity and t is the characteristic time. For a thin 
plasma layer, the equilibrium condition should be satisfied with good accuracy: 

 p ~ σE
c
Bx . (6.2.3) 

From expressions (6.2.1) and (6.2.2), it follows that the layer thickness 
increases with time as 

 x ~ cEt
B

.  (6.2.4) 

Inserting the dependences for pressure p ~ zρT (z is the degree of ionization 
of a multiply ionized plasma and T is the characteristic temperature) and for 
conductivity σ ~ T3/2/z into (6.2.2) and taking into account (6.2.1) and 
(6.2.4), we obtain 

 T
z2
~ BΔm
E3t 2

.  (6.2.5) 

For a multiply ionized plasma with z ~ Z ( Z  is the nucleus charge), and 
z4/3 ~ T, and using the expression (6.2.5), we find that the plasma 

temperature T ~ E
3t 2

BΔm
 is inversely proportional to the grid resolution and 

grows with time until the plasma pressure p ~ E17/4t5/2

B(Δm)3/4
becomes equal to 

the magnetic pressure and the plasma shields the metal. But if the plasma is 
heated to the level of z ~ Z and z becomes independent on the temperature, 
the temperature rise becomes so rapid that it should be described using the 

differential form of (6.2.2), i.e., ρ dT
dt
~ T 3/2E 2 , and, using the equilibrium 

condition (6.2.3), for the temperature rise, we obtain 

 dT
dt
~ T

5/4E3/2

BΔm
.  (6.2.6) 
 

From (6.2.6) it follows that if the degree of ionization reaches the level 
z ~ Z, then, the temperature goes to infinity over the finite period of time 
τ ~ BΔm / E3/2T0

1/4  (T0 is the temperature corresponding to the degree of 
ionizationz z ~ Z), and the finer the grid, the smaller the time. In fact, of 
course, the temperature grows until the plasma thermal pressure becomes 
equal to the magnetic pressure and the metal is shielded. 

Thus, the use of rather fine grids in calculations makes it possible to obtain 
plasma shielding of the skin layer in the metal. In many cases, for real grids, 
this shielding may not manage to develop within times of interest. Since for 
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fields B < 10 MG, with correct accounting taken of the plasma area, its role 
is insignificant in the current shunted from the metal and in the mass 
involved in the skin layer, the error in its description (even by several 
magnitudes) may remain, on the whole, insignificant for the description of 
the liner. In any case, however, one should be able to evaluate correctly the 
characteristics of the plasma layers and understand that improperly 
accounting for them can lead to incorrect results. 

6.2.1. Formulation of the One-Dimensional Problem 

Let us consider magnetic-field diffusion into a metal on the basis of an example 
of diffusion from a vacuum into a semi-infinite copper wall. We will perform 
the calculations in a 1D MHD formulation on a Lagrangian grid. We will 
assume that all the quantities depend on the coordinate х and time t, and the 
magnetic field B and the electric field E are perpendicular to each other and to 
the x axis. At the initial time, cold copper occupies the region x > 0, the 
magnetic field in this region is equal to zero, and the magnetic field on the 
material boundary is specified as a function of time B0(t). The calculations took 
into account hydrodynamic motion, magnetic diffusion, electronic heat 
conduction, and radiative heat transfer in the “forward-reverse” approximation.

The equation of state, conductivity, electron thermal-conduction coefficient, 
and the radiation paths for copper used in the simulations had the following 
form [6.3]: 

The equation of state of copper (in cm, g, µs, temperature in eV) was 
determined by the formulas: 

ε(ρ,T ) = ε1(ρ)+ε2 (ρ,T )+εS (ρ,T ) ,

p(ρ,T ) = p1(ρ)+ p2 (ρ,T )+ pS (ρ,T ) ,

where ε1 = 2.32/ρ0)(δ2.1/2.1 – δ1.5/1.5 + 4/21), p1 = 2.32(δ3.1  – δ2.5) 
(ρ0 = 8.9g/cm3, δ = ρ/ρ0); ε2 = 0.0121T 3/4δ5/6, p2 = (10/3)ε2ρ; 
εS = (0.965/A) • [1.5(1 + z)T + Q(z)], pS = (0.965/A)ρ(1 + z)T; A is atomic 
weight equal to 63.5; z was determined by approximate solution of the Saha 
equation for multiple ionization [6.15] by means of the transcendent 
equation I(z + 0.5 = T ln(317 AT 3/2(zρ)) ; I/(z) represents the ionization 
potentials; Q(z) is input for ionizationQ(z) = I (z)

1

z
∑ . The copper 

conductivity σ  was calculated in the plasma range (ρ < 0.28 g/cm3) using 
the formulas from Silin [6.17]. 
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For  

z > 1       σ = 0.871⋅108 3.25+1.41 / z
1+1.41 / z

T 3/2

zλ
 , 

 

 λ = ln 1+ 0.052
z

AT 3

ρ z(1+ z)

!

"
#
#

$

%
&
& ;  (6.2.7) 

for  

z < 1       σ =
1

0.594 ⋅10−8 λ
T 3/2

+1.3⋅10−9 1− z
z

, 

 

λ = ln 1+0.037 AT 3

ρ z

!

"
#
#

$

%
&
& ; 

in the condensed phase range (ρ > 2.8 g/cm3 )

 σ =
4.83⋅108

ε −0.0004
δ ,  (6.2.8) 

and in the intermediate range (0.28 g/cm3 < ρ < 2.8 g/cm3 ) σ was 
determined based on density interpolation between (6.2.7) and (6.2.8). The 
electron thermal conductivity in copper was considered nonmagnetized and 
was found from the Wiedemann-Franz law 

χ =
π 2kT
3e2

σ  

 (k is Boltzmann constant). For radiation energy transfer, we used the 

“forward-reverse” approximation [6.15] with the path l = 2
3
lR  (lRis 

Rosseland path) to provide the correct limiting transition to the heat 
conductivity equation. Here, the path was temperature- and density-
dependent (gray matter) and equaled [6.15] 

for z > 1 

lR = 9.5⋅10
−12 T 7/2

ρ 2
A2

z3
 ; 

for <z 1 

lR = 9.5⋅10
−12 T 7/2

ρ 2
A2

z2
. 
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As regards the boundary condition that determines the radiation 
propagation, two variants are possible: in one case, it is assumed that all of 
the radiation leaves the surface (an open system), and in the other case, the 
radiation flux on the boundary is equal to zero (a closed system). The 
second variant is possible if the magnetic field diffuses from a cavity whose 
walls are under identical conditions. Most of the calculations were 
performed for the open-system formulation, and only some (for purposes of 
comparison) were performed for the closed-system formulation. 

Most of problems considered the case of a constant magnetic field on the 
plasma boundary, B0 = const. That case offers an advantage in that the 
problem thus becomes close to self-similar, and, therefore the profiles of all 
quantities are easily recalculated from one time for other times. Indeed, for 
real times that are not too short (in excess of a few nanoseconds), the 
hydrodynamic motion is considerably faster than the diffusion, and it can be 
assumed that the total pressure (thermal plus magnetic) can become 
equalized over the skin-layer area. The magnetic diffusion and the thermal 
conductivity in this case should provide the dependence of all quantities on 
the self-similar variable x / t  only. In principle, a deviation from this self-
similar dependence could be caused by the radiation transport in the phase 
when the radiation path becomes comparable with the plasma layer thickness. 
In reality, however, we found the calculations with B0 = const. to be in good 
agreement with the self- similar dependence (see the next section). 

The calculations disregarded some phenomena that, in principle, could affect 
the pattern of the magnetic-field diffusion. First, the equation of state (EOS) 
that we employed had no two-phase (liquid-vapor) states. Decay into phases 
occurred automatically in the calculations, but only if the material fell into 
the thermodynamically unstable region ∂p/dρ (∂p / ∂ρ)T < 0 , and, therefore, 
the states of an overheated liquid and overcooled vapor were allowed. As a 
result, the calculations did not take into account some metal vaporization into 
a vacuum for relatively low fields B0 < 1.5 MG, in which plasma may not 
have formed. However, the influence of this effect is not very significant. 
Calculations with two-phase equations of state show that for fields 
B0 ~1 MG, not more than a few percent of the skin layer evaporates. 

Second, the radiation transport was considered in a gray matter 
approximation, which could not provide a detailed account of the gas-
breakdown and plasma-formation phenomena that were discussed in the 
introduction. These delicate phenomena can be of special interest in studies 
of the beginning of plasma formation for relatively low fields B0 < 1.5 MG.  
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However, as was mentioned above, these effects concern a small mass 
fraction and generally should not be too significant in terms of the 
description of field diffusion into a metal. 

Third, we did not take into account the dependence of electrical conductivity 
and thermal conductivity on the degree of plasma magnetization, or 
thermoelectric phenomena (Nernst effect). Generally speaking, these effects 
could influence the behavior of the plasma quantities near the boundary with 
vacuum, in the zone where the radiation transport is not yet very important 
since in this area the degree of electron magnetization ωeτe can be on the 
order of unity. This zone itself, however, occupies a fairly small percentage of 
the entire plasma layer in most of whose mass the role of radiation is 
significant, and therefore inaccuracy in the description of this zone has 
virtually no effect on the description of the skin layer in the metal as a whole. 

6.2.2. Open-system Calculations for a Constant Magnetic Field on the 
Boundary  

Profiles obtained in calculations for B0 = 1, 2, 5 and 10 MG at the moment 
t = 1 µs of the magnetic field B(x), the density ρ(x), and temperature T(x) of 
a material are presented in Fig. 6.8, which shows how the skin-layer 
structure changes as the magnetic field increases. For B0 = 1 MG, the copper 
present in the skin layer is in the condensed phase only. For B0 = 2 MG, the 
skin-layer structure next to the condensed phase has also a two-phase liquid-
vapor region (for purposes of discernibility, the density fluctuations in the 
two-phase region on the plot given in Fig. 6.8b are smoothed) and a plasma 
area, which can also be divided into a zone of radiative thermal conduction 
and a zone of electron thermal conduction at the boundary with the vacuum, 
where the radiation is almost negligible. Our calculations in this problem 
formulation (open system, B0 = const.) showed that the transition from the 
single-phase structure of the skin layer (Fig. 6.8a) to a composite 
multiphase structure (Fig. 6.8b) takes place roughly when B0 = 1. 6 MG. 
Then, as the magnetic field B0 increases, the two-phase region in the skin 
layer disappears, and for larger fields, the skin layer (see Fig. 6.8c and d) 
consists only of a condensed phase and a plasma area, in which it is possible 
distinguish a zone of radiative thermal conduction (with a temperature 
decreasing toward the vacuum, which is explained by the plasma cooling 
that results when the radiation exits through the surface) and a zone of 
electron thermal conduction with a temperature increasing toward the 
vacuum. It should be noted that, as Fig. 6.8d shows, when B0 = 10 MG, a 
rather large contribution to the heating of the material (commensurate with 
Joule heating) in the dense region is made by shock-wave heating, which is 
significant for high fields in this formulation, where the magnetic field is 
applied to the surface instantaneously. 
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(d) 

(c) 

(b) 

(a) 

Fig. 6.8. Profiles of the 
magnetic field  and 
density and temperature 

 of a material, 
calculated for an open system 
for a constant magnetic field 
on the boundary B0 = 1 (a), 
2 (b), 5 (c), and 10 MG (d) at 

1 µs. 
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For all fields B0 ≤ 10 MG, the plasma area is small and occupies only a small 
fraction of the skin layer. This is also confirmed by Table 6.1, where the 
thickness of the skin layer and its mass at t = 1 µs are shown for the considered 
fields. A comparison of these values shows that, for these fields, the mean 
material density in the skin layer is rather high and corresponds to the density of 
the condensed phase (although it is hardly possible to speak of a condensed 
phase here in a material heated strongly by a shock-wave when B0 = 10 MG). 
The skin-layer thickness, itself as a function of B0, increases rapidly in the range 
of 1−2 MG as a result of the nonlinear diffusion and the appearance of the two-
phase and plasma areas. Then for large fields, the skin-layer thickness increases 
more slowly, and in the range of 5−10 MG, the increase ceases since the 
density (and the conductivity along with it) in the material of the skin layer 
increases as the field increases, including in the plasma area. It is interesting, 
that in the entire range of 1−10 MG, the mass of the skin layer increases 
monotonically as the field increases, approximately following the law 
m ~ B0

0.72 . According to the data of Table 6.1, the fraction of the current 
shunted in the plasma area is small for fields B0 ≤ 5 MG, and only for B0 = 
10 MG does it have an appreciable value. 

  Table 6.1. Properties of the Skin Layer as a Function of Magnetic Field B0. 

Magnetic field B0 , MG 1 2 5 10 

Skin-layer thickness x(t) (cm) (determined as 
1
B0

Bdx∫ , where the integral is taken over the 

material area) at t = 1 µs 

0.0297 0.106 0.175 0.168 

x(1µs) / x(0.1µs) 10  1.00 1.03 1.03 1.03 

Skin-layer mass ( )m t (g/cm2) (determined as 

1
B0

Bρ dx∫ ) at t = 1 µs 

0.252 0.416 0.797 1.31 

m(1µs) /m(0.1µs) 10  1.00 1.00 1.01 1.04 

Fraction of current shunted in the plasma area, % 0 0.7 9 25 

Let us consider the question of the dependence of the obtained profiles on 
time, i.e., how the real time dependence of the quantities in the skin is close 
to the self-similar one, in which all quantities should depend on the ratio 
x / t  only. The values given in Table 1⎯ x(t2 ) t1 / x(t1) t2  (where ( )x t  
is the skin-layer thickness, and t1 and t2 are different times) and 
m(t2 ) t1 /m(t1) t2  (where m(t)  is the skin-layer mass), which for strict 
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self-similarity should be equal to unity⎯can serve as a measure of deviation 
from this dependence. The data of Table 1 show that, indeed, for all the 
considered fields, the skin-layer dynamics in this formulation are close to 
the self-similar dynamics. Small deviations from self-similarity are 
explained by the larger role of radiation with increasing time, resulting in a 
reduction of the temperature of the plasma area and, accordingly, an 
increase of its relative thickness. 

6.2.3. Effect of the Radiation Boundary Conditions on the Skin-Layer 
Structure  

Let us consider how the skin-layer structure changes if the radiation flux on the 
boundary is equal to zero (a closed system). This situation is exemplified by 
magnetic flux compression in a cavity. Calculated profiles of the magnetic 
field B(x) and density ρ(x) and temperature T(x) of material that correspond to 
this case for t = 1 µs and B0 = 2 MG are shown in Fig. 6.9. 

 

Fig. 6.9. Profiles of the magnetic field B(x) (1) and density ρ(x) (2) and temperature 
T(x) (3) of material that are calculated for a closed system for a constant magnetic 
field on the boundary B0 = 2 MG at t =1 µs. 

A comparison of Fig. 6.9 and Fig. 6.8b shows that, as one might expect, the 
temperature in the plasma area of the closed system is a little higher (in the zone 
of radiative thermal conduction in Fig. 6.8b, it is about 3 eV; whereas in 
Fig. 6.9, it is about 4 eV). There is also a decrease of the thickness of the two-
phase zone in the closed system. As a result, the skin layer in the closed system 
is thinner than in the open system. However, the skin-layer masses in both cases 
are approximately identical (in the closed system, it is 0.6 % lower). 
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6.2.4. Effect of Smooth Growth of the Magnetic Field on the Skin-Layer 
Structure 

The calculations described here assumed that the magnetic field is 
instantaneously applied to the metal boundary and then remains constant. In 
the majority of real problems, the magnetic field at the boundary grows 
gradually, and this, of course, changes the skin-layer structure. In the case 
of a smoothly growing field for moderately strong fields, the magnetic 
diffusion into metal can be calculated without accounting for thermal 
conduction, which cannot be done when the field is switched on 
instantaneously. Indeed, when the field is switched on instantaneously for 
the self-similar law of electric field variation at the boundary E ~1/ t , the 
integral over time corresponding to the Joule heating of the material at the 
boundary diverges for small times. Therefore, for the description of the 
material heating near the boundary, the thermal conduction should be taken 
into account, which distributes the heat released near the boundary over 
some area. As a result, if, in problems of diffusion of a moderately strong 
field (up to 1 MG) into a metal, the volumetric heating for a smoothly 
growing field is equal to approximately B2 / 8π [6.18], for instantaneous 
field switching, it is considerably higher near the boundary (for the case 
shown in Fig. 6.8a, by a factor of approximately 2.6). 

The effect of the smooth growth of the magnetic field at the boundary on 
the skin-layer structure in megagauss fields is illustrated by Fig. 6.10, where 
the profiles of the magnetic field B(x), material density ρ(x) and temperature 
T(x) are shown at t = 1 µs calculated for a magnetic field growing linearly with 
time for dB0/dt = 5 MG µs, so that at t = 1 µs the magnetic field on the 
boundary is equal 5 MG. A comparison of Fig. 6.10 and Fig. 6.8.с shows 
that in the case of megagauss fields, the skin-layer heating is also smaller 
for a smoothly growing magnetic field than for instantaneous switching. 
Accordingly, in the case of a smoothly growing magnetic field, a plasma 
layer is formed for higher magnetic fields than in the case of instantaneous 
switching. In the present calculation, plasma formation occurred when the 
magnetic field at the boundary reached a value of 3 MG, which is almost 
twice as larger as that for instantaneous switching. 
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Fig. 6.10. Profiles of the magnetic field B(x) (1), density ρ(x) (2) and temperature 
T(x) (3) of material that are calculated for an open system with a linearly growing 
magnetic field at the boundary for dB/dt =5 MG µs at t = 1 µs. 

CONCLUSION 

The explosion of a conductor for fields in excess of B ≈ 1.5−3 MG leads to 
the formation of a conducting plasma layer at the boundary with the 
vacuum. For fields B < 10 MG, the role of this layer in the current shunted 
from the metal and the plasma mass involved in the skin layer is small, but 
is of fundamental importance since incorrectly accounting of it (for 
example, in numerical calculations without thermal conduction on 
sufficiently fine grids) can lead to complete shunting of the current into the 
plasma layer. For a correct description of the skinning of megagauss fields 
in a metal, one needs to take into account electron thermal conduction and 
radiative heat transport. 

For magnetic fields at the metal boundary in excess of B0 ~ 1.5−3 MG, the 
skin layer consists of a condensed phase area with a density on the order of 
the initial density, a two-phase liquid-vapor area, and a plasma area, which 
can also be divided into an area of radiative thermal conduction and an area 
of electron thermal conduction at the very boundary with the vacuum. A 
two-phase liquid-vapor area is formed for fields of B0 ≈ 1.5−4 MG, 
depending on the dynamics of the magnetic field at the boundary and the 
radiation boundary conditions. 

Numerical calculations of megagauss-field diffusion with a constant magnetic 
field at the boundary B0 = const. have shown that for all fields in the range 
B < 10 MG for times greater than a few nanoseconds, the dependence of all 
quantities in the skin layer is described with high accuracy by a self-similar 
dependence, where all the quantities depend on the variable x / t . 
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A comparison of closed and open systems shows that the temperature in the 
plasma area in a closed system is a little higher (for example, for B0 = 
2 MG, in the zone of radiative thermal conduction in the open system, it 
was about 3 eV, whereas in the closed system it was about 4 eV). 

The heating of the skin layer is considerably smaller for a smoothly growing 
magnetic field than for instantaneous switching. Accordingly, in this case 
the formation of a plasma layer occurs with higher magnetic fields than it 
does in the case of instantaneous switching. 

If one compares the characteristic spatial scales and temperatures for the cases 
of the magnetic-field diffusion into metal and an H-pressed discharge, one 
finds that the thickness of the skin layer for the magnetic field diffusion into a 
metal is much smaller than that of the H-pressed discharge area. This can be 
explained by the substantial effect exerted by the conductive material 
underlying the plasma layer, which, although it has lost its initial 
conductivity, still remains rather conductive. This material still has higher 
conductivity than the insulating plasma in the H-pressed discharge and, in 
contrast to the insulating plasma, does not allow the magnetic field to diffuse 
inwards the material. Shunting of the current flowing through the plasma by 
the current flowing through this material leads to much smaller plasma Joule 
heating than in the case of the H-pressed discharge, and hence to much lower 
temperatures. Thus, if, for B0 = 5 MG in the H-pressed discharge on the 
insulator surface, the characteristic temperature of the plasma layer is 30 eV, 
it is on the order of 10 eV for the diffusion into metal. 

At present, the processes of plasma formation on the surface of thick metal, 
in response to a pulsed multi-megagauss magnetic field, are investigated in 
well-diagnosed experiments [6.19, 6.20]. The theoretical simulation results 
of these experiments [6.21] based on the presented concepts of the diffusion 
of megagauss fields into a metal agree with experimental data [6.19, 6.20]. 

6.3. Discharge Produced During Magnetic Flux Transfer from Plasma 
to the Insulator 

The vacuum in the problem of an H-pressed discharge can be treated as a 
special case of zero-density plasma. For a number of problems, it is important 
to take that discharge into account in the case of a plasma with finite density. 
An even more general case is the case of an arbitrary-β plasma that is in 
contact with an insulator. Consideration of this case is important for many 
applications, such as wall confinement of magnetized plasma, liner 
compression of magnetized plasma, etc., when it is necessary to take into 
account magnetic-flux and plasma losses due to the field diffusion and heat 
conduction to the wall. The role of a discharge occurring in plasma when the 
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magnetic flux flows out of it should be particularly substantial for hydrogen 
plasma, whose conductivity can be high by comparison with the conductivity 
of the plasma in the H-pressed discharge on the wall surface. In this case, if 
the hydrogen plasma density proves to be insufficiently small, discharge 
resistance will be determined by the discharge in the hydrogen plasma. 

Let us consider the development of this discharge in the following setup: 
there is hydrogen plasma with a magnetic field confined by a rigid non-
conducting insulator wall. This case was addressed qualitatively by 
Vekshtein [6.7, 6.9], and the resulting effective diffusion factor for a plasma 
with β << 1 ( β =16πN0T0 / B0

2 is the ratio of plasma thermal pressure to the 
magnetic pressure; N0, T0, B0 is the density, temperature and magnetic field 
in plasma far from the discharge region) proved to be on the order of 
D ~ cB0 /4πeN0; for β >> 1, it was on the order of D ~ cT0/10eB0. 

In this section, following Garanin [6.10], we will provide a quantitative 
analysis of the near-wall current layer structure and formulate the boundary 
condition with which the influence of this discharge on the plasma motion 
in the bulk volume can be described. 

Let all quantities depend on the X coordinate and the time t; let the magnetic 
field B and the electric field E be perpendicular to each other and the X axis; 
and let the characteristic times be large by comparison with the gas-dynamic 
times, such that the total pressure in the system manages to equalize: 

2NT + B2 / 8π = p0 ≡ 2N0T0 + B0
2 / 8π  .  (6.3.1)

Plasma density in the bulk of the volume is assumed to be small by 
comparison with the density in the near-wall discharge region. In this case, 
as shown in Vekshtein [6.7], the problem is quasi-stationary, i.e., in the 
equations of the magnetic and electric fields and of the thermal balance of 
the plasma in the discharge region, one can disregard time derivatives and 
consider the electric field and the energy flux to be constant. These 
equations will then take the form 

E = − c
4πσ

∂B
∂X

−
bΛ
e
∂T
∂X

 , 

 (6.3.2)

Q = −χ ∂T
∂X

−
cT
4πe

bΛ
∂B
∂X

+
c
4π
EB  . 
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The mass of plasma accumulated in the near-wall layer is 

 a = N dX
0

X0
∫   (6.3.3) 

(X0 is the boundary of the discharge region). The wall is assumed to be a 
plane X = 0, and plasma occupies the region of X > 0. Then, the boundary 
conditions for equations (6.3.1) and (6.3.2) are  

T (0) = 0  , 
 

 B(0) = B1  ,  (6.3.4) 
 

N (X 0 ) = 0  

( 1B  is the magnetic field in the insulator). The energy flux flowing into the 

discharge region from the plasma is Q = c
4π
EB0 +5N0T0v  (v is the velocity 

of the inflowing plasma). Because of the freezing-in of the magnetic field 
into the plasma far from the insulator, 

 v = cE / B0   (6.3.5) 

and, consequently, 

 Q = c
4π
EB0 1+

5
4
β

!

"
#

$

%
& .  (6.3.6) 

 
At the plasma/insulator boundary, the plasma stays non-magnetized by 
virtue of (6.3.4). In this region, the factors χ , bΛ  increase with distance from 
the wall and temperature; characteristic dimensions X corresponding to 
temperature T grow in accordance with (6.3.2), and discharge plasma 
accumulates. With plasma magnetization, the factors χ , bΛ decrease; 
consequently, the characteristic dimensions X and, simultaneously, density 
decrease. Therefore, the major contribution to the plasma mass 
accumulating in the discharge will be that of the region in which 
magnetization of electrons is ωeτe ~ 1. It is natural to choose p0 as a unit of 
measurement for pressure, and to choose [T] and [N] as units of  
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measurement for temperature and density such that p = p0 and weτe ~ 1 for 
T = [T], N = [N] (see Section 6.1). Based on these conditions, we get 

[T ]= p0cλe
3 m( )

2/5
 , 

 (6.3.7)

[N ]= p0
4/5 / cλe3 m( )

2/5
 . 

For choosing a measurement unit for the coordinate X, it is convenient to 
use equations (6.3.2) and substitute [T] and [N] from (6.3.7) as temperature 
and density. Then, introducing the dimensionless coordinate 

x = − E
e0,2m0,2c0,4λ0,4 p0

0,2
X (the electric field E is negative) and the 

dimensionless 

θ (x) =T / [T ]  , 
 

n(x) = N / [N ]  , 
 

h(x) = B / 8π p0  , (6.3.8)
 

ξ = −eEa / p0  , 

we can rewrite equations (6.3.1−6.3.3) as follows: 

2nθ + h2 =1  , 
 

4
3
α
θ 3/2

!h +b !θ =1  , (6.3.9)

 

bθ !h + 3
4
γ +

γ i
912A

"

#
$

%

&
'θ 5/2 !θ =

1+1.25β
1+β

− h  , 

 

ξ = ndx
0

x0
∫  , 
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where α, b, γ are defined in Section (6.1), and 

γ i =
2yi

2 + 2,64
yi
4 + 2,7yi

2 +0,677
 , 

 ( yi = y / 912A , A is the atomic weight). Here, as distinct from 

Section 6.1, we take into account the term iγ , representing ion heat 
conductivity, which is a small correction. The inclusion of ion heat 
conductivity, however, changes the solution behavior in the region of high 
magnetization 0xx ≅ . Boundary conditions of (6.3.4) in the new notation 
will be given by 

h(0) = h1  , 
 

 θ (0) = 0  , (6.3.10) 
 

 n(x0 ) = 0  , 

where 

h1 = B1 / 8π p0  . 

Let us estimate the magnitudes of the quantities that characterize the 
discharge region at high β. In this case, it follows from equations (6.3.9) 
that thermoelectric transport of magnetic flux makes the main contribution 
to the electric field, and heat conductivity to the energy flux. Then, given 
that y ~ 1 in the discharge region, we obtain h ~1/ β , T ~ β 0.2 , n ~ β −0.2 , 

x ~ β 0.2 , and ξ ~ 1. Thus, the parameter ξ, which characterizes the 
accumulated mass, is weakly dependent on β, changing only when β ~ 1. 

Results of numerical simulations of system (6.3.9) with boundary conditions 
(6.3.10) for h1 0; 0.5; 0; 0.5, β = 0; 0; 10; 10, A = 2 are shown in 
Figs. 6.11−6.12, and the plot of ξ as a function of β and h1, in Fig. 6.13 
(h1 = 0; 0.25; 0.5; 0.75 are represented by lines 1−4). 
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Fig. 6.11. Profiles of temperature θ , density n, and magnetic field h in a plasma 
with β = 0 in contact with an insulator with magnetic field: (a) h1 = 0; (b) h1 = 0.5. 

Fig. 6.12. Profiles of temperature θ , density n and magnetic field h in a plasma 
with β =10 in contact with an insulator with magnetic field: (a) h1 = 0; (b) h1 = 0.5. 

0.5 0.5 

(a) (b) 

(a) (b) 
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Fig. 6.13. Mass ξ of plasma deposited on the insulator as a function of β for 
h1 = 0; 0.25; 0.5; 0.75, represented by lines 1−4. 

The simulations show that thermoelectric processes, which play the central 
role in the magnetic flux transfer for β >> 1 and which result in the export 
of magnetic flux even into an insulator with a higher magnetic field 
(Fig. 6.12b) than in the plasma, are numerically not very essential for β >> 
1. For example, if we assume b = 0 in equations (6.3.9), the value of ξ for β 
= 0 and h1 = 0 will decrease by only 13 %. A noticeable decrease in ξ (by 
about 30%) with thermoelectric fluxes turned-off is observed only for β 
≈10. A very small contribution to the accumulated mass ξ  is made by the 

ion heat conductivity, which is a correction of ~1/ 912A , the turning off 
of which for β = 0 and h1 = 0 leads to the decrease of ξ by 2 %. 

Let us consider plasma deposition dynamics. The rate of mass accumulation 
da
dt

= N0v , in accordance with (6.3.5) and (6.3.8), is determined by the 

differential equation 

 a da
dt

= ξ (β , h1)
c
e
p0N0
B0

 ,  (6.3.11) 
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which for the total volume of plasma can be treated as a boundary condition 
describing plasma and magnetic-flux losses. For B0(t) = const., 
N0(t) = const., p0(t) = const., B1(t) const., and β(t) = const., plasma 
deposition is governed by the diffusion law 

a = 2ξ c
e
p0N0
B0

t  , 

 

E = ξ
2ec

p0B0
N0t

 , (6.3.12)

[X ]= e
0.7m0.2c0.9λ0.4

p0
0.3

2N0t
ξB0

 . 

 
The effective diffusion factor in this case is D ~ 2ξcp0/eN0B0, which, for 
β << 1, when ξ ≅ 0.5 (Fig. 6.13), yields D ~ cB0/8πeN0 and approximately 
corresponds to the estimate of Vekshtein [6.7], and for β >> 1, when         
ξ ≅ 0.25 (Fig. 6.13), yields D ~ cT0/eB0 and exceeds the estimate of 
Vekshtein [6.9] and the Bohm heat conductivity by approximately an order 
of magnitude. 

Let us now address the issue of the conditions for the applicability of the 
above megagauss range of magnetic fields and β ~ 1. Plasma density N0 
should be much smaller than the plasma density in the discharge region, i.e., 
in accordance with Section 6.1, N0(cm-3) < 3 • 1020 B1.6 (MG). In this case, one 
can consider the problem to be quasi-stationary and can employ equations 
(6.3.2) and the boundary condition N(X0) = 1. For N0(cm-3) > 3 • 1020 B1.6 
(MG), plasma density in the discharge region is on the order of N0 , and the 
simulations performed are inapplicable. The condition that radiation losses in 
the discharge region can be disregarded yields solution of the near-wall 
discharge problem. We restrict ourselves to the  

N0(cm-3)t(µs)<0.8 · 1020B0.2(MG)  .  (6.3.13)
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In addition, we ignored the role of the H-pressed discharge in the insulator, 
i.e., the magnetic flux flowing from the discharge through the plasma 
external to the insulator is assumed to be too small for the formation of an 
H-pressed discharge in the insulator. This means that electric fields (6.3.12) 
should be smaller than the fields obtained in Section 6.1. For the PMMA 
insulator, this condition for t t(µs)<0.03/B1.12 (MG) yields 

 N0(cm-3)t(µs)>9 · 1015B0.6(MG)  ;  (6.3.14) 

and for  

t(µs)0.03/B1.12(MG) ,
 

 N0(cm-3)>2 · 1017B1.72(MG)  . (6.3.15) 
 
If condition (6.3.13) is violated, i.e., with rather large time scales, the 
discharge will enter the stationary stage described in Section 6.1. If 
conditions (6.3.14) and (6.3.15) are violated, i.e., with rather small densities 
of the hydrogen plasma, the H-pressed discharge discussed in Section 6.1 
will occur on the insulator surface. 

6.4. Magnetized Plasma Cooling at the Exploding Metal Wall/Plasma 
Interface

In a number of cases, cooling of the magnetized plasma at the cold 
wall/plasma interface, which is accompanied by the interaction of magnetic 
and thermal processes, as shown above, results in anomalously high 
effective heat conductivity and magnetic diffusion coefficients. Indeed, for 
hydrogen plasma cooling at the interface with an insulator or dense multi-
charge plasma, effective heat conductivity proves to be on the order of the 
Bohm heat conductivity (Section 6.3). 

For the cooling of plasma bounded by a rigid, ideally conducting wall, the 
increase in heat conductivity by comparison with the classical magnetized 
heat conductivity, as shown by Vekshtein [6.2], is not appreciable and is 
possible only for plasmas with β >> 1. In this case, the metal wall can be 
considered rigid, ideally conducting if it does not explode when exposed to 
a heat flux from the plasma, i.e., its thermal conductivity in a condensed 
phase proves to be sufficient to remove heat without vaporization. This 
condition is fulfilled for relatively low energy densities (for instance, for 
plasma with T0 = 1 keV and β =1, it is satisfied at B0 ≤ 0.2 MG). For higher 
energy densities, the presence of a metal layer exploded by the heat flux 
substantially changes the nature of cooling and increases the heat losses of 
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the plasma. This particular case is discussed in this section. Magnetic fields, 
however, are considered to be not very high (B0 < 10 MG ), because for 
B0 > 10 MG, when the skin layer is exploded by Joule heat and the metal 
becomes non-conductive, the problem reduces to the problem of plasma 
cooling at the plasma/insulator interface considered in Section 6.3. 

Let us use the same problem geometry and designations as in Section 6.3. 
Characteristic time scales will, as before, be assumed to be large by 
comparison with the gas-dynamic scales, so that the total pressure, both in the 
hydrogen plasma and in the metal vapor, manages to equalize, and equation 
(6.1.1) holds true. Equations for the magnetic and electric fields and plasma 
heat balance have the form of (6.1.2). 

It turns out that, depending on the hydrogen plasma density, there are two 
cooling modes: for higher density, the key role, as with plasma cooling at the 
plasma/insulator interface, is played by processes in the near-wall plasma 
layer; for lower density, it is played by processes in the metal vapor. In both 
cases, however, effective heat conductivity of the plasma may greatly exceed 
the classical conductivity. 

6.4.1. Cooling of Dense Plasma

The presence of anomalously high effective heat conductivity 
coefficients indicates that, as already mentioned in Section 6.3, the 
problem for the hydrogen plasma is quasi-stationary: hydrogen plasma 
density at the plasma/wall interface is high by comparison with the 
density N0, and in equations (6.1.2) for the magnetic and electric fields 
and plasma heat balance in the near-wall region, we can disregard time 
derivatives and assume the electric field and the energy flux to be 
constant. Then, equations (6.1.2) will take the form of (6.3.2) with the 
energy flux Q equal to that of (6.3.6) flowing into the discharge region 
from the plasma. 

In ionized vapors, the leading role in heat transfer is played by radiation. As 
a result of the radiative heat conductivity, the mass of the vapor in the 
discharge region greatly exceeds the mass of the plasma. Therefore, the 
temperature of the vapor is markedly lower than that of hydrogen plasma, 
and the hydrogen plasma temperature at the plasma/vapor interface can be 
assumed to be zero. 
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Thus, if the magnetic field B1 at the hydrogen plasma/vapor interface is 
known, the boundary conditions for (6.3.2) will be as follows: 

T (0) = 0 , 
 

 B (0) = B1 , (6.4.1) 
 

N (−X 0 ) = 0  

(for the vapor boundary, we assume X = 0, for the discharge region 
boundary, X = –X0), and for the plasma, the problem reduces to the problem 
of plasma cooling at the plasma/insulator interface (Section 6.3). 

As the major contribution to the mass of the plasma accumulated in the 
discharge is made by the region in which electron magnetization is ωeτe ~ 1, 
and the total pressure p0 is specified, for the transition in (6.3.2) to 
dimensionless quantities it will be natural to use p0 as a pressure unit and 
take temperature and density units of measure from (6.3.7). 

Introducing the dimensionless coordinate x and the dimensionless 
temperature θ, density n, magnetic field h and plasma mass 

 ξ = eEa / p0  (6.4.2) 

in accordance with (6.3.8), we can rewrite the system of equations (6.3.2) in 
the form of (6.3.9). The boundary conditions (6.4.1) in the dimensionless 
variables will be written as (6.3.10) (here, E is assumed to be positive, and 
since X is negative, x is positive). 

The rate of accumulation of the plasma mass is described by the differential 
equation (6.3.11). The quantity ξ as a function of β and h1 is shown in Fig. 6.13. 

For a complete statement of the problem, we must determine the magnetic 
field B1. For sufficiently high plasma density, this can be done by using a 
system of ordinary differential equations. Indeed, in accordance with 
(6.3.11) and (6.4.2), discharge resistance in the hydrogen plasma falls as 
density N0 increases, whereas discharge resistance in the metal vapor does 
not depend on N0; therefore, for a sufficiently high-density magnetized 
hydrogen plasma, the conductivity of the vapor can be disregarded, and the 
magnetic field in the vapor can be considered to be constant (B = B1). To 
calculate it, we use the condition of magnetic flux conservation 

 d
dt
(B1X 1) = cE   (6.4.3) 
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for a vapor layer of thickness X1 and the condition of energy conservation, 
assuming the vapor to be an ideal gas with adiabatic index γ: 

d
dt

p1X 1
γ −1

"

#
$

%

&
'+ p1

dX 1
dt

+
d
dt

B1
2

8π
X 1

"

#
$$

%

&
''+
B1
2

8π
dX 1
dt

=
c
4π
EB0 1+

5
4
β

"

#
$

%

&
'  (6.4.4)

( 1p  is the thermal pressure of the vapor, which is constant because of the 
constancy of B = B1 and equilibrium condition (6.1.1)). Note that the energy 
conservation condition is used only if the system geometry is such that the 
energy flux from the vapor surface is completely offset by the flux from the 
surrounding walls (closed system). The opposite limiting case, in which the 
radiation flux from the wall is not offset at all, is discussed in Section 6.4.2. 
The set of equations (6.3.11) and (6.4.2−6.4.4), together with the 
equilibrium condition p1 + B1

2 / 8π = p0 , completely determines the cooling 
of dense plasma. 

When p0 = const., N0 = const., B0 = const., β = const., and p0 = const., we 
find from (6.3.11) and (6.4.2−6.4.4) that plasma deposition proceeds 
according to the diffusion law 

a = 2ξ c
e
p0N 0

B0
t  , 

E =
ξ
2ec

p0B0
N 0t

 ,  (6.4.5)

 

X 1 =
2ξc
e
p0B0t
N 0B1

2
 , 

and the dimensionless magnetic field h1 is obtained from the algebraic 
equation 

h1
2 γ − 2
γ −1

− h1
2+ 2.5β
1+β

+
γ
γ −1

= 0  , 
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i.e., 

h1(β ) =
1

(2−γ ) 1+β
1+β 1+ 25

16
β +

3
2

"

#
$

%

&
'(γ −1)2

(

)
*

+

,
- − (γ −1)(1+5β / 4)

.
/
0

10

2
3
0

40
 .(6.4.6) 

 

For β→ 0, h1→ 1, and for β→∞ , h1 ≅
0.4γ

(γ −1) β
→ 0 ; thus, in accordance 

with Section 6.3, for β→ 0, ξ→ 0 , and for β→∞ , ξ→ const . The 
dependence ξ (β , h1(β ))  for h1(β )  from (6.4.6)⎯obtained by means of 
equations (6.3.9) for the set of coefficients α, b, γ  from Epperlein and Haines 
[6.22] (somewhat more accurate than (6.1.9)) for γ = 1.21∗⎯is depicted in 
Fig. 6.14 (Curve 1). For comparison, the same figure shows the dependence 
ξ (β , h1(β ))  for the set of coefficients (6.1.9) (Curve 2). Note that although 
the difference between the coefficients from Epperlein and Haines [6.22] and 
(6.1.9) is rather considerable (for instance, for b it gets as high as 30 %), the 
difference between the values of ξ (β )  does not exceed 6 %. This points to a 
weak dependence of ξ  on the values of transport coefficients; in addition, 
apparently, mutual offsetting between different-sign deviations of Epperlein 
and Haines [6.22] from (6.1.9) for different ωeτ e  is substantial. 

 

                                                
∗ γ = 1.21 approximates the adiabatic index of copper vapors in megagauss magnetic fields 
(see the next section) 

Fig. 6.14. Plasma mass deposited 
on the exploding metal ξ as a 
function of β for the set of 
transport coefficients from [6.22] 
(Curve 1) and for the set of 
coefficients (6.1.9) (Curve 2). 
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Since for high β, h1 ≅ 0, the effective diffusion coefficient D ~ 2ξcp0/eN0B0 
for the dense plasma cooling at the interface with an exploding metal wall 
proves to be the same as for plasma cooling at the plasma/insulator interface 
(ξ (β→∞) ≅ 0.2, D ~ cT0 / eB0 ) and exceeds the Bohm heat conductivity by 
an order of magnitude; while for β ≈ 1, when ξ ≈ 0.03, it proves to be on the 
order of the Bohm coefficient. 

The theoretical results presented here that describe dense plasma cooling near 
the exploding metal wall were verified by numerical simulations of the cooling 
of deuterium plasma with T0 = 0.5 keV, B0 = 0.5 MG, and β = 1 near a copper 
wall. The simulations took into account the hydrodynamic motion, the magnetic 
diffusion and electron heat conductivity (both for deuterium and for copper). In 
addition, for deuterium, we took into account an additional contribution to the 
electric field and the heat flux due to the Nernst effect (summands with the 
factor bΛ  in (6.1.2)) and ion heat conductivity; for copper, we accounted for the 
radiative heat transport. The transport coefficients α, b, γ in deuterium were 
found from the formulas of Epperlein and Haines [6.22], and γi, from Braginskii 
[6.11] (Section 6.3). The equation of state, conductivity, electron thermal 
conductivity, and the radiation paths for copper used in the simulations were 
determined by formulas presented in Section 6.2.1. The boundary condition for 
the radiation propagation was zero radiation flux at the discharge region 
boundary (closed system). Initial copper was considered to have normal density 
δ =1 and a temperature close to room temperature, ε = 0.0013. 

Fig. 6.15 shows temperature and magnetic-field profiles, obtained using 
equations (6.3.9) (solid curves) and numerical simulations (dashed curves). 
The comparison shows satisfactory agreement. Much better agreement is 
observed for the volume of cooled plasma. In numerical simulations, the 

plasma thickness decreased by that 
time by ΔX = 0.042 cm, and according 
to (6.4.5), the deposited plasma 
thickness should be ΔX = 0.045 cm. 

 
 
Fig. 6.15. Profiles of temperature T and 
magnetic field B at time t = 0.085 µs for 
the cooling of deuterium plasma with 
T0 = 0.5 keV, B0 =0.5 MG, and β =1 near 
the copper wall, obtained using equations 
(6.3.9) (solid curves) and numerical 
simulations (dashed curves). 
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6.4.2. Shunting Metal-Vapor Discharge  

In sufficiently low-density hydrogen plasma, as opposed to the case 
considered in Section 6.4.1, the conductivity of metal vapor 
predominates, and the metal-vapor discharge that thereby shunts the 
hydrogen-plasma discharge plays the key role. Let us consider a 
problem, in which, at the initial time, plasma whose temperature, density 
and magnetic field are constant throughout the volume is in contact with 
a cold copper wall. The key factor in the heat transfer through the metal 
vapor is radiation whose transport in the context of long time scales for a 
closed system is found from the heat conduction equation. Since this 
problem has no characteristic length scale, its solution is self-similar, 
and the heat conduction and magnetic diffusion determine the diffusive 
nature of the self-similarity. The consideration of this problem differs 
from that of the problem of magnetic-field diffusion into the insulator 
accompanied by radiative heat conductivity (Section 6.1.3) solely in 
terms of the boundary conditions. 

For the equation of state, free radiation path and conductivity of copper vapor, 
we assume the power dependence on temperature and density. Then, using the 
formulas from Section 6.2.1 for these quantities in the temperature range of 
3−30 eV and the density range of 10-3−10-1 g/cm3, we approximately obtain the 
following dependences (in cm, g, µs, and temperature in eV): 
p / ρ = 0.0075T 1.67 / ρ0.14 , lR =10

−6T / ρ1.64 , σ = 2.7 ⋅108T 0.92ρ0.2 , adiabatic 
index γ = p / ερ +1= 1.21. In order to convert to dimensionless variables, the 
units of measurement for temperature [T] and density [ρ]  are chosen as in 
Section 6.1, such that the heat conductivity and magnetic diffusion coefficients 
κ = c2 / 4πσ  are of the same order of magnitude—σSB[T]4lR([T], [ρ]) / 
p0 = κ ([T], [ρ])—and thermal pressure is on the order of the assigned p0 , 

p([T ], [ρ]) = p0 ; then, [T ]=12eV p0
0.31  (GPa), [ρ]= 0.01g/cm3 p0

0.57  (GPa).  
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Using the self-similar variable ς = 390 ρ dX∫ (g/cm2 ) / t(µs)p0
0.37 (GPa)"

#$
%
&'  

and introducing dimensionless functions 

T = [T ]θ (ς )  , 

ρ = [ρ]n(ς ) ,

B = 8π p0h(ξ )  , 

E = 0.63 kV
cm

p0
0.3(GPa)
t(µs)

ε(ς )  , 

Q = 2.5⋅108 W
cm2

p0
0.8 (GPa)
t(µs)

q(ς )  , 

X = 0.25µs t(µs)
p0
0.2 (GPa)

x(ξ )  , 

we rewrite equations (6.1.1) and (6.1.2) as follows: 

θ1.67n0.86 + h2 =1 , 
 

dε
dς

=
ξ
n
dh
dς

−
h
n
dn
dς

"

#
$

%

&
'  , 

 

dh
dς

= −
1
2
θ 0.92

n0.8
ε  , 

 

q = −16
3

θ 4

n0.64
dθ
dς

  (6.4.7)

 

dq
dς

=
ε 2

2
θ 0.92

n0.8
+
5
6
ς
14
3
θ 0.67

n0.14
dθ
dς

−
θ1.67

n1.14
dn
dς

"

#
$

%

&
'  , 

dx
dς

=1/ n  . 

Let us determine boundary conditions for equations (6.4.7). A heat flux at 
the plasma boundary ( =ς 0 ) can be calculated as the difference between 
the total energy flux coming to the discharge region from the plasma 
(c / 4π )EB0 (1+5β / 4) and the electromagnetic energy flux (c / 4π )EB1  
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(B1 is magnetic field at the hydrogen plasma/vapor interface). Thus, one of 
the boundary conditions at this interface is the relationship between the heat 
flux and electric field, which is written in dimensionless variables as 
 

 q(0) = 1+ (5 / 4)β
1+β

− h1
"

#
$
$

%

&
'
'
ε(0)  . (6.4.8) 

 
The second boundary condition results from the fact that the vapor 
discharge shunts the hydrogen-plasma discharge, i.e., for the hydrogen-
plasma discharge, in this case, we assume that E = 0, which means that, 
from (6.4.5), ξ = 0; since ξ becomes zero at h1 = 1 1, the boundary condition 
should be assumed to be 

 h1 = 1 . (6.4.9) 

The boundary conditions at the interface of the nonvaporized metal and the 
vapor will consist in temperature, heat flux, and electric field equaling zero: 

 θ (ς0 ) = q(ς0 ) = ε(ς0 ) = 0  .  (6.4.10) 

By solving equations (6.4.9) with boundary conditions (6.4.10−6.4.12), and 
using the equation 

da
dt

= N0cE / B0 , 

we determine the thickness of the deposited plasma: 

 ΔX = 0.25µs t(µs)
p0
0.2 (GPa)

ε(0) 1+β  . (6.4.11) 

Let us estimate the orders of magnitude of the quantities that characterize 
the discharge region for large and small β. For β >> 1, one can disregard the 
role of the terms with magnetic field in the heat transfer equations and find 
the electric field from relationship (6.4.8); then, ε(0) ~ β–0.03, n ~ β–0.22, 
x ~ β0.47, and ε(0) ~ β–0.03, and the magnetic field exponentially decays with 
discharge-region depth. For β << 1, in the discharge region, θ1.67n0.86 ~ β , 
and from (6.4.7) we have  

θ ~ β 0.42  , 

 n ~ β 0.35  ,  (6.4.12) 

x ~ ε(0) ~ β 0.27  . 
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Some results of numerical simulations of system (6.4.7) with boundary 
conditions (6.4.8−6.4.10) are shown in Figs. 6.16 and 6.17. Fig. 6.16 depicts 
as functions of β the electric field at the entry point into the discharged ε(0), 
the mass of the vapor in the discharge ς0, the magnetic field at the interface 
with nonvaporized metal h(ς0), and the ratio of vapor volume X(ς0) to the 
volume of deposited plasma (6.4.11) s = x(ς0) / ε(0)√1+B. The solid curves in 
Fig. 6.17 are the profiles for magnetic field and temperature found by solving 
the equations of (6.4.7) and converted to dimension units for comparison with 
numerical simulation results for the case of the cooling of plasma with 
B0 = 1 MG, T0 = 10 keV, and β = 1 
by the time t = 0.035 µs. The figure 
also shows numerical simulation 
data (dashed curves) obtained using 
the procedure described in 
Section 6.4.1. The numerical 
simulation yields a smaller size for 
the discharge region, which is due to 
the influence of the hydrogen-
plasma discharge, which was not 
included in the calculations based on 
formulas (6.4.7). This difference 
also affects the thickness of 
deposited plasma, which, in 
accordance with (6.4.11), is ΔX =
0.047 cm, whereas the numerical 
simulation yields ΔX = 0.036 cm. 

 

 

 

 

 

Fig. 6.17. Profiles of temperature T and magnetic 
field B at the time t = 0.085 µs for the cooling of 
deuterium plasma with T0 = 10 keV, B0 = 1 MG, and 
β = 1 near the copper wall, obtained using equations 
(6.4.7) (solid curves) and numerical simulations 
(dashed curves). 

Fig. 6.16. Electric field at the entry point 
into the discharge ε(0), vapor mass in the 
discharge ς0, magnetic field at the interface 
with nonvaporized metal h(ς0), and ratio of 
vapor volume to volume of deposited plasma 
s as functions of β. 
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Until now, we have considered the system to be closed, such that the flux 
of energy emitted from the vapor surface was completely offset by the 
radiation coming from the surrounding walls. Let us move now to the case 
of an open system, whose geometry is such that the flux is in no way 
offset. Then, in the vapor, due to the heat release, the characteristic 
thermal pressure is much smaller than the magnetic and thermal pressure 
of the hydrogen plasma, βv <<1, β , and it varies over time. To determine 

the dependence βv (t) , we take into account that the heat flux from the 

surface, which in this case corresponds to blackbody radiation Q ~ T 4 (t ) , 

should offset the heat coming from the plasma ~ E(t) ~ ε(0) / t . 
Equating these fluxes and using the dependences of θ  and ε(0)  on β  

from (6.4.12), we obtain βv ~ t
−0.35 , X ~ t0.4 . Thus, X grows more slowly 

than according to the diffusion law, and the vapor-discharge resistance in 
the open system is less than in the closed system. 

Let us discuss the question of when plasma can be considered sufficiently 
dense, and when, for its cooling, we can use the results of Section 6.4.2 and 
when we can use the results of Section 6.4.3. To answer this question, as 
already mentioned, one should compare hydrogen-plasma discharge 
resistance with that of metal vapor (by comparing the thicknesses of the 
deposited plasma, calculated with formulas (6.4.5) and (6.4.11)). The 
governing mode will be that with a smaller thickness, although if the 
difference is not very large, one can expect an appreciable influence by the 
mode not taken into account (as for the case of Fig. 6.17), which reduces the 
thickness of deposited plasma. In any of these modes, however, if plasma 
magnetization is high enough, the effective heat conductivity can be 
markedly higher than the classical heat conductivity. 

The high values of effective heat conductivity coefficients can make it 
difficult to produce a high-temperature magnetized plasma in the new 
systems for liner compression of plasma from an ultrahigh speed flow 
discussed in Turchi et al. [6.23]. 

6.5. Stationary Discharge during Magnetic Flux Transfer through the 
Insulator Surface 

A qualitatively different type of surface discharge forms at the interface of 
the condensed matter and the vacuum (or plasma), when the magnetic flux 
flows out of condensed matter. Such a discharge may occur in different 
pulsed power systems during the transfer of electromagnetic energy 
through the insulator surface. Figure 6.18 shows diagrams of units in 
which energy is transferred to a vacuum, plalsma, and a liner. The 
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operation of such units may involve difficulties resulting from the insulator 
surface breakdown and its subsequent transition to a quasi-stationary 
discharge (H-thrown discharge; this term is used, because the 

ponderomotive force 1
c
[ jH ] throws off the conducting ionized vapor from 

the insulator surface; see Fig. 6.19). In this case, part of the current 
delivered to the unit branches off to the discharge, resulting in a decrease 
in the power delivered to the load through the insulator surface.  

Fig. 6.18. Diagrams of units with electromagnetic energy transfer through the 
insulator surface: 1) conducting walls, 2) insulator, 3) plasma (or vacuum), 
4) liner. The diagram shows the electric- and magnetic-field vectors, as well as the 
Umov-Poynting vector.  

 

Fig. 6.19. Discharge zone: 
1) nonvaporized insulator, 
2) insulator vapor, 3) beginning of 
the discharge zone, 4) end of the 
discharge zone. The figure shows 
the current-density vector, 
magnetic-field vector, and velocity 
of matter vector, as well as the 
direction of the x coordinate. 
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In this case, since matter can expand together with the magnetic field, there 
is considerable hydrodynamic motion, which carries the magnetic flux 
along with matter away from the surface. In the case of an H-thrown 
discharge on the insulator surface, some of the Joule heat given off in the 
discharge is transferred by radiation or heat conduction to the insulator, 
causing its vaporization and conversion into plasma. The hydrodynamic 
outflow of matter and diffusive processes (magnetic diffusion and heat 
conduction) balance each other in the discharge region, producing a 
stationary discharge. 

The possibility of the formation near the insulator surface of a stationary 
surface discharge that constrains the rate of outflow of magnetic field lines 
was demonstrated by Keck [6.24] and Workman [6.25]. Workman [6.25] 
developed a theory for such a discharge, in which a number of simplifying 
assumptions are used, including the assumption concerning complete single 
ionization of the insulator vapor flowing out of the discharge, which holds 
true for moderate magnetic fields, B ~ 104 G. In this Section, we consider a 
more general case of arbitrary multiple ionization, which is important for 
stronger magnetic fields, in particular those used in magnetic liner 
acceleration experiments, and which may be necessary for the analysis of 
liner implosion as applied to MAGO plasma compression.  

Studies of the H-thrown discharge in strong magnetic fields were carried out 
by Garanin et al. [6.5] and Garanin and Karmishin [6.6]. The heat flux was 
determined by the blackbody radiation of ionized vapor flying away in 
Garanin et al. [6.5] and by the electron heat conductivity of the discharge 
plasma in Garanin and Karmishin [6.6]. 

In the case of interest here, as in the previous cases, the magnetic field B and 
electric field E are perpendicular to each other and parallel to the insulator 
surface, which is considered flat. A self-sustained surface discharge in the 
insulator vapor occurs because the ponderomotive force−induced plasma 
outflow from the surface is offset by the vaporization of new insulator 
portions by the heat fluxes from the plasma being carried off. The ionized 
vapor entering the discharge region is further heated up by Joule heat and is 
accelerated until the plasma velocity reaches the velocity ν1 of the outflow of 
the magnetic force lines and the electric field in the associated frame of 
reference becomes equal to zero. 

Under typical experimental conditions, the thickness of the discharge zone xB 
is small by comparison with the dimensions L of the region of insulator vapor 
motion (at B ~ 104 G, xB proves to be on the order of 0.1 cm and decreases 
with B). Therefore, the setup time for the vaporization regime is small by 
comparison with the characteristic times for the variation of the magnetic 
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field and other quantities that influence the current layer. Consequently, the 
discharge can be considered stationary. When solving a complete 
magnetohydrodynamic problem that describes the operation of an 
experimental installation in which such a discharge takes place, the discharge 
zone can be replaced with an infinitely narrow jump of all MHD quantities. 
Our goal is to find conditions on this jump, so we need to find the dependence 
of the plasma outflow velocity ν1, as well as plasma density and temperature, 
on the value of magnetic fields in a nonvaporized insulator B0 and at the exit 
from the current layer B1. 

An essential factor is that for obtaining these dependences it is strictly 
speaking insufficient to use only integral conservation laws relating quantities 
at the entry into the discharge region and at the exit from it; one should also 
solve the problem of the structure of that region. Workman [6.25] managed to 
do without solving this more complex problem thanks to an approximation in 
which the temperature of the plasma flowing out of the discharge was 
considered to be high enough for almost complete first ionization, but at the 
same time low enough to enable him to disregard further ionization, and the 
heat energy was considered low by comparison with the ionization energy, 
and the thermal pressure was considered low by comparison with the 
magnetic pressure. Our statement of the problem is free of such strict 
constraints [6.25]. In mathematical terms, it is an eigenvalue problem. 

6.5.1. Discharge Maintained by Radiation 

The dependence of all quantities in the discharge on the normal coordinate x 
is described by a system of stationary MHD equations: 

ρ v = const  ; (6.5.1)
 

p+ ρ v2 + B2 / 8π = const  ; (6.5.2)
 

ρ v (w+ v2 / 2)−Q − cEB / 4π = const  ; (6.5.3)
 

−κ dB / dx+ vB = cE = const  , (6.5.4)

where ρ(x), ν(x), p(x), B(x), w(x), Q(x), and κ(x) are the current values of 
the density, velocity, pressure, magnetic field, specific enthalpy, heat flux, 
and magnetic diffusion coefficient, respectively; E is the electric field. The 
system of equations (6.5.1−6.5.4) represents the mass, momentum, energy 
and magnetic flux conservation laws in the frame of reference with a resting 
current sheath. One can consider this frame of reference to be identical to 
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the laboratory one, because the characteristic density in the current sheath 
turns out to be very small by comparison with the insulator density. 

Solving this problem is made easier by the fact that, in cases of practical 
interest, consideration of the heat flux Q can be greatly simplified. Let us 
estimate the optical thickness of the current sheath xB/l (l is the Rosseland 
mean free path of radiation, xB ~ κ/ν), proceeding from the diffusion 
approximation for describing the heat transfer. Within this approximation, 
the temperature conductivity and magnetic diffusion coefficients, 
~ lσSBT4/ρw and κ, respectively, should be of the same order of magnitude. 
Also, using the relationships 

ρw ~ ρ v2 ~ B2 / 8π

and p, λ  and κ  as power functions of ρ  and T (see Section 6.1.2), we find 

xB / l ~ κ / l v ~σ SBT
4 / (ρwv) ~ 0.2B0.14  , 

where B is measured in MG. 

Thus, for a typical insulator containing light elements, for moderately high 
magnetic fields, the optical thickness of the current sheath is small. 
Therefore, the heat flux Q towards the insulator from the plasma flowing 
out of the current sheath and having a temperature of T1 should be 
considered equal to σ SBT1

4 *, with this flux Q being almost constant over the 
thickness xB, where all the other quantities (B, ρ, ν T, and gas-dynamic and 
magnetic energy fluxes) vary significantly. The absorption of the heat flux 
begins at distances of x ~ l, i.e., at the outlet of the current sheath to the 
insulator side, where the variations of the rest of the fluxes in equation 
(6.5.3) are small by comparison with their characteristic values in the 
current sheath. Consequently, the whole region is divided into two zones: 
Zone I of the current sheath, where Q in equation (6.5.3) can be disregarded, 
and Zone II of heat flux absorption, where in equation (6.5.3), apart from Q, 
one should leave only the terms of the first order of smallness for the 
velocity v. 

The subscripts 0 will denote the quantities in the forepart of the discharge 
region (on the side of the nonvaporized insulator), and the subscripts 1, 
                                                
* If the plasma in the complete magnetohydrodynamic problem is optically thick. 
Otherwise, the flux Q  should be determined by the conditions of the complete problem, 
while within the H-thrown discharge problem of interest to us, this flux will be an external 
parameter (this case is discussed at the end of the section). 
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those in the rear part. As the insulator density is high, ν0 = 0. The heat flux 
does not penetrate deeply into the insulator, and therefore Q0 = 0.  

At the outlet of the current sheath, the current density is equal to zero, 
which is why it follows from (6.5.4) that 

v1B1 = cE  .  (6.5.5)

We introduce dimensionless variables: 

u ≡ v / v1  , 

h ≡ B / B1  , 

q ≡Q / v1 ⋅ (B1
2 / 8π )  , 

p ≡ p / p1  , 

as well as parameters µ  and β : 

µ ≡ ρ1v1
2 / (B1

2 / 8π )  , 

β ≡ p1 / (B1
2 / 8π )  . 

Then, assuming that the insulator vapor is a gas with the adiabatic index γ 
and using (6.5.1) and (6.5.5), we rewrite equations (6.5.2) and (6.5.3) in the 
dimensionless form 

β p +µu + h 2 = β p0 + h0
2 = β +µ +1  ;  (6.5.6)

γ
γ −1

β pu+µu2 / 2− q+ 2h = 2h0 =
γ
γ −1

β+
µ
2
− q1 + 2 . (6.5.7)

From equations (6.5.6) and (6.5.7), one can derive a relationship between µ  
and β by using the smallness of q in Zone I. Disregarding q and excluding p 
from (6.5.6) and (6.5.7), we get 
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 u = γ
γ −1

(β +µ +1− h2 )± D
"
#
$

%
&
'
/ γ +1
γ −1

µ  ,  (6.5.8) 

where 

 D =
γ
γ−1

(β+µ+1− h 2 )
$

%
&

'

(
)

2

−
2(γ+1)
γ−1

µ 2+ µ
2
+

γ
γ−1

β− 2h
*

+
,

-

.
/  .  (6.5.9) 

The analysis of formulas (6.5.8) and (6.5.9) with the use of the conditions of 
µ = 1 at h = 1 and u = 0 at h = h0 > 1 shows that for h = 1, the sign for the 
radical in (6.5.8) should be positive. On the other hand, at the point h ≅ h0 , 
≅u 0 at the interface between Zones I and II, this sign is negative, which 

follows from the condition of p > 0. As the rarefaction shock wave is 
unstable, the change in the radical sign should occur at D = 0. In this case, it 
follows from the condition D ≥ 0 that dD/dh should be equal to zero at this 
point. 

Based on these conditions, we find the relationship between µ and β in the 
parametric form 

 µ =
2h*

2γ 2

γ +1
(h* −1)(γh* + 2−γ )
(γh* −γ +1)

2
 ;  (6.5.10) 

 β = µ (γ 2 −1) / γ 2h* + h*
2 −µ −1  , (6.5.11) 

where h* is the parameter. 

Dimensionless quantities of the magnetic field h0 and pressure p0 in the 
insulator* can be calculated from equations (6.5.6) and (6.5.7) 

 h0 =1+µ / 4+βγ / 2(γ −1)  ;  (6.5.12) 

 p0 =1+ (1+µ − h0
2 ) / β  . (6.5.13) 

                                                
* The presence of pressure p0 ≠ 0 in the insulator at high magnetic fields (B ≥ 10 MG) may 
lead to the occurrence of pronounced electric conductivity, and the theory set forth here will 
be invalid in this case. 
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Note the presence of a limitation on the range of variation of µ and β. The 
analysis of the function h(x) at h, u→1 (Eq. (6.5.4)) shows that the finite 
solution exists only if the following inequalities are fulfilled: 

γ β < µ ≤ 2+γ β . 

The dependence µ(β) found from equations (6.5.10) and (6.5.11) fulfills the 
first of them. The second inequality is nontrivial. It coincides with the 
condition for the total speed of sound c1 

c1
2 ≡ B1

2 / 4πρ1 +γ p1 / ρ1 ≥ v1
2  ,  (6.5.14)

which is necessary for the solution to be stable [6.26]. This limitation is 
associated with the existence of a limiting vaporization regime under which 
1v achieves its highest possible value, ν1max = c1 (similar to the Jouget 

combustion mode). 

In order to obtain the value of velocity ν1, one must consider the process of 
heat absorption in Zone II in more detail. It is shown above that for the 
whole length of the current sheath, the heat flux is 

Q ≈Q1 =σ SBT1
4  , (6.5.15)

where T1 is the vapor temperature in the rear part of the discharge region. 
Let us assume that the radiation free path depends only on density and 
temperature, l(ρ,T) (the gray matter assumption). For the equation of state, 
free path and magnetic diffusion coefficient, let us take a power dependence 
on temperature and density: 

p / ρ = AT n / ρm  ;  (6.5.16)

l = ΛT j / ρ i  ; (6.5.17)

κ = K / (ρ kT l )  . (6.5.18)

Then, from (6.5.15) we obtain 

q1 =σ SB
β
Aµ
!

"
#

$

%
&

4/n

µ 4m/n
B1
2

8π

!

"
##

$

%
&&

4m/n−1

v1
8(1−m)/n−1  .  (6.5.19)
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Using the smallness of q in Eq. (6.5.7), leaving the major terms in the 
expansion for velocity u, we find 

 dq
dξ

−
2lv1
κ

=
γ
γ −1

β p0
du
dξ

 .  (6.5.20) 

Here, the function q(ξ) is given by

q(ξ ) = 2q1 cosθ exp(−ξ / cosθ )d
0

1

∫ (cosθ )  

for pure absorption of the Lambert source photons in Zone II, since by 
virtue of q1 << 1, the temperature in Zone II is much lower than T1. 
Proceeding to the variables 

y ≡ q
q1

 , 

 

z ≡ γ
γ −1

β p0
q1
u  

 
in equation (6.5.20) and using (6.5.16−6.5.18), we obtain 

 d z
dξ

+ azα = dy
dξ

 , (6.5.21) 

where  

α = i − k + ( j + l)(1−m) / n ; 

 

 a = q1
α−1

γ
γ −1

β p0
"

#
$

%

&
'

α

2Λ(β p0 )
( j+l )/n

KA( j+l )/n
v1
1+2α

µα B1
2

8π

"

#
$$

%

&
''

i−k−( j+l )m/n
 .  (6.5.22) 

The solution z(ξ) of the first-order differential equation (6.5.21) should 
fulfill two boundary conditions: 

 z→ [(α −1)aξ ]−1/(α−1)  at ξ→ 0 ;  (6.5.23) 
 

 z(ξ )→ y(ξ )  at ξ→∞  ,  (6.5.24) 
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so we have a problem of determining the eigenvalue of a. Condition 
(6.5.23) follows from the requirement of smooth transition to the solution in 
Zone I at h→ h0 . Condition (6.5.24) follows from the fact that the cause of 
initial insulator heating is the heat flux. If we insert the eigenvalue of a 
found after the solution of the problem into equation (6.5.22), we can 
calculate the velocity ν1. 

Let us consider a specific, rather typical case. For PMMA H8C5O2, using the 
values of the constants in formulas (6.5.16−6.5.18) in Section 6.1.3, we 
obtain α = 4.08 . The numerical solution of (6.5.21) with boundary 
conditions (6.5.23) and (6.5.24) yields a ≈ 2, and from (6.5.22), 

v1 =
5.5p0

0.061µ0.541

β 0.345
(B1

2 / 8π )0.156  (6.5.25)

(in units of g, cm, and µs). 

Note that the dependence of the solution obtained on the path value is very 
weak (the vapor velocity is ν1 ~ l0.04). Therefore, it is natural to expect that 
the inaccuracy associated with the gray matter assumption will also have a 
weak effect on the result. 

Combined with (6.5.10−6.5.13), formula (6.5.25) gives a correlation between 
the vapor velocity ν1 and the fraction of current diverted to the discharge (1-1/
h0 ) as a function of the magnitude of magnetic field B0. This particular 
correlation serves as a boundary condition in the complete MHD problem. 

The limiting vaporization regime corresponding to the equality in formula 
(6.5.14) is represented by the following values of quantities: 

µ = 2.12 , 

β = 0.091 , 

h0 = 1.71 ,  (6.5.26)

p0 = 3.04 , 

v1max =17(B0
2 / 8π )0.156 ,

and the limiting power transferred through the insulator surface is equal to 

` 
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The quantity q1 for the example under consideration in the limiting regime, 

q1 = 0.099(B0
2 / 8π )0.041 , 

is weakly dependent on B0, and for B0 < 10 MG it has a magnitude of q1 ≤ 0.1 
<< 1, which verifies our assumption that the radiation energy flux is small. 

To illustrate the solution obtained, Fig. 6.20 shows the plots of the major 
magnetohydrodynamic quantities as a function of optical thickness 
x (t4 ≡ (T / T1)4)) for the limiting regime. 

 
Fig. 6.20. Dimensionless pressure p, magnetic field h, biquadrate of temperature 
t 4 , and velocity u as functions of optical thickness ξ  in the limiting regime of the 
H-thrown discharge. 

As the velocity ν1 decreases to a point below the limiting value, the fraction of 
current shunted to the discharge also decreases. For example, when 
ν1 = 0.61ν1max, the fraction of shunted current becomes equal to (1− h0

−1) = 0.11 

(h0 =1.128, µ = 0.31, β = 0.026 ). However, if the boundary velocity of the 
vapor flow from the insulator in the complete MHD problem exceeds ν1max, 
there will be a rarefaction wave between the insulator and the boundary [6.26], 
since the vapor velocity near the insulator remains equal to n1max. 

E.S. Pavlovsky and V.B. Yakubov also obtained a numerical solution of the 
problem within the framework of a diffusion approximation in the 
description of heat transfer. Despite the formal inapplicability of that 
approximation, the results are rather close to those above. Specifically, the 
velocity ν1max depends on B0 almost as it does in (6.5.26), and the difference 
for B0 = 1 MG is on the order of only ~10%. 
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The range of applicability of the theory presented is bounded on the side of 
high magnetic fields by the values of B ~10  MG (see the footnote above on 
the insulator pressure). Apart from this, the theory should be applicable to 
all the cases in which it is possible to describe the equation of state, the path 
and conductivity of insulator vapor by power formulas (6.5.16−6.5.18) and 
in which the conditions of stationary vaporization are met. The latter 
assumes a fairly slow variation of the magnetic field over the time ~ l/ν1, 
during which insulator particles fly away a distance of about a photon path, 
such that the intensity of insulator surface irradiation varies slowly as well 
and corresponds to the intensity of blackbody radiation of vapor σ SBT1

4 . 

The values chosen for H8C5O2 in formulas (6.5.16−6.5.18) are oriented to the 
magnetic fields of B ~ 0.1 – 1 MG and the velocity of ν1 ~ 106–107 cm/s in 
order to theoretically analyze the process of insulator vaporization in 
magnetic fields stronger than B ~ 104 G [6.24, 6.25]. Note that although these 
values of the parameters have not been calculated specifically for the fields of 
B ~ 104 G used in the experiments of Keck [6.24], the calculated results for 
the velocity ν1 and shock velocity in the magnetic shock tube show 
reasonably good agreement (taking into account the possible pronounced 
difference of the insulator irradiation intensity from blackbody radiation of 
the vapor because of small optical thicknesses in Keck [6.24]) with the 
experimental values in the order of magnitude and yield nearly the same 
dependence of velocities on the magnetic field: with B changing by an order 
of magnitude, velocities in the experiments changed by a factor of 2−3. 

We also obtained formulas to describe the vaporization of ceramic insulator 
Al2O3 both for the case when the heat flux incident on the insulator surface 
equals σSBT1

4  and for the case when it is defined from outside (determined 
by the whole body of plasma and dependent on the system geometry). In the 
units of g, cm, 10-7 s, for the first case: 

v1 = 0.611
p0
0.091µ0.536

β 0.294
B1
0.385  , 

and for the second case, the velocity 

v1 = 0.288
(β p)0

0.291µ0.616

Q0.424
B1
1.43  (6.5.27)

depends on the flux Q incident on the insulator surface. Along with other 
formulas, these formulas make it possible, when the values of B0 and B1 are 
known, to also find the pressure p and the density ρ of the vapor flowing out 
of the discharge (for Al2O3, we assume γ = 1.2). 
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In Garanin et al. [6.27], we performed numerical simulations for 
experiments involving the acceleration of liners deposited on the surface 
of cylindrical PMMA H8C5O2 and ceramic Al2O3 insulators, with account 
taken of the vaporization of these insulators induced by the radiation flux 
determined by the whole body of plasma (i.e., using formula (6.5.27) for 
Al2O3 and a similar formula for H8C5O2). The range of magnetic fields in 
these experiments was B ~ 0.6 МG, and characteristic velocities were 
~ 5·106 cm/s. The simulations and the experiments demonstrated good 
agreement, and vaporization intensity for the ceramic insulator turned out 
to be higher than for PMMA in both simulations and experiments. 

6.5.2. Discharge Maintained by Electron Thermal Conductivity 

The effect of an H-thrown discharge can be reduced by attenuating the 
radiation fluxes, e. g., by changing the installation geometry, using special 
shields to protect the system from radiation, etc. Even in the absence of 
radiation, however, if a discharge occurs, it can further be maintained by 
the electron thermal conductivity of plasma and can result in branching of 
part of the current from the load and in the entry of the plasma of the 
insulator material into the load volume. In the absence of radiation flux, 
the deleterious effect of these processes is weaker. In this sense, 
discharges maintained by electron thermal conductivity are characterized 
by minimum values of the shunted current and flow of the insulator 
material into the load volume. 

Here we analyze an H-thrown discharge for a ceramic insulator (Al2O3) in 
the range of high magnetic fields (above 0.1 MG) in the absence of 
radiation. For ionized insulator vapor, the Lorentz plasma approximation is 
used. The plasma is considered magnetoactive. The effect of magnetization 
on the thermal and electric conductivity is taken into account. In addition, 
the Nernst effect is included as well, which, generally speaking, makes a 
contribution to the heat flux of the same order of magnitude as electron 
thermal conductivity, and to the electric field, of the same order of 
magnitude as plasma resistivity. 

In this case, the statement of the problem is the same as in the previous 
section (Fig. 6.19, system of equations (6.5.1−6.5.4)), but the heat flux is 
determined by the electron thermal conductivity and the Nernst effect, i.e., 

 Q = −χ ⋅ dT
dx

+
b
e
Tj   (6.5.28) 

(where χ is the electron thermal conductivity, j is the current density, and 
the coefficient b/e describes the Nernst effect). The problem allows arbitrary 
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multiple ionization of the insulator vapor. The presence of the Nernst effect 
also leads to the necessity of adding a corresponding term to the Ohm’s law 
(6.5.4), which will take the following form: 

E = j
σ
+
1
c
vB− b

e
dT
dx

. (6.5.29)

For magnetoactive plasma: 

σ =
3T 3/2

4 2πme2Lzα

χ =
3T 5/2γ

4 2πme4Lz

 (6.5.30)

where L is the Coulomb logarithm, z is the root-mean-square ion charge, and 
the quantities α, b, γ in formulas (6.5.28−6.5.30) correspond to α

⊥
, βΛ

uT , χ
⊥
e  

in Braginskii [6.11] and are calculated using approximate formulas 

α =1−
α1"y

2 +α0"

Δ

b = y(β1
""y2 +β0"")
Δ

γ =
γ1"y

2 +γ0"

Δ
Δ = y4 +δ1y

2 +δ0

. (6.5.31)

Here y = ωeτe is the degree of electron magnetization, and the coefficients  
( !α0 , !α1 , etc.) are chosen for the ion charge z→∞  by sequentially using the 
Lorentz plasma approximation, because the temperature in the discharge 
becomes rather high, as does, consequently, the degree of ionization. 

The transport coefficients of a magnetoactive plasma are linked to the 
corresponding coefficients of a nonmagnetized Lorentz plasma σL, χL by the 
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relations χ = γ
γ0
χ L = 0.08γχ L  and σ =

α0
α
σ L =

3π
32α

σ L , where α  and γ , 

according to (6.5.31), are determined by plasma magnetization and depend on 
T, ρ, and B, and α0, γ0 α0 , γ0  are α and γ for zero degree of magnetization y. 

By substituting the values of quantities at the inlet (subscript “0”) and outlet 
(subscript “1”) of the current sheath into conservation laws (6.5.1−6.5.4), on 
the basis of the changes made the set of equations defining the problem can 
be rewritten as 

Assuming the ionized insulator vapor to be a gas with the adiabatic 
index γT and using an approximate calculation method for the region 
of multiple ionization (the multiple ionization Saha equation) [6.15] 
and the formulas for the thermal and electric conductivities of a 
nonmagnetized Lorentz plasma χL and σL [6.12], we obtain the 
interpolation formulas p ~ Tmρn, χL ~ T1+iρj, and κL~ T–iρ-j and the 
effective adiabatic index in a certain interval of temperatures and 
densities for a specific type of insulator. We will use the units g, cm, 
and µs, MG for the magnetic field, and eV for the temperature. For 
the ceramic insulator (Al2O3) in the temperature range of 3−30 eV 
and in the density range of 10-5 – 10-3 g/cm3, we obtained the 
following approximate formulas: 

 

p(T ,ρ) = 3.8 ⋅10−2T mρ nm =1.417, n = 0.917

χ L (T ,ρ) =1.84 ⋅10
−8T 1+iρ ji = 0.825, j = 0.158

κ L (T ,ρ) =
c2

4πσ L (T ,ρ)
= 0.173⋅T −iρ− j

γT =1.2

 . 

 

(6.5.32) 
 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

227 

The values of the quantities calculated using these formulas for the given 
temperature and density ranges, differ from those calculated using the Saha 
equation [6.15] and the refined Coulomb logarithm (Section 3.2.3) by no 
more than 5%. 

In accordance with our method of solving such problems, the measurement 
units for the temperature [Т] and density [ρ], which define the characteristic 
quantities of the problem, are found from the condition of equality of the 
magnetic diffusivity κ and the thermal diffusivity, κ =(γT  – 1) χL Т/γT р 
(assuming that the characteristic plasma magnetization y ~ 1, which follows 
from the equality of the magnetic diffusivity and the thermal diffusivity; for 
definiteness of the choice of measurement units, we will equate the values 
of the magnetic diffusivity and the thermal diffusivity for y = 0) and from 
the condition of equality of the thermal pressure to magnetic pressure (for 
definiteness, as a unit of measurement for pressure we will use the magnetic 
pressure at the outlet of the discharge region): 

[ p]= p([T ],[ρ]) = B1
2

8π
κ L ([T ],[ρ]) =κTL ([T ],[ρ])

 . 

Solving these two equations yields 

[T ]=101⋅B1
0.415

[ρ]= 8.37 ⋅10−4 ⋅B1
1.54

. (6.5.33)

We introduce dimensionless variables 

t = T
[T ]
, r = ρ

[ρ]
, u = v

v1
, h = B

B1
,

p = p
[ p]

=
p

B1
2 / 8π

= tmrn , ξ = x
[x]
,
  (6.5.34)

where [х] is found from the relation [x]= κ L ([T ],[ρ])
v1

, which, in view of 

(6.5.33), yields 

[x]=1.71⋅10−3 r1
µ
B1
−0.816  .  (6.5.35)



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 228 

We introduce the same dimensionless parameters as in Section 6.5.1 

 β =
p1

B1
2 / 8π

, µ = ρ1v1
2

B1
2 / 8π

  (6.5.36). 

and the constant g = 2 γT
γT −1

 and we proceed to consideration of the system 

(6.5.32). We substitute the relations сЕ = v1B1 and w =γT p/( γT – 1) ρ into 
the third and fourth equations and divide the first equation by v1[ρ], the 
second by B1

2/8π, the third by v1B1
2/16π, and the fourth by v1B1. From the 

first equation, we obtain the relationship between the dimensionless density 
and velocity r = r1/u. Substituting it into the other three equations (6.5.32), 
we arrive at the system 

µu+ r1
ntmu−n + h2 = µ +β +1

µu2 + gr1
ntmu1−n + 4h−0.08γgr1

jt1+iu− j dt
dξ

− gbt dh
dξ

= µ + 4+ gβ

−
32α
3π

r1
− jt−iu j dh

dξ
+uh =1+ b g

4
dt
dξ

"

#

$
$
$

%

$
$
$

.  (6.5.37) 

Here, t, u, and h are unknown functions of the variable ξ, and µ, β, and r1 
are the parameters. From the first and the second equations in the system 
(6.5.37), setting u = 0 and disregarding the derivatives, we obtain the 
following expressions for the magnetic field and pressure in the insulator 

h0 =
1
4
(µ + 4+ gβ )

p0 = µ +β +1− h0
2

 . 

Using the chosen units of measurement, one can express the degree of 
magnetization of the insulator material plasma as  

y =ωeτ e =
3π
32 2

γT
γT −1

1+ 1
z

"

#
$

%

&
'⋅ r1

j−nt1+i−mun− jh . (6.5.38)
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Since we use the Lorentz plasma approximation, considering z large 
enough, we obtain for γT = 1.2 

ωeτ e = 0.51⋅ r1
j−nt1+i−mun− jh .

Using the dimensionless variables, original equations (6.5.37) can be 
converted to the set of equations of the type 

a1
dt
dξ

+b1
du
dξ

= c1

a2
dt
dξ

+b2
du
dξ

= c2

!

"

#
#

$

#
#

.  (6.5.39)

Here, t and u are functions of the variable ξ, the coefficients a1, a2, b1, c1, 
and c2 depend on t and u, and µ, β, and r1 are the parameters. 

To solve the problem, one must integrate equations (6.5.39) with the 
boundary conditions u(0) ≡ u0 = 0, t(0) ≡ t0 = 0, u(∞) ≡ u1 = 1, 
t (∞) ≡ t1 = (βr1

n )1/m and three free parameters µ, β, and r1. 

The initial and terminal points are singular, and to come out of them, we 
used expansions in powers of ξ. The coming out of the terminal point was 
defined uniquely by the parameters and boundary conditions, and the 
coming out of the initial point contained an arbitrariness associated with the 
probability of a nonzero heat flux coming out from the discharge zone into 
the insulator. 

The expansion near the initial point corresponds to the primary plasma 
heating via electron thermal conductivity (i.e., the Joule heat release in this 
region is small by comparison with the heating due to thermal conduction, 
and the heat flux at the discharge region boundary is equal to zero), and in 
the vicinity of the initial point, the plasma is not magnetized.  

The expansion near the terminal point is determined by the exponential 
character of the MHD quantities’ movement to their final values. 

For the given discharge mode, which can be characterized by one 
parameter, for example, µ, it was necessary in solving the equations to 
select the two other parameters (β, r1) in such a way as to obtain a solution 
with the given boundary conditions. In this case, it turned out to be 
necessary to pass through a singular point at which the flow velocity 
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becomes equal to the thermal sound velocity v2 = γ p
ρ

. By varying one 

parameter, one can manage to arrive at this singular point after coming out 
from the initial point by the specified expansion; by varying the other 
parameter, one can arrive at the same singular point coming out from the 
terminal point. As a result of the solution, for each µ we obtain particular 
values of β and r1, i.e., the functions β(µ) and r1(µ) characterizing different 
discharge modes. 

Fig. 6.21 shows the structure of the current zone, i.e., the plots of the 
dimensionless MHD quantities as a function of the coordinate х at µ = 2. 
Fig. 6.22 shows plots of β(µ) and r1(µ). 

 
Fig. 6.21. Spatial distributions of the dimensionless MHD quantities for µ =2. 
1) magnetic field h(ξ), 2) temperature t(ξ)/t1, 3) velocity u(ξ) u(ξ ) , 4) degree of 
magnetization y(ξ ) . 

Fig. 6.22. Plots of the functions β(u) and r1(µ). 
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For the limiting insulator vaporization regime, the limitation (6.5.14) 

µ ≤ µmax ≡ 2+γTβ  

is satisfied by the calculated values µmax = 2.08, βmax = 0.0675, and 
r1max = 0.439. 

The calculated values of the parameters µ, β, and r1 and the corresponding 
values of dimensionless h0 are given in Table 6.2. Table 6.3 presents the 
values of the magnetic field B1, velocity ν1, density ρ1 and temperature T1 at 
the outlet of the discharge, as well as of the electric field E in kV/cm, all 
calculated in accordance with (6.5.33−6.5.34 and 6.5.36) using the formulas 

B1 =
B0
h0

T1 = t1 T!" #$=101 ⋅β
0.706r1

−0.647h0
−0.415B0

0.415

ρ1 = 8.37 ⋅10
−4 ⋅ r1h0

−1.54B0
1.54

v1 =
µB1

2

8πρ1
= 6.9 ⋅ µ

r1

'

(
))

*

+
,,

0.5

h0
−0.23B0

0.23

E =
v1
c

B1 = 69 ⋅
µ
r1

'

(
))

*

+
,,

0.5

h0
−1.23B0

1.23

 (6.5.40)

for a magnetic field in the insulator B0 = 1 MG. 

Table 6.2. Dimensionless discharge parameters. 

µ β r
1
 h

1
 

0.01 0.00070 0.117 1.0046 
0.1 0.0068 0.222 1.045 
0.2 0.0130 0.265 1.089 
0.5 0.0288 0.331 1.211 
1 0.0477 0.384 1.393 

1.5 0.0597 0.415 1.554 
2 0.0668 0.436 1.700 

2.08 0.0675 0.439 1.722 
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Using formulas (6.5.40), one can suggest the following method for 
calculating the H-thrown discharge. From the formula for the electric field 
in (6.5.40), based on the initial fields E and B and using Table 6.3, we find 
the parameter µ. Next, using the known µ we recover β,  r1, and h1 by means 
of Fig. 6.22. Then, using the remaining formulas of (6.5.40), we obtain all 
plasma parameters at the outlet of the H-thrown discharge zone in the 
absence of radiation flux. These parameters can be specified as the 
boundary conditions in full MHD simulations of particular assemblies and 
facilities. 

It is worthwhile to compare the modes of an H-thrown discharge due to 
plasma radiation (radiation-maintained discharge, RMD) and the discharge 
maintained by electron thermal conductivity (electron-thermal-
conductivity−maintained discharge, ETCMD). Figs. 6.23 and 6.24 show the 
plots of the mass flux and the fraction of the current shunted off to the 

discharge (δI =1− 1
h0

) versus electric field for B0 = 1 MG (the solid lines 

are the results of the ETCMD calculations including all essential effects; 
and the dashed lines are the results of the RMD calculations). The ETCMD 
case yields current branching that is one-tenth and mass flux that is one-
fifteenth that of the radiation case for the field E corresponding to the 
limiting insulator vaporization mode (and maximum current diversion) in 
the RMD (radiative) case for B0 = 1 MG. For E corresponding to δI ≈10% 
in the radiative problem, the current branching for the ETCMD case is one-
third that of the radiative case, and the mass flux is one-fourth. Thus, even 
for a discharge occurring on the surface, its adverse effect is smaller in the 
absence of radiation incident on the insulator surface (for example, if the 
insulator is shielded from radiation). 

Table 6.3. The dependence of the major MHD parameters on discharge 
intensity for a magnetic field in the insulator B0 = 1 MG. 

 
µ 

 
B

1
, MG 1v , 

km
s

 ρ1, 10
−4 g
cm3

 
 

T , eV E , 
kV
cm

 

0.01 0.995 20 0.98 2.4 20.0 
0.1 0.957 46 1.73 7.8 43.9 
0.2 0.918 59 1.94 10.8 53.9 
0.5 0.826 81 2.06 15.7 67.0 
1 0.718 103 1.93 19.2 74.1 

1.5 0.643 118 1.76 20.4 76.2 
2 0.588 131 1.61 20.6 76.9 

2.08 0.581 132 1.59 20.5 76.9 
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Fig. 6.23. Mass flux ρ1ν1 at the outlet of the discharge zone versus electric field E. 

 
Fig. 6.24. Fraction of the current shunted off to the discharge δI versus electric field E. 

CONCLUSION 

We considered a plane problem for a stationary surface discharge that arises 
when a magnetic flux emerges through an insulator surface in strong 
magnetic fields. The discharge takes place via the insulator vapor, and part of 
the released Joule heat is transferred by radiation or thermal conductivity to 
the insulator and causes its evaporation. Essentially, obtaining a relationship 
between the quantities at the inlet and outlet of the discharge region requires 
more than using just the integral conservation laws; one must also solve the 
problem of the region’s structure. To solve this problem, we consider a set of 
stationary MHD equations and account for heat transfer. 
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If the heat flux is determined by the radiative transfer, the radiation flux turns 
out to be small by comparison with the Joule heat and the material’s energy 
flux. Using this circumstance and the assumption of gray matter and a power 
form of the equation of state, as well as of radiation path and conductivity 
dependent on temperature and density, we can solve the discharge problem 
analytically. We found the dependence of the velocity of the plasma flow from 
the discharge, as well as of plasma density and temperature, on the magnitude 
of magnetic fields in the nonvaporized insulator and at the outlet of the current 
sheath. It is shown that there is a limiting insulator vaporization mode in which 
the velocity of the plasma flow from the discharge reaches its maximum 
possible value. The velocity corresponding to the limiting vaporization mode is 
(for PMMA) 

v1max =17(B0
2 / 8π )0.156 , 

(in the units of g, cm, µs), the fraction of current shunted to the discharge is 
α = 0.42, and the limiting power transferred through the insulator surface is 

v1B1B0 / 4π = 20(B0
2 / 8π )1.156  . 

The steady-state discharge conditions, when the magnetic field passes 
through the insulator surface, also exist if the discharge is maintained by 
electron thermal conductivity, subject to the involvement of all relevant 
effects, including plasma magnetization and Nernst effect. 

If the insulator surface is protected from radiation, for the same magnitude of 
the electric field (e.g., for the same velocity of liner acceleration), the H-thrown 
discharge produces a much smaller adverse effect. In particular, the mass flux 
of the insulator material to the load volume is reduced by up to a factor of 15 by 
comparison with the radiation maintained discharge, and the branching of the 
current is reduced by up to a factor of 10, depending on the vaporization 
conditions (the higher the vaporization rate, the greater the differences). 

The discharge characteristics obtained can be used as boundary conditions 
in calculations of different units, in which the magnetic flux is transferred 
through the insulator surface. If the radiation flux is unknown, the results 
obtained for the electron-thermal-conductivity−maintained discharge can be 
used to estimate the minimum discharge parameters. 

The influence of the H-thrown discharge on the performance of physical 
facilities can be illustrated by MAGO experiments, in which the flow of a 
large amount of H-thrown discharge-vaporized insulator resulted in strong 
long-period magnetic field oscillations (Fig. 2.3) measured by B-dot probes 
in the chamber. 
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7. MAGNETOHYDRODYNAMIC (MHD) 
INSTABILITIES AND THEIR EFFECT ON PLASMA 

AND ITS COMPRESSION 
As a rule, the magnetohydrodynamic (MHD) plasma flows in the MAGO-
MTF systems are unstable. In order to analyze and understand the process of 
the development of these instabilities, we need to study their linear stage, 
which determines the conditions of their growth and the increments of the 
growth, the patterns of their development in the nonlinear stage, and, finally, 
the properties of the occurring turbulent flows and their effect on the system’s 
operation. We will study MHD instabilities in that order in this chapter. 

7.1. Linear-Theory Instability Development

The problem of a tangential discontinuity instability in a cold plasma 
with a magnetic field perpendicular to the velocity jump and the problem 
of a convective instability in an azimuthal field in the presence of 
acceleration, including problems of Rayleigh-Taylor and “sausage” 
instabilities in an azimuthal magnetic field as examples of limiting cases, 
will be evaluated as important problems in the study of the linear stage 
of development of MHD instabilities.  

7.1.1. Instability of the Tangential Discontinuity in Cold Plasma with a 
Magnetic Field Perpendicular to the Velocity Jump 

Landau [7.1] found that for sufficiently high velocity v, the tangential 
discontinuity in a compressible gas can be stable with respect to oscillations 
of the discontinuity surface with the wave vector q  parallel to the velocity 
jump v . Syrovatskiy [7.2] indicated that, in this case, the discontinuity 
remains unstable relative to oscillations with wave vectors directed at an 
angle to the velocity jump and satisfying the condition: 

 v cosφ<(c1
2/3 + c2

2/3)3/2  , (7.1.1) 

where ϕ is the angle between q  and v , and c1  and c2  are the sound speeds 
on both sides of the discontinuity. 

There is a broad class of MHD flows in which the magnetic field 

B  is 

perpendicular to the velocity: Z- and Θ-pinches, plasma accelerators, 
explosive-magnetic generators, etc. For such flows, it is of interest to 
analyze the stability of tangential discontinuities. In this analysis, the case 
φ = 0  (motion in a plane perpendicular to the magnetic field) is reduced to 
the hydrodynamic (HD) case, and the stability condition (7.1.1) holds for 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

239 

sufficiently high velocities of the discontinuity. But the case in which q  has 
a component along 


B can be stabilized as a result of the tension of the 

magnetic field lines. Thus, we can expect that such tangential 
discontinuities with high velocities can be stable or that the instabilities in 
them will develop more slowly than in the case of the HD discontinuities.  

The case of a cold plasma with β << 1 (β is the ratio of plasma pressure to 
magnetic pressure) is of particular interest, because, for a plasma with 
β >> 1, the force effect of the magnetic field is not high and can be 
disregarded in the first approximation when the instability is considered. In 
that approximation, the discontinuity will be unstable for any velocities, just 
as it is in conventional HD. The case of an incompressible fluid (i.e., β >> 
1, c >> ν ), considered for magnetic fields arbitrarily directed along both 
sides of the discontinuity [7.3], in the situation of interest to us, 


B ⊥ v , to 

be sure, yields an instability. Note that in the case of plasma motion along 
the magnetic field, the instability occurs at high velocities [7.3, 7.4]. 

Gonzales and Gratton [7.5] studied the stability of a tangential discontinuity 
for an arbitrary relative orientation of the vectors 


B  and v  and a 

continuous plasma density at the discontinuity. In this Section, we follow 
Garanin and Kuznetsov [7.6] and use a different method to analyze the 
instability. In the case of interest to us —


B ⊥ v  and discontinuous plasma 

density—we obtained a relatively simple dispersion relation that allows us 
to prove that, a tangential discontinuity in this configuration is unstable for 
any velocity and to analyze the behavior of the growth rates.

Dispersion Equation 

We choose the configuration with the magnetic field 

B0  aligned with the 

zaxis and parallel to the discontinuity plane y = 0  as the initial stationary 
solution. We assume that, for y < 0, medium 1 is immobile, and, for y > 0, 
medium 2 moves with velocity v || x  (Fig. 7.1). The equation for small 
oscillations of an immobile, ideally conducting cold plasma (β = 0) is 
written as follows [7.7] 

 ∂2

ξ

∂t 2
= c 2∇

⊥
div

ξ
⊥
+c 2 ∂

2

ξ⊥

∂z 2
 ,  (7.1.2)

where 

ξ  is the displacement of the plasma particles, ∇

⊥
 and 


ξ
⊥

 are the 

transverse components (with respect to 

B0 ) of the gradient operator and 
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displacement, respectively, and c = B0
4πρ

 is the Alfven velocity. The 

densities of media 1 and 2 are assumed to be different, ρ1  and ρ2 , and, 

consequently, the velocities c1  and c2  in these media are also different. The 
transition from the plasma rest frame to the frame where the plasma moves 

with the velocity v  is performed by the substitution of ∂
∂ t
→

∂
∂ t
+
v∇  . 

 

The perturbation of the discontinuity surface is presented in the form 

 exp(iqr )  ,  (7.1.3) 

and the dependence of all quantities on the y coordinate and time is searched as  

 exp(− iω t + iκ1,2 y)  , (7.1.4) 

where κ1  and κ2  correspond to media 1 and 2, respectively.  

We substitute dependences (7.1.3) and (7.1.4) into (7.1.2) to obtain 

 ω 2 = c2
2 (q2 +κ2

2 )  (7.1.5) 

for medium 2 and 

(ω− vq)2 = c1
2 (q2 +κ1

2 ) (7.1.6)

for medium 1 with allowance made for its motion. 

The displacements ξy at the interface between these two media should 
obviously equal each other, 

 ξ y1(y = 0) = ξ y2 (y = 0) ≡ ξ y  . 

Fig. 7.1. Geometry of the problem. 
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We can find one additional relationship between the displacements 

ξ  of the 

interface, taking into account the fact that the magnetic-field pressures at the 
boundary are equal, B1

2 = B2
2  and expressing the magnetic field perturbation 


!B via 


ξ  [7.6], 


!B = −

B0div


ξ
⊥
+ B0

∂

ξ
⊥

∂ z
 , 

to obtain 

qxξx1 +κ1ξ y = qxξx2 +κ2ξ y  .  (7.1.7)

for y = 0. 

Relationships (7.1.5−7.1.7) and equation (7.1.2) yield the dispersion relation 

(x2 − c2
2sin2φ)

c2
2 (x2 − c2

2 )
=
[(x − vcosφ)2 − c1

2sin2φ]
c1
2[(x − vcosφ)2 − c1

2 ]
 ,  (7.1.8)

where x =ω / q . The obtained equation differs from HD [7.2] only by the 
fact that in the HD we have 0 instead of sinφ .  

Both sides of the relation (7.1.8) coincide if x
c2

!

"
##

$

%
&&

2

=
x − vcosφ
c1

!

"
##

$

%
&&

2

. 

Consequently, two of the six roots of (7.1.8) are known (these roots are real 
and do not lead to instability), and thus we can reduce the order of the 
equation. As a result, we obtain the following fourth-order equation with 
respect to x: 

(x − vcosφ)2 x2

c1
2c2
2

=
x2

c2
2
+
(x − vcosφ)2

c1
2

−1+ cos4φ  . (7.1.9)

The HD equation [7.2] again differs from (7.1.9) only by the fact that there 
should be 0 instead of cos4φ −1 on the right hand side.  

Instability of the Tangential Discontinuity  

For the velocities 

v<(c1
2/3 + c2

2/3)3/2  
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the case φ = 0 (which is reduced to the HD case), will, as in hydrodynamics, 
result in instability. Therefore, to analyze whether the flow is stable, it is 
sufficient to consider only the following velocity range: 

 v > (c1
2/3 + c2

2/3)3/2  .  (7.1.10) 

To prove that the flow is unstable, it is sufficient to find just one angle ϕ, 
for which the flow is unstable. However, for (7.1.10), the velocity meets the 
condition  

 v > c1 + c2  , 

and we can find the angle ϕ, for which 

 vcosφ = c1 + c2  . 

For this angle ϕ, the real roots of the equation (7.1.9) rewritten in the form: 

 
(x − c1 − c2 )

2

c1
2

=1+ cos
4φ

x2

c2
2
−1

 . 

are determined by the points of intersection of the curves assigned by the 
left- and the right-hand sides of this equation (see Fig. 7.2). Fig. 7.2 
shows that, in this case, there are only two real roots. Consequently, the 
other two roots are complex conjugate and, therefore one of them 
corresponds to the instability.   

 
Fig. 7.2. Curves whose points of intersection determine the real roots of the 
dispersion equation for νcosϕ = c1 + c2. 
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Instability Increments and Domain 

Although the MHD tangential discontinuity turns out to be unstable at any 
velocity (as in the HD case), it is of interest to consider the effect of the 
magnetic field on the instability increments and to compare them with the 
HD increments.  

Below, for brevity, we will call γ = Imx as the “increment” (in fact, the 
increment equals qIMx, i.e., it is proportional to the wave vector). 

For definiteness, we assume that c1 > c2 and move to the dimensionless 

quantities by designating u = v
c2

, c = c1
c2

, x = x
c2

, and γ = γ
c2

 . 

First, we consider the behavior of the increments in the case of identical 
media, c = 1. In this case, in the low velocity range, the analysis of the 
equation (7.1.9) shows that, for u < 3 , the HD and MHD discontinuities 
yield the maximum increment at ϕ = 0, which is equal to 

γmax = 1+u2 −1− u
2

4
 .  (7.1.11)

For u > 3  in the HD case, the increment is maximum when cosφ= 3
u

 and 

remains equal to 

γmax = 0.5  . (7.1.12)

In the case of MHD, for velocities u0 > u > 3  (where the velocity u0 is 
determined such that 

cos2φ = u
2

2
1

1−16 / u 2
−1

"

#
$$

%

&
''  (7.1.13)

is equal to unity), the maximum increment remains equal to (7.1.11), and, for 
u > u0, it corresponds to the angle ϕ, determined from (7.1.13) and is equal to 

γmax =
u4

8
−1− u

4

8
1−16
u4

 . 
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The dependences of the maximum increments on the velocity for HD and 
MHD discontinuities for c = 1 are shown in Fig. 7.3а. For this case, 
Fig. 7.4a shows the domains of the angles corresponding to the instability as 
functions of u. The curves presented were obtained by solving equation 
(7.1.9) and the equation for conventional HD. Along with the instability 
boundaries, Fig. 7.4a shows the dependence ϕ(u) corresponding to the 
maximum increment. From Figs. 7.3a and 7.4a, we can see that for high 
velocities in the MHD, the maximum increments and the instability domain 
are substantially smaller than those in the HD case, and we can expect these 
MHD discontinuities to spread into the turbulent areas considerably slower 
than HD discontinuities.  

 

 

Fig. 7.3. Maximum increment versus the velocity in MHD (solid curves) and 
conventional HD (dashed lines) for (a) c1 = c2 and (b) c1 = c2. 
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Fig. 7.4. Domains of the angles corresponding to the instability as functions of the 
velocity in the MHD (solid curves – domain boundaries) and conventional HD 
(dashed curves – domain boundaries) for (a) c1 = c2 and (b) c1 = 10 c2. 

Now, we examine the case c >>1 , when the densities of the media on both 
sides of the discontinuity are substantially different. In this limit, for both 
HD and MHD cases, the increments are maximum for the same angles ϕ. 
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For u > c, the angle corresponding to the maximum increments in HD and 
MHD cases is determined by the condition  

 cosφ = c
u

 , 

and for c5/4 >> u > c, the maximum increments are the following:  

 γmax =
3
2
c
2
!

"
#
$

%
&

1/3

  (7.1.14) 

for HD and 

 γmax =
3
2

c5

2u4
!

"
#

$

%
&

1/3

 

for MHD. Comparison of the maximum increments and instability domains 
in MHD and conventional HD obtained from the solution of the equation 
(7.1.9) and the equation for conventional HD for c = 10 is presented in 
Figs. 7.3b, 4b. Here we see again that, for high velocities, the maximum 
increments and the instability domains for MHD-discontinuities can be 
substantially smaller than those in the HD case.  

For high velocities u >> c and arbitrary values of c  in the MHD case, we 
obtain the maximum increment  

 γmax =
c (c+1)2

2u2
 , 

which decreases as u increases. The angle at which the increment is 
maximum is determined by the relationship 

 cosφ = c+1
u

 , 

whereas in the HD case, the maximum increments remain constant for 
u→∞ , as can be seen from expression (7.1.12) for c = 1 and expression 
(7.1.14) for c >> 1. 
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CONCLUSION 

We have shown that the MHD tangential discontinuity in a cold plasma 
with a magnetic field perpendicular to the velocity jump is unstable for any 
discontinuity velocities. However, for high discontinuity velocities in the 
MHD case, the increments and the wave-vector domain corresponding to 
the instability turn out to be substantially smaller than those in the HD case. 
Therefore such discontinuities in MHD should spread into turbulent areas 
considerably more slowly than in the HD case. This can lead to effective 
decrease of the turbulent viscosity for supersonic plasma flows, and make it 
possible to accelerate the plasma to high velocities in plasma accelerators 
using supersonic flows.  

For example, in the MAGO chamber when plasma flows through the 
nozzle, the plasma velocity changes from ν = c in the narrowest region of 
the nozzle to ν ~ 4c; simultaneously, the density changes across the nozzle 
approximately by an order of magnitude, and the velocity changes by a 
factor of three. This corresponds to the fact that for the maximum velocities 
c1
c2
~ 3 , and the change of the velocity across the nozzle is u = Δv

c2
~ 8 . 

Hence, in the region of the supersonic flow, the instability caused by such 
high velocity gradients can be suppressed by comparison with the HD-case.  

Another example of the application of the obtained results is the supersonic 
flow in the Z-pinch waist (see Section 7.2.1). Due to the inhomogeneity of 
the plasma density on the radius, the plasma velocities on different radii 
may differ from one another considerably. The magnetic field penetrating 
the waist at different stages of its formation can also stabilize here the 
instability caused by the velocity gradients. 

7.1.2. Convective instability in an Azimuthal Magnetic Field in the 
Presence of Acceleration 

When plasma moves in an azimuthal magnetic field, convective instability 
may develop that is analogous to the convective instability of nonuniformly 
heated gas in a gravitational field [7.8]. Both acceleration of plasma 
(gravitational Rayleigh-Taylor instability) and the curvature of azimuthal 
magnetic field lines (“sausage” instability, whose development causes the 
magnetic flux “going down” to a smaller radius) can lead to the instability. 
Both in Rayleigh-Taylor and in “sausage” instabilities, the shortest 
wavelengths are known to be the most dangerous. In case of smooth 
distribution of density in the Rayleigh-Taylor instability or of the magnetic 
field in the “sausage” instability, which is realistic for most flows due to the 
presence of heat conduction, mixing, and magnetic diffusion, the increments 
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of those instabilities’ developments, when the wavelength tends to zero, 
should tend to a constant limit that is dependent on the gradients of the 
corresponding quantities. We are going to consider the problem of the 
calculation of those limiting increments for the wavelengths that are short 
by comparison with the characteristic dimensions of the flows, for 
simultaneous action of Rayleigh-Taylor and “sausage” instabilities in the 
azimuthal magnetic field. 

Assume that plasma is moving with the acceleration g directed along the 
radius, which means in the reference frame moving with it that it is in a 
gravitational field that has the acceleration -g produced by inertial forces. 
All the quantities are considered to be dependent on r only. The plasma is 
assumed to be in hydrodynamic equilibrium 

 −ρ0g −
∂p0
∂r

−
1
r2

∂
∂r
(r2B0

2 / 8π ) = 0  .  (7.1.15) 

The subscripts 0 designate the equilibrium quantities, and B0
2 / 8π ≡ pB

0  is 
non-perturbed magnetic pressure. 

Now we write the system of equations determining the perturbed motion 
under the assumption that the perturbed quantities dependence on z* is 
expressed in the form of an arbitrary multiplier with short characteristic 
scales. The equation for the plasma elements’ velocity in the radial direction 
ν = νr is written as follows:  

 ρ0
∂v
∂t
= −

∂p1
∂r

−
1
r2
∂(r2 pB )
∂r

− ρ1g  ,  (7.1.16) 

(the perturbed quantities are indicated by the subscript 1, and the magnetic 
pressure perturbation is designated by pB

1 ). Since we consider the case of 
short wavelengths for which constant increments are expected, the leveling 
of the total pressure will take place going with magneto-sonic speed: 

 p1 + pB
1 = 0 .  (7.1.17) 

                                                
* We will not consider the perturbations along ϕ  that bend the magnetic field lines, since 
it is clear ahead of time that the increments for such perturbations can only be smaller, 
which means that, these perturbations are less dangerous. 
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The motion will be also determined by the equation for conservation of 
magnetic flux and the equation for conservation of entropy, S, which will 
have the form (with the accuracy up to the quantities of the first order of 
magnitude): 

∂
∂t
( pB

1

ρ0
2r2

−
2pB

0

ρ0
3r2

ρ1)+ v
∂
∂r
( pB

0

ρ0
2r2
) = 0  , (7.1.18)

∂
∂t
S1 + v

∂
∂r
S0 = 0  . (7.1.19)

The time dependence of the perturbed quantities will be sought in the form 
expγ t , where γ  is the increment of the perturbations growth. When we 

change the time derivative ∂ / ∂t→ γ , exclude v and pB
1  from the equations 

(7.1.16-19) and express the entropy perturbation via the pressure and 
density perturbations using the formula 
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 (7.1.20)
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S0 = 0  . 

Equating the determinant of the system of equations (7.1.20) to zero, we get 
an expression for the increment, which is convenient to express via the 
pressure and density gradients, using the identity that follows from the 
Jacobian of the thermodynamic quantities 
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PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 250 

Finally, using the equilibrium condition (7.1.15), we can write the 
expression for the increment as follows:  

γ 2 =

g g + c
2 +cA

2

ρ
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+ 2 cA
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c 2 +cA
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(7.1.21)

(the equilibrium quantities are written with the zero subscripts omitted). 

When the magnetic field is absent, the expression (7.1.21) gives the short-
wave increment of the Rayleigh-Taylor instability 

 γ 2 = g( g
c2
+
∂lnρ
∂r

)  

or, with the reversed sign, the square oscillation frequency for internal 
waves [7.8]. In this case, the condition of stability for the one-species gas 
(not mixed gases) reduces to the condition that the entropy must grow with 
height growth [7.8] 

 g ∂S
∂r

> 0  . 

In the case of absence of the motion (g = 0, “sausage instability”), we can 
express the increment via the magnetic pressure gradient using the 
equilibrium equation (7.1.15) 

 γ 2 =
cA
2

r2
∂ln pB
∂ln r

+
2(cA

2 − c2 )
cA
2 + c2

#

$
%
%

&

'
(
(
 ,  (7.1.22) 

which yields the instability if the magnetic field decreases with the radius 
increasing more slowly than under the law 

 B ~ r−(cA
2−c2 )/(cA

2+c2 )  

(the instability condition [7.9]), i.e., for plasma with low β, the magnetic 
field should decrease more slowly than r–1+5β/3 as the radius increases (for 
plasma with γ = 5/3); for plasma with high β, the field should increase faster 
than r. If plasma is an ideal gas with the adiabatic index γ, the expression 
for the increment can be rewritten as  

γ 2 = −
2cA

2

r2
∂lnΦ
∂ln r

,
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where φ = p1/γ r/B is a quantity proposed in Gerlakh et al. [7.10]. For 

stability, it is required that ∂Φ
∂r

> 0 . Note that for each plasma element the 

quantity φ is conserved in the adiabatic 2D flows. When ∂Φ
∂r

< 0 , the 

plasma elements with lower pressure (per unit of the frozen-in magnetic 
flux) are located on larger radii, and it is energetically advantageous for 
them to change their positions with the elements located on the smaller 
radii, and thus the instability develops.  

The instability development (7.1.21) results in convection and mixing, in 
which the released “pinching” energy is converted into the kinetic energy, 
and then into heat. Such a process can be qualitatively interpreted as 
anomalous resistance. In 2D calculations, this instability is taken into 
account automatically, whereas in 1D calculations, which are usually 
performed in the channel approximation (i.e., along some mid-line in the 
chamber for dependences of the median channel radius r and its cross-
section width on the path along the channel that correspond to the chamber 
geometry), it can be simulated using the exponential factors ch(∫ γ dt) in the 
coefficients of the magnetic diffusion and heat conductivity. The quantity 
determined by (7.1.21) can be taken as the increment γ.  

7.2. Nonlinear Development of Instabilities 

In the linear stage, the development of perturbations is exponential. 
However, after the perturbations grow so much that the linear equations 
become unusable, the nonlinear stage should come into force. We will 
consider some flows and their properties in the nonlinear stage. The analysis 
of these flows and their properties can be useful for the evaluation of 
turbulent flows developing when exposed to instabilities.  

7.2.1. Nonlinear Stage of the Z-Pinch Instability  

As we know, with the deviation of the Z-pinch configuration from the ideal 
cylindrical shape, an MHD instability develops. The linear stage of Z-pinch 
development was first studied by Trubnikov [7.11], Kruskal and 
Schwarzchild [7.12], and Shafranov [7.13]. The study of the nonlinear 
development of the most important type of instability—the “sausage” 
instability–—is the focus of a number of papers referenced in the reviews of 
Vikhrev and Braginskii [7.14] and Dyachenko and Imshennik [7.15]. The 
study of the development of a waist in “sausage” instability with the 
simplifying assumption of plasma incompressibility was the focus of Book 
et al. [7.16], who performed a numerical study of the waist development in 
the context of the long-wave limit and concluded that the problems of the 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 252 

nonlinear waist development in the short-wave limit and nonlinear 
development of the planar Rayleigh-Taylor instability are equivalent. In the 
long-wave limit, Trubnikov and Zhdanov [7.17] obtained a particular 
analytical solution describing waist development, starting with weak 
perturbations and going up to an essentially nonlinear stage. In this section, 
following the work of Garanin and Chernyshev [7.18], we will consider the 
main stages of the nonlinear development of the waist in an ideal 
magnetohydrodynamic setting and will show that the final stage of waist 
development is the stage described by the self-similar solution to which the 
solution of Trubnikov and Zhdanov [7.17] tends for high compressions. 

Let us consider an infinite plasma cylinder that is homogeneous over its 
cross-section and whose plasma pressure is balanced by the magnetic forces 
of the current flowing along the cylinder. The plasma conductivity is 
assumed to be infinitely high such that the magnetic field inside the plasma 
equals zero. At the initial moment, there is a small perturbation that is 
periodic along the cylinder length and is axially symmetrical. For evaluation 
of instability development, in this case the effect of the magnetic field is 
reduced to the external pressure depending on the plasma boundary radius, r

 p = p0R0
2 / r2  (7.2.1) 

(R0, p0 are the initial pinch radius and the pressure). 

Initially, the perturbations in the linear stage develop according to the 
formulas of Trubnikov [7.11], Kruskal and Schwarzchild [7.12], and 
Shafranov [7.13], and each harmonic develops exponentially. The nonlinear 
stage starts when the radial perturbation amplitude is comparable either with 
the wavelength, λ (if l << R0) or with the radius (if l >> R0).

Numerical Simulation of Waist Development  

Let us consider the question of which self-similar solution the waist 
development approaches for a wavelength that is greater than, or on the 
order of, the pinch radius (l ≥ R0). Different assumptions regarding waist 
dynamics leads to different time dependences of the characteristic 
quantities. Thus, for example, if we assume the compression to be adiabatic, 
the waist length l to be proportional to its radius R, and, consequently, the 
time of plasma outflow from the waist zone to be 

 t ~ l / vT ~ R / vT  
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(νT is the sound speed in the waist), we get Vikhrev and Braginskii’s [7.14] 
time dependences of the plasma radius, density ρ, and temperature T  

R ~ tγ /(2γ−1)  , 

ρ ~ t−2/(2γ−1)  , (7.2.2)

T ~ t−2(γ−1)/(2γ−1)  

(γ is the plasma adiabatic index). If we assume the compression to be 
adiabatic and the waist length to be a fixed quantity, the characteristic 
quantities will change as follows:   

R ~ tγ /(γ−1)  , 

ρ ~ t−2/(γ−1)  , (7.2.3)

T ~ t−2  . 

But if we assume that the density to be fixed in terms of the order of 
magnitude, which is determined by the initial density, i.e., the waist 
configuration contains the shockwave, and l ~ R, then 

R ~ t  , 

ρ ~ const  , (7.2.4)

T ~1/ t  . 

Besides the dependences (7.2.2−7.2.4), we can give examples of other 
possible regimes of waist development. A series of numerical 
hydrodynamic calculations were performed to determine which of the 
regimes is realized.  

Figs. 7.5 and 7.6 present the waist shape r(z, t) (half of the wavelength) for 
λ = 4R0, γ = 5/3 for two variants of the initial perturbations: 

 r =1−0.02cos π z
2

 ,  (7.2.5)

r =1−0.02 (0.2)k−1
k=1

∞

∑ cos π k z
2

=1−0.02
5cos π z

2
−1

5,2− 2cos π z
2

(7.2.6)
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(hereinafter, the initial radius R0, density ρ0, and Alfven velocity 2p0 / ρ0
are employed as the units of measurement). 

 

Fig. 7.5. Waist shape for the initial perturbation assigned in the form of (7.2.5) at 
different times: 1) t = 0; 2) t = 2.05; 3) t = 2.92; 4) t = 3.52. 

 

 

 

Fig. 7.6. Waist shape for the initial perturbation assigned in the form of (7.2.6) at 
different times: 1) t = 0; 2) t = 2.05; 3) t = 2.69; 4) t = 3.01. 
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Fig. 7.7 shows the waist minimum radius R versus time for the variant 
(7.2.5). It was not possible to achieve radial compressions R0 / R  that were 
higher than shown in the figures, because of the developing instabilities. 
Nevertheless, we managed to go farther than Book et al. [7.16], whose 
calculation achieved only R0 / R ≈ 1.3.  

 
Fig. 7.7. Time dependence of the minimum waist radius for the initial perturbation 
assigned in the form of (7.2.5). Curve 1 represents exponential perturbation growth 
according to linear theory [7.11−7.13]; curve 2, the result of a numerical 
calculation. 

The calculation results showed that the time dependence of the minimum 
radius up to considerably high compressions is described by linear theory 
(see Fig. 7.7), although the waist shape at that times is seriously distorted 
(see Figs. 7.5 and 7.6). Plasma compression in the waist is nearly isentropic: 
for the variant (7.2.5), the maximum volume change of the quantity T3/2/ρ, 
which characterizes the entropy, is 9% when the radial compression is 5.2; 
for the variant (7.2.6), the maximum change of T3/2/ρ is 19% when the radial 
compression is 3.8. Another important conclusion from the calculation 
results is that the waist length does not decrease as the radius decreases 
(see Figs. 7.5 and 7.6). 

Thus, the regime (7.2.3) with l = const. is realized for nonlinear waist 
development. With the assignment of one harmonic, the waist length l tends 
to λ. If a set of harmonics is assigned with λ >> R0, the waist length is 
determined by the characteristic length l ≤ λ, which is formed at the moment 
of transition from the linear stage to the nonlinear stage. 
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Note that the waist development under consideration is unstable relative to 
the short-wave perturbations. The presence of an additional local 
perturbation with a length λʹ′ << λ should cause, against the backdrop of a 
large waist, the formation of a smaller waist with the length ~ λʹ′, for which 
the larger waist can be regarded as a pinch homogeneous over its cross-
section. We do not consider here the problem of what will happen in the 
presence of a spectrum of chaotic perturbations. 

Self-Similar Stage of the Waist Development 

When the characteristic quantities change in the regime (7.2.3), the pressure 
should set almost constant over the radius, because for l >> r, the outflow 
time is great by comparison with the time of the sound propagation along 
the radius. For the same reason, the compression remains isentropic. Plasma 
flow for sufficiently high compressions will be 1D along the axis, and the 
system of equations describing the plasma motion can be written in the form 
used by Vikhrev and Braginskii [7.14] 

 ∂
∂t
(ρr2 )+ ∂

∂z
(ρr2v) = 0  , 

 ∂v
∂t
+ v ∂v

∂z
= −
1
ρ
∂p
∂z

 , (7.2.7) 

 p = 1
2r2

= ργ / 2  . 

Let us introduce self-similar variables according to (7.2.3):  

 x = 2z / l  , 

 1
2

γ
γ −1

ργ−1 =
l2

4t 2
φ(x)   (7.2.8) 

 v = − l
2t
u(x)  

(time t < 0  ). Then the system (7.2.7) is rewritten as  

 2 / φ − d
d x
(u / φ) = 0  , 

 (7.2.9) 

 u+u du
d x

= −
dφ
d x

 . 
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The boundary conditions for the system (7.2.9) are 

u(0) = 0  , 

 (7.2.10)

φ(1) = 0  . 

Since the system (7.2.9) does not explicitly contain x, it is equivalent to the 
equation  

dφ
du

φ −
u2

2

"

#
$

%

&
'+
3
2
φu = 0  , (7.2.11)

which is homogeneous. Solving the equations of (7.2.11) and (7.2.9), with 
account taken of (7.2.10), we get 

u = 2 (φ / 4)3/2 −φ / 4  , 

2
)4/(1])4/(2[ 3/13/1 ϕϕ −−

=x , (7.2.12)

0 ≤ φ ≤ 4  

dependences that can be obtained from the analytical solution of Trubnikov 
and Zhdanov [7.17] for high compressions R0/R >> 1. The plasma 
temperature T is proportional to φ, and the waist radius, r, is proportional 
to φ–γ/2(γ–1). Fig. 7.8 shows the graphs φ(x), u(x) and the self-simulated waist 
radius r ≡ φ −5/4 (x)  for γ = 5 / 3 . 
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Fig. 7.8. Waist shape in self-similar stage r(x)  (curve 1), temperature distribution 
along the waist length φ(x)  (curve 2), and longitudinal velocity, u(x)  (curve 3). 

 

Pinch “Evaporation” Stage for Short Wave Lengths 

For short wavelengths, λ << R0, the instability development is reduced to a 
well-studied case of the nonlinear stage of the Rayleigh-Taylor instability 
[7.19−7.21]. In this case plasma plays the role of a heavy fluid, the magnetic 
field, that of a light fluid, and the role of acceleration is played by the quantity 

 g = 2p / ρr . 

The magnetic field will penetrate into the plasma as “bubbles” moving 
inward with the velocity v ~ gλ , and plasma will “fall” along the radius 
with the acceleration g as “spikes” (see Fig. 7.9). This stage we shall call the 
stage of pinch “evaporation”. The picture will qualitatively change when the 
bubbles approach the axis at a distance on the order of λ . Here the 
wavelength becomes of the same order with the radius, after which the waist 
development enters the stage considered above⎯the stage described by the 
self-similar solution. 
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Let us consider, in general terms, the pinch evaporation. The bubbles’ 
velocity here will be greater than their velocity in the Rayleigh-Taylor 
instability because of the additional compression of the bulk mass by the 
pressure of (7.2.1), which increases as the radius decreases. The mass 
evaporation rate per unit of pinch length will be determined with the 
equation 

dm
dt

= −2v0m / R  , (7.2.13)

where R is the radius of the nonevaporated portion of the pinch, 

v0 = F gλ  , (7.2.14)

and the constant F is determined by the rise velocity of the bubbles in the 
Rayleigh-Taylor instability and approximately equals F ≅ 0.23 [7.20 and 
7.21]. Then, with account taken of the fact that plasma compression 
proceeds adiabatically, 

g =1/ R(3γ−2)/γ  , (7.2.15)

Fig. 7.9. Waist shape at the stage of the pinch 
evaporation (short wavelength): 1) initial 
perturbation; 2) developed stage. 
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 v = F λ / R(3γ−2)/2γ  , (7.2.16) 

and since for the adiabatic compression  

 m = R2(γ−1)/γ  (7.2.17) 

(the letter m designates the mass divided by π, for the purposes of 
simplicity) for the bubble rise velocity we get 

 dR
dt

= −γF λ / (γ −1)R(3γ−2)/2γ , (7.2.18) 

a quantity that is larger than the Rayleigh-Taylor quantity by a factor of  
(γ/γ – 1). Therefore, if we take the time of evaporation of the entire pinch to 
be zero time, the pinch radius and time are connected by the relation 

 t = − 2(γ −1)
(5γ − 2)F λ

R(5γ−2)/2γ  . (7.2.19) 

The plasma leaving the bubble area after passing the distance ~ λ moves in 
a form of streams virtually freely, driven by the acceleration (7.2.15), since 
the pressure manages to equalize across the stream width. 

Thus, the velocity of each element after evaporation is determined by the 
motion in the potential 

 U =
γ

2(γ −1)
/ r2(γ−1)/γ  .  (7.2.20) 

However in this case, since the motion of each plasma element starts with 
the velocity proportional to the small parameter λ << 1, the particles that 
emerged later from smaller radii will have velocities greater than those of 
the particles that emerged earlier. There is a danger that if the particles that 
emerged from smaller radii begin to catch up with the particles that emerged 
earlier, the stream cross-section can grow and close the pinch region from 
the current source. Let us consider this possibility. 
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The stream cross-section S will be determined from the continuity equation  

2Sρrdr = λdm  , 
that is, 

S = λ r(2−γ )/γ / 2 dr
dm

 . (7.2.21)

The dependence r(m, t) can be found using the connection between the mass 
and the initial radius of the emerged particle (7.2.17) and the energy 
conservation law for particle motion in potential (7.2.20) 

1
2
∂r
∂t
"

#
$

%

&
'

2

+
γ

2(γ −1)
r2(γ−1)/γ = γ

2(γ −1)
m  . (7.2.22)

The solution of the equation (7.2.22) with initial conditions of (7.2.17) and 
(7.2.19) yields r(m, t), and consequently, according to (7.2.21), S(m, t), i.e., 
the implicit dependence of the stream cross-section on the radius.  

Since the emerged particles pass the zone r ~ 1 in short times compared 
with (7.2.19), then if the ∂r/∂m sign change takes place for r ~ 1, the 
∂r/∂m < 0 will be also true for r >> l. Hence, it is sufficient to consider the 
zone of r >> 1. For r >> 1 in (7.2.22) we can neglect the potential energy, 
and then using (7.2.17, 7.2.19) we can get  

r = 2 γ (γ −1)
(5γ − 2)F λ

τ

m
+m3γ /4(γ−1)

"

#
$

%

&
'  , (7.2.23)

where 

τ =
(5γ − 2)F λ
2(γ −1)

t  

changes in the course of the pinch evaporation from –1 to 0. The formula 
(7.2.23) shows that ∂r/∂m does not turn into zero for t < 0. When we 
substitute (7.2.23) into (7.2.21), we get the dependence  

S = λ (5γ − 2)F λ

2 γ (γ −1)
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, (7.2.24)

which, together with (7.2.23), describes the shape of the plasma stream 
leaving the pinch region.  
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We shall introduce here a description obtained as the result of the solution 
of equation (7.2.22) and correct for arbitrary radii r >> λ with the accuracy 
of ~ λ of the motion of the plasma stream with γ = 5/3  

 t = − 4
19F λ

m19/8 +10m7/4 y(ξ )  , (7.2.25) 

where  

 ξ = r1/5 /m1/4  , 

y (ξ ) = ξ
3 ξ 4 −1
5

+
3
5

ξ 4 −1
ξ
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3

5 2
F arccos 1

ξ
, 1
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&
'−
3 2
5
E arccos 1

ξ
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&
' ,  

F(φ, k), E(φ, κ) are the first- and second-kind elliptical integrals. It follows 
from the expression (7.2.25) that the derivative ∂r/∂m, which should be 
substituted into (7.2.21) for obtaining the stream shape, equals 

 ∂r
∂m

=
5
2
m1/4 1−1/ ξ 4 m5/8

2F λ
−
7
4
10y

#

$
%

&

'
(+
5
4
r
m

 , 

and the velocity is determined by the formula  

 v = 5
2m
(1−1/ ξ 4 )  . 

As for the rising bubble, for its description on the scale of ~λ we can use the 
known results of the nonlinear stage of the Rayleigh-Taylor instability 
[7.19−7.21] with account of the fact that, because of the additional 
compression of the entire plasma mass, on that scale plasma can be regarded 
as incompressible fluid moving with a speed equal to the difference between 
the velocities (7.2.18) and (7.2.14), i.e., with a speed of ν0/(γ – 1). 
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CONCLUSION 

For wavelengths λ ≥ R0, the nonlinear development of Z-pinch perturbations 
that are periodic along the length (but not necessarily harmonic) and are 
axially-symmetrical approaches the stage described by a self-similar 
solution, to which the analytical solution [7.17] reduces for high 
compressions. In the case of short wavelengths λ << R0, the perturbation 
development goes through the stage of the nonlinear Rayleigh-Taylor 
instability, and the bubbles rising to the axis, after their dimension λ is on 
the order of the radius R, form the stage of the self-similar solution. 

7.2.2. Periphery Plasma Motion Following Z-Pinch Waist Constriction 

Section 7.2.1 shows that the final stage of the nonlinear Z-pinch instability 
development is the stage described by a self-similar solution, in which the 
waist length remains constant, and the radius depends on time as a power 
function (7.2.3). Density of the plasma around the waist was assumed to be 
sufficiently small and to have no effect on the waist movement. 

The motion of the cold periphery plasma near the pinch waist was 
considered by Zhdanov and Trubnikov [7.22], who assumed the waist 
boundary to move in the periphery plasma at a velocity on the order of the 
Alfven velocity cA. As a result of that assumption, there were high velocities 
of plasma motion and strong plasma heating. In reality, however, the waist 

velocity equals ~ R
l
vT , where νT is the sound speed in the dense waist 

plasma, and the ratio of the waist boundary velocity to the Alfven velocity 

in the periphery plasma is ~ R
l
vT
cA
<<1, since lR << , and 

vT
cA
~ ρ

ρS
<<1  

( ρ, ρS  are the periphery and constriction plasma densities, respectively). 

Thus, the problem contains a small parameter, µ = R
cAτ

<<1  (τ ~ l / vT  is the 

time of the waist breakup), and the problem of periphery plasma motion and 
its effect on the waist motion can be solved within the theory of perturbations. 
In the zero approximation, the current flowing through the waist can be 
considered constant, and the waist movement can be assigned. Then, 
considering the motion of the periphery plasma for the given boundary 
motion, one can determine the correction to the current that compresses the 
waist. 
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This problem is solved in this section following Garanin and Mamyshev 
[7.23]. The periphery plasma is assumed to be cold, the current I in the 
plasma at the initial time is constant I = I0, the plasma density initially 
depends on the radius r as a power function, 

 ρ(r ,R = R0 ) = ρ0 (r / R0 )
s  (7.2.26) 

(R0 is the initial waist radius). In accordance with (7.2.3), the time 
dependence of the waist radius is considered to be power-law, 

 −t / τ = (R / R0 )
α  . (7.2.27) 

The calculations will be performed with logarithmic accuracy, ~ 1/lnµ. 

In the first approximation, as the waist compresses, the current can be 
assumed to be constant in the region of R < r < rmax (rmax is the maximum 
radius that can be reached by acoustic perturbations). In this region, using 
the condition of magnetic flux conservation for each Lagrange particle 
I/ρr2 = const., with (7.2.26) taken into account, one can easily obtain the 
density distribution 

 ρ(r ) = ρ0
i

(r / R0 )
2

r
R
!

"
#

$

%
&

(2+s )i

 (7.2.28) 

(i = I/I0). The sound speed in this region will be  

 cA = cA0
i

(r / R0 ) ρ / ρ0
= cA0 i

R
r

!

"
#

$

%
&

(2+s)i/2

 (7.2.29) 

( cA0  is the initial sound speed for r = R0 ), and the order of magnitude of the 

maximum radius reached by the perturbations is rmax ~ cA t , where t is the 
characteristic time of the waist radius change from (7.2.27). Thus, 

 rmax ~ R0µ
−2/(2+(2+s)i ) (R / R0 )

(2α+(2+s)i )/(2+(2+s)i )  (7.2.30) 

(for definiteness, we assume that µ = R0/cA0τ) . 
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As the characteristic times decrease with the decrease in the waist radius, 
one can assume that the magnetic field does not vary over these times for 
r > rmax. Using this circumstance, the dependence of current on the waist 
radius can be found with a logarithmic accuracy by striking the magnetic 
flux balance as the waist radius changes, 

Ldi + 2i dR
R
= 0  (7.2.31)

( L = 2ln rmax
R

 is the inductance of the constant-current region). By 

integrating (7.2.31) and taking (7.2.30) into account, we obtain 

R = R0µ
{[(2+(2+s)i )/(4+s)i]1−α−1}/(1−α ) , (7.2.32)

which is a relationship between the current and the waist radius. Since the 
magnetic field and the density cannot manage to change (they get frozen) at 
r > rmax as the waist radius reduces from R to 0, using 
(7.2.28, 7.2.30, 7.2.32), we obtain the dependences of r(i), ρ(i)* for r > rmax 

ρ = ρ0µ
2{1−(2α+(2+s)(2−α )i )/[(4+s)i]1−α [2+(2+s)i]α }/(1−α ) . (7.2.33)

 

The curves i(r) and ρ(r) plotted on the basis of the formulas (7.2.28) at 
r < rmax and (7.2.33) at r > rmax for µ = 0.01; s = 0; α = 0.4 (which 
corresponds to γ = 5/3 in accordance with (7.2.3)), R/R0 = 0.032 are shown 
in Figs. 7.10, a and b. The plot of the waist current as a function of time for 
the same case and based on formulas (7.2.27) and (7.2.32) is shown in 
Fig. 7.11. For comparison, these figures also show the results of 1D 
numerical magnetohydrodynamic simulation of periphery plasma motion 
with boundary motion defined in accordance with (7.2.27). The comparison 
shows that formulas (7.2.28, 7.2.32, and 7.2.33) provide a reasonable 
description of the periphery plasma motion, although the logarithmic 
accuracy is not high, ~ 1/ln100 ~ 0.2. 
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Fig. 7.10. Current in the periphery plasma (a) and plasma density (b) as a function 
of radius for µ = 0.01; s = 0; α = 0.4; R/R0 =0.032 : 1) plots based on formulas 
(7.2.28 and 7.2.33); 2) results of numerical MHD simulation.  
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Fig. 7.11. Current in the waist as a function of time I(t) for µ = 0.01; s = 0; 
α = 0.4: 1) plots based on formulas (7.2.27, 7.2.32); 2) result of numerical MHD 
simulation. 

Once the waist radius diminishes to zero (constriction breakup), the density 
and the magnetic field throughout the region 0 < r < R0µ

–2/(4+s) get 
distributed in accordance with the formulas of (7.2.33). Plasma velocities in 
this case can be disregarded because of the smallness of µ. The question 
arises of how the plasma will move farther.

The presence of the current gradient will result in plasma acceleration 
toward the axis and then deceleration in a weak shock diverging from the 
axis. Thus, the plasma downstream of the shock wave can be considered to 
be in mechanical equilibrium. Thermal pressure p of the downstream 
plasma can be determined from the equilibrium condition 

∂p
∂r

= −ρ0cA0
2 R0

2

r2
∂
∂r
i2

2
 , 

which, using current distribution of (7.2.33), gives 

p = ρ0cA0
2 R0

2

2r2
i ∂i
∂ln r

= ρ0cA0
2 R0

2

r2
i2

2
[(4+ s)i]1−α[2+ (2+ s)i]1+α

4α ln(1/ µ)
. (7.2.34)
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The distribution of internal energy ε  of plasma corresponding to (7.2.34) 

 ε =
cA0
2

γ −1
i2

2
[(4+ s)i]1−α[2+ (2+ s)i]1+α

4α ln(1/ µ)
µ

(4+s)i
2+(2+s)i
"

#
$

%

&
'

α
2(2+s)
4+s  (7.2.35) 

has a maximum, which is achieved at 

 i = 3−α
ln(1/ µ)α(2+ s)

4+ s
2

"

#
$

%

&
'

1−α(

)

*
*

+

,

-
-

1/α

 (7.2.36) 

and is equal to

 εmax =
2cA 0

2

γ−1
3−α
2(2+ s )
%

&
'

(

)
*

3
α
−1
(4+ s )3(1−α)/α

[α ln(1/µ)]3/α
exp −

3−α
α

+

,
-

.

/
0  . (7.2.37) 

Note that because of the presence of large numerical factors in real cases, in 
order to ensure applicability of formulas (7.2.34−7.2.37), one should use 
very large values of ln(1/ µ) *. In fact, it is necessary that 

 β = p / (B2 / 8π ) = [(4+ s]
1−α[2+ (2+ s)i]1+α

4α ln(1/ µ)
 

be small.

The equilibrium state of plasma after the shock propagation is stable with 

respect to convection, since ∂Φ
∂r

> 0 , where Φ = p1/γr / B  (see Section 7.1). 

Consequently, the magnetized periphery plasma in the vicinity of the waist 
can exist for quite a long time (by comparison with hydrodynamic times). In 
addition, if we take into account that its temperature can be high due to the 
low density (despite the presence of the large factor [ln(1/ µ)]3/α  in the 
denominator of (7.2.37)), it can generate a noticeable quantity of 
thermonuclear neutrons. Thus, a more consistent analysis of periphery 
plasma motion than that of Zhdanov and Trubnikov [7.22] does not rule out 
the possibility of neutron generation in it. In order to determine the neutron 
yield, certain experiments are required to explore the heating of the ion 
plasma component in a weak collisionless wave, since the wave propagating 
in the low-density magnetized periphery plasma is collisionless, and heating 
of a given plasma component is determined by its structure (see Chapter 4). 
                                                
* Fig. 7.10 confirms this. For a moderately large value of 1/ µ =100 , formula (7.2.33) 
describes the profile of I (r)  reasonably well, but the gradient of I (r)  is strongly overstated. 
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7.2.3. Self-Similar Evolution of Rayleigh-Taylor Instability at Corner 
Points 

The Rayleigh-Taylor instability and its properties play an important role in 
magnetohydrodynamic problems. The flows associated with it often have a 
two-dimensional nature, because the tension of magnetic lines often 
precludes their bending and the onset of motions that affect one of the 
coordinates. The sausage instability in a short wave-length range is also 
equivalent to the problem of the evolution of the plane Rayleigh-Taylor 
instability for both its linear and nonlinear stage. 

In Rayleigh-Taylor instability studies, one often uses the problem setup with 
periodic, constant wavelength perturbations [7.19−7.21, 7.24, 7.25]. In such a 
statement, the instability development problem in the nonlinear stage is 
reduced for large times to a steady-state problem, which simplifies its analysis 
[7.20, 7.21]. The characteristics obtained by solving the problem with 
periodic perturbations, such as the increments in a linear problem or the 
Froude number F = v / gλ  (ν is the bubble rise velocity, λ is the 
wavelength, g is the gravity acceleration) in the steady-state problem, are used 
to develop different instability models with a spectrum of modes [7.26, 7.27]. 

Localized perturbations studied by Volchenko et al. [7.28] and Garanin and 
Startsev [7.29] are another type of perturbation, the development of which 
has a universal nature. A possible type of perturbation without a 
characteristic dimension is a perturbation in the form of a dihedral angle 
(localized perturbations in the plane problem, i.e., perturbations in the form 
of a straight line drawn on the surface of a fluid, can be treated as a 
particular case of such perturbations for the angle equal to p). The problem 
of the evolution of such perturbations can be of interest in and of itself for 
practical applications and as auxiliary for building models. 

A fundamental distinctive feature of the evolution of perturbations in the 
form of a corner (L-shaped perturbations) is their nonlinearity, because the 
perturbations are not small (their amplitude is on the order of the 
characteristic wavelength). The problem can be simplified substantially by 
considering self-similar solutions; but even in this case the problem remains 
quite complex, since self-similar solutions are, generally speaking, 
two-dimensional with respect to two spatial coordinates. Therefore, in this 
section, following Garanin [7.30 and 7.31], we consider the cases that allow 
for additional simplifications, and only as an example, we consider the 
numerical solution of a plane localized perturbation problem. The density of 
light fluid that supports a heavy fluid is assumed to be zero. 
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Let us consider the flow of a fluid in a gravitational field and supported 
from below by constant pressure p applied to its boundary, which can have 
an arbitrary shape. Thus, we suppose that heavy fluid is supported by an 
infinitely light fluid, the motion of which we may do not take into account. 
We assume that the heavy fluid is ideal and incompressible, and its flow is 
potential, and whose equations of motion are written as 

 Δφ = 0  ; (7.2.38) 

 ∂φ
∂ t

+
1
2
(∇φ)2 + p

ρ
+ g y = 0  ; (7.2.39) 

 d X
dt

=
∂φ
∂ x
|s  ; (7.2.40) 

 dY
dt

=
∂φ
∂ y
|s  ; 

 where ϕ
r ,t( )  is the velocity potential 

v = ∇ϕ( ) , p is the pressure, ρ is the 

density, X and Y are the Lagrange coordinates of the boundary, and the 
subscript s denotes that the corresponding quantity is taken on a free 
surface. Since the pressure on the free surface is p = const, and the potential 
φ is defined with an accuracy to within an arbitrary function of t, the 
equation (7.2.39) on the surface takes the form 

 ∂φ
∂ t

+
1
2
(∇φ)2 + g y |s= 0  . (7.2.41) 

Equations (7.2.38), (7.2.40), and (7.2.41) completely define the fluid flow. 

Acute anglesAcute angles θ0 < π/2 (Fig. 7.12) represent the simplest case 
discussed by Garanin and Startsev [7.29]. For this case, we expand the 
potential ϕ in powers of x – x0(t), y – y0(t), where x0(t) and y0(t) are the angle 
vertex coordinates. The velocity potential satisfying (7.2.38) is written as 

 φ(x, y,t) = φ 0(t)+φ x(t)(x − x0 )+φ y(t)(y − y0 )+  

φ yy (t)
2
[(y − y0 )

2 − (x − x0 )
2 ]+φxy (t)(x − x0 )(y − y0 )+o(

r − r0 )
2  . (7.2.42) 
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Substituting (7.2.42) into equations (7.2.40) and (7.2. 41) and expanding the 
equation of surface in powers of the distance from the corner point yields 

dφ0
dt

=
φx
2 +φ y

2

2
− g y0  ; 

dφx
dt

= 0  ; 

dφ y
dt

= −g  ; (7.2.43)

dx0
dt

= φx  ; 

dy0
dt

= φ y  ; 

dφ yy
dt

=
1− AB
1+ AB

(φ yy
2 +φxy

2 )  ; 

dφxy
dt

= −
A+ B
1+ AB

(φ yy
2 +φxy

2 )  ; 

  (7.2.44)

dA
dt

= 2φ yyA+φxy (1− A
2 )  ; 

dB
dt

= 2φ yyB+φxy (1− B
2 )  , 

where 

 A = tgα , B = tgβ . 
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Fig. 7.12. The shape of the initial perturbation. 

The system of equations (7.2.43) and (7.2.44) shows that, first, the flow 
near acute angles is independent of the flow of the rest of the fluid mass, 
because these equations do not include flow characteristics of other regions. 
Second, the corner point moves with constant acceleration, –g, which occurs 
due to the zero pressure gradient in it, and consequently, it falls freely. 
Third, the motion of the corner point and the rotation of the sides of the 
angle are independent, because systems (7.2.43) and (7.2.44) are decoupled. 
Fourth, the rotation and compression of the angle are determined only by 
initial conditions, and if the fluid was initially at rest (φ(r ,0) = 0 ), it follows 
from (7.2.44) that the angle will neither continue to rotate nor be 
compressed, and it will fall freely like a rigid body whose side angles α and 
β will be rigidly fixed in space. 

Self-similarity for angles larger than π/2 

Now consider the case of angles θ0 > π/2. The fluid is assumed to be 
initially at rest. Then, at subsequent times, when the nonlinear terms are still 
small, and the surface has not had time to displace much, the flow in the 
bulk of the fluid will be determined by the linear problem 

Δφ= 0 ; (7.2.45)

∂φ
∂ t

+ gy |s= 0 .
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In this case, the expansion of the potential in powers of the distance from 
the angle’s vertex at a sufficient distance from the vertex where the 
nonlinear terms are still insignificant, in addition to the powers of (7.2.42), 
the following terms will be present and will play an important role:

Cgt | r − r0 |
n cosnθ  , (7.2.46)

n = kπ/θ0, k is an integer, θ is the angle counted from the angle bisector. 
Indeed, such terms satisfy the equations (7.2.45), and the lowest power n 
making the principal contribution to the expansion is n = π/θ0. When 

π
2
<θ0 < π , the terms of the form (7.2.46) will be larger than quadratic terms, 

but smaller than linear terms in the expansion (7.2.42). Therefore, the motion 
of the corner point is still governed by the equation (7.2.43), i.e., it is a free 
fall. In the next approximation, however, the motion of the angle will already 
be related with the motion of the rest of the fluid through the coefficient C, 
which is determined by the solution of the linear problem (7.2.45) for all the 
fluid*. When θ0 > π, terms of the form (7.2.46) are larger than linear terms, 

and the motion induced by them becomes principal. In any case of θ0 >
π
2

, 

after the subtraction of the linear expansion terms (7.2.42) from the potential 
ϕ, the motion generated by the asymptotics (7.2.46) will be symmetric with 
respect to the bisector, which remains therewith motionless. 

In the frame of reference related to the freely falling corner point, the motion at 
large distances from the corner point will be defined by the potential (7.2.46). 
The nonlinear terms in the equation (7.2.41) and the variation of the boundaries 
(7.2.40) will become significant at distances determined by the relationship 

r ~ vt ~ φ
r
t ~Cgt 2rn−1  

(here and below, we denote r =| r − r0 |  ). Thus, the nonlinear solution 
determining the angle region flow will be self-similar with a self-similar variable 

r 2−n

Cgt 2
(7.2.47)

and potential asymptotics (7.2.46) at large distances.
                                               
* It is easy to prove that the constant C should be positive. Indeed, if we introduce the 
potential ϕ* = ϕ + g yt, for it the boundary conditions of (7.2.45) will be ϕ*⏐s = 0, 
ϕ* (y → ∞) g yt. The potential ϕ* is a harmonic function; consequently, it cannot have a 
minimum, which means it must be positive everywhere. But that implies that the first 
nonlinear term in the expansion ϕ should also be positive. 
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Equations Describing the Flow for Close-to-Right Angles 

The problem of a fluid flow near the angle can be simplified in the case of 
angles close to π/2. In this case, one can seek the solution of the problem (in 
the frame of reference related to the falling angle vertex) in the form 

 φ =
a (r ,t )r 2

2
cos(2+δn )θ  ;   

  (7.2.48) 

 s = rA (r ,t )  , 

where ),( tra  is a function slowly varying with r, δn << 1, s is the 
deflection of the surface boundaries from the arms of the right angle, which 
is assumed to be small (A << 1, A > 0 corresponds to compression). It 
follows from Laplace equation (7.2.38) that δn should satisfy the 
relationship 

 δn = d lna
d ln r

 . (7.2.49) 

By substituting (7.2.48) and (7.2.49) into the equations. (7.2.40) and 
(7.2.41), we obtain the set of equations 

 A ∂a
∂ t

−
π
8
r ∂

2a
∂ r∂ t

+
a 2

2
= 0  ; 

  (7.2.50) 

 ∂ A
∂ t

= a  . 

Thus, whereas for acute angles the problem was reduced to ordinary 
differential equations, for angles close to π/2, simplification is also possible, 
albeit less considerable, such that the 2D problem is reduced to a 1D problem. 

Self-Similar Solution for a Right Angle 

Let us employ the system (7.2.50) to analyze the motion of the angle 
2/0 πθ =  at zero initial conditions; i.e., the expansion of (7.2.46) is 

θ0 = π/2 assumed to hold true at large distances from the angle vertex: 

 ϕ = Cgtr2 cos2θ . (7.2.51) 
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Then, it follows from a comparison of (7.2.48) and (7.2.51) that the solution 
of the equations (7.2.50) should be sought in the following form: 

a = 2Cgtu(ξ), 

A = Cgt2w(ξ), 

where 

ξ = −
8C g t 2

π
lnr  

is the self-similar variable. Here, the equations (7.2.50) are reduced to a set 
of ordinary differential equations 

w(u+2ξuʹ′)+2ξuʺ″ + 3uʹ′ + u2 = 0 ; (7.2.52)

w + ξ wʹ′ = u 

with initial conditions u(0) = w(0) = 1. 

The plots of the functions u(ξ) and w(ξ) are shown in Fig. 7.13. At ξ >> 1, 
u(ξ)and w(ξ) become of the order of ξ–2/3, which means that the magnitude 
of the angle is A ~ t2/3/(–lnr). This means that, at a given distance from the 
vertex, the angle that initially collapses as ~ t2, closes more slowly at later 
times, as ~ t2/3. Note that at r→0 A→0; consequently, the angle remains 
right, although only with logarithmic accuracy. It should be noted that at 
later times the angle can be considered acute and nearly independent of r 
due to the weak logarithmic dependence on radius. Then, for its closing at a 
given r, one can use equations of motion of an acute angle (7.2.44) that at 
small A and when B = 1/A also yield the dependence A ~ t2/3. Thus, the 
regions of applicability for the solutions of equations (7.2.44) and (7.2.50) 
overlap, and the asymptotics of the solution of the equations (7.2.52) can be 
used as initial conditions for the equations (7.2.44). 
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Fig. 7.13. Functions of self-similar variables that determine the growth of right-
angle perturbations.

 
Self-Similar Solution for Angles Slightly Larger than the Right Angle 

If the initial angle θ0 slightly exceeds π/2, its closure can also be described 
using the equations (7.2.50). Let the initial angle deflection from the right 
angle be A = –A0, A0 << 1. Then, in accordance with (7.2.46) and (7.2.47), 
the solution of the corresponding angle closure problem will be self-similar: 

 a = 2C g t
r 8A0 /π

u (ξ )  , 

 A = −A0w (ξ )  , 

where 

 ξ =
C g t 2

A0r
8A0 /π

 . 

The equations (7.2.50) in these variables will again transform into a set of 
ordinary differential equations, 

 2ξ 2 !!u + (5− 2w )ξ !u + (1−w )u +ξu 2 = 0  , 

 (7.2.53) 

 uw −=ʹ′  
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with initial conditions u(0) = w(0) = 1. The pattern of angle closure determined 
by the self-similar solution of the equations (7.2.53) is shown in Fig. 7.14 for 
the case of θ0 = 2π/3, A0 = π/12 (we show a half angle, because the problem is 
symmetrical with respect to the bisector; the coordinates x, y are measured in 
the units (C gt2/2A0)π/8A0. At ξ >> 1 w ~ – ξ1/3, i.e., at large times, the angle 
closes according to the same law t2/3 as does the right angle, and similarly to the 
right-angle case, because of the weak dependence on r, closing of the angle at 
large times for each r can be described using the formulas (7.2.44). 

 
Fig. 7.14. The pattern of self-similar growth of a perturbation in the form of an 
angle slightly larger than the right angle. 

Localized Initial Perturbation 

The case of θ0 = π (localized perturbation) is special, because there is no 
angle at all in this case, and perturbation evolution does not depend on the 
geometry of all the fluid. However, let us consider this case in more detail in 
view of its especial importance, because any perturbation initially occupying 
a limited region* should, in a sufficiently large time, “forget” its initial shape. 

The unperturbed surface of fluid is assumed to be horizontal based on the 
equilibrium condition [7.8]. For dimensional reasons it follows that  

φ =
g t 3

2
ψ
2x
g t 2

, 2 y
g t 2

#

$
%

&

'
(  . 

                                               
* Note that the evolution of such perturbations is commonly addressed in the analysis of the 
sausage z-pinch stability [7.33]. As long as the perturbation size remains small by 
comparison with the pinch radius, this case is reduced to the plane case of the Rayleigh-
Taylor instability. 
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Equations (7.2.38), (7.2.40), and (7.2.41) for the function ψ in the self-
similar variables denoted below by the same letters x = 2x/gt2, y = 2y/gt2 are 
written as 

 Δψ = 0  ;  (7.2.54) 

 3ψ − 2r∇ψ + (∇ψ)2 +Y |s = 0  ; (7.2.55) 

 dY
dX

=
Y −

∂ψ
∂ y

X −
∂ψ
∂ x

|s  , (7.2.56) 

where Y(X) is the free surface equation (note that self-similar equations 
describing the growth of a localized perturbation in the axially symmetric case 
coincide with equations (7.2.54−7.2.56) for the polar coordinates r, z, except 
that the Laplacian is written in the polar coordinates, and y is replaced with z, 
and x, with r). Since the fluid particles that came to motion in early stages will 
freely fall at large times, the coordinates of the tip of the spike will be X = 0, 
Y = – 1. The fluid is at rest at infinity. Then, the surface can be expected to have 
the shape shown in Fig. 7.15 (we show half of the surface, because the problem 
is symmetrical with respect to the replacement x → –x). Equations 
(7.2.55, 7.2.56) suggest that at the top of the bubble and at the tip of the spike 

 φ y (0, y0 ) = y0  ; 

  (7.2.57) 

 φ(0, y0 ) =
y0
2 − y0
3

 . 

 

Fig. 7.15. Shape of the surface with self-
similarly growth of localized perturbation.
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Problem (7.2.54−7.2.56) was solved numerically in the following way. 
There were several point “charges” Qi with potentials –Qilnri (ri is the 
distance from the charge) outside the fluid. Then, equation (7.2.54) is 
satisfied automatically. It follows from the problem symmetry that the 
charges should be arranged symmetrically with respect to the axis y . The 
requirement that the total fluid flux coming from infinity should be zero 
(locality condition) yields Σ

i
Qi  = 0 . In addition, the charges were subject 

to condition (7.2.57). For the given arrangement of charges and the given 
coordinate of the bubble top Y0, we solved equations (7.2.56) for the surface 
shape. Then, the charge locations and the bubble top coordinate were varied 
for the left side of (7.2.55) to be close to zero. 

For five pairs of charges, the charge coordinates and values obtained by 
simulations and corresponding to the minimum mismatch of (7.2.55) are 
given in Table 7.1 (Q is the total charge of the pair, X is the coordinate of 
the right charge). The maximum value of the left-hand side in (7.2.55) was 
0.022. The shape of the surface is presented in Fig. 7.15. The coordinate of 
the bubble top is Y0 = 0.248, and its diameter is 0.400. The computed bubble 
diameter agrees with measurements [7.28], in which it was 0.46. At the 
same time, the computed depth of bubble penetration into the fluid is 
considerably smaller than that measured in experiments [7.28]: Y0 = 0.4. 
The same situation is observed in the case of axisymmetric local 
perturbation evolution: the bubble diameter obtained numerically by 
Garanin and Startsev [7.29] agrees with the experiment, while the depth of 
bubble penetration does not. This is probably attributable to measurement 
errors, because the height of bubble ascent in the experiment was counted 
from the surface, which, being unstable, was covered with spikes, and the 
coordinates of which were difficult to determine for this reason. 

Table 7.1. Coordinates and quantity of charges that 
generate the potential of the self-similar solution in case 
of localized perturbation. 

X Y Q 

0.038 0.101 -0.05674 

0.303 -0.673 0.17760 
0.520 -0.617 -0.30622

0.255 -1.211 0.83059 

0.499 -1.434 -0.64523 
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Thus, for the self-similar solution we obtain the surface shape shown in 
Fig. 7.15. However, one can put a question: How can a localized initial 
perturbation assigned in the shape of a projection, rather than a hole, 
transform itself into the shape shown in Figure 7.15? One can imagine that 
the initial projection produces a spike surrounded by bubbles on both sides 
and that, with time, the spike thickness will increase more slowly (if at all) 
than the bubble dimensions, and in the growing scale of the problem the 
role of the spike with time will trend to zero. Such an evolution dynamics is 
confirmed by experimental data (see, for example, Volchenko et al. [7.28]), 
which show that neighboring bubbles merge into a single bubble. 

Opening of the angles θ0 < π (inner) can be analyzed using the same 
technique of solving 2D self-similar equations as that described above for 
θ0 = π, this time, however, taking into account the asymptotics of (7.2.46). 
The flow pattern may turn out to be similar to that shown in Fig. 7.15, i.e., 
spikes may form, which will stay at the location of the original angle vertex. 

7.3. MHD Turbulence and MHD-Turbulent Plasma-Cooling 
Mechanisms 

7.3.1. Behavior of 2D Magnetohydrodynamic Turbulent Flows Across a 
Magnetic Field in a Bounded Region. 

Two-dimensional magnetohydrodynamic (MHD) flows of plasma across a 
magnetic field play an important role in many dynamic plasma systems with 
magnetized plasma, including the MAGO system, in which plasma motion 
at both stages (formation of hot magnetized plasma, and its compression) 
occurs in the r – z plane perpendicular to the azimuthal magnetic field. 

Plasma heating at the first stage occurs when the plasma is pushed to flow 
from section 1 to section 2 by the magnetic piston (Fig. 7.16). The initially 
cold plasma is accelerated in the nozzle region to supersonic velocities 
(exceeding the Alfven velocity) and is heated during its deceleration in 
collisionless shockwaves formed at the exit from the nozzle (Chapter 4) 
and, as a result of anomalous viscous heating, in the near-electrode layers 
(Chapter 5). In this way, the magnetic energy of the plasma is first 
transformed into kinetic and then thermal energy. After the passage of the 
plasma to the second section and leveling out of the total pressure in the 
first and second sections, there forms relatively quiet plasma in the second 
section with β ~ 1 (β is the thermal-to-magnetic pressure ratio) and 
essentially subsonic velocities. 
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Fig. 7.16. Schematic diagram of the MAGO plasma chamber: B is the magnetic 
field, 1 and 2 are first and second sections, 3 is the annular nozzle, and 4 is the 
magnetic piston. 

It is this plasma that is intended for compression in a quasi-spherical or 
cylindrical manner by moving the walls of the second chamber section (e.g., 
by moving the outer cylindrical chamber wall in Fig. 7.16 inward along the 
radius). In spite of the comparatively low plasma velocities and low kinetic 
energy of the plasma by comparison with the magnetic energy, these 
velocities are still higher than compression velocities, and this plasma 
motion is important in several aspects. First, this plasma motion can affect 
the convective plasma cooling, carrying heat from hot plasma regions to the 
cold walls. Second, while moving, the plasma can get contaminated with 
impurities washed away from the walls. Such washing-off of the wall 
material can be especially substantial when the plasma is compressed for 
thermonuclear ignition, because the wall material in this case is obviously in 
the plasma state and, as it has no strength, it easily intermixes with the 
hydrogen plasma. Therefore, for such systems, it is important to know how 
the hydrodynamic flow will evolve after the plasma heating stage and how 
long it will be maintained. 

Classical transport coefficients of hot magnetized plasma [7.33], such as 
viscosity and the magnetic diffusion coefficient, are small in the MAGO 
chamber conditions, which is why those flows are characterized by large 
Reynolds and magnetic Reynolds numbers and, as is almost always the case 
with large Reynolds numbers, become turbulent. Since the plasma motion 
across the magnetic field occurs at small Alfven-Mach numbers MA, MHD 
instabilities also develop across the magnetic field (Section 7.1) and the 
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turbulence that occurs is two-dimensional by nature [7.34]. It is difficult to 
get answers to fundamental questions concerning 2D flow relaxation in 
direct 2D MHD simulations (see Section 7.3.4), which are performed in a 
specific special geometry with specific boundary and initial conditions and 
which include a wide range of physical effects. The reason for this is that 
one has to separate the phenomena of interest against the backdrop of other 
effective factors, as well as that the inclusion of all the factors inevitably 
reduces computational capabilities concentrated on the study of 2D flow 
itself and phenomena directly associated with the flow. Therefore, it makes 
sense to consider the 2D turbulent MHD flow separately without taking into 
account phenomena insignificant to this flow. Since, in this case, the MHD 
problem is reduced to the problem of 2D hydrodynamic turbulence, its 
major features can be analyzed both in the MHD and in the 2D 
hydrodynamic formulation. 

In this section, following Garanin et al. [7.35−7.37], we present the results 
of numerical simulations of flows in a bounded region for large Reynolds 
numbers in order to determine the parameters of such flows and the rate of 
kinetic energy dissipation. Possible dissipation mechanisms in our 
simulations are viscosity∗ and generation of sound with its subsequent 
nonlinear damping in shock waves. 

Generation of Sound by Turbulence in a Bounded Region 

Generation of sound and its subsequent shock-wave damping could rank 
among important kinetic energy dissipation channels for a 2D turbulent 
flow, because other mechanisms turn out to be weak in such flows as a 
result of the smallness of transport coefficients (viscosity and magnetic 
diffusion) and because the energy loss rate due to generation of sound (see 
Landau and Lifshits [7.8], as well as the results below) should be 
determined only by Mach numbers M (which are smaller than unity for real 
flows after the heating stage in the MAGO chamber, but not too small, at 
about M ~ 0.4 ). In order to explore the possibility of generation of acoustic 
waves by turbulence in a bounded volume for small Mach numbers M (the 
letter M will denote the total Mach number, which in our simulations was 
virtually equal to MA), it is sufficient to analyze this possibility in a 
simplified formulation, for a 1D problem, in which a turbulent motion acts 
as a driving force producing compressions and rarefactions in the volume. 

                                                
∗ For a magnetized plasma with *(ωτ)I >> 11, viscosity-related energy dissipation is more 
significant than ohmic dissipation by a factor of mi/me, and for small MA, the relative 
contribution of the ohmic dissipation becomes even smaller. 
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The theory of sound generation by turbulence occupying a finite volume in 
an unbounded medium was developed by Lighthill [7.8]. This theory is 
applicable when the medium dimensions are large by comparison with the 
characteristic acoustic wavelengths excited by a turbulent flow. If the 
turbulence occupies a volume with a characteristic dimension of ~ L and 
there is no surrounding immobile medium, and characteristic flow velocities 

are ~ ν, the characteristic wavelengths are ~ L
v
c

 (c  is the velocity of 

sound, c  >> ν), which is much larger than the dimensions of the volume 
occupied by the turbulent flow. In this case, the Lighthill theory is 
inapplicable, and the question arises of whether acoustic waves are 
generated in this case, and if so, what the intensity of these waves is. In 
other words, will turbulent motion be dissipated along this channel and what 
will the rate of this dissipation be? 

Since the scale of pressure pulsations in a turbulent flow is ~ ρν2, to clarify 
this issue, we can consider a 1D flow generated in a region with a 
dimension ~ L by such pressure pulsations with a characteristic times of 
~ L/ν. Such pulsations of ~ ρν2 can be produced if the relative volume 
variation equals ~ ν2/c2, which corresponds to matter displacements of ~

L
c
v 2

⎟
⎠

⎞
⎜
⎝

⎛ for characteristic spatial dimensions of ~ L. For characteristic times 

of ~ L/ν, these displacements correspond to characteristic velocities of ~

v
c
v 2

⎟
⎠

⎞
⎜
⎝

⎛ . Therefore, we analyzed the flow in the region bounded by a rigid 

wall on one side and a piston performing preset oscillations with an 

amplitude of ~ L
c
v 2

⎟
⎠

⎞
⎜
⎝

⎛  and characteristic times of ~ L/ν on the other side. 

We sought the answer to the following question: Will shock waves be excited 
in the region for small values of ν, and will the piston, on average, perform 
work? To make the motion of the piston sufficiently smooth at the initial time, 
its motion was defined in the form of the sum of two sine functions, 

x = L v
c
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$

%
&  , (7.3.1)

where T = 2L/n. To ensure that the simulations are credible, they were 
performed with a large number of grid cells over a long time span on the 
order of ~ 200 T. 
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Fig. 7.17 shows the velocity profiles obtained in computations with Mach 
numbers M ≡ ν/c = 0.5 and M = 0.33 at time t = 1000 L/c. These profiles are 
representative for both computations and show that shock waves are formed 
in the region for M = 0.5 and are not formed for M = 0.33. Computations for 
other Mach numbers M show that shock waves are formed in the region for 
M ≥ 0.5 and the piston, on average, performs work, while no shock waves are 
formed for M ≤ 0.33 and the piston, on average, performs no work. Thus, one 
can conclude that in 2D turbulence, where a small fraction of energy is 
contained in a small-scale region (in the spectrum of 2D turbulence, the 
values of E(k) for large wave numbers k decrease faster than k–3 [7.36]), this 
energy dissipation channel does not exist for small Mach numbers. 

 
Fig. 7.17. Velocity profiles u = ν/c produced by the piston oscillating according to 
law (7.3.1) for Mach numbers M ≡ ν/c = 0.5 and M = 0.33 at time t = 1000 L/c. 

For 3D turbulence in a bounded region, however, this dissipation channel 
still exists because there a noticeable fraction of energy is contained in the 
short wavelength spectral region, although it is strongly suppressed for 
small values of M. Indeed, the characteristic frequencies of pulsations in the 
turbulent flow are ~ kν. Therefore, in the case of 3D turbulence, where 
E(k) ~ k–5/3 for large values of k and, accordingly, the velocities are 
νk ~ ν(kL)–1/3, the frequencies increase with k  and the applicability 
condition kνk ~ c/L for the Lighthill theory holds for sufficiently large 
values of k. Since the amount of energy emitted acoustically by a unit of 
mass of a turbulent medium per unit time is given by 

 
Lc
v

s 5

8
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the same estimate will be valid in the range of theory applicability upon the 
substitution of kvv→ , kL /1→ , which yields for a bounded volume 

Lc
v

s 5.7

5.10

~ε  . 

Thus, the intensity of sound generation by a 3D turbulent flow is 
additionally attenuated in a bounded volume by a factor of 5.2)/( cv , by 
comparison with that in an unbounded medium. 

Two-Dimensional Computations of Relaxation of a Vortex Flow 

Garanin et al. [7.36] studied the relaxation of a 2D magnetohydrodynamic 
flow across the magnetic field in a bounded region for the case of a solitary 
vortex in a square box. The initial density was uniform. The computations 
demonstrated that, in accordance with expectations for 2D turbulence and as 
distinct from 3D turbulence, kinetic energy dissipates over the time ~ L2/ν 
(L is the characteristic dimension of the system, ν is kinematic viscosity), 
which in these computations, where the viscosity was numerical ν ~ ν ⋅Δx 

(Δx is the grid size), corresponded to the times 
v
L
x
L
Δ

~ . Kinetic energy 

spectra of the turbulent flow in the bounded region in the inertial range 
(intermediate range between the energy-carrying and viscous ranges) 
subside with the growth of wave numbers rather rapidly⎯more rapidly than 
by the k–3 law. However, the strong nonuniformity of plasma density in the 
MAGO chamber could affect the processes of turbulence attenuation. The 
turbulence vorticity rot 


ν , which is conserved in 2D flows of ideal uniform 

fluid [7.8], is not conserved in fluid with nonuniform density; consequently, 
Kraichnan’s arguments [7.38], derived for the 2D turbulence, to the effect 
that the energy cascade is impossible from larger to smaller scales, become 
invalid. However, although the vorticity is not conserved in a nonuniform 
fluid, one cannot exclude that the kinetic energy in the 2D turbulence of a 
nonuniform fluid will nevertheless be conserved at infinitesimal viscosity, 
and kinetic energy dissipation can turn out to be proportional, for example, 
to the square root of viscosity, as predicted by Chertkov [7.39] on the basis 
of Obukhov's heat conduction dissipation scenario [7.8]. 

In order to study this issue, 2D numerical computations of the same vortex in 
a square region were performed using the EGAK code [7.40]. The fluid was 
assumed to be nearly incompressible (small Mach numbers) and to have small 
viscosity (large Reynolds numbers). Both uniform density and essentially 
nonuniform density, with a 10-fold initial density difference, were considered. 
We studied viscosity effects on flow behavior and energy dissipation. 
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First, we considered a circular vortex flow in a square region for the case of 
uniform initial density. The region of –3 < x < 3, –3 < y < 3 was assumed to be 
initially filled with a substance of constant density ρ0 = 1. The substance was 
assigned an azimuth velocity dependent on the radius according to the law 

 vϕ =
r at 0 < r <1,
2− r at 1< r < 2,
0 at r > 2

"
#
$

%$
 (7.3.2) 

(the radius r and the azimuthal velocity νϕ are measured from the region 
center). The initial velocity distribution is shown in Fig. 7.18. We used an 
ideal gas equation of state with γ = 2. The initial velocity of sound was 
assumed to be constant and equal to c = 2.5, such that the initial Mach 
number in this simulation can be taken as M = 0.4. The turbulent flow in 
this case can be treated as a flow of incompressible fluid, because the 
kinetic energy in the entire region equals about 2% of the internal energy. 

 

We slightly shifted the vortex over the y coordinate (by a magnitude 0.1) 
to create as full a set of perturbations as possible. In the calculations we 
used a rectangular Eulerian (i.e., fixed spatial) grid. The physical 
viscosity, which varied in different calculations, was the main dissipation 
process in the calculations.  

 

Figure 7.19 shows the spatial distribution of the velocity absolute value 
obtained in the calculations with the number of grid cells at 400×400 and a 
dynamic viscosity of η = 5 ⋅ 10–5 (the effective Reynolds number Re ~104) 
at times t = 80, 120 and 500.

Fig. 7.18. Initial velocity 
distribution in the computations. 
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Fig. 7.19. Spatial distribution of the velocity absolute value obtained in the 
calculation with the viscosity 5⋅10 -5, with uniform initial density, with the grid cell 
number 400×400, at times a) t = 80, b) t = 120, and c) t = 500. 

Figure 7.19 shows that the unstable vortex flow in the 2D case disintegrates 
as a result of the development of the instability; later in the region, however, 
in contrast to a chaotic turbulent flow (the kind that would be expected), a 
quasi-stationary flow is formed with one major vortex (two vortices formed in 
the region under other conditions and with other computational grids). In this 
flow, minor small-scale perturbations are present that do not, however, make 
the vortex disintegrate, and their growth is saturated, apparently as the result 
of nonlinear effects. In time, the major vortex slowly shifts within the region 
under consideration. 

(a) (b) 

(c) 



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

 288 

Figure 7.20 presents the time dependence of the system’s kinetic energy in 
computations with varying viscosities. The figure shows that, as expected, 
the kinetic energy of the 2D turbulent flow with large Reynolds number 
decays rather slowly. As one would expect, this decay turned out to be 
essentially proportional to the viscosity. 

 
Fig. 7.20. Time dependence of the system’s kinetic energy Ek (measured in the units 
of the initial value) in the computations with uniform initial density, grid cell 
number 200×200, and varying viscosities. 

 

The following modifications of the initial conditions were introduced into the 
computations in order to study of the effect of the density heterogeneity on 
the relaxation of the vortex flow. In the zone r < 2, where the initial velocity 
does not equal zero, the material density ρ1 was assigned to be one-tenth the 
density ρ2 in the rest of the zone. The total mass of the material remained 
unchanged. The dependence of the velocity on radius (7.3.2) remained the 
same, but a coefficient 2.62 was introduced into that formula to keep the 
initial value of the kinetic energy unchanged. The initial pressure in the area 
was assumed to be constant and equal to the material pressure in the problem 
with constant density. Thus the Mach numbers were the same as in the 
problem with constant density.  
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Figure 7.21 presents the spatial distribution of the velocity absolute 
value obtained in the computations. The figure shows that in those 
computations, after the vigorous turbulent phase, the phase of quasi-
stationary flow with two slowly changing vortices occurs. These 
vortices have lower densities inside. The turbulent phase is 
accompanied by considerable density equalization, and in the quasi-
stationary phase the density equalizes rather slowly.  

Fig. 7.21. Spatial distribution of the velocity absolute value obtained in the 
calculations with the viscosity 5⋅10 –5, with nonuniform initial density (ρ2 = 10ρ1), 
with the grid cell number 400×400, at times a) t = 50, b) t = 150, and c) t = 500. 

Figure 7.21 shows that, the circular motion breaks down faster in the case of 
nonuniform density than in the case of the uniform density in Fig. 7.19. The 
next phase of vigorous turbulent flow reorganization is more active in the 
case of nonuniform density and is accompanied by the appearance of 

(a) (b) 

(c) 
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smaller-scale zones in which kinetic energy could dissipate. However, after 
that is a lengthy quasi-stationary phase similar to that in the case of uniform 
density. For the vortices formed in this stationary phase, both in the 
nonuniform case and the uniform case, in a considerable part of the 
distances r from their centers, the condition of stability [7.8] is fulfilled  

�
( )

0
d v r

v
dr

ϕ
ϕ

ρ
> , (7.3.3) 

where νϕ is the azimuthal velocity relative to the vortex center. 

Figure 7.22 shows the time dependence of the system’s kinetic energy in the 
calculations with a nonuniform initial density, a grid cell number 200×200, and 
varying viscosities. A comparison of Fig. 7.22 and Fig. 7.20 shows that when a 
nonuniform initial density is assigned, the kinetic energy decay over the times 
considered is substantially larger than in the case of a uniform initial density; 
however, this entire difference is accumulated during the turbulent phase of the 
flow reorganization; in the quasi-stationary phase the decays of kinetic energy 
in the uniform and nonuniform cases are small and commensurate. 

Fig. 7.22. Time dependence of the system’s kinetic energy Ek (measured in the units 
of the initial value) in the calculations with nonuniform initial density, a grid cell 
number 200×200, and varying viscosity.  

Figure 7.22 shows that the viscosity played an important role in the 
calculations under consideration. We can ask ourselves how the kinetic 
energy decrease in a 2D turbulent flow of heterogeneous fluid is connected 
with viscosity. If we suppose that it is connected with the viscosity in the 
same manner as in the case with 2D turbulence for a homogeneous fluid, 
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then the kinetic energy decay decrements should be proportional to the 
viscosity. But if it is qualitatively the same as in the 3D turbulence and is 
connected with the energy transfer to smaller scales (as in the Kolmogorov-
Obukhov scenario), the kinetic energy decay should not depend on the 
viscosity. In the intermediate case, according to Chertkov’s predictions 
[7.39] the kinetic energy decay decrement can be determined by the heat-
conductance dissipation [7.8] for the system with characteristic 
accelerations that facilitate the mixing in the active turbulence phase ~ ν2/L 
and can be proportional to the square root of the viscosity. 

Thus, the selection of scenario is determined by the dependence of the 
kinetic energy decay decrement λ on the viscosity η 

l ~ ηk, 

where k = 1 corresponds to the scenario of 2D turbulence of a homogeneous 
fluid, k = 0 corresponds the Kolmogorov-Obukhov scenario, while k = 0.5 
corresponds to Chertkov’s prediction. Using Fig. 7.22, we compared the 
kinetic energy decay decrements for the viscosities differing two-fold from 
each other. In the most vigorous phase of turbulent flow corresponding to 
the time interval 20 < t < 100, the ratio of the decrements turned out to be 
1.44, that is, close to 2 , and thus better corresponding the prediction 
[7.39]. Then, at a quieter phase of the quasi-stationary vortex corresponding 
to the time interval 200 < t < 500, the ratio of the decrements turned out to 
be 1.71, that is, intermediate between the scenario of the 2D turbulence with 
a homogeneous fluid and the prediction [7.39]. 

However, the correlation functions built in the inertial interval for the 
performed calculations confirmed neither of the mentioned scenarios. For 
the Kolmogorov-Obukhov scenario, in the inertial interval, the velocity 
pulsations, as well as the density pulsations, should have been proportional 
to r1/3, where r is the distance between points. For the scenario of Chertkov 
[7.39] the velocity pulsations δν should have been proportional to r0.6, and 
the density pulsations should have been δρ ~ r0.2; while for the 2D 
turbulence of a homogeneous fluid, there should have been δν ~ δρ ~ r. 

Figure 7.23 shows the velocity correlation function (δν)2 obtained in the 
calculations in the inertial interval for different times. The graph shows also 
the trend lines (δνl)2 ~ rn and indicates the exponent n for the corresponding 
times. It can be seen from Fig. 7.23 that for only one of the times presented, 
t = 30, can the velocity correlation function correspond to one of the 
scenarios under consideration⎯Chertkov’s scenario [7.39]. This also 
corresponds to the square root dependence of the energy dissipation rate on 
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the viscosity found for this time interval. However, even for this instant of 
time the density correlation function obtained in this calculation and having 
the scaling (δρ)2 ~ r0.96 in the inertial interval does not correspond to the 
scenario [7.39] δρ ~ r0.2. The scalings of the density correlation function 
obtained for other times (see Table 7.2) failed to reveal correspondence with 
the enumerated turbulence development scenarios or any clear 
correspondence with the velocity correlation function scalings, as well. 

 
Fig. 7.23. Velocity correlation function in the calculations with nonuniform initial 
density, a viscosity of 0.00005, and a 400×400 grid at different times; m is the 
spatial scale measured in the units of numerical-calculation grid cell; n is the trend 
line exponent describing the correlation function by the power dependence. 

 

Table 7.2. Scalings of the velocity correlation 
function, (δν)2, and the density correlation 
function, (δρ)2, in the inertial interval. 

t (δν)2 (δρ)2 

20 1.86 1.23 

30 1.21 0.96 

50 1.49 0.84 

150 1.64 0.96 

300 1.91 1.66 
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CONCLUSION 
Thereby, based on the calculations performed, we can draw the following 
conclusions about the main features of 2D turbulent flows in a bounded region: 

In the case of 2D turbulence in a bounded region at low Mach numbers, 
turbulence causes no sound generation, and, thus, this dissipation channel 
does not exist for small Mach numbers M. 

The calculations showed that in the case of both uniform and nonuniform 
density, the 2D flow within a bounded region, being unstable, starts to break 
up with time because of the growth of perturbations and acquires a complex 
turbulent form. However, the flow then turns into one or two vortices, 
which, although slightly twisted by the perturbations occurring, retain their 
shapes on the whole. In such form, the flow is quasi-stationary, gradually 
losing energy due to viscous dissipations.  

In the case of uniform density, the kinetic energy decays with time rather 
slowly in both phases: in the phase of the flow reorganization, when it has a 
complex turbulent form, and in the quasi-stationary phase. Here the decay 
of the kinetic energy is proportional to the viscosity, as it should be in the 
case of a 2D turbulent homogeneous fluid.  

In the case of nonuniform density in the phase of the flow reorganization, 
when it has a complex turbulent form, there is a relatively large drop in 
kinetic energy and a relatively rapid equalization of the material density 
throughout the volume. In the quasi-stationary phase, the density equalizes 
throughout the volume rather slowly, and the density minimums form in the 
centers of the vortices. The kinetic energy in this phase also drops slowly, 
almost as slowly as in the case of a homogeneous fluid. 

The preliminary results indicate that in the active phase of the flow 
reorganization, the kinetic energy decay decrements are proportional to the 
viscosity square root, i.e., they correspond neither to the 2D turbulence of a 
homogeneous fluid, where they should be proportional to the viscosity, nor 
to the Kolmogorov-Obukhov scenario, where they should be independent of 
the viscosity. The square root dependence on the viscosity corresponds to 
Chertkov’s prediction [7.39], based on the scenario of Obukhov’s heat-
conductance dissipation [7.8]. In the quasi-stationary phase, the kinetic 
energy attenuation decrement turned out to be proportional to the viscosity 
to the power of 0.77, which is an intermediate value between the 
dependence according to Chertkov [7.39] and the dependence for the 2D 
turbulence of a homogeneous fluid. However, the correlation functions built 
in the inertial interval for the calculations performed have confirmed neither 
of the mentioned scenarios. We should note, however, the preliminary 
nature of the results obtained.  
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Because of considerable differences of the properties of 2D and 3D 
turbulent flows, one should be careful when applying 2D calculations to 3D 
turbulent flows. In 3D turbulent flows, the attenuation of the kinetic energy, 
the heat transfer, and the mixing of materials can proceed considerably 
faster than in 2D calculations. Thus, for the flow in a bounded region, in the 
3D case, the kinetic energy attenuation should proceed over times ~ αL/ν, 
where α is a small factor characterizing the value of turbulent pulsations, 
whereas in 2D calculations, the kinetic energy attenuation proceeds over 
times ~ L2/ν for uniform densities or ν/~ 2/3L  in the vigorous phase of 
the flow reorganization for nonuniform density. 

Since the energy dissipation time for 2D turbulence depends on the 
viscosity, for calculations of plasma flows in a magnetic field, one must 
properly describe the physical mechanisms leading to the dissipation (the 
longitudinal physical viscosity [7.33], which, in the case of magnetized 
plasma, can be determined mainly by the establishment of equilibrium 
between longitudinal and transverse degrees of freedom of ions, and 
strongly magnetized shear viscosity [7.33]). 

Distribution of plasma impurities and temperature can be more 
inhomogeneous than in the 3D case, which can turn out to be significant for 
the description of plasma radiation on the impurities and its cooling. Since 
the kinetic energy of the turbulent motion in the 2D case decreases more 
slowly, the impurities can be washed out from the walls over longer times 
and, thus, can be more dangerous than in the 3D case. 

7.3.2. Convective Plasma Cooling During its 2D Turbulent Motion in 
Magnetic Field  
In the MAGO/MTF approach, wall-confined preheated magnetized plasma 
is brought to thermonuclear temperatures by liner compression. In this 
approach, the plasma cooling caused by the transfer of heat into the cold 
walls can be amplified because of the presence of convective turbulent 
motion; this heat transfer depends essentially on whether the forming 
turbulent motion is 2D, or 3D. In the MAGO system this flow is 2D and 
depends on coordinates r and z, since the azimuthal magnetic field impedes 
the bending of the magnetic field lines and occurrence of flows that violate 
azimuthal symmetry. In this section, the processes of convective heat 
transfer to walls are studied via the use of estimations and 2D MHD 
calculations [7.41]. Two options to increase the heat transfer are considered: 

The turbulent motion in the chamber, which is caused by the initial plasma flow 
and the plasma flow that maintained over that time, can, in theory, bring the hot 
plasma from the depth to the wall, thereby increasing the heat transfer. This 
option will be called the turbulent thermal diffusion. 
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When the plasma comes in contact with the external wall, its cooling causes a 
decrease in its pressure and, accordingly from the equilibrium conditions, an 
increase of the magnetic field. As a result, the conditions are created for the 
development of the sausage instability, m = 0, and the cooled plasma elements 
descend to smaller radii. Then, the descending cold plasma mixes with the hot 
plasma at small radii, and the formed turbulent motion intensifies the heat 
transfer. This option will be called convection. 

Turbulent Thermal Diffusion 

The processes of turbulent thermal diffusion can be described qualitatively 
using the notion of the turbulent diffusivity D, which, in the case of 3D 
turbulence, can be considered to be equal on the order of magnitude (just 
like the kinematical coefficient of viscosity [7.8])  

Dt ~ αLν , 

where L is the dimension characteristic for the considered flow, ν is a 
characteristic flow velocity, and α is a small dimensionless numerical 
factor. If we consider the process of heat transfer to the wall by turbulent 
flow, distance x from the wall should be taken as the characteristic 
dimension L, and then the turbulent diffusivity will be equal to 

Dt ~ axν . 

In the case of 2D turbulence in a bounded region, since small energy 
(Section 7.3.1) is contained in a region of small scales (large wave 
numbers), the relative velocity v of two particles a small distance x  apart is 
determined by large scales of the flow and is proportional to this distance 

~ xv v
L

δ  . (7.3.4)

In the near-wall region, where, by contrast with the 3D case, the turbulent 
velocity pulsations will no longer be of the order of the velocity itself, but 
will be of the order of (7.3.4), the effective diffusivity (and, accordingly, 
turbulent thermal diffusivity) can be considered to be 

Dt ~αxδv ~α
x 2

L
v  , (7.3.5)

that is, decreasing quite intensely with the approach to the wall. The 
turbulent coefficient of kinematical viscosity of the order of (7.3.5), in 
agreement with Clercx and van Heijst [7.42], yields the frictional force of 
the flow against the wall 

F ~αu 3/2 ρη / L  
(u is the flow velocity), proportional to the square root of the physical 
viscosity, η. 
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Convection 

If hot plasma at large radii borders an external conductor, the plasma will be 
cooled down because of its contact with the cold metal wall. The cooling 
process should be enhanced with convection. In fact, as a result of cooling, 

the plasma parameter Φ =
p1/γr
B

 decreases and, thus, an area is created in 

which the condition of Kadomtsev [7.9] 

∂Φ
∂r

< 0  

is fulfilled for convection development. The plasma cooling processes with 
MHD convection inclusion were numerically simulated by Lindemuth 
et al. [7.43]. 

Let us consider the process of convective plasma cooling. Assume that at 
the initial time, plasma with β ~1 is in contact with a cold wall of radius R. 
If we consider the plasma motion at distances x ≤ R, then the plasma being 
cooled will attain the acceleration 

g ~ c2/R 

where c is the sound velocity in the plasma. Initially, for small times, when 

g t 2 < κ t  

(κ is the real, not turbulent, plasma thermal diffusivity), the plasma cooling 
will proceed according to the diffusion law 

tx κ~  . 

At t > κ1/3/g2/3 convection enters the process. Then, at the diffusion layer 
boundary 

xD ~ κ2/3/g1/3 , 

temperature of the order of initial temperature T0 is maintained. The motion 
of the mixing layer will be determined by the equation 

 d 2x
d t 2

~ x
t 2
~ 0.1g δT

T0
, (7.3.6) 
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where the multiplier δT/T0 (δT is the temperature variation in the layer x) 
describes the decrease of the gravitational force lowering the cooled plasma 
to smaller radii. In addition, given that in 2D case bubbles rise at roughly 
~ 0.1 gt2 (Section 7.2.3), we introduce the multiplier 0.1 into the formula 
(7.3.6). Since the diffusion zone size remains constant and, consequently, 
the heat flux is also constant, with taking into account formula (7.3.6), we 
obtain the time dependence of the convection zone width 

x ~ 0.09 κ1/6 g2/3t3/2 (7.3.7)

and the temperature distribution in the convection zone 

δT /T0 ~ 0.4
κ 2/9

g 1/9x 1/3
 .  (7.3.8)

In the 2D computations, this convection is taken into account automatically. 
In the 1D computations, for example, for a cylindrical system in which all 
quantities (averaged over the turbulent pulsations violating azimuthal 
symmetry) depend solely on radius r, the convection can be modeled as 
follows. At each plasma point, short-wave increments of the convective 
instability γ (7.1.21) are calculated. In the areas that are unstable relative to 
the convection, the magnetic diffusion and thermal conductivity coefficients 
are increased using exponential multipliers ch(∫γdt) ≡ ch(G). The 
comparison of the 1D model with 2D computations results and estimations 
of (7.3.7−7.3.8) has shown that, in many cases, the physical magnetic 
diffusion and thermal conductivity coefficients turn out to be too high to 
ensure small coefficients in the formulas of (7.3.7−7.3.8). Therefore, it 
makes sense to increase these coefficients a little less, but following the law 

Ch(G2/(G + G0)) , 

where G0 is a semi-empirical coefficient determined for typical cases 
through comparison with 2D calculations and estimations of (7.3.7−7.3.8). 

For a qualitative inclusion of 2D turbulence (7.3.5) in the proposed 1D 
model, we can assume that G ≥ Gmin for some Gmin in a central plasma area. 

Cooling of Cylindrical Magnetized Plasma Layer  

To determine the role of turbulent thermal diffusion and convection and 
validate the 1D model for the plasma cooling description, we performed a 
numerical 2D MHD simulation of cooling of magnetized plasma bounded 
by cold walls. 
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The 2D computation set-up was as follows. We assumed that at the initial 
time, the plasma of density ρ0 = 3⋅10-6 g/cm3 and temperature Т = 0.2 keV is 
in the space between two coaxial cylinders 2 cm long; the radius of the 
internal cylinder is 0.9 cm, the radius of the external cylinder is 6 cm. The 
plasma is in an azimuthal magnetic field corresponding to a field of direct 
current I = 2.5 MA. The walls were assumed to be rigid, perfectly 
conducting, and cold, and the cylinder bases were rigid, perfectly 
conducting, and thermally isolated. At the initial time, small density 
perturbations were assigned in the plasma volume. In one calculation run, 
the initial plasma velocities were assumed to be zero. To determine the role 
of the turbulent thermal diffusion, another calculation run assigned an initial 
field of velocities whose order of magnitude coincided with that of the 
velocities generated as convection developed, while the velocity distribution 
itself rapidly became chaotic because of instabilities. The level of the initial 
turbulent kinetic energy in this calculation was ~3 % of the thermal energy.  

The 2D calculations showed that the presence of additional velocities had 
virtually no effect on the plasma cooling, and the developing convection 
resulted in the thermal energy of the plasma dropping down to 70 % of the 
initial energy by the time t = 5 µs (according to 1D calculation, convection-
free thermal conduction had cooled the plasma to 80% of the initial thermal 
energy by that time).  

The 1D model calculations of the convection with G0 = 10 and Gmin =1 
showed that, by the time t = 5 µs, the plasma thermal energy decreased 
down to 67% of the initial thermal energy, which describes the 2D 
calculation results. Thus, the parameters G0 = 10 and Gmin = 1 can be looked 
upon as reasonable for the description of cooling of infinitely long plasma 
cylinders with the level of turbulent kinetic energy being ~3 % of the 
thermal energy.  

7.3.3. Plasma-Driven Material Washout from the Walls in the MAGO 
Chamber  

Among the sources of impurities that reduce plasma lifetime in the MAGO 
chamber are the walls of the chamber. The action of the heat fluxes on the 
wall material can result in wall material melting or vaporizing at the 
boundary with the plasma, losing of strength, and easily detaching. The heat 
fluxes themselves from plasma to the walls are ultimately determined by 
thermal conductivity, drift heat transport and plasma radiation. However, 
these fluxes can grow considerably because of the presence of 
hydrodynamic convective motion that brings hot plasma to the walls or 
because of the plasma flow friction against the electrode surface (see 
Section 5.3) or an increase in radiation from the plasma after it is 
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contaminated by impurities. Plasma contamination imparts a positive 
feedback to the system: the increased content of impurities results in 
increased heat fluxes to the wall, which, in turn, increases the impurities’ 
ingress into plasma, and so on. 

In this section, following the work of Garanin et al. [7.44 and 7.45], we provide 
estimates of heat fluxes to the walls in the MAGO chamber, consideration of 
the possible melting or vaporization of the walls, and estimates of the amount of 
impurities brought by the MHD-turbulence into the plasma.  

Heat fluxes from plasma to electrodes and insulator. Melting or vaporization 
of electrode metal and insulator vaporization 

Let us estimate the heat fluxes incident on the walls with using different 
approaches. The first method of estimating the fluxes involves using the results 
of 2D MHD computations, where these fluxes are determined by thermal 
conductivity for magnetized plasma and its radiation. The drawback of these 
estimates is that many effects evolving at small distances from the surface are 
not reproduced in the computations, because of the grid size limitations. 
Moreover, the computations do not take into account some physical phenomena, 
such as the plasma friction against the surface (which, according to Section 5.3, 
can be of a kinetic nature, i.e., ions interact with the metal surface at distances 
smaller than the Larmor radius), the Hall effect, and the Nernst effect. 

Another way to obtain such estimates is to use the results of 1D analysis of 
near-electrode layers in the MAGO chamber (see Section 5.3). This 
approach takes into account the above-mentioned physical phenomena, as 
well as models the turbulence caused by large near-electrode plasma 
velocity gradients. The drawback of these estimates is that they do not take 
into account flows from heated plasma, since, in this work, the near-
electrode layers are considered for cold plasma acceleration. Let us start 
with these estimations. 

According to Section 5.3.1, when plasma with a density of n0=6⋅1017 cm-3 is 
accelerated in a magnetic field ~B 105 G, heat fluxes in the near-cathode 
and near-anode layers equal approximately q ~ 26-52 J/cm2µs at time 
t = 0.5 µs, when the plasma velocity far from the electrodes is 40 cm/µs. By 
this time, the volume density of heat release in the copper wall is 

~ q t
κ

 ~ 6−12 kJ / cm3  
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(κ ~ 10–6 cm2/µs is the coefficient of copper temperature conductivity) or 
heat release per mass unit is ~ 0.7-1 kJ/g, which may exceed the heat 
required for melting copper, which is ~ 0.6 kJ/g. 

When the residual low-density plasma with the density n0 = 1.5⋅1016 cm-3 is 
accelerated in the vicinity of the nozzle, the near-anode heat fluxes, which 
on the average are 2400 J/cm2µs, are especially significant. Since the flow 
time of the residual plasma through the nozzle is ~ 0.3 µs, the heat release 
on the anode per mass unit can be ~ 100 kJ/g, which significantly exceeds 
the heat of vaporization for copper, which is ~ 6 kJ/g. 

The estimates of the heat fluxes onto the walls for a small chamber with a 
radius of 6 cm, obtained using 2D computations, yield a maximum for the 
heat flux on the walls of ~30 J/cm2 and a radiation energy flux of ~ 40 J/cm2 
(under assumption that the level of impurities is ~5⋅10-3 Torr of oxygen). 
The characteristic times are ~2 µs, and the heat release per mass unit is 
~ 6 kJ/g, which is on the order of the copper vaporization heat.  

According to the 2D computations, radiation fluxes to the insulator are 
~ 1 J/cm2, and their action time is ~ 1 µs. Since, for ceramics, the coefficient 
of temperature conductivity per mass unit is ~ 0.2−1 g2/cm4s, the heat release 
per mass unit, ~ 6 kJ/g, warms up its surface layer higher than 2000° C. Such 
temperatures can cause the vaporization of ceramics, and in this vapor, 
breakdowns and the H-thrown discharge may occur (Section 6.5). 

Instability of Tangential Discontinuity at the Plasma−Electrode Interface 

In the MAGO chamber at the plasma−electrode interface, there is a tangential 
discontinuity: plasma flows along the electrode with velocities of u
~ 107 cm/s (near the nozzle the velocities are up to ~ 108 cm/s), and the 
electrode material, which can be in the melted or vaporized state at the surface 
and whose density is considerably higher than that of the plasma, is at rest. At 
this interface, a tangential instability [7.8] should develop whose increments 

 γ = k
ρp
ρm
u  (7.3.9) 

(ρp, ρm) are plasma and electrode material densities, k is the wave number) 
are inversely proportional to the square root of the electrode material 
density. Thus, the development of this instability is most dangerous in the 
case of plasma contact with the vaporized electrode.  
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Turbulence Developing at the Plasma−Metal Interface and the Ingress of 
Impurities into Plasma  

Let us consider the distribution of a heavy material in a light one (plasma) 
in a developing tangential instability. Beginning with the formula (7.3.9) 
and using, for the characteristic turbulent velocities v, the formulae 
applicable to 3D turbulence, we can assume that 

v ~α
ρp
ρ
u  , 

where ρ is the local density, α is a small coefficient, characteristic for 
turbulent pulsations. Since the velocities v  transport the material a distance 
of x ~ vt, the density distribution can take the form 

ρ ~ ρp
α u t
x

!

"
#

$

%
&

2

.

Then the total mass of the heavy material brought into plasma from the unit 
area per time unit is 

dm
dt
~ ρ x
t
~α 2ρp

u2t
x
~α ρp u  . (7.3.10)

The relation (7.3.10) was earlier used in Bakhrakh et al. [7.46] for describing 
experimental data on strong shockwave damping in a tube. Comparison of the 
calculations and experiments gave the value of the constant α ≅ 0.02. The 2D 
numerical computations performed showed that this value is reasonable for 
describing mixing of a heavy fluid and a light fluid in the 2D case. 
Nevertheless, we tried to estimate the material washout from the walls in the 
MAGO chamber at the phase of preliminary heating, using more complicated 
qualitative models of 2D turbulence with reasonable dependences in different 
extreme cases. At the phase of the MAGO plasma compression, we used the 
relation (7.3.10) for estimation of the material washout from the walls. 

Plasma-Driven Material Washout from the MAGO Chamber Walls in the 
Phase of Preliminary Heating 

As we have noted already, the turbulent plasma motion in the azimuthal 
magnetic field in the MAGO systems can be 2D, because the magnetic field 
impedes the bending of the magnetic-field lines and occurrence of the 
corresponding flows. Garanin et al. [7.47] studied the transport of impurities 
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from the walls with regard to axisymmetric MHD 2D flows in a bounded 
region. The process of the mixing of wall material with plasma was 
described in Garanin et al. [7.47] by the 1D diffusion equation 

∂ρ
∂t

= div(D ∇ρ) ,

where ρ is the concentration of impurities, D is the turbulent diffusion 
coefficient, consisting of two parts, determined by the turbulent motion set 
in the chamber volume and the turbulent motion that is caused by the 
plasma convection development on the boundary with the cold wall: 
D = Dt + Dc. The dependence of the impurities’ turbulent diffusion 
coefficients on the characteristics of those flows was determined for the 
case of 2D turbulent flows, and numerical factors in the formulas for D were 
determined in the case of m = 0 stable plasma with an azimuthal magnetic field. 

Garanin et al. [7.47] ascertained that turbulent diffusion is unable to bring 
the material away from the wall by itself, because the 2D turbulent diffusion 
coefficients decrease fast as the wall is approached. To determine the 
material flows from the walls, near-wall processes (molecular diffusion, 
physical viscosity, heat conduction, heat-driven release of impurities from 
the wall, heterogeneity of density, etc.) should be included. But if only 
numerical hydrodynamic calculations are used for the transport of impurities, in 
a uniform fluid the result will depend on the spatial grid, and the material flows 
from the walls will decrease with a spatial grid refinement. We can, however, 
specify two factors that can result in the finite value of flows from the walls. 
First, it is the finite width of the layers of melted or vaporized wall material. 
Second, in the vicinity of the walls where the material density gradients can be 
high, we should assume that the diffusion coefficient Dt is not the same as in the 
2D case [7.47], but, qualitatively, the same as in the 3D case. This change 
also leads to a finite value for the flows of impurities from the walls. 

On the basis of the 1D model, with account taken of the two factors resulting in 
finite values for the flows, we estimated the impurity washout from the MAGO 
chamber walls. We used the 1D computation results for plasma cooling to take 
into account specific profiles of the values in the chamber, which required 
generalization of the model for the case of arbitrary (stable and unstable) 
plasma profiles. In addition, in the 2D calculations we took into account the 
time dependences of characteristic turbulent plasma velocities. 

The calculations have shown that by the times 0.5–1 µs after heated plasma 
is generated in the central area of the chamber, the mass of light-element 
gas impurities is less than 1 % of the plasma mass, which is insufficient to 
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explain the X-ray diode signals obtained in the experiments. However, a 
significant gas amount has mixed in with the plasma by the time of a few 
microseconds, which agrees with the post-experiment values of gas leakage 
in the chamber training and experiments at the Cascade facility. 

It was found that, in the case of vaporization of the surface of copper walls, 
the amount of copper impurities in the chamber can be 0.2–0.4 % of the 
plasma mass in 0.5–1 µs, which, given the considerable uncertainties 
attending the estimates, can explain the diode signals. Thus, mixing in of the 
copper impurities can be an important and even determining factor that 
affects the energy losses in the chamber. The estimates obtained agree well 
with the calculations of the X-ray diode signals of the Dante spectrometer, 
shown in Section 3.4.4. 

Plasma-Driven Material Washout from the MAGO Chamber Walls in the 
Phase of Plasma Compression 

The formula for the mass washout rate (7.3.10) with the specified value of 
the coefficient α ≅ 0.02 is used to estimate the mass washout from the 
MAGO chamber walls during the compression of preheated plasma by a 
hemispherical chamber wall. We write a set of two equations: 

dm
dt

= α
m
V
ut S  , (7.3.11)

mutR = const = m0ut0R0  . (7.3.12)

The first equation is the formula for the washout rate (7.3.10). The second 
one is the angular momentum conservation law for plasma motion in 
vortices. This equation takes into account the angular acceleration of the 
vortices in plasma and their deceleration due to the involvement in this 
motion of the mass that has been washed out from the walls. In the 
equations (7.3.11) and (7.3.12) 

m is the total plasma mass, including the washed-out mass; 

S is the surface area of the walls surrounding the plasma; 

V is the plasma volume; 

R is the radius of the plasma-compressing hemisphere. 

Strictly speaking, the projection of the plasma angular momentum onto the 
direction perpendicular to r and z that is under consideration is not conserved 
for the plasma moving in the axisymmetric MAGO chamber. However, we 
can provide the following in justification of the formula (7.3.12). As follows 
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from the Thomson theorem [7.8], the quantity proportional to rot u ⋅dS
 

 is 
conserved in the ideal fluid flow. In the compression of the 2D region, if 
urot  is assumed to be on the order of ut/R (the main contribution to the 

turbulent motion’s kinetic energy will not be made by smaller-scale motions) 
and dS ~ R2, then utR ~ const. ut R ~ const . To obtain (7.3.12) therefrom, we 
assume that the mixing of the washed-out mass and the plasma proceeds with 
conservation of momentum rather than energy. 

By substituting ut from (7.3.12) into (7.3.11) and changing the variable t to 

the variable R( dR
dt

= −un ), we obtain 

 dm
dR

= −αβ
m0ut 0R0
R 2un

. (7.3.13) 

Here, β is the coefficient in the formula S
V
=
β
R

, S = 3πR2, V =
2
3
πR 3,  

β = 45 and the quantities with the subscript 0 are initial values of mass, 
tangential velocity, and radius. The solution of equation (7.3.13) can be 
written as 

 m
m0

=1+αβ
ut 0
un

R0
R
−1

"

#
$

%

&
' . (7.3.14) 

Here we assumed that the radial compression velocity un is time-independent. 

We also note that the writing of the initial equations (7.3.11) and (7.3.12) 
means that, during the entire process of plasma compression (from the very 
beginning), we assume the presence of vaporized material in a sufficiently 
large amount (such that it does not have enough time to become washed out 
completely) over the entire surface area of the chamber walls. The available 
2D MHD computations of plasma flow in the chamber suggest that by the 
initial moment of compression, the walls are vaporized only in some 
locations (which represent a small portion of the total area). However, 
according to the estimates, starting from the degree of compression of ∼ 2 
(by volume), the bremsstrahlung alone of the pure DT plasma yields, on 
average for the entire surface of the walls, an energy flux of ∼ 1013 
erg/cm2·s, which is sufficient for the copper vaporization.  

With the above provisos taken into account, we can assume that the 
numerical estimates presented below yield results that are correct in the 
terms of the order of magnitude, albeit slightly overestimated. 
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Using the obtained formula (7.3.14), we estimate the washed-out mass for a 
case in which the plasma velocity in the chamber at the initial time of 
compression is ut0 ~ 107cm/s (based on the results of the 2D MHD 
computations) and the velocity of the plasma compression by the 

hemispherical shell is un ~ 106 cm/s. In this case, for 
R0
R
= 2  (the 

compression degree is δ = 8), m
m0
~ 2 ; for 

R0
R
= 5  (δ = 125), m

m0
~ 5 . 

The result obtained, with account taken of the fact that estimates under 
discussion are very approximate, can be formulated as follows. The mass 
washed out from the chamber walls during plasma compression in the 
MAGO chamber at the compression degrees of interest to us is of the order 
of magnitude of the DT-gas mass itself. If this is correct, it follows that in 
the experiments on the DT plasma compression in the MAGO chamber, the 
chamber walls (or the wall coating) should be made not of copper, but of 
light materials (e.g., graphite or beryllium), so that the radiation losses of 
the DT plasma heavily contaminated by the wall material do not cool the 
plasma too rapidly. 

It should be said that the obtained estimates are based on the hypothesis of 
conservation of angular momentum in plasma compression or, to be more 
exact, on the hypothesis that, in the plasma compression, the 2D turbulent 
kinetic energy increases in inverse proportion to the area of the 2D 
cross-section of the region (not including the mixing, of course). There is a 
probability that this hypothesis does not hold. It should be also noted that, 
according to the results of Section 7.3.1, the dissipation of kinetic energy in 
2D turbulence is determined by real physical viscosity, and determining the 
kinetic energy of turbulent motion and, with it, the amount of washed-out 
mass (7.3.14) in the MAGO experiments requires computations that take 
into account the physical viscosity of magnetized plasma [7.33]. 

CONCLUSION 

According to the estimates, the value for heat flux at which the copper wall 
begins to vaporize in the MAGO chamber (with a characteristic duration of 
heat flux of ∼ 10-6 s) is ∼ 3⋅1014 erg/cm2s. The same parameter for a ceramic 
(Al2O3) insulator is ∼ 1013 erg/cm2s. The estimates based on different 1D 
and 2D computations show that such heat fluxes can occur during plasma-
chamber operation. 

The estimates of the turbulent washout of impurities from the walls by plasma 
showed that, at the stage of plasma preheating in the MAGO chamber, by the 
times 0.5 – 1 µs after heated plasma is generated in the central area of the 
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chamber, the mass of light-element gas impurities is less than 1% of the plasma 
mass, which is insufficient to explain the X-ray diode signals obtained in the 
experiments. However, a considerable amount of gas is mixed in by the time of a 
few microseconds, which agrees with the values of gas leakage measured post-
experimentally in the chamber training and experiments at the Cascade facility. 

It was found that in the case of vaporization of the surface of the copper 
wall, the amount of copper impurities in the chamber by time 0.5–1 µs can 
be 0.2–0.4% of the plasma mass, which, given the considerable 
uncertainties of the estimates, could explain the diode signals. Thus, the 
mixing in of the copper can be an important and even determining factor 
affecting the energy losses in the chamber. 

It was also found that the mass of the material washed out from the MAGO 
chamber walls during the process of plasma compression by a 
hemispherical shell can be of the same order as the mass of compressed DT-
gas. If the experiments show this to be true, then, in order to prevent the 
wall impurities from cooling the plasma too rapidly, the MAGO chamber 
walls and the insulator may be fabricated from light materials (carbon or 
beryllium for the walls, boron carbide or boron nitride for the insulator) for 
the experiments on plasma compression. 

7.3.4. Simulation of MAGO Plasma Compression by Imploding Liner with 
Account Taken of Convection 

In Section 2.1.2, we have already presented the parameters of the plasma 
obtained in the MAGO chamber. In a number of experiments in the 
coaxial cylindrical volume with a height 8 cm, an external radius of 
R ~ 10 cm, and an internal radius of 1.2 cm, DT plasma was obtained 
with the following parameters: 

mean density n = 8⋅1017cm-3, 

mean temperature T = 250 eV, 

characteristic current in the plasma I ~ 4 MA, 

characteristic magnetic field in plasma B ~ 0.15 MG, 

characteristic β ~ 0.6, 

which makes it possible to consider this plasma as suitable for ignition in its 
quasi-spherical compression. According to the estimates presented in 
Section 2.1.2, if such plasma lives in MAGO for ~10-5 s, then the ignition in 
the MAGO/MTF system can be achieved using an implosion system with a 
liner energy of ~20 MJ and a velocity of ~1 cm/µs. In the joint 
VNIIEF/LANL experiment HEL-1 (High Energy Liner), a liner with similar 
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parameters (energy of ~25 MJ, velocity of ~0.8 cm/µs) has been obtained 
[7.48]. In the experiment, a portion of the liner remained solid (unmelted), 
persisting against the Rayleigh-Taylor instability. 

This Section, following the work of Buyko et al. [7.49], presents the results 
of 1D quasi-spherical simulations and 2D simulations (with account taken 
of convection) of MAGO plasma compression by a solid liner, with the 
parameters characteristic of the HEL-1 experiment. In both simulations, the 
plasma was assumed to be of pure hydrogen without impurities. 

1D Quasi-Spherical Simulation 

The 1D quasi-spherical MHD simulation was conducted in the channel 
approximation (Section 2.1.2). We assumed for the quasi-spherical 
compression calculation that the channel width changed proportionally to 
the radius. In the simulation, magnetic diffusion, classic electron and ion 
thermal conductivities [7.33], and radiation transport along the channel in 
the “forward-reverse” approximation [7.50] were taken into account. 
Enhanced thermal conductivity resulting from the development of 
turbulence in the plasma was not taken into account. Nor was the effect of 
thermonuclear energy release on the plasma and liner heating. 

The entire plasma volume can be regarded as consisting of channel sectors 
in each of which the width varies in proportion to the spherical radius. The 
simulation was performed for a sector in-between the equator and the pole, 
which we considered as most representative. Therefore, in our calculation 
we assumed that the plasma parameters were those obtained in the MAGO 
experiments⎯density n = 8 ⋅ 1017cm-3 and temperature T = 250 eV⎯but the 
magnetic field in the plasma corresponded to a somewhat higher current, 
I = 5 MA. The radius of the central copper rod along which the plasma 
magnetizing current flowed was also taken to be somewhat larger at 
r = 1.6 cm than the cylindrical radius of the MAGO chamber internal rod at 
r = 1.3 cm. In the simulation, the plasma, initially located within the range 
1.6 cm < r < 10 cm, was compressed by an aluminum liner 0.44 cm thick 
and with the initial velocity of 0.8 cm/µs. If we assume that the height of 
this liner equaled to its radius, then its energy was 25 MJ, and, thus, the 
liner had the characteristics obtained in the HEL-1 experiment. 

The simulation showed that the maximum internal energy of the DT plasma 
(all the integral values are given for the spherical segment width equal to the 
radius), equal to 3.1 MJ, was achieved at the time 8.84 µs. The system total 
energy, which was about 25 MJ and was initially contained mainly in the 
liner kinetic energy, at this time was distributed among different 
components: magnetic energy (plasma β was ~1), liner and internal rod 
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heating by thermal fluxes from plasma, remainder of liner kinetic energy, 
etc. The elastic energy tied up in liner compression was chief among these 
components. Magnetic and thermal pressure reduced the radius of the 
internal rod down to 1.3 cm, and the plasma was compressed to a layer 
0.32 cm thick and achieved a density 3.9 ⋅ 1020 cm-3. The neutron yield, 
under compression, was 3⋅1018, and the full width at half-maximum was 
0.91 µs. In the simulation, the total thermonuclear energy release was 
8.9 MJ, i.e., greater by a factor 2.9 than the maximum internal energy of the 
DT plasma; this means that the ignition was achieved in this simulation. 

Fig. 7.24 shows profiles of density ρ, temperature T, pressure p, and 
magnetic field B obtained in the simulation at time t = 9 µs, close to the 
time of neutron generation maximum. 

Fig. 7.24. Profiles of density ρ, temperature T, pressure p, and magnetic filed B in 
the system including internal rod, plasma, and liner at time t = 9 µs. 

0

4

8

12

16

20

0 1 2 3 4 5
r , cm

p , Mbar 

0

4

8

12

16

20

B , MG

p

B

0

5

10

15

20

25

0 1 2 3 4 5
r , cm

ρ ,  g/cc 

0

2

4

6

8

10

T, keV

ρ

ρ

T



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS 
 

309 

2D Simulation of Plasma Compression 

To assess the effect of 2D convection on the plasma cooling processes 
associated with plasma compression, we performed a numerical 2D 
simulation of plasma compression by a liner. It was assumed that the plasma 
initially occupying a hemispherical volume with the radius of 10 cm and 
magnetized with current I = 4 МА running along a cylindrical rod of 
r = 1.3 cm radius was compressed by an incompressible hemispherical liner 
with an initial thickness of 0.44 cm, a density of 2.7 g/cm3, and an initial 
velocity of 0.8 cm/µs. The 2D effects were considered only for the DT 
plasma, the liner shape was assumed to be purely spherical, and the internal 
rod and the hemisphere base were assumed to be absolutely rigid. The initial 
density and initial temperature of the plasma were assumed to be 
n = 8⋅1017 cm-3 and T = 250 eV, respectively. All the plasma boundaries (the 
liner, the internal rod, and the hemisphere base) were assumed to be ideally 
conductive and cold. 

The maximum internal energy of the DT plasma was reached in this 
simulation at time 8.7 µs and equaled 7.9 MJ, when the liner’s internal 
radius was 1.54 cm. The magnetic energy at that time was 4.7 MJ, such that 
the characteristic magnetic field was 29 MG. The neutron yield at the 
compression maximum was 6 ⋅ 1018, and the characteristic width of the 
neutron pulse was 0.15 µs. The thermonuclear energy value in this 
simulation also exceeded the maximum internal energy of the DT plasma, 
i.e., ignition was also achieved in this simulation. 

The plasma density and temperature isolines at times t = 6.4 µs and 
t = 8.4 µs are shown in Figs. 7.25 and 7.26. 

Calculations show that in the experiments with the 0.4-m-diameter DEMG, 
it is possible to obtain the second neutron peak produced by the MAGO 
plasma compression with a quasi-spherical liner. The second neutron peak 
can be higher than the first one obtained during the plasma generation, even 
with plasma volume compression as low as δ ≈ 10 (if one compares neutron 
generation rates at the moment at which volume compression was 10 
against the neutron generation rate from the preheated plasma). 

At higher levels of plasma compression, the simulations predict 
considerably higher neutron generation rates, e.g., at δ ≈ 100, the neutron 
generation rate is ~1016 µs-1. Such levels of plasma compression are quite 
feasible with good symmetrization of the liner system, because the values of 
the typical maximum plasma compression predicted in 1D simulations are 
much higher (δ ~ 1000). 
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Fig. 7.25. Plasma density and temperature isolines at time t = 6.4 µs. 
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Fig. 7.26. Plasma density and temperature isolines at time t =8.4 µs

CONCLUSION 

The presented results of the numerical simulations confirm the feasibility of 
achieving ignition with MAGO plasma compression by liners with 
experimentally achieved characteristics. The 1D and 2D simulations took 
into account the main physical effects and processes; some of them taken 
into account in 1D simulation, and others, in 2D simulation. Taking 
convection into account in the 2D calculation does not result in considerable 
plasma cooling and do not impede the achievement of ignition. 
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