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PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

ABSTRACT

The Monograph is devoted to theoretical discussion of the physical effects,
which are most significant for the alternative approach to the problem of
controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book
includes the description of the approach, its difference from the major CTF
systems—magnetic confinement and inertial confinement systems. General
physical methods of the processes simulation in this approach are considered,
including plasma transport phenomena and radiation, and the theory of
transverse collisionless shock waves, the surface discharges theory, important
for such kind of research. Different flows and magneto-hydrodynamic plasma
instabilities occurring in the frames of this approach are also considered. In
virtue of the general physical essence of the considered phenomena the
presented results are applicable to a wide range of plasma physics and
hydrodynamics processes.

The book is intended for the plasma physics and hydrodynamics specialists,
post-graduate students, and senior students-physicists.

iii



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

PREFACE

Controlled Thermonuclear Fusion (CTF) research has evolved into two
mainline approaches—magnetic confinement and inertial confinement fusion.
Over the last decades an alternative approach to controlled fusion has also been
evolving known in the USA as Magnetized Target Fusion and in Russia as
MAGO (MAGnitnoye Obzhatiye—magnetic compression). This approach is
characterized by high energy densities, as in inertial fusion, and by the use of
magnetic fields, as in magnetic confinement systems. The parameters of the
MAGO/MTF plasma differ considerably from those in the conventional
systems. Moreover, the computations for the MAGO/MTF systems should
include physical processes that either have not been studied previously or
exhibit new properties. In essence, a whole new plasma-physics field with
abundant and diverse physics is being developed in this approach.

The aim of this book is theoretical discussion of the physical effects, which are
most significant for the MAGO/MTF. The book includes the description of the
approach, its difference from the major controlled thermonuclear fusion (CTF)
systems—magnetic confinement and inertial confinement systems. General
physical methods for the simulation of the processes in this approach are
considered, including plasma transport phenomena and radiation, the theory of
transverse collision less shock waves, the surface discharges theory— all
important for such kind of research. Different flows and magnetohydrodynamic
plasma instabilities occurring in the frames of this approach are also considered.

We hope that the monograph will help young scientists who are embarking on
research in the MAGO/MTF field to get their bearings in the new field of
physics. The monograph might be also useful for interdisciplinary specialists,
since, given the significance of the phenomena discussed to general physics,
the results presented can be applied to a broad range of plasma physics and
hydrodynamics effects.

The references are distributed over the Chapters and are provided with the
titles of the papers. The references include the papers that we needed for
explanation and for obtaining the results presented in the book; thus, we have
not attempted to show all the available papers relevant to the material
discussed in each Chapter. A more detailed list of references can be built up
basing on the given papers.

The author would like to thank the Los Alamos National Laboratory for its
support of the writing of the book via the partner ISTC Project #3164p and
Project Collaborator R.E. Reinovsky, Responsible Project Official

V.V. Kirichenko, and Project Participants N.Yu. Belyakova, A.M. Buyko,
E.M. Kravets, S.D. Kuznetsov, V.I. Mamyshev, V.N. Mokhov, and

V.B. Yakubov for their enormous assistance in organizing the project and
working on it. Special thanks are addressed to the translators—Yu.V. Panova
and T.V. Zezyulina—for their terrific job in translating the book into English.
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1. INTRODUCTION

The rapid development of plasma physics in the second half of the
twentieth century, and is still under way at present, came about because of
the need for intensive research in a broad array of areas. Those areas
involved a large range of technical and technological issues whose study
began with gas-discharge research, which resulted in the development of
effective and reliable light fixtures and plasma television sets. Also under
intensive study are methods for the direct conversion of heat energy into
electrical energy, plasma rocket engines, plasma-based tools for materials
processing, etc. The study of plasma behavior is essential to astrophysical
and geophysical research. The study of controlled thermonuclear fusion
(CTF) has contributed greatly to the advancement of plasma physics,
which has resulted in the development of fundamentally new plasma
physics fields of research.

Worldwide, the efforts of most laboratories in the area of CTF are directed
mainly at studying two types of physical systems: stationary systems, in which
the thermal insulation of low-density, hot plasma, and its confinement are
provided by magnetic fields (magnetic confinement fusion, or MCF) and
inertial confinement systems, in which deuterium-tritium (DT) plasma is
compressed quite rapidly to high densities (inertial confinement fusion, or ICF).

Although certain conditions (called the Lawson criterion [1.1]) must be
fulfilled for plasma parameters in order to have thermonuclear ignition in
each of these systems, namely,

1) the plasma must be heated to thermonuclear temperatures—about
10 keV;

2) the plasma must be confined long enough to allow the energy
released during the fusion to be higher than that spent on plasma
heating and confinement—the condition for the product of the final
fuel density, n, and confinement time, 7, is nt>10" s/em’;

the actual plasma parameters differ considerably. For example, the density
of the thermonuclear plasma differs in these systems by 11 orders of
magnitude. Moreover, in the magnetic confinement approach, the
substantial effect of the magnetic fields and the stationary nature of the
system lead to qualitative differences between this system and the inertial
plasma confinement system (for example, the characteristic dimensions of
the thermonuclear plasmas in the these systems differ by five orders of
magnitude). As a result, the plasma physics fields of study referring to
magnetic plasma confinement systems and inertial plasma confinement
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systems have developed their own specific issues: in magnetic confinement
systems, issues such as equilibrium and stability, transport problems in
magnetic fields, etc.; and in inertial confinement systems, issues such as the
interaction of intense radiation and matter, laser compression of
thermonuclear targets, conversion of laser radiation into x-ray radiation, etc.

In 1976-1979, an alternative approach [1.2, 1.3] to the generally accepted ways
of solving the CTF problem was proposed: the possibility of solving this
problem on the basis of a nonstationary system with magnetic compression
(MAGO [from the Russian, MAGnitnoye Obzhatiye]) was demonstrated. This
approach consists of using a thermonuclear target and one or several cylindrical
or spherical magnetic-field—driven liners to compress it. An important
advantage of this approach is the possibility of conducting full-scale
experiments for meeting the principal scientific challenge of CTF—achieving
ignition of thermonuclear fusion without using expensive stationary energy
sources such as powerful lasers, charged-particle accelerators, or large
tokamaks (such facilities are required only at the stage of power-plant
development). The MAGO system experiments can be conducted using
relatively cheap explosive magnetic generators (EMG) [1.4, 1.5]. Subsequently,
[1.6-1.9] such a system was labeled in the United States as Magnetized Target
Fusion (MTF), in which preheated magnetized plasma was compressed. Unlike
direct hydrodynamic compression of the initially cold fuel (as in ICF), the
MAGO/MTF approach consists of two stages:

1. Initially magnetized plasma is created that is suitable for further
compression (with a magnetic field of ~0.1 MG that has a closed
configuration of the field lines, a density of ~10"® cm™, a
temperature of ~300 eV, and a rather low content of impurities,
since impurities may increase radiation losses).

2. Then, with powerful magnetic drivers (e.g., EMG), the plasma is
quasi-adiabatically compressed by liners (with velocities on the
order of 1 cm/us) and the plasma parameters are brought to levels
that meet the Lawson criterion.

The combination of two essential elements is needed to use this approach
for preheated targets: a system for the generation of hot magnetized
plasma, and a compression system with sufficiently high energy. In 1981,
All-Russian Scientific Research Institute of Experimental Physics
(VNIIEF) proposed a new method for generating thermonuclear
magnetized plasma with a special MAGO plasma chamber, and that
method was implemented experimentally in 1982. The results of that work
were published in [1.6, 1.7]. Experiments with the MAGO chamber
powered by megajoule-range EMG produced plasma with kiloelectron-volt

10
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temperatures and a neutron yield of up to 4-5-10" per shot. It was
computationally shown that ignition can be achieved with this system at
energies of 100-500 MJ, energies which can be obtained using the disc
EMGs already on hand at VNIIEF [1.10]. For this system, the degree of
fuel compression need not be very high, and, accordingly, the implosion
symmetry is truly achievable, which means that the principal ICF ignition
difficulty—the stringent requirements for the implosion symmetry—is
absent in MAGO. VNIIEF and Los Alamos National Laboratory (LANL)
have collaborated extensively in the MAGO-MTF field [1.11, 1.12],
studying liner systems and plasma obtained in the MAGO chamber.

In terms of its time and space scales, as well as the plasma density scales,
MAGQO system occupies an intermediate position between MCF and ICF
(see Table 1.1).

Table 1.1. Approximate values of some plasma parameters for MCF, ICF, and
MAGO thermonuclear plasmas

> = é

2 « = & N
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[8a)]
MCF 10 10" |1 300 | 0.05 | 3-10° | 0.03|2-10%
MAGO | 10 10° | 10° |1 10 100 1 5-10*

ICF 10 10 | 10" 1001 [0 0.1 « 0

When comparing MAGO with MCF and ICF, we should note that, although
the presence of magnetic fields is common to MAGO and MCEF, the vastly
different characteristic plasma parameters result in the need to place
emphasis on different physical effects. Only some of the instabilities that
are dangerous in MCF are important in MAGO because of the relatively
short characteristic times. Only the most rapidly growing instabilities,
primarily magneto-hydrodynamic (MHD), need be taken into account in
MAGQO. The degree of the system’s connectivity (stationarity) can be

. .t . .
characterized by the quantity " (c is the characteristic speed of sound in

the system, equal to ~10° cm/s for 7= 10 keV), which shows how many
times the sound waves go around the system in its confinement time. The

11
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force effect of the magnetic fields can be characterized by the quantity S
given in the Table 1.1—the thermal-to-magnetic pressure ratio. For the
characterization of the magnetization of the heat conductance, we can use
the quantity (w7)..

When comparing MCF, ICF, and MAGO plasma parameters, we should, of
course, bear in mind that it is not just the thermonuclear plasma with

T~ 10 KeV and nt~ 10" cms that plays an important role in each system.
For example, peripheral plasma and near-wall plasma are important for
tokamaks (MCF), and the plasma corona plays an essential role for ICF,
whereas the role of the cold plasma in the MAGO chamber (which includes
plasmas heated by the shock waves during the chamber operation and
plasmas remaining relatively cold or attaining moderate temperatures) is
crucial in the MAGO system, as is the role of the any plasma associated
with the liners compressing the hydrogen plasma. The parameters of these
types of plasmas differ quite substantially, and consideration of the different
physical effects is important for the different plasma-parameter ranges.

Thus, the parameters of the MAGO/MTF plasma differ considerably from
those in the conventional systems. Moreover, the computations for the
MAGO/MTF systems should include physical processes that either have not
been studied previously or exhibit new properties. In essence, a whole new
plasma-physics field with abundant and diverse physics is being developed
in this approach.

The history of MAGO/MTF development extends back over more than
20 years, and a large number of experimental and theoretical papers have
been published in that time. Among the publication are also reviews (see,
for example, Kirkpatrick and Lindemuth [1.13], Garanin [1.14], Siemon
et al. [1.15], and Garanin et al. [1.16]) that enunciate the concepts
themselves and integral efforts, i.e., efforts devoted to relating the
experiments in MAGO/MTF performance and their simulation. There are
virtually no reviews devoted to specific effects characteristic of
MAGO/MTF. Meanwhile, a good deal of work done in this area has
developed theoretical approaches for describing the radiation properties of
MAGO/MTF plasma, a theory of the collisionless shockwaves that are
essential to those systems, a theory of surface discharges that is important
for this research area since the plasma is confined with walls, etc.

In view of that, there is a need for a monograph that would present those

effects. This book is devoted to the theoretical consideration of the most
essential of them.
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2. MAGO/MTF SYSTEMS

2.1. Plasma Formation Schemes

A number of ways have been proposed to generate a plasma that can be
used for subsequent compression to achieve ignition or a large neutron
yield. They differ considerably both in the plasma parameters (density,
temperature, and magnetic-field configuration and intensity) and in the
methods of plasma formation. Here we discuss three variants: cryogenic
fiber z-pinch, MAGO plasma formation chamber, and field-reversed
configuration (FRC).

2.1.1. Cryogenic Fiber Z-Pinch

In a cryogenic fiber z-pinch, a plasma is formed simply by passing a high
current through a fiber (Fig. 2.1, [2.1]). In the past, such z-pinch was of interest
when early experiments showed its “anomalous stability” [2.2]. With such
anomalous stability, it appeared possible to directly heat a fiber-formed z-pinch
to fusion temperatures through an electrical discharge using modest energy
readily available from modern pulsed-power facilities of that time. Subsequent
experiments and detailed two-dimensional computations [2.3], however,
showed that m = 0 instabilities prevented such a z-pinch from reaching fusion
conditions immediately. Nonetheless, later computations [2.4] showed that the
m = 0 instabilities provide a mechanism for the pinch to fill an implosion vessel
by forming a Kadomtsev-stable, wall-confined plasma. Since such plasma
could be suitable for subsequent compression with liners, it was proposed to
experimentally study it on the Colt facility (capacitor bank with a voltage of
100 kV, a current of 2 MA, and an energy of 200 kJ) at LANL. The proposed
fiber was a thin polyethylene filament. Unfortunately, experiments [2.5, 2.6]
showed that the plasma produced was strongly radiating and short-lived.

' MAGNETIC PRESSURE l

Lyl

/ I HOT COMPRESSED PLASMA I

/__UNSTABLE Z-PINCII

Fig. 2.1. Cryogenic fiber z-pinch. Left, plasma formation; right, implosion of a
cylindrical liner.
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2.1.2. MAGO Plasma Chamber

The MAGO chamber [2.7, 2.8] consists of two toroidal sections connected
by a narrow annular nozzle (a design variant [2.9] is shown in Fig. 2.2).
The chamber is filled with a low-density gas (deuterium or DT).

4
|
f -l
3 S
L,
/ll'
F
Lo ot 1%
« [P 777777 A
5

Fig. 2.2. Plasma chamber: 1) first section, 2) second section; 3) equivalent EMG
scheme with the closing switch, K, and opening switch §(t); 4) inductive probes,
5) insulator.

It is assumed that at the start of chamber operation, an initial azimuthal,
“bias” magnetic field has been generated by an initial current introduced
into the walls of the chamber (the arrows show the direction of the
current). This can be done using an additional source or the main source
connected with the input of the first section—the left section in Fig. 2.2
(the switch K in Fig. 2.2 is open). The preliminary current should be
introduced quite slowly to avoid a premature gas breakdown.”

When the main, relatively fast current-source is switched on (after the start of
the operation of the opening switch Q(7) in Fig. 2.2; the switch K is closed), a
high electric field arising in the chamber initiates a gas discharge that results in
the initial magnetic field being frozen into the generated cold plasma.

(A conductance in the plasma capable of freezing the initial magnetic field into
the plasma can also be generated using a special pulsed source of ionizing

"The results of research [2.10, 2.11] have shown that the MAGO chamber can also operate in a
regime as described with no rod in the second section and, consequently, without preliminary
powering.
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radiation.) Driven by the rising magnetic field from the fast source, the plasma
starts to move together with the magnetic field lines and to flow through the
nozzle from the first chamber section to the second section.

If the Alfven velocity in plasma ¢, = is high enough that ¢, 7>> L,

3%

47

where T is time of the source operation and L is the characteristic chamber
size, and the nozzle is sufficiently narrow, then there is enough time for the
total pressure to equalize in the most of the volume of each section;
however, a pressure difference arises between the sections. In this case, a
quasi-stationary plasma flow forms in the nozzle and in the adjacent
chamber regions; the plasma velocity at the nozzle outlet becomes
supersonic; and a shock wave in which plasma deceleration and heating take
place is generated at the nozzle outlet.

Thus, in the device under consideration, the first section and the nozzle
work as a plasma accelerator that is basically similar to a coaxial plasma
accelerator [2.12]. The second section serves as a chamber for the
deceleration and heating of the supersonic plasma jet.

It is easy to construct a picture of the quasi-stationary, one-dimensional,
magneto-hydrodynamic (1D MHD) plasma flow. The plasma flow rate
through the nozzle is limited to the maximum value [2.13]

4 B’
Q=Ed\/§pl , (2.1.1)

where d is the minimum cross section of the nozzle and B, and p, are the
magnetic field and the plasma density at the nozzle inlet. In that flow, plasma is
accelerated and rarefied while passing through the nozzle; then it is decelerated,
compressed and heated in the shock wave; and then it is finally stopped by the
pressure gradient and compressed to the total pressure in the second section.

It is remarkable, however, that it is possible to correlate the plasma states at
the nozzle inlet in the first section and at the outlet in the second section
after the complete stop if one does not care about the processes that take
place in the plasma. Due to its generality, that should also be true when
ideal hydrodynamics are not applicable in the nozzle region, such as, for
example, when the flow is turbulent or if viscosity or some kinetic
phenomena play an important role in the process. This relationship follows
from the energy conservation law and is expressed as the condition of total
enthalpy conservation (the Joule-Thomson process). Since the thermal

17



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

pressure in the first section (cold plasma with a temperature in the electron-
volt range) is assumed to be small relative to the magnetic pressure, and the
plasma’s kinetic energy in each section is small relative to the magnetic
energy (the nozzle is assumed to be sufficiently narrow), the condition of
total enthalpy conservation of each plasma element in the flow has the form

B}
4ﬂ:p2

52
—=w, +
4mp,

where B, and p, are magnetic field and plasma density in the second section
(after complete stop) and w; is the plasma enthalpy in the second section.

5 B
Given that the magnetic field is frozen into the plasma — = —2 | the

P, P,
enthalpy w, is determined with the formula
B’ Y
w, =—1 (1——2) . (2.1.2)
4mp,\ 5

For total pressure P, << Py, B,, will be much smaller than B;, which means

2
1

4pr,
thermal energy of the plasma.

that w, = , 1.e., most of the magnetic energy can be converted to the

From the formula (2.1.2) it follows that, for a given maximum magnetic field
generated by the fast current-source, the temperature of the heated plasma is
inversely proportional to its initial density. Thus, for the fast source and given
chamber sizes, one can increase the plasma temperature by reducing its initial
density. To preserve the consistency of the time of plasma outflow through the
nozzle with the fast source operation time, according to (2.1.1), the nozzle
width should be scaled (reduced) as a square root of the density.

To reach a temperature in the kiloelectron-volt range requires an outflow speed

B
NZT)
velocities with, for example, a magnetic field of B ~ 0.5 MG (which
corresponds to a current of ~5 MA at a radius 2 cm), a density of
p~3+10° g/em® is needed. It should be noted that, because of the freezing-in,
when the plasma is lifted from the smaller radius to a larger radius: from the
insulator region at the chamber inlet to the nozzle region (Fig. 2.2), the velocity
¢4 1s preserved.

of ~ 10® cm/s and, similarly, an Alfven velocity of ¢, = . To reach such
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The chamber will operate as described if the nozzle is sufficiently narrow.
Otherwise, wave propagation processes will play a large role in the dynamics
of the chamber operation, and the plasma flow may be unable to become
quasi-stationary. In this case, however, if the nozzle is not very wide (if the
chamber can still be regarded as consisting of two sections), the plasma can
be heated as follows. If the insulator evaporation at the first section inlet is
minor or completely absent (in the “H-thrown” discharge (see Section 6.5),
then the plasma flowing out of the first section to the second is followed by a
nearly pure magnetic field or a very-low-density residual plasma. During the
plasma flow from the first section to the second, the pressure of that magnetic
field, which is sustained by the current source, can become noticeably higher
than the total average pressure in the second section (the total pressure in the
second section may not be uniform, which is why one should speak of
average pressure). After the plasma boundary (magnetic piston) has passed
through the nozzle to the second section, the difference in the pressures on the
magnetic piston and in the plasma in front of the piston generates a shock
wave that will result in plasma heating. Since that shock wave propagates
downstream, we refer to this chamber operating regime as a direct wave
regime, in contrast to the quasi-stationary regime or the backward wave
regime, where most of the heating takes place in the shock wave propagating
upstream and, in the quasi-stationary case, slowly changing its position
relative to the chamber.

The plasma heating can also occur, not only in shock waves, but also as a
result of turbulent or near-wall processes associated with the plasma passing
through the nozzle (see Section 5.3). This heating regime is similar to that of
the backward wave regime in terms of its dynamic properties (with regard to
the effect on the processes for establishing the total pressure), the location of
the heating zone, and the fact that, in this case, it is the flowing plasma that is
being heated (rather than plasma which has already entered the second
section), which means that the common relation is applicable (2.1.2).

In most of the experiments conducted, the nozzle was not very narrow, and
the experiments cannot be placed unequivocally in a given regime.
However, the calculated and experimental data indicate that magnetized hot
plasma can be generated using the MAGO chamber.

Calculations coupled with experimental data provide the following
qualitative picture of the processes occurring in the chamber.
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In the very beginning of the current rise, breakdowns take place in the first-
section and the nozzle regions. The shock waves propagating from the
breakdown locations and, maintained by the rising current at the chamber
inlet, cause plasma ionization. Given that the characteristic rise times of the
current are long by comparison with the times of magnetosonic wave
propagation, those waves are relatively weak (though they manifest
themselves conspicuously as the magnetic field oscillations in the chamber;
see Fig. 2.3) and heat the plasma up to the electron-volt-range temperatures.

t,as

Fig. 2.3. Currents obtained using inductive probes: 1 is the current at the chamber
inlet; I, is the current in the first section; I, is the current in the second section.

Following the main plasma, driven by the growing magnetic field pressure,
is a residual rarefied plasma perhaps made of ionized insulator vapors
formed in the H-thrown discharge. Similarly, desorption of impurities
from the chamber walls can also cause the appearance of an additional
mass of plasma. The density of those vapors is higher than the density of
the hydrogen plasma, and their motion maintains magnetic field
oscillations in the chamber with a rather large period (on the order of a
microsecond (see Fig. 2.3, curve /(¢) at the times ¢ ~3—4 us). The
oscillation period is proportional to the square root of the density) and a
high amplitude.

As the current rises, the difference between the magnetic pressures in the
first and the second section increases, and if the nozzle is sufficiently
narrow, a quasi-stationary plasma flow is formed with a shock wave at the
second-section outlet. The Alfven-Mach number in the shock wave grows
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initially, reaches 3-5, and then decreases. After the hydrogen plasma flows
to the second section, the residual plasma or the insulator vapors start
flowing through the nozzle. The Mach numbers continue to decrease, the
shock wave disappears, and the flow becomes subsonic. If the nozzle is
insufficiently narrow, the plasma is heated in the direct wave regime with a
considerable effect on the heating caused by the anomalous friction of low-
density plasma in the nozzle (see Section 5.3).

Plasma cooling due to classical electron and ion heat conduction during the
times of interest to us is negligible as a result of the strong magnetization,
and even the intensification of heat transport processes at the interfaces of
the plasma and the insulator or at the exploding metal wall (see Sections 6.3
and 6.4) to values on the order of Bohm diffusion [2.14] is unable to cool
the plasma. The influence of bremsstrahlung radiation losses is even
weaker, provided there is no severe contamination of the hydrogen with
impurities. But mixing of plasma with the denser insulator vapors drawn,
following the main plasma, by convective instability development, can have
a substantial effect on the cooling of the plasma. The development of such
an instability is caused by the fact that the insulator vapors displacing
plasma from large radii pass through a less intensive shock wave and cool
down faster because of the radiation. As a result, they have a smaller 8, and
the situation becomes unstable. According to estimates (see Section 7.3.2),
the convection processes that develop at the interface of the plasma and the
cold chamber walls can also produce a noticeable effect on the cooling of
the plasma.

The characteristic system parameters in the experiments varied within the
following ranges, which corresponded to the chosen main regime of
chamber operation: the preliminary powering current was 1-3 MA; the final
current at the chamber inlet was 3-9 MA; the current rise time was 1-3 us;
the deuterium, or DT, density corresponded to pressures of 1-20 Torr; the
chamber radius was 6-10 cm; the first section width was 1.5-3 cm; the
second chamber width was 4-10 cm; and the nozzle width was 0.5-2 cm.

According to the calculations for these initial parameters, the maximum
plasma velocity at the nozzle outlet is (0.5-3)-10° cm/s, the maximum
plasma ion temperature is 2-30 keV, the maximum electron temperature is
0.6-2 keV, the yield of thermonuclear DT-neutrons is 10''=10", and the
neutron pulse duration is 0.5-2 us.

The measured currents obtained in the MAGO-2 experiment [2.9] are
shown in Fig. 2.3. The peak current flowing in the chamber was
Iomax = 7.7 MA at its maximum derivative 7, =3.8 MA/us. If we compare
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the current oscillations observed in the chamber, 7 and 7, , with the MHD

computation results, we can relate these oscillations to the excited magneto-
sonic waves, as well as their start with the arrival of the first MHD
compression waves at the probe locations. The arrival time of the first MHD
waves and the period of magneto-sonic oscillations agree with the MHD
computation results [2.9].

An idea of the processes that take place in the MAGO chamber is provided
by the pictures in Fig. 2.4 of the distribution of density, temperature and
neutron yield in the chamber volume obtained for different moments in time
in one of the two-dimensional simulations of plasma generation (initial
pressure of 10 Torr, preliminary powering current of 1.6 MA, final current
at the chamber inlet of 5.5 MA, current rise time of 2 us, neutron yield of
4-10", and average plasma temperature of 0.55 keV).

P o= 1.610%g/cm?
i Time=1.25us

T  =11.8keV

max

Time=1.25us

N _=1.1-10"

max

Time=2.5us

Fig. 2.4. Distributions of density p, ion temperature T, and neutron yield N in the
MAGO chamber space, obtained in 2D simulation.
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Figure 2.4 shows that the shock waves propagating from the locations of the
initial gas breakdown (from the insulator at the chamber inlet and the nozzle
region), push the plasma into the second section. The low-density residual
plasma behind the magnetic piston in the first section is accelerated, when
passing through the nozzle, to high velocities (0.5-2)-10° cm/s) and is heated
during its deceleration, to ion temperatures of 5-20 keV. This hot, low-
density plasma is the major source of neutrons and, according to Fig. 2.4,
occupies a considerable proportion of the chamber space. Note, that although
the mechanisms shown in Fig. 2.4 for heating plasma to the high temperatures
are mainly collisionless (such as collisionless shock waves, see Chapter 4),
they can be modeled with simulations using numerical viscosity. That is
because the Hugoniot and other general energy relations (see above) do not
depend on the real physical mechanisms of dissipation, which determine only
the widths of the shock wave fronts and transient layers.

The extent to which the results of the two-dimensional simulations match
the experimental results can be illustrated by comparing, as in Fig. 2.5, the
experimentally measured and the calculated time dependences of the current
derivative dl/dt in the MAGO chamber and the neutron yield from the
chamber obtained for one of the experiments [2.9]. On the dI/dt plot,
modeled times for current features agree with the experimental times, but
their amplitudes differ considerably after current sheath penetration into the
second section (for # >2.5 us). That could be because certain physical
processes were not taken into account in the model: the Hall effect, which
can result in a more profound negative spike of dI/dt, and the evolution of
gas from the electrode material or insulator evaporation, which could shield
current probe readings from the processes in the second section and result in
subsequent smoother behavior of dl/dt.

The experimental pinhole images of the neutron generation region (Fig. 2.6)
also demonstrate the qualitative agreement of the calculation results for
neutron spatial distribution (see Fig. 2.4) with the experiment.

Interferometric measurements [2.9] have shown that, in the first section,
plasma density turns out to be lower than the initial particle density in the
chamber. This agrees with the MHD computation results in which low
plasma density at the beginning of the process indicates incomplete
ionization and then plasma “floating up” from the smaller radii to the larger
with decreasing density (see above). The appearance of the plasma in the
second section also agrees with the MHD computations, demonstrating the
arrival of the ionizing shock wave.
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Fig. 2.5. Calculated and experimental time dependences of the current derivatives
in the MAGO chamber and the neutron yield from the chamber.
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Fig. 2.6. Pinhole image of the neutron generation region. The chamber contours
are shown: 1) the first section; 2) the second section.

The two-dimensional computations have shown that at any moment in time
in the nozzle region, there is a considerable non-uniformity of plasma
velocity and density across the flow, as a result of which the temperature of
the heated plasma decreases from the internal electrode to the external
electrode by more than an order of magnitude. This non-uniformity is
related to the fact that the density of the plasma “floating up” from smaller
radii decreases ~1 / /%, and the plasma path to the nozzle from smaller radii
(that is, from the insulator in the first section) along the internal electrode is
considerably shorter than that along the external electrode, and the less-
dense plasma arrives at the nozzle earlier along the internal electrode.

Note that when the chamber is filled with the DT-mixture, a number of
additional effects may appear during the operation of the device, in contrast
with the case of pure deuterium:

1. The tritium beta-decay electrons produce the initial volume
ionization. Therefore during preliminary powering, free charges will
be distributed throughout the chamber volume, and all that can affect
the discharge development after the fast source is switched on.

2. The presence of two ion species can affect the structure of the
collisionless shock wave front (see Section 4.4) and, thus, the ion
temperature (in the plasma containing two ion species, the ion
temperature should be higher).
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2.1.3. Field-Reversed Configuration (FRC)

The FRC has closed poloidal magnetic field lines in a cylindrically
symmetric plasma and open magnetic field lines between the plasma and its
confinement/compression wall (Fig. 2.7). Such a configuration can be
formed with a suitable theta-pinch discharge in the following way. An axial
bias magnetic field is first created in a gas, and the gas is ionized. Then the
main theta discharge injects a field opposite in polarity to the bias field,
causing the original bias field lines to connect to the injected field lines to
form closed flux surfaces. Further flux injection compresses the field-
plasma ensemble and introduces open vacuum field lines into the region
between the wall and the plasma. Such magnetized-plasma configurations
have a number of advantages. One is that the plasma f is relatively high and
the lifetime can be equal to many Alfven times, although the reasons for
that are not entirely clear. Another is that, under radial compression, the
effective magnetic field line tension causes the plasma to contract axially as
well, leading to volume compression that is roughly proportional to the
radius to the 2.4 power. Finally, the vacuum magnetic field between the
plasma separatrix and the wall creates a natural divertor for escaping
plasma, and helps buffer the plasma core from impurities introduced from
the wall.

Plasma pr eheater andinjector Liner i mplosion system

i . Guide-field coils
Conicaltheta pinch

Thin imploding liner

Magnetic
quide field

Typical parameters:
Initial Final ~10 Mega-ampere current
n 10%em?® 10%cm?®

T 300 eV 10keV
B 100G 10MG

Fig. 2.7. Formation and compression of FRC as an MTF target.
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The FRC plasma densities and temperatures of ~10'” cm™ and 100-300 eV,
respectively, [2.15-2.17] are necessary, according to computational results, to
reach fusion-relevant conditions (n ~ 10" cm?, T ~ several keV) after liner
compression. At present, the studies of FRC formation and their compression
by liners are being conducted in the United States jointly by several
laboratories, including the Air Force Research Laboratory (AFRL), in Kirtland,
N.M.; Los Alamos National Laboratory (LANL), in Los Alamos, N.M.; and the
University of Nevada, Reno, in Reno, N.V. FRC stability, transportation and
compression are being studied with the use of various MHD codes. At LANL
and AFRL, experimental studies of FRC formation and its translation into the
interior of a liner are under way. At AFRL, the implosion of compressing liners
is being studied experimentally, and FRC compression experiments are
expected to be performed after the plasma formation work is completed.

2.2. Liner Implosion Drivers

Although a large variety of drivers, such as lasers and particle beams can
be used for the implosion of liners in the second stage of operation of the
MAGO/MTF system, the fundamental attractiveness of the system consists
in the fact that it can employ comparatively lower-velocity liners and,
accordingly, drivers with relatively long characteristic times. To achieve
ignition in MAGO-MTF, the drivers must have a rather high energy of
100-500 MJ. Such energy levels can be provided by using the disc
explosive magnetic generator (EMQ) already available at VNIIEF [2.18].

The magnetic implosion of liners, however, including “laser—plasma”
experiments, can be studied on smaller stationary facilities. An example of such
a facility is the Shiva-Star facility at AFRL, with a characteristic energy of
about 9 MJ and a current level on the order of 15 MA. The magnetic implosion
of condensed quasi-spherical [2.19] and cylindrical [2.16, 2.20, 2.21] liners,
which may be of interest to MTF, is being studied on that facility.

Higher energy (20 MJ, 20 MA) is provided by LANL’s Atlas facility. That
facility has been used for a large number of liner-implosion studies in which
the stability of condensed liners played an important role [2.20, 2.21]. At
present, that facility is mothballed.

A considerable contribution to the study of liner physics has been made by
smaller-scale facilities. Thus, the Pegasus capacitor bank (4 MJ, 12 MA) at
LANL [2.22-2.23] has been used for liner-implosion experiments and for
the investigation of condensed-liner stability. A typical cylindrical
aluminum liner for experiments on Pegasus had a diameter of 4.8 cm, a
length of 2 cm, and a thickness of 0.4 mm.
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Even smaller facilities—such as Zebra at the University of Nevada, Reno,
with a characteristic current of 1 MA, but with a short rise time of

~100 ns—are being used efficiently for the study of the interaction of
megagauss magnetic fields with metal surfaces and of the plasma formation
resulting from such interactions [2.24-2.27], i.e., for problems that are
important for MAGO/MTF systems.

It would be rather interesting to use the ZR facility (26 MA, 100 TW,
100-300 ns) at Sandia National Laboratories [2.28] for MAGO-MTF and
for the study of liner-implosion physics.

EMGs represent a potential type of driver that can be used both for research
purposes and for full-scale experiments involving plasma compression. The
Los Alamos Procyon system couples a helical EMG with an explosively
operated opening switch to develop approximately 20 MJ of inductively
stored energy [2.29]. Procyon has been used in liner experiments to deliver
a 16 MA, 3-us-rise pulse to a 2-cm-long, 8-cm-diameter, 1-mm-thick
cylindrical aluminum liner, which reached a velocity greater than 1 cm/us.

VNIIEF has developed a broad spectrum of various EMGs (see, for
example, [2.30 and 2.31]), both helical and disc, that are capable of
delivering currents from 1 MA to hundreds of MAs over times ranging from
several microseconds to hundreds of microseconds and are outfitted with
various types of opening switches that can be used to shorten current pulses
to the times of less than 1 us. VNIIEF-developed EMGs provide a means
for driving target implosions at energy levels more than an order of
magnitude higher than any other existing target drivers and appear to
provide sufficient energy for testing the MAGO/MTF concept on the scale
required for the thermonuclear ignition. Generators delivering more than
200 MJ of magnetic energy [2.32] have been demonstrated. A joint
VNIIEF/LANL experiment, HEL-1 [2.33], used a VNIIEF five-module,
1-m-diameter disc EMG to drive a massive cylindrical aluminum liner that
had an initial radius of 24 cm, a thickness of 4 mm, and an initial length

10 cm. Because the z-pinch electrodes, delivering current to the liner during
implosion converged with a 6° slope, the length of the liner was less than

6 cm when the liner reached the measuring unit (diagnostic package) at a
radius of 5.5 cm. The EMG delivered a current pulse in excess of 100 MA
to the liner. The experimental results showed that the liner had a velocity of
0.8 cm/us and a kinetic energy about 25 MJ when it contacted the
measuring unit. The results of such experiments will provide the basis for
projecting the utility of ultrahigh-energy liners in a MAGO/MTF context.
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3. PHYSICAL PROCESSES AND SIMULATION
TECHNIQUES

3.1. Basic Physical Processes

As mentioned in the introduction, plasma parameters in MAGO-MTF
systems differ significantly from those in conventional systems. This
difference applies to space and time scales and plasma densities. MAGO-
MTF occupies an intermediate position between magnetic confinement and
inertial confinement fusion systems separated by about ten orders of
magnitude in density and time, and about five orders of magnitude in
characteristic space sizes. Correspondingly, simulations of MAGO-MTF
systems require including the physical effects, which either have not been
studied before, or display new properties.

One of the basic plasma heating mechanisms in MAGO-MTF systems is
heating in transverse shock waves, which are most often collisionless under
low-density and strongly magnetized plasma conditions. For the MAGO
plasma, transverse collisionless shock waves (CSW) with moderate Mach
numbers need to be considered; including the effects of plasma resistance
and Joule heating, and 2D effects resulting from the growth of instabilities.
Also of importance is the issue of plasma conditions downstream from the
CSW front (i.e., the relation between electronic and ion heating and the ion
spectrum downstream from the front), and the consideration of CSW in
plasma with several ion components (i.e.,, CSW in DT plasma).

In the plasma of a MAGO system, essential processes include the Hall effect
and other collisionless transport processes. For these processes, one can
distinguish several major effects. First, the Hall effect results in a
considerable increase of magnetized plasma resistance. In order to quantify
magnetic field penetration into plasma, one needs to consider the Hall effect
and associated voltage. Second, accounting for the Hall effect leads to a
difference between the anode and the cathode, whereas conventional
magnetic hydrodynamics is invariant with respect to electrode polarity.
Experiments demonstrate that MAGO chamber performance is essentially
dependent on the polarity of electrodes. For example, neutron yield generated
in the chamber varies several orders of magnitude with the alteration in
electrode polarity. In order to understand the physics of the processes that
take place there, one has to analyze the flows, primarily those that occur near
electrodes, subject to the Hall effect. An important challenge here is the
essentially two-dimensional character of the Hall effect, so the possibility of
reduction of some flows to the one-dimensional case might considerably
simplify their analysis. Third, the Hall effect and other collisionless transport
processes may affect plasma cooling. In the MAGO system, plasma cooling
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due to classic electron and ion heat conduction is insignificant because plasma
is strongly magnetized. A more important role is played by drift-related heat
and particle flows. They need to be evaluated both at the stage of pre-heating,
and at the stage of further compression and ignition.

Numerical simulations of the MAGO system require using plasma transport
coefficients and quantities that determine radiation/matter interaction.
Braginskii coefficients [3.1] are often used as transport coefficients, and
standard formulas or Post-Jensen tables [3.2] are typically used as
radiation/matter interaction coefficients. However, MAGO plasma is often
rather dense and non-ideal, and electron occupancy of levels can be closer
to the thermodynamic one (or Fermi one for multiply charged ions), rather
than to the coronal. For low dense coronal MAGO plasma apart from
radiation losses, one should also take into account, and estimate for arbitrary
heavy impurities, the spectra that are important for plasma diagnostics by
emitting radiation flux measurements. Therefore, one has to deal with the
non-ideal case for transport coefficients (first of all, for conductivity), and
with approximate calculations of radiation properties of hydrogen and
multiply charged plasma in local thermodynamic or coronal equilibrium.

Of importance for MAGO-MTF systems is the matter of surface discharges
that occur when the magnetic flux enters plasma or an insulator (H-pressed
discharges) or escapes through the insulator surface (H-thrown discharge),
and of magnetized plasma cooling at the plasma/condensed matter interface.
These discharges result in magnetic flux and energy losses (in H-pressed
discharges), or constrain energy fluxes delivered to the system, and can lead
to penetration of the insulator material into hydrogen plasma (in the
H-thrown discharge).

When considering and accounting for various plasma instabilities and their
effects on plasma flows and plasma cooling processes in MAGO-MTF, as their
characteristic times are relatively short, it is important to take into account only
the most rapidly growing instabilities, such as MHD instabilities.

2D plasma flows are often characterized by high velocity contrast across the
flow (cases close to tangential discontinuities or tangential discontinuities
themselves). In the supersonic case, these discontinuities can be stable with
respect to the perturbations in the plane velocity/normal to the discontinuity
surface, i.e, in 2D simulations in this plane. However, a question of stability
of respective flows for arbitrary perturbations arises.

Plasma flows at the plasma preheating stage and at the liner acceleration
can produce conditions for the development of Rayleigh-Taylor and
sausage instabilities that can be treated as manifestations of the general
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MHD interchange instability. It is important to ascertain conditions for its
development and calculate its increment. Nonlinear development of this
instability results in the growth of characteristic wavelengths and
formation of some self-similar solutions that — in spite of their being
unstable — under experimental conditions can persist for a relatively long
time. Considering these solutions might make it possible to explore not
only MHD flows that occur under certain conditions, but also some
properties of turbulence that evolve in such unstable cases and turbulent
plasma cooling mechanisms.

For the MHD plasma flows in the magnetic field present in the MAGO-MTF
systems, turbulence may have a two-dimensional character, because the
magnetic field precludes bending of magnetic field lines. Turbulence, per se, is
important in considering material wash-out from the walls and plasma
contamination with impurities. Therefore, one has to address the matters of
two-dimensional turbulence, its relaxation and effects on the wash-out
processes.

3.2. Kinetic Approach

The most detailed description of plasma is provided by the kinetic approach,
which relies upon the use of a particle distribution functions in “phase
space” (spatia and momentum coordinates) /' (7,7, ) . In thermodynamic
equilibrium, this function takes the form of a Maxwell distribution (or
Fermi distribution for electrons accounting for degeneracy), and in a general
case its variation is described by a set of kinetic equations (Boltzmann
equations) for each species of particles (electrons, ions, atoms or molecules)
written as:

YV WY rY sy (B2.1)
a7/ ar ap

where F is the force acting on a particle, which is equal to

F = ze(5+l[ﬁ§]),
c
for charged particles with a charge ze in the electric field £ and magnetic
field 7, and St fis the integral of collisions of a given species of particles
with particles of all species. The integral of charged particles collisions of
logarithmic accuracy (accuracy on the order of 1/ In(1/ ), where A is the so

called plasma parameter, see Section 3.3.3), was derived by L.D. Landau,
and a more accurate expression for the integral of collisions that enables
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calculations of many processes with an accuracy on the order of A was
obtained by B. Balescu and A. Lenard.

To describe plasma flows with large space and time scales, one can obtain
from the kinetic approach, a less detailed hydrodynamic description, or—if
electric and magnetic fields are taken into account—a magneto-
hydrodynamic description. Then, the kinetic description will allow
calculating the so-called transport coefficients, such as electrical
conductivity, viscosity, thermal conductivity, etc, that need to be included in
MHD equations, when these should account for the effect of corrections due
to the contribution of collisional paths and other transport lengths.

In some cases, for plasma flow description, it is convenient to use the so-
called hybrid approach, when one of the species of particles is described by
the hydrodynamic equations, and the other by using the kinetic equations.
Such an approach typically suggests a hydrodynamic description of the
electronic component, because electrons have small characteristic times of
collisions and small kinetic scales in space and time determined by Larmor
gyration in the magnetic field. lons, however, should be treated within the
kinetic approach to describe processes on scales of the ion Larmor radius
and the period of ion Larmor gyration. Such an approach will be used in this
work to model collisionless shock waves (Chapter 4).

3.3. Magnetohydrodynamic (MHD) Approach
3.3.1. Equations and Validity Conditions of Magnetohydrodynamics

If characteristic space lengths of the problem and time scales in question are
large enough (specific criteria for MAGO system simulations are discussed
below), such plasma flows can be described using a set of MHD equations.
In this case, plasma is treated as a continuum characterized by macroscopic
parameters: density, velocity, pressure and temperature. Due to the large
difference in masses of electrons and ions, energy exchange as a result of
their collisions proves to be relatively slow, and in a number of cases
temperatures of electrons and ions can be considered different. A set of
MHD equations for a two-component system of electrons and ions can be
derived from the set of kinetic equations (3.2.1) and written as follows:

continuity equation for mass density p

9 4 divpi =0 , (3.3.1)
ars

equation of motion
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d . am
o| Lt 7V +al-l[/3] =9 (3.3.2)
oz “1 oxr ¢ “ dx,

equations of heat balance for electrons and ions

%ne [§+(QV)}7; s pdivi =—divg + O,
7/

3 47 . v
—n—L+pdivi=-divg. - “y+ 0, 333
AL g, T, o, o, (3.3.3)

where m,, is viscous stress tensor, p, = 1.1, p;=n1;, p =pe + pi, V, =V — J/ en,
, 4., q; are heat fluxes transferred by electrons and ions, Q., Q; is heat gained by
the electrons and ions as a result of their collisions with other particles
(including interaction with radiation or radiation losses for electrons).

Equations (3.3.1-3) need to be supplemented with Maxwell equations for a
quasi-stationary electromagnetic field

rot £ =— 98 ,
c 0t
divs =0, (3.3.4)
rot§=4—”]'
C

and joined with an equation that expresses the “generalized Ohm law” of
the form

E+—[P Bl=F , (3.3.5)

where /s linear combination of current / and gradients of

thermodynamic quantities. The quantities 7., q., i, O, O: should be
expressed through the factors that create departure from equilibrium, and in
this case they define transport processes, and respective coefficients, called
transport coefficients or kinetic coefficients. All transport effects provide
for corrections due to the finite lengths of kinetic processes (for example,
due to the corrections related to the finite path length of particles in plasma).
So-called ideal magnetohydrodynamics ignores such corrections, and e.g.,
the quantities m., q., g; are not taken into account. Note that the difference in
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velocities of electrons and ions, which is included in the MHD equations
(3.3.3) and should therefore be incorporated in the generalized Ohm law
(3.3.5) in this case, is also one of transport effects and it should not be taken
into account in ideal magnetohydrodynamics.

The MHD equations underlie techniques and codes that enable simulations
of different processes in MAGO-MTF systems. In particular, 1D and 2D
(typically, in the 7, z coordinates due to the axial symmetry of initial
geometries, see Fig. 2.2) MHD techniques are widely used to simulate the
performance of the MAGO chamber [3.3-3.6].

The criteria for the validity of the MHD approach [3.1] for description of
plasma flows in the MAGO chamber at temperatures below one kilo-
electron-volt are satisfied, except regions with high gradients (shock waves
or near-anode zones). As for plasma heated to kilo-electron-volt
temperatures, the condition of smallness of spatial gradients 7/ / R*<<1 (7
is ion Larmor radius, / is particle path length, R is chamber radius) holds

.. . 74 1
here, but the condition of slowness of values variation in time — << —

7 T
(744 1s a collisional time) is satisfied for the electron component and is not
for ions. Since this MHD description is not quite correct, we ask, what

physical consequences may result.

First, the MHD calculations assume an isotropic distribution of ion
velocities along the directions along and across the magnetic field. This
distribution does not have time to be established due to infrequentcollisions,
and in our geometry ions attaining “thermal” velocities across the field in
heating (in the shock wave, see Chapter 4) should have had almost no
velocities along the field, and the effective adiabatic index of the hot ion
component might have been close to two rather than equal to 5/3. However,
this change does not seem to severely affect the flow dynamics and, that is
more essential, this ion distribution is unstable (see Section 4.2). Instability
evolution should lead to effective “isotropization” of the distribution during

the characteristic times ~ w;l small under our conditions. Second, as by

virtue of rare collisions, the Maxwellian distribution of ions cannot have
time to be settled, the real ion spectrum should be used to evaluate the
thermonuclear fusion rates and neutron yield. Clearly, it is important to
specify the ion spectrum, mainly for diagnostics of plasma by its neutron
emission [3.7]. As for the effect of the real ion spectrum on the neutron
yield value, in the kiloelectrovolt region, the ion spectrum specification
changes the neutron yield not very considerably, by several times (see
Section 5.3).
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Thus, 1D and 2D calculations in the MHD approximation can be considered
as quite a good approach to describe plasma in the MAGO chamber on the
whole [3.8].

The approximations used in the MHD calculations do not take into account
some effects, which, however, can play an important role in the chamber
operation. Among them the following can be mentioned.

1) As initially the chamber is filled with cold DT-gas, its conversion to
plasma occurs due to gas breakdown in the magnetic field. It is
difficult to describe the breakdown phenomena evolution with the
MHD approximation because an important role can be played by
plasma non-quasi-neutrality and quite a complex combination of
atom kinetic ionization and excitation processes, as well as the
differences in motion between the plasma (electron-ion) component
and neutrals (plasma slipping relative to the neutrals) at low
ionization degrees. The problem complexity increases due to the
important role played by radiation transport and the influence of
impurities on the discharge formation. When the breakdown evolves,
the azimuthal asymmetry and the discharge filamentation may
develop, processes that are significant for Z-pinch [3.9]. To describe
breakdown processes, in the MHD calculations one can use
phenomenological models, such as the electron cost model [3.9]. This
model can be modernized to take into account the conductivity
magnetizing at low degrees of ionization. When describing the
breakdown development using this model, we can assume that for
low degrees of ionization, apart from usual energy expenditure in
creating ionization, which are taken into account by the Saha
equation, additional energy losses due to radiation and energy
exchange between electrons and neutral atoms, require an additional
expenditure of ~100 eV for the generation of each electron (also
including the expenditure related to inelastic molecular processes,
dissociation, etc.). However, this model, being phenomenological,
hardly can work in a wide range of conditions without a change in the
phenomenological parameters.

2) Plasma contamination with impurities from the walls and the
insulator, wall evaporation: The conditions of contamination have
much in common with the conditions existing in the plasma
accelerators, plasma focus and other dynamical plasma devices;
however, in our case the issue of contamination is more acute
because of the need for subsequent compression. In modern codes it
is possible to introduce models of material evolution from electrodes
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3)

4)

into plasma; at present such models are successfully employed
(see Section 7.3.3).

Development of MHD-instabilities: The set of the available
experimental data shows that the azimuthally asymmetric
instabilities do not noticeably affect the chamber operation. The
situation here is similar to that in the Z-pinch where the main
instability is the convective one, m = 0 [3.9, 3.10]; however, here
we have an additional favorable circumstance: presence of the
preliminary magnetic field. The m = 0 instability in 2D calculations
is taken into account automatically; in 1D calculations, which are
usually conducted in the channel approximation (i. e., along some
centerline in the chamber, with the dependences of the channel
mean radius and its cross-section width on the total path along the
channel, corresponding to the chamber geometry) it can be
simulated using exponential factors ch(fydr) in the coefficients of
magnetic diffusion and heat conductivity (y is the instability
increment). The instability development conditions and the
increment, y, calculation in the presence of acceleration (that is in
the conditions of both the Rayleigh-Taylor and sausage instabilities)
is considered in Section 7.1.2. As for the development of
azimuthally asymmetric perturbations, they may occur yet in the
zones of tangential discontinuities or high velocity gradients (in the
nozzle region), though their growth increments are small compared
with the hydrodynamic ones (see Section 7.1.1). Apart from this,
the azimuthally asymmetric instabilities in longer times can cause
forceless configurations of the magnetic field [3.11] and lead to fast
plasma cooling in them.

Kinetic phenomena arising in plasma flow along electrodes
(Chapter 5): When plasma flows along electrodes, plasma can be
heated due to its friction on an electrode. This heating is most
significant for the nozzle region, where the velocity of plasma is
~10® cm/s. Here the processes can take place at the scales of the ion
Larmor radius. Analysis of the situation analysis is complicated by
the Hall effect, which carries magnetic flux to the anode, rarefying
the plasma and, on the contrary, the magnetic flux is removed from
the cathode increasing the plasma density. Near the anode, the
hydrodynamic approach may be invalid due to the appearance of
vacuum regions. Near the cathode, the situation remains controlled
by hydrodynamics; however, it seems difficult to describe such
dense layers of the near-cathode plasma in the direct computations
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of the chamber operation. These kinetic phenomena lead to
asymmetry relative to the electrodes’ polarity.

5) Collisionless shock waves (CSW) (Chapter 4): Since downstream
from the shock wave front the plasma is strongly magnetized
(wt) >> 1, such a shock wave is collisionless, i. e. the effective
heating takes place, not due to particle collisions, but due to
randomization and ionization and the development of instabilities.
At these conditions for one-component plasma, the fraction of the
electron heating is the main up to the Alfven-Mach numbers
M, ~ 8, but for the two-component plasma (DT), the fraction of the
ion heating considerably increases and becomes equal to the
electron one at My ~ 4. CSW are a widespread phenomenon in
space and laboratory plasmas. The MAGO chamber plasma is a
new venue for their manifestation where unique conditions are
provided.

3.3.2. Equations of State

In the equations of heat balance of electrons and ions (3.3.3—4), for each of
these components, it is assumed that p, = n,T, (a = e or i), and the number of
charged particles for the given plasma component is considered to be constant
(degree of ionization does not change). The gas of particles described by such
an equation of state is called an ideal gas. In a general case, however, the
equation of state has a more complex form: p, = p, (0,1,), &.= &, (p, T,), and
the equations of heat balance will have some changes. Let us write the equation
of heat balance for the case when electron and ion temperatures can be
considered equal and hence one can use a general equation of state, p = p(p,7),
€= &(p,T), for the whole set of particles constituting each plasma component:
electrons, ions of all possible kinds, and neutrals

p£+pdiw7 =-divg+ 0 .
ar

As to the equations of state needed for MAGO-MTF system simulations, for
low-density hydrogen (DT) plasma with temperatures that are not too low,
one can use the Saha equation [3.12-3.13], and, if necessary, add
dissociation losses into the energy equation. As a result, this equation can at
low ionization transform into the electron cost model [3.9].

A more complicated issue is that related to the equations of state of liners
that compress plasma, metal walls that confine plasma, and other involved
materials that are originally condensed and then—as they get heated—
transform to plasma, as they get compressed and as they expand in MHD
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flows. The plasma state of the materials in the region of multiple ionization
can be described rather efficiently and accurately using the approximate
Raizer method [3.13].

However, MHD simulations often require that wide-range equations of state
be used to describe the behavior of materials starting from low temperatures
(around room temperature) and condensed state up to high temperatures
(dozens or even hundreds of electron-volts) and plasma state. In this case,
quite a straightforward way to describe the equation of state will be to
represent pressure p and specific internal energy ¢ as a sum of three
temperature and pressure dependent terms: cold, or elastic, term, hot term
coinciding with the equation of state of multiply ionized plasma, and the
lattice term describing the contribution of the condensed material to the
thermal capacity and getting relatively smaller at higher temperatures in the
plasma region. This way is in general the same as the three-term equation of
state [3.13], with the only essential difference in the forms of the plasma
term. Perhaps, such a description of the equation of state can prove to be
less accurate, but it is wide-range, and it can be helpful as applied to the
cases where no accurate description of intermediate states (between
condensed state and plasma) is required. Since such equations of state are
semi-empirical and contain phenomenological parameters, they can be set
up using other, more accurate, equations of state for narrower ranges.
Examples of equations of state set up for aluminum and copper include
[3.14-3.15], where the equation of state for copper [3.15] was generated
using the data of [3.16], resting on experimental results obtained for
electrically exploding wires.

At present, equations of state are explored actively — both experimentally
and theoretically — especially in high energy density regions (see e.g.,
[3.17]). Quantum Molecular Dynamics (QMD) [3.17-3.18], in which
electrons are treated in the quantum mechanics framework (using the
density functional theory) and nuclei are treated in a classical way, proved
to be a fruitful approach to designing equations of state in this region.

Since experimental data and theoretical and computational results obtained
using various models build up with time, it is convenient to use tables for data
representation. The SESAME database [3.20] is an example of such tables.

Note that considerations of equations of state often produce additional
information that can be used for calculations of electrical conductivity or other
transport coefficients. For example, ionization degree obtained in calculations
of the plasma term of the wide-range equation of state [3.14-3.15] can be used
to calculate electrical conductivity in the plasma region, and in QMD
simulations of equations of state one can use the Kubo-Greenwood formula to
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calculate electrical conductivity and opacity in the low-frequency region. In
addition, phenomenological parameters for equations of state that are used to
describe experimental data are also often chosen in conjunction with
conductivity, as was the case in choosing phenomenological parameters of the
equations of state [3.14-3.16], where the equation of state—conductivity system
was used to describe the results of electrical explosions of wires. Thus, it is
often more reasonable to address the issue associated with equations of state in
a more comprehensive manner, together with conductivity and other transport
coefficients and properties of materials.

3.3.3. Plasma Transport Coefficients. Electrical Conductivity of Multiply
Ionized Non-Ideal Plasma

As mentioned above, within the hydrodynamic plasma description, one
should take into account different transport processes and respective transport
coefficients. As plasma is magnetized, along with plasma properties, such as
electrical and thermal conductivity, viscosity, and electron and ion
temperature balancing, one should also take into account Hall, Nernst, Leduc-
Righi effects etc. In addition, transport coefficients in a magnetic field turn
out to be anisotropic and dependent on the direction of the magnetic field.
Detailed calculations of transport coefficients for plasma based on the Landau
kinetic equation were performed by S.I. Braginsky [3.1], and these constitute
the most widely used results in the classical theory of transport in plasma. For
the case of highly magnetized plasma, transport coefficients are derived in
[3.21], which complements [3.1], because [3.21] provides coefficients
calculated analytically for arbitrary ion charge z.

Note, however, that the presence of strong fields or currents and high
gradients of quantities in plasma in many cases can disturb thermodynamic
equilibrium and result in so-called plasma turbulence. In such cases,
effective transport coefficients may grow considerably and result in
anomalous transport coefficients. An example of such an anomalous
transport coefficient is anomalous resistance, which plays an essential role
in many plasma systems. For example, in plasma focus devices, it is
important as an acceleration mechanism for neutron generation [3.22].

As already mentioned, the Landau collision integral has a logarithmic
accuracy (on the order of 1/ In(1/ \), where A is the plasma parameter),
which is inherited by the transport coefficients calculated on its basis. Low-
density hydrogen plasma in MAGO-MTF systems is ideal enough, i.e., its
plasma parameter is very small; so the logarithmic accuracy in determining
its transport coefficients may prove to be quite sufficient. However, as for
the relatively dense plasma of liners or walls, the logarithmic accuracy may
turn out to be not enough. The key transport coefficient of such plasma
might be electrical conductivity, because the role of other coefficients can

45



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

be small due to the effects of radiation transport, in contrast with which
electron and ion heat conductivities may prove to be inessential. Radiation
transport brings down the temperature of plasma making it less magnetized
and, consequently, suppressing the role of other transport coefficients.

Therefore, it is required to calculate electrical conductivity with an accuracy
better than the logarithmic one. Let us perform higher-accuracy calculations of
electrical conductivity for the case of Lorentz plasma, i.e., plasma with z >> 1.

Thus, let us consider a multiply ionized plasma with the plasma parameter

A= (3.3.6)

(D= T is Debye radius; #» is ion density, 7 is temperature), which
dgnz’e’

can be not very small. Plasma with A<1 is called non-ideal. Corrections
related to this non-ideal property influence many quantities, including
thermodynamic ones; but as distinct from thermodynamics quantities, when
these corrections prove to be on the order of A [3.12], corrections for plasma
being non-ideal are expected to have a particularly strong impact on

transport coefficients calculated with an accuracy - _1 1Itis therefore
lnl
A
worth doing to calculate electrical conductivity with a higher accuracy,
A

~—_—

lnl
A

In [3.23], such calculations were performed using the Sonin polynomial
expansion of the solution to the transport equations within the Chapman-
Enskog approach; but the resulting expression for conductivity becomes
infinite for the non-ideal plasma parameter A = 0.8. Thus, the range of
validity of calculations [3.23] is in fact rather narrow (for comparison let us
note that, e.g., corrections to thermodynamic quantities are small for

A >> 6). Therefore, when considering the case of Lorentz plasma z >> 1 and
ignoring electron-electron collisions in this section, we will be able to do
without Sonin polynomial expansion of the transport equation and expand
the validity range of the approximation. For z ~ 1, the accuracy of the

"Coulomb logarithm” obtained below will be __1 ; thus, if we use the

lnl
A
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below Coulomb logarithm in expressions for electrical conductivity
[3.1, 3.21] taken into account electron-electron collisions but calculated

. 1 . .
with accuracy ~ — the accuracy of such electrical conductivity
In—
A
calculations can be estimatedas _ 1 4 .
1 1
zln— In—
A A

It is known [3.21] that electrical conductivity of the Lorentz gas is

N , (3.3.7)
378,

where v is the velocity of electrons, S, is the transport cross section of
electron scattering on ions, and the bar means averaging over the electron
distribution function. The problem thus reduces to calculating the transport
cross section. In order to ensure the improved logarithmic accuracy of such
calculations, we can use the Lenard-Balescu integral for the cross section”

dpziet cdk exp(-x/2)
S = dxr— 33.8
“Cmt f / 27 |e(#,x) [ (338

m is electron mass,

1 x5, exp(-z%)
e )=l+—|1+=|| dz————=
(£:7) A’z( \/;)f z-x-70

is dielectric permittivity, where electron screening is neglected because
z>> 1. The integral (3.3.8), however, diverges at a large transfer of
momentum k, because it has been derived assuming that k£’s are small (small
scattering angles). In order to eliminate this divergence, one can subtract
from the integral (3.3.8) the cross section of scattering on any static
potential with Coulomb center obtained within the same assumption of
small £’s (Fokker-Planck cross section Sgp). If one then adds the cross
section on this potential without the assumption about small %’s that
correctly accounts for close collisions, one can obtain a solution with a

-0

* . . . . . . . . .
Here we will consider a quasi-classical cross section. For incomplete ionization, e.g., when

24 C . . . S .
7 <7 <2 €7 (lisionization potential), the quasi-classical approximation is appropriate.
hZ
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relevant accuracy. There is a known classical transport cross section for

2
ze

scattering on the Debye potential exp(—7/ D) [3.24]

7

mny

2 4 2
godrzefm2 1 (3.3.9)
S TiAy 2

(A= 1.78...). Subtracting the Fokker-Plank integral for the Debye potential
Srkp from (3.3.8) and integrating over x as in [3.25], one obtains

2 4
s 5 —idmze (3.3.10)

B Vo 2 m2V4
The transport cross section S, is a sum of (3.3.9) and (3.3.10)

4gztet w2

S =——In—=, 3.3.11
Yz /772V4 TA, y ( )
and, hence, electrical conductivity
o=i\ﬁiz L, (3.3.12)
a\rx ze" \m
where
_ © 3
In™! =lfw , (3.3.13)
6% 1 4y
nii
YA
The accuracy of expression (3.3.13) is ~ Ll+ 1 T If we restrict ourselves
In— zln—
to the accuracy of - 1 + L expression (3.3.13) can be written in the

(ln%)2 Zln%
form of a logarithm with a corrected coefficient under the logarithm sign
Tl o 1 1

In" = = .
In 4exp(211/6) In 7,89
s A

(3.3.14)
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Integral (3.3.13) is improper, but it is easy to understand that the way of

divergence elimination with - Y s not important, because the region y ~ A
4

contributes ~ A*. Therefore, one can consider this integral, for example, as a

principal value. The results of integral calculations are given in Table 3.1. For

comparison, this table also gives the values of logarithm (3.3.14).

Table 3.1. Comparison of two Logarithmitic Approximations.

A 0.1 0.2 0.5 1 2 3 4 5 6

1/1n_'1 430 | 358 | 262 | 186 | 1.13| 0.815| 0.692 | 0.678 | 0.762

hl% 437 3.68| 276 | 2.07 | 137 | 0967 | 0.679 | 0.456 | 0.274

Table 3.1 shows that the integral (3.3.13) starts to drop at A > 5, so
expression (3.3.13) cannot be used in this range. Comparing (3.3.13) and
(3.3.14) indicates that (3.3.14) is quite accurate.

For z>> 1 and not very small A, it may turn out that ion locations strongly
correlate, because the ion parameter of non-ideality equals to zA. Since the
screening radius in this case will be on the order of the distance between
ions, in order to provide higher generality, one should supplement formulas
(3.3.13-14) with a plasma parameter reading as

1/3
/) =max z ,l 3
dgnzte’ 4\dmn

3.4. Plasma Radiation

Radiation transport and emissive processes play an important role in
MAGO-MTF systems. One should account for both radiation losses in
hydrogen plasma with impurities, and radiation transport in dense plasma of
liners and walls. Therefore, approximate methods are required for
calculations of radiation properties of hydrogen and multiply charged
plasma in local thermodynamic or coronal equilibrium.
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3.4.1. The Rate of Energy Exchange Between Planck Radiation and
Hydrogen-Like Thermodynamic Equilibrium (LTE) Plasma

In simulations of radiation/plasma interaction, one often encounters the
case, when plasma is situated in a Planck radiation field, where Planck
temperature is different from that of plasma electrons. In this case, an
important characteristic is the rate of energy exchange between radiation
and matter. Formulas to describe energy transfer due to the Compton effect
and free-free transitions in the field of nuclei are given in [3.26, 3.27].

In this section, along with free-free transitions, we will also include free- In
In this section, along with free-free transitions, we will also include free-
bound and discrete transitions for hydrogen-like plasma and obtain simple
approximate formulas for the energy exchange rate to extend the range of
applicability of the energy exchange rate formulas to the low temperature
region, on the order of ionization potential or lower. In doing so, we
consider plasma to be in local thermodynamic equilibrium” (LTE).

Let us consider optically thin plasma with electron temperature 7; plasma
interacts with black body radiation of temperature €. Then, the rate of

energy transfer from the matter to the radiation in unit volume S(7,6) will be
defined by the formulas from [3.13]

S(7,0) = }de(w) : (3.4.1)

h
el
S(w) = hf’z 7 - 0 K (7), (3.4.2)
e 1—exp(—0w)

where x,(7) is spectral absorption coefficient, w is frequency.

Let us first address the bremsstrahlung mechanism of energy transfer.

3 6 6
nmne e
hG

77 for

* The formal criterion of thermodynamic equilibrium [3.28] 77, >> PO
-

hydrogen plasma corresponds to n, >>3 - 10" em™ , but this criterion applies only to the

equilibrium of levels n = 1, 2. If the whole spectrum of levels will be taken into account, the

actual range of applicability of the formulas below will be wider.
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In the quasi-classical approximation, when 7, << (I=13.6 Z* eV is
ionization potential of the hydrogen-like ion with charge Z), the
bremsstrahlung absorption coefficient reads as (Kramers formula)

n,n (3.4.3)

e

KK_16n2( 27 )”2 2"

@ 3 \3m7 ) hemo?®

(nz is density of ions with charge Z, n, is electron density, m is electron
mass). By substituting (3.4.3) into (3.4.1-2), we obtain

SK=JK(T)¢,((;) , (3.4.4)

where Jx (7) is intensity of classical bremsstrahlung

s (=28

3 (3.4.5)

Z”e >

(2%7’)1/2 7%
—— | =——

3m mch

T+ exp(-xz)—exp(~/

()= [ar PEIN=CXPCA) iy sp(n)] . (3.4.6)
0 1-exp(-7)

(Inh=0.577..., and y(x) is logarithmic derivative of the I'-function,

Y(x) =I'"(x)/T'(x)). An interpolation formula for @k(x) with correct behavior
at 0, 1 and o can be written as

12-7° 6
¢K=1—xln(x+ > )+x(ln > —1). (3.4.7)

T -6 T -6

In the Born approximation, when 7" or 6 >> [, the absorption factor becomes
accompanied with the Gaunt factor

o103 (7o) (e
7)) =n 27) °\2r
(Ko(x) is Macdonald function), and then, in accordance with [3.26] we
obtain for bremsstrahlung energy transfer

S, =/ (g, (;) : (3.4.8)
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exp(-7)-exp(-7/x)

l1-exp(-7/x) 349

,(0)=[d12(2)

The interpolation formula to describe @p(x) to within better than 0.5 % can
be expressed as follows:

(3.4.10)

@)=

2\3 (1_ 4525 ) |

7\ 141.69Vr +1.83x

Let us note that functions @x(x) and ¢g(x) in a wide range of x are close to
each other and differ significantly only when x >> 1.

Let us now proceed to considering recombination radiation and lines.

As we assume plasma to be in thermodynamic equilibrium, concentrations
of ions and electrons will meet the Saha equation

2 3/2
7, =/zzne(2;; ) exp(%) . (3.4.11

For Z # 1, let us assume nz | << nz to be able to include only hydrogen-like
energy levels and ignore radiation absorption on ions with a charge less than
Z-1. For Z=1 (hydrogen plasma), the degree of ionization can be arbitrary.

For approximate radiation/matter interaction description, the discrete
spectrum of levels starting from some negative energy E, can be replaced by
a continuous one, and other levels can be accounted for explicitly. We will
include explicitly two lower levels n = 1, 2, and all the spectrum from

/

£ =~ Y =-0.16/ will be considered continuous. This will allow us to

obtain an approximate expression for S(7,0) for any ratios between 7, 6, /
using semi-classical Kramers formulas.

As a result of such lowering of the “continuous” spectrum bound, the
density of free electrons near the nucleus and, consequently, the intensity of
free-free transitions will grow a factor of exp(—£Ey / T). As we use a semi-
classical description, the contribution of free-free transitions to the rate of
radiation/matter energy exchange will be given by

S, =7 (D)o, (;)exp(—Eo /7). (3.4.12)
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Similarly to (3.4.12), using the Saha equation (3.4.11), we obtain the
intensity of “bound-free” transitions from levels n =1, 2

0r
570 /) = exp(—r) —exp(-7)
S/b=JK(T) exp| — fdf
‘ 7’ /+£, 1-exp(-7)
6

exp (— i{) —exp(-7)

+lexp(i) [ & (3.4.13)
8 4r 1144, 1-exp(-7)
6

Finally, the contribution of discrete transitions that will be represented here
only by the line L, can be written as

3/
(7Y (7 eXp(_M)_eXp(_zta)
S, =JK(7’)5(7) exp(—) . (3.4.14)

1- exp(—y)
40

One can obtain an approximate formula for integrals (3.4.13) that describes
the range of 7~ 8 > [ to within about 20 % and yields correct asymptotic
forms in other ranges

N

1- exp(— -;EO)
0

+E)

(3.4.15)

+

N

27609 ENT 7/
S =J (I=——|Zexp| -—2| —=-1|+exp| = |In

N

l—exp(—

( O.25/+EO)
1-exp Y

+—exp| — [In
8§ \47 ( O.25/+EO)
l-exp|-————2

7
To improve the accuracy of the contribution of discrete transitions, one can

use an exact value of oscillator strength; the factor of 0.5 in expression
(3.4.14) will then be replaced by 0.358.
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Note that free-free transitions have a considerable contribution into S only

when 7 > [. Consequently to increase the accuracy, for ¢ in (3.4.12) one
can use formula (3.4.10) instead of (3.4.7).

Finally, summing (3.4.12), (3.4.14) and (3.4.15) with the above changes, we
obtain

S=J(7) ¢5(%)exp(—Eo/T)+

I-exp| -

2/6(9 E N\ T 7/ 0
+ —exp|-—=2|| —-1|+exp| — |In——F—— L+
7|8 7 )\ e 7 /+E)

I-exp| -

o 0257+ EO)

exp( 3/) exp( 3/)

) O _expl 2L

+0.358 L exp L 47 40 . (3.4.16)
Vs Vs

For 8= 0, formula (3.4.16) reduces to a formula for radiation intensity of
optically thin plasma,

2
110+ 22 exp| 2197 10358 L] exp| L || . (3417
47 7 7 47

In order to evaluate the accuracy of the formulas, radiation intensity
calculated using formula (3.4.17) with interpolations was compared with
calculations without such interpolations. The maximum difference of 15%
was observed at 7= 8/. The maximum error of formula (3.4.16) can be
expected to be approximately the same.

S=JT)
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For T >> [, the primary role in formula (3.4.16) is played by the first term,
and the formula reduces to (3.4.8)". The terms in formula (3.4.16) that do
not appear in (3.4.8) are particularly important in the range of 7< /. Fig. 3.1
shows an illustrative dependence of the expression in braces in (3.4.16) (and
isolated summands “ff”, “fb”, “bb’’) on radiation temperature 0 for 7= 0.5/.
Fig. 3.1 shows that throughout the range of temperatures 6, the primary role
in this case is played by summand (3.4.15) (“fb”). At small @ it follows from
(3.4.17) that the role of summand “bb” grows as temperature 7 decreases,
whereas the major contribution to S(7,6) at §>> [ >>T will still be made by
summand (3.4.15), which yields in this limiting case

276 (7 6
S(7,0)=-J (7)—-exp| = |In : 3.4.18
(7.0) ==/ (T)— p(f) 29 ( )

20 A

0
—
0f5 1 /A
bb
-10

-20

S/«

-30

-40

-50 -
B/T

Fig. 3.1. Radiation/matter energy exchange rate (including free-free “ff”, free-
bound “fb” and bound-bound “bb” transitions) as a function of radiation
temperature 0 for T = 0.51.

" Note that formula (3.4. 16) cannot be used to determine corrections to the Bremsstrahlung
formula (3.4.8) at 7'>> [ because of the introduced interpolations.

56



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

3.4.2. Recombination Radiation and Bremsstrahlung of Multiply Ionized
Plasma

For multiply charged ions in plasma, along with free-free transitions
(bremsstrahlung), one should also take into account free-bound
(recombination radiation) and bound-bound (line radiation) transitions. As
for recombination radiation and bremsstrahlung, when for ions with charge
z in plasma the number of electrons of the ion is large enough N >> 1, but is
small compared to the charge of the nucleus Z, i.e., | << N=Z—-z<<Z, itis
possible to obtain rather simple formulas to describe this radiation. In this
case, one can consider the potential, where bound electrons are moving, to
be Coulomb potential, and use formulas obtained for the Coulomb problem.

Let us find the intensity of recombination radiation: radiation generated in
plasma when a free electron is captured by an ion with photon emission. If
the initial velocity of the electron is v=p, and it is captured to the level with
the principal quantum number #, energy of the photon emitted in this case
will be given by (here and in Section 3.4 below we will use atomic units
e=m=h=1)
2 2
w=E+‘Eﬂ‘=p—+ 22 .
2 2n

In the quasi-classical approximation, when n ~ N'* >> 1, it follows from

this formula that emission of photons in a small range of frequencies dw
corresponds to electron capture to a small range of levels

3
o =—%da) .

Energy emitted per unit volume of plasma per unit time in the small range
of frequencies (energies) dw is equal to

d/a(f) = —ﬂgﬂza)a’anaﬂf(E)dﬁ = nenzw;—ZQ’wfVZG”f(E)ﬂ'EdQ; ,(3.4.19)

where n, and n, are concentrations of free electrons and positive ions with
nuclear charge Z, g, is an effective cross-section of free electron capture to
the level n equal to [3.13]

lex 7% 1

3

O =—— —
2 b
" 3\/§CVC()}73
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f(E)is the distribution function of free electrons in plasma with temperature
T of the form

f(E) = (2:{7)_% eé, (3.4.20)

and ZQ_ is the elementary solid angle of the emitted photon. The

maximum electron energy that can contribute to recombination radiation of
frequency w is equal to the photon energy of this frequency En.x = w, and
the minimum energy is

0 Jor w</,
£ =

min

w-/1  Jor w>/.

Integration of expression (3.4.19) in the given range accounting for the
isotropic character of electron distribution yields

2
a0, 52 [,
3c* \37
The intensity of bremsstrahlung is found using the formula [3.13]

2 / @
CZ’[(B)=/7 ﬂzﬁ 2—”6 Tdw. (3.4.22)
¢ “7 32 \37

Summing expressions (3.4.21) and (3.4.22) we obtain the total intensity of
recombination radiation and bremsstrahlung:

2 7max(0,(u—/)
d/(M)=/Z/ZZI6—Z,/2—”e 7 do.
¢ 730 37

max(O,w—/) w
T _pT

do. (3.4.21)

(4#)
For w <1, d“’ is constant, and for w > [ it exponentially decays with
w
frequency. The total intensity of continuous (bremsstrahlung plus
recombination radiation) equals

71 16y27 N7 (1+717). (3.4.23)

B 3\/503
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3.4.3. Line Radiation of Multiply Ionized LTE Plasma

Bound-bound transitions (line radiation) often play a decisive role in
transport problems. In particular, they have the major contribution to
radiation losses of low temperature plasma (7' < Z°).

It is particularly difficult to account for bound-bound transitions, because this
requires incorporating ion distribution by ionization degree and numerous
transitions between complex quantum states of ions with a large number of
electrons. Such a program is conducted in quantum-statistics models [3.29].
Simulations of radiation properties of materials using such programs are rather
complicated and are not easily accessible. It would be desirable to have simple
formulas providing a correct description of physics in some ranges of plasma
parameters and giving satisfactory results in these ranges. In particular, such a
necessity exists in calculations of radiation of dense multiply charged plasma,
which is typical of compressed MAGO-MTF target shells, where plasma can
be in the state of local thermodynamic equilibrium LTE.

A noticeable simplification of the problem can be attributed to the fact that
characteristic electron energy levels for multiply charged ions have large
quantum numbers. The motion of electrons occupying these levels is quasi-
classical. Therefore, radiation of the ions can be calculated in the quasi-
classical limit. In addition to this simplification we consider the case of high
temperatures, when the potential, in which electrons are moving, can be
considered Coulomb potential. This problem was solved in [3.30].

For the potential, in which electrons are moving, to be treated as Coulomb
potential, should either the number of electrons in the ion N be small
compared to the nuclear charge N << Z, or T >> Z, because — as one can show
— the major contribution in this case will be made by electrons flying near the
nucleus, which are deflected by the field that can be considered Coulomb
field. Since the frequency of electron orbiting in the Coulomb field is

2
W, = % [3.31, 3.32], where 7 is the principal quantum number, and N ~ n3,
both conditions can be written as max(7, w,) >> Z. As discussed, we consider
the range of validity of the quasi-classical approach max (7, ,) << Z?, in
which the role of line spectrum in radiation is particularly important.

The intensity of radiation of the k-th harmonic of electrons moving in the
Coulomb field with a negative energy FE, is [3.31]
6447 | 1-¢° ,
' 3572 ']k (kg)+ &2 ']x» (kg) ’ (3.4.24)
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where ¢ is eccentricity of the elliptical motion of an electron.

To obtain the average intensity of radiation /_4 of electrons in the electron

shell with the energy E, the expression (3.4.24) should be averaged over the
values of electron orbital momenta keeping in mind that the number of
electrons with given angular momentum / is proportional to /, i.e., (3.4.24)
should be integrated over de” (within the limits from zero to unity). Taking
the integral as indicated in [3.31], we obtain

—  1284£* ,
The quantity
E =m347 (F)J () (3.4.26)

for large & has an asymptotic form of

ra/3 1 _, 021775

5 =1

- 5‘61/3F(2/3) JEE JEE

B

which also provides a good description of these quantity values for
moderate values of k.

Since the major contribution into emission of ions is made by electron shells
with energies close to the ionization potential, one can ignore the
dependence of the frequency w, on n, taking its frequency w, = wy at the
energy level equal to the ionization potential / determined by the Saha
equation for multiple ionization [3.13]

3/2
]=Tln£(£) , (3.4.27)
n,\2m

where #. is electron density. Then, intensity of radiation of the £-th harmonic
from all electron shells will be equal to

S, =32n1, f(E)- (£, -kw,)] . (3.4.28)

Here, 2n? is the number of electrons on the n-th shell,

1
f(E”)=W
exp| —~——|+1

7
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is Fermi-Dirac electron distribution function corresponding to the
occupancy of the n-th level, and the factor 1 — f(E, — kw;) accounts for the
occupied energy levels.

As we assume that 7'<< Z *, the factor 2n’], in formula (3.4.28), weakly
depends on n compared to the product f(E,)[1 —f (£, — kw;)], and we can
withdraw it from under the sum sign, taking its value at the energy level
equal to the ionization potential (3.4.27).

The sum

S, =3 f(ENI- /(£ -kw,)] (3.4.29)

o —H , where Ej is

is calculated as follows. Let us designate 7 = exp(

some energy level close to the ionization potential. Then, £, = Ey + nw; and

B nexplw, (7-£)/ 7]
s [mexp(w, 7/ ")+ 1{nexplw, (7 - £)/ T']+1} '

Note that
S, =exp(-w £/ 7)Y [1- f(E) /(£ -Fkw,) . (3.4.30)

Then, multiplying (3.4.30) by exp(kw;/ T) and subtracting (3.4.29) from it,
we obtain

[exp(dw, / 7)-115, =3[/ (£, - ko ,)- /(£)]=

2 1 1

=3 - . (3431
n—|nexplw,(7-£)/ 7T'1+1 nexp(w,7/7")+1

The right-hand sum of (3.4.31) is easy to calculate, if we notice that the
contributions to it from the first and the second term are canceled out in the
n-th and (n-k)-th sum elements. The sum becomes finite and equal to

n+4-1 1

i =4
”ILrEO i=n mexp(w,/ | 7")+1
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As aresult,

5 - Vs
g exp(khw//f)—l'

(3.4.32)

Substitution of (3.4.32) into intensity (3.4.28) gives spectral radiation
intensity per ion

16 7% , F

J=—2 L e T
: 3\/3:1 e’ [/{exp(kw’)—l

(3.4.33)

For w; << T, the discrete spectrum in the formula (3.4.33) can be replaced

with the continuous spectrum w=kew; and (3.4.33) converts to the formula of
Ref. [3.33]

7 16 72 )

0= ER ’
3W3x € exp(w)—l
A

derived assuming that intervals between levels w, are small compared to the
temperature 7, which is valid for very dense plasma.

The total radiation intensity is equal to

2
J=3J, =L e
£

93 &

/7Y, (3.4.34)

/

where

6.1’ i £E,
7 iZexp(dr)-1’

F(x)= (3.4.35)

and &, is defined as (3.4.26). The plot of F(x) is shown in Fig. 3.2. Atx =0,
we have F'=1 and formula (3.4.34) transforms into the formula of Ref. [3.33]
in the limit of high densities, when radiation intensity per ion does not depend
on the density and is proportional to the square of temperature; i.e., in the
limit of high densities, the plasma radiation is the radiation of a population of
ions, each of which is heated to temperature 7. For large values of x (low
densities), radiation intensity is determined only by one harmonic (3.4.33).
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Fig. 3.2. Function F(x) defined by formulas (3.4.35), (3.4.26).

The accuracy of formulas (3.4.33-34) for the case T < wy can be estimated

as O ( N +1) , where the first term is associated with the assumption of the
Z /VZ/S

potential being close to the Coulomb potential, and the second term is
related to the quasi-classical approximation. Such accuracy is not very high,
and because of real numerical factors, formulas (3.4.33-34) can be expected
to describe ion radiation with an error of several times. Nevertheless, it makes
sense to use these formulas in problems where this accuracy is sufficient and it
is not necessary to use complex calculations [3.29] providing accuracy on the

order of O ( i ) (the error is attributed to the fact that the approach of Ref.
Z

[3.29] does not include polarization effects: [3.34-3.35]).

Let us compare results of plasma radiation calculations using formulas
(3.4.33-34) with an example of calculations for gold given in Ref. [3.29]. In
accordance with [3.29], Planck-averaged absorption coefficients xp that are
related to radiation intensity J as

Vi3
K, =—2 ] (cm?/ 3.4.36
" a0 (cm7/g) ( )

*Indeed, since electron density in an atom is on the order of Z*/ N, the square of the plasma

L . ', ~Z'IN
frequency for the electron gas within the atom will be on the order of ~7¢ . One can

expect that the neglect of polarization effects leads to an error estimated as the ratio of the
square of the plasma frequency to the square of the characteristic frequency w ~ Z ZN,ie.
on the order of N/ Z.
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(o'is the Stefan-Boltzmann constant, o is the density of matter in g/cm’, and
n. is the ion density), are kp= 150 cmz/g and xp =440 crnz/g for T=1keV
and densities o= 0.1 and 1 g/cm’, respectively. Judging from the spectra
presented in the graphs, most of emitted energy is contained in lines of energy
3,11, and 12 keV. Calculations by formula (3.4.27) using the ionization
potentials of Ref. [3.36] yield /=9.12 keV and average degree of ionization
z=69.6 for p= 0.1 g/cm’. If we define the principal quantum number  at an

energy level corresponding to the ionization potential from relationship

2
z

=2/72 ’

then energy «; can be considered equal to ;= 2/ n, which for p= 0.1 g/cm’
gives n =2.69, and w; = 6.8 keV. In this case, F'=0.0248 and calculations using
formulas (3.4.34-3.4.36) give kp= 180 crnz/g (somewhat better agreement with
the results of [3.29] will be obtained if Z in formula (3.4.34) is replaced with z
yielding kp= 140 cm’/g ). According to (3.4.33), 99.7% of all emitted energy is
contained in line w= 6.8 keV. Similarly, for p = 1 g/cm’, we obtain n = 2.9, @,
=48 keV, F=0.0949 and k= 670 cm”/g (subject to z being used instead of Z
in formula (3.4.34) kp= 440 cmz/g ). Line w;= 4.8 keV contains 98 % of all
emitted energy. Thus, for the given plasma parameters, Planck absorption
coefficients differ from calculations [3.29] by not more than the factor of 1.5
and provide reasonable information on the spectrum (emitted lines are some
average representatives of the lines emitted in calculations [3.29]), which is
quite acceptable for such an approximate approach.

For rather low plasma densities and small optical thicknesses, when
radiation is not in equilibrium with matter, the plasma radiation is described
by the coronal approximation (see below). A question arises, for what
densities should we use formulas (3.4.33—-34), and when should we use
formulas and tables of the coronal approximation? A rough approach to
answering this question can be formulated as follows: one should use the
approximation that gives the smallest radiation intensity. For example, as
shown by the above Planck absorption coefficients for gold plasma at

T=1 keV, radiation intensity in the region of p= 0.1 g/cm’ turns out
approximately 500 times smaller than the value in coronal radiation tables
[3.37]. Thus, formulas (3.4.33—-34) should provide reasonable results for
these plasma parameters.
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3.4.4. Coronal Model Line Radiations of Multiply Charged Impurities in
Plasma. Statistic Approach

Line radiation of impurities of heavy elements can result in considerable
cooling of hydrogen plasma in MAGO/MTF systems; it is therefore essential
to know the intensity of their radiation. In addition, one should be able to
calculate the emitted spectra predict plasma properties based on the
measurements of such spectra. Low-density plasma, which does not stay in the
outer radiation fluxes and which is transparent to intrinsic radiation, is
typically in the state of “coronal equilibrium,” when the rate of electron
collisional ionization is counterbalanced by the rate of recombination, which
for partly ionized ions is mostly dielectronic. An absence of equilibrium
radiation and transitions induced by it leads to the deviation of a level
population distribution from thermodynamic one. In the coronal limit we can
assume that ions in the exited states are not present, since in a low-density
plasma with low collisions frequency, radiation transitions (or Auger
processes) are much more probable for the exited states than collisions with
free electrons, the ions finally decay to the ground state due to these
transitions.

In order to describe radiation properties of coronal plasma, one should
consider kinetics of interactions between free electrons and ions with different
charges and different configurations, accounting for different transitions
between levels and changes in the occupancy of states during such transitions.
This problem is rather complicated, and requires that a large number of ion
states and transitions between them be taken into account for multiply
charged plasma (Z, N >>1, Z is nuclear charge, N is number of electrons in the
ion) (see e.g. [3.37-3.40]). However, one can apply the statistical model of the
atom for many-electron ions, and use a small parameter present there — the
inverse value of the quantum number - for description of kinetics and the
model of electron gas based on this parameter using—for description of
electrons in the ion. This approach was proposed in Ref. [3.40], where it
yielded ionization and recombination rates and ionization balance in plasma
with any many-electron ions given that Z>> N >> 1.

In the statistical model of the atom, electrons move in a self-consistent field
determined by the Coulomb field of the nucleus and the bulk charge of the

whole set of electrons. The relative quantity of pair (correlation) interactions
compared to the self-consistent field is estimates as [3.40]

U, le) ~N" |22,
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For heavy ions, Z >> 1, this parameter is rather small, and one can therefore
consider individual movements of electrons or holes (states unoccupied by
electrons). Thus, one can ask a question about the number of electrons and
holes formed per unit time as a result of collisions of free electrons in
plasma with bound ones, and about the probability of radiation relaxation of
excited electrons and lifetime of holes with respect to their filling with
electrons from higher shells. These holes can be filled as a result of
radiation transitions of electrons from higher levels (making a contribution
to line radiation, which in this case is usually called characteristic radiation)
and as a result of released energy transfer to the electron from a higher shell
and transition of this electron to the continuous spectrum (the process that
determines the Auger widths of X-ray terms [3.32]).

When considering characteristic radiation, one should take into account that
for a deep hole the probability of the Auger effect that does not result in
photon emission is dominating. If we consider complex ions with a large
number of electrons N >> 1, motion of electrons can be described in the
quasi-classical framework, because characteristic quantum numbers 7 ~ N'?
are large in this case. In this approximation, hole formation and the Auger
effect can be represented as the outcome of pair collisions of electrons, and
electrons in the atom can be represented as electron gas. Considering these
processes, we will address separately the high-frequency part of characteristic
radiation hw > I, where / is ionization potential, because only characteristic
radiation contributes to this part of the line spectrum.

Collisions of electrons should be treated in the Born approximation [3.32],
because in the range of temperatures and bound electron energies of interest
T, e>>1,1/v<<1 (visrelative velocity of electrons). For collisions of
identical particles (electrons), scattering cross section is given as [3.32]

do=L| 1 _ ! do, (3.4.37)

sin* X 2sin? £ cos? £
2 2 2

where y is scattering angle, o is solid angle.

In this case, relative accuracy of the approach in question can be estimated
as accuracy of the quasi-classical approach, in which the spectrum of levels
is considered continuous and the distance between levels Z >/ n’ is ignored
compared to energy levels Z2/ n?, i.e. ~1 / n ~ N, Note that radiation
spectra obtained within the proposed approach prove to be continuous due
to the quasi-classical approximation we use, i.e., it is suggested that the

66



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

number of emitted lines is large enough, and the spectrum yields a pattern
averaged over a large number of lines.

In addition to the high-frequency part of characteristic radiation, we will
also consider collision of free electrons with a multiply charged ion, which
results in ion excitation and subsequent radiation relaxation contributing
to the low-frequency part of the line spectrum (w < 7). The channel
considered should make the major contribution to the total radiation
intensity and agree in the order of magnitude with radiation intensity
calculations using the multi-level coronal model. One can expect that the
calculated line radiation spectra in this case will correctly reproduce
dependencies on the problem’s basic parameters (they depend on the
quasi-classical parameter of the problem determined by the principal
quantum number n of electrons at the level of ionization potential of ions
being considered and ratio // 7).

The resulting spectra of coronal plasma will be used in our analysis of data
obtained in one of the MAGO experiments.

Now, let us start by finding the intensity of high-frequency radiation
produced when a free electron kicks out a bound one from a deep level of
the atom. The resulting hole in the deep level is occupied by an electron
either as a result of the Auger effect, or as a result of photon emission by an
electron from the higher level and transition of this electron to the hole
location; thus, the intensity of characteristic radiation will be determined by
the competition of two processes: Auger effect and radiation hole filling.
Therefore, before we consider characteristic radiation intensity, we should
find the probability of the Auger effect.

To find this probability, let us consider a potential well of depth U occupied
by electrons up to the level—/ (ionization potential). Let there be a hole
formed in the level—e¢ as a result of collisional ionization. After the
collision of two electrons from the potential well with energies ¢, and &, as
a result of the Auger effect, the hole is occupied by one electron, whereas
the other transits into the continuous spectrum (Fig. 3.3). Fig. 3.3 shows that
the Auger effect is possible only if the hole energy is € > 21.
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Fig. 3.3. Transitions between levels for the Auger effect.

The rate of hole filling (Auger width) is obtained from the kinetic equation
[3.21]:

3 d 3 3
W=%Qn)é§=%@n)fvda[yﬁfpr (3.4.38)

Here, p/ is the momentum of the outgoing electron, f; and f; are

equilibrium functions of electron distribution in the well, accounting that
there may be two electrons in each cell of the phase space:

Si= =t (3.4.39)
4

For the ion, the role of potential well depth at this radius is played by
potential energy U(r), which in the case of interest, N << Z can be treated as
Coulomb energy. To find the Auger width in this case, one should take the
integrals in expression (3.4.38) and average it over the trajectory of hole
motion. The calculations yield:

<W>=% (9—2)3((9;—_31))(224—1)+(1+1nﬁ)1n(q_1)_’1’_22—dilog(ﬁ) :

(3.4.40)
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where g = ¢/ 1,

dilog(x) = f In(/) ar.

Close to the Auger effect threshold, the Auger width grows with ¢
quadratically, and for ¢ >> 1, it grows linearly.

Let us now find the intensity of high-frequency radiation produced after the
kick-out of a bound deep-level electron by a free electron. When a hole
forms at the deep level, e > 21, with dominating probability, it will be
occupied as a result of the Auger effect, rather than due to photon emission
by the electron from the higher level and transition of this electron to the
hole location. Therefore, the total rate of hole filling can be considered

equal to <w> , and spectral intensity of radiation from unit volume will be

aw, dv,

Wd/l/de M de (3.4.41)

|
0] zZ

where dW, is the probability of photon emission of energy w in the range

an
dw, i 2 is the number of holes of energy — and angular momentum M

de

that form in the ion per unit time.

Since high-frequency photons w ~ € correspond to high harmonics and are

emitted by holes with small angular momenta [3.31], probability dW ,, can
be found using an asymptotic formula of Ref. [3.31] for the intensity of very
high harmonics for moving along a nearly parabolic orbit.

The number of holes with energy module € and the small angular
momentum M, locating at the radius r,, that form in the ion per unit time
will be determined by the number of collisions of free electrons with bound
ones [3.21]

av, M 2
L=y vd o rd’pdQ. dQ .,
dMdedr, < p}r} f Nond pdQ;, d8,

where f, is the free electron distribution function (3.4.20), f, is the
distribution function of electrons in the ion (3.4.39), p, and p, are free and
bound electron momenta.
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Radiation intensity is found after substituting expressions for the hole

generation rate, photon emission probability dW,, and the Auger effect
probability (3.4.40) into the general formula (3.4.41). Integration over
angular momenta and hole energies gives

p (cn) _ 8\/%/7}7 Zz
(7 =
Al et
x ay.
N Y TN S WP
3s(y—y) y=s) \s 12 Y-
(3.4.42)

Here, we introduce designations y=¢/7T,s=1/T,E=w/T.

On approach to the Auger effect threshold ¢ =27, intensity (3.4.42) is

proportional to (w— 7). Thus, (3.4.42) defines drl, () for frequencies w > I,

at which the probability of the Auger effect exceeds the probability of
()

radiative relaxation. At higher frequencies w>>T, &/~ decreases in

accordance with

a\" aann,2 s .

d0 "3 T E

As a result of the presence of the power factor that decreases with
frequency, for very high frequencies the contribution of the characteristic
spectrum proves to be smaller than that of bremsstrahlung and
recombination radiation.

Total intensity of high-frequency radiation diverges logarithmically as @
approaches /. This divergence is attributed to the fact that we consider the
probability of hole filling to be determined only by the Auger effect; the
probability vanishes as the hole energy approaches /. Including the probability
of radiative hole filling will suppress this divergence. To calculate total
intensity with logarithmic accuracy, one can cut off the divergence at

w-I = 64, where the small value of §; is taken such as to meet the condition
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17/4 (<) / )
c; (a) é) ~ —— in the order of magnitude, where I is the characteristic
w w

[

intensity of line radiation, w, = (1 + §;)I. Thus, the value of §; turns out to be
on the order of 0.001. The value of intensity of high-frequency characteristic
radiation with respect to the sum of bremsstrahlung and recombination
radiation (3.4.23) for several values of / /T is given in Table 3.2.

Table 3.2. Relative value of I“” and 1®¥ .

/T 0.5 1 1.5 2 25 3
1y BR 1.90 203 | 192 | 1.77 | 1.62 | 148

Let us now consider line radiation of the range w < I, where the contribution
to total radiation is dominant. For the copper plasma under consideration,
this contribution exceeds 97%. It is particularly difficult to account for it,
because within our approach it requires considering all possible
distributions of excited ions, complex competition of radiation and Auger
processes, including those with triple collisions (see [3.40]).

When a bound electron is kicked out from the ion by a free electron, a
hole forms at the bound electron site, and electrons—depending on the
energy redistribution as a result of their collision—transit into the
continuous spectrum or to vacant ion levels. This is accompanied by
ionization, recombination (dielectronic) or

1on excitation, while excited electrons emit

energy as they move and descend to lower

energy levels until they reach ionization 0
potential. Emitting holes will in a similar
way ascend in energy. The process of hole
radiation emission can be described using
the same formulas that are used for
electrons, because their trajectories are the
former trajectories of kicked-out bound
electrons.

Let us use numeral 1 to denote the range of
positive electron energies, and numerals 2, 3,
4 for energy ranges (— /, 0), (21, — I), (— »,
— 21), respectively (see Fig. 3.4).

Fig. 3.4. Denotation of energy
ranges.
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Numerous channels contribute to line radiation (transition of electrons and
holes into different energy ranges), and calculations of line radiation in
these is rather a complicated task, especially given the competition between
the Auger and radiation processes and the necessity to take into account
triple collisions for a number of channels. The simplest way is to calculate
the contribution to line radiation in the channel 1+3—1+2, in which,
following the collision of a free electron with an electron from range 3, one
of them moves to the continuous spectrum, and the other gets excited, i.e.
moves to range 2. A hole forms instead of the electron from range 3. The
same channel makes the major contribution to the intensity of line radiation,
because it allows for the possibility of small energy transfer (the free
electron remains free), and, consequently, will lead to logarithmically large
integrals, and because at small energy transfer the excited state of the atom
will have no Auger decay possibility (i.e., the Auger channel will not
compete with the radiation channel). We restrict ourselves to calculating the
intensity of plasma line radiation produced by this channel alone.

Let us denote energy of the hole in range 3 as —¢;,, and energy of the excited
electron in range 2 as —¢,. If the energy difference between the electron

from range 2 and the hole is smaller than / (here we consider only such
transitions in order to ignore the competition of the Auger effect), the
resulting excited state will only have the possibility of radiative relaxation;
hence, in this case, inelastic electron-ion collision will take place without
change in the charge state of the ion. In the course of relaxation, the electron
will move down to the level—/ losing its energy for emission. The hole, on
the opposite, will rise to the level—/ and also emit energy. The emitted
energy will concentrate in the frequency range w < I.

Total intensity of emitted energy is found using formula

7= [(e, —se)d,:]—%de( de,. (3.4.43)

Distribution of forming holes and excited electrons in energies and angular
momenta is found by analogy with characteristic radiation. The integrals
obtained in the calculations of these quantities diverge as hole energy tends
to /. This divergence is attributed to the fact that a large contribution to the
scattering cross-section is made by far Coulomb collisions that take place at
small energies of free electrons £ and values of ¢, close to /. In reality, the
divergence will be cut off, because energy transferred to the bound electron
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cannot be smaller than the distance between neighbor levels in the ion. To get
rid of this divergence (and perform calculations with logarithmic accuracy), we
assume that excited electron and hole energies cannot differ from / less than by

aro
2n

which has the same order of magnitude as the distance between neighbor
energy levels near /. Here, # is the principal quantum number at the energy
level 1.

In the calculations to obtain more accurate data, one should use some
effective charge Z,yinstead of nuclear charge Z. For this quantity, one can
suggest the following interpolation formula [3.40] that provides a
reasonable description of limiting cases z << Zand z = Z:

Z‘ﬁ=$/(2+1)22.

Fig. 3.5 shows the value of (3.4.43) and radiation intensity from [3.2]
for a number of temperatures for copper plasma. Fig. 3.5 shows that the
calculated radiation intensity agrees with [3.2], and differences do not
exceed a factor of 2.5.

100

0.1 T T T T T T T
0 100 200 300 400 500 600 700 800

T,>B

Fig. 3.5. Values of 1, and radiation intensity from [3.2] (Ip)) for copper plasma.
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During the finite motion in the field of charge Z, the electron or the hole
with energy module £ emits a set of frequencies [3.31]

B2
w,=—|2£)*,
# 7 ( )
where k 1s a harmonic number.

The spectrum of radiation emitted by the particle is obtained using the
formula for spectral intensity and the relationship between momentum and
energy of particles during radiation descend or ascend from [3.31]. The
sought spectrum of line radiation is found by integrating the spectra of all
forming particle pairs.

The resulting radiation spectrum depends on two quantities, s =// T and
w / wy, and consists of weak peaks near the harmonics, being multiples of
the main radiation frequency at the energy level /

3/2

@,=—(27)

Fig. 3.6 shows a spectrum of plasma line radiation per one ion and one free
electron for the case of s = 1.93, n = 3.16. (Such parameters present, e.g.,
copper plasma at a temperature of 7'= 0.3 keV, with Z.; = 20.6, wy =366
eV, 1=578 eV.) Fig. 3.6 shows that spectral intensity of radiation decreases
with frequency growth rather slowly (theoretical analysis suggests that it
decreases according to the law @ ). Integration over the range w < I for
real ions with a not very large number of electrons gives only a small part of
total emitted energy, therefore the question as to how to distribute the
remaining energy over the spectrum remains open.

0.16

0.1+

0.08 -

0.06 -

0.04 4

0.02 -

Fig. 3.6. Spectrum of plasma line radiation for s = 1.93 and n = 3.16.
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To describe the MAGO experiments, we have considered hydrogen plasma
with copper impurities and impurities of light elements (C, N, O) with
temperatures around hundreds of electronvolts. The total radiation spectrum
of such plasma was built as follows.

For copper plasma, the difference between the total intensity of emitted
energy (3.4.43) and integral over the calculated spectrum in the range w </
was located at two lines emitted during radiative relaxation after collisional
electron transitions # — n +1 and n — 1— n. The line spectrum in the range
w > [ was calculated using formulas for characteristic radiation. The
resulting total line spectrum was summed up with the continuous spectrum,
the formulas for which are given in Section 3.4.2.

The spectrum of copper impurities for 7 = 0.3 keV is shown in Fig. 3.7.

1.E+02

1.E+01
1.E+00 ~
1.E-01 ~
1.E-02 +
1.E-03 +

1E-04 - \

1.E-05 \ \ \ \
0 0.2 0.4 0.6 0.8 1 1.2 1.4

@ k3B

Fig.3.7. Radiation spectrum of copper plasma at T = 0.3 keV.

Ionization potential of hydrogen plasma at the temperatures of interest is
Iy << T, so the spectrum of its radiation reduces to the bremsstrahlung
spectrum.

The number of bound electrons in the light elements in question for
considered temperatures does not exceed 2. Therefore, to describe the
continuous part of the light elements’ spectrum, we have used more
accurate — compared to Section 3.4.2 — formulas from Ref. [3.13]. The
difference between the value from [3.2] and the integral over the continuous
spectrum (line spectrum intensity) was placed into the line 2p —1s.
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In the MAT'O-IX experiment, time-resolved spectrometry of soft x-rays was
performed in one of the chamber compartments using the DANTE
spectrometer in the range of 0.2—1.5 keV using vacuum x-ray diodes.

To simulate values of signals, 2D MHD simulations of plasma motion in
this experiment were performed in two different setups: one under the
assumption of purely hydrogen plasma without impurities, and the other
with washing out of copper and light elements (CO) from walls by plasma,
with hydrogen plasma containing 3% of nitrogen impurities (by weight).
The calculated radiation intensity was obtained by integrating radiation
intensity per unit volume of plasma over the chord, along which the
detectors were directed in the experiment.

Experimental and simulated signals of the x-ray diodes are given in

Table 3.3. Table 3.3 shows that the agreement between simulated and
experimental signals improves, if the simulations suggest plasma
contamination with copper from the walls. In addition, whereas the duration
of simulated signals with copper wash-out is fractions of a microsecond as
in the experiment, simulated signals for pure hydrogen plasma last many
microseconds at an approximately constant level.

Table 3.3. Simulated and experimental x-ray diode signals in the MAGO-IX
experiment. All quantities are given relative to their values in the 0.2 keV channel.

Channel | Experimental | Simulated Ratio of simulated
signal Jey, signal for J/Jexp | signal for pure plasma
plasma with t0 Jexp

impurities J

0.2 keV 1 1 1 1
0.4 keV 0.052 0.027 0.51 1.6
1.25 keV 0.086 0.030 0.34 5.8

Thus, we can state that the radiation spectrum of multiply charged plasma
found for the coronal equilibrium helps analyze experimental data and
obtain information on impurities in plasma.
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4. TRANSVERSE COLLISIONLESS SHOCK WAVES
AND PLASMA HEATING IN THEM

In many cases, magnetohydrodynamic flows, like hydrodynamic flows,
because of the nonlinearity of their governing equations, result in
discontinuities—shock waves. In low-density plasma, the free paths of ions
and electrons behind the shock front, which, in collisional plasma, determine
the width of the shock front, may prove to be very large and, in any case,
markedly exceeding the Larmor radii of the respective particles. In this case,
the width of the shock waves is determined by the Larmor radii of the
particles, rather than by their free paths; and energy dissipation mechanisms
in the shock wave become collisionless and are governed by the development
of various instabilities at the front and by the reflection of particles from the
front region.

Collisionless shock waves (CSW) occur in such astrophysical events as the
encounter between solar wind and the earth’s magnetic field and the
interaction between flows of matter ejected by galaxies and exploding
supernovae and the interstellar medium. In the laboratory, CSWs occur in the
low-density plasma of Z- and © - pinches, and they also play an important
role in plasma heating in an approach to controlled thermonuclear fusion like
MAGO/MTF.

One can point to several aspects that promote interest in CSWs. First, they
are of fundamental interest as an example of a phenomenon in which we see
the dissipation of energy and the efficient growth of entropy in the absence
of particle collisions. Second, unlike with collisional shock waves, plasma
conditions downstream of the CSW front are not determined merely by the
conservation laws (Hugoniot) and remain non-equilibrium. That raises the
question, In what state is plasma downstream of the CSW front, and what is
the hierarchy of scales for the further relaxation of the plasma to
equilibrium? Finally, there is practical interest in CSWs because, in various
cases, different plasma components (electrons, ions, or, in multi-component
plasma, different ion species) may be heated in CSW. In controlled fusion
systems, heating of the ion component is of primary importance, which
means the CSW can be used to accomplish that task.

We shall consider the simplest, though, perhaps, the most frequent and
instructive, configuration of a perpendicular CSW, i.e., a configuration where
the direction of the shock wave movement x is perpendicular to the magnetic
field directed initially along z. In addition, for simplicity, the CSW will be
assumed to propagate in cold plasma with zero temperature and zero thermal
pressure. In that case, shock waves can be regarded as collisionless, if the ion
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component (and even more so, the electron component) of the plasma
downstream of the front is magnetized (wt); >> 1 (w; is the Larmor frequency
of ions, and 7; is ion—ion collision time). Although particle distribution
downstream of the CSW front for collisionless plasma must differ from the
Maxwell distribution, one can use, instead of temperature, the average energy
of random motion of particles obtained using the Hugoniot to assess the
degree of magnetization (w7); downstream of the front.

The largest length that will determine the structure of the CSW front for
collisionless plasma will be the ion Larmor radius, which, for a shock wave
with a Mach number of M ~ 1 (since we are working with cold plasma, we
will use the Alfven-Mach number My, which is equal to the ratio of the shock
wave velocity to the Alfven velocity upstream of the front, as the measure of
shock wave strength) is, in terms of order of magnitude, equal to ¢/ w,; (w,; is
plasma ion frequency). For cold plasma with a small M, however, ions are
not reflected off the CSW front, and for a single-component plasma, we have
a single-stream flow with cold ions (having almost no velocity relative to one
another) downstream of the front. Here, the CSW structure forms on smaller
scales that are determined by the current velocity of electrons. According to
the first CSW model [4.1], that scale can be determined by electron inertia
and can be equal to ~ ¢ / w,., and the front will have an oscillatory structure (a
wave determined by electron dispersion). But in fact, current
instabilities—primarily, the ion-acoustic instability—should develop at the
CSW front, resulting in anomalous plasma resistivity and a resistive front
width larger than the width due to electron dispersion, although much smaller
that the ion Larmor radius ¢ / w,;. Anomalous Joule heating goes mainly to
the electron component of the plasma.

Thus, one can use, as the basic model for describing the CSW, the so-called
hybrid model, in which ions are described kinetically, and electrons,
hydrodynamically as a gas with temperature and pressure. Friction between
electrons and ions results in electric resistance, which, at the leading edge of
the CSW front, can create a resistive jump (with the influence of some
effective electron thermal conductivity), with scales that are small by
comparison with those of the ion Larmor gyration.

The CSW can be studied with this model in the following sequence: we first
consider a one-dimensional (1-D) case, assuming that the distribution of all
quantities in the CSW depends on only one coordinate perpendicular to the
front, and look at the results obtained in that case; then we evaluate stability
of the solution obtained, and if the solution is unstable, we attempt to obtain
turbulent state of the CSW, taking the growing instabilities into account in a
2D formulation.
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Note that there are many papers devoted to the study of CSWs (see, for
example, [4.2-4.5]). In this section, for consistency and convenience of
description, we will focus on our results [4.6-4.9].

The CSW modeling problems that we examined were solved for non-
stationary conditions, with the assumption that, for x = 0, there is an
ideally conducting, rigid piston toward which an initially uniform semi-
infinite plasma is flowing at a given velocity —u. The initial plasma density
is ny, and the initial magnetic field is By. The following units of
measurement were used: n, for density, B, for magnetic field, initial Alfven

velocity for velocity, inverse initial ion Larmor frequency w/‘é for time, and

¢ / wy,; for the coordinate, where w,; is the initial ion plasma frequency.

4.1. One-Dimensional Hybrid Simulations

Biskamp, Berezin and Vshivkov, Leroy et al., Bashurin et al., and Garanin
and Golubev [4.2-4.4, 4.10, and 4.11] studied CSWs with 1D hybrid
numerical modeling (with a coordinate perpendicular to the wave front) and
took into account various physical processes. Since classical plasma
resistivity due to Coulomb collisions is negligible under CSW conditions, it
was generally ignored in the simulations. Bashurin et al. [4.10] performed
CSW modeling that took into account ion gyration for the infinite Alfven-
Mach number M, and Garanin and Golubev’s modeling [4.11] took ion
gyration into account for finite supercritical numbers M4, with additional
accounting for electron dispersion. However, as already mentioned, under
most experimental conditions, current-driven instabilities should develop at
the CSW front, leading to anomalous resistivity, which results in a resistive
shock-front width that is larger than the scale ¢ / w,. attributed to electron
dispersion. CSW modeling with account taken of anomalous resistivity was
performed by Leroy et al. [4.3]. Note that the ion distribution obtained in
the 1D simulations downstream of the CSW front proved to be unstable
[4.12] (see Section 4.2), which means that the shock wave itself is also
unstable and is distorted on a scale length on the order of ~ ¢ / w,;, which
was demonstrated by Thomas [4.5] for CSWs with large Mach numbers.
Plasma resistivity was not taken into account in that paper, on the strength
that it should be insignificant at large Mach numbers, and relatively small
spatial scales need to be resolved in order to take it into account.

Electron heating and ion heating are important shock-wave characteristics,
as is the ion distribution downstream of the wave front. The ion distribution
in an MHD flow can be seen as preserving its shape and adiabatically
changing with density for times that are short by comparison with ion—ion
collision time (after the relaxation due to the onset of the instability
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associated with anisotropy of the distribution function), whereas the ratio of
electron heating to ion heating can be regarded as constant for times that are
short by comparison with the time for equalization of the electron and ion
temperatures; the electron and ion energies themselves change adiabatically
with density. The issue of the ratio of electron heating to ion heating and the
ion distribution function (IDF) are also of practical importance to plasma
facilities in which plasma is heated by means of CSWs, particularly in the
MAGQO facility. The plasma diagnostics used in such facilities, which is
based on the measurement of the spectrum of thermonuclear neutrons
[4.13], are directly related to the ion spectrum, especially to its high-energy
range. Unfortunately, those characteristics have not always been considered
in CSW studies, and there are no reliable direct data for perpendicular
waves with intermediate Mach numbers in cold plasma.

We will consider CSWs with an initially zero electron S and a low ion S,
with account taken of anomalous resistivity in a 1D model for different
Alfven-Mach numbers [4.6], focusing primarily on the relative roles of
electron and ion heating and IDF, as well as on the mechanism of ion
heating. Since, for the CSWs of interest, it is impossible to determine the
plasma state downstream of the front by using merely the conservation laws
(Hugoniot), our approach of direct modeling of the CSW and analysis of the
effective heating of the different plasma components makes it possible to
obtain the missing information. The results obtained in this study allow us
to proceed to a hydrodynamic description of the behavior of plasma with
CSWs, with a substantiated redistribution of energy among the various
plasma components.

4.1.1. Physical model

In the 1D model in question, the magnetic field preserves its original
direction along the z-axis. We will describe the electrons using
hydrodynamic variables—density n, velocity v,, temperature 7,, and
pressure p.— and will assume that p, = nT, and that the adiabatic index is

vy =5 /3. Ions, however, are described kinetically, particle velocities are
designated as ¥, and ion density and velocity averaged over the distribution
function are n;and ¢/ . Plasma is assumed to be quasi-neutral (n = n;, and
from the continuity equation in the 1D formulation, v, = U,).

Equations of ion motion have the following form:

1%
. L =g

fdt

4

14
EI+—}’BJ : (4.1.1)
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d’Vy v .
m, =e E},——* -en/ , (4.1.2)
adr Yo

where m; is the ion mass, j = en(U, — v,,) is the current density, and 7 is the
plasma resistivity. We will ignore electron dispersion compared to resistivity
and write the equations of electron motion as follows (in the form of the
generalized Ohm’s law that relates the electric field and the current density)

v J
—eﬂ[5x+ v p|-2Pe_q | (4.1.3)
c ox
1%
—eﬂ(Ey—ﬂB +em ;=0 . (4.1.4)
c
The equation for electron energy is
a(;‘” ) g (3 AN
1%
= Lo |-y paxy—<|-p—=+(-a)n,;", 4.15
or 07):( 2 exle X&x) Ze ox ( )/ ( )

where y is the electron thermal conductivity. Joule heating of electrons in
(4.1.5) is reduced because, under the assumption of an anomalous
ion—acoustic resistivity, a fraction of the Joule heating is spent on ion heating;
here we assume that fraction to be equal to a. At present, the existing theory
of ion—acoustic resistivity contains no detailed description of ion heating and
the corresponding change in the IDF under conditions when the ion-acoustic
turbulence causes anomalous plasma resistivity. To provide a qualitative
description of ion heating, we assume that the IDF changes in a self-similar
fashion, i.e., the change of local velocities of ions relative to their center of
mass is proportional to the velocities themselves, which results in the addition
of the following term to the right-hand sides of equations (4.1.1-4.1.2):

.2
an/ - 5
m, v=-0U) , 4.1.6
A (4.1.6)

where T; is the local ion energy averaged over the distribution function. The
quantity « is assumed to be small and independent of the plasma parameters
such that ion heating via this particular mechanism is much lower than
electron heating. This mechanism, however, affects the spreading of the IDF
and, consequently, the reflection of some of the ions off the CSW front,
which means that this mechanism is essential.
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Maxwell equations are expressed as

9E_ A, (4.1.7)
dx c

I
98 __ (4.1.8)
ar x

Equations (4.1.1-4.1.8) define the problem if the quantities 7, ¥, and «,
which are treated here as phenomenological parameters, are known. We
assume that, for sufficiently small 1 and j, which mainly determine the
width of the resistive jump, their value and specific dependence on the

plasma parameters should not affect the basic characteristics of a CSW.

Therefore, in simulations, we assume that 1 = const and consider ) to be
2

related to the magnetic diffusion coefficient k = :—71 by the relationship
b4

x=157B kK,

87 p,

32

where 8, = . Anomalous-resistivity assessment based on the theory of

a weak turbulence for the ion—acoustic instability [4.14] yields

where ¢, is the Alfven velocity and « is the dimensionless factor. The same
factor determines ion heating via induced scattering of ion—acoustic noise
by ions. The quantities a and o depend weakly on the plasma parameters

5 1/6
nmc: m
B m,

4

and contain a small numerical factor. For our

simulations, we took @ = 0.2 and a = 0.1, basing on the plasma parameters
in the CSW in the MAGO chamber.

At the initial time, the plasma is assumed to be cold: B.0 =0, B0 = 0.01.
Plasma heating in CSW, of course, will be considerably higher than ;. The
non-zero value of S is required only to specify the initial Maxwellian IDF,
which would remain Maxwellian if ion heating occurred solely due to (4.1.6).
The simulations were performed for the velocities u corresponding to both
subcritical (u =1 and 2) and supercritical (u =3, 4, 6, and 10) CSW regimes.
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4.1.2. Simulation results

Figures 4.1-4.3 show the ion distribution in the ), v, and y, v, phase planes and
the magnetic field profiles for the times =5 and ¢ = 10 for u = 1 (subcritical
regime, in which there is almost no ion reflection off the resistive jump at the
front, M = 2), u =3 (supercritical regime, M5 = 4.4) and u = 6 (supercritical
regime, M = 8.5). One can clearly see the difference between the subcritical
and supercritical CSWs, which is also observed in the phase planes (Fig. 4.1
has no reflected ions, and Figs. 4.2 and 4.3 do), and in the magnetic field
profiles (profiles B(y) in Fig. 4.1 are monotone and steady-state; whereas in
Figs. 4.2 and 4.3 they have a pedestal and an overshoot associated with the
reflected ions, as well as an oscillatory structure downstream of the front; they
are time-dependent, such that the wave propagation in this case is pulsating).

=1

Vi Yy
1_
] t
-
W vy
1_.
D A || i B e

Bix) B(x)

2,5 2,5

- 2.0

1,5 \ 1,5

o 3 6 0 5 10

ajt=35 b) =10
Fig. 4.1. The ion distribution in the X, v.and X, v, phase planes, and the magnetic
field profiles B(x) in a CSW for the plasma flow velocity u =1 at times a) t = 5;
b)t=10.
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#=3

a) t=5 b) £=10

Fig. 4.2. The ion distribution in the X, Vv, and X, v, phase planes, and the
magnetic field profiles B(x) in a CSW for the plasma flow velocity u =3 at times
a)t=5b)t=10.
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X X
a) t=5 b) t=10

Fig. 4.3. The ion distribution in the X, v, and X, v, phase planes, and the
magnetic field profiles B(x) in a CSW for the plasma flow velocity u = 6 at times
a)t=5b)t=10.

The presence or absence of ions reflected from the front also determine the
IDFs downstream of the front, which are shown in Fig. 4.4 for these CSWs
for the time ¢# = 10. To exclude the effects of the near-piston and near-front
regions, the IDF was defined for the region x; = 0.1xp <x < 0.9 xp = x».
Since the Larmor gyration leads to equalization of velocities v, and v, the

figure shows IDFs in the total velocity f{v), which are defined such that
flv)dv is the fraction of ions in the velocity interval dv. Along with the
IDFs, Fig. 4.4 shows the velocity distributions of the ion kinetic energy,
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v f{v). Figures 4.4b and 4.4c, for supercritical CSWs, show that ions
reflected from the front have very high velocities, and although the fraction
of such ions is small, they make the main contribution to the thermal energy
of ions downstream of the front.

a)u=1 byu=3 u=~6
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Fig. 4.4. The velocity IDFs, f(v), and velocity distribution of the ion kinetic energy,
V. f(v), downstream of the CSW front for plasma flow velocities a) u = 1; b) u = 3;
andc)u = 6.

The basic results of the simulations performed, which characterize the
plasma state downstream of the CSW front, are presented in Table 4.1. For
different plasma velocities u, the table shows the following quantities:

* the computed Alfven-Mach number defined as M, = xz/ t + u, where
xr 18 the shock front coordinate at # = 10;

* the average magnetic field b_’l downstream of the shock front (in the

region x; < x < x;) or the compression ratio downstream of the front;

* fractions of the internal energy downstream of the shock front for
different degrees of freedom: thermal energy of the electron
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component W,, thermal energy of the ion component W, energy

contained in the magnetic field oscillations downstream of the front

- j{2-4

B B

b

* the ion velocity v,, corresponding to the median kinetic energy (the
velocity that bisects the area under the curve v ).

Table 4.1. Basic results of simulations performed.

u Muy | B | We%) Wi(%) | Ws(%) Vin Ma(y=5/3)| w
1 1.95 | 2.05 84.7 15.3 0 0.33 1.94 4.1
2 3.1 | 281 84.3 15.6 0.1 7.1 3.09 6.6
3 4.35 | 3.18 78.7 21.1 0.2 8.2 4.32 9.3
4 5.66 | 3.3 72.6 27.1 0.3 9.8 5.59 12
6 8.46 | 3.23 52.7 46.7 0.6 13 8.18 18
10 14.5 | 3.13 29.1 70.4 0.5 15 13.4 29
1,D/T| 1.96 | 2.04 73.4 11.1/15.3 0.2 0.48/0.42 1.94 4.0
3,D/T| 4.45]3.01 55.5 31.5/12.5 0.5 7.5/1.6 4.32 9.1

*The last two lines of Table 4.1 represent the results of CSW simulations for a plasma with two

ion species.

For comparison, the last two columns of Table 4.1 present the Alfven-Mach

number corresponding to the shock Hugoniot with y = 5/3 and the velocity
v, (with respect to the mean ion velocity) of the ions that were reflected

from the front and penetrated through the front after the Larmor gyration.
The velocity v, is determined under the following assumptions:

* The shape of the CSW profile is rectangular (with the exception of a
narrow peak at the front, where the reflection occurs);

The reflected ions are a small fraction of the main-flow ions whose
velocity (in the frame of reference related to the front) changes the
sign from M, to — M, at the instant of reflection; and

The flow of reflected ions is rather weak and does not perturb the
plasma. Therefore, these ions move in uniform electric and magnetic
fields upstream and downstream of the front and, passing through the
front, after Larmor gyration, are decelerated by the same potential as

the main flow, i.e.,

in the frame of reference related to the front, Vj ,

decrease by the same value as for the ions from the main flow.
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It can be seen from Table 4.1 that the fraction of ion heating grows with
velocity u and Mach number and equals about a half for u = 6 and

MA = 8.5. As aresult, as follows from the comparison of M, and M
(y=5/3), the Hugoniot, which at small u coincides with that for y=5/3,
starts to deflect from it with the growth of « and approaches the Hugoniot
for y =2 corresponding to two degrees of freedom available in these
simulations for ions. The fraction of the magnetic-field oscillations W5 in
the internal energy of plasma proves small for any u: for small u because of
a rather uniform magnetic field downstream of the front, and, for large u
because the contribution of the magnetic-field energy to the energy balance
becomes negligible. The estimate for the velocity v, of the reflected ions
agrees with the simulated characteristic ion velocity v,, downstream of the
front for the flow velocities u = 2, 3, and 4, for which there are ions
reflected from the front, but their fraction is small, and they do not introduce
strong perturbations in plasma. Note that the ion spectrum obtained proves

to be enriched with “superthermal” particles for any supercritical CSW. For
2

. . o my
example, the ratio of median kinetic energy % to the average “thermal”

energy of ions downstream of the front is 42 for u =3.

CONCLUSION

For plasma with a single ion species, the fraction of electron heating in the
total plasma heating downstream of the CSW front within the 1D simulation
approach remains dominates up M ~ 8, whereas ion heating predominates
for larger Mach numbers. Heating of the ion component is mainly determined
by the ions that are reflected from the shock front and whose velocities
downstream of the front are ~2M,, which greatly exceeds “thermal”
velocities. The velocity of such ions can be assessed satisfactorily, if these are
assumed to form from the main flow due to the reflection from the front and
to move then in the electric and magnetic fields of the main flow.

4.2. Instability of the Ion Distribution Function Downstream of the
CSW Front. Time Evolution of the Distribution Function

Ions driven by the Lorentz force and Larmor gyration in strictly perpendicular
CSW would move in a plane perpendicular to the magnetic field. As a result,
ions downstream of the shock would have no velocities along the field. Such a
situation is realized in the 1D simulations of Section 4.1, where the occurrence
of longitudinal velocities is impossible by virtue of the problem setup.
However, the anisotropic ion distribution forming downstream of the front
proves to be unstable relative to perturbations with the wave vectors that have a
component along the magnetic field. The growth of such perturbations and their
effects on the distribution function may lead to a decrease of the anisotropy.
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The development of unstable oscillations downstream of the CSW front in
the quasi-linear approximation were studied by Yoon [4.12], where the
IDFs for transverse and longitudinal velocities were assumed to be bi-
Maxwellian, and oscillations and quasi-linear diffusion were assumed to
result in changes of relevant temperatures and their equalization. The study
showed that the anisotropy of such a distribution function decreases
considerably. Nevertheless, if the real ion distribution is borne in mind, then
the questions of whether the isotropization occurs for all regions of the IDF,
how quickly this process runs for low and high velocities, and how real ion
distribution affects the spectrum of oscillations remain unresolved. The
question of the ion distribution function is also of practical importance to
plasma facilities, including MAGO, where plasma is heated by means of the
CSW, because in this case a large fraction of energy is contained in high-
velocity ions, for which collisions are not very essential.

Heating of MAGO plasma as a result of “anomalous” friction against the
anode, when the plasma passes through the nozzle, may also produce high-
energy ions that, generally speaking, have anisotropic ion distribution with
prevailing velocity directions perpendicular to the magnetic field (see
Section 5.3). The information on high-energy ions was obtained by
Burenkov et al. [4.13] by spectral measurements of thermonuclear neutrons.
Those measurements did not reveal any velocity anisotropy for most of the
neutron spectrum and, consequently, for high-energy ions. The explanation
given for the results is that the ion distribution function contains a large
fraction of high-energy ions, which becomes isotropic rather quickly due to
the noise produced by the growing instability.

In this section, we will consider the development of the instability of the Alfven
ion-cyclotron mode with a wave vector parallel to the magnetic field [4.8].

4.2.1. The Dispersion Relation for Oscillations Along the Magnetic Field

For oscillations along the magnetic field, i.e., 4| Z |l€. , the dispersion

equation [4.15]
(D2
—€

2 %y
c

=0

>

S —F k. -
7 iy

where ¢; is the tensor of dielectric permittivity, splits into two equations:
2

= (;)—2(5}6r :1’5}(}) , (4.2.1)

and
e.=0.
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We will consider only transverse waves described by Eq. (4.2.1). For this
case, using the known components of tensor e; [4.16] and noting that, for

. w
the range of wave vectors k ~ ¢/w,; of interest, —< >>1, and for the

VT (4

frequencies w ~ w; of interest, w << w,, we obtain the following dispersion
equation:

(w—,{'v)j’{h{'v LA

2 a)z L 0’J
p = D 2T 0 Ay, (4.2.2)
c 0w, o a)—é'VH Fo,

Assuming that wave velocities are small compared to the speed of light, we
can ignore the 1 in the brackets of formula (4.2.2) (disregard of bias

. . . . w w
currents) and, proceeding to dimensionless units £ =4 —2-, w=—, and
c w

y=2 , rewrite Eq. (4.2.2) in the dimensionless form
cz{
(- A’V)j/ i 9L
v
k2=$a)+lfd17 L Ly,
2 w-4ky F1

(4.2.3)

where the function of velocity distribution is assumed to be normalized to 1

[rdv=1.

Since, in an ideal case of a perpendicular perturbation-free CSW, ions move
in the plane perpendicular to the magnetic field, parallel components of ion
velocities right downstream of the front can be considered to be small. One
can then expand the integral in the right-hand part of Eq. (4.2.3) in powers of

£,
l-w
for the plus sign can be obtained by replacing & with — k and @ with —w)

<<1 (here we treat only the case of the minus sign in (4.2.3); a solution

P 2 V2 VZVZ
k2=1‘” e 2(1Vl )2+é2 0 ” )3-3# 0 ” i)4+... (4.2.4)
-w -w -w -w

(the bar above the squared velocity components means averaging over the
distribution function).
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If we ignore Y completely, Eq. (4.2.4) transforms into a cubic equation for

2 )
a) , V)

l-o  2(1-w)*

which has complex roots for sufficiently high k. As this equation has real
coefficients, the imaginary part of one of the roots will be positive, i.e., such
ion distribution is unstable. The roots of this equation for Vj =B, =05 are

shown in Fig. 4.5, which corresponds to the ion distribution downstream of
the CSW obtained in the 1D simulation with the Mach number M, = 44
(Fig. 4.4b). The unstable root of Eq. (4.2.4) at k >>1 equals

1-12/2 2 vy
w=1—V—l2/+;'1/V_L 1-%-3#& (4.2.5)
2% 20 v

Fig. 4.5. Frequency w and increment y of the Alfven ion-cyclotron oscillation mode
along the magnetic field for 8, =0.5, B,=0.

Thus, the anisotropic ion distribution in velocities with small Y is unstable,
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with characteristic wave vectors of the unstable mode being 4 ~ and

characteristic increments for plasma with § ~ 1 being y ~ w;.
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4.2.2. Quasi-Linear Diffusion of the Distribution Function

The quasi-linear equation [4.17] that describes the variation of the IDF
produced by noise with || # can be written as

LR B, (=) P (& /) |5w-@, i)+
é’f 62 v, 2
L—g— [di ;
a7 VP 1 N . 2 "
i +_R[_i|5/{(”=_1)| (R/)|6(w+Q, - k1)
v, 2
(4.2.6)

where m; 1s the ion mass,

P AR A
w E)Vl w aV”

and £ ' is the amplitude of electric field oscillations that can be expressed
through the amplitudes of magnetic field perturbations

B =S[FE,].
w
If we focus primarily on the time history of the high-energy region of the

v
IDF, for ﬁ >>1, where r=-L, Eq. (4.2.6) can be written as
wx 1%

9 318 1-4 9
_f=_ﬁ—x_f , 4.2.7)
0r ox 2 ox

(oscillation frequency is assumed to satisfy the resonance condition of

w =1+ k vx, the imaginary part of frequency y is assumed to be small),
which corresponds to the diffusion over the angle variable with a fixed
velocity modulus. The growth of magnetic field perturbations is described
by the equation

(4.2.8)
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Solving equations (4.2.3), (4.2.7), and (4.2.8) for the initial distribution
function of Fig. 4.4b with 8, ~1 and small perturbations 5’; set in a wide

range of wave numbers & has shown [4.8] that, in this case, the IDF
becomes isotropic, although relatively slowly, over a period hundreds of
times greater than the ion gyro time. The analysis of noise development has
shown that the peak spectral noise density shifts from the initial wave
number corresponding to the maximum increment in Fig. 4.5 towards
smaller wave numbers £k~ 1.

As applied to the MAGO chamber plasma, that time is not very long and
equals tenths of a microsecond, which is short compared with the
characteristic time of a neutron pulse (see, for example, Fig. 2.5). In addition,
if we consider plasma heating as a result of anomalous friction at the plasma
chamber nozzle, this heating should result in predominant ion heating
(Section 5.3), which should result in the growth of §, and, according to

(4.2.5), correspondingly faster growth of the instability and hence faster
isotropization of the distribution function. Thus, the investigated instability
growth can explain the absence of anisotropy in the spectra of the main body
of thermonuclear neutrons in Burenkov et al. [4.13].

4.3. Two-Dimensional Hybrid Simulations

As we showed in Section 4.1, for Mach numbers that are not very large, the
effects of plasma resistivity and Joule heating must be taken into account
when considering CSW structure, and, according to Section 4.2, two-
dimensional (2D) effects can play a major role in that structure. In this
section, we study CSWs in the 2D approximation, with allowance for
anomalous resistivity for a plasma in which the initial g value is equal to
zero for electrons and is small but nonzero for ions.

4.3.1. Physical Model

Plasma flow is assumed to be 2D, and a CSW is assumed to propagate along
the x-axis; all of the quantities are functions of x and z because of the
presence of perturbations in the z-directions. The magnetic field and particle
velocities can have all three components.

Electrons will be described using the same hydrodynamic variables as in
Section 4.1, and ions will be treated within the kinetic approach with the
same designations as in Section 4.1. As before, we assume that the plasma
is quasi-neutral (n =n;) (n = n,).
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Equations (4.1.1-4.1.5) in the 2D case are written as

m}.ﬂ=e(£:+l[175’])—en]', (4.3.1)
dr c
—en(b:+l[17e 5])—Vp€+eﬂnj=0, (4.3.2)
C
6(;4) 3
— =div(—§17mpg+xV];)—p€diV17€+(1—0c)nj2 . (4.3.3)

Similarly to the 1D simulations, we assume that a small fraction of Joule
heating a is spent on ion heating, with the term of (4.1.6) added accordingly
to the right-hand side of Eq. (4.3.1).

The Maxwell equations have the usual form

rot =47 5 | (4.3.4)
C

i mp—y (4.3.5)

Y,

The 2D problem is defined by equations (4.3.1-4.3.5) written in
x, z-coordinates with the quantities 1, ), and « as described in Section 4.1.

4.3.2. Problem Statement

We studied the problem of a CSW in time-dependent formulation and
assume that, as with the 1D simulations, there is an ideally conducting, rigid
piston at x = 0 with an initially uniform plasma flowing onto it at a velocity
of —u. To introduce perturbations, ions were assumed to be reflected off the
piston as off a surface with a slope

4 _0.05sin 2%

dz 2z,

where 2 z is the width of the computation region in the z-direction and,
despite the surface slope assumed for the process of ion reflection, the
surface itself was considered flat. In simulations, the boundary points z = z,
and z = —z, were assumed to be related through the periodicity conditions.
Due to the problem’s nonlinearity and instability, assigning a perturbation in
the form of a single mode resulted in the generation of various shorter
wavelength perturbation modes in the course of a run.
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We shall express values in the units defined at the beginning of this
Chapter, and as in Section 4.1, we assume that .0 =0, B0 = 0.01.

The major difficulty in the numerical simulations of this problem involves
the necessity of resolving small spatial scales near the CSW front.
According to the 1D simulations in Section 4.1, the spatial mesh Ax of the
grid used to compute average plasma variables (density, velocity,

temperature, etc.) should meet the condition Ax < 0.5% (for the units
u

adopted). For the 2D simulations, this condition proves to be too
cumbersome, so we did not adhere to it at all times, especially for CSW
with high Mach numbers. 2D simulations with different meshes show that
small departures from it do not lead to a considerable change in the results.
That appears to be because CSW fronts in the 2D case are usually inclined
with respect to the incident flow, and the effective velocity of the plasma
flow onto the front proves to be smaller than M.

4.3.3. Simulation Results

Numerical simulations have shown that 2D effects are negligible for CSWs
with u = 1, M, =2, which means that one can use 1D simulation results for
CSWs with subcritical Mach numbers.

Two-dimensional effects become more pronounced starting with u = 3. That
is illustrated in Fig. 4.6, which shows 2D reliefs of the magnetic field
component S, and plasma density # at the time # = 15, and Fig. 4.7, which
shows the x-profiles of the following parameters: the z-averaged magnetic
field component 3. and plasma density, their maximum and minimum
values along the z-axis, and the maximum values of the magnetic field
components B, ,along the z-axis (in our problem setup, these components
are odd functions of z, and their maxima coincide in absolute value with
their minima) for the same time. The results illustrated in Figs. 4.6 and 4.7
were obtained in the simulation performed with z, = 5, with the spatial steps
of the mesh being Ax = 0.05 and Az = 0.1. Figures 4.6-4.7 show that the
magnetic field oscillations excited downstream of the CSW front are
characterized by amplitudes 6B, ~ 6B, ~ 0.2, and the oscillations of 6B.
along the x-direction have approximately the same wavelength as those in
the 1D case and a somewhat smaller amplitude.
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Fig. 4.6. Reliefs of the
magnetic field component
B, and plasma density n for

a CSW with u =3 at the
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Fig. 4.7. The x-profiles of the maximum values (along the z-axis) of the magnetic
field components B,,, the maximum, minimum, and averaged values (along the
z-axis) of magnetic field component B,, and plasma density n for a CSW with u = 3

at the time t = 15.
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The amplitude distribution of the magnetic field oscillation modes
downstream of the front as functions of the harmonic number m (reflecting
dependence on z of the form exp(27imz / zy) is depicted in Fig. 4.8a and
shows that excited downstream of the front are, primarily, the first three
harmonics of By, B, oscillations with characteristic wave numbers of k ~ 1,
which is in rough agreement with the results of quasi-linear approach of
Section 4.2. The characteristic mode amplitudes of oscillations of different
harmonics in the x and y directions differ by no more than a factor of two. In
this sense, there is isotropy for oscillations in these directions downstream of
the front.
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Fig. 4.8. Squared amplitudes of the modes of the magnetic field oscillations down-
stream of the front for CSWs with u = 3 (a) and u = 6 (b) at the time t =15. Solid,
dashed, and dotted curves show the squared amplitudes of B,, B,, and B., respectively.

The ion distributions in the phase planes (x, v;) and (x, n,) of Fig. 4.9 have
an oscillatory structure and show the presence of ions reflected from the
front. The ion distribution in the phase plane x, . indicates a trend of
broadening with distance from the front—the process of noise-induced
isotropization of the distribution function discussed in Section 4.2. On the
whole, however, the 2D wave propagation pattern in Figs. 4.6-4.9 for u =3
is qualitatively close to the 1D pattern, and for this supercritical CSW the
reflected ions, as with the 1D simulations, are manifested both in the phase
planes and on the graphs of the magnetic field B.(x) and density n(x)
profiles in the form of the foot and the overshoot. The 2D simulations, as
with the 1D simulations, show the unsteady, pulsating nature of wave
propagation.
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Fig. 4.9. lon distribution in the phase planes (x, vy), (x, v;), and (x, v. for a CSW
with u = 3 at the time t = 15.

In the case of a CSW with u = 6, the 2D effects become substantial. The
reliefs of the magnetic field component B, and plasma density (Fig. 4.10)
from the simulations with zy=10.5, Ax =0.06, and Az = 0.3 illustrate an
essentially 2D CSW structure, which is particularly distorted in the front
region and is similar to the wave structure calculated by Thomas [4.5] for
Ma ~13, Beo=4, Pio = 0.5 and zero plasma resistivity. The profiles of the
maximum, minimum and average values for the magnetic field component B
and plasma density along the z-axis in Fig. 4.11 show that the magnetic field
oscillations excited at the CSW front have characteristic amplitudes of

OB, ~ 0B, ~ 3 and somewhat higher values of 0B., on, (which is related to the
z-nonuniformity of the density and B, overshoot, which forms when the
incident ion flow is reflected from the front, and to the distortion of the shape
of the CSW front). Those oscillations are dampened downstream of the front
and have a relatively small value of 0B, ~ 0B, ~ 8B, ~ 0.8. Figures 4.10-4.11
show the damping of oscillations with distance from the front.
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Eixzl
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Fig. 4.10. Reliefs of the magnetic field component B, and plasma density n for a
CSW with u = 6 at the time t = 15.
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Fig. 4.11. The x-profiles of the maximum values (along the z-axis) of the magnetic
field components B, , and the maximum, minimum, and averaged values (along the
z-axis) of the magnetic field component B, and plasma density n for a CSW with

u =6 atthe time t =15.
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Figure 4.8b, which depicts the distribution of the modes of the magnetic
field oscillations downstream of the front as functions of the harmonic along
z, shows that the characteristic wave numbers of oscillations downstream, in
this case k ~ 0.9, become somewhat smaller than those in the case of a CSW
with u = 3, and similarly to the case of u = 3, there is isotropy for the
oscillations of By, B,.

The ion distributions in the phase planes (x, v;) and (x, v;) for u =6

(Fig. 4.12) are seen to be more smeared than in the 1D case (Fig. 4.3) and
when u = 3 (Fig. 4.9), and the reflected ion flows become less distinct as
distance from the front increases. This is attributed to the larger role of the
two-dimensionality in this case than in the case of ¥ =3 and the loss of
coherence for regions with different coordinates z. The ion distribution in
the phase plane (x, v;) roughly maintains its width with increasing distance
from the front (i.e., the ions acquire their velocities v, near the front and
more or less maintain them at greater distances).

a

=id

Fig. 4.12. lon distribution in the phase planes (x, vy), (x, v,), and (x, v.) for a CSW
with u = 6 at the time u =15.
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The presence/absence of ions reflected from the shock front is also
established by the IDFs downstream of the front, which are shown in

Fig. 4.13 for the two CSWs under discussion at the time ¢ = 15. To eliminate
the effect of the zones near the piston and the shock front, the distribution
function was calculated for the region x; = 0.1xr < x < 0.9xr = x,, where xr
is the CSW front coordinate. Since the Larmor gyration results in the
equalization of the velocity components v, and v,, the figure depicts the
IDFs with respect to the total velocity, /' (v), and modulus v;, such that
f(vydv and f (nz)dv. are equal to the proportions represented by the ions in
the interval of velocities dv and d|v.|. Along with the IDFs, Fig. 4.13 shows

the functions v/ f(v)and V2 /(v.), which represent the velocity distribution

of the ion kinetic energy. One can see from Fig. 4.13 that, as with the 1D
case (Fig. 4.4), the ions that have been reflected from the front have very
high velocities, and, although the proportion represented by such ions is
small, they make the principal contribution to the thermal energy of ions
downstream of the front. By comparison with the 1D case, however, for a
CSW with u = 6, the peak of the function v/ f(v), which corresponds to the
reflected particles, is shifted towards smaller velocities v, possibly because
of the 2D modulation of the CSW front and the corresponding reduction in
the effective velocity of the plasma flow onto the front. The ion distribution
over velocities v, shows that the distribution function for a CSW with u =3
undergoes almost no isotropization on the time scales under consideration,
and that isotropization is pronounced only in the range of low velocities
corresponding to the main (non-reflected) ion flow. For the case of a CSW
with u = 6, the distribution function shows rather high isotropization, and, as
the results in Section 4.2 suggest, the rate of the isotropization is higher for
the small velocity range.

The principal simulation results characterizing the plasma state downstream
of the CSW front are summarized in Table 4.2, which shows the following
quantities:

the computed Alfven-Mach number defined as M = xr/ ¢ + u, where xr is
the shock front coordinate att = 15;

the average magnetic field #. downstream of the shock front (in the region
x1 <x <Xx) or compression ratio downstream of the front; fractions of the
internal energy downstream of the shock front for different degrees of
freedom: thermal energy of the electron component W, the ion thermal
energy /7, for velocity components x, y, the ion thermal energy W, for
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velocity component z, and the energy contained in the magnetic field

Y5 B
oscillations downstream of the front /7, ~ f 7 - 2‘ dx ;
x

1

the ion velocity v, v, corresponding to the median kinetic energy (the
velocity that bisects the area under the curve v f(v)); the ratio of squared
median velocity v,, to the average squared thermal velocity of ions v;, .

r ] 1 it ] ir : I ] [ [E n b

Fig. 4.13. Ion distribution f (v) over total velocity and the velocity distribution vV’ f
(V) of the ion kinetic energy (curves 2), and distributions f (v,) and V:f(V:) over
the modulus v, (curves 1) downstream of the CSW front for the incident plasma
flow velocities u =3 and u =6.

Table 4.2. Plasma State Downstream of Collisional Shockwave (CSW).

Wl Ma| B (W) | 7, () We(%)| WeC)| v | v2 /v

3] 436] 3.18] 754 22.4 1.9 0.3 7.2 29
8.17] 3.72| 513 355 12.5 0.7 11 7.3

The comparison of the data in Table 4.2 against the 1D simulation results
presented in Table 4.1 shows that the 2D simulation for u = 3 yields nearly
the same values for all the global plasma characteristics downstream of the
front as does the 1D simulation. The results of the 1D and 2D simulations
for u = 6, however, are considerably different. In the 2D simulations, the
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values of M and 4 are close to the values determined by the Hugoniot
with y=5/3, which is a result of the considerable isotropization of the IDF
(the proportion of energy contained in the z component of velocity W,
begins to be comparable with the proportions of energy in the x and y
components of /7 /2). As with the 1D simulations, the fraction accounted

for by ion heating in the thermal energy of plasma equals about one-half for
u = 6. As with the 1D simulations, the proportion represented by the
magnetic field oscillations Wj in internal plasma energy turns out to be
small for any u, despite the excitation of oscillations downstream of the
front. And again, as with the 1D simulations, the ion spectrum for
supercritical CSWs is rich with “superthermal” particles, which is shown by

the ratio vi / v;, , although the median velocity v,,=11 for u = 6 is somewhat

lower than in the 1D case, where it was v,, =13.

CONCLUSION

The role of 2D effects in the CSW structure is not particularly substantive for
M, <5, and one can use 1D simulation results for such CSW (Section 4.1).
For higher Mach numbers, the onset of instabilities and the 2D effects in the
(x, z) plane play a very important role, especially in the vicinity of the CSW
front, where large density and magnetic-field perturbations occur and
magnetic-field components x and y are generated with an amplitude
comparable to the perturbations of B.. For large Mach numbers, the 2D effects
cause isotropization of the IDF downstream of the CSW front and a decrease
in the energy of the ions that have been reflected from the front. As with the
1D case, heating of the ion component is governed primarily by the ions that
are reflected from the shock front and whose velocities downstream of the
front are much higher than the ion “thermal” velocities.

4.4. Three-Dimensional Modeling

As shown by the results of three-dimensional modeling of CSWs with high
Mach numbers (and with some additional restrictions, e.g., with the
exclusion of any accounting of plasma electrical resistivity) [4.5], the
presence of a third dimension introduces no fundamentally new physics; the
simulation results are qualitatively and quantitatively close to those of the
2D simulations. In the 3D case, as with the 2D case, the instabilities
developing downstream of the front leads to the equalization of the
anisotropy of the ion temperature, which initially developed as a result of
ion reflection from the front. We can hope that waiving the restrictions
adopted by Thomas [4.5] would not change the conclusion on the
qualitative and quantitative closeness of the 2D and 3D simulation results
and that the 2D simulation results are applicable in the CSW description.
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4.5. CSWs with Two Ion Species

In a multi-component plasma, where ions of different species have different
charge-to-mass ratios z;/m;, those ions, moving in the same fields, will
acquire different velocities, and a multi-velocity flow forms downstream of
the front. Garanin examined a CSW in plasma with two ion species, zero
resistance, and allowance for electron dispersion [4.18]. With a more
realistic assumption of the presence of anomalous resistivity and zero
electron dispersion, we can study such CSWs using numerical simulations
in a hybrid model, as well as consider the question of whether a stationary
solution can exist downstream of the resistive front where ions of different
species gyrate in self-consistent fields. The case of small Mach numbers is
of most interest for a plasma with several ion species, since at high Mach
numbers a considerable portion of ions is reflected from the front, and the
presence of several ion species should not change the general picture
qualitatively. Since 2D effects do not exert much influence on CSWs with
fairly small Mach numbers (as shown in Section 4.3), we will study a CSW
with several ion types within a 1D setup.

4.5.1. Solution of Stationary Problem

A subcritical CSW in aninitially cold plasma with a single ion species is a
resistive front (with the influence of some effective electron thermal
conductivity). Downstream of the front, there is plasma with heated
electrons and weakly heated ions, since the Joule heat for anomalous
resistivity goes primarily to the heating of the electrons. The critical Alfven-
Mach number for a purely resistive wave (for the electron adiabatic index
y=5/3) is M«=2.76 (we will designate the Alfven-Mach numbers in this
subsection by M), and when the electron thermal conductivity is taken into
account, it is equal to M+« = 3.46 (see, for example, [4.19]).

We will consider the stationary structure of subcritical CSWs in plasma
containing two ion species [4.7]. Downstream of the resistive front, those
ions gyrate around each other. The multi-velocity flow that forms in such a
solution should be unstable against stream instabilities; numerical
simulations of CSWs in Section 4.5.2, however, show that such a solution
lives for a long time. Important in that context is the question of the decay
channels of such a solution and, accordingly, the final energy dissipation
channels downstream of the front, i.e., the relative heating of the electron
and ion components downstream of the front.

We will consider the structure of a transversal CSW in the rest frame of the

shock front. The magnetic field is directed, as usual, along the z-axis, and
the wave propagates along the x-axis. The set of equations describing the
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structure of a stationary CSW in plasma with two ion species with the initial
relative concentrations «a; and o, includes the Maxwell equations

=7 (4.5.1)
o 4no dx c !
c
£ = const=M -5, ;
’ c
the continuity equations for the ion components

n v, =const=a, Mc 7, (4.5.2)
n,v, =const=a,Mc 7, ; (4.5.3)

the continuity equation for the electron component, which, when the quasi-
neutrality condition n, = n, + n, is taken into account, can be written in the

form:
(n,+n)v, =Mc n, ; 4.5.4)

the equations of motion for the ion components,

adv. V.
my, Ll e(Ex +i£) , (45.5)
' dx c
av. ;
my 2ol Ltep|l_ol (4.5.6)
M dx 7o o
the equation of motion for the electron component,
v J
—eﬂy[5r+ﬂb’ _2e g, (4.5.7)
’ c ox
where
J .
”eVefy =”1Vly +”2 V2,V _; 4

and the equation for the electron energy

Jv /'2
-p —%+2—=0.
2 ox Ze dxr O

a( 3 a7
=SV, P
ox
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In these equations, j is the current density, ois the conductivity, B and £
are the magnetic and electric fields, 176 and 7, are the electron velocity and

electron density, ¥, and n; are the velocity and density of the ions of the

i-th species, p. and T, are the electron pressure and electron temperature, y
is the electron thermal conductivity, ny and By are the initial density and
initial magnetic field, M is the Alfven-Mach number, and ¢, is the initial
Alfven velocity; it is assumed that for the electron gas y = 5/3. Using the
above basic equations, we can readily obtain the momentum and energy
conservation laws:

2 B
7, Vlz,r"'mz”z’/zzx"'pe"'i: M2+l e (458)
Iy, Vly"'mz Va0V, =0, (4.5.9)
. 1 5 a7 ¢
57 V1X(V12X+V12y)+5”72 g V2.r(V22/r+V22)’)+5p€ em X d): +EEyB
2 B>
=M(1+M7)c/1ﬁ . (4.5.10)

For M ~ 1 and m; ~ m,, the characteristic spatial scale corresponding to the

. .. c .

ion Larmor gyration is ~—~ ~ —— . On the other hand, according to the
. o,

estimates given in Section 4.1 for the anomalous resistivity (and the

corresponding electron thermal conductivity ), the width of the CSW

resistive front is much smaller than —<— . This allows us to assume that a
w,

shock wave consists of a narrow resistive front where the ion gyration can

be ignored and v;, = 0, and of a subsequent structure where, over many

periods of the ion gyration, the plasma resistivity and the heat conduction

can be disregarded.

We will use the same dimensionless quantities as before: as the normalizing
factors, we use density ny, magnetic field By, velocity ¢4, and mean ion mass
m = ay m; + a, my. We express the time and length in units of the inverse
initial ion gyrofrequency and of ¢ / w,;, respectively (here, the ion
gyrofrequency and the initial plasma frequency w,; are both expressed in
terms of the mean ion mass). Using the condition of the magnetic field
frozen into the electron component, which follows from disregarding the
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resistance in (4.5.1), eliminating £, by means of the equation (4.5.7), and

o7 .
disregarding the heat flux —x p < in the energy conservation law (4.5.10),
X

we can write the equations (4.5.1-4.5.6) and (4.5.8-4.5.10), which
determine the CSW structure downstream of the resistive front, as follows:

n +I’12:B, (4511)
niuix = alM . (4512)
oty = 0oM (4.5.13)
Bu,.=M, (4.5.14)
du,
mu e 7B 1AL _7yp (4.5.15)
Tr 4y dx Bdx Y 7
du.
mut, —==~(u, ~u, )b , (4.5.16)
dx
2 2 32 2 1
mlﬂlul,r+m2”2”2,y+pg+7=M +—, (4.5.17)
o, mu,, +o,myu, =0, (4.5.18)

M 2 2y M 2 i )4 M 2B 3 M, (4.5.1
Talml(”l,r+l{1}')+?a2m2(”2,r+l{2’V)+Epe”e+ =7+ , (4.5.19)

where 7 B =7, U, +mu,, (we denote the dimensionless velocities by the

letter u and keep the above notations for the remaining quantities).

The plasma state immediately downstream of the resistive front can be
determined from the condition u;, = 0, equations (4.5.7-4.5.14,4.5.17, 4.5.19),
and the condition

2 2 2
myuy —mu; =M (m,—m) ,

which follows from (4.5.5) when v;, is disregarded. Using this initial plasma
state as a boundary condition, we can obtain the CSW structure downstream
of the resistive front by integrating the equations (4.5.11-4.5.19) and taking
into account the fact that the pressure changes adiabatically downstream of

the resistive front ( », ~ £7). It is clear a priori that the wave structure will

be periodic, since all of the quantities are determined from the conservation
laws as functions of only one parameter (e.g., #1y); and correspond to the
above boundary plasma state at one of the points, where u;, = 0. Integrating
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the equation (4.5.16), divided by u,,, we obtain the averaged density of each
ion component (over the period of the wave structure), 7, = &, Z , which
implies that there will be no separation of different ion species in the wave.

In describing the ion motion downstream of the resistive front, we assume
that the ion temperature is zero. It is of interest to consider what will happen
with the ions whose energy is slightly different from the energy of the main
stream. Linearizing the equations of motion (4.5.15-4.5.16), we obtain, for
the purposes of describing the ions, a system of two first-order linear
equations with periodic coefficients. This system can be reduced to the
equation for small oscillations with periodically varying parameters.
Depending on conditions, these equations may have either solutions with a
nonincreasing amplitude or increasing solutions (the parametric resonance)
[4.20]. In the first case we can determine how much, on average, the
“temperature” (i.e., the energy spread) grows beyond the resistive front for
each of the streams. The second case corresponds to the onset of an
instability, and the increment of this instability can be determined.

Let us consider a plasma with two ion species whose masses differ by a
factor of 1.5, m; = 0.8 and m, = 1.2, and whose initial concentrations are the
same a; = o, = 0.5 (e.g., a DT plasma). Our calculations show that, in such
a plasma, the critical Alfven-Mach number for a purely resistive wave is
M, =2.637 and, with allowance for the electron heat conduction, it is equal

to M,, =3.128.

Figures 4.14 and 4.15 show the profiles of the ion densities, magnetic field,
and ion velocitiesm u;, and u;, obtained by integrating the equations
(4.5.11-19) numerically for CSWs with M =2 and M = M, = 3.13. We can

see that the ion densities and velocities 1, experience large-amplitude

oscillations, whereas the amplitude of the magnetic filed oscillations is small.
It is noteworthy that the oscillation amplitudes of the density and velocity u,
of the heavier ion component exceed those of the lighter component, although
intuitively it would seem more difficult to swing the heavier mass. This
effect, however, can be explained if we consider that, owing to the
momentum conservation law, the heavier component exerts more of an effect
on the magnetic field, enhancing the field in the regions of its low velocities
u;y and, accordingly, its higher densities. But enhancing the field requires
increasing the density of both components, thereby increasing the oscillation
amplitude of the heavier component and reducing that of the lighter one.
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Fig. 4.14. CSW with M = 2: (a) profiles of the ion densities n; and n, and magnetic
field B(x), (b) profiles of the ion (u;, and u,,) and electron (u,,) velocities, and
(c) profiles of the ion velocities u;, and u,.
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Fig. 4.15. CSW with M = 3.13: (a) profiles of the ion densities n; and n, and
magnetic field B(x), (b) profiles of the ion (u;, and u,,) and electron (u.,) velocities,
and (c) profiles of the ion velocities u;, and u,,.

114



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

A study of the behavior of particles whose velocities differ slightly from the
velocity of the main stream shows that, at small Alfven-Mach numbers M,
their motion is stable. As M increases, the heavier ions first, and then the
lighter ions, enter into parametric resonance with the wave. The critical
Alfven-Mach numbers of these transitions are My« = 2.278 and M == 2.605
for the heavier and lighter ions, respectively. The deviation du, of the
velocities of the both ion species from the velocities of the two main
streams, as a function of the x coordinate for both stable ion motion and
parametric resonance, is illustrated by Fig. 4.16 for the Alfven-Mach
number M = 2.5, which is subcritical for the lighter ions and supercritical
for the heavier ones.

2000

1000 T

-1000 T

-2000

Fig. 4.16. Deviations du;, of the ion velocities from the velocities of the two main
streams for lighter and heavier ion components for a CSW with M = 2.5.

115



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

Table 4.3 gives some of the calculated characteristics of the plasma state
downstream of the CSW front, as functions of Alfven-Mach number:

¢ the Alfven-Mach number A,

* the oscillation period, X;

* the mean magnetic field Z downstream of the wave front;

* the distribution of the internal plasma energy downstream of the wave
front in terms of different degrees of freedom: the thermal energy of
the electron component W,, the mean kinetic energies W;, and W, of
the ion species in the x and y directions relative to the mean plasma
velocity downstream of the front, and the energy

BZ 6)2
7] (7‘71

downstream of the front;

d x of the magnetic field oscillations

* the amplification factors k; of the temperatures of ion components in
the case of stable motion of perturbed particles (M < M;) or
increments ¥, (per unit of length) for parametric resonance ( M > M;).

Table 4.3. Plasma State Downstream of CSW as Function of M.

M X | B | (W, %)| Wi (%) (Way %) Wir%) Wo(%) Wa(%)| kily,| k! 1

1.5 3.7] 1.6l 77.5 2.5 8.6 6.2 4.2 1.0 3 2.8

2 3.0| 2.100 835 2.5 5.5 4.9 3.2 0.4 5.9 7/0

2.5 29| 247 857 24 4.4 4.4 2.9 0.2 | 9.7/0| 0.19

2.64 | 2.8| 2.56 86 23 43 43 2.9 0.2 0.08| 0.24

3 29| 276 86.8 2.2 3.9 4.1 2.8 0.2 0.26| 0.32

3.13 | 29| 2.83 87.1 2.2 3.8 4.1 2.7 0.1 0.28| 0.33

We should expect that as a result of the development of downstream instabilities
and of dissipation, which leads to a homogeneous plasma state, the energy
of the ion components will remain in the ions. Therefore, we can ascertain
the final ratio of electron heating to ion heating in the CSW from the ratio of
W, to W;. Table 4.3 shows that, for the Alfven-Mach numbers under
consideration, the fraction accounted for by electron heating is the dominant
fraction and even increases somewhat with M.
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4.5.2. Results of One-Dimensional Simulations in the Hybrid Model

For 1D simulation of CSWs with two ion species, we used the same
physical model and problem formulation as in Section 4.1, although, of
course, the specific mass for each species was used in the equations of
motion for the ions (4.1.1-4.1.2). The value of the anomalous resistivity, a,
and the parameter a, which determines the fraction of the Joule heat spent
on the ion heating, were the same. As in Section 4.5.2, we considered CSWs
in plasma consisting of two ion species that differed in mass by a factor of
1.5 and had the same initial concentrations.

Figures 4.17 and 4.18 show the ion distribution in the x, v, and x, v, phase
planes and the magnetic-field and density profiles of both ion components at
t=10foru=1and u =3.

Vy Vy
1
i
-1  S—— ez
v}, v},

Fig. 4.17. The distributions of ions in the x, v, and x, v, phase planes and the
magnetic-field and ion density profiles for CSWs with two ion species with identical
initial concentrations and a mass ratio of 1/1.5 for an incident plasma velocity of

u =1 at t =10. On the graphs for the distribution of ions in the phase planes:

left distribution of heavy ions, right, distribution of light ions. On the graph of the
magnetic-field and density profiles: the dashed line represents the magnetic field
B(x); the solid line represents the density of the heavy ions; the dotted line
represents the density of the light ions.
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Fig 4.18. The distributions of ions in the x, vy and x, v, phase planes and the
magnetic-field and ion density profiles for CSWs with two ion species with identical
initial concentrations and a mass ratio of 1/1.5 for an incident plasma velocity of

u =3 att =10. The dashed line represents the magnetic field B(x); the solid line

represents the density of the heavy ions, the dotted line represents the density of the
light ions.
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The functions of the ion velocity distribution downstream of the front for
these CSWs at t = 10 are shown in Fig. 4.19.
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Fig. 4.19. lon velocity distribution functions f (v) and the velocity distribution of the
ion kinetic energy V' f (v), downstream of the CSW front, with two ion species with
identical initial concentrations and a mass ratio of 1/1.5 for an incident plasma
velocity of (a) u =1 and (b) u =3. The solid lines represent heavy ions, and the
dashed lines represent light ions.

The last two lines of Table 4.1 present the basic results of simulations of
CSWs with two ion species, and v, was determined for the lighter ions,
which are more readily reflected from the spikes of the magnetic field.

Figure 4.17, for u = 1, shows that, in the subcritical regime, with two ion
species, there are, just as in the problem with a single ion species, no
reflected ions, and the CSW has a stationary structure. However, with ions
of different species, the CSW pattern manifests substantive qualitative
peculiarities. At the resistive front, different components that have different
masses, when moving in the same field, acquire different velocities v,. As a
result, in accordance with the stationary solution of Section 4.5.1, Larmor
gyration of ions of different species downstream of the resistive front begins
around a common center of mass, and a stationary, two-stream movement
forms within the system of the front. Observed downstream of the wave
front is a periodic structure with large periodic oscillations of the densities
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of ions of different species and with the magnetic-field oscillations that are
more noticeable than those in Fig. 4.1. The presence of the two-stream
movement downstream results in a considerable increase in the ion-heating
fraction by comparison with the case of one ion species, as is seen from data
presented in the table. From Fig. 4.19, we see that there are no superthermal
particles in the ion spectra, and that Fig. 4.19 and Table 4.1 show that the
heating of the light ions and that of the heavy ions are of the same order.

Figure 4.18 shows the reflection of ions at the front for supercritical CSWs
(u = 3), and only the lighter ions are reflected from the front; whereas all the
heavy ions passed through the CSW front are inside a diffuse beam in the
phase plane. Figure 4.19 also shows the presence of a large fraction of the
superthermal ions (in which most of the energy is contained) in the light
component. As is shown in Table 4.1, the fraction of the ion heating is more
than twice as large it is in the case of a single ion species and is about a half
of the total plasma heating downstream of the CSW front.

CONCLUSION

In a plasma with two ion species a subcritical CSW has, downstream of the
resistive front, a stationary, periodic structure with two flows corresponding
to the two ion species. For plasma consisting of the ions that differ in terms of
the charge-to-mass ratio by a factor of 1.5 and have the same concentrations,
the critical Alfven-Mach number for a purely resistive wave is M« = 2.637
and, when accounting for electron heat conduction, M««= 3.128.

A two-stream CSW at the Alfven-Mach numbers above a certain value is
unstable because of the onset of the parametric resonance, which leads to a

thermal spread of the initially cold ions.

In a supercritical CSW, only the lighter ion species is reflected from the
front, and the reflection is more intense than in a single-species CSW.

For any type of CSW (subcritical and supercritical), the fraction of ion
heating is larger than with a plasma with a single ion species.
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S. HALL EFFECT, DRIFT STREAMS, AND NEAR-
ELECTRODE PLASMA FLOWS

5.1. Dynamics of Magnetic Field Penetration into Magnetized Plasma

An important role is played in the dynamics of magnetized plasma
(w.T,>> 1) by the Hall effect—magnetic flux transport by current.
Estimations of this effect suggest that, generally speaking, for non-one-
dimensional problems, its influence on magnetic field dynamics should be
w,T-times greater than magnetic diffusion influence.

For plasma with small characteristic dimensions a << ¢ / w,;, at small
characteristic times, 7 << w;l , the ion motion can be disregarded (the case

of electron magnetic hydrodynamics [5.1]) and, magnetic field dynamics are
described by equations (4.3.4-4.3.5) and (4.3.2), which in the case of
motionless ions has the form:

E=l[i,5’}+j/o—Vpg/en . (5.1.1)
c|len

( p, is electron pressure). For simplicity, we restrict ourselves to the model
of isothermal plasma with constant conductivity and o, << £ /8 . In this

case, the equation for the magnetic field is written as follows:

) . i
%_B=_rot[i,§}+ ¢ _AB, (5.1.2)
t

en dno

where the first term of the right-hand side describes the magnetic field
transport by current, and the second term describes the magnetic diffusion.
For this model, let us consider a 2D problem of magnetic field penetration
into plasma [5.2]. Problems of this kind for some plasma density
distributions have been solved analytically with a quasi-one-dimensional
formulation [5.1] and numerically with a 2D stationary [5.3] formulation.

The diffusion term in (5.1.2) can be disregarded everywhere except the
zones with high magnetic-field gradients, that is, magnetic-field jumps.
Thus, the role of the diffusion term is reduced to, primarily, the spreading of
magnetic-field jumps. In the zero approximation, the solution with the
jumps can be built while disregarding the diffusion. In the next
approximation, the problem of the spreading of the jumps attributed to
diffusion is simplified by the fact that, near the jumps, it is sufficient to take
into account just the derivatives in the direction perpendicular to a jump,
since they make the chief contribution.
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Now we will show that the problem with a purely azimuthal magnetic field
and a density depending solely on r and z is, in the zero approximation,
reduced to a plane problem. In fact, in this case, equation (5.1.2), in the
absence of the diffusion term, can be written as

—F7
Admen or

ar

0 0z

B arg] P

cB 0
dmenr or

or, after the substitutions / =rB, v=nr’, E=Inr,

o/ (a7 a e\ (2o c
oz \0& 2 \ozdmev 9z 2 \9E dmev )’
which is equivalent to the plane case
9 |
oy 4men

For that reason, we limit ourselves hereinafter to an analysis of a planar
problem.

o B

oy 2

(i < ) (5.1.3)

ox 4men

8 (18
a9z oxr 2

Assume that, at the initial moment, a field B, > By is applied to the boundary
of plasma with the constant magnetic field By. We look for the solution of
the equation (5.1.3) in the form

B=(B-B)n(- f(F)+38,
_J0 at 7= /(7)<0;
K 1 at 7-/(#)>0.

Then for f'we obtain the equation:

B+ 5
cB+B)|(0/ )9 1) (oS )9 1 -1, (5.1.4)
8me ox \oy #n oy \ox n
which can be solved by integration along characteristics. If, we assume that

f=1x(¢ s), ¥(¢, s)), where s is the coordinate along the plasma boundary,
and x(¢, 5), ¥(¢, s), satisfies the equations

dxr _c(B+B)( 9 1)  dy_ adB+B) 1
a7 e

dyn a/ 8me ox 7
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then (5.4) yields f;l =1. Since = f(x(0, s), (0, 5)) = 0, then f=¢. Thus,

4
x(t, ), ¥(t, s), are the coordinates of the jump boundary, and the 2D problem
for the magnetic field is reduced to a one-dimensional problem for the

movement of the jump boundary along the density # isolines.

In this zero approximation, it is also easy to determine the total voltage, U,
across the jump. Integrating the electric field in equation (5.1) over the jump
region perpendicular to the current, we find
oL 82 _BZ
U=[Ed ==L—2

, 5.1.5
8mwen ( )

which for By= 0 coincides with the results Kingsep ef al. and Gordeyev et al.

c(B-5)
o

[5.1, 5.3] and exceeds the ohmic voltage ~ by a factor of w,T..

Now let us consider how the resistance of the plasma bridge between two
metal electrodes varies in this approximation. Such a problem is of interest
in the analysis of the operation of plasma opening switches [5.3 and 5.4].
We take as an example the case in which the bridge is contained between
two parallel walls, and density » depends solely on the coordinate
perpendicular to the walls and instantly falls off at the boundaries to which

magnetic fields B and B, are applied (see Fig. 5.1). We assume that the
density grows near the walls (the walls themselves in this approximation

can be considered to be plasma with infinite density). The motion of the
magnetic-field jump for this example is shown in Fig. 5.1. As for the

2 2
voltage, on the left boundary it is constant and equals ———2 (n,,,;, is the
8men .
2 _ 2
minimum density), while on the right boundary initially it is ﬁ (n,is
Ten

the plasma density at the anode interface), which is due to fast magnetic-
field penetration along the plasma-anode interface ( V(1/r) is infinite).
Then, as the jump arrives along the isolines with smaller density, the
voltage grows. If the maximum gradient 1/ is realized not on the anode,
but at an intermediate point, then after the jump arrives along this isoline the
voltage on the right boundary equals

gog(1 1
8me \n(7) n/(2) n,
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(n1(?) and ny(¢) are the densities along whose isolines the jump arrived to the
right boundary by the time ¢). With time, 7,(¢) approaches #,,,, and n,(¢)
approaches n,, and thus the voltage on the right boundary approach the
voltage on the left boundary. As a result, a stationary distribution of the
magnetic field with a jump passing along the density isoline, #n = n,,;,, sets in.

K

A

Fig. 5.1. Magnetic-field jump motion in the plasma bridge with the density growing
towards the walls (A is the anode, K is the cathode).

A similar qualitative consideration of the problem is also easy to perform
for any other density distribution. Thus, in the case of plasma bridge
whose density goes to infinity on the electrodes and to zero at the vacuum
interface (such density distribution seems to be natural since the
hydrodynamic motion should lead to the zero plasma density at the
interface, and the processes of plasma cooling on metal walls should lead
to the plasma pushing toward the walls), the isolines take the form shown
in Fig. 5.2, and the distribution of the magnetic field with a jump is set
along the density isoline—the separatrix, which starts from the left
boundary intersection with the cathode and enters the point of the right
boundary intersection with the anode, is set. The voltage that sets in here
(5.1.5) will be determined by this density.
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K

NS

A

A

Fig. 5.2. Density isolines in the plasma bridge where the plasma density goes to
infinity on the walls and to zero on the boundaries (A is the anode, K is the
cathode).

Note that the total electric resistance of the plasmoid in this approximation
turns out to be independent of the conductivity, but is determined solely by
the magnetic field and the density spatial distribution. Therefore, the
original assumption about the constant plasma conductivity should have no
influence on this result; it should be true for the real conductivity, which is
dependent on the coordinates (only if the condition w,z,>>1 is fulfilled).
Here, the analogy with the shock wave in hydrodynamics, where the
viscosity affects the front width only, but does not affect the Hugoniot, is
appropriate.

Thus, in the general case of nonhomogeneous plasma, the magnetic field
evolution in electron magnetic hydrodynamics leads to occurrence of
discontinuities spread over the width determined by the magnetic diffusion.
There exist, however, degenerate cases in which the magnetic field in the
main plasma volume is distributed continuously. Homogeneous plasma can
serve as such an example for the plane problem. Let us consider the magnetic
field dynamics in that case. The Hall terms in the equation (5.1.2) for this
problem equal zero, and the equation (5.1.2) is reduced to ordinary magnetic
diffusion

0B c?

— AB=kAB .
ot 4mo
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The difference from a common diffusion problem consists in the boundary
conditions on the metal surface, which follow from the condition that the
tangent component of the electric field should be equal to zero

— = " =0T — (5.1.6)

(Z—B , % are the tangent and the normal magnetic field derivatives).
T

Given that w,t, >> 1, the current lines (magnetic field isolines) enter the
electrodes at a small angle. After the magnetic field B, is applied to the
plasma boundary, there will be diffusive penetration of the magnetic field

through the boundary as deep as ~+/k 7, and rapid propagation of the

magnetic field along the anode as far as ~w 7 k7 . After the wave goes

out along the anode to the other boundary, we can assume that there is the
magnetic field B; on one boundary and on the anode, and the magnetic field
By on the other boundary and on the cathode; the subsequent dynamics are
determined by the diffusion problem with these boundary conditions. That
is, for the main plasma volume, there will be slow relaxation with diffusion
times to the AB = 0 state and with discontinuous boundary conditions on the
intersections of one boundary with the cathode and the other boundary with
the anode (points of inflow and outflow of magnetic flux). The magnetic
field distributions in the vicinity of these points are qualitatively similar. Let
us find, as an example, this distribution in the vicinity of the first boundary
intersection with the cathode (inflow point). Let this boundary make the
angle ¢ with the cathode. Since in accordance with (5.1.6) the magnetic
field should slowly change along the electrode, we look for the solution in
the form

B = B\[1-¢g(1)]

(¢ is the angle read from the plasma boundary; r is the distance from the
boundary—-cathode intersection; and g(r) is the slowly changing function)
which approximately satisfies the Laplace equation AB =0. Then, using the
boundary condition (5.1.6) we get

<

In

_O[ln(g¢())_g¢()] .
X

oY |y
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The constant ryis determined from the condition, which on the characteristic

5
problem dimensions a g¢, =1 —;0 , that is
1

In 1—ﬁ —1+ﬁ .
5 5

In this case, the characteristic magnetic-field change takes place at distances

nZ - %

X

exponentially small relative to the parameter y (~ aexp(—l) . The total

X

voltage applied in the region of the considered point

2 2
U=f cB, gﬂ=B‘ —B0
dmo r 8men

coincides with (5.1.5), as expected.

The qualitative consideration of the magnetic-field dynamics for other cases
of density distribution (only if the density does not strongly fluctuate on small
scales, as in Chukbar and Yankov [5.4]) also shows that these dynamics tend
to generate discontinuities—current layers —and voltage (5.1.5) at those
discontinuities. Thus, if the Hall effect is taken into account in magnetized
plasma, the plasma’s resistance increases by a factor of ~w,..

5.2. Near-Anode Detached Magnetized Plasma Flows

The equations of magnetic hydrodynamics (3.3.1-3.3.2, 3.3.5) are widely
used for the calculation of plasma flows in a magnetic field. In the case of
ideal magnetic hydrodynamics, the equations can be written as follows:

i ..
—— +divpr =0
ar P

, (5.2.1)

£ =-[7,B]lc,

When kinetic phenomena are taken into account, additional terms are
introduced into these equations. Evaluation of different kinetic effects [5.5]
for flows of magnetized (w,7 > 1) hydrogen plasma with low

B=16mT / B* in a transverse magnetic field shows that the most significant
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role should be played by the Hall effect—magnetic flow transport by
current. The influence of the Hall effect on the flow is characterized by the
parameter ¢/w,;a (a is the characteristic spatial flow scale); however, as will
be shown below, in a number of cases it can be considerably larger.

The study of the role of the Hall effect in plasma flow in a transverse
magnetic field is the focus of a large number of papers both of a general
nature [5.6] and with respect to flows in plasma accelerators [5.7-5.10] and
near-anode flows in plasma focus [5.11].

Taking into account the Hall effect is sometimes impossible without taking
into account the finite plasma conductivity because otherwise, as is shown
in Section 5.1, it can lead to the formation of jumps, infinitely fast plasma
detachment from the anode (see below) and other paradoxical events. Since
plasma conductivity depends on the temperature, heat transport must be
calculated as well. As a result, the problem of flow calculation becomes
rather complex, because the presence of the Hall effect makes it at least a
2D problem, and the difficulties of calculating magnetothermal processes
are added to the difficulties of the 2D calculations.

Therefore, in this Section we limit our discussion to an isothermal plasma
model with constant conductivity, which will allow us to perform a
qualitative or semi-quantitative analysis of some flows. Taking into account
the Hall effect and the finite conductivity leads to the generalized Ohm law
(5.1.1), which, when the ion motion is taken into account, is written as

L,§}+]/G—Vpg/eﬂ , (5.2.2)
en

b:+[17,5q’]/c=l
c

and to the following equation for the magnetic field, which follows from the
Maxwell equations (4.3.4), (4.3.5) and (5.2.2)

2

05 o L,§}+ < A (5.2.3)

—=rot[V,
as

]-rot
en Ao

(because the plasma is isotherma, p.= p.(n), the last term in the Ohm law
(5.2.2) does not contribute to (5.2.3)).
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For this model, following Garanin and Mamyshev [5.12], we consider
certain properties of plasma flows driven by a piston—magnetic or rigid,
i.e., we assume that at the initial moment, there is a magnetic-field jump or
a rigid, ideally conducting, moving wall at the interface of the plasma and a
transverse magnetic field.

If the ion motion is not taken into account, the dynamics of the magnetic
field in magnetized plasma result in an increase in the magnetic field in the
vicinity of the anode (see Section 5.1). But when the ion motion is taken
into account, plasma should be driven away from the anode and its density
decreased down to point of detachment.

5.2.1. Near-anode plasma flow driven by a magnetic piston

At the initial moment, we assume the plasma to be homogeneous, n = ny, with
a constant magnetic field B = By. The plasma thermal pressure is assumed to
be proportional to the density p = 8.8, 72/ 87, and low (8>> 1), and at the

plasma boundary there is a constant magnetic field B = B, > B,. We are going
to seek a stationary solution for the near-anode flow.

Choosing the system of coordinates in which x is perpendicular to the anode
surface and y is parallel to the surface, and using the dimensionless
variables x = x4zoc,/c*, y = y4roc,c’, h = B/Boy, p= plpo, ux = Vi/cs, and uy
=wlcq (¢, =B, /\/4mp, ), we can write the system of equations (5.2.1 and
5.2.3) in the form

du o (4 B
p|u Lty —L |=——|—+—=p]|,
Toxr oy dxr\ 2 2
ou ou 2
plu. E, Y= i ﬁ_+ﬁp
Tox oy av\2 2

(5.2.4)

or
ox 2

9 d
—(pu )+—(pu )=0
aX(p ) 6y(p )

o A

oy 2

K
dx

d 1({fo1 91
(ﬁux)+5(/m})—A/z+;{(ag) _(55)
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(x =ecny/oBy~1 w,tT,<<1). The boundary conditions on the metal
surface—the normal velocity component and the tangential component of
the electric field are equal to zero—in these variables are

u =0

x

1 (R _é (5.2.5)
2 P

xpay

(7 is the fraction of the electron pressure in the total thermal pressure).

Since the Hall effect leads to rapid movement of the magnetic field to the
anode () << 1), and the thermal pressure is low and cannot hold the plasma
near the wall for a long time, we should expect motion with a high velocity
u,>> 1. Then we can assume that u, = D is constant and disregard the y
derivatives in the term A#. In this case, we can reduce the problem to a one-
dimensional non-stationary problem by introducing the notation y = Dz,
after which the system (5.2.4-5.2.5) takes the form

Jdu__0(# B
adr axr\ 2 2
dp ou
e —_— 5
adr pax
2 2 2
JA (Mo, 1 a1y a2 (a1
di\p) ox* xo\oxrpl\ar2 drp)\ox 2
ul|, =0,
7B a4
—— | —+—TLp|+xD =0
pcz’t( 2 pIrx x| =0

dsdt is the Lagrangian derivative, and the subscript x is omitted in the
velocity u,. The dimensionless quantities )y and D enter the system (5.2.6)
only in the form of a product. Thus, the solution will depend solely on two
dimensionless quantities:  and y= x20.
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Now let us analyze the qualitative behavior of the solution for the linearized
system (5.2.6), i.e., we assume that Z=1, p=1, and # <<1, which is true

at the initial stage of the developing solution. The linearization of (5.2.6)
yields the equations

a_”=_i é+ﬁp R
a7 dx 2
9P _y (5.2.7)
a7 Jdx
o _ap 4
ar ar  ox’
and the boundary conditions
ul_,=0
9 rB oh . (5.2.8)
—|h+—p|+y—] =0
az( 2 p) yax|’“=°

We look for the solution for 6h=h-1, dp=p-1, and u in the form
proportional to exp(Af—kx), exponentially attenuating away from the
front. Then for the dependence k(A) we obtain from (5.2.7) the dispersion
equation

ﬁ/ﬂ-[xzm(nﬁ)léhﬁ =0, (5.2.9)
2 2

which has two positive roots:

. _\/)L()L+1+/3/2)i\/)Lz(/l+1+/3/2)2—2ﬁ)L3
12 /3

We express the solution as the sum

Sh=e" (b + ey,

2 2
4(1-%)6‘“ +b2(1—%)e'/‘2”} ) (5.2.10)

ﬁ l—é—12 e_/f‘”+§ 1—/f2 )e_/fzx ,
71 S
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and we find the coefficients b, and b, from the boundary conditions (5.2.8).
The condition of consistency of the resulting system of equations provides

the equation for A:
2
1+ p 1- A
2 A

- . . (5.2.11)

Taking into account the fact that § is small, we can simplify the formula
(5.2.11):

=(1‘1”—‘)L”1)\/m/2(1+1)+/1/\/1+z . (5.2.12)
+

For A>> 1 the equation (5.2.12) yields D = \/Z / x . Since in this case the
main contribution to the magnetic-field derivatives in (5.2.8) is provided by

the term b, from (5.2.10), for which in this limit 4, = \/X , this corresponds
to the generation of shock wave propagating perpendicularly to the current
flowing into the anode at a small angle y =A/ 4,0 = \/; /D

The solution (5.2.10) is applicable as long as dp << 1. To determine the
qualitative dependence of 8/, =/ -1=25/25 -1 on yand 8, we can

assume that this solution is true up to o =— 1 (p = 0). Using this condition,
the condition that the velocity equals zero at the boundary (5.2.8), and
equation (5.2.9), we find that

54, =§+\W3/2 . (5.2.13)

The formulas (5.2.12-5.2.13) provide the connection between the wave
velocity and the magnetic-field jump. For 6k, >> f it follows that

A= 25/112 / B, and from (5.2.12) it follows that the wave velocity

D=1/ xV1+A should be high because of both the smallness of ) and the
smallness of .
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Thus, on large scales (by comparison with that of the wave structure), a
narrow vacuum wedge that detaches the plasma is formed. The connection
between the wedge apical angle (64, — /2) and the motion velocity D is
determined by solving the nonlinear system of equations (5.2.6), which has
weak initial perturbations (5.2.10). Such a nonlinear problem has been
solved numerically for y=0.74, = 0.2, and = 0.5. The flow lines of the
obtained solution (the plasma particle trajectories) in the ¢, x variables are
shown in Fig. 5.3. As a result of the numerical solution it was determined
that 6k, = 0.27, while the formulae (5.2.12-5.2.13) yield for these

parameters ok, =0.43.

/A

Fig. 5.3. Current flow lines of the detaching near-anode flow caused by the
magnetic piston.

Note that the supersonic propagation of the shock wave moving along the

channel with low density had also been discovered in pure hydrodynamics
[5.13]. The difference here in the solution with the motion along the anode
consists in the fact that the wave itself makes the channel as it delivers the
magnetic flux to the anode.

5.2.2. Near-anode flow driven by a rigid, ideally conducting piston

When a rigid, ideally conducting piston (high-density plasma can be such
piston) moves in a plasma, the formation of a plasma-detaching vacuum
wedge moving at a high velocity (higher than that of the shock wave created
by the piston) is impossible, because, unlike with the preceding problem,
there is no unlimited source of magnetic flux. Indeed, the magnetic flux
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contained within the vacuum wedge should grow ~*. However, the zone
encompassed by the hydrodynamic motion and from which the magnetic
flux may derive (the zone downstream of the shock wave beyond the near-
anode area) grows ~¢. Therefore, in this problem, the stationary motion of
the vacuum wedge growing unrestrictedly is impossible; the wedge must
collapse for large times near the anode, and an MHD shock wave will be
moving. That shock wave has, however, a specific near-anode structure in
which the detaching magnetic pressure generates a vacuum region.

We perform the evaluations of the characteristic parameters of the formation of
a shock wave with a low Mach number D =1 + ¢, £ << 1. As before, we
assume that the plasma thermal pressure is low (8 << 1) and that the plasma is
initially homogeneous. The formulae (5.2.12-5.2.13) show that applying a
fairly small magnetic-field differential &#, is sufficient for the plasma
detachment. Therefore, we can suppose, that the near-anode shock wave
structure has the form shown in Fig. 5.4: initially there is a tearing wedge with
Oh; << g (in this sense, the shock wave’s Mach number should not be too close
to 1); then the vacuum region collapses. Thus, the entire stationary problem
splits into two fragments with different characteristic scales, which should be
connected with each other: the vacuum wedge generation, and the vacuum
region collapse.

. SWF
y
e ]
-—
[
v~
L A YL T
- d |
4z 4 Yo

Fig. 5.4. Near-anode shock wave structure (SWF — position of shock wave front,
V — vacuum region)
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The dynamics of the vacuum wedge formation are described by the
equations (5.2.4-5.2.5), in which we cannot now assume u, to be constant.
In the wave’s frame of reference, when y — o, u,—> D . For a qualitative

analysis of the solution, we can use, as before, the linearized system
(5.2.4-5.2.5), in which ¢,/9, is excluded from the equation of motion for u,
and the continuity equation. As with the previous problem, if we take the
perturbations of the form exp(Ay — kx), we can get the equation for A:

\/g(l—r)—%]\/l?—l—ﬁ/2—/l+l=0 . (5.2.14)

As with the derivation of (5.2.13), if we “extend” the solution of the
linearized equations to dp =— 1, we find

7+ x\2/ BA
O0h =
2/ B-x\2/ BA
or, since it is assumed that 6 <<g <<1,
Y =%+x~/ﬁ/2k . (5.2.15)

The formulae (5.2.14-5.2.15) yield in parametric form (over A) the
dependence of &/; on D. Here the apical angle of the vacuum wedge is now

equal to (84— B/2)y2¢ [5.14], and if its length is yy, then its width, which
is collapsed by the shock wave, equals

d =y, (84 -BI20WBI 24 .

The problem of the collapse of the vacuum gap by the shock wave and its
connection to the problem of the generation of the vacuum wedge [5.12] is
rather complex, and we will not present its solution here. We will merely
show the dependence obtained as a result of the solution of this problem:

6.5
£

X BOh=p12)
where the constant C is determined from the solution of the problem of the
collapse of the vacuum gap. Formula (5.2.16) provides the vacuum gap
width if the quantity 6k, is known from the solution (5.2.4-5.2.5)
(approximately it is (5.2.13)).
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Formation of the near-anode vacuum zone is also possible at the motion of a
compressing (shockless) wave. The magnetic-field gradients needed for this
can be estimated as 0h/dy ~ €/yy.

The considered qualitative features of plasma flows may occur in the MAGO
chamber, plasma accelerators [5.15 and 5.7], a plasma focus with the
discharge sliding along the anode [5.16], and other plasma facilities with
substantial magnetic-field dynamics. Since taking into account the Hall effect
leads to a distinction between the anode and the cathode, for a number of
experimental facilities, including the MAGO chamber, it is possible to
explain the change in their operation when the polarity of the electrodes
changes.

5.3. Formation of Electrode Sheaths in Connection with the
Acceleration of a Magnetized Plasma

In a facility such as a plasma accelerator, a plasma opening switch, or a dense
plasma focus, plasma with frozen-in magnetic field moves along electrodes in
a direction transverse to the magnetic field. A sheath (near-boundary layer)
forms close to the plasma/surface interface, which can be examined either
with an MHD approximation if problem distance and time scales are large
enough or with the kinetic approach if particle collisions over the time and the
distance scales of interest are rare and the plasma can be considered
collisionless.

Within the MHD approach to the examination of near-electrode layers and
their structure, the problem can be set up as follows. Let plasma with a
frozen-in magnetic field move along electrodes in a direction transverse to
the magnetic field. One can then consider a one-dimensional electrode-
sheath problem, in which all quantities depend solely on the coordinate
perpendicular to the electrode surface and on time. In the problem, one can
take into account viscous heating of plasma, its cooling due to heat
conductivity, and other kinetic processes, as well as the effects of plasma
acceleration and the electric current normal to the electrode, which, thanks
to the Hall effect, brings the magnetic flux toward the anode and away from
the cathode. In this case, the plasma mass will build up in the near-cathode
region and become depleted in the near-anode region. It turns out that the
MHD approximation is inadequate for describing the situation near the
anode: in this region, plasma density quickly drops to zero, whereas the
current remains constant. In order to overcome this difficulty, one should
incorporate some non-hydrodynamic effects (primarily, electron
dispersion).
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For the collisionless kinetic case, some of the ions from the electrode
sheath, when they collide with the wall, are absorbed by the electrode
material, and others return to the flow with a loss of momentum and energy.
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A self-consistent collisionless interaction between reflected ions and those
in the basic stream results in the ion gyration of the basic stream towards the
electrode. A specific instability arises, as a result of which development an
increasing number of ions collide with the wall, which leads to anomalous
“viscosity” on a scale of the ion Larmor radius. As with the MHD approach,
one can consider a one-dimensional problem of a near-electrode layer in a
low-density plasma in which all quantities depend solely on the coordinate
perpendicular to the electrode surface and solve it in this collisionless case
with the particle-in-cell (PIC) method.

5.3.1. MHD Approach
As mentioned in Section 5.2, the applicability of the MHD approach is,

generally speaking, determined by the smallness of the parameter & = <
W a
i
(a is the characteristic spatial scale of the flow). For § << 1, the plasma flow
can be described by the ideal MHD equations, and the effect of the
electrodes that bound the plasma region, by the boundary conditions that, in
the case of the magnetic field that is parallel to the electrodes, amount to the
ideal sliding condition. Near the electrodes, the plasma flows along the
electrode surfaces, being accelerated or slowed down by the Lorentz force
87 p

Ve <<1). Sheaths are

l[ /] (the plasma is assumed to be cold, f8 =
c

formed near the electrode surfaces, where viscous plasma heating and
plasma cooling as a result of heat conductivity take place. An important role
may be played in the electrode sheaths by the Hall effect, which brings the
magnetic flux to the anode, thereby causing plasma rarefaction near the
anode, and takes it away from the cathode, thereby causing plasma
compression near the cathode.

Interest in studying electrode sheaths in magnetohydrodynamics is due to
three things. First, of interest are plasma characteristics in these sheaths and
how they differ from those of bulk plasma, which can be important for
diagnostics. Second, the sheath thickness and the mass of the plasma in the
sheaths can be large enough to affect the operation of many plasma devices
(for instance, MAGO chamber). Third, there is fundamental interest because
MHD proves to be inadequate for describing the electrode sheaths,
particularly for describing the near-anode plasma. As we will show, the
density of plasma accelerated near the anode rapidly drops to zero, generating
a vacuum similar to that formed by a shock wave front near the anode
(Section 5.2). However, if, in the case of a shock wave, times were assumed
to be long enough for the development of a steady-state two-dimensional
structure with a current-free vacuum region, in the case of interest to us, when
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a bulk plasma flow is determined by magnetic hydrodynamics and times are
not too long, the current is governed by the MHD problem and it should flow
across the region with zero density in the MHD approximation. The MHD
approach, therefore, is inadequate in the near-anode region, and
nonhydrodynamic effects need to be taken into account.

An attempt to consider near-electrode layers with the approach discussed
here was made by Garanin [5.17], who presented results corresponding to
large plasma acceleration distances. That study, however, did not take into
account such important phenomena as boundary-layer turbulence [5.14] or
anomalous plasma resistivity stemming from the development of a lower
hybrid drift instability. In this section, following Garanin [5.18], we will
incorporate these effects and consider plasma acceleration over shorter
distances. We will also consider the motion of low-density plasma along the
electrodes, in which the plasma can become heated to high temperatures,
thus making it possible to explain neutron generation near the nozzle in the
MAGO chamber at high anisotropy of neutron energy distribution [5.19].

One-dimensional problem. We assume that the electrode sheath thickness
is small by comparison with the characteristic spatial scales of the full MHD
problem. Then, we can consider a nonsteady one-dimensional problem in
which all of the quantities depend solely on the coordinate perpendicular to
the electrode surface and on time. We assume that, far from the electrodes,
the plasma is homogeneous, with density n, temperature 7, a magnetic

field EO parallel to the electrode surface, and constant current density ;

perpendicular to the surface. The Lorentz force l[ ]’5’] causes the
c

acceleration of both surface and bulk plasma along the surface.

Let the coordinate normal to the surface be x, and let the magnetic field be
directed along the z-axis; then, the electric field and velocity acquired by the
plasma will be directed along the y-axis. Since the electrode sheath is
assumed to be rather thin, one can assume that the total pressure has enough
time to be equalized along x; i.e.,

2
p+B—=P

; 53.1
oD (5.3.1)

where the total pressure Py depends solely on time (in fact, we are solving
problems, in which P, is constant, and density 7y, temperature 7, and
magnetic field By experience slight time variations due to the Joule heating
and thermal expansion). In addition to (5.3.1), the following MHD
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equations will determine the electrode sheath dynamics: the equation of
motion for the velocity v along y,

p =2 o (5.3.2)

where 7, is the xy component of the viscous stress tensor, which is equal to

v
x =-nZt; 53.3
Xy nax ( )

the equation for the magnetic field

d(B/p) JE
— L =—Cc—, 534
p dt dx ( )
where the Lagrangian electric field equals
E--Rrip-_CS 9B_NIT . (5.3.5)
4mo dx ox
and the heat-transfer equations for plasma ions
2
3 dT. dn aq. v
—n—-T —=—-——2+n|—| +0. 5.3.6
2 dt dt dx n(&x) @ ( )
and plasma electrons
dT T T
E e_T@=_%+J__LM_ajL+
2 dt  “dt dx O en Jx dx
oT
+L% ¢ §+N (4 —Q_, (537)
4x Ix\4mo dx ax '
where
oT,
q,=-K—, (5.3.8)
ox
aT
g -k Loy € NTRIB_[0i 2T (5.3.9)
¢ ‘dx 4m  ° Idx 2e)” ¢
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Here 7 is the plasma viscosity; ois the plasma conductivity; x; is the ion
thermal conductivity; k. is the electron thermal conductivity; and R, N, and
a describe the Hall and Nernst effects and heat carried by the current,
respectively. All of these coefficients depend on the degree of plasma
magnetization. The term Q; accounts for the energy exchange between
electrons and ions. The formulas for all of these quantities are presented in
Braginskii [5.20].

Note that, for our problem in a magnetized plasma, (wt); >> 1, and the
plasma viscosity and heat-conductivity spatial scales become, at a certain
stage, smaller than the ion Larmor radii because of the smallness of the
viscosity and heat conductivity plasma coefficients. Consequently, the
MHD approximation and the relevant transport coefficients, strictly
speaking, are not applicable. For a qualitative description of the resulting
transport problem in the context of the MHD approach, we incorporated the
following additional terms into the coefficients 7 and k; in equations (5.3.3)

and (5.3.8) for (wr); >> 1:
nT x x
77[17! __l_ - s

rLi

(5.3.10)

which are nonzero for distances from the electrode surface x smaller than
the ion Larmor radius »;; (M, is the mass of an ion). Those terms should
describe the kinetic ion fluxes that carry the momentum and heat from the
wall plasma to the wall.

Since high current velocities u can develop in the wall layer for 7, < T}, a
lower hybrid drift instability and the associated anomalous resistance can
develop. We took the effect of that resistance into account by following the
lead of Davidson and Gladd [5.21] and letting it, for a magnetized plasma,
be equal to

Mu mc | m M u’
— for <3
2 T eB M, T

1] (5.3.11)
Oan M u2
12 \/; for >3
2 eB 1
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and adding the relevant anomalous contribution to the electron thermal

conductivity,

2
C

4dmo

an

(x,),, =1.5np,

MHD instability resulting from high velocity gradients (Section 7.1) may
develop in the wall layers, resulting in a turbulent boundary layer [5.14]. To
take those effects into account, we introduced a turbulent diffusion
coefficient equal to

0.1x6v, (5.3.12)

where dv is characteristic velocity variation in the vicinity of coordinate x.
We took as well into account the contributions to the viscosity, to the
magnetic diffusion coefficient, and to the coefficients for electron and ion
thermal conductivities corresponding to that turbulent diffusion coefficient.

The initial conditions for a deuterium plasma were chosen to be as follows:
a spatially constant temperature 7; = 7, = Ty = 2 eV=2, zero velocity v= 0,
constant magnetic field B = By = 10°G, and densities n = ng=6 - 10"’ cm”
(to describe the main plasma flow through the nozzle of the MAGO plasma
chamber) and n = ny=1.5 - 10'° cm™ (to describe the residual plasma flow
through the nozzle).

The boundary conditions for equations (5.3.2-5.3.3) are
wx=0)=0, P(r=0)=0.
Jx

At the boundary x = 0, the electric field was specified to correspond to
magnetic diffusion into a copper wall

E--8 |Xa (5.3.13)
c\ mt

where y(, is the magnetic diffusion coefficient for copper. At x = oo, the
gradients were assumed to be absent, and from (5.3.5) the electric field was
determined to be equal to

E, =-jBR . (5.3.14)

The temperatures 7; and 7, at the boundary x = 0 were set to be

T=T=0,
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and for x =00, we assigned

oT, _aT, _

—L 0
Jx  Jdx

in which case, the electron heat flux is equal to

qe = _a]—;j :

Consideration of the anode and cathode problems with the use of equations
(5.3.1-5.314) differs in the sign for j: for the anode, this sign is positive, and
for the cathode, negative. The value of current j for our one-dimensional

problems is chosen to be j = f% ,Where L=5cm;ie.,j==16 kA/cmz,
T

which approximately corresponds to the MAGO chamber conditions.

Cathode sheath. The mass of the plasma, from which the magnetic flux
emanates and which is pressed against the cathode is determined by the
relationship

fndx=m. (5.3.15)
e

For small times, while the plasma viscosity and viscous plasma heating are
negligible, that plasma mass will be accumulated in the sheath, whose
thickness is governed by magnetic diffusion and electron thermal
conductivity. For that to happen, the rates of magnetic diffusion and
electron heat conduction should be of the same order of magnitude. For a
low-f plasma, that means that

2
C K,
x= 4J'L’O'ﬁ n
or
(wt), ~1.

Since, in this case, the thickness x of the cathode sheath will be determined by

x=xt
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the main plasma characteristics of the sheath will be described by the
following self-similar dependences:

N (j ’471)1/2}.1/265/477’1]/46]/4 t1/4

(B, /\4m)" ’
"~ (N 4”)3/4(B0 /N 4”)5/8 /38

1/4 _9/8 5/8_ 1/8
Ae e m

T

(5.3.16)

./ 449 1/4
. (] 47_[)1/ A / 81/865/87}1]/8 Zs/g

(B, IN4m)™" ’

where A is Coulomb logarithm and m is the mass of the electron.

The numerical solution results of our one-dimensional problem for

no=6- 10" cm” validates those dependences. For example, by the time
t=0.1 ps (when viscous plasma heating is still negligible), formulas
(5.3.16) yield the characteristic quantities 7=4 eV, n=9-10"" cm™, and

x = 0.04 cm, and the profiles of the respective quantities in Fig. 5.5a
obtained in the one-dimensional simulation agree with those estimates. The
electron and ion temperatures by that time are essentially the same.
According to (5.3.2), the value for the bulk plasma velocity

B
v=—I20_4 (5.3.17)
cnOMl.

by this time is v,,= 0.8-10” cm/s. A decrease in the plasma velocity in the
cathode sheath at that time is governed by the elevated plasma density and
turbulent viscosity near the cathode (5.3.12).

At the next stage, turbulent diffusion starts to dominate magnetic diffusion,
and the mass of the plasma involved in turbulent mixing becomes greater
than the mass from which the magnetic flux emanated (5.3.15). A
comparison of (5.3.15) and the turbulent mixing zone with coefficient of
(5.3.12), in which the scale of velocity is determined by (5.3.17), shows that
this happens at ¢ ~ O.Ia)l.'1 . The viscous plasma heating becomes substantial,
but one can assume that << 1, the electron and ion temperatures start to
differ from one another, and the ion temperature is governed solely by
viscous heating due to the friction of plasma moving with the velocity of
(5.3.17) against the wall
2 2

7~ B

" M.cn

. (5.3.18)
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The characteristic scale of the electrode sheath is on the order of 0.1,
where the velocity v is determined by (5.3.17), and it increases with the
square of time. According to (5.3.15), the characteristic plasma density
compression decreases in inverse proportion to ¢. The characteristic electron
temperature is governed by the electron-ion heat exchange and has smaller
growth than the ion temperature.

T15
T, eV n,10% cm
v, 107 cm/s
41
—
tos
0 | | 0
0 0.02 0.04 0.06
X, cm
(b)
b 9 r L0 H’,LGI'Cm_J
1, 107 em/'s

0] 0.1 0.2 N3 04 0.5

£ocm

Fig. 5.5. Cathode sheath plasma temperature, density, and velocity profiles for
ny=6 - 107 em™, To=2eV, By =10° G, andj=-16 kA/em? at the times
(a) t =0.1us; (b)t =0.5 us.
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The profiles of the quantities that refer to this stage of the cathode sheath
evolution in the one-dimensional problem for £ = 0.5 ps are depicted in
Fig. 5.5b. The bulk plasma velocity at this time is n,,= 4-10" cm/s, and the
maximum f3 = 0.46.

In order to characterize plasma deposition onto the cathode surface, which
may be of interest for many MHD problems as a measure of the cathode
sheath influence on the MHD flow, Fig. 5.6 shows the decrease in the bulk
plasma mass due to plasma deposition onto the cathode ny Ax as a function
of time. In accordance with (5.3.15), Ax grows approximately linearly with
time until viscous plasma heating and the growth of 8 come into play,
which results in plasma pushing back from the electrode.

16 -2
n,Ax,10 ° cm

0 0.1 02 03 04 0.5

t Us
Fig. 5.6. Decrease in the bulk plasma mass nygAx as a result of the deposition of
plasma onto the cathode as a function of time.

In the case of acceleration of a low-density plasma (120=1.5-10'° cm™), the
thickness of the cathode sheath increases much more rapidly. An essential
role in the formation of the sheath is played by anomalous ion viscosity and
thermal conductivity (5.3.10) (near the cathode, at distances on the order of
the ion Larmor radius) and anomalous electron resistivity and thermal
conductivity (5.3.11). The profiles of the quantities for this case at the time
t =55 ns are shown in Fig. 5.7, when the velocity of the bulk plasma is

Vv, = 1.75-10% cm/s. Fig. 5.7 demonstrates that for such plasma flow
velocities, the ions in the cathode sheath are heated to temperatures on the
order of several keV, and electrons are heated to fractions of a kiloelectron-
volt, and the sheath thickness is several millimeters.
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5T T4
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Fig. 5.7. Cathode sheath plasma temperature, density, and velocity profiles for
ng=1.5-10"cm™ Ty=2 eV, B,=10° G, andj=-16 kA/em? at the time
t =55 ns.

Anode sheath. At the initial stage of the evolution of the anode sheath, in the
MHD approximation, the magnetic flux is carried toward the anode, thereby
separating the plasma from the surface. As in the cathode sheath, the
dependence of the main plasma parameters on time will be described for short
times by the self-similar formulas (5.3.16), with the difference being that ¢ is
replaced with |¢y — |, where £, is a certain point of time, i.e., in this
approximation, the plasma density will fall off to zero over a finite time
interval. At the same time, it is stipulated in the problem setup that the current
continues to flow through the sheath. This contradiction can only be resolved
by introducing additional kinetic effects and by treating the problem on small
spatial scales, for which the MHD approximation is, strictly speaking,
inapplicable. In our study, we do that by taking electron inertia into account,
i.e., considering the spatial scales of ~ ¢/w,.. However, while preserving the
MHD description, we do that in the following qualitative fashion. In Ohm’s law
(5.3.5), we include terms related to electron inertia assuming that there is
enough time for the quasi-steady-state approximation to get established for

. . . . . av .
electrons; 1.e., we will not include the time derivative term p ¢ and will keep
t

P
Ye . That will provide an additional term to (5.3.5)
X

__me ii(lﬁ) (5.3.19)

only the derivative v

me

dae® ndx\n dx
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and the corresponding contribution to the equation for the electron
temperature

As a result of the presence the additional term in Ohm’s law, the possibility

of compensating for the first Hall term in equation (5.3.5) (which is ~ l ,
n

since, for a magnetized plasma, R = L ) opens up even for very small
nec

densities. Then, beginning with time ¢y, when, according to formulas
(5.3.16) with |t, — #| in place of #, a vacuum region must form, the region will
contain plasma with a density exponentially decreasing from the
hydrodynamic boundary (but not zero density). The width of that region
will grow with the entry into it of magnetic flux from infinity.

The presence of a current flowing through this low-density region may lead
to its strong acceleration and, in the real 2D problem, its replacement with a
higher-density plasma from a region with different coordinates y, where
current j are weaker and where this vacuum region is smaller or not present
at all. In order to describe this effect qualitatively, we will assume that the
additional electric field is added to (5.3.13) at the wall interface:

E’=—4—?jf(v—vm)(1—£)dx :
¢ p

©

where v, and p. are the velocity and the density of plasma far from the
electrode.

One-dimensional simulations of the evolution of the anode sheath were
performed with account taken of the contribution of E’ to the boundary
condition at the anode surface and of the effect of electron inertia (5.3.19).
To simplify the numerical solution, we increased the coefficient in (5.3.19)
by a factor of 100 (otherwise, we would have had to resolve very small
spatial scales).

Fig. 5.8a shows profiles of temperature, density, and velocity at time

t = 60 ns, which corresponds to the transition from self-similar dependences
(5.3.16) to a linearly expanding, low-density region where electron inertia
has a substantial effect. At this time, plasma velocity has a maximum

Vi = 6.1-10% cm/s at the distance x =9.5-107 ¢cm from the anode surface,
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the plasma velocity far from the anode being v.,= 4.8-10° cm/s. By this
time, the impact of the additional field £’ on the processes near the anode is
still negligible and constitutes 0.01% of the Hall electric field £5 (5.3.14),
which delivers the magnetic flux from the depth of the plasma. The electric
field (5.3.13), which corresponds to magnetic flux losses into the electrode
material by this time, is 14 % of Ep.
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Fig. 5.8. Anode sheath plasma temperature, density and velocity profiles for
1y =6-10" em, Ty=2eV, By =10° G, andj =16 kA/em? at the times (a) t =60 ns;
(b) t =0.5 us.
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The plasma density in the anode sheath continues to decrease, and magnetic
flux leakage due to the hydrodynamic motion represented by E’ plays no
role of substance. The decrease in the plasma density results in a
considerable growth of the plasma velocities and ion temperatures due to
the friction between the plasma and the anode surface (see Fig. 5.8b, which
corresponds to the time 7=0.5 us ). At this time, £’ is 58% of E, , and the
electric field (5.3.13), because of diffusion into the copper wall, falls to just
4.7% of E,, . By this time, the electron component of the plasma gets also

noticeably heated (to fractions of a kiloelectron-volt) due to electron
acceleration by the Hall electric field. Plasma velocity near the wall

Vinax = 6107 cm/s exceeds that of the bulk plasma, v_=4- 107 cmy/s.

Fig. 5.9 shows the profiles of the anode sheath parameters for the case of
acceleration of a low-density plasma at the same time, ¢ = 55 ns, as that
in Fig. 5.7 for the cathode sheath. We can see that the plasma velocities
in direct proximity to the anode are extremely high, v, = 5.1-10% cm/s,
and exceed considerably the bulk velocity; the electron and ion
temperatures are also high, 7 ,,.,.= 160 keV and T, ,..= 48 keV.
According to Fig. 5.9, DD fusion neutrons can be generated in the
plasma sheath near the anode. If we assume that the anode area in the
region of the nozzle of the MAGO chamber is § =170 cm” and estimate
the characteristic time during which a low-density plasma flows through
the nozzle as ~ 3-10” s —which is based on the time over which the
current at the chamber input rapidly ramps down (Fig. 2.5)—then, for
the temperature and density profiles shown in Fig. 5.9 and under the
assumption that the plasma ions obey the Maxwellian distribution, we
obtain a neutron yield of about ~ 1.6- 10°. That yield agrees with the
yield measured experimentally in the “nose” region of a neutron pulse
(5.5'109 neutrons, which is about 6% of the total number of neutrons in
the pulse [5.19]) if we bear in mind that, by comparison with the
Maxwellian spectrum, the ion spectrum should be enriched with a large
number of high-energy ions produced when a high-velocity ion flow is
scattered by the wall. The characteristic velocity v =2.2-10° cm/s and
characteristic temperature 7;=27 keV of the neutron-generating plasma
also agree with the experimentally measured characteristics in this part
of the neutron pulse obtained on the basis of the spectrum of emitted
fusion neutrons [5.19].
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Fig. 5.9. Anode sheath plasma temperature, density and velocity profiles for
ng=1.5-10" cm™ T,=2 eV, B,=10° G, andj =16 kA/cm® at the time t =55 ns.

A comparison of the anode and cathode sheaths for low-density plasma in
Figs. 5.7 and 5.9 show that the difference in the heating of the near-
electrode plasmas is quite considerable. For example, the neutron yield from
the cathode sheath (Fig. 5.7) should be about two orders of magnitude lower
than that from the anode sheath; accordingly, the ion temperature 7;~ 4 keV
and flow velocity v =7-10" cm/s of the neutron-generating plasma in the
cathode sheath should be lower than those in the anode sheath.

Presumably, the great differences in the structure of the cathode and anode
sheaths may explain the variation in the MAGO chamber operation and the
drop in the neutron yield when electrode polarity is switched.

CONCLUSION

A numerical solution of the one-dimensional problem describing the
evolution of the cathode sheath in the case of acceleration of a magnetized
plasma by a current of constant density shows that, at small times (when
plasma velocity is low and viscous plasma heating is negligible), a region of
dense plasma forms near the cathode in which the plasma mass increases
linearly with time and the electron magnetization parameter is (w7). ~ 1. As
the plasma velocity increases and plasma turbulence develops, for times

t~0. la)i‘1 , viscous plasma heating becomes substantial, ion temperature

begins to grow quadratically with time, and the characteristic spatial scale
also grows quadratic ally with time and constitutes ~4 % of the entire path of
the plasma along the electrode.
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An analysis of the anode sheath shows that the MHD approach is
inadequate to describe the sheath: in the MHD approximation, the plasma
density in the sheath drops to zero, whereas the current density, as
determined by the problem as a whole, remains constant. In order to
overcome this difficulty, one must go beyond the scope of the MHD
approach and take into account electron dispersion. Then, the plasma
density in the anode sheath remains finite, although low. A low-density
plasma in the anode sheath can be accelerated by the Lorentz force to
velocities much higher than the plasma velocities far from the anode and
can be heated to high temperatures as a result of the friction against the
wall. As in the case of a cathode sheath, the characteristic ion temperatures
in the anode sheath on long time scales are determined by the squared
plasma velocity, and the characteristic spatial scales are governed by the
zone of turbulent mixing. Plasma heating in the anode sheath can initiate
fusion reactions, which may explain the generation of DD-neutrons with an
anisotropic energy and direction distribution in MAGO experiments.

5.3.2. Kinetic Approach as Applied to Collisionless Magnetized Plasma

Thus, within the above MHD approximation, we assumed that there is an

anomalous viscosity that, in terms of magnitude, is equal to —~ (n is

.
plasma density, 7; is ion temperature, w; — is ion cyclotron frequency) and
that acts at distances from the electrode surface smaller than the ion Larmor
radius r7;. This viscosity resulted in plasma flow deceleration on scales of
the Larmor radius determined from the flow velocity vy, 71; = vo/ ;. For the
qualitative description of the near-electrode flow using viscosity in the
MHD approximation on the r;; scales to be valid, one must know whether
the entire flow on those scales will experience deceleration or whether only
the ions located at a distance of the Larmor radius from the electrodes that
corresponds to the thermal velocity of the plasma flow (which is considered
smaller than v,) will be scattered on the electrodes.

Using the MHD approach, it was shown that thermonuclear neutrons that,
because of high flow velocities, have an anisotropic energy distribution that
can be generated in the near-anode zone of the MAGO chamber nozzle,
which agrees with time-of-flight neutron spectrum measurements [5.19].
However, the neutron yield calculated under the assumption of the
Maxwellian ion distribution proved to be somewhat smaller (approximately
by a factor of 3) than the experimentally measured yield. The question
arises, can that difference be explained by the real ion distribution in the
near-electrode plasma with account taken of the kinetics of the ions?
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Following Garanin et al. [5.22], we will now use particle-in-cell numerical
simulations to consider the near-electrode plasma flows in order to answer
these questions.

Problem setup. Let us consider a time-dependent one-dimensional problem,
in which all quantities depend solely on the coordinate perpendicular to the
electrode surface and on time. For large distances from the electrodes, the

plasma is assumed to homogeneous, having density n, and moving at a

velocity v, across the magnetic field EO. The velocity v, and field EO are
parallel to the electrode surface. We will designate the coordinate
perpendicular to the surface as x and assume that the magnetic field is
directed along z ; then, the velocity v, will be directed along y. We will
87 p,

2
0

assume the plasma to be cold: = <<1 (po is initial thermal pressure

of the plasma).

When ions collide with the electrode located at x= 0, they can be reflected
back into the flux. We will assume that the ions scattered on the electrode
fly out into the plasma with the Lambert angular distribution, and we will
consider two options for the ion reflection off the electrode: elastic with
conservation of energy, and inelastic, with loss of 90% of the energy. The
plasma is assumed to be quasi-neutral, the magnetic diffusion coefficient is
taken to be small, such that the magnetic field is essentially frozen into the
matter, and the Joule heating is disregarded.

Instability of initial plasma state. Let us assume that a small fraction of
ions from the flow that have velocity components directed to the electrode
due to thermal spreading is scattered elastically on the electrode. Initially,
when the influence of these scattered particles is small, their motion can be
considered as occurring against an assigned background of the main flow,
i.e., they will move in the crossed electric and magnetic fields. For the main
stream, the effect of these particles can be analyzed on the basis of
perturbation theory, taking into account for it only the appearance of
velocities v,, which originally were equal to zero.

A qualitative analysis of such a linearized problem performed for high My
numbers under the assumption that the instability growth increment is larger
than w; yields the following expression for the increment

)L=%w . (5.3.20)
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Results of numerical simulations. Fig. 5.10 plots the distribution of the
magnetic field (and, hence, the plasma density coinciding with it) and the
average velocity v along the electrode for the flow of residual plasma
through the MAGO chamber nozzle, with a bulk velocity of

v, ==2" 10° cm/s, a density of n, =1.5-10"° cm™, in the magnetic field
B,=10" G (M, =1.57), at sequential times = 0.5, 1, and 2:10"% s for elastic
reflection of the ions from the electrode. This figure shows that the mass of
plasma reflected from the electrode grows with time, leading to ion flow
deceleration on Larmor radius scales, i.e., the specific anomalous viscosity
comes into effect near the electrodes. The magnetic field profiles display
oscillations, which are indicative of an evolving two-stream instability. Note
that, in the simulations, the role of these instabilities, in accordance with
their theory, diminishes with increasing M , .
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Fig. 5.10. Distribution of magnetic field B and average velocity v along the electrode
(in units of initial By and vy) for the flow with bulk velocity vy = -2+ 10° cm/s, density

ny=1.5-10" cm?, in magnetic field By =10° G, at times t = 0.5, 1, and 2-10° s (curves
1, 2, 3, respectively).
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Figure 5.11 shows the resulting ion “thermal” velocity distribution f(v)
in the frame of reference system related to the local average velocity

(f (v) dv is equal to the fraction of the particles in the velocity interval
dv) at a distance of 0.7 cm from the electrode, which equals 1.7 r;, as
well as the velocity distribution for ion kinetic energy (i.e., the quantity

v2f(v)) obtained for the time 7 = 2-10® s. It can be seen from the figure

that ions that constitute a small fraction of the total number of the
particles account for most of the “thermal energy” of the ion component.
These are the ions that have been reflected off the wall, and it is those
ions that make the principal contribution to thermonuclear reactions,
when they collide with the main flow ions. What will that result in?
First, the rate of thermonuclear reactions will become somewhat higher.
Second, which is even more interesting in the context of neutron
spectrum measurements in MAGO experiments [5.19], the velocity of
neutron-generating plasma may exceed the average mass velocity. Thus,
taking into account the kinetics to explain the results of Burenkov et al.
[5.19], one must assume that the residual plasma density is higher than
that used in the simulations in the hydrodynamic approximation (Section
5.3.1), and, consequently, the plasma will acquire a lower velocity. As a
result, the neutron yield from such plasma will increase in the
simulations in proportion to, roughly speaking, the squared density will
agree with the experiment.

For early times, when the fraction of reflected particles is small, their
number should increase exponentially in accordance with the linear theory
of instability. In the simulations, we actually observed the exponential
increase of the number of reflected particles with time. The increments of
this growth proved close to the theoretical estimate (5.3.20), and the
increments decreased somewhat with decreasing Ma, i.e., magnetic pressure
of the reflected ions impedes the inflow of new ions from the main flow to
the wall.

Figure 5.12 plots the dependence of the loss of the longitudinal component
(along the electrode) of plasma momentum, converted to plasma layer
thickness (measured in r;;) corresponding to a full plasma stop, on the
Alfven-Mach number M. We can see that this quantity remains nearly

constant in a wide range of M, and equals = 0.57, , i.e., this distance can be

considered to be the point of full stop of the flow.
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Fig. 5.11. lon “thermal” velocity distribution f (v), and the velocity distribution for
ion kinetic energy v f(v) for the simulation with M, = 1.57 at a distance of 0.7 cm
from the electrode, at the time t = 2-10° s. Velocities are measured in the units of V-

For very high flow velocities, the assumption that the ion scattering on the
wall is inelastic may be valid. It turned out that in the simulations in this
case, there was no linear stage of the flow swing instability development
with the exponential growth due to a high density of reflected particles near
the electrode; instead, there is immediate onset of a nonlinear stage. The
simulation for M, = 1.57 revealed that the loss of the longitudinal
component of plasma momentum in this case was equivalent to a plasma

layer thickness of = 0.467, .
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CONCLUSION

The reflection off the electrode of ions of the moving stream leads to the
turning of the flow fraction that is located at a distance of ~r;; from the
electrode towards the electrode and results in effective deceleration of that
part of the flow. The ions scattered from the electrode can generate
thermonuclear neutrons when they collide with ions of the main flow, and
the velocity of this neutron-generating plasma can be markedly higher than
the average mass velocity.

5.4. Role of Drifts in Magnetized Plasma of the MAGO System

As shown in Section 2.1.2 above, the body of experimental and simulated
data enables us to believe that DT plasma with the following parameters is
reliably produced in experiments with the large MAGO chamber in a
coaxial cylindrical volume having a height of 8 cm, an outer radius of

R ~ 10 cm, and an inner radius of 1.2 cm:

average density n = 8:10""cm™,

average temperature 7= 250 eV,

characteristic current in the plasma / ~ 4 MA,
characteristic magnetic field in the plasma B ~ 0.16 MG,
characteristic g~ 0.6.
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Those parameters make the plasma suitable for ignition in its quasi-
spherical compression. If the plasma is compressed adiabatically to a
radius of R ~1.7 cm and a characteristic height of ~1.4 cm (exposed to
magnetic and thermal pressure, the radius of the metal rod decreases from
1.2 cm to about 0.8 cm), the plasma will have a density of n = 2:10cm?,
a characteristic temperature of 7=10 keV, a characteristic current in
plasma of / ~ 70 MA, a characteristic magnetic field in plasma B ~ 10 MG,
and a characteristic § ~ 2. If the plasma is compressed at a velocity of

v ~10° cm/s, the characteristic time of its compression will be 7~9-107s,
and the Lawson criterion, n7 ~ 2:10" cm™s, will be met.

For the compression to be adiabatic, it is necessary that the various losses
not be large. Classical electron and ion heat conductivities of magnetized
plasma cause losses of the order of the Bohm heat conduction (see

Section 6) and they can be taken into account in direct one-dimensional
simulations (see Chapter 7). Other important losses include those associated
with drifts of charged particles in the magnetic field and resulting in heat
and magnetic flux transfer. These losses and their associated fluxes do not
contain collision frequencies and are therefore collisionless. In studying the
processes of thermonuclear energy release, it is also important to address
the issue of a-particles confinement in a magnetic field so that their energy
is released in the fuel, increasing its temperature and amplifying its
reactivity or heating up the cold parts of the fuel.

5.4.1. Role of Collisionless Losses in MAGO Plasma

The simplest example of collisionless drift losses is heat transport by the
current. In the MAGO chamber, currents flow from one metal electrode to
the other. Low-temperature electrons emitted by the cathode, when they
move with the current, replace hot electrons of the plasma, thereby cooling
it. The current velocity of electrons is equal to u ~ I /e R°n , and the effect
of their transport on plasma cooling can be estimated as the ratio of their
displacement when they are transported by the current to the characteristic
system size

ur It _ It
21 2emR*nl 2eN’

(5.4.1)

where N is the total number of particles in the chamber (the multiplier 2
indicates that electrons carry only half of the energy). The number of
particles does not change with plasma compression. If the quasi-spherical
compression proceeds at a constant velocity, the duration of the
characteristic inductance drop is shorter than the time 7 of the plasma
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compression, and the current grows faster than 1/z. Hence, the stage of the
highest compression is the most dangerous for plasma cooling by current
transport. When we substitute the above plasma parameters of this stage

into formula (5.4.1), we obtain ? ~ 0.1. Thus, the effects of plasma

cooling by the current under such conditions can be pronounced, but not
fatal.

One can easily estimate the effects of charged-particle drifts on
plasma cooling. The drift velocities are equal to

r . T I
vy~ .3 . (5.4.2)

u ~
Tei eBR 4aneR?

They differ from the current velocity by only a factor of /4. Since 3 grows
during quasi-spherical compression, the states of highest compression are,
as in the case of plasma cooling by current transport, the most dangerous for
plasma cooling. Since /4 ~ 0.5 in this state, the role of these drifts can also
be assessed as pronounced, at ~ 0.1, but not fatal. Magnetic flux transport
by current (the Hall effect) has a comparable influence on the plasma state.
Formula (5.4.2) shows that the drift-induced losses in a system with / ~ R
produce losses that are literally the same as those associated with the Bohm
diffusion, but they have no small numerical multiplier (1/16) appearing in
the Bohm diffusion coefficient.

It should be noted that in the MHD description of plasma in 2D simulations,
all those drifts can be taken into account in the form of the Hall effect,
Leduc—Righi effect, and heat transport by current [5.20].
5.4.2. Confinement of a-Particles in Magnetic Field
The rate of a-particle deceleration in the plasma is determined by formula
[5.23]

Y(s)~1.6-10"n(cm™)A/ T(eV)*?,

where A is the Coulomb logarithm. Since the residence time of a-particles
2ce

in the DT plasma is limited by their drift, T ~1/u (u~ is the drift

3zeBr
velocity of a charged particle with the charge ze and energy ¢ in the
magnetic field B decreasing in terms of the radius as //r), the fraction of
energy deposited by the particle in the plasma can be estimated as y//u. To
enable good confinement of a-particles, this fraction should be large. In our
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case, for the above plasma parameters, this fraction is ~ 0.3 and depends on
the parameters ~ Inl/™”. Thus, in order to improve o-particle confinement,
one must increase the current in the plasma, the plasma density, or the
dimensions of the plasma.

But if the objective is to transfer the energy release from hotter layers to
colder layers, a-particles will be capable of performing this function,
because their energy release increases with decreasing plasma
temperatures. One should keep in mind that a-particle drift takes place
along the Z-axis, and therefore the hot and cold regions of the fuel after
the compression should also be located along the Z-axis. It should be
noted also that heat transport by the electron current proceeds along the
Z-axis as well, but in the opposite direction, and both effects can offset
each other to a certain extent.
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6. SURFACE DISCHARGES IN STRONG
MAGNETIC FIELDS

In many problems of physics and engineering related to megagauss
magnetic fields, situations are encountered in which magnetic fluxes cross
interfaces between condensed matter (metal or insulator) and vacuum or
plasma. If one restricts oneself to considering the case that is most
commonly used in applications, in which the magnetic field is parallel to the
interface and the magnetic flux is transferred perpendicularly to the surface,
then schematically these situations can be depicted as they are in Fig. 6.1.
The transition of magnetic flux through the interface may be accompanied
by surface discharges or flows that, generally speaking, affect the operation
of given units. In a number of cases, the space scale of such discharge areas
can be small by comparison with the characteristic scale of the problem as a
whole, and the physics of such discharges can be studied assuming that they
can be described by a plane 1D problem (with a coordinate perpendicular to
the interface). Let us list the particular situations corresponding to the
schemes in Fig. 6.1 with different directions of the magnetic flux.
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Fig. 6.1. Schemes of magnetic flux transfer through the interface between
condensed matter and a vacuum or plasma.
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Magnetic flux flows from vacuum to metal. This is magnetic field
diffusion into metal, which is important for the problems of
obtaining megagauss magnetic fields, condensed liner implosion
through the use of strong magnetic fields, etc. This problem will be
considered in accordance with Garanin et al. [6.1].

When plasma with a magnetic field comes in contact with metal,
cooling processes begin that may amplify for a magnetized plasma
if, as a result of magnetic diffusion, the plasma loses the magnetic
flux and becomes demagnetized. Such problems are important for
plasma confinement by walls in many applications, including the
MAGO/MTF systems. Plasma cooling was considered by
Vekshtein [6.2] for relatively low energy densities, when the metal
does not explode, and by Garanin and Mamyshev [6.3] for higher
energy densities, with account taken of the explosion of the metal
wall caused by the heat flow from the plasma.

In the case in which the magnetic field outside the metal begins to
decrease abruptly, and the metal, at least in the skin layer, contains a
larger field, the magnetic flux tends to leave the metal. The diffusion
starts and the material (if the metal is in a liquid state) escapes into
the open space. Such a situation (magnetic spallation) sometimes
occurs in the course of liner acceleration, and has a number of
interesting features. This problem is considered in Garanin ef al.
[6.4].

When magnetic flux is transferred through the insulator surface, a
breakdown may occur on its surface, which restricts the energy flux
delivered through the surface (the H-thrown discharge). In addition,
evaporation of the insulator in the discharge and the presence of an
ionized vapor moving together with magnetic field lines can be
detrimental, if the magnetic flux delivered through the surface is
used to drive liners or plasma. In the first case, the additional vapor
mass will make the liner heavier and will slow its acceleration; in the
second case, the vapor may contaminate the plasma with the
insulator impurities, which is very significant in the approaches
using pure hydrogen plasma, such as MAGO and plasma focus. H-
thrown discharge problems are considered in Garanin ef al. [6.5] and
Garanin and Karmishin [6.6].

When magnetic flux from a vacuum or plasma region enters a more
dense plasma or insulator, surface discharges (H-pressed discharges)
that impede the movement of the magnetic flux through the surface
may occur [6.7, 6.8]. Depending on the system, these discharges may
play either a negative role—in systems in which the energy must be
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delivered through the insulator surface—or a positive role—in
systems in which the magnetic flux must be confined in the plasma
area (magnetic flux losses associated with field reversal in theta-
pinch, magnetic flux confinement in the MAGO chamber, etc.).
Related to the problem of H-pressed discharge is the problem of the
cooling of magnetized plasma that is in contact with condensed
material [6.9]. A general quantitative approach to consideration of a
surface discharge at the interface between a plasma with arbitrary g
and an insulator, which includes the problem of magnetic flux loss
from a plasma into an insulator and the problem of plasma cooling,
was developed by Garanin [6.10].

Surface discharges complicate the diagnostics of strong magnetic fields,
because the probes that measure such fields (B-dot probes and Faraday
loops) are usually placed in the insulator through whose surface the
magnetic flux is transferred. As a result of the discharge, the field near the
probe may turn out to be smaller than the field that needs to be measured.
The rapid progress in modern high energy density and megagauss-field
physics and engineering requires clear understanding of physical effects and
characteristics of surface discharges in strong magnetic fields in order to
include and simulate them in different systems.

In this section, we will consider the surface discharges that are most
important for applications, excluding only magnetic spallation, which is of
narrower interest. First, let us consider the H-pressed discharges since their
qualitative features also play important role for other surface discharges.

6.1. Diffusion of Strong Magnetic Field into Plasma or Insulator

In the development of systems that use strong magnetic fields and
corresponding electromagnetic energy densities, the need arises in various
units and devices to transfer electromagnetic energy through the surface of an
insulator. Such a transfer may cause a surface breakdown of the insulator and
its subsequent development. In this case, a part (or all) of the current is
diverted to the discharge, with a resulting decrease in the power and magnetic
flux being transferred to load through the insulator surface. If the magnetic
flux leaves a vacuum or plasma towards the insulator, the surface discharge is
called magnetopressed, or H-pressed, because, in this case, the magnetic
pressure presses the ionized vapor in the discharge to the insulator surface.

The following situation (see Fig. 6.2) can serve as an example of the
H-pressed discharge problem: first, the current in a circuit surrounding some
region with a magnetic field increases, with the magnetic flux entering this
region through the insulator. Then the current powering the circuit begins to
decrease, and the magnetic flux starts leaving the region. A voltage is
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generated on the insulator surface, which can cause insulator surface
breakdown. As a result of the development of a surface discharge (in which
the magnetic pressure presses the material to the insulator, since the
magnetic field in the circuit is stronger than that of the powering side), the
discharge will impede the exit of the magnetic flux from the region. Another
example of an H-pressed discharge is a discharge on the insulator surface
occurring in the measurement of magnetic fields in some region with probes
placed into the insulator. When the insulator or cold dense plasma are
placed into a magnetic field and the magnetic field penetrates such a region,
the formation of an H-pressed discharge is also possible.

/ o

Fig. 6.2. Formation of H-pressed discharge on the insulator surface: 1) conductive
walls, 2) insulator; 3)discharge plasma; 4) working space.

In terms of dimensions, the magnetic field penetration into the insulator is
described by the equation of diffusion, in which the magnetic diffusion
coefficient, D, is inversely proportional to the conductivity (proportional to
the electrical resistivity) of the wall material. Knowing the diffusion
coefficient D, we can evaluate the depth of the magnetic field penetration
into the material (the skin-layer thickness):

6 ~~or

where ¢ is the characteristic time of magnetic field application to the wall
boundary. In the majority of cases of interest in terms of applications, we
can assume that the vapor plasma generated in the discharge manages to
reach equilibrium with the forces from the magnetic field B; therefore, we
can assume that the total pressure (of the matter and the magnetic field

BY 8m)) at every moment in time is constant over the entire zone of the
discharge. The discharge zone itself can be regarded as a flat layer, because
its thickness is usually small by comparison with the size of the device.
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As the discharge develops, a plasma whose conductivity depends primarily
on temperature and increases with temperature is generated on the insulator
surface. The question arises: How does one determine the characteristic
conductivity of the discharge for a given magnetic field level B, and thus the
thickness of the zone of discharge, d, and, accordingly, all the discharge
parameters (discharge resistance, voltage across it, etc.)? With conductivity
growing with temperature, the following scenario would seem to be
possible: an increase in the heating of the discharge zone by Joule heating
results in increased conductivity and further heating until the entire current
begins to flow over a thin layer of extremely heated plasma. This scenario,
which attempts to describe the discharge evolution solely in terms of
conductivity without accounting for any other phenomena can be called
infinitely fast discharge skinning into an infinitely thin layer.

There exists, however, a process limiting the overheating of the current-
carrying plasma layer. That process is thermal conductivity. Because of
thermal conductivity and plasma layer cooling due to radiation, the plasma
is not overheated.

The H-pressed discharge on the insulator surface can be looked upon as a
special case of magnetic field diffusion into plasma of infinite density.
Therefore, we can consider the general set-up of the problem of magnetic
field diffusion into plasma. We will study the case of rather strong magnetic
fields so that the discharge plasma can be regarded as completely ionized.

We can distinguish three main phases in the process of magnetic field
diffusion into dense plasma: 1) the radiation losses are small in comparison
with the Joule heating, and the electron thermal conductivity and
thermoelectric effects (Nernst effect) play the main role in limiting the
skinning of the magnetic field; 2) the radiation losses start to offset the Joule
heat release, and the discharge becomes stationary; 3) the discharge
radiation heats the internal plasma layers, the heat diffusion is determined
by the radiative heat conduction, and the magnetic diffusion and radiation
temperature conductivity coefficients become of the same order.

We assume that all the quantities depend on the X coordinate and time ¢, the
magnetic field, B, and the electric field, £, are perpendicular to each other
and the X axis, the characteristic times are larger by comparison with those
of gas dynamic, such that the total pressure in the system managed to
become equalized:

p+ B 8n =28 /8x (6.1.1)

(p is the thermal pressure, By is the magnetic field at the interface with the
vacuum).
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The equations for magnetic and electric fields and the plasma thermal
balance written in the Lagrangian variables have the following form:

dB_Bdp__ OE
dt pdt ox

E=L_Pall (6.1.2)

where p is the plasma density; ¢ is the internal energy; o, x, b, are the

transverse conductivity, the thermal conductivity and the thermoelectric
coefficient, respectively; j is the bulk power of the radiation losses; Q is the
heat flux density. We assume that at the initial moment, the magnetic field
in plasma equals zero, and the plasma is homogeneous.

6.1.1. Magnetic field diffusion into hydrogen plasma for small times

First, let us consider magnetic field diffusion into plasma for small times,
when the radiation is negligible, and electron transport coefficients play the
principal role. In this case, the coefficients of magnetic diffusion and
thermal conductivity are of the same order for the degree of electron
magnetization w,t, ~ 1, and it is convenient to choose as units of
measurement for temperature 7" and electron density N

[T]= (\/ZL cxze%/ﬁ) , (6.1.3)
JT

2

[N]=ﬂ/[T] (6.1.4)
8

(z is the ion charge, A is the Coulomb logarithm). Using the self-similar
variable

~ el.]mO.l(Az)O.Z dex
(Bé /8”)0.65 \/;
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and introducing the dimensionless functions

7 =[716(5)
N =[N]n(&),

B=B ()

_ (em)o'l(lz)o'z (Bo2 / 8%)0'35 &) 6.1.6)

E
03 \/;

_ (em)o‘lcm ()LZ)OQ (B(f /8]1:)0'85 E) |

¢ N7

_ (em)O.lcO](}'Z)OZ x(g) ’

X
(B: /8m)""

the system of equations (6.1.1 and 6.1.2) can be written as

nO(+1/z)+h*>=1,

&@s(@_ﬁ@)

d& n

dh 30" 8+ﬁnd_@
dE  4an dg )’

__pBnOdh_ 3yn s, dO (6.1.7)

I o de o dE°

5 dO  dh dg ne dh
§[—(1+1/z)n—+h— =n—+ —,
4 d§¢ d§| d§ \am d§

ﬁ=1/n ,
d§
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where a, 5, and y depend on the degree of magnetization

y=orT, = %@” (6.1.8)

and are determined by the approximate formulae [6.11]

’ ’
2

a=1-4Y *%
A b
”n 5 ”n
5=M , (6.1.9)
y=y1y2+y0
A b

A=y +8)° +6,

(the coefficients’ designations in (6.1.9) coincide with the those in
Braginskii [6.11]).

The boundary conditions of the system (6.1.7) are
h0)=1, h(=)=0,
n(e)=n,_ , (6.1.10)
q(0)=q(*)=0 .

Using the equations (6.1.7) and the boundary conditions (6.1.10), we can
obtain the expansion n(§),0(& ), q(§) for & — 0, taking into account that

for §—=0 n—0,y — 0, and using the analytical expressions for the
kinetic coefficients for high magnetization [6.12]:

g~ (6.1.11)

527 44(2-1)z+4

k .
922 +(8v2 =7)z +10
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The considered phase of the diffusion is important for hydrogen plasma
(z=1) only. For z > 1, because of the big radiation losses, the transition to
the stationary discharge regime takes place too early, when the condition
(6.1.1) is not yet satisfied and the material inertia cannot be disregarded.

Now let us consider the solution (6.1.7) for z = 1. In this case the expansions
of (6.1.11) yield the following:

N~ §0.457 ,
@ - E—OA172 ,
g~ 50.286 ,

that is, the temperature at the vacuum interface goes to infinity. The results
of the numerical calculation of system (6.1.7) for n,, = o are shown in

Fig. 6.3. The value of the electric field at the vacuum interface & is shown
in Fig. 6.4 as the function of n,. The electric field g for large n. tends to the

constant value ¢, =2.04, whereas, for low n,, it becomes proportional to

n’*, as one would expect.

2_

€

@

n

7_

h

g

| | |

O 0.4 X

Fig. 6.3. Profiles of the electric field €, temperature O density n, magnetic field h,
and heat flow q for magnetic field diffusion into a plasma with infinite density
Ho = 0,
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Eoi
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Fig. 6.4. Dependence of electric field at the vacuum interface on plasma density for
magnetic field diffusion into plasma.

It should be borne in mind, however, that for

0.1
m

n, <<|— / 7%
m.

(m, is the ion mass) the ion thermal conductivity is more important than
electron thermal conductivity. In this case, the plasma can be regarded as
isothermal with temperature © = 1/[n,(1 + 1/z)]. The numerical solution of
the magnetic field diffusion equations for this case shows, that the
isothermality approximation is fulfilled quite well in low-density plasma
and with account taken of electron transport coefficients only; thus, the
solutions of the equations (6.1.7) can also be used for very low plasma

densities. Thus, the value ¢ (0) = 1.58 coincides quite well with (@ *£(0)
for n, =0, O, —= inFig. 6.4: (0)'¢(0)) _, =151

6.1.2. Phase of Stationary Discharge

As the thickness of the discharge zone increases, the rate of the Joule heat
release per unit volume decreases, and the radiation losses determined by
temperature (6.1.3) and density (6.1.4) remain unchanged. Therefore, over
the course of time, the discharge transits to the stationary phase, where the
Joule heat release is offset by the radiation losses. It is reasonable to
consider this phase of the discharge only for plasma with infinite density n.,
= oo (or an insulator), because radiation cooling of the plasma not involved
in the discharge leads to, sooner or later, Q,, — 0 and, consequently, to

n.,, = oo. This transition process itself has a nonstationary character and is not
self-similar. It is easy to ascertain that at the stationary phase the thickness
of the discharge zone is small by comparison with the radiation path, so the
radiation can be regarded as volume radiation.
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In strong magnetic fields, bremsstrahlung radiation, whose volume power is

J =32 [2T zN e
B3 Nam me’n
plays the main role for hydrogen plasma. The dimensionless quantities for

this phase of the discharge can be selected conveniently in accordance with
the formulae (6.1.3-6.1.6), where the time ¢ is replaced by the quantity

2
BO

R W— (6.1.12)
82J,([T],[N])

In this stationary case, the second equation of the system (6.1.7) turns into

e=const , (6.1.13)
the last equation is written as
dq \/* e dh
L= - —— | (6.1.14)
d& V2x d§

and the rest of the equations remain unchanged. The solution of the system
(6.1.7) with the given changes is shown in Fig. 6.5. The electric field here is
£=l1.16.

1

i I

0 0.5 1.0 x

Fig. 6.5. Profiles of temperature O, density n, magnetic field h, and heat flux q in
the stationary discharge with energy sink by means of bremsstrahlung radiation.
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Recombination and line radiation play an essential role for plasma with

Z > 1. For the temperatures and densities (6.1.3 and 6.1.4) in the megagauss
magnetic fields, the volume radiation of such plasma can be approximately
written as the dependence [6.13]:

J (T, N)= R Z—
z

Nf (6.1.15)
(R is the dimensionless constant). So, when the quantity
BZ

By (6.1.16)
8w L(TLIND

is used instead of ¢ in (6.1.7)—similarly to (6.1.12)—for the dimensionless
quantities (6.1.3-6.1.6), all the equations (6.1.7) remain unchanged, with
the exception of the second one, which turns into (6.1.13), and the last one,
which has the form

&
d_§=_n/f J_dg (6.1.17)

The solution of the system (6.1.7) with those changes with the coefficients
of (6.1.9) for z = oo is shown in Fig. 6.6. The electric field here is € = 5.58.
The discharge shown in Fig. 6.6 can be interpreted as an H-pressed
discharge on the insulator surface. Note, that for large z, the temperature at
the plasma-vacuum interface turns into 0, unlike z = 1. This behavior is
governed by the expansion (6.1.11) and is a result of the more substantial
effect (by comparison with that of z = 1) of thermoelectric heat fluxes on the
heat balance near the boundary £= 0.

0 0.1 02 x
Fig. 6.6. Profiles of temperature O, density n, magnetic field h, and heat flow q in

the stationary discharge with the energy sink by means of recombination radiation
and line radiation.
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Let us present the characteristic numerical values of discharges in hydrogen
and plexiglass HsCsO, in magnetic fields of the megagauss range.

For hydrogen in such fields, the Coulomb logarithm is A =7.5

[T]="T74eV - B}*(MG) ,

[N]=3.3-10"cm™ - B)*(MG) .
In Fig. 6.3, the unit of measurement for distance is

[X]=0.19¢cm \t(us) / B (MG) ,

and for the electric field, it is
[E]=0. 38— B°7(MG)/\/t(us

In Fig. 6.5, the unit of measurement for distance is

[X]=0.095cm /B (M) ,

and for the electric field, it is

KV L
[E]= 078— B*(MG) .

If we assume that the start of the transition from the regime of Fig. 6.3 to
the regime of Fig. 6.5 is determined by the coincidence of the electric fields
E, in Fig. 6.3 and E in Fig. 6.5, and at the finish of the transition, the field
E, (Fig. 6.3) coincides with E, the characteristic times of the transition start,
ts, and finish, ¢, are the following:

t.=0.35us/B,*(MG) ,
t,=0.75 us/By*(MG) .

The setting time of the start of the Fig. 6.3 regime, when the material inertia
can be disregarded and the condition (6.1.1) begins to be fulfilled is

t=6-10" us/B,(MG) .
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6.1.3. Magnetic Field Diffusion Guided by Radiative Heat Conduction

For a dense plasma or an insulator, the radiation from the stationary discharge
area gradually heats the internal layers, where noticeable electric conductivity
appears, and the magnetic field starts diffusing inwards, heating the plasma,
which is accompanied by heat transfer to the next layers. Thus, the next phase
of the magnetic field diffusion is formed, which will be considered using the
example of strong field diffusion into plexiglass.

Using the Saha equation with multiple ionization [6.15], radiation paths for
multiple ionization [6.15] and electrical conductivity of the Lorentz electron
gas (see Section 3.3.3) in the temperature range of 3-30 eV and density
range of 10°-107 g/cm’, we can obtain the power form of the temperature
and density dependence of the equation of state, the radiation path /, and the
magnetic diffusion coefficient k:

p/p=0.17T1A19 /po.os ,

l=2_10—9T2A14 /p1.86 ,

K= 0'17/(T0.86p0414) ,

the adiabatic index is p/ep + 1 = 4/3 (the units are g, cm, us, and
temperature is in eV).

Let us choose the units of measurement for the temperature [7] and density
[p] such that the coefficients of temperature conductivity and magnetic
diffusion are of the same order

o, [TI'IATLIeD/ (B, /87) = k((T1,[p])

(0s3=1.03 « 10 is the Stefan-Boltzmann constant), the heat pressure is of
the order of the magnetic pressure

p((T[pD =B, /87 .
Then
[T]1=17 eV - By*(MG) ,

[p]=5.7-10" cff ‘B (MG) .
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Using the self-similar variable
1000 pdx(g/cm’)
B (MGWi(us)
and introducing the dimensionless functions
r=[T16) ,
p=[pln(&) ,
B=Bh(&) ,

patl? B0

om m 8(‘?) s

X =088 om- VU)o
B (MG)

o W BI*(MG)
=3.5100 —— 20— 4(&) ,
0 o Jr) q(8)

the system of the equations (6.1.1 and 6.1.2) can be presented as

@119 /n0,94 +h2 =1 ,

§=@§(dh h dn)

d& n \dE nd&
dh___1 0,
d&  2\am 0
__E@S'Md_@
3 n0.86 d§ ’

dq 82 @0486

+059§ 3@0.]9 d@ 61.19 dl’l

dE - A 586 1,006 d_g_ 1,106 % >

ﬁ=1/n .
d§
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From (6.1.18) and the boundary conditions 4(0) = 1, &0) = const, and
¢(0) = const, we have the expansion for &(§) and n(€):

OE) .~ ",

n(E) |y~ &

The solution of the system (6.1.18) with the boundary condition n(w) = o is
shown in Fig. 6.7. The characteristic times of the start, #,, and finish, #, of
the transition from the Fig. 6.6. regime to the Fig. 6.7. regime can be
evaluated if we equate the Fig. 6.6 regime electric field to the Fig. 6.7
electric fields E£(w0) and E(0), respectively:

t.=0.029 us/B,"*(MG) ,

t, =0.038us/B;*(MG) .

2
n
1 h o
0 | E— T
0.4 0.8 x
._./_
q

~2_.

Fig. 6.7. Profiles of the electric field ¢, temperature 6, density n, magnetic field h,
and heat flux q for the magnetic-field diffusion, guided by radiative heat
conduction, into plasma with infinite density n,, = .

For the magnetic-field diffusion into the insulator, the finite discharge
resistance leads to penetration of the magnetic flux into the insulator and, if
the circuit behind the insulator is closed, the magnetic field will grow there
(and the magnetic fields at the inlet to the insulator and inside it will start
getting equalized).
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Note that the considerations developed above for ultrahigh magnetic-field
penetration into material require more accurate quantitative determination, both
with respect to theoretical models and simulations, and with respect to the
comparison of theory and experiment. At present, there are almost no
experimental studies devoted specifically to the H-pressed discharge, although it
occurs in many experiments at different facilities and its effects prove to be
important. To give an example that demonstrates the influence of the H-pressed
discharge on experimental results, one can refer to the experiments in which a
strong magnetic field was generated in a dielectric tube with magnetic flux
compression by a plasma liner [6.16]. In these experiments, the H-pressed
discharge on the outer surface of the tube impeded the magnetic-field generation
inside the tube during magnetic flux compression by the liner. Thus, it played a
negative role. As a result, in some shots, instead of a 1 MG field that could be
expected if the magnetic flux could freely flow into the tube, the field
penetrating into the tube with the first magnetic flux compression by the liner
was as small as about 0.2 MG. However, after the flux compression, the H-
pressed discharge, this time produced on the inner tube surface, facilitated
magnetic field containment inside the tube and consequently played a positive
role. Another example showing the significance of the H-pressed discharge is
the difference between the computed and measured magnetic field derivatives in
the MAGO plasma chamber experiments (Section 2). While the experimental
and calculated results agreed in general, the experimental waveforms were
observed to be smoother and to have significantly smaller amplitudes of
magnetic field derivatives. This can be attributed to the effects of the H-pressed
discharges on the surface of the insulators, where the probes were installed.

6.2. Diffusion of Megagauss Fields into a Metal

Material conductivity changes due to the heating of the walls by the current
flowing over the skin layer. As a result, the metal conductivity decreases,
then with higher fields, the material vaporizes, and, if the substance
transforms to plasma, its conductivity can increase again.

The opinion is expressed at times in the literature to the effect that when a
conductor explodes in strong fields, a cold nonconducting gas is generated,
which expands from the metal boundary across the field. Physical
observations borne out by corresponding calculations, however, show that, in
reality, this does not happen in the fields on the order of several megagauss.
Indeed, the radiation emitted from a hot metal surface with a temperature in
the electronvolt range contains hard radiation quanta that ionize the vapor that
is formed and thus produce seed ionization. For low densities, the degree of
this ionization near the vapor boundary should be independent of the density.
Thus, at the vapor boundary, there is constant conductivity within an
arbitrarily small density. The presence of an electric field that forms as a
result of diffusion into the metal and that is increased as a result of the vapor
movement across the magnetic field leads to the Joule heat release in a unit of

182



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

volume that is independent of the density and, hence, infinitely large per unit
mass for an arbitrarily small density at the vapor—vacuum interface. This
leads to an inevitable gas breakdown, the creation of a plasma piston that
prevents gas expansion, and the formation of a conducting plasma layer
instead of a nonconducting expanding gas, just as the calculations show.

Thus, the material transforms into a plasma whose conductivity grows with
heating. As a result, the penetration of super-strong magnetic fields into
materials turns out to be a rather complicated phenomenon accompanied by
material vaporization and plasma formation. Although this penetration is
diffusive, it is interesting to ask, What is the value of the effective diffusion
coefficient, and what state of matter determines it?

In seeking to answer these questions, some authors consider only the plasma
forming at the boundary with the metal—even in fields on the order of one
megagauss—similarly to the H-pressed discharge on the insulator surface that
was discussed in Section 6.1.3, and without taking into account the presence
of metal under the plasma layer. The reasoning of Section 6.1.3, however,
cannot be applied to the plasma discharge on the metal surface, because the
plasma discharge, shunted by the metal conductivity (even reduced as a result
of Joule heating) sharply reduces the electric fields in the plasma, and, as a
result, only a small fraction of the current flows over it even for the fields on
the order of dozens of megagauss (with ideal metal conductivity, the
discharge over the plasma is generally impossible because energy can be
supplied to this discharge from the magnetic field only, and the magnetic field
energy cannot decrease, since the magnetic flux has no place to expand).

In many papers that consider the motion of liners driven by a strong magnetic
field, the relevant MHD problems are considered without taking into account
the heat conduction in plasma layers. In such consideration, numerical
calculations (for grids not very fine) can be quantitatively correct for liner
parameters on the whole; but one should bear in mind that this description has
internal contradictions and will not yield correct results for rather fine grids. Let
us show this with the example of a Lagrangian grid in a 1D calculation.

Since, in a Lagrangian calculation that disregards heat conduction, the
characteristic mass scale of the generated plasma px (p is the plasma density
and x is the layer thickness) is determined by the grid resolution

pPx~Am, (6.2.1)

we examine the plasma behavior on that scale if the characteristic magnetic
B and electric E fields are determined by the diffusion into the metal
adjacent to the plasma. The characteristic plasma pressure is determined by
its Joule heating:

p~0E’t,
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where ois the plasma conductivity and ¢ is the characteristic time. For a thin
plasma layer, the equilibrium condition should be satisfied with good accuracy:

p~2E . (6.2.3)

c
From expressions (6.2.1) and (6.2.2), it follows that the layer thickness
increases with time as
cEt
X~—.
B

Inserting the dependences for pressure p ~ zpT (z is the degree of ionization
of a multiply ionized plasma and T is the characteristic temperature) and for
conductivity o~ 7**/z into (6.2.2) and taking into account (6.2.1) and
(6.2.4), we obtain

(6.2.4)

\/? BAm
7 ~ ETZJ . (6.2.5)
For a multiply ionized plasma with z ~ Z (Z is the nucleus charge), and
27~ T, and using the expression (6.2.5), we find that the plasma

3,2
temperature T ~

is inversely proportional to the grid resolution and
m

17/4 ,5/2

grows with time until the plasma pressure p ~———— becomes equal to
B(Am)

the magnetic pressure and the plasma shields the metal. But if the plasma is
heated to the level of z ~ Z and z becomes independent on the temperature,
the temperature rise becomes so rapid that it should be described using the

differential form of (6.2.2), i.e., p‘i—T ~T*?E*, and, using the equilibrium
t

condition (6.2.3), for the temperature rise, we obtain
dT T5/4E3/2

dt - Bam

From (6.2.6) it follows that if the degree of ionization reaches the level
z ~ Z, then, the temperature goes to infinity over the finite period of time

T ~~BAm / E¥*T)"* (T,is the temperature corresponding to the degree of

ionizationz z ~ Z), and the finer the grid, the smaller the time. In fact, of
course, the temperature grows until the plasma thermal pressure becomes
equal to the magnetic pressure and the metal is shielded.

(6.2.6)

Thus, the use of rather fine grids in calculations makes it possible to obtain
plasma shielding of the skin layer in the metal. In many cases, for real grids,
this shielding may not manage to develop within times of interest. Since for
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fields B < 10 MG, with correct accounting taken of the plasma area, its role
is insignificant in the current shunted from the metal and in the mass
involved in the skin layer, the error in its description (even by several
magnitudes) may remain, on the whole, insignificant for the description of
the liner. In any case, however, one should be able to evaluate correctly the
characteristics of the plasma layers and understand that improperly
accounting for them can lead to incorrect results.

6.2.1. Formulation of the One-Dimensional Problem

Let us consider magnetic-field diffusion into a metal on the basis of an example
of diffusion from a vacuum into a semi-infinite copper wall. We will perform
the calculations in a 1D MHD formulation on a Lagrangian grid. We will
assume that all the quantities depend on the coordinate x and time ¢, and the
magnetic field B and the electric field E are perpendicular to each other and to
the x axis. At the initial time, cold copper occupies the region x > 0, the
magnetic field in this region is equal to zero, and the magnetic field on the
material boundary is specified as a function of time B(?). The calculations took
into account hydrodynamic motion, magnetic diffusion, electronic heat
conduction, and radiative heat transfer in the “forward-reverse” approximation.

The equation of state, conductivity, electron thermal-conduction coefficient,
and the radiation paths for copper used in the simulations had the following
form [6.3]:

The equation of state of copper (in cm, g, pus, temperature in eV) was
determined by the formulas:

E(p, T) =61(p)+82(p’ T)"'gs(pa T) 5

p(p’T)=pl(p)+p2(p’T)+ps(pz T) )

where & = 2.32/p0)(8"'/2.1 — 8"°/1.5 + 4/21), p; = 2.32(8" — 6)

(0o = 8.9g/cm’, 0= p/py); & = 0.01217 6", p, = (10/3) &2

€5=1(0.965/4) - [1.5(1 + 2)T + O(2)], ps = (0.965/4)p(1 + z)T; A is atomic
weight equal to 63.5; z was determined by approximate solution of the Saha
equation for multiple ionization [6.15] by means of the transcendent
equation /(z + 0.5=T1In(317 AT 3/Z(z,o)) ; I/(z)zrepresents the ionization
potentials; Q(z) is input for ionization Q(z) = ¥ /(z) . The copper
conductivity o was calculated in the plasma fange (p < 0.28 g/cm’) using
the formulas from Silin [6.17].
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For
3.25+41.41/z T
z>1  o=0871-10°2=2 2728
1+1.41/z zA
3
A=in|14+ 292 | AT ; (6.2.7)
z pz(1+z)
for
z<1 o= ! 5
0.594-107° 2 _+1.3-10"—=
T z

3
A =ln(1+0.037 AT };
pz

in the condensed phase range (o > 2.8 g/cm’ )

_ 4.83-10°

£-0.0004
and in the intermediate range (0.28 g/cm’ < p < 2.8 g/cm’ ) o was
determined based on density interpolation between (6.2.7) and (6.2.8). The
electron thermal conductivity in copper was considered nonmagnetized and
was found from the Wiedemann-Franz law

y= kT o
3¢’

0, (6.2.8)

(k is Boltzmann constant). For radiation energy transfer, we used the
“forward-reverse” approximation [6.15] with the path /= %l o (RS

Rosseland path) to provide the correct limiting transition to the heat
conductivity equation. Here, the path was temperature- and density-
dependent (gray matter) and equaled [6.15]

forz>1
T7/2 A2
-12 .
IR=9.5-10 ——
p° oz
for z <1
T7/2 A2
-12
IR=9.5-10 —— -
Pz
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As regards the boundary condition that determines the radiation
propagation, two variants are possible: in one case, it is assumed that all of
the radiation leaves the surface (an open system), and in the other case, the
radiation flux on the boundary is equal to zero (a closed system). The
second variant is possible if the magnetic field diffuses from a cavity whose
walls are under identical conditions. Most of the calculations were
performed for the open-system formulation, and only some (for purposes of
comparison) were performed for the closed-system formulation.

Most of problems considered the case of a constant magnetic field on the
plasma boundary, By = const. That case offers an advantage in that the
problem thus becomes close to self-similar, and, therefore the profiles of all
quantities are easily recalculated from one time for other times. Indeed, for
real times that are not too short (in excess of a few nanoseconds), the
hydrodynamic motion is considerably faster than the diffusion, and it can be
assumed that the total pressure (thermal plus magnetic) can become
equalized over the skin-layer area. The magnetic diffusion and the thermal
conductivity in this case should provide the dependence of all quantities on

the self-similar variable x/ \/; only. In principle, a deviation from this self-
similar dependence could be caused by the radiation transport in the phase
when the radiation path becomes comparable with the plasma layer thickness.
In reality, however, we found the calculations with B, = const. to be in good
agreement with the self- similar dependence (see the next section).

The calculations disregarded some phenomena that, in principle, could affect
the pattern of the magnetic-field diffusion. First, the equation of state (EOS)
that we employed had no two-phase (liquid-vapor) states. Decay into phases
occurred automatically in the calculations, but only if the material fell into
the thermodynamically unstable region dp/dp (dp/dp), <0, and, therefore,

the states of an overheated liquid and overcooled vapor were allowed. As a
result, the calculations did not take into account some metal vaporization into

a vacuum for relatively low fields B < 1.5 MG, in which plasma may not

have formed. However, the influence of this effect is not very significant.
Calculations with two-phase equations of state show that for fields
By~1 MG, not more than a few percent of the skin layer evaporates.

Second, the radiation transport was considered in a gray matter
approximation, which could not provide a detailed account of the gas-
breakdown and plasma-formation phenomena that were discussed in the
introduction. These delicate phenomena can be of special interest in studies

of the beginning of plasma formation for relatively low fields B, < 1.5 MG.
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However, as was mentioned above, these effects concern a small mass
fraction and generally should not be too significant in terms of the
description of field diffusion into a metal.

Third, we did not take into account the dependence of electrical conductivity
and thermal conductivity on the degree of plasma magnetization, or
thermoelectric phenomena (Nernst effect). Generally speaking, these effects
could influence the behavior of the plasma quantities near the boundary with
vacuum, in the zone where the radiation transport is not yet very important
since in this area the degree of electron magnetization w,t, can be on the
order of unity. This zone itself, however, occupies a fairly small percentage of
the entire plasma layer in most of whose mass the role of radiation is
significant, and therefore inaccuracy in the description of this zone has
virtually no effect on the description of the skin layer in the metal as a whole.

6.2.2. Open-system Calculations for a Constant Magnetic Field on the
Boundary

Profiles obtained in calculations for By =1, 2, 5 and 10 MG at the moment

t =1 us of the magnetic field B(x), the density p(x), and temperature 7(x) of
a material are presented in Fig. 6.8, which shows how the skin-layer
structure changes as the magnetic field increases. For By = 1 MG, the copper
present in the skin layer is in the condensed phase only. For By =2 MG, the
skin-layer structure next to the condensed phase has also a two-phase liquid-
vapor region (for purposes of discernibility, the density fluctuations in the
two-phase region on the plot given in Fig. 6.8b are smoothed) and a plasma
area, which can also be divided into a zone of radiative thermal conduction
and a zone of electron thermal conduction at the boundary with the vacuum,
where the radiation is almost negligible. Our calculations in this problem
formulation (open system, By = const.) showed that the transition from the
single-phase structure of the skin layer (Fig. 6.8a) to a composite
multiphase structure (Fig. 6.8b) takes place roughly when By= 1. 6 MG.
Then, as the magnetic field B, increases, the two-phase region in the skin
layer disappears, and for larger fields, the skin layer (see Fig. 6.8c and d)
consists only of a condensed phase and a plasma area, in which it is possible
distinguish a zone of radiative thermal conduction (with a temperature
decreasing toward the vacuum, which is explained by the plasma cooling
that results when the radiation exits through the surface) and a zone of
electron thermal conduction with a temperature increasing toward the

vacuum. It should be noted that, as Fig. 6.8d shows, when B, =10 MG, a
rather large contribution to the heating of the material (commensurate with
Joule heating) in the dense region is made by shock-wave heating, which is
significant for high fields in this formulation, where the magnetic field is
applied to the surface instantaneously.
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For all fields By < 10 MG, the plasma area is small and occupies only a small
fraction of the skin layer. This is also confirmed by Table 6.1, where the
thickness of the skin layer and its mass at # = 1 us are shown for the considered
fields. A comparison of these values shows that, for these fields, the mean
material density in the skin layer is rather high and corresponds to the density of
the condensed phase (although it is hardly possible to speak of a condensed
phase here in a material heated strongly by a shock-wave when By =10 MG).
The skin-layer thickness, itself as a function of B, increases rapidly in the range
of 1-2 MG as a result of the nonlinear diffusion and the appearance of the two-
phase and plasma areas. Then for large fields, the skin-layer thickness increases
more slowly, and in the range of 5-10 MG, the increase ceases since the
density (and the conductivity along with it) in the material of the skin layer
increases as the field increases, including in the plasma area. It is interesting,
that in the entire range of 1-10 MG, the mass of the skin layer increases
monotonically as the field increases, approximately following the law

m~ Bg 7> . According to the data of Table 6.1, the fraction of the current
shunted in the plasma area is small for fields By <5 MG, and only for B, =
10 MG does it have an appreciable value.

Table 6.1. Properties of the Skin Layer as a Function of Magnetic Field By.

Magnetic field B, , MG 1 2 5 10

Skin-layer thickness x(#) (cm) (determined as 0.0297 | 0.106 | 0.175| 0.168

RS J Bdx , where the integral is taken over the

0
material area) at t =1 us

x(1us)/ x(0.1us)N10 .00 | 1.03 |1.03 | 1.03

Skin-layer mass 71(#) (g/cm’) (determined as 0252 | 0416 | 0.797 | 1.31

B;prdx)att=1/zs

0

m(1us) ! m(0.1usN10 1.00 | 1.00 | 1.01 | 1.04
Fraction of current shunted in the plasma area, % | 0 0.7 9 25

Let us consider the question of the dependence of the obtained profiles on
time, i.e., how the real time dependence of the quantities in the skin is close
to the self-similar one, in which all quantities should depend on the ratio

x/ \ﬁ only. The values given in Table l—x(tz)\/z / x(tl)\/g (where x(?)
is the skin-layer thickness, and ¢, and ¢, are different times) and
m(t, )\/Z / m(tl)\/g (where m(¢) is the skin-layer mass), which for strict
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self-similarity should be equal to unity—can serve as a measure of deviation
from this dependence. The data of Table 1 show that, indeed, for all the
considered fields, the skin-layer dynamics in this formulation are close to
the self-similar dynamics. Small deviations from self-similarity are
explained by the larger role of radiation with increasing time, resulting in a
reduction of the temperature of the plasma area and, accordingly, an
increase of its relative thickness.

6.2.3. Effect of the Radiation Boundary Conditions on the Skin-Layer
Structure

Let us consider how the skin-layer structure changes if the radiation flux on the
boundary is equal to zero (a closed system). This situation is exemplified by
magnetic flux compression in a cavity. Calculated profiles of the magnetic
field B(x) and density p(x) and temperature 7(x) of material that correspond to
this case for t=1 us and By=2 MG are shown in Fig. 6.9.

P (glem’) 1 B(MG)
T(eV)

8 16

6 1.2

4 0.8

2 0.4

0 . - T 0

0 0.03 0.06 0.09 0.12 ¥(cm)

Fig. 6.9. Profiles of the magnetic field B(x) (1) and density p(x) (2) and temperature
T(x) (3) of material that are calculated for a closed system for a constant magnetic
field on the boundary By = 2 MG at t =1 us.

A comparison of Fig. 6.9 and Fig. 6.8b shows that, as one might expect, the
temperature in the plasma area of the closed system is a little higher (in the zone
of radiative thermal conduction in Fig. 6.8b, it is about 3 eV; whereas in

Fig. 6.9, it is about 4 eV). There is also a decrease of the thickness of the two-
phase zone in the closed system. As a result, the skin layer in the closed system
is thinner than in the open system. However, the skin-layer masses in both cases
are approximately identical (in the closed system, it is 0.6 % lower).
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6.2.4. Effect of Smooth Growth of the Magnetic Field on the Skin-Layer
Structure

The calculations described here assumed that the magnetic field is
instantaneously applied to the metal boundary and then remains constant. In
the majority of real problems, the magnetic field at the boundary grows
gradually, and this, of course, changes the skin-layer structure. In the case
of a smoothly growing field for moderately strong fields, the magnetic
diffusion into metal can be calculated without accounting for thermal
conduction, which cannot be done when the field is switched on
instantaneously. Indeed, when the field is switched on instantaneously for

the self-similar law of electric field variation at the boundary £ ~1/ \/; , the
integral over time corresponding to the Joule heating of the material at the
boundary diverges for small times. Therefore, for the description of the
material heating near the boundary, the thermal conduction should be taken
into account, which distributes the heat released near the boundary over
some area. As a result, if, in problems of diffusion of a moderately strong
field (up to 1 MG) into a metal, the volumetric heating for a smoothly
growing field is equal to approximately B> / 8 [6.18], for instantaneous
field switching, it is considerably higher near the boundary (for the case
shown in Fig. 6.8a, by a factor of approximately 2.6).

The effect of the smooth growth of the magnetic field at the boundary on
the skin-layer structure in megagauss fields is illustrated by Fig. 6.10, where
the profiles of the magnetic field B(x), material density p(x) and temperature
T(x) are shown at # = 1 us calculated for a magnetic field growing linearly with
time for dB/dt = 5 MG us, so that at t = 1 us the magnetic field on the
boundary is equal 5 MG. A comparison of Fig. 6.10 and Fig. 6.8.c shows
that in the case of megagauss fields, the skin-layer heating is also smaller
for a smoothly growing magnetic field than for instantaneous switching.
Accordingly, in the case of a smoothly growing magnetic field, a plasma
layer is formed for higher magnetic fields than in the case of instantaneous
switching. In the present calculation, plasma formation occurred when the
magnetic field at the boundary reached a value of 3 MG, which is almost
twice as larger as that for instantaneous switching.
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Fig. 6.10. Profiles of the magnetic field B(x) (1), density p(x) (2) and temperature
T(x) (3) of material that are calculated for an open system with a linearly growing
magnetic field at the boundary for dB/dt =5 MG us at t = 1 us.

CONCLUSION

The explosion of a conductor for fields in excess of B = 1.5-3 MG leads to
the formation of a conducting plasma layer at the boundary with the
vacuum. For fields B < 10 MG, the role of this layer in the current shunted
from the metal and the plasma mass involved in the skin layer is small, but
is of fundamental importance since incorrectly accounting of it (for
example, in numerical calculations without thermal conduction on
sufficiently fine grids) can lead to complete shunting of the current into the
plasma layer. For a correct description of the skinning of megagauss fields
in a metal, one needs to take into account electron thermal conduction and
radiative heat transport.

For magnetic fields at the metal boundary in excess of By ~ 1.5-3 MG, the
skin layer consists of a condensed phase area with a density on the order of
the initial density, a two-phase liquid-vapor area, and a plasma area, which
can also be divided into an area of radiative thermal conduction and an area
of electron thermal conduction at the very boundary with the vacuum. A
two-phase liquid-vapor area is formed for fields of By = 1.5-4 MG,
depending on the dynamics of the magnetic field at the boundary and the
radiation boundary conditions.

Numerical calculations of megagauss-field diffusion with a constant magnetic
field at the boundary By = const. have shown that for all fields in the range

B <10 MG for times greater than a few nanoseconds, the dependence of all
quantities in the skin layer is described with high accuracy by a self-similar

dependence, where all the quantities depend on the variable x/ \ﬁ .
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A comparison of closed and open systems shows that the temperature in the
plasma area in a closed system is a little higher (for example, for By =

2 MG, in the zone of radiative thermal conduction in the open system, it
was about 3 eV, whereas in the closed system it was about 4 eV).

The heating of the skin layer is considerably smaller for a smoothly growing
magnetic field than for instantaneous switching. Accordingly, in this case
the formation of a plasma layer occurs with higher magnetic fields than it
does in the case of instantaneous switching.

If one compares the characteristic spatial scales and temperatures for the cases
of the magnetic-field diffusion into metal and an H-pressed discharge, one
finds that the thickness of the skin layer for the magnetic field diffusion into a
metal is much smaller than that of the H-pressed discharge area. This can be
explained by the substantial effect exerted by the conductive material
underlying the plasma layer, which, although it has lost its initial
conductivity, still remains rather conductive. This material still has higher
conductivity than the insulating plasma in the H-pressed discharge and, in
contrast to the insulating plasma, does not allow the magnetic field to diffuse
inwards the material. Shunting of the current flowing through the plasma by
the current flowing through this material leads to much smaller plasma Joule
heating than in the case of the H-pressed discharge, and hence to much lower
temperatures. Thus, if, for By = 5 MG in the H-pressed discharge on the
insulator surface, the characteristic temperature of the plasma layer is 30 eV,
it is on the order of 10 eV for the diffusion into metal.

At present, the processes of plasma formation on the surface of thick metal,
in response to a pulsed multi-megagauss magnetic field, are investigated in
well-diagnosed experiments [6.19, 6.20]. The theoretical simulation results
of these experiments [6.21] based on the presented concepts of the diffusion
of megagauss fields into a metal agree with experimental data [6.19, 6.20].

6.3. Discharge Produced During Magnetic Flux Transfer from Plasma
to the Insulator

The vacuum in the problem of an H-pressed discharge can be treated as a
special case of zero-density plasma. For a number of problems, it is important
to take that discharge into account in the case of a plasma with finite density.
An even more general case is the case of an arbitrary- § plasma that is in

contact with an insulator. Consideration of this case is important for many
applications, such as wall confinement of magnetized plasma, liner
compression of magnetized plasma, etc., when it is necessary to take into
account magnetic-flux and plasma losses due to the field diffusion and heat
conduction to the wall. The role of a discharge occurring in plasma when the
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magnetic flux flows out of it should be particularly substantial for hydrogen
plasma, whose conductivity can be high by comparison with the conductivity
of the plasma in the H-pressed discharge on the wall surface. In this case, if
the hydrogen plasma density proves to be insufficiently small, discharge
resistance will be determined by the discharge in the hydrogen plasma.

Let us consider the development of this discharge in the following setup:
there is hydrogen plasma with a magnetic field confined by a rigid non-
conducting insulator wall. This case was addressed qualitatively by
Vekshtein [6.7, 6.9], and the resulting effective diffusion factor for a plasma

with B<<1(B=16aN [T, / B’O2 is the ratio of plasma thermal pressure to the

magnetic pressure; Ny, 1o, By is the density, temperature and magnetic field
in plasma far from the discharge region) proved to be on the order of
D ~ ¢cBy /AmeNy; for p >> 1, it was on the order of D ~ cT/10eB,.

In this section, following Garanin [6.10], we will provide a quantitative
analysis of the near-wall current layer structure and formulate the boundary
condition with which the influence of this discharge on the plasma motion
in the bulk volume can be described.

Let all quantities depend on the X coordinate and the time ¢ let the magnetic
field B and the electric field £ be perpendicular to each other and the X axis;
and let the characteristic times be large by comparison with the gas-dynamic
times, such that the total pressure in the system manages to equalize:

2NT+B’/8n=p,=2N,T, +B; /87 . (6.3.1)

Plasma density in the bulk of the volume is assumed to be small by
comparison with the density in the near-wall discharge region. In this case,
as shown in Vekshtein [6.7], the problem is quasi-stationary, i.e., in the
equations of the magnetic and electric fields and of the thermal balance of
the plasma in the discharge region, one can disregard time derivatives and
consider the electric field and the energy flux to be constant. These
equations will then take the form

¢ 0B b,oT

dmo 0X e 0X

(6.3.2)
ol T B ¢
=—y——-—"bh —+_FB.
© XaX dme " 0X 4dx
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The mass of plasma accumulated in the near-wall layer is

XO
a=[Ndx (6.3.3)
0

(Xo is the boundary of the discharge region). The wall is assumed to be a
plane X = 0, and plasma occupies the region of X > 0. Then, the boundary
conditions for equations (6.3.1) and (6.3.2) are

T70)=0,
B(0)=B, , (6.3.4)
N(X,)=0

(B, is the magnetic field in the insulator). The energy flux flowing into the

discharge region from the plasmais Q= ﬁEBO +5N, T,v (v is the velocity

of the inflowing plasma). Because of the freezing-in of the magnetic field
into the plasma far from the insulator,

v=cE/B, (6.3.5)
and, consequently,
0= EB|1+2p (6.3.6)
4\ 4T) o

At the plasma/insulator boundary, the plasma stays non-magnetized by
virtue of (6.3.4). In this region, the factors x, b, increase with distance from
the wall and temperature; characteristic dimensions X corresponding to
temperature 7 grow in accordance with (6.3.2), and discharge plasma
accumulates. With plasma magnetization, the factors y, b, decrease;
consequently, the characteristic dimensions X and, simultaneously, density
decrease. Therefore, the major contribution to the plasma mass
accumulating in the discharge will be that of the region in which
magnetization of electrons is w,7, ~ 1. It is natural to choose py as a unit of
measurement for pressure, and to choose [7] and [N] as units of
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measurement for temperature and density such that p = p; and w,z, ~ 1 for
T=[T], N =[N] (see Section 6.1). Based on these conditions, we get

[7]-= (J;che%/z )2/5 :

(6.3.7)
2/5
[N]=p)° /(c)LeK/E) )
For choosing a measurement unit for the coordinate X it is convenient to

use equations (6.3.2) and substitute [7] and [NV] from (6.3.7) as temperature
and density. Then, introducing the dimensionless coordinate

X=———3oar0d O’ZX (the electric field E is negative) and the
e mc A p,
dimensionless

0(x)=T/[T],

n(x)=N/[N],
h(x)=B/\8mp, , (6.3.8)
§=—eEalp, ,

we can rewrite equations (6.3.1-6.3.3) as follows:

2n+h* =1,
4 o ,, ,
bon'+3|y+—Li_|gg 1EL2B g

4(”@) N

§=Xf0ndx ,
0
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where a, b, y are defined in Section (6.1), and

. 2% +2,64
Ly 2,77 4+0,677

(y,=y/N9124, A is the atomic weight). Here, as distinct from

Section 6.1, we take into account the term y,, representing ion heat

conductivity, which is a small correction. The inclusion of ion heat
conductivity, however, changes the solution behavior in the region of high

magnetization x = x,,. Boundary conditions of (6.3.4) in the new notation
will be given by

h(0)=h, ,
6(0)=0 , (6.3.10)

n(x,)=0,

where
h =B /\8mp, .

Let us estimate the magnitudes of the quantities that characterize the
discharge region at high . In this case, it follows from equations (6.3.9)
that thermoelectric transport of magnetic flux makes the main contribution
to the electric field, and heat conductivity to the energy flux. Then, given

that y ~ 1 in the discharge region, we obtain h~1/+/8, T ~B"*, n~ B2,
x~ 3", and &~ 1. Thus, the parameter &, which characterizes the
accumulated mass, is weakly dependent on S, changing only when ~ 1.

Results of numerical simulations of system (6.3.9) with boundary conditions
(6.3.10) for A, 0; 0.5; 0; 0.5, B=0; 0; 10; 10, 4 = 2 are shown in

Figs. 6.11-6.12, and the plot of & as a function of § and 4, in Fig. 6.13

(hy =05 0.25; 0.5; 0.75 are represented by lines 1-4).
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(a) (b)

0.5

Fig. 6.11. Profiles of temperature 8, density n, and magnetic field h in a plasma
with 8 = 0 in contact with an insulator with magnetic field: (a) h; = 0; (b) h; = 0.5.

(2) (b)
24 e PR o
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Fig. 6.12. Profiles of temperature 8, density n and magnetic field h in a plasma
with 8 =10 in contact with an insulator with magnetic field: (a) h; = 0; (b) h; = 0.5.
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02

7

T T

& 3 i, ﬂ
Fig. 6.13. Mass & of plasma deposited on the insulator as a function of B for
h;=0;0.25;0.5; 0.75, represented by lines 1-4.

The simulations show that thermoelectric processes, which play the central
role in the magnetic flux transfer for f>> 1 and which result in the export
of magnetic flux even into an insulator with a higher magnetic field

(Fig. 6.12b) than in the plasma, are numerically not very essential for 3 >>
1. For example, if we assume b = 0 in equations (6.3.9), the value of § for §
=0 and h; = 0 will decrease by only 13 %. A noticeable decrease in § (by
about 30%) with thermoelectric fluxes turned-off is observed only for 3
~10. A very small contribution to the accumulated mass & is made by the

ion heat conductivity, which is a correction of ~1/+9124 , the turning off
of which for § = 0 and %, = 0 leads to the decrease of § by 2 %.

Let us consider plasma deposition dynamics. The rate of mass accumulation

% = N,v, in accordance with (6.3.5) and (6.3.8), is determined by the
t

differential equation

¢ DN,
e B

0

a4 _ g1 : (6.3.11)
dr
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which for the total volume of plasma can be treated as a boundary condition
describing plasma and magnetic-flux losses. For B(f) = const.,

No(t) = const., po(t) = const., Bi(t) const., and [(f) = const., plasma
deposition is governed by the diffusion law

a= 2§£—p°N° t

E= = : (6.3.12)

[X] ~ eoij'ch'gAOA 2N0t
p(()).S §BO

The effective diffusion factor in this case is D ~ 2&cpo/eNyB,, which, for
p<<1,when &= 0.5 (Fig. 6.13), yields D ~ ¢By/8meN, and approximately
corresponds to the estimate of Vekshtein [6.7], and for f>> 1, when

&= 0.25 (Fig. 6.13), yields D ~ c¢Ty/eBy and exceeds the estimate of

Vekshtein [6.9] and the Bohm heat conductivity by approximately an order
of magnitude.

Let us now address the issue of the conditions for the applicability of the
above megagauss range of magnetic fields and 3 ~ 1. Plasma density N
should be much smaller than the plasma density in the discharge region, i.e.,
in accordance with Section 6.1, No(cm™) < 3 - 10* B"*(MG). In this case, one
can consider the problem to be quasi-stationary and can employ equations
(6.3.2) and the boundary condition N(Xp) = 1. For No(cm™) > 3 - 10% 5!
(MG), plasma density in the discharge region is on the order of N, and the
simulations performed are inapplicable. The condition that radiation losses in
the discharge region can be disregarded yields solution of the near-wall
discharge problem. We restrict ourselves to the

N (em™)t(us)<0.8 - 10"°B**(MG) . (6.3.13)
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In addition, we ignored the role of the H-pressed discharge in the insulator,
i.e., the magnetic flux flowing from the discharge through the plasma
external to the insulator is assumed to be too small for the formation of an
H-pressed discharge in the insulator. This means that electric fields (6.3.12)
should be smaller than the fields obtained in Section 6.1. For the PMMA
insulator, this condition for t #(us)<0.03/B"'* (MG) yields

N (cm?)i(us)>9 - 10°B"*(MG) ; (6.3.14)
and for
t(us)0.03/B"*(MG) ,
N (em®)>2 - 10"B"*(MG) . (6.3.15)

If condition (6.3.13) is violated, i.e., with rather large time scales, the
discharge will enter the stationary stage described in Section 6.1. If
conditions (6.3.14) and (6.3.15) are violated, i.e., with rather small densities
of the hydrogen plasma, the H-pressed discharge discussed in Section 6.1
will occur on the insulator surface.

6.4. Magnetized Plasma Cooling at the Exploding Metal Wall/Plasma
Interface

In a number of cases, cooling of the magnetized plasma at the cold
wall/plasma interface, which is accompanied by the interaction of magnetic
and thermal processes, as shown above, results in anomalously high
effective heat conductivity and magnetic diffusion coefficients. Indeed, for
hydrogen plasma cooling at the interface with an insulator or dense multi-
charge plasma, effective heat conductivity proves to be on the order of the
Bohm heat conductivity (Section 6.3).

For the cooling of plasma bounded by a rigid, ideally conducting wall, the
increase in heat conductivity by comparison with the classical magnetized
heat conductivity, as shown by Vekshtein [6.2], is not appreciable and is
possible only for plasmas with §>> 1. In this case, the metal wall can be
considered rigid, ideally conducting if it does not explode when exposed to
a heat flux from the plasma, i.e., its thermal conductivity in a condensed
phase proves to be sufficient to remove heat without vaporization. This
condition is fulfilled for relatively low energy densities (for instance, for
plasma with 7p = 1 keV and =1, it is satisfied at By < 0.2 MG). For higher
energy densities, the presence of a metal layer exploded by the heat flux
substantially changes the nature of cooling and increases the heat losses of
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the plasma. This particular case is discussed in this section. Magnetic fields,
however, are considered to be not very high (By <10 MG ), because for

By > 10 MG, when the skin layer is exploded by Joule heat and the metal
becomes non-conductive, the problem reduces to the problem of plasma
cooling at the plasma/insulator interface considered in Section 6.3.

Let us use the same problem geometry and designations as in Section 6.3.
Characteristic time scales will, as before, be assumed to be large by
comparison with the gas-dynamic scales, so that the total pressure, both in the
hydrogen plasma and in the metal vapor, manages to equalize, and equation
(6.1.1) holds true. Equations for the magnetic and electric fields and plasma
heat balance have the form of (6.1.2).

It turns out that, depending on the hydrogen plasma density, there are two
cooling modes: for higher density, the key role, as with plasma cooling at the
plasma/insulator interface, is played by processes in the near-wall plasma
layer; for lower density, it is played by processes in the metal vapor. In both
cases, however, effective heat conductivity of the plasma may greatly exceed
the classical conductivity.

6.4.1. Cooling of Dense Plasma

The presence of anomalously high effective heat conductivity
coefficients indicates that, as already mentioned in Section 6.3, the
problem for the hydrogen plasma is quasi-stationary: hydrogen plasma
density at the plasma/wall interface is high by comparison with the
density Ny, and in equations (6.1.2) for the magnetic and electric fields
and plasma heat balance in the near-wall region, we can disregard time
derivatives and assume the electric field and the energy flux to be
constant. Then, equations (6.1.2) will take the form of (6.3.2) with the
energy flux Q equal to that of (6.3.6) flowing into the discharge region
from the plasma.

In ionized vapors, the leading role in heat transfer is played by radiation. As
a result of the radiative heat conductivity, the mass of the vapor in the
discharge region greatly exceeds the mass of the plasma. Therefore, the
temperature of the vapor is markedly lower than that of hydrogen plasma,
and the hydrogen plasma temperature at the plasma/vapor interface can be
assumed to be zero.

203



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

Thus, if the magnetic field B, at the hydrogen plasma/vapor interface is
known, the boundary conditions for (6.3.2) will be as follows:

7(0)=0,
B(0)=23, (6.4.1)
N(=X,)=0

(for the vapor boundary, we assume X = 0, for the discharge region
boundary, X = —Xj), and for the plasma, the problem reduces to the problem
of plasma cooling at the plasma/insulator interface (Section 6.3).

As the major contribution to the mass of the plasma accumulated in the
discharge is made by the region in which electron magnetization is .7, ~ 1,
and the total pressure py is specified, for the transition in (6.3.2) to
dimensionless quantities it will be natural to use p, as a pressure unit and
take temperature and density units of measure from (6.3.7).

Introducing the dimensionless coordinate x and the dimensionless
temperature 0, density n, magnetic field # and plasma mass

§=elal p, (6.4.2)

in accordance with (6.3.8), we can rewrite the system of equations (6.3.2) in
the form of (6.3.9). The boundary conditions (6.4.1) in the dimensionless
variables will be written as (6.3.10) (here, E is assumed to be positive, and
since X is negative, x is positive).

The rate of accumulation of the plasma mass is described by the differential
equation (6.3.11). The quantity § as a function of 3 and /4, is shown in Fig. 6.13.

For a complete statement of the problem, we must determine the magnetic
field B,. For sufficiently high plasma density, this can be done by using a
system of ordinary differential equations. Indeed, in accordance with
(6.3.11) and (6.4.2), discharge resistance in the hydrogen plasma falls as
density N, increases, whereas discharge resistance in the metal vapor does
not depend on Ny; therefore, for a sufficiently high-density magnetized
hydrogen plasma, the conductivity of the vapor can be disregarded, and the
magnetic field in the vapor can be considered to be constant (B = B)). To
calculate it, we use the condition of magnetic flux conservation

%(A’IXI Y=cF (6.4.3)
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for a vapor layer of thickness X; and the condition of energy conservation,
assuming the vapor to be an ideal gas with adiabatic index y:
2 2
z(&)+ %i{ﬁl /11] B
Y1

5
—4 + £ [1+= 6.4.4
ar\y-1) "V ar ar\8x 87 dr 0( 4/3) (644)

( p, 1s the thermal pressure of the vapor, which is constant because of the
constancy of B = B, and equilibrium condition (6.1.1)). Note that the energy
conservation condition is used only if the system geometry is such that the
energy flux from the vapor surface is completely offset by the flux from the
surrounding walls (closed system). The opposite limiting case, in which the
radiation flux from the wall is not offset at all, is discussed in Section 6.4.2.
The set of equations (6.3.11) and (6.4.2-6.4.4), together with the

equilibrium condition p, + 312 /8m = p, , completely determines the cooling

of dense plasma.

When py = const., Ny= const., By = const., 3 = const., and p, = const., we
find from (6.3.11) and (6.4.2—-6.4.4) that plasma deposition proceeds
according to the diffusion law

cp
a= [2E=20 0 f |
ge /s

:

P
g |5 25 (6.4.5)

‘/I/]=_ 2
¢ N8

and the dimensionless magnetic field /, is obtained from the algebraic
equation

hlzy—Z_h]2+2.5/5+ y 0,
y=1 " 1+p  7-1
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1.€.,

1 25,3 2
5(B)=————1 1+ B|1+| =B+ |(y=1) |- (r=D)(A+5B/4)} .(6.4.6
/(B) RN \/+/3[ +(16ﬁ+2)(y )] (y=D(A+5B/4) .(6.4.6)

0.4y
(r-DJB
with Section 6.3, for f— 0, £ —0, and for f—o0, & —const. The
dependence &(B, h,(B)) for h(B) from (6.4.6y—obtained by means of
equations (6.3.9) for the set of coefficients «, b,y from Epperlein and Haines

For §—0, h — 1,and for B —, h = — () ; thus, in accordance

[6.22] (somewhat more accurate than (6.1.9)) for y = 1.21%—is depicted in
Fig. 6.14 (Curve 1). For comparison, the same figure shows the dependence
&(B, h(P)) for the set of coefficients (6.1.9) (Curve 2). Note that although
the difference between the coefficients from Epperlein and Haines [6.22] and
(6.1.9) is rather considerable (for instance, for b it gets as high as 30 %), the
difference between the values of £(f) does not exceed 6 %. This points to a
weak dependence of & on the values of transport coefficients; in addition,
apparently, mutual offsetting between different-sign deviations of Epperlein
and Haines [6.22] from (6.1.9) for different w 7, is substantial.

g

ar-

Fig. 6.14. Plasma mass deposited
72 on the exploding metal & as a
005 function of B for the set of
transport coefficients from [6.22]
(Curve 1) and for the set of
coefficients (6.1.9) (Curve 2).

+ y=1.21 approximates the adiabatic index of copper vapors in megagauss magnetic fields
(see the next section)
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Since for high B, & =0, the effective diffusion coefficient D ~ 2&cpo/eNoBy

for the dense plasma cooling at the interface with an exploding metal wall
proves to be the same as for plasma cooling at the plasma/insulator interface

(§(B—>2>)=0.2, D~cT,/eB,) and exceeds the Bohm heat conductivity by

an order of magnitude; while for f~= 1, when § = 0.03, it proves to be on the
order of the Bohm coefficient.

The theoretical results presented here that describe dense plasma cooling near
the exploding metal wall were verified by numerical simulations of the cooling
of deuterium plasma with 75 = 0.5 keV, By = 0.5 MG, and =1 near a copper
wall. The simulations took into account the hydrodynamic motion, the magnetic
diffusion and electron heat conductivity (both for deuterium and for copper). In
addition, for deuterium, we took into account an additional contribution to the
electric field and the heat flux due to the Nernst effect (summands with the

factor b, in (6.1.2)) and ion heat conductivity; for copper, we accounted for the

radiative heat transport. The transport coefficients ¢, b, y in deuterium were
found from the formulas of Epperlein and Haines [6.22], and ¥, from Braginskii
[6.11] (Section 6.3). The equation of state, conductivity, electron thermal
conductivity, and the radiation paths for copper used in the simulations were
determined by formulas presented in Section 6.2.1. The boundary condition for
the radiation propagation was zero radiation flux at the discharge region
boundary (closed system). Initial copper was considered to have normal density
0 =1 and a temperature close to room temperature, £ = 0.0013.

Fig. 6.15 shows temperature and magnetic-field profiles, obtained using
equations (6.3.9) (solid curves) and numerical simulations (dashed curves).
The comparison shows satisfactory agreement. Much better agreement is
observed for the volume of cooled plasma. In numerical simulations, the
plasma thickness decreased by that
time by AX = 0.042 cm, and according
to (6.4.5), the deposited plasma
thickness should be AX = 0.045 cm.

Fig. 6.15. Profiles of temperature T and
magnetic field B at time t =0.085 us for
the cooling of deuterium plasma with

Ty = 0.5 keV, By =0.5 MG, and B =1 near
the copper wall, obtained using equations
(6.3.9) (solid curves) and numerical
simulations (dashed curves).
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6.4.2. Shunting Metal-Vapor Discharge

In sufficiently low-density hydrogen plasma, as opposed to the case
considered in Section 6.4.1, the conductivity of metal vapor
predominates, and the metal-vapor discharge that thereby shunts the
hydrogen-plasma discharge plays the key role. Let us consider a
problem, in which, at the initial time, plasma whose temperature, density
and magnetic field are constant throughout the volume is in contact with
a cold copper wall. The key factor in the heat transfer through the metal
vapor is radiation whose transport in the context of long time scales for a
closed system is found from the heat conduction equation. Since this
problem has no characteristic length scale, its solution is self-similar,
and the heat conduction and magnetic diffusion determine the diffusive
nature of the self-similarity. The consideration of this problem differs
from that of the problem of magnetic-field diffusion into the insulator
accompanied by radiative heat conductivity (Section 6.1.3) solely in
terms of the boundary conditions.

For the equation of state, free radiation path and conductivity of copper vapor,
we assume the power dependence on temperature and density. Then, using the
formulas from Section 6.2.1 for these quantities in the temperature range of
3-30 eV and the density range of 10°-10"" g/cm’, we approximately obtain the
following dependences (in cm, g, us, and temperature in eV):

p/p=0.0075T""/p™* [, =10°T/ p"**, 0 =2.7-10°T*?p"*, adiabatic
index y= p/ep+1=1.21.In order to convert to dimensionless variables, the
units of measurement for temperature [T] and density [ 0] are chosen as in
Section 6.1, such that the heat conductivity and magnetic diffusion coefficients
K =c’ /4o are of the same order of magnitude—oss[ 7] Ix([T], [0]) /
po= K ([T], [p])—and thermal pressure is on the order of the assigned p,,

p((T1],[p]) = p,; then, [T]=12eV p)*' (GPa), [p]=0.01g/cm’ p,*" (GPa).

0 0
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Using the self-similar variable ¢ =390 pdX (g/cm’)/ [ t(us) pg‘37 (GPa)]

and introducing dimensionless functions

T=[T16(s) ,
p=[pln(s) ,

B=\[87p,h(£)

0.3
E = 063&&5(;) R

cm\Jt(us)
w p*(GPa

0f 5P @9 4oy
e \Jt(us)

_ Vi(us)
X—OzSMSmx(g) 5

0

0=251

we rewrite equations (6.1.1) and (6.1.2) as follows:

01.67’10486 +h2 =1 ,

de §(dh hd_n)

d¢ n\de¢ ndc
%_—16092
dg 2 n08 ?
_ 16 6* do
3 n0464 dg

dg_e 0" 5 (1407 a0 0 in
dg 2 nO.S 6 3 n0.14 dg n1.14 dg 4

ﬁ=1/n .

dg

(6.4.7)

Let us determine boundary conditions for equations (6.4.7). A heat flux at
the plasma boundary (& =0 ) can be calculated as the difference between

the total energy flux coming to the discharge region from the plasma

(c/4m)EB (1+58/4) and the electromagnetic energy flux (c/4m)EB,
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(B, is magnetic field at the hydrogen plasma/vapor interface). Thus, one of
the boundary conditions at this interface is the relationship between the heat
flux and electric field, which is written in dimensionless variables as

1+(5/4)p

(0) = [ﬁ hllg(O) . (6.4.8)

The second boundary condition results from the fact that the vapor
discharge shunts the hydrogen-plasma discharge, i.e., for the hydrogen-
plasma discharge, in this case, we assume that £ = 0, which means that,
from (6.4.5), &= 0; since § becomes zero at 4#; = 1 1, the boundary condition
should be assumed to be

h=1. (6.4.9)

The boundary conditions at the interface of the nonvaporized metal and the
vapor will consist in temperature, heat flux, and electric field equaling zero:

0(s,) =q(s,)=2(5,)=0 . (6.4.10)

By solving equations (6.4.9) with boundary conditions (6.4.10-6.4.12), and

using the equation
@ =NcE/B,,
dt

we determine the thickness of the deposited plasma:

AX =025us V) o) 14 p . (6.4.11)

p042 (GPa)

0

Let us estimate the orders of magnitude of the quantities that characterize
the discharge region for large and small . For $>> 1, one can disregard the
role of the terms with magnetic field in the heat transfer equations and find
the electric field from relationship (6.4.8); then, £(0) ~ §°%, n~ g%,

x ~ Y and £(0) ~ %, and the magnetic field exponentially decays with

discharge-region depth. For 8 << 1, in the discharge region, 8"*'n"* ~ g,
and from (6.4.7) we have
0 - ﬁOAZ

n~p"*, (6.4.12)
x ~&(0) ~ /50.27 '
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Some results of numerical simulations of system (6.4.7) with boundary
conditions (6.4.8—-6.4.10) are shown in Figs. 6.16 and 6.17. Fig. 6.16 depicts
as functions of S the electric field at the entry point into the discharged &(0),
the mass of the vapor in the discharge g, the magnetic field at the interface
with nonvaporized metal /(g), and the ratio of vapor volume X{(g) to the
volume of deposited plasma (6.4.11) s = x(co) / &(0)V1+B. The solid curves in
Fig. 6.17 are the profiles for magnetic field and temperature found by solving
the equations of (6.4.7) and converted to dimension units for comparison with
numerical simulation results for the case of the cooling of plasma with
By=1MG, Tp=10keV, and =1

by the time ¢ = 0.035 ps. The figure
also shows numerical simulation ol /
data (dashed curves) obtained using <,

the procedure described in

Section 6.4.1. The numerical
simulation yields a smaller size for
the discharge region, which is due to
the influence of the hydrogen- 05
plasma discharge, which was not
included in the calculations based on 5]
formulas (6.4.7). This difference
also affects the thickness of

&

deposited plasma, which, in o 0
accordance with (6.4.11),is AX = h(To)

0.047 cm, whereas the numerical

simulation yields AX = 0.036 cm. Fig. 6.16. Electric field at the entry point

into the discharge €(0), vapor mass in the
discharge ¢, magnetic field at the interface
with nonvaporized metal h(sy), and ratio of
vapor volume to volume of deposited plasma
s as functions of f3.

5,MGs | T,eV

N
|[ \‘ Fig. 6.17. Profiles of temperature T and magnetic

I \ field B at the time t = 0.085 us for the cooling of

I \ deuterium plasma with Ty = 10 keV, By = I MG, and

: ‘\ f = I near the copper wall, obtained using equations

LY

(6.4.7) (solid curves) and numerical simulations

T T
- 00
ooz 0 ooz xem (dashed curves).
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Until now, we have considered the system to be closed, such that the flux
of energy emitted from the vapor surface was completely offset by the
radiation coming from the surrounding walls. Let us move now to the case
of an open system, whose geometry is such that the flux is in no way
offset. Then, in the vapor, due to the heat release, the characteristic
thermal pressure is much smaller than the magnetic and thermal pressure

of the hydrogen plasma, f, <<1, B, and it varies over time. To determine
the dependence S (¢), we take into account that the heat flux from the

surface, which in this case corresponds to blackbody radiation Q ~ 7*(z),

should offset the heat coming from the plasma ~ E(¢) ~ £(0)/ \/; .
Equating these fluxes and using the dependences of # and £(0) on f8

from (6.4.12), we obtain 8, ~1*, X ~¢**. Thus, X grows more slowly

than according to the diffusion law, and the vapor-discharge resistance in
the open system is less than in the closed system.

Let us discuss the question of when plasma can be considered sufficiently
dense, and when, for its cooling, we can use the results of Section 6.4.2 and
when we can use the results of Section 6.4.3. To answer this question, as
already mentioned, one should compare hydrogen-plasma discharge
resistance with that of metal vapor (by comparing the thicknesses of the
deposited plasma, calculated with formulas (6.4.5) and (6.4.11)). The
governing mode will be that with a smaller thickness, although if the
difference is not very large, one can expect an appreciable influence by the
mode not taken into account (as for the case of Fig. 6.17), which reduces the
thickness of deposited plasma. In any of these modes, however, if plasma
magnetization is high enough, the effective heat conductivity can be
markedly higher than the classical heat conductivity.

The high values of effective heat conductivity coefficients can make it
difficult to produce a high-temperature magnetized plasma in the new
systems for liner compression of plasma from an ultrahigh speed flow
discussed in Turchi ef al. [6.23].

6.5. Stationary Discharge during Magnetic Flux Transfer through the
Insulator Surface

A qualitatively different type of surface discharge forms at the interface of
the condensed matter and the vacuum (or plasma), when the magnetic flux
flows out of condensed matter. Such a discharge may occur in different
pulsed power systems during the transfer of electromagnetic energy
through the insulator surface. Figure 6.18 shows diagrams of units in
which energy is transferred to a vacuum, plalsma, and a liner. The
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operation of such units may involve difficulties resulting from the insulator
surface breakdown and its subsequent transition to a quasi-stationary
discharge (H-thrown discharge; this term is used, because the

ponderomotive force l[ JjH] throws off the conducting ionized vapor from
c

the insulator surface; see Fig. 6.19). In this case, part of the current
delivered to the unit branches off to the discharge, resulting in a decrease
in the power delivered to the load through the insulator surface.

Fig. 6.18. Diagrams of units with electromagnetic energy transfer through the
insulator surface: 1) conducting walls, 2) insulator, 3) plasma (or vacuum),

4) liner. The diagram shows the electric- and magnetic-field vectors, as well as the
Umov-Poynting vector.

Fig. 6.19. Discharge zone:

1) nonvaporized insulator,

2) insulator vapor, 3) beginning of
the discharge zone, 4) end of the
discharge zone. The figure shows
the current-density vector,
magnetic-field vector, and velocity
of matter vector, as well as the
direction of the x coordinate.
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In this case, since matter can expand together with the magnetic field, there
is considerable hydrodynamic motion, which carries the magnetic flux
along with matter away from the surface. In the case of an H-thrown
discharge on the insulator surface, some of the Joule heat given off in the
discharge is transferred by radiation or heat conduction to the insulator,
causing its vaporization and conversion into plasma. The hydrodynamic
outflow of matter and diffusive processes (magnetic diffusion and heat
conduction) balance each other in the discharge region, producing a
stationary discharge.

The possibility of the formation near the insulator surface of a stationary
surface discharge that constrains the rate of outflow of magnetic field lines
was demonstrated by Keck [6.24] and Workman [6.25]. Workman [6.25]
developed a theory for such a discharge, in which a number of simplifying
assumptions are used, including the assumption concerning complete single
ionization of the insulator vapor flowing out of the discharge, which holds
true for moderate magnetic fields, B ~ 10* G. In this Section, we consider a
more general case of arbitrary multiple ionization, which is important for
stronger magnetic fields, in particular those used in magnetic liner
acceleration experiments, and which may be necessary for the analysis of
liner implosion as applied to MAGO plasma compression.

Studies of the H-thrown discharge in strong magnetic fields were carried out
by Garanin et al. [6.5] and Garanin and Karmishin [6.6]. The heat flux was
determined by the blackbody radiation of ionized vapor flying away in
Garanin et al. [6.5] and by the electron heat conductivity of the discharge
plasma in Garanin and Karmishin [6.6].

In the case of interest here, as in the previous cases, the magnetic field B and
electric field £ are perpendicular to each other and parallel to the insulator
surface, which is considered flat. A self-sustained surface discharge in the
insulator vapor occurs because the ponderomotive force—induced plasma
outflow from the surface is offset by the vaporization of new insulator
portions by the heat fluxes from the plasma being carried off. The ionized
vapor entering the discharge region is further heated up by Joule heat and is
accelerated until the plasma velocity reaches the velocity v; of the outflow of
the magnetic force lines and the electric field in the associated frame of
reference becomes equal to zero.

Under typical experimental conditions, the thickness of the discharge zone xz
is small by comparison with the dimensions L of the region of insulator vapor
motion (at B ~ 10* G, xzproves to be on the order of 0.1 cm and decreases
with B). Therefore, the setup time for the vaporization regime is small by
comparison with the characteristic times for the variation of the magnetic
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field and other quantities that influence the current layer. Consequently, the
discharge can be considered stationary. When solving a complete
magnetohydrodynamic problem that describes the operation of an
experimental installation in which such a discharge takes place, the discharge
zone can be replaced with an infinitely narrow jump of all MHD quantities.
Our goal is to find conditions on this jump, so we need to find the dependence
of the plasma outflow velocity v;, as well as plasma density and temperature,
on the value of magnetic fields in a nonvaporized insulator By and at the exit
from the current layer B;.

An essential factor is that for obtaining these dependences it is strictly
speaking insufficient to use only integral conservation laws relating quantities
at the entry into the discharge region and at the exit from it; one should also
solve the problem of the structure of that region. Workman [6.25] managed to
do without solving this more complex problem thanks to an approximation in
which the temperature of the plasma flowing out of the discharge was
considered to be high enough for almost complete first ionization, but at the
same time low enough to enable him to disregard further ionization, and the
heat energy was considered low by comparison with the ionization energy,
and the thermal pressure was considered low by comparison with the
magnetic pressure. Our statement of the problem is free of such strict
constraints [6.25]. In mathematical terms, it is an eigenvalue problem.

6.5.1. Discharge Maintained by Radiation

The dependence of all quantities in the discharge on the normal coordinate x
is described by a system of stationary MHD equations:

OV =const ; (6.5.1)
p+pVv:+B* /8w =const ; (6.5.2)
ov(w+v?/2)-Q-cEB/4m =const ; (6.5.3)
-k dB/dx+vB=cE =const , (6.5.4)

where p(x), (x), p(x), B(x), w(x), O(x), and k(x) are the current values of
the density, velocity, pressure, magnetic field, specific enthalpy, heat flux,
and magnetic diffusion coefficient, respectively; E is the electric field. The
system of equations (6.5.1-6.5.4) represents the mass, momentum, energy
and magnetic flux conservation laws in the frame of reference with a resting
current sheath. One can consider this frame of reference to be identical to
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the laboratory one, because the characteristic density in the current sheath
turns out to be very small by comparison with the insulator density.

Solving this problem is made easier by the fact that, in cases of practical
interest, consideration of the heat flux Q can be greatly simplified. Let us
estimate the optical thickness of the current sheath xz// (/ is the Rosseland
mean free path of radiation, xg ~ k/v), proceeding from the diffusion
approximation for describing the heat transfer. Within this approximation,
the temperature conductivity and magnetic diffusion coefficients,

~ logsT'/pw and «, respectively, should be of the same order of magnitude.
Also, using the relationships

ow~pv: ~B*/8x
and p, A and k as power functions of p and T (see Section 6.1.2), we find
X, /l~l(/lv~0SBT4 /(pwv)~0.2B"" |

where B is measured in MG.

Thus, for a typical insulator containing light elements, for moderately high
magnetic fields, the optical thickness of the current sheath is small.
Therefore, the heat flux O towards the insulator from the plasma flowing
out of the current sheath and having a temperature of 7} should be

considered equal to USBT14 *, with this flux O being almost constant over the

thickness x5, where all the other quantities (B, p, v 7, and gas-dynamic and
magnetic energy fluxes) vary significantly. The absorption of the heat flux
begins at distances of x ~ /, i.e., at the outlet of the current sheath to the
insulator side, where the variations of the rest of the fluxes in equation
(6.5.3) are small by comparison with their characteristic values in the
current sheath. Consequently, the whole region is divided into two zones:
Zone I of the current sheath, where Q in equation (6.5.3) can be disregarded,
and Zone II of heat flux absorption, where in equation (6.5.3), apart from Q,
one should leave only the terms of the first order of smallness for the
velocity v.

The subscripts 0 will denote the quantities in the forepart of the discharge
region (on the side of the nonvaporized insulator), and the subscripts 1,

* If the plasma in the complete magnetohydrodynamic problem is optically thick.
Otherwise, the flux O should be determined by the conditions of the complete problem,

while within the H-thrown discharge problem of interest to us, this flux will be an external
parameter (this case is discussed at the end of the section).
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those in the rear part. As the insulator density is high, v = 0. The heat flux
does not penetrate deeply into the insulator, and therefore Q, = 0.

At the outlet of the current sheath, the current density is equal to zero,
which is why it follows from (6.5.4) that

v,B =ck . (6.5.5)
We introduce dimensionless variables:
usv/v,,
h=B/B, ,

q=0/v,-(B’/8x) ,
p=p/p, ,
as well as parameters u and S
u=pyv: /(B /8x),
B=p, /(B /8) .

Then, assuming that the insulator vapor is a gas with the adiabatic index y
and using (6.5.1) and (6.5.5), we rewrite equations (6.5.2) and (6.5.3) in the
dimensionless form

Bp+uu+h®=Bp+h =B+u+l ; (6.5.6)

ﬁ[)’pu+‘uu2/2—q+2h=2ho =ﬁﬁ+%—ql+2 . (657

From equations (6.5.6) and (6.5.7), one can derive a relationship between u

and § by using the smallness of ¢ in Zone 1. Disregarding ¢ and excluding p
from (6.5.6) and (6.5.7), we get
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u={%([5+‘u+1—h2)1—\/5}/§:—j,u, (6.5.8)

where

D=[L(B+u+1—/lz)} _MM(2+E+Lﬁ-2ﬁ) . (6.5.9)
-1 y-1 2 y-1

The analysis of formulas (6.5.8) and (6.5.9) with the use of the conditions of
u=1lath=1and u=0ath=hy>1 shows that for 2 = 1, the sign for the
radical in (6.5.8) should be positive. On the other hand, at the point h=/h_,
u =0 at the interface between Zones I and 11, this sign is negative, which
follows from the condition of p > 0. As the rarefaction shock wave is
unstable, the change in the radical sign should occur at D = 0. In this case, it

follows from the condition D = 0 that dD/dh should be equal to zero at this
point.

Based on these conditions, we find the relationship between u and £ in the
parametric form
_2R2y7 (h.=D)(yh,+2-7) |
v+l (vh—y+1)’
B=u@’-1/yh+hl-u-1, (6.5.11)

where £+ is the parameter.

(6.5.10)

Dimensionless quantities of the magnetic field %, and pressure py in the
insulator* can be calculated from equations (6.5.6) and (6.5.7)

hy=1+u/4+By/2(y-1) ; (6.5.12)

po=l+(+u-n/p . (6.5.13)

* The presence of pressure p, = 0 in the insulator at high magnetic fields (B = 10 MG) may
lead to the occurrence of pronounced electric conductivity, and the theory set forth here will
be invalid in this case.
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Note the presence of a limitation on the range of variation of u and f. The
analysis of the function /(x) at #,u — 1 (Eq. (6.5.4)) shows that the finite

solution exists only if the following inequalities are fulfilled:
YB<u=2+yp.

The dependence u(f) found from equations (6.5.10) and (6.5.11) fulfills the
first of them. The second inequality is nontrivial. It coincides with the
condition for the total speed of sound c;

¢l =Bl /4mp +yp,/ p, =V, (6.5.14)

which is necessary for the solution to be stable [6.26]. This limitation is
associated with the existence of a limiting vaporization regime under which

v, achieves its highest possible value, Ve = c; (similar to the Jouget
combustion mode).

In order to obtain the value of velocity v;, one must consider the process of
heat absorption in Zone II in more detail. It is shown above that for the
whole length of the current sheath, the heat flux is

0=0 =0,T", (6.5.15)

where T is the vapor temperature in the rear part of the discharge region.
Let us assume that the radiation free path depends only on density and
temperature, /(0,7T) (the gray matter assumption). For the equation of state,
free path and magnetic diffusion coefficient, let us take a power dependence
on temperature and density:

plp=AT"/p" ; (6.5.16)
[=AT’ /o' ; (6.5.17)
K=K/ (p'T") . (6.5.18)

Then, from (6.5.15) we obtain

4/n B2 4m/n-1
ql =O,SB(A£M) ‘u4m/n (;) v18(1—m)/n—1 . (6519)
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Using the smallness of ¢ in Eq. (6.5.7), leaving the major terms in the
expansion for velocity u, we find

- Bp— . (6.5.20)

Here, the function ¢(§) is given by

q(§) =24, f cosBexp(-§/cosb)d(cosh)

for pure absorption of the Lambert source photons in Zone II, since by
virtue of g; << 1, the temperature in Zone II is much lower than 7.
Proceeding to the variables

y=L,
4

14 /J)po
’}/—1 ql

z

u

in equation (6.5.20) and using (6.5.16—-6.5.18), we obtain

£+aza =d_y R (6.5.21)
d§ d§

where

a=i-k+(j+)(1-m)/n;

a-1 (j+D)/n 4+2a
4 246 )
“= a g yGn =TT (6.5.22)
(yﬁp u| B
y-1 7" 8

The solution z(&) of the first-order differential equation (6.5.21) should
fulfill two boundary conditions:

z—=>[(a-1)a&]"*" at E—>0; (6.5.23)

z2(&) = y(§) at E—>oo (6.5.24)

220



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

so we have a problem of determining the eigenvalue of a. Condition
(6.5.23) follows from the requirement of smooth transition to the solution in

Zone I at A — h . Condition (6.5.24) follows from the fact that the cause of

initial insulator heating is the heat flux. If we insert the eigenvalue of a
found after the solution of the problem into equation (6.5.22), we can
calculate the velocity v;.

Let us consider a specific, rather typical case. For PMMA HCs0O,, using the
values of the constants in formulas (6.5.16-6.5.18) in Section 6.1.3, we
obtain o =4.08. The numerical solution of (6.5.21) with boundary

conditions (6.5.23) and (6.5.24) yields a = 2, and from (6.5.22),

0.061, 0.541
y =5.5p0 u

1 /30.345

(B} /8m)"" (6.5.25)

(in units of g, cm, and ps).

Note that the dependence of the solution obtained on the path value is very
weak (the vapor velocity is vi ~ ). Therefore, it is natural to expect that
the inaccuracy associated with the gray matter assumption will also have a
weak effect on the result.

Combined with (6.5.10-6.5.13), formula (6.5.25) gives a correlation between
the vapor velocity v; and the fraction of current diverted to the discharge (1-1/
h, ) as a function of the magnitude of magnetic field Bo. This particular

correlation serves as a boundary condition in the complete MHD problem.

The limiting vaporization regime corresponding to the equality in formula
(6.5.14) is represented by the following values of quantities:

u=2.12,
p=0.091,

h,=1.71, (6.5.26)
p,=3.04,

v, =17(B} /8m)"" ,

Imax

and the limiting power transferred through the insulator surface is equal to
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The quantity g, for the example under consideration in the limiting regime,
q,= 0.099(BO2 /8)"",

is weakly dependent on By, and for By < 10 MG it has a magnitude of ¢; < 0.1

<< 1, which verifies our assumption that the radiation energy flux is small.

To illustrate the solution obtained, Fig. 6.20 shows the plots of the major
magnetohydrodynamic quantities as a function of optical thickness
x (' = (T/ T))") for the limiting regime.

Fig. 6.20. Dimensionless pressure p, magnetic field h, biquadrate of temperature
t*, and velocity u as functions of optical thickness & in the limiting regime of the
H-thrown discharge.

As the velocity v; decreases to a point below the limiting value, the fraction of
current shunted to the discharge also decreases. For example, when

Vi = 0.61Vimax, the fraction of shunted current becomes equal to (14, =0.11
(h,=1.128,u=0.31, 8=0.026 ). However, if the boundary velocity of the

vapor flow from the insulator in the complete MHD problem exceeds Vimax,
there will be a rarefaction wave between the insulator and the boundary [6.26],
since the vapor velocity near the insulator remains equal to 72 yay.

E.S. Pavlovsky and V.B. Yakubov also obtained a numerical solution of the
problem within the framework of a diffusion approximation in the
description of heat transfer. Despite the formal inapplicability of that
approximation, the results are rather close to those above. Specifically, the
velocity vima.x depends on By almost as it does in (6.5.26), and the difference
for By = 1 MG is on the order of only ~10%.
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The range of applicability of the theory presented is bounded on the side of
high magnetic fields by the values of B~10 MG (see the footnote above on
the insulator pressure). Apart from this, the theory should be applicable to
all the cases in which it is possible to describe the equation of state, the path
and conductivity of insulator vapor by power formulas (6.5.16—6.5.18) and
in which the conditions of stationary vaporization are met. The latter
assumes a fairly slow variation of the magnetic field over the time ~ //v,,
during which insulator particles fly away a distance of about a photon path,
such that the intensity of insulator surface irradiation varies slowly as well
and corresponds to the intensity of blackbody radiation of vapor USBT14 .

The values chosen for HgCsO, in formulas (6.5.16—6.5.18) are oriented to the
magnetic fields of B ~ 0.1 — 1 MG and the velocity of v; ~ 10°-107 cm/s in
order to theoretically analyze the process of insulator vaporization in
magnetic fields stronger than B ~ 10* G [6.24, 6.25]. Note that although these
values of the parameters have not been calculated specifically for the fields of
B~ 10" G used in the experiments of Keck [6.24], the calculated results for
the velocity v; and shock velocity in the magnetic shock tube show
reasonably good agreement (taking into account the possible pronounced
difference of the insulator irradiation intensity from blackbody radiation of
the vapor because of small optical thicknesses in Keck [6.24]) with the
experimental values in the order of magnitude and yield nearly the same
dependence of velocities on the magnetic field: with B changing by an order
of magnitude, velocities in the experiments changed by a factor of 2-3.

We also obtained formulas to describe the vaporization of ceramic insulator
Al,O5 both for the case when the heat flux incident on the insulator surface

equals o 55714 and for the case when it is defined from outside (determined

by the whole body of plasma and dependent on the system geometry). In the
units of g, cm, 107 s, for the first case:

0.091 . 0.536

v =06112 L

0.385
0.294 Bl 2

and for the second case, the velocity

0.291 0.616
v, =0288 PP I g (6.5.27)
0"
depends on the flux Q incident on the insulator surface. Along with other
formulas, these formulas make it possible, when the values of By and B; are
known, to also find the pressure p and the density p of the vapor flowing out
of the discharge (for AL,O;, we assume y = 1.2).
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In Garanin et al. [6.27], we performed numerical simulations for
experiments involving the acceleration of liners deposited on the surface
of cylindrical PMMA HgCs0, and ceramic Al,O; insulators, with account
taken of the vaporization of these insulators induced by the radiation flux
determined by the whole body of plasma (i.e., using formula (6.5.27) for
Al,O5 and a similar formula for HgCs0,). The range of magnetic fields in
these experiments was B ~ 0.6 MG, and characteristic velocities were
~5-10° cm/s. The simulations and the experiments demonstrated good
agreement, and vaporization intensity for the ceramic insulator turned out
to be higher than for PMMA in both simulations and experiments.

6.5.2. Discharge Maintained by Electron Thermal Conductivity

The effect of an H-thrown discharge can be reduced by attenuating the
radiation fluxes, e. g., by changing the installation geometry, using special
shields to protect the system from radiation, etc. Even in the absence of
radiation, however, if a discharge occurs, it can further be maintained by
the electron thermal conductivity of plasma and can result in branching of
part of the current from the load and in the entry of the plasma of the
insulator material into the load volume. In the absence of radiation flux,
the deleterious effect of these processes is weaker. In this sense,
discharges maintained by electron thermal conductivity are characterized
by minimum values of the shunted current and flow of the insulator
material into the load volume.

Here we analyze an H-thrown discharge for a ceramic insulator (Al,O;) in
the range of high magnetic fields (above 0.1 MG) in the absence of
radiation. For ionized insulator vapor, the Lorentz plasma approximation is
used. The plasma is considered magnetoactive. The effect of magnetization
on the thermal and electric conductivity is taken into account. In addition,
the Nernst effect is included as well, which, generally speaking, makes a
contribution to the heat flux of the same order of magnitude as electron
thermal conductivity, and to the electric field, of the same order of
magnitude as plasma resistivity.

In this case, the statement of the problem is the same as in the previous

section (Fig. 6.19, system of equations (6.5.1-6.5.4)), but the heat flux is
determined by the electron thermal conductivity and the Nernst effect, i.e.,

Q=—X~d—T+élj (6.5.28)
dx e

(where 7 is the electron thermal conductivity, j is the current density, and
the coefficient b/e describes the Nernst effect). The problem allows arbitrary
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multiple ionization of the insulator vapor. The presence of the Nernst effect
also leads to the necessity of adding a corresponding term to the Ohm’s law
(6.5.4), which will take the following form:

E=L+-wp-2% (6.5.29)
o
For magnetoactive plasma:

3T3/2
42ame*Lza
(6.5.30)
3T5/2y

X -—_—
42me’ Lz

where L is the Coulomb logarithm, z is the root-mean-square ion charge, and
ul

the quantities , b, y in formulas (6.5.28-6.5.30) correspond to « , B, x|

in Braginskii [6.11] and are calculated using approximate formulas

ro2 !
oy +ao,
A

p_ VBB
A . (6.5.31)

oa=1

y=y{y2+y;
A
A=y4+51y2+60

Here y = w,7, is the degree of electron magnetization, and the coefficients
(o, a;, etc.) are chosen for the ion charge z — % by sequentially using the

Lorentz plasma approximation, because the temperature in the discharge
becomes rather high, as does, consequently, the degree of ionization.

The transport coefficients of a magnetoactive plasma are linked to the
corresponding coefficients of a nonmagnetized Lorentz plasma oy, ) by the
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relations x =lXL =0.08yy, and a=&al =3—ﬂGL , where a and v,
Y a 32a

according to (6.5.31), are determined by plasma magnetization and depend on
T, p,and B, and a, 1 @, ¥, are aand y for zero degree of magnetization y.

By substituting the values of quantities at the inlet (subscript “0”’) and outlet
(subscript “1”) of the current sheath into conservation laws (6.5.1-6.5.4), on

the basis of the changes made the set of equations defining the problem can
be rewritten as

[ov=pp,

) B’ ) B’ B’

Vi+p+—=pVv +p +—L=p +—2
Oy e TP T A e T P e,
3 2 2
pv Y osw|+-EB- d—T—b—ch—B=pl =+, +LEBI=LE

2 dx 4me dx 4 4w

—KZI—B+VB=CE+éZ’—T (6.5.32)
‘ x e dx

Assuming the ionized insulator vapor to be a gas with the adiabatic
index yT and using an approximate calculation method for the region
of multiple ionization (the multiple ionization Saha equation) [6.15]
and the formulas for the thermal and electric conductivities of a
nonmagnetized Lorentz plasma y; and oz [6.12], we obtain the
interpolation formulas p ~ T"p", x. ~ T'"0/, and k;~ T"'p” and the
effective adiabatic index in a certain interval of temperatures and
densities for a specific type of insulator. We will use the units g, cm,
and ps, MG for the magnetic field, and eV for the temperature. For
the ceramic insulator (Al,O3) in the temperature range of 3-30 eV
and in the density range of 10™ — 10” g/cm’, we obtained the
following approximate formulas:

p(T,p)=3.8-102T"p"m=1.417, n=0.917
x,(T,p)=1.84-10"°T" p’i=0.825, j=0.158

2
C

Kk (T,p)=——
AP = e o)

=0.173-T"p~’
yp=12
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The values of the quantities calculated using these formulas for the given
temperature and density ranges, differ from those calculated using the Saha
equation [6.15] and the refined Coulomb logarithm (Section 3.2.3) by no
more than 5%.

In accordance with our method of solving such problems, the measurement
units for the temperature [77] and density [p], which define the characteristic
quantities of the problem, are found from the condition of equality of the
magnetic diffusivity k and the thermal diffusivity, x =(yr — 1) xi. T/yrp
(assuming that the characteristic plasma magnetization y ~ 1, which follows
from the equality of the magnetic diffusivity and the thermal diffusivity; for
definiteness of the choice of measurement units, we will equate the values
of the magnetic diffusivity and the thermal diffusivity for y = 0) and from
the condition of equality of the thermal pressure to magnetic pressure (for
definiteness, as a unit of measurement for pressure we will use the magnetic
pressure at the outlet of the discharge region):

2

[p]= p(T L0 = 25
87 .
x,((TLLoD = &, (T1IP])

Solving these two equations yields

[T]=101-B"*"

[]=8.37-10° B . (6.5.33)
. 1
We introduce dimensionless variables
[=%’ }"=[—l)]’ u:l, h=§’
v
p ! ! (6.5.34)
p P mon X
p = = V , E =—
[p] B/8n [+]
where [x] is found from the relation [x]= M , which, in view of
vl
(6.5.33), yields
[x]= 1.71-10'3\ﬁ3;0-816 . (6.5.35)
u
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We introduce the same dimensionless parameters as in Section 6.5.1

P oV
p=—tr_ u-_P (6.5.36).

B/8x " B'/8%

and the constant g =2 Iy

rr=1
(6.5.32). We substitute the relations cE = v\ B, and w =yr p/( yr— 1) p into
the third and fourth equations and divide the first equation by v[p], the
second by B,*/8x, the third by v,B,*/16x, and the fourth by v,B;. From the
first equation, we obtain the relationship between the dimensionless density
and velocity 7 = r/u. Substituting it into the other three equations (6.5.32),
we arrive at the system

and we proceed to consideration of the system

wu+r" "y + b =+ B+ 1

i + gt + 4h = 0.08ygr’ t“’u-f \/_bt— u+d+gf . (6.537)

320 i B 1e b\/7 dt

3r ! d§ 4 dE

Here, ¢, u, and & are unknown functions of the variable &, and w, §, and r,
are the parameters. From the first and the second equations in the system
(6.5.37), setting u = 0 and disregarding the derivatives, we obtain the

following expressions for the magnetic field and pressure in the insulator

1
b= (u+4+gp)
=M+ﬁ+1—h02

Using the chosen units of measurement, one can express the degree of
magnetization of the insulator material plasma as

y=o =—f/ Ir (1+1) PR (6.5.38)
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Since we use the Lorentz plasma approximation, considering z large
enough, we obtain for yy=1.2

_ e ki-m o n—j
o1, =051-7"t""u"h .

Using the dimensionless variables, original equations (6.5.37) can be
converted to the set of equations of the type

dt du
al d_§ + bl d_g = Cl
(6.5.39)
dt du
a,—+b,—=c,
d& d&

Here, t and u are functions of the variable &, the coefficients a; a», b1, 1,
and ¢, depend on ¢ and u, and u, B, and r; are the parameters.

To solve the problem, one must integrate equations (6.5.39) with the
boundary conditions u(0) = =0, #(0) = =0, u(®) = u; =1,
H(o)=1= (/3/’1”)1/ ” and three free parameters u, 3, and 7.

The initial and terminal points are singular, and to come out of them, we
used expansions in powers of §& The coming out of the terminal point was
defined uniquely by the parameters and boundary conditions, and the
coming out of the initial point contained an arbitrariness associated with the
probability of a nonzero heat flux coming out from the discharge zone into
the insulator.

The expansion near the initial point corresponds to the primary plasma
heating via electron thermal conductivity (i.e., the Joule heat release in this
region is small by comparison with the heating due to thermal conduction,
and the heat flux at the discharge region boundary is equal to zero), and in
the vicinity of the initial point, the plasma is not magnetized.

The expansion near the terminal point is determined by the exponential
character of the MHD quantities” movement to their final values.

For the given discharge mode, which can be characterized by one
parameter, for example, u, it was necessary in solving the equations to
select the two other parameters (3, 1) in such a way as to obtain a solution
with the given boundary conditions. In this case, it turned out to be
necessary to pass through a singular point at which the flow velocity
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becomes equal to the thermal sound velocity v’ = yg . By varying one
o

parameter, one can manage to arrive at this singular point after coming out
from the initial point by the specified expansion; by varying the other
parameter, one can arrive at the same singular point coming out from the
terminal point. As a result of the solution, for each u we obtain particular
values of 8 and ry, i.e., the functions B(u) and r(u) characterizing different
discharge modes.

Fig. 6.21 shows the structure of the current zone, i.e., the plots of the
dimensionless MHD quantities as a function of the coordinate x at u = 2.
Fig. 6.22 shows plots of B(u) and ().

w\

5 10 15 20 é‘

Fig. 6.21. Spatial distributions of the dimensionless MHD quantities for u =2.
1) magnetic field h(§), 2) temperature t(E)/t;, 3) velocity u(&) u(&), 4) degree of
magnetization y(&).
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Fig. 6.22. Plots of the functions [3(u) and ri(u).
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For the limiting insulator vaporization regime, the limitation (6.5.14)

usu,  =2+y.p

is satisfied by the calculated values pin.x = 2.08, .= 0.0675, and
Fimax = 0.439.

The calculated values of the parameters u, B, and | and the corresponding
values of dimensionless /¢ are given in Table 6.2. Table 6.3 presents the
values of the magnetic field B, velocity v;, density p, and temperature 7 at
the outlet of the discharge, as well as of the electric field £ in kV/cm, all
calculated in accordance with (6.5.33-6.5.34 and 6.5.36) using the formulas

B
B = -0

hO
T] =t [T] =101 - ﬁo.706’]-0.647}’0-0.4153(())4415
pl =837 10—4 . rlho—l,54Bé454 (6540)

0.5
B2
vl = M_] =6.9- (ﬂ) ho—0.23B(()).23
8o, n

¢ h

0.5
v u _123pl23
E=—‘Bl=69-(—) h'*B,

for a magnetic field in the insulator By = 1 MG.

Table 6.2. Dimensionless discharge parameters.

u B r h,
0.01 0.00070 0.117 1.0046
0.1 0.0068 0.222 1.045

0.2 0.0130 0.265 1.089

0.5 0.0288 0.331 1.211

1 0.0477 0.384 1.393

1.5 0.0597 0.415 1.554

2 0.0668 0.436 1.700
2.08 0.0675 0.439 1.722
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Table 6.3. The dependence of the major MHD parameters on discharge

intensity for a magnetic field in the insulator By =1 MG.

B, MG Vl,@ p,, 107 -£ T, eV X

u 1 Ky Cl’}’l3 ’ cm
0.01 0.995 20 0.98 24 20.0
0.1 0.957 46 173 7.8 43.9
0.2 0.918 59 1.94 10.8 53.9
0.5 0.826 81 2.06 15.7 67.0
1 0.718 103 1.93 19.2 74.1
15 0.643 118 1.76 20.4 76.2
2 0.588 131 161 20.6 76.9
208 | 0581 132 1.59 20.5 76.9

Using formulas (6.5.40), one can suggest the following method for
calculating the H-thrown discharge. From the formula for the electric field
in (6.5.40), based on the initial fields £ and B and using Table 6.3, we find

the parameter u. Next, using the known u we recover 8, r|, and h, by means

of Fig. 6.22. Then, using the remaining formulas of (6.5.40), we obtain all
plasma parameters at the outlet of the H-thrown discharge zone in the
absence of radiation flux. These parameters can be specified as the
boundary conditions in full MHD simulations of particular assemblies and
facilities.

It is worthwhile to compare the modes of an H-thrown discharge due to
plasma radiation (radiation-maintained discharge, RMD) and the discharge
maintained by electron thermal conductivity (electron-thermal-
conductivity-maintained discharge, ETCMD). Figs. 6.23 and 6.24 show the
plots of the mass flux and the fraction of the current shunted off to the

discharge (61 = l—hi ) versus electric field for B = 1 MG (the solid lines

0
are the results of the ETCMD calculations including all essential effects;
and the dashed lines are the results of the RMD calculations). The ETCMD
case yields current branching that is one-tenth and mass flux that is one-
fifteenth that of the radiation case for the field £ corresponding to the
limiting insulator vaporization mode (and maximum current diversion) in
the RMD (radiative) case for B, = 1 MG. For £ corresponding to 6/ =10 %
in the radiative problem, the current branching for the ETCMD case is one-
third that of the radiative case, and the mass flux is one-fourth. Thus, even
for a discharge occurring on the surface, its adverse effect is smaller in the
absence of radiation incident on the insulator surface (for example, if the
insulator is shielded from radiation).
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PV cm%-ps
0.008
0.004
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Fig. 6.23. Mass flux p;v; at the outlet of the discharge zone versus electric field E.

ol
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0 20 40 60 kvfem

Fig. 6.24. Fraction of the current shunted off to the discharge I versus electric field E.

CONCLUSION

We considered a plane problem for a stationary surface discharge that arises
when a magnetic flux emerges through an insulator surface in strong
magnetic fields. The discharge takes place via the insulator vapor, and part of
the released Joule heat is transferred by radiation or thermal conductivity to
the insulator and causes its evaporation. Essentially, obtaining a relationship
between the quantities at the inlet and outlet of the discharge region requires
more than using just the integral conservation laws; one must also solve the
problem of the region’s structure. To solve this problem, we consider a set of
stationary MHD equations and account for heat transfer.
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If the heat flux is determined by the radiative transfer, the radiation flux turns
out to be small by comparison with the Joule heat and the material’s energy
flux. Using this circumstance and the assumption of gray matter and a power
form of the equation of state, as well as of radiation path and conductivity
dependent on temperature and density, we can solve the discharge problem
analytically. We found the dependence of the velocity of the plasma flow from
the discharge, as well as of plasma density and temperature, on the magnitude
of magnetic fields in the nonvaporized insulator and at the outlet of the current
sheath. It is shown that there is a limiting insulator vaporization mode in which
the velocity of the plasma flow from the discharge reaches its maximum
possible value. The velocity corresponding to the limiting vaporization mode is
(for PMMA)

v, =17(B} /87)"",

Imax

(in the units of g, cm, ps), the fraction of current shunted to the discharge is
o = 0.42, and the limiting power transferred through the insulator surface is

v.B,B, /47 =20(B: /87)"'* .

The steady-state discharge conditions, when the magnetic field passes
through the insulator surface, also exist if the discharge is maintained by
electron thermal conductivity, subject to the involvement of all relevant
effects, including plasma magnetization and Nernst effect.

If the insulator surface is protected from radiation, for the same magnitude of
the electric field (e.g., for the same velocity of liner acceleration), the H-thrown
discharge produces a much smaller adverse effect. In particular, the mass flux
of the insulator material to the load volume is reduced by up to a factor of 15 by
comparison with the radiation maintained discharge, and the branching of the
current is reduced by up to a factor of 10, depending on the vaporization
conditions (the higher the vaporization rate, the greater the differences).

The discharge characteristics obtained can be used as boundary conditions
in calculations of different units, in which the magnetic flux is transferred
through the insulator surface. If the radiation flux is unknown, the results
obtained for the electron-thermal-conductivity—maintained discharge can be
used to estimate the minimum discharge parameters.

The influence of the H-thrown discharge on the performance of physical
facilities can be illustrated by MAGO experiments, in which the flow of a
large amount of H-thrown discharge-vaporized insulator resulted in strong
long-period magnetic field oscillations (Fig. 2.3) measured by B-dot probes
in the chamber.
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7. MAGNETOHYDRODYNAMIC (MHD)
INSTABILITIES AND THEIR EFFECT ON PLASMA
AND ITS COMPRESSION

As arule, the magnetohydrodynamic (MHD) plasma flows in the MAGO-
MTF systems are unstable. In order to analyze and understand the process of
the development of these instabilities, we need to study their linear stage,
which determines the conditions of their growth and the increments of the
growth, the patterns of their development in the nonlinear stage, and, finally,
the properties of the occurring turbulent flows and their effect on the system’s
operation. We will study MHD instabilities in that order in this chapter.

7.1. Linear-Theory Instability Development

The problem of a tangential discontinuity instability in a cold plasma
with a magnetic field perpendicular to the velocity jump and the problem
of a convective instability in an azimuthal field in the presence of
acceleration, including problems of Rayleigh-Taylor and “sausage”
instabilities in an azimuthal magnetic field as examples of limiting cases,
will be evaluated as important problems in the study of the linear stage
of development of MHD instabilities.

7.1.1. Instability of the Tangential Discontinuity in Cold Plasma with a
Magnetic Field Perpendicular to the Velocity Jump

Landau [7.1] found that for sufficiently high velocity v, the tangential
discontinuity in a compressible gas can be stable with respect to oscillations
of the discontinuity surface with the wave vector g parallel to the velocity
jump v . Syrovatskiy [7.2] indicated that, in this case, the discontinuity
remains unstable relative to oscillations with wave vectors directed at an
angle to the velocity jump and satisfying the condition:

veosg<(c” +c7)? (7.1.1)
where @ is the angle between ¢ and v, and ¢, and c, are the sound speeds
on both sides of the discontinuity.

There is a broad class of MHD flows in which the magnetic field B is
perpendicular to the velocity: Z- and ©-pinches, plasma accelerators,
explosive-magnetic generators, etc. For such flows, it is of interest to
analyze the stability of tangential discontinuities. In this analysis, the case
¢ =0 (motion in a plane perpendicular to the magnetic field) is reduced to

the hydrodynamic (HD) case, and the stability condition (7.1.1) holds for
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sufficiently high velocities of the discontinuity. But the case in which § has

a component along B can be stabilized as a result of the tension of the
magnetic field lines. Thus, we can expect that such tangential
discontinuities with high velocities can be stable or that the instabilities in
them will develop more slowly than in the case of the HD discontinuities.

The case of a cold plasma with 8 <<'1 (B is the ratio of plasma pressure to
magnetic pressure) is of particular interest, because, for a plasma with

B >> 1, the force effect of the magnetic field is not high and can be
disregarded in the first approximation when the instability is considered. In
that approximation, the discontinuity will be unstable for any velocities, just
as it is in conventional HD. The case of an incompressible fluid (i.e., f>>
1, ¢ >> v), considered for magnetic fields arbitrarily directed along both
sides of the discontinuity [7.3], in the situation of interest to us, Blv , to
be sure, yields an instability. Note that in the case of plasma motion along
the magnetic field, the instability occurs at high velocities [7.3, 7.4].

Gonzales and Gratton [7.5] studied the stability of a tangential discontinuity
for an arbitrary relative orientation of the vectors B and v and a
continuous plasma density at the discontinuity. In this Section, we follow
Garanin and Kuznetsov [7.6] and use a different method to analyze the
instability. In the case of interest to us — B L ¥ and discontinuous plasma
density—we obtained a relatively simple dispersion relation that allows us
to prove that, a tangential discontinuity in this configuration is unstable for
any velocity and to analyze the behavior of the growth rates.

Dispersion Equation

We choose the configuration with the magnetic field EO aligned with the
zaxis and parallel to the discontinuity plane y =0 as the initial stationary

solution. We assume that, for y < 0, medium 1 is immobile, and, for y > 0,
medium 2 moves with velocity v || x (Fig. 7.1). The equation for small

oscillations of an immobile, ideally conducting cold plasma (8= 0) is
written as follows [7.7]

|

2 _ az‘%’
2=’V divE +c'—L (7.1.2)
! 0z

[o5]

(o5

where 5 is the displacement of the plasma particles, V and é | are the

transverse components (with respect to EO ) of the gradient operator and
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0

4o

displacement, respectively, and ¢ =

is the Alfven velocity. The

densities of media 1 and 2 are assumed to be different, p, and p,, and,
consequently, the velocities ¢, and ¢, in these media are also different. The

transition from the plasma rest frame to the frame where the plasma moves

with the velocity v is performed by the substitution of &i - §+ AR
t t

—

B,

o1 0 Fig. 7.1. Geometry of the problem.

oy

The perturbation of the discontinuity surface is presented in the form
exp(igr) , (7.1.3)
and the dependence of all quantities on the y coordinate and time is searched as

exp(—iwt +iK,,y) , (7.1.4)
where k| and k, correspond to media 1 and 2, respectively.
We substitute dependences (7.1.3) and (7.1.4) into (7.1.2) to obtain
w’ =c}(q’ +K3) (7.1.5)
for medium 2 and
(w-v§)* =c/ (¢ +K]) (7.1.6)

for medium 1 with allowance made for its motion.

The displacements &, at the interface between these two media should
obviously equal each other,

E(r=0)=E,(y=0)=§, .
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We can find one additional relationship between the displacements 5 of the
interface, taking into account the fact that the magnetic-field pressures at the

boundary are equal, B12 = 322 and expressing the magnetic field perturbation
B’ via E [7.6],

B'=-B,divE +B, % :
to obtain
9,5,+x8,=985,+K5, . (7.1.7)
fory=0.

Relationships (7.1.5-7.1.7) and equation (7.1.2) yield the dispersion relation

(xzz— c;zzsinzzqﬁ) _ [(xz— veosg)” — c;fsinzzqﬁ] , (7.1.8)
¢, (x"=c) ¢ [(x=vcosg)” —c; ]

where x =w/¢q. The obtained equation differs from HD [7.2] only by the
fact that in the HD we have 0 instead of sing .

2 2
Both sides of the relation (7.1.8) coincide if (1) = (m) .
C2 cl
Consequently, two of the six roots of (7.1.8) are known (these roots are real
and do not lead to instability), and thus we can reduce the order of the
equation. As a result, we obtain the following fourth-order equation with

respect to x:

(x-veosp)’x> x*  (x-vcosg)
2 2 -t 2
cl CZ CZ cl

—1+cos’p . (7.1.9)

The HD equation [7.2] again differs from (7.1.9) only by the fact that there
should be 0 instead of cos'¢ —1 on the right hand side.

Instability of the Tangential Discontinuity

For the velocities

2/3 2/343/2

v<(c," +c;
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the case ¢ = 0 (which is reduced to the HD case), will, as in hydrodynamics,
result in instability. Therefore, to analyze whether the flow is stable, it is
sufficient to consider only the following velocity range:

v> (P +c)” (7.1.10)

To prove that the flow is unstable, it is sufficient to find just one angle ¢,
for which the flow is unstable. However, for (7.1.10), the velocity meets the
condition

v>c +e, ,
and we can find the angle ¢, for which
veosp =c, +c, .

For this angle ¢, the real roots of the equation (7.1.9) rewritten in the form:

2 4
(x-c,-c,) 14508 )]
c? x’

1
-1
C

2

are determined by the points of intersection of the curves assigned by the
left- and the right-hand sides of this equation (see Fig. 7.2). Fig. 7.2
shows that, in this case, there are only two real roots. Consequently, the
other two roots are complex conjugate and, therefore one of them
corresponds to the instability.

AT

-G (&}

Fig. 7.2. Curves whose points of intersection determine the real roots of the
dispersion equation for vcos@p = c; + c;.
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Instability Increments and Domain

Although the MHD tangential discontinuity turns out to be unstable at any
velocity (as in the HD case), it is of interest to consider the effect of the
magnetic field on the instability increments and to compare them with the
HD increments.

Below, for brevity, we will call y = Imx as the “increment” (in fact, the
increment equals gIMx, i.e., it is proportional to the wave vector).

For definiteness, we assume that ¢; > ¢, and move to the dimensionless
.. . . v c X

quantities by designating u=—, c=-1, x="-,and y= r.

c

2 CZ CZ C2

First, we consider the behavior of the increments in the case of identical
media, ¢ = 1. In this case, in the low velocity range, the analysis of the

equation (7.1.9) shows that, for u < \/3 , the HD and MHD discontinuities
yield the maximum increment at ¢ = 0, which is equal to

2

y = \/1+u2—1—% : (7.1.11)

. . . . 3
For u> \/3 in the HD case, the increment is maximum when cos¢=—— and
u

remains equal to

y =05. (7.1.12)

In the case of MHD, for velocities u, > u > \/3 (where the velocity u is
determined such that

2 1
cosz¢=”—(——1) (7.1.13)
2\J1-16/4*

is equal to unity), the maximum increment remains equal to (7.1.11), and, for
u > uy, it corresponds to the angle ¢, determined from (7.1.13) and is equal to

4 4
y = u__l_u_ I_E .
e 8 s\
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The dependences of the maximum increments on the velocity for HD and
MHD discontinuities for ¢ = 1 are shown in Fig. 7.3a. For this case,

Fig. 7.4a shows the domains of the angles corresponding to the instability as
functions of u. The curves presented were obtained by solving equation
(7.1.9) and the equation for conventional HD. Along with the instability
boundaries, Fig. 7.4a shows the dependence ¢(u) corresponding to the
maximum increment. From Figs. 7.3a and 7.4a, we can see that for high
velocities in the MHD, the maximum increments and the instability domain
are substantially smaller than those in the HD case, and we can expect these
MHD discontinuities to spread into the turbulent areas considerably slower
than HD discontinuities.

(a)

05T e

Y

04 +
03+
0.2 +

0.1+

0 I I I I } I

Y

16
141
12 |
1 L
08 t
06 |
04 t
02t

0 1 1 1 1 1 J
0 5 10 15 20 25 30

Fig. 7.3. Maximum increment versus the velocity in MHD (solid curves) and
conventional HD (dashed lines) for (a) c; = c; and (b) c; = c».
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Fig. 7.4. Domains of the angles corresponding to the instability as functions of the
velocity in the MHD (solid curves — domain boundaries) and conventional HD
(dashed curves — domain boundaries) for (a) c; = c; and (b) ¢; = 10 c;.

Now, we examine the case ¢ >>1, when the densities of the media on both
sides of the discontinuity are substantially different. In this limit, for both
HD and MHD cases, the increments are maximum for the same angles ¢.

Forc—u>>c¢

'3, the maximum increments are also equal for both HD and

MHD discontinuities and are equal to

u
yrﬂ(Lx - 2 2
¢ -u
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For u > ¢, the angle corresponding to the maximum increments in HD and
MHD cases is determined by the condition

c
cosp=—,
u

and for ¢* >> 1 > ¢, the maximum increments are the following:
(7.1.14)

for HD and

1/3
3
ymax (2114 )

2

for MHD. Comparison of the maximum increments and instability domains
in MHD and conventional HD obtained from the solution of the equation
(7.1.9) and the equation for conventional HD for ¢ = 10 is presented in
Figs. 7.3b, 4b. Here we see again that, for high velocities, the maximum
increments and the instability domains for MHD-discontinuities can be
substantially smaller than those in the HD case.

For high velocities # >> ¢ and arbitrary values of ¢ in the MHD case, we
obtain the maximum increment

Ne(e+1y

" 20
which decreases as u increases. The angle at which the increment is
maximum is determined by the relationship

c+l
cosp=——,
u

whereas in the HD case, the maximum increments remain constant for

u—> o, as can be seen from expression (7.1.12) for ¢ = 1 and expression
(7.1.14) for ¢ >> 1.
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CONCLUSION

We have shown that the MHD tangential discontinuity in a cold plasma
with a magnetic field perpendicular to the velocity jump is unstable for any
discontinuity velocities. However, for high discontinuity velocities in the
MHD case, the increments and the wave-vector domain corresponding to
the instability turn out to be substantially smaller than those in the HD case.
Therefore such discontinuities in MHD should spread into turbulent areas
considerably more slowly than in the HD case. This can lead to effective
decrease of the turbulent viscosity for supersonic plasma flows, and make it
possible to accelerate the plasma to high velocities in plasma accelerators
using supersonic flows.

For example, in the MAGO chamber when plasma flows through the
nozzle, the plasma velocity changes from v = ¢ in the narrowest region of
the nozzle to v ~ 4¢; simultaneously, the density changes across the nozzle
approximately by an order of magnitude, and the velocity changes by a
factor of three. This corresponds to the fact that for the maximum velocities

c . . A
—L ~3, and the change of the velocity across the nozzle is u = V3.
c c
2 2
Hence, in the region of the supersonic flow, the instability caused by such

high velocity gradients can be suppressed by comparison with the HD-case.

Another example of the application of the obtained results is the supersonic
flow in the Z-pinch waist (see Section 7.2.1). Due to the inhomogeneity of
the plasma density on the radius, the plasma velocities on different radii
may differ from one another considerably. The magnetic field penetrating
the waist at different stages of its formation can also stabilize here the
instability caused by the velocity gradients.

7.1.2. Convective instability in an Azimuthal Magnetic Field in the
Presence of Acceleration

When plasma moves in an azimuthal magnetic field, convective instability
may develop that is analogous to the convective instability of nonuniformly
heated gas in a gravitational field [7.8]. Both acceleration of plasma
(gravitational Rayleigh-Taylor instability) and the curvature of azimuthal
magnetic field lines (“sausage” instability, whose development causes the
magnetic flux “going down” to a smaller radius) can lead to the instability.
Both in Rayleigh-Taylor and in “sausage” instabilities, the shortest
wavelengths are known to be the most dangerous. In case of smooth
distribution of density in the Rayleigh-Taylor instability or of the magnetic
field in the “sausage” instability, which is realistic for most flows due to the
presence of heat conduction, mixing, and magnetic diffusion, the increments
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of those instabilities’ developments, when the wavelength tends to zero,
should tend to a constant limit that is dependent on the gradients of the
corresponding quantities. We are going to consider the problem of the
calculation of those limiting increments for the wavelengths that are short
by comparison with the characteristic dimensions of the flows, for
simultaneous action of Rayleigh-Taylor and “sausage” instabilities in the
azimuthal magnetic field.

Assume that plasma is moving with the acceleration g directed along the
radius, which means in the reference frame moving with it that it is in a
gravitational field that has the acceleration -g produced by inertial forces.
All the quantities are considered to be dependent on » only. The plasma is
assumed to be in hydrodynamic equilibrium

9
_pog_ﬁ_izi(FZBj/gn):o , (7.1.15)
ar r°or

The subscripts 0 designate the equilibrium quantities, and B; /87 = p) is
non-perturbed magnetic pressure.

Now we write the system of equations determining the perturbed motion
under the assumption that the perturbed quantities dependence on z* is
expressed in the form of an arbitrary multiplier with short characteristic
scales. The equation for the plasma elements’ velocity in the radial direction
v =V, is written as follows:

L R I (7.1.16)

(the perturbed quantities are indicated by the subscript 1, and the magnetic
pressure perturbation is designated by p; ). Since we consider the case of

short wavelengths for which constant increments are expected, the leveling
of the total pressure will take place going with magneto-sonic speed:

p+p,=0. (7.1.17)

* We will not consider the perturbations along @ that bend the magnetic field lines, since

it is clear ahead of time that the increments for such perturbations can only be smaller,
which means that, these perturbations are less dangerous.
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The motion will be also determined by the equation for conservation of
magnetic flux and the equation for conservation of entropy, S, which will
have the form (with the accuracy up to the quantities of the first order of
magnitude):

1
2p
9 Ls_ 2P )+v—( pB )=0 (7.1.18)
at p;r pgr ar
Is4vis 0. (7.1.19)
ot ar

The time dependence of the perturbed quantities will be sought in the form
expyt , where y is the increment of the perturbations growth. When we

change the time derivative d/d¢t — y, exclude v and p; from the equations

(7.1.16-19) and express the entropy perturbation via the pressure and
density perturbations using the formula

aS as
ap ) ap ,

we get

2p° 2 af P’
2| P s _|#P g 2 |=0
! {/oor2 or’ pl] ( r plg) or| p°r’

S oS 2p d
yp()( 1+_p1)+(_1_p]g)_so=0 .
ap r or

(7.1.20)

ap

Equating the determinant of the system of equations (7.1.20) to zero, we get
an expression for the increment, which is convenient to express via the
pressure and density gradients, using the identity that follows from the
Jacobian of the thermodynamic quantities

oo
(3]
9P /s

al?
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Finally, using the equilibrium condition (7.1.15), we can write the
expression for the increment as follows:

2 2 2 2
+c+7€/1a7p+267/1 +£ cz/ni LZE _ciip
p or r)op ar\ r 7 or

2 2
C+C/I

gl E

(7.1.21)

(the equilibrium quantities are written with the zero subscripts omitted).

When the magnetic field is absent, the expression (7.1.21) gives the short-
wave increment of the Rayleigh-Taylor instability

2 g Jdnp
=g(=+——
14 g(c2 P )

or, with the reversed sign, the square oscillation frequency for internal
waves [7.8]. In this case, the condition of stability for the one-species gas
(not mixed gases) reduces to the condition that the entropy must grow with
height growth [7.8]

S
—>0.
gar

In the case of absence of the motion (g = 0, “sausage instability”), we can
express the increment via the magnetic pressure gradient using the
equilibrium equation (7.1.15)

2
2 _%

‘}/=

(7.1.22)

dlnp, N 2(cj -c?)
| dlnr cj v |
which yields the instability if the magnetic field decreases with the radius
increasing more slowly than under the law

B~ r—(cj-‘-z)/(ci+c2)

(the instability condition [7.9]), i.e., for plasma with low S, the magnetic
field should decrease more slowly than r™'~#” as the radius increases (for
plasma with y = 5/3); for plasma with high £, the field should increase faster
than r. If plasma is an ideal gas with the adiabatic index y, the expression
for the increment can be rewritten as

2__%61n<15
7> dlnr
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where ¢ = p"? #/B is a quantity proposed in Gerlakh ez al. [7.10]. For

stability, it is required that 88_@ >0 . Note that for each plasma element the
r

quantity ¢ is conserved in the adiabatic 2D flows. When 88_@ <0, the
r

plasma elements with lower pressure (per unit of the frozen-in magnetic
flux) are located on larger radii, and it is energetically advantageous for
them to change their positions with the elements located on the smaller
radii, and thus the instability develops.

The instability development (7.1.21) results in convection and mixing, in
which the released “pinching” energy is converted into the kinetic energy,
and then into heat. Such a process can be qualitatively interpreted as
anomalous resistance. In 2D calculations, this instability is taken into
account automatically, whereas in 1D calculations, which are usually
performed in the channel approximation (i.e., along some mid-line in the
chamber for dependences of the median channel radius r and its cross-
section width on the path along the channel that correspond to the chamber
geometry), it can be simulated using the exponential factors ch([ y df) in the
coefficients of the magnetic diffusion and heat conductivity. The quantity
determined by (7.1.21) can be taken as the increment ¥.

7.2. Nonlinear Development of Instabilities

In the linear stage, the development of perturbations is exponential.
However, after the perturbations grow so much that the linear equations
become unusable, the nonlinear stage should come into force. We will
consider some flows and their properties in the nonlinear stage. The analysis
of these flows and their properties can be useful for the evaluation of
turbulent flows developing when exposed to instabilities.

7.2.1. Nonlinear Stage of the Z-Pinch Instability

As we know, with the deviation of the Z-pinch configuration from the ideal
cylindrical shape, an MHD instability develops. The linear stage of Z-pinch
development was first studied by Trubnikov [7.11], Kruskal and
Schwarzchild [7.12], and Shafranov [7.13]. The study of the nonlinear
development of the most important type of instability—the “sausage”
instability—is the focus of a number of papers referenced in the reviews of
Vikhrev and Braginskii [7.14] and Dyachenko and Imshennik [7.15]. The
study of the development of a waist in “sausage” instability with the
simplifying assumption of plasma incompressibility was the focus of Book
et al. [7.16], who performed a numerical study of the waist development in
the context of the long-wave limit and concluded that the problems of the
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nonlinear waist development in the short-wave limit and nonlinear
development of the planar Rayleigh-Taylor instability are equivalent. In the
long-wave limit, Trubnikov and Zhdanov [7.17] obtained a particular
analytical solution describing waist development, starting with weak
perturbations and going up to an essentially nonlinear stage. In this section,
following the work of Garanin and Chernyshev [7.18], we will consider the
main stages of the nonlinear development of the waist in an ideal
magnetohydrodynamic setting and will show that the final stage of waist
development is the stage described by the self-similar solution to which the
solution of Trubnikov and Zhdanov [7.17] tends for high compressions.

Let us consider an infinite plasma cylinder that is homogeneous over its
cross-section and whose plasma pressure is balanced by the magnetic forces
of the current flowing along the cylinder. The plasma conductivity is
assumed to be infinitely high such that the magnetic field inside the plasma
equals zero. At the initial moment, there is a small perturbation that is
periodic along the cylinder length and is axially symmetrical. For evaluation
of instability development, in this case the effect of the magnetic field is
reduced to the external pressure depending on the plasma boundary radius,

p= pORO2 /¥’ (7.2.1)
(Ro, po are the initial pinch radius and the pressure).

Initially, the perturbations in the linear stage develop according to the
formulas of Trubnikov [7.11], Kruskal and Schwarzchild [7.12], and
Shafranov [7.13], and each harmonic develops exponentially. The nonlinear
stage starts when the radial perturbation amplitude is comparable either with
the wavelength, A (if [ << Ry) or with the radius (if / >> Ry).

Numerical Simulation of Waist Development

Let us consider the question of which self-similar solution the waist
development approaches for a wavelength that is greater than, or on the
order of, the pinch radius (/ = R). Different assumptions regarding waist
dynamics leads to different time dependences of the characteristic
quantities. Thus, for example, if we assume the compression to be adiabatic,
the waist length / to be proportional to its radius R, and, consequently, the
time of plasma outflow from the waist zone to be

t~l/v,~R/v,
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(vr is the sound speed in the waist), we get Vikhrev and Braginskii’s [7.14]
time dependences of the plasma radius, density p, and temperature T

R~ ty/(Zy—l)

o~ (7.2.2)
T ~ ¢207D/2rD
(y is the plasma adiabatic index). If we assume the compression to be

adiabatic and the waist length to be a fixed quantity, the characteristic
quantities will change as follows:

R ~ ty/(y—l)
o~ (7.2.3)
T~t7.

But if we assume that the density to be fixed in terms of the order of
magnitude, which is determined by the initial density, i.e., the waist
configuration contains the shockwave, and / ~ R, then

R~t,
p ~const , (7.2.4)
T~1/t.
Besides the dependences (7.2.2-7.2.4), we can give examples of other
possible regimes of waist development. A series of numerical

hydrodynamic calculations were performed to determine which of the
regimes is realized.

Figs. 7.5 and 7.6 present the waist shape r(z, ) (half of the wavelength) for
A=4R,, y=5/3 for two variants of the initial perturbations:

y= 1—0.02cos% , (7.2.5)
o k2 SCOSE—I
r=1-0.02% (0.2 cos == =1-0.02—— 2 (7.2.6)
k=1 5,2—2003%
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(hereinafter, the initial radius Ry, density po, and Alfven velocity \/2p,/ o,
are employed as the units of measurement).

4
/i
1.5 3
2
1.0 T 1
R
] I 1 1

Fig. 7.5. Waist shape for the initial perturbation assigned in the form of (7.2.5) at
different times: 1) t =0;2)t =2.05; 3)t =2.92; 4) t = 3.52.
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Fig. 7.6. Waist shape for the initial perturbation assigned in the form of (7.2.6) at
different times: 1)t = 0; 2) t =2.05; 3) t = 2.69; 4) t = 3.01.
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Fig. 7.7 shows the waist minimum radius R versus time for the variant
(7.2.5). It was not possible to achieve radial compressions R /R that were
higher than shown in the figures, because of the developing instabilities.
Nevertheless, we managed to go farther than Book et al. [7.16], whose
calculation achieved only R /R~ 1.3.

0 [ 1L
1 2 3 r

Fig. 7.7. Time dependence of the minimum waist radius for the initial perturbation
assigned in the form of (7.2.5). Curve 1 represents exponential perturbation growth
according to linear theory [7.11-7.13]; curve 2, the result of a numerical
calculation.

The calculation results showed that the time dependence of the minimum
radius up to considerably high compressions is described by linear theory
(see Fig. 7.7), although the waist shape at that times is seriously distorted
(see Figs. 7.5 and 7.6). Plasma compression in the waist is nearly isentropic:
for the variant (7.2.5), the maximum volume change of the quantity T /2/p,
which characterizes the entropy, is 9% when the radial compression is 5.2;
for the variant (7.2.6), the maximum change of 7°”*/p is 19% when the radial
compression is 3.8. Another important conclusion from the calculation
results is that the waist length does not decrease as the radius decreases

(see Figs. 7.5 and 7.6).

Thus, the regime (7.2.3) with / = const. is realized for nonlinear waist
development. With the assignment of one harmonic, the waist length / tends
to A. If a set of harmonics is assigned with A >> R, the waist length is
determined by the characteristic length / < A, which is formed at the moment
of transition from the linear stage to the nonlinear stage.

255



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

Note that the waist development under consideration is unstable relative to
the short-wave perturbations. The presence of an additional local
perturbation with a length A’ << A4 should cause, against the backdrop of a
large waist, the formation of a smaller waist with the length ~ A’, for which
the larger waist can be regarded as a pinch homogeneous over its cross-
section. We do not consider here the problem of what will happen in the
presence of a spectrum of chaotic perturbations.

Self-Similar Stage of the Waist Development

When the characteristic quantities change in the regime (7.2.3), the pressure
should set almost constant over the radius, because for / >> r, the outflow
time is great by comparison with the time of the sound propagation along
the radius. For the same reason, the compression remains isentropic. Plasma
flow for sufficiently high compressions will be 1D along the axis, and the
system of equations describing the plasma motion can be written in the form
used by Vikhrev and Braginskii [7.14]

ad 2y 0 )
—(pr)+—(prv)=0,
at(/o ) aZ(;o )

w1 (7.2.7)
ot 0z p oz

1 14
=——=p0"/2.
Let us introduce self-similar variables according to (7.2.3):

x=2z/1,

1 Y y-1 12
- =— 7.2.8
S ) (728)

/
v=——u(x
> (%)

(time ¢ <0 ). Then the system (7.2.7) is rewritten as

d
2/¢—E(u/¢)—0,

(7.2.9)
du do

U+u—-=——— .
dx dx
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The boundary conditions for the system (7.2.9) are
u(0)=0 ,
(7.2.10)
o(1)=0 .

Since the system (7.2.9) does not explicitly contain x, it is equivalent to the
equation

2

apl,_w |, 3, -
du((p 2J+2¢u 0, (7.2.11)

which is homogeneous. Solving the equations of (7.2.11) and (7.2.9), with
account taken of (7.2.10), we get

u=2J(¢/47°*-¢/4 ,

2@ I- /4"

, 7.2.12
> ( )

O<¢p=<4

dependences that can be obtained from the analytical solution of Trubnikov
and Zhdanov [7.17] for high compressions Ro/R >> 1. The plasma
temperature 7 is proportional to ¢, and the waist radius, r, is proportional

to ¢ "*(""). Fig. 7.8 shows the graphs ¢(x), u(x) and the self-simulated waist

radius 7=¢*(x) for y=5/3.
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Fig. 7.8. Waist shape in self-similar stage 7(x) (curve 1), temperature distribution
along the waist length ¢(x) (curve 2), and longitudinal velocity, u(x) (curve 3).

Pinch “Evaporation” Stage for Short Wave Lengths

For short wavelengths, A << R, the instability development is reduced to a
well-studied case of the nonlinear stage of the Rayleigh-Taylor instability
[7.19-7.21]. In this case plasma plays the role of a heavy fluid, the magnetic
field, that of a light fluid, and the role of acceleration is played by the quantity

g=2p/pr.
The magnetic field will penetrate into the plasma as “bubbles” moving

inward with the velocity v ~+/gA , and plasma will “fall” along the radius
with the acceleration g as “spikes” (see Fig. 7.9). This stage we shall call the
stage of pinch “evaporation”. The picture will qualitatively change when the
bubbles approach the axis at a distance on the order of A . Here the
wavelength becomes of the same order with the radius, after which the waist

development enters the stage considered above—the stage described by the
self-similar solution.
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A
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< U k
Fig. 7.9. Waist shape at the stage of the pinch
evaporation (short wavelength): 1) initial
ES perturbation, 2) developed stage.

Let us consider, in general terms, the pinch evaporation. The bubbles’
velocity here will be greater than their velocity in the Rayleigh-Taylor
instability because of the additional compression of the bulk mass by the
pressure of (7.2.1), which increases as the radius decreases. The mass
evaporation rate per unit of pinch length will be determined with the
equation

dm
—=-2vm/R , 7.2.13
dt 0 ( )

where R is the radius of the nonevaporated portion of the pinch,

v,=F\JgA , (7.2.14)

and the constant F is determined by the rise velocity of the bubbles in the
Rayleigh-Taylor instability and approximately equals F = 0.23 [7.20 and
7.21]. Then, with account taken of the fact that plasma compression
proceeds adiabatically,

g=1/REr" (7.2.15)
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v = FL /RO (7.2.16)
and since for the adiabatic compression
m=R*V7 (7.2.17)

(the letter m designates the mass divided by s, for the purposes of
simplicity) for the bubble rise velocity we get

‘2_1: ——yFA I (y=1)ROr"7 (7.2.18)

a quantity that is larger than the Rayleigh-Taylor quantity by a factor of
(y/y—1). Therefore, if we take the time of evaporation of the entire pinch to
be zero time, the pinch radius and time are connected by the relation

(= 20D paroe (7.2.19)
(5y-2)FJA

The plasma leaving the bubble area after passing the distance ~ A moves in
a form of streams virtually freely, driven by the acceleration (7.2.15), since
the pressure manages to equalize across the stream width.

Thus, the velocity of each element after evaporation is determined by the
motion in the potential

-V e (7.2.20)
2(y-1)

However in this case, since the motion of each plasma element starts with
the velocity proportional to the small parameter A << 1, the particles that
emerged later from smaller radii will have velocities greater than those of
the particles that emerged earlier. There is a danger that if the particles that
emerged from smaller radii begin to catch up with the particles that emerged
earlier, the stream cross-section can grow and close the pinch region from
the current source. Let us consider this possibility.
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The stream cross-section S will be determined from the continuity equation

2Sprdr = Adm
that is,
S Arenr 29 (7.2.21)
dm

The dependence r(m, ¢) can be found using the connection between the mass
and the initial radius of the emerged particle (7.2.17) and the energy
conservation law for particle motion in potential (7.2.20)

1(3”) + /FZW-WV:V /m . (7.2.22)
2\ ot 2(y-1) 2(y-1)

The solution of the equation (7.2.22) with initial conditions of (7.2.17) and
(7.2.19) yields r(m, f), and consequently, according to (7.2.21), S(m, t), i.e.,
the implicit dependence of the stream cross-section on the radius.

Since the emerged particles pass the zone » ~ 1 in short times compared
with (7.2.19), then if the d/dm sign change takes place for r ~ 1, the
dar/om < 0 will be also true for » >> 1. Hence, it is sufficient to consider the
zone of » >> 1. For r>> 1 in (7.2.22) we can neglect the potential energy,
and then using (7.2.17, 7.2.19) we can get

_ 2\y(y-1) (L 3y/4(y—1)) 7223
y-FNA\dm ’ (7229

where
__Gr-9FVa
2(y-1)

changes in the course of the pinch evaporation from —1 to 0. The formula
(7.2.23) shows that d7/0m does not turn into zero for # < 0. When we
substitute (7.2.23) into (7.2.21), we get the dependence

2-n)ly
2(y-1)/ _
(r-Dly [17/ /nl P A 1)]

[—r S 4 3y m<4—y>/4(y—1>]
2(y-1)

which, together with (7.2.23), describes the shape of the plasma stream
leaving the pinch region.

(5y—=2)F 2

S=1
2Jy(y-1)

, (7.2.24)
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We shall introduce here a description obtained as the result of the solution
of equation (7.2.22) and correct for arbitrary radii » >> A with the accuracy
of ~ A of the motion of the plasma stream with y=5/3

4

19F2

t=- m'"”® +10m™* (&) , (7.2.25)

where

§ — rl/S /m1/4 ,

J/(§)=§ \/i _1+§\j‘§ _1+ 3 ( 1 1 )_&E

1 1
| arccos—, — arccos —, —— |,
5 8 s g2) s ( 3 ﬁ)

F(¢, k), E(¢, ) are the first- and second-kind elliptical integrals. It follows
from the expression (7.2.25) that the derivative d»/dm, which should be
substituted into (7.2.21) for obtaining the stream shape, equals

§l=\Em““~/1—1/g4(
m

m”® 7 5r
- Jioy [+=L2
Ja 4\/7y)+4m

2F

and the velocity is determined by the formula

|5 4
V= %(1—1/5) i

As for the rising bubble, for its description on the scale of ~A we can use the
known results of the nonlinear stage of the Rayleigh-Taylor instability
[7.19-7.21] with account of the fact that, because of the additional
compression of the entire plasma mass, on that scale plasma can be regarded
as incompressible fluid moving with a speed equal to the difference between
the velocities (7.2.18) and (7.2.14), i.e., with a speed of v/(y—1).
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CONCLUSION

For wavelengths A = R, the nonlinear development of Z-pinch perturbations
that are periodic along the length (but not necessarily harmonic) and are
axially-symmetrical approaches the stage described by a self-similar
solution, to which the analytical solution [7.17] reduces for high
compressions. In the case of short wavelengths A << Ry, the perturbation
development goes through the stage of the nonlinear Rayleigh-Taylor
instability, and the bubbles rising to the axis, after their dimension A is on
the order of the radius R, form the stage of the self-similar solution.

7.2.2. Periphery Plasma Motion Following Z-Pinch Waist Constriction

Section 7.2.1 shows that the final stage of the nonlinear Z-pinch instability
development is the stage described by a self-similar solution, in which the
waist length remains constant, and the radius depends on time as a power
function (7.2.3). Density of the plasma around the waist was assumed to be
sufficiently small and to have no effect on the waist movement.

The motion of the cold periphery plasma near the pinch waist was
considered by Zhdanov and Trubnikov [7.22], who assumed the waist
boundary to move in the periphery plasma at a velocity on the order of the
Alfven velocity c4. As a result of that assumption, there were high velocities
of plasma motion and strong plasma heating. In reality, however, the waist

. R . . .
velocity equals ~ 7vT , where vris the sound speed in the dense waist

plasma, and the ratio of the waist boundary velocity to the Alfven velocity

in the periphery plasma is ~ Ry <<1,since R <</, and I P

! €4 €y Ps

( p, p, are the periphery and constriction plasma densities, respectively).

Thus, the problem contains a small parameter, @ = R <<1 (Tt ~1/v, is the
c,T
time of the waist breakup), and the problem of periphery plasma motion and
its effect on the waist motion can be solved within the theory of perturbations.
In the zero approximation, the current flowing through the waist can be
considered constant, and the waist movement can be assigned. Then,
considering the motion of the periphery plasma for the given boundary
motion, one can determine the correction to the current that compresses the
waist.
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This problem is solved in this section following Garanin and Mamyshev
[7.23]. The periphery plasma is assumed to be cold, the current / in the
plasma at the initial time is constant / = [,, the plasma density initially
depends on the radius » as a power function,

p(rR=R)=p,(r/ R) (7.2.26)

(Ry is the initial waist radius). In accordance with (7.2.3), the time
dependence of the waist radius is considered to be power-law,

~11T=(RIR)* . (7.2.27)

The calculations will be performed with logarithmic accuracy, ~ 1/Inu.

In the first approximation, as the waist compresses, the current can be
assumed to be constant in the region of R < 7 < ryax (¥max 18 the maximum
radius that can be reached by acoustic perturbations). In this region, using
the condition of magnetic flux conservation for each Lagrange particle

1/ ;Or2 = const., with (7.2.26) taken into account, one can easily obtain the
density distribution

. (2+s5)7
0(r) = po(r/l—ﬁ’)z(%) (7.2.28)

(i = I'ly). The sound speed in this region will be

¢ (7.2.29)

. \/_ R\
1 .
4= %10 =Cy Vi (_)
(r/ R)\P/ p, r

(c,, 1s the initial sound speed for r = R ), and the order of magnitude of the

maximum radius reached by the perturbations is . ~c, ¢, where ¢ is the

characteristic time of the waist radius change from (7.2.27). Thus,

o~ ROM—Z/(2+(2+5)1')(R/RO)(2a+(2+5)i)/(2+(2+5)i) (7.2.30)

max

(for definiteness, we assume that u = Ry/c4T) .
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As the characteristic times decrease with the decrease in the waist radius,
one can assume that the magnetic field does not vary over these times for
r > rmax. Using this circumstance, the dependence of current on the waist
radius can be found with a logarithmic accuracy by striking the magnetic
flux balance as the waist radius changes,

Ldi+2i%R=o (7.2.31)

rooo. . .
(L= ZIn% is the inductance of the constant-current region). By

integrating (7.2.31) and taking (7.2.30) into account, we obtain

. -
R — ROM{[(2+(2+S)1)/(4+S)I] -1}/(1-cr) , (7.2'32)

which is a relationship between the current and the waist radius. Since the
magnetic field and the density cannot manage to change (they get frozen) at
7> Fmax as the waist radius reduces from R to 0, using

(7.2.28, 7.2.30, 7.2.32), we obtain the dependences of (i), p(i)* for » > ryax

2{1-(2a+(2+5)(2-a)i)/[(4+5)i1 [ 2+(2+5)i]* }/(1-a)
0 =p,u ! . (7.2.33)

The curves i(7) and p(r) plotted on the basis of the formulas (7.2.28) at

7 < Fmax and (7.2.33) at r > 7y for u=0.01; s = 0; a = 0.4 (which
corresponds to y = 5/3 in accordance with (7.2.3)), R/Ro= 0.032 are shown
in Figs. 7.10, a and b. The plot of the waist current as a function of time for
the same case and based on formulas (7.2.27) and (7.2.32) is shown in

Fig. 7.11. For comparison, these figures also show the results of 1D
numerical magnetohydrodynamic simulation of periphery plasma motion
with boundary motion defined in accordance with (7.2.27). The comparison
shows that formulas (7.2.28, 7.2.32, and 7.2.33) provide a reasonable
description of the periphery plasma motion, although the logarithmic
accuracy is not high, ~ 1/In100 ~ 0.2.
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Fig. 7.10. Current in the periphery plasma (a) and plasma density (b) as a function
of radius for w=0.01; s = 0; a = 0.4; R/Ry, =0.032 : 1) plots based on formulas
(7.2.28 and 7.2.33); 2) results of numerical MHD simulation.
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Fig. 7.11. Current in the waist as a function of time I(t) for u = 0.01; s = 0;
a = 0.4: 1) plots based on formulas (7.2.27, 7.2.32); 2) result of numerical MHD

simulation.

Once the waist radius diminishes to zero (constriction breakup), the density
and the magnetic field throughout the region 0 < r < Ry ™ get
distributed in accordance with the formulas of (7.2.33). Plasma velocities in
this case can be disregarded because of the smallness of u. The question

arises of how the plasma will move farther.

The presence of the current gradient will result in plasma acceleration
toward the axis and then deceleration in a weak shock diverging from the
axis. Thus, the plasma downstream of the shock wave can be considered to
be in mechanical equilibrium. Thermal pressure p of the downstream
plasma can be determined from the equilibrium condition

ap__ 2 Ro2
E_ pocAor_z_ >

2
L
or 2
which, using current distribution of (7.2.33), gives
R . 0i 5 RC[(4+9)i][2+(2+5)i]™

i

Yo —pc2 0L 7.2.34
2/ dlnr "V 2 4aln(1/ ) ( )

p= pocjo
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The distribution of internal energy & of plasma corresponding to (7.2.34)

(4+9)i T 2(2+5)

= ciO i[(4+s)i]l_a [2+(2+S)i]l+a 2+(2+s)i 4+s (7 2 35)

y=12 4aln(l/ u)

has a maximum, which is achieved at

Vo

3-a (4”) (7.2.36)

= e\ 2

and is equal to

max

202 [ 3-a

_ A0
2(2+5)

! (@4 g 3-a
= " exp(——) . (7.2.37)
’Y -

[an(1/w)]™ a

Note that because of the presence of large numerical factors in real cases, in
order to ensure applicability of formulas (7.2.34-7.2.37), one should use
very large values of In(1/ u) *. In fact, it is necessary that

)= [(4+5]7“[2+ (2 +9)i]™

=p/(B°/8
F=r/( 4aln(l/ u)

be small.

The equilibrium state of plasma after the shock propagation is stable with

. . 0D .
respect to convection, since o >0, where @ = p""r/ B (see Section 7.1).
r

Consequently, the magnetized periphery plasma in the vicinity of the waist
can exist for quite a long time (by comparison with hydrodynamic times). In

addition, if we take into account that its temperature can be high due to the

3/a

low density (despite the presence of the large factor [In(1/ u)]”” in the

denominator of (7.2.37)), it can generate a noticeable quantity of
thermonuclear neutrons. Thus, a more consistent analysis of periphery
plasma motion than that of Zhdanov and Trubnikov [7.22] does not rule out
the possibility of neutron generation in it. In order to determine the neutron
yield, certain experiments are required to explore the heating of the ion
plasma component in a weak collisionless wave, since the wave propagating
in the low-density magnetized periphery plasma is collisionless, and heating
of a given plasma component is determined by its structure (see Chapter 4).

* Fig. 7.10 confirms this. For a moderately large value of 1/ u =100, formula (7.2.33)
describes the profile of /() reasonably well, but the gradient of /(r) is strongly overstated.

268



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

7.2.3. Self-Similar Evolution of Rayleigh-Taylor Instability at Corner
Points

The Rayleigh-Taylor instability and its properties play an important role in
magnetohydrodynamic problems. The flows associated with it often have a
two-dimensional nature, because the tension of magnetic lines often
precludes their bending and the onset of motions that affect one of the
coordinates. The sausage instability in a short wave-length range is also
equivalent to the problem of the evolution of the plane Rayleigh-Taylor
instability for both its linear and nonlinear stage.

In Rayleigh-Taylor instability studies, one often uses the problem setup with
periodic, constant wavelength perturbations [7.19-7.21, 7.24, 7.25]. In such a
statement, the instability development problem in the nonlinear stage is
reduced for large times to a steady-state problem, which simplifies its analysis
[7.20, 7.21]. The characteristics obtained by solving the problem with
periodic perturbations, such as the increments in a linear problem or the

Froude number F =v/,/gA (vis the bubble rise velocity, A is the

wavelength, g is the gravity acceleration) in the steady-state problem, are used
to develop different instability models with a spectrum of modes [7.26, 7.27].

Localized perturbations studied by Volchenko et al. [7.28] and Garanin and
Startsev [7.29] are another type of perturbation, the development of which
has a universal nature. A possible type of perturbation without a
characteristic dimension is a perturbation in the form of a dihedral angle
(localized perturbations in the plane problem, i.e., perturbations in the form
of a straight line drawn on the surface of a fluid, can be treated as a
particular case of such perturbations for the angle equal to p). The problem
of the evolution of such perturbations can be of interest in and of itself for
practical applications and as auxiliary for building models.

A fundamental distinctive feature of the evolution of perturbations in the
form of a corner (L-shaped perturbations) is their nonlinearity, because the
perturbations are not small (their amplitude is on the order of the
characteristic wavelength). The problem can be simplified substantially by
considering self-similar solutions; but even in this case the problem remains
quite complex, since self-similar solutions are, generally speaking,
two-dimensional with respect to two spatial coordinates. Therefore, in this
section, following Garanin [7.30 and 7.31], we consider the cases that allow
for additional simplifications, and only as an example, we consider the
numerical solution of a plane localized perturbation problem. The density of
light fluid that supports a heavy fluid is assumed to be zero.
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Let us consider the flow of a fluid in a gravitational field and supported
from below by constant pressure p applied to its boundary, which can have
an arbitrary shape. Thus, we suppose that heavy fluid is supported by an
infinitely light fluid, the motion of which we may do not take into account.
We assume that the heavy fluid is ideal and incompressible, and its flow is
potential, and whose equations of motion are written as

Ap=0 ; (7.2.38)
99 L wpyp+Lrgy=0: (7.2.39)
at 2 P

ax_99, . (7.2.40)
dt Jdx

v _o9, .

dt gy "’

where qo(?,t) is the velocity potential (17 = V(p) , p 1s the pressure, p is the

density, X and Y are the Lagrange coordinates of the boundary, and the
subscript s denotes that the corresponding quantity is taken on a free
surface. Since the pressure on the free surface is p = const, and the potential
¢ is defined with an accuracy to within an arbitrary function of 7, the
equation (7.2.39) on the surface takes the form

99 Loy +ay|-
o T3 (VO +eyl=0. (7.2.41)

Equations (7.2.38), (7.2.40), and (7.2.41) completely define the fluid flow.

Acute anglesAcute angles 6, < /2 (Fig. 7.12) represent the simplest case
discussed by Garanin and Startsev [7.29]. For this case, we expand the
potential @ in powers of x — x((?), y — yo(f), where x(f) and y(¢) are the angle
vertex coordinates. The velocity potential satisfying (7.2.38) is written as

P(x,y,0) =9 (D) +¢ (D(x=-x)+ (O(y-y,)+

9, (1)

5 [(r=2,)" =(x=x)" 1+, (Nx = x )y =y ) +o(F =7)" . (7.2.42)
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Substituting (7.2.42) into equations (7.2.40) and (7.2. 41) and expanding the
equation of surface in powers of the distance from the corner point yields

dg, _9.+9,

0 ;

dt 2
g, .
dt ’
d¢
Y ——g 7.2.43
% g ( )
dx0
dt =0
dy, .
dt =0,
dp . 1-AB
wo_ 2 40%)
dt 1+AB(¢W P5)
d¢ A+B
o 2 2 .
dt 1+AB(¢W+¢W) ’
(7.2.44)
dA 2
E=2¢WA+¢W(1—A )
dB 5
E=2¢WB+¢W(1—B ),

where

A=tga, B=tgf.
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Fig. 7.12. The shape of the initial perturbation.

The system of equations (7.2.43) and (7.2.44) shows that, first, the flow
near acute angles is independent of the flow of the rest of the fluid mass,
because these equations do not include flow characteristics of other regions.
Second, the corner point moves with constant acceleration, —g, which occurs
due to the zero pressure gradient in it, and consequently, it falls freely.
Third, the motion of the corner point and the rotation of the sides of the
angle are independent, because systems (7.2.43) and (7.2.44) are decoupled.
Fourth, the rotation and compression of the angle are determined only by
initial conditions, and if the fluid was initially at rest (¢(#,0) =0), it follows

from (7.2.44) that the angle will neither continue to rotate nor be
compressed, and it will fall freely like a rigid body whose side angles o and
B will be rigidly fixed in space.

Self-similarity for angles larger than /2

Now consider the case of angles 6, > s/2. The fluid is assumed to be
initially at rest. Then, at subsequent times, when the nonlinear terms are still
small, and the surface has not had time to displace much, the flow in the
bulk of the fluid will be determined by the linear problem

Ap=0 ; (7.2.45)

¢
¥ i oy| =0 .
. o,
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In this case, the expansion of the potential in powers of the distance from
the angle’s vertex at a sufficient distance from the vertex where the
nonlinear terms are still insignificant, in addition to the powers of (7.2.42),
the following terms will be present and will play an important role:

Cgt|r-r,|" cosn0 , (7.2.46)

n = ka/ 6y, k is an integer, 0 is the angle counted from the angle bisector.
Indeed, such terms satisfy the equations (7.2.45), and the lowest power n
making the principal contribution to the expansion is n = /6. When

% <6, <, the terms of the form (7.2.46) will be larger than quadratic terms,

but smaller than linear terms in the expansion (7.2.42). Therefore, the motion
of the corner point is still governed by the equation (7.2.43), i.e., it is a free
fall. In the next approximation, however, the motion of the angle will already
be related with the motion of the rest of the fluid through the coefficient C,
which is determined by the solution of the linear problem (7.2.45) for all the
fluid*. When 6 > 7, terms of the form (7.2.46) are larger than linear terms,

and the motion induced by them becomes principal. In any case of 6, > % ,

after the subtraction of the linear expansion terms (7.2.42) from the potential
¢, the motion generated by the asymptotics (7.2.46) will be symmetric with
respect to the bisector, which remains therewith motionless.

In the frame of reference related to the freely falling corner point, the motion at
large distances from the corner point will be defined by the potential (7.2.46).
The nonlinear terms in the equation (7.2.41) and the variation of the boundaries
(7.2.40) will become significant at distances determined by the relationship

r~vt~ Qt ~Cgt*r""

r

(here and below, we denote 7 =|7 -7, | ). Thus, the nonlinear solution

determining the angle region flow will be self-similar with a self-similar variable

2-n

(7.2.47)

2

Cor

and potential asymptotics (7.2.46) at large distances.

* It is easy to prove that the constant C should be positive. Indeed, if we introduce the
potential ¢* = ¢ + g yt, for it the boundary conditions of (7.2.45) will be ¢* |s = 0,

@* (v — =) g yt. The potential ¢* is a harmonic function; consequently, it cannot have a
minimum, which means it must be positive everywhere. But that implies that the first
nonlinear term in the expansion ¢ should also be positive.
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Equations Describing the Flow for Close-to-Right Angles

The problem of a fluid flow near the angle can be simplified in the case of
angles close to /2. In this case, one can seek the solution of the problem (in
the frame of reference related to the falling angle vertex) in the form

: a(r,0)r

0] cos(2+67#)0 ;

(7.2.48)
s=7r4(r,t) ,

where a(r,t) is a function slowly varying with r, on << 1, s is the
deflection of the surface boundaries from the arms of the right angle, which
is assumed to be small (4 << 1, 4 > 0 corresponds to compression). It

follows from Laplace equation (7.2.38) that dn should satisfy the
relationship

o= (7.2.49)
dInr
By substituting (7.2.48) and (7.2.49) into the equations. (7.2.40) and
(7.2.41), we obtain the set of equations
da_m, Fa & _
ar 8 drar 2
(7.2.50)
24 _
dr

Thus, whereas for acute angles the problem was reduced to ordinary
differential equations, for angles close to 7/2, simplification is also possible,
albeit less considerable, such that the 2D problem is reduced to a 1D problem.

Self-Similar Solution for a Right Angle

Let us employ the system (7.2.50) to analyze the motion of the angle
6, = /2 at zero initial conditions; i.e., the expansion of (7.2.46) is

6, = /2 assumed to hold true at large distances from the angle vertex:

@ = Cgtr’ cos28. (7.2.51)
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Then, it follows from a comparison of (7.2.48) and (7.2.51) that the solution
of the equations (7.2.50) should be sought in the following form:

a =2Cgtu(g),
A= Cgr’w(),
where
2
E=- 8Cgs Inr
T

is the self-similar variable. Here, the equations (7.2.50) are reduced to a set
of ordinary differential equations

w(u+2&u")+2&u" +3u’' +u2=0,; (7.2.52)
wt&w' =u
with initial conditions #(0) = w(0) = 1.

The plots of the functions u(&) and w(&) are shown in Fig. 7.13. At §>> 1,
u(E)and w(&) become of the order of &>, which means that the magnitude
of the angle is 4 ~ £**/(—Inr). This means that, at a given distance from the
vertex, the angle that initially collapses as ~ £, closes more slowly at later
times, as ~ . Note that at r—>0 A—0; consequently, the angle remains
right, although only with logarithmic accuracy. It should be noted that at
later times the angle can be considered acute and nearly independent of »
due to the weak logarithmic dependence on radius. Then, for its closing at a
given r, one can use equations of motion of an acute angle (7.2.44) that at
small A and when B = 1/4 also yield the dependence 4 ~ . Thus, the
regions of applicability for the solutions of equations (7.2.44) and (7.2.50)
overlap, and the asymptotics of the solution of the equations (7.2.52) can be
used as initial conditions for the equations (7.2.44).
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Fig. 7.13. Functions of self-similar variables that determine the growth of right-
angle perturbations.

Self-Similar Solution for Angles Slightly Larger than the Right Angle

If the initial angle 6 slightly exceeds /2, its closure can also be described

using the equations (7.2.50). Let the initial angle deflection from the right
angle be 4 =—A4, Ay << 1. Then, in accordance with (7.2.46) and (7.2.47),
the solution of the corresponding angle closure problem will be self-similar:

2C o¢t
-2 0
],- 0
A =—Apn(E) |
where
Cgt’
14}"840/” :

0

E=

The equations (7.2.50) in these variables will again transform into a set of
ordinary differential equations,
28U+ (5-2w)eu' +(\=w)u+Eu’ =0 ,

(7.2.53)
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with initial conditions #(0) = w(0) = 1. The pattern of angle closure determined
by the self-similar solution of the equations (7.2.53) is shown in Fig. 7.14 for
the case of 6 =2a/3, 4y = /12 (we show a half angle, because the problem is
symmetrical with respect to the bisector; the coordinates x, y are measured in
the units (C gt2/2Ao)m8A°. AtE>>1w~—E" ie,at large times, the angle
closes according to the same law ** as does the right angle, and similarly to the
right-angle case, because of the weak dependence on r, closing of the angle at
large times for each 7 can be described using the formulas (7.2.44).

1.5 4

0.5 A

0 0.5 1 1.5 2

X

Fig. 7.14. The pattern of self-similar growth of a perturbation in the form of an
angle slightly larger than the right angle.

Localized Initial Perturbation

The case of = 7 (localized perturbation) is special, because there is no

angle at all in this case, and perturbation evolution does not depend on the
geometry of all the fluid. However, let us consider this case in more detail in
view of its especial importance, because any perturbation initially occupying
a limited region* should, in a sufficiently large time, “forget” its initial shape.

The unperturbed surface of fluid is assumed to be horizontal based on the
equilibrium condition [7.8]. For dimensional reasons it follows that

£ (2x 2
9== w( 2, yz).
2 gr gt

* Note that the evolution of such perturbations is commonly addressed in the analysis of the
sausage z-pinch stability [7.33]. As long as the perturbation size remains small by
comparison with the pinch radius, this case is reduced to the plane case of the Rayleigh-
Taylor instability.
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Equations (7.2.38), (7.2.40), and (7.2.41) for the function v in the self-
similar variables denoted below by the same letters x = 2x/gr’, y = 2y/gt* are
written as

Ap=0 : (7.2.54)
-2V (V)4 ¥ | =0 ; (7.2.55)
Iy
a__ iy, (7.2.56)
dX _al 5
ox

where Y(X) is the free surface equation (note that self-similar equations
describing the growth of a localized perturbation in the axially symmetric case
coincide with equations (7.2.54-7.2.56) for the polar coordinates r, z, except
that the Laplacian is written in the polar coordinates, and y is replaced with z,
and x, with r). Since the fluid particles that came to motion in early stages will
freely fall at large times, the coordinates of the tip of the spike will be X =0,
Y=-1. The fluid is at rest at infinity. Then, the surface can be expected to have
the shape shown in Fig. 7.15 (we show half of the surface, because the problem
is symmetrical with respect to the replacement x — —x). Equations

(7.2.55, 7.2.56) suggest that at the top of the bubble and at the tip of the spike

9,0, %)=, ;
(7.2.57)
2
Mo =
¢(Oa »)/0) =00 .
3
0.4
y
0.2
0 x
-0.2
04 Fig. 7.15. Shape of the surface with self-
' similarly growth of localized perturbation.
-0.6
-0.8
-
0 0.5 1
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Problem (7.2.54-7.2.56) was solved numerically in the following way.
There were several point “charges” Q; with potentials —QInr; (r;is the
distance from the charge) outside the fluid. Then, equation (7.2.54) is
satisfied automatically. It follows from the problem symmetry that the
charges should be arranged symmetrically with respect to the axis y . The

requirement that the total fluid flux coming from infinity should be zero
(locality condition) yields 2’ @ = 0. In addition, the charges were subject

to condition (7.2.57). For the given arrangement of charges and the given
coordinate of the bubble top Y, we solved equations (7.2.56) for the surface
shape. Then, the charge locations and the bubble top coordinate were varied
for the left side of (7.2.55) to be close to zero.

For five pairs of charges, the charge coordinates and values obtained by
simulations and corresponding to the minimum mismatch of (7.2.55) are
given in Table 7.1 (Q is the total charge of the pair, X is the coordinate of
the right charge). The maximum value of the left-hand side in (7.2.55) was
0.022. The shape of the surface is presented in Fig. 7.15. The coordinate of
the bubble top is Y, = 0.248, and its diameter is 0.400. The computed bubble
diameter agrees with measurements [7.28], in which it was 0.46. At the
same time, the computed depth of bubble penetration into the fluid is
considerably smaller than that measured in experiments [7.28]: ¥, = 0.4.
The same situation is observed in the case of axisymmetric local
perturbation evolution: the bubble diameter obtained numerically by
Garanin and Startsev [7.29] agrees with the experiment, while the depth of
bubble penetration does not. This is probably attributable to measurement
errors, because the height of bubble ascent in the experiment was counted
from the surface, which, being unstable, was covered with spikes, and the
coordinates of which were difficult to determine for this reason.

Table 7.1. Coordinates and quantity of charges that
generate the potential of the self-similar solution in case
of localized perturbation.

X Y 0
0.038 0.101 -0.05674
0.303 -0.673 0.17760
0.520 -0.617 -0.30622
0.255 -1.211 0.83059
0.499 -1.434 -0.64523
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Thus, for the self-similar solution we obtain the surface shape shown in
Fig. 7.15. However, one can put a question: How can a localized initial
perturbation assigned in the shape of a projection, rather than a hole,
transform itself into the shape shown in Figure 7.15? One can imagine that
the initial projection produces a spike surrounded by bubbles on both sides
and that, with time, the spike thickness will increase more slowly (if at all)
than the bubble dimensions, and in the growing scale of the problem the
role of the spike with time will trend to zero. Such an evolution dynamics is
confirmed by experimental data (see, for example, Volchenko et al. [7.28]),
which show that neighboring bubbles merge into a single bubble.

Opening of the angles 6 < 7 (inner) can be analyzed using the same

technique of solving 2D self-similar equations as that described above for
6, = 7, this time, however, taking into account the asymptotics of (7.2.46).

The flow pattern may turn out to be similar to that shown in Fig. 7.15, i.e.,
spikes may form, which will stay at the location of the original angle vertex.

7.3. MHD Turbulence and MHD-Turbulent Plasma-Cooling
Mechanisms

7.3.1. Behavior of 2D Magnetohydrodynamic Turbulent Flows Across a
Magnetic Field in a Bounded Region.

Two-dimensional magnetohydrodynamic (MHD) flows of plasma across a
magnetic field play an important role in many dynamic plasma systems with
magnetized plasma, including the MAGO system, in which plasma motion
at both stages (formation of hot magnetized plasma, and its compression)
occurs in the r — z plane perpendicular to the azimuthal magnetic field.

Plasma heating at the first stage occurs when the plasma is pushed to flow
from section 1 to section 2 by the magnetic piston (Fig. 7.16). The initially
cold plasma is accelerated in the nozzle region to supersonic velocities
(exceeding the Alfven velocity) and is heated during its deceleration in
collisionless shockwaves formed at the exit from the nozzle (Chapter 4)
and, as a result of anomalous viscous heating, in the near-electrode layers
(Chapter 5). In this way, the magnetic energy of the plasma is first
transformed into kinetic and then thermal energy. After the passage of the
plasma to the second section and leveling out of the total pressure in the
first and second sections, there forms relatively quiet plasma in the second
section with ~ 1 (f is the thermal-to-magnetic pressure ratio) and
essentially subsonic velocities.
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Fig. 7.16. Schematic diagram of the MAGO plasma chamber: B is the magnetic
field, 1 and 2 are first and second sections, 3 is the annular nozzle, and 4 is the
magnetic piston.

It is this plasma that is intended for compression in a quasi-spherical or
cylindrical manner by moving the walls of the second chamber section (e.g.,
by moving the outer cylindrical chamber wall in Fig. 7.16 inward along the
radius). In spite of the comparatively low plasma velocities and low kinetic
energy of the plasma by comparison with the magnetic energy, these
velocities are still higher than compression velocities, and this plasma
motion is important in several aspects. First, this plasma motion can affect
the convective plasma cooling, carrying heat from hot plasma regions to the
cold walls. Second, while moving, the plasma can get contaminated with
impurities washed away from the walls. Such washing-off of the wall
material can be especially substantial when the plasma is compressed for
thermonuclear ignition, because the wall material in this case is obviously in
the plasma state and, as it has no strength, it easily intermixes with the
hydrogen plasma. Therefore, for such systems, it is important to know how
the hydrodynamic flow will evolve after the plasma heating stage and how
long it will be maintained.

Classical transport coefficients of hot magnetized plasma [7.33], such as
viscosity and the magnetic diffusion coefficient, are small in the MAGO
chamber conditions, which is why those flows are characterized by large
Reynolds and magnetic Reynolds numbers and, as is almost always the case
with large Reynolds numbers, become turbulent. Since the plasma motion
across the magnetic field occurs at small Alfven-Mach numbers M, MHD
instabilities also develop across the magnetic field (Section 7.1) and the
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turbulence that occurs is two-dimensional by nature [7.34]. It is difficult to
get answers to fundamental questions concerning 2D flow relaxation in
direct 2D MHD simulations (see Section 7.3.4), which are performed in a
specific special geometry with specific boundary and initial conditions and
which include a wide range of physical effects. The reason for this is that
one has to separate the phenomena of interest against the backdrop of other
effective factors, as well as that the inclusion of all the factors inevitably
reduces computational capabilities concentrated on the study of 2D flow
itself and phenomena directly associated with the flow. Therefore, it makes
sense to consider the 2D turbulent MHD flow separately without taking into
account phenomena insignificant to this flow. Since, in this case, the MHD
problem is reduced to the problem of 2D hydrodynamic turbulence, its
major features can be analyzed both in the MHD and in the 2D
hydrodynamic formulation.

In this section, following Garanin et al. [7.35-7.37], we present the results
of numerical simulations of flows in a bounded region for large Reynolds
numbers in order to determine the parameters of such flows and the rate of
kinetic energy dissipation. Possible dissipation mechanisms in our
simulations are viscosity* and generation of sound with its subsequent
nonlinear damping in shock waves.

Generation of Sound by Turbulence in a Bounded Region

Generation of sound and its subsequent shock-wave damping could rank
among important kinetic energy dissipation channels for a 2D turbulent
flow, because other mechanisms turn out to be weak in such flows as a
result of the smallness of transport coefficients (viscosity and magnetic
diffusion) and because the energy loss rate due to generation of sound (see
Landau and Lifshits [7.8], as well as the results below) should be
determined only by Mach numbers M (which are smaller than unity for real
flows after the heating stage in the MAGO chamber, but not too small, at
about M ~ 0.4 ). In order to explore the possibility of generation of acoustic
waves by turbulence in a bounded volume for small Mach numbers M (the
letter M will denote the total Mach number, which in our simulations was
virtually equal to M), it is sufficient to analyze this possibility in a
simplified formulation, for a 1D problem, in which a turbulent motion acts
as a driving force producing compressions and rarefactions in the volume.

* For a magnetized plasma with *(wt),>> 11, viscosity-related energy dissipation is more
significant than ohmic dissipation by a factor of m;/m., and for small M, the relative
contribution of the ohmic dissipation becomes even smaller.
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The theory of sound generation by turbulence occupying a finite volume in
an unbounded medium was developed by Lighthill [7.8]. This theory is
applicable when the medium dimensions are large by comparison with the
characteristic acoustic wavelengths excited by a turbulent flow. If the
turbulence occupies a volume with a characteristic dimension of ~ L and
there is no surrounding immobile medium, and characteristic flow velocities

.. c . .
are ~ v, the characteristic wavelengths are ~— L (c is the velocity of
v

sound, ¢ >> v), which is much larger than the dimensions of the volume
occupied by the turbulent flow. In this case, the Lighthill theory is
inapplicable, and the question arises of whether acoustic waves are
generated in this case, and if so, what the intensity of these waves is. In
other words, will turbulent motion be dissipated along this channel and what
will the rate of this dissipation be?

Since the scale of pressure pulsations in a turbulent flow is ~ V7, to clarify
this issue, we can consider a 1D flow generated in a region with a
dimension ~ L by such pressure pulsations with a characteristic times of

~ L/v. Such pulsations of ~ pv* can be produced if the relative volume

variation equals ~ v*/c, which corresponds to matter displacements of ~
2

(—) L for characteristic spatial dimensions of ~ L. For characteristic times
c

of ~ L/v, these displacements correspond to characteristic velocities of ~
2

C

wall on one side and a piston performing preset oscillations with an
2

v
(—) v. Therefore, we analyzed the flow in the region bounded by a rigid

c
We sought the answer to the following question: Will shock waves be excited
in the region for small values of v, and will the piston, on average, perform
work? To make the motion of the piston sufficiently smooth at the initial time,
its motion was defined in the form of the sum of two sine functions,

amplitude of ~ (K) L and characteristic times of ~ L/v on the other side.

2
v=z| 2] [0.55sin 2% _0.455in 272 | | (7.3.1)
117 097

4

where T=2L/n. To ensure that the simulations are credible, they were
performed with a large number of grid cells over a long time span on the
order of ~ 200 7.
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Fig. 7.17 shows the velocity profiles obtained in computations with Mach
numbers M = v/c = 0.5 and M = 0.33 at time ¢ = 1000 L/c. These profiles are
representative for both computations and show that shock waves are formed
in the region for M = 0.5 and are not formed for M = 0.33. Computations for
other Mach numbers M show that shock waves are formed in the region for
M = 0.5 and the piston, on average, performs work, while no shock waves are
formed for M = 0.33 and the piston, on average, performs no work. Thus, one
can conclude that in 2D turbulence, where a small fraction of energy is
contained in a small-scale region (in the spectrum of 2D turbulence, the
values of E(k) for large wave numbers k decrease faster than &~ [7.36]), this
energy dissipation channel does not exist for small Mach numbers.

0.09 —M=0.5
M=0.33
0.06

0.03

-0.06

-0.09 -

Fig. 7.17. Velocity profiles u = v/c produced by the piston oscillating according to
law (7.3.1) for Mach numbers M = v/c = 0.5 and M = 0.33 at time t = 1000 L/c.

For 3D turbulence in a bounded region, however, this dissipation channel
still exists because there a noticeable fraction of energy is contained in the
short wavelength spectral region, although it is strongly suppressed for
small values of M. Indeed, the characteristic frequencies of pulsations in the
turbulent flow are ~ kv. Therefore, in the case of 3D turbulence, where

E(k) ~ k" for large values of k and, accordingly, the velocities are

vk ~ v(kL)"?, the frequencies increase with & and the applicability
condition kv, ~ ¢/L for the Lighthill theory holds for sufficiently large
values of k. Since the amount of energy emitted acoustically by a unit of
mass of a turbulent medium per unit time is given by

8
v

gs ~ 4

c’L

284



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

the same estimate will be valid in the range of theory applicability upon the
substitution of v —v,, L —1/k, which yields for a bounded volume

Thus, the intensity of sound generation by a 3D turbulent flow is
additionally attenuated in a bounded volume by a factor of (v/c)>’, by
comparison with that in an unbounded medium.

Two-Dimensional Computations of Relaxation of a Vortex Flow

Garanin et al. [7.36] studied the relaxation of a 2D magnetohydrodynamic
flow across the magnetic field in a bounded region for the case of a solitary
vortex in a square box. The initial density was uniform. The computations
demonstrated that, in accordance with expectations for 2D turbulence and as
distinct from 3D turbulence, kinetic energy dissipates over the time ~ L*v
(L is the characteristic dimension of the system, v is kinematic viscosity),
which in these computations, where the viscosity was numerical v~ v -Ax

. o . LrL . .
(Ax is the grid size), corresponded to the times ~ — —. Kinetic energy
Ax v

spectra of the turbulent flow in the bounded region in the inertial range
(intermediate range between the energy-carrying and viscous ranges)
subside with the growth of wave numbers rather rapidly—more rapidly than
by the & law. However, the strong nonuniformity of plasma density in the
MAGO chamber could affect the processes of turbulence attenuation. The
turbulence vorticity rot v, which is conserved in 2D flows of ideal uniform
fluid [7.8], is not conserved in fluid with nonuniform density; consequently,
Kraichnan’s arguments [7.38], derived for the 2D turbulence, to the effect
that the energy cascade is impossible from larger to smaller scales, become
invalid. However, although the vorticity is not conserved in a nonuniform
fluid, one cannot exclude that the kinetic energy in the 2D turbulence of a
nonuniform fluid will nevertheless be conserved at infinitesimal viscosity,
and kinetic energy dissipation can turn out to be proportional, for example,
to the square root of viscosity, as predicted by Chertkov [7.39] on the basis
of Obukhov's heat conduction dissipation scenario [7.8].

In order to study this issue, 2D numerical computations of the same vortex in
a square region were performed using the EGAK code [7.40]. The fluid was
assumed to be nearly incompressible (small Mach numbers) and to have small
viscosity (large Reynolds numbers). Both uniform density and essentially
nonuniform density, with a 10-fold initial density difference, were considered.
We studied viscosity effects on flow behavior and energy dissipation.
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First, we considered a circular vortex flow in a square region for the case of
uniform initial density. The region of -3 <x <3, -3 <y <3 was assumed to be
initially filled with a substance of constant density o = 1. The substance was

assigned an azimuth velocity dependent on the radius according to the law

7 at 0<r <1,
v, = 2—-7 at l<r<?2, (7.3.2)
0 at »>2

(the radius » and the azimuthal velocity v are measured from the region
center). The initial velocity distribution is shown in Fig. 7.18. We used an
ideal gas equation of state with y = 2. The initial velocity of sound was
assumed to be constant and equal to ¢ = 2.5, such that the initial Mach
number in this simulation can be taken as M = 0.4. The turbulent flow in
this case can be treated as a flow of incompressible fluid, because the
kinetic energy in the entire region equals about 2% of the internal energy.

gy 1000
0.7500

W 05000
Y . 0.2500

Fig. 7.18. Initial velocity
distribution in the computations.

We slightly shifted the vortex over the y coordinate (by a magnitude 0.1)
to create as full a set of perturbations as possible. In the calculations we
used a rectangular Eulerian (i.e., fixed spatial) grid. The physical
viscosity, which varied in different calculations, was the main dissipation
process in the calculations.

Figure 7.19 shows the spatial distribution of the velocity absolute value
obtained in the calculations with the number of grid cells at 400x400 and a
dynamic viscosity of =5 - 10~ (the effective Reynolds number Re ~10%)
at times ¢ = 80, 120 and 500.
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Fig. 7.19. Spatial distribution of the velocity absolute value obtained in the
calculation with the viscosity 5-107, with uniform initial density, with the grid cell
number 400x400, at times a) t = 80, b) t = 120, and c) t = 500.

Figure 7.19 shows that the unstable vortex flow in the 2D case disintegrates
as a result of the development of the instability; later in the region, however,
in contrast to a chaotic turbulent flow (the kind that would be expected), a
quasi-stationary flow is formed with one major vortex (two vortices formed in
the region under other conditions and with other computational grids). In this
flow, minor small-scale perturbations are present that do not, however, make
the vortex disintegrate, and their growth is saturated, apparently as the result
of nonlinear effects. In time, the major vortex slowly shifts within the region
under consideration.
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Figure 7.20 presents the time dependence of the system’s kinetic energy in
computations with varying viscosities. The figure shows that, as expected,
the kinetic energy of the 2D turbulent flow with large Reynolds number
decays rather slowly. As one would expect, this decay turned out to be
essentially proportional to the viscosity.

Ey
1
0.95 ‘“r“\‘ }
0.9 - |
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0.8 -
1 =0.0001
0.75 7 | _ v =0.00005
07 T T T T
0 100 200 300 400 500

t

Fig. 7.20. Time dependence of the system’s kinetic energy E; (measured in the units
of the initial value) in the computations with uniform initial density, grid cell
number 200x200, and varying viscosities.

The following modifications of the initial conditions were introduced into the
computations in order to study of the effect of the density heterogeneity on
the relaxation of the vortex flow. In the zone » < 2, where the initial velocity
does not equal zero, the material density p; was assigned to be one-tenth the
density p; in the rest of the zone. The total mass of the material remained
unchanged. The dependence of the velocity on radius (7.3.2) remained the
same, but a coefficient 2.62 was introduced into that formula to keep the
initial value of the kinetic energy unchanged. The initial pressure in the area
was assumed to be constant and equal to the material pressure in the problem
with constant density. Thus the Mach numbers were the same as in the
problem with constant density.
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Figure 7.21 presents the spatial distribution of the velocity absolute
value obtained in the computations. The figure shows that in those
computations, after the vigorous turbulent phase, the phase of quasi-
stationary flow with two slowly changing vortices occurs. These
vortices have lower densities inside. The turbulent phase is
accompanied by considerable density equalization, and in the quasi-
stationary phase the density equalizes rather slowly.
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Fig. 7.21. Spatial distribution of the velocity absolute value obtained in the
calculations with the viscosity 5-107°, with nonuniform initial density (p, = 10p,),
with the grid cell number 400x400, at times a) t = 50, b) t = 150, and c) t = 500.

Figure 7.21 shows that, the circular motion breaks down faster in the case of
nonuniform density than in the case of the uniform density in Fig. 7.19. The
next phase of vigorous turbulent flow reorganization is more active in the
case of nonuniform density and is accompanied by the appearance of
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smaller-scale zones in which kinetic energy could dissipate. However, after
that is a lengthy quasi-stationary phase similar to that in the case of uniform
density. For the vortices formed in this stationary phase, both in the
nonuniform case and the uniform case, in a considerable part of the
distances r from their centers, the condition of stability [7.8] is fulfilled

d
v, —(’Z 2N 0, (7.3.3)
r

where Vo is the azimuthal velocity relative to the vortex center.

Figure 7.22 shows the time dependence of the system’s kinetic energy in the
calculations with a nonuniform initial density, a grid cell number 200x200, and
varying viscosities. A comparison of Fig. 7.22 and Fig. 7.20 shows that when a
nonuniform initial density is assigned, the kinetic energy decay over the times
considered is substantially larger than in the case of a uniform initial density;
however, this entire difference is accumulated during the turbulent phase of the
flow reorganization; in the quasi-stationary phase the decays of kinetic energy
in the uniform and nonuniform cases are small and commensurate.

Ey
1
0.8
0.6
-]
0.4 -
—n=0.0001
021 |—m=0.00005
—n =0.000025
0 ‘ ‘ ‘ :
0 100 200 300 400 500

t

Fig. 7.22. Time dependence of the system’s kinetic energy E; (measured in the units
of the initial value) in the calculations with nonuniform initial density, a grid cell
number 200x200, and varying viscosity.

Figure 7.22 shows that the viscosity played an important role in the
calculations under consideration. We can ask ourselves how the kinetic
energy decrease in a 2D turbulent flow of heterogeneous fluid is connected
with viscosity. If we suppose that it is connected with the viscosity in the
same manner as in the case with 2D turbulence for a homogeneous fluid,
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then the kinetic energy decay decrements should be proportional to the
viscosity. But if it is qualitatively the same as in the 3D turbulence and is
connected with the energy transfer to smaller scales (as in the Kolmogorov-
Obukhov scenario), the kinetic energy decay should not depend on the
viscosity. In the intermediate case, according to Chertkov’s predictions
[7.39] the kinetic energy decay decrement can be determined by the heat-
conductance dissipation [7.8] for the system with characteristic
accelerations that facilitate the mixing in the active turbulence phase ~ v*/L
and can be proportional to the square root of the viscosity.

Thus, the selection of scenario is determined by the dependence of the
kinetic energy decay decrement A on the viscosity 1

[~ nk,

where k=1 corresponds to the scenario of 2D turbulence of a homogeneous
fluid, k£ = 0 corresponds the Kolmogorov-Obukhov scenario, while £ = 0.5
corresponds to Chertkov’s prediction. Using Fig. 7.22, we compared the
kinetic energy decay decrements for the viscosities differing two-fold from
each other. In the most vigorous phase of turbulent flow corresponding to
the time interval 20 < ¢ < 100, the ratio of the decrements turned out to be

1.44, that is, close to \/5 , and thus better corresponding the prediction
[7.39]. Then, at a quieter phase of the quasi-stationary vortex corresponding
to the time interval 200 < ¢ < 500, the ratio of the decrements turned out to
be 1.71, that is, intermediate between the scenario of the 2D turbulence with
a homogeneous fluid and the prediction [7.39].

However, the correlation functions built in the inertial interval for the
performed calculations confirmed neither of the mentioned scenarios. For
the Kolmogorov-Obukhov scenario, in the inertial interval, the velocity
pulsations, as well as the density pulsations, should have been proportional
to 7', where r is the distance between points. For the scenario of Chertkov
[7.39] the velocity pulsations dv should have been proportional to 7*¢, and
the density pulsations should have been dp ~ 7%; while for the 2D
turbulence of a homogeneous fluid, there should have been v ~ dp ~ .

Figure 7.23 shows the velocity correlation function (6v)* obtained in the
calculations in the inertial interval for different times. The graph shows also
the trend lines (6v;)* ~ " and indicates the exponent 7 for the corresponding
times. It can be seen from Fig. 7.23 that for only one of the times presented,
t =30, can the velocity correlation function correspond to one of the
scenarios under consideration—Chertkov’s scenario [7.39]. This also
corresponds to the square root dependence of the energy dissipation rate on
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the viscosity found for this time interval. However, even for this instant of
time the density correlation function obtained in this calculation and having
the scaling (3p)” ~ r**® in the inertial interval does not correspond to the
scenario [7.39] dp ~ r**. The scalings of the density correlation function
obtained for other times (see Table 7.2) failed to reveal correspondence with
the enumerated turbulence development scenarios or any clear

correspondence with the velocity correlation function scalings, as well.
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Fig. 7.23. Velocity correlation function in the calculations with nonuniform initial
density, a viscosity of 0.00005, and a 400x400 grid at different times; m is the
spatial scale measured in the units of numerical-calculation grid cell; n is the trend
line exponent describing the correlation function by the power dependence.

Table 7.2. Scalings of the velocity correlation
function, (8v)*, and the density correlation
function, (Jp)>, in the inertial interval.

! (dv)* (6p)”
20 1.86 1.23
30 1.21 0.96
50 1.49 0.84
150 1.64 0.96
300 1.91 1.66
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CONCLUSION

Thereby, based on the calculations performed, we can draw the following
conclusions about the main features of 2D turbulent flows in a bounded region:

In the case of 2D turbulence in a bounded region at low Mach numbers,
turbulence causes no sound generation, and, thus, this dissipation channel
does not exist for small Mach numbers M.

The calculations showed that in the case of both uniform and nonuniform
density, the 2D flow within a bounded region, being unstable, starts to break
up with time because of the growth of perturbations and acquires a complex
turbulent form. However, the flow then turns into one or two vortices,
which, although slightly twisted by the perturbations occurring, retain their
shapes on the whole. In such form, the flow is quasi-stationary, gradually
losing energy due to viscous dissipations.

In the case of uniform density, the kinetic energy decays with time rather
slowly in both phases: in the phase of the flow reorganization, when it has a
complex turbulent form, and in the quasi-stationary phase. Here the decay
of the kinetic energy is proportional to the viscosity, as it should be in the
case of a 2D turbulent homogeneous fluid.

In the case of nonuniform density in the phase of the flow reorganization,
when it has a complex turbulent form, there is a relatively large drop in
kinetic energy and a relatively rapid equalization of the material density
throughout the volume. In the quasi-stationary phase, the density equalizes
throughout the volume rather slowly, and the density minimums form in the
centers of the vortices. The kinetic energy in this phase also drops slowly,
almost as slowly as in the case of a homogeneous fluid.

The preliminary results indicate that in the active phase of the flow
reorganization, the kinetic energy decay decrements are proportional to the
viscosity square root, i.e., they correspond neither to the 2D turbulence of a
homogeneous fluid, where they should be proportional to the viscosity, nor
to the Kolmogorov-Obukhov scenario, where they should be independent of
the viscosity. The square root dependence on the viscosity corresponds to
Chertkov’s prediction [7.39], based on the scenario of Obukhov’s heat-
conductance dissipation [7.8]. In the quasi-stationary phase, the kinetic
energy attenuation decrement turned out to be proportional to the viscosity
to the power of 0.77, which is an intermediate value between the
dependence according to Chertkov [7.39] and the dependence for the 2D
turbulence of a homogeneous fluid. However, the correlation functions built
in the inertial interval for the calculations performed have confirmed neither
of the mentioned scenarios. We should note, however, the preliminary
nature of the results obtained.

293



PHYSICAL PROCESSES IN THE MAGO/MTF SYSTEMS

Because of considerable differences of the properties of 2D and 3D
turbulent flows, one should be careful when applying 2D calculations to 3D
turbulent flows. In 3D turbulent flows, the attenuation of the kinetic energy,
the heat transfer, and the mixing of materials can proceed considerably
faster than in 2D calculations. Thus, for the flow in a bounded region, in the
3D case, the kinetic energy attenuation should proceed over times ~ oL/ v,
where « is a small factor characterizing the value of turbulent pulsations,
whereas in 2D calculations, the kinetic energy attenuation proceeds over

times ~ L*/v for uniform densities or ~ [*'*/ \/; in the vigorous phase of
the flow reorganization for nonuniform density.

Since the energy dissipation time for 2D turbulence depends on the
viscosity, for calculations of plasma flows in a magnetic field, one must
properly describe the physical mechanisms leading to the dissipation (the
longitudinal physical viscosity [7.33], which, in the case of magnetized
plasma, can be determined mainly by the establishment of equilibrium
between longitudinal and transverse degrees of freedom of ions, and
strongly magnetized shear viscosity [7.33]).

Distribution of plasma impurities and temperature can be more
inhomogeneous than in the 3D case, which can turn out to be significant for
the description of plasma radiation on the impurities and its cooling. Since
the kinetic energy of the turbulent motion in the 2D case decreases more
slowly, the impurities can be washed out from the walls over longer times
and, thus, can be more dangerous than in the 3D case.

7.3.2. Convective Plasma Cooling During its 2D Turbulent Motion in
Magnetic Field

In the MAGO/MTF approach, wall-confined preheated magnetized plasma
is brought to thermonuclear temperatures by liner compression. In this
approach, the plasma cooling caused by the transfer of heat into the cold
walls can be amplified because of the presence of convective turbulent
motion; this heat transfer depends essentially on whether the forming
turbulent motion is 2D, or 3D. In the MAGO system this flow is 2D and
depends on coordinates r and z, since the azimuthal magnetic field impedes
the bending of the magnetic field lines and occurrence of flows that violate
azimuthal symmetry. In this section, the processes of convective heat
transfer to walls are studied via the use of estimations and 2D MHD
calculations [7.41]. Two options to increase the heat transfer are considered:

The turbulent motion in the chamber, which is caused by the initial plasma flow
and the plasma flow that maintained over that time, can, in theory, bring the hot
plasma from the depth to the wall, thereby increasing the heat transfer. This
option will be called the turbulent thermal diffusion.
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When the plasma comes in contact with the external wall, its cooling causes a
decrease in its pressure and, accordingly from the equilibrium conditions, an
increase of the magnetic field. As a result, the conditions are created for the
development of the sausage instability, m = 0, and the cooled plasma elements
descend to smaller radii. Then, the descending cold plasma mixes with the hot
plasma at small radii, and the formed turbulent motion intensifies the heat
transfer. This option will be called convection.

Turbulent Thermal Diffusion

The processes of turbulent thermal diffusion can be described qualitatively
using the notion of the turbulent diffusivity D, which, in the case of 3D
turbulence, can be considered to be equal on the order of magnitude (just
like the kinematical coefficient of viscosity [7.8])

D;~ alLv,

where L is the dimension characteristic for the considered flow, vis a
characteristic flow velocity, and « is a small dimensionless numerical
factor. If we consider the process of heat transfer to the wall by turbulent
flow, distance x from the wall should be taken as the characteristic
dimension L, and then the turbulent diffusivity will be equal to

D, ~axv.

In the case of 2D turbulence in a bounded region, since small energy
(Section 7.3.1) is contained in a region of small scales (large wave
numbers), the relative velocity v of two particles a small distance x apart is
determined by large scales of the flow and is proportional to this distance

X
ov~v— . 7.3.4
y vL ( )

In the near-wall region, where, by contrast with the 3D case, the turbulent
velocity pulsations will no longer be of the order of the velocity itself, but
will be of the order of (7.3.4), the effective diffusivity (and, accordingly,
turbulent thermal diffusivity) can be considered to be

2

X
D, ~ax5V~a7V , (7.3.5)

that is, decreasing quite intensely with the approach to the wall. The
turbulent coefficient of kinematical viscosity of the order of (7.3.5), in
agreement with Clercx and van Heijst [7.42], yields the frictional force of

the flow against the wall
F~auw’\pn! L

(u is the flow velocity), proportional to the square root of the physical
viscosity, 1.
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Convection

If hot plasma at large radii borders an external conductor, the plasma will be
cooled down because of its contact with the cold metal wall. The cooling

process should be enhanced with convection. In fact, as a result of cooling,
1y

Ve

the plasma parameter @ = decreases and, thus, an area is created in

which the condition of Kadomtsev [7.9]

0P
— <
ar

0

is fulfilled for convection development. The plasma cooling processes with
MHD convection inclusion were numerically simulated by Lindemuth
etal [7.43].

Let us consider the process of convective plasma cooling. Assume that at
the initial time, plasma with 8 ~1 is in contact with a cold wall of radius R.
If we consider the plasma motion at distances x = R, then the plasma being
cooled will attain the acceleration

g~ R

where c is the sound velocity in the plasma. Initially, for small times, when
g < Kt

(x is the real, not turbulent, plasma thermal diffusivity), the plasma cooling
will proceed according to the diffusion law

it

* convection enters the process. Then, at the diffusion layer

Atr> kg
boundary

Xp~ K;/3/g1/3 ,

temperature of the order of initial temperature 7; is maintained. The motion
of the mixing layer will be determined by the equation

d'r x o7
~—~01g—, 7.3.6
drr r o 7 ( )

0
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where the multiplier 67/T, (87 is the temperature variation in the layer x)
describes the decrease of the gravitational force lowering the cooled plasma
to smaller radii. In addition, given that in 2D case bubbles rise at roughly
~0.1 gt2 (Section 7.2.3), we introduce the multiplier 0.1 into the formula
(7.3.6). Since the diffusion zone size remains constant and, consequently,
the heat flux is also constant, with taking into account formula (7.3.6), we
obtain the time dependence of the convection zone width

x~0.09 0 g (7.3.7)

and the temperature distribution in the convection zone

2/9
K

g X

In the 2D computations, this convection is taken into account automatically.
In the 1D computations, for example, for a cylindrical system in which all
quantities (averaged over the turbulent pulsations violating azimuthal
symmetry) depend solely on radius 7, the convection can be modeled as
follows. At each plasma point, short-wave increments of the convective
instability y (7.1.21) are calculated. In the areas that are unstable relative to
the convection, the magnetic diffusion and thermal conductivity coefficients
are increased using exponential multipliers ch(fydf) = ch(G). The
comparison of the 1D model with 2D computations results and estimations
of (7.3.7-7.3.8) has shown that, in many cases, the physical magnetic
diffusion and thermal conductivity coefficients turn out to be too high to
ensure small coefficients in the formulas of (7.3.7-7.3.8). Therefore, it
makes sense to increase these coefficients a little less, but following the law

Ch(G*/(G + Gy)),

where G is a semi-empirical coefficient determined for typical cases
through comparison with 2D calculations and estimations of (7.3.7-7.3.8).

For a qualitative inclusion of 2D turbulence (7.3.5) in the proposed 1D
model, we can assume that G = Gy, for some G, in a central plasma area.

Cooling of Cylindrical Magnetized Plasma Layer

To determine the role of turbulent thermal diffusion and convection and
validate the 1D model for the plasma cooling description, we performed a
numerical 2D MHD simulation of cooling of magnetized plasma bounded
by cold walls.
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The 2D computation set-up was as follows. We assumed that at the initial
time, the plasma of density pp = 3-10°° g/cm’ and temperature 7= 0.2 keV is
in the space between two coaxial cylinders 2 cm long; the radius of the
internal cylinder is 0.9 cm, the radius of the external cylinder is 6 cm. The
plasma is in an azimuthal magnetic field corresponding to a field of direct
current / = 2.5 MA. The walls were assumed to be rigid, perfectly
conducting, and cold, and the cylinder bases were rigid, perfectly
conducting, and thermally isolated. At the initial time, small density
perturbations were assigned in the plasma volume. In one calculation run,
the initial plasma velocities were assumed to be zero. To determine the role
of the turbulent thermal diffusion, another calculation run assigned an initial
field of velocities whose order of magnitude coincided with that of the
velocities generated as convection developed, while the velocity distribution
itself rapidly became chaotic because of instabilities. The level of the initial
turbulent kinetic energy in this calculation was ~3 % of the thermal energy.

The 2D calculations showed that the presence of additional velocities had
virtually no effect on the plasma cooling, and the developing convection
resulted in the thermal energy of the plasma dropping down to 70 % of the
initial energy by the time t = 5 us (according to 1D calculation, convection-
free thermal conduction had cooled the plasma to 80% of the initial thermal
energy by that time).

The 1D model calculations of the convection with Gy = 10 and G, =1
showed that, by the time ¢ = 5 us, the plasma thermal energy decreased
down to 67% of the initial thermal energy, which describes the 2D
calculation results. Thus, the parameters Gy = 10 and Gy, = 1 can be looked
upon as reasonable for the description of cooling of infinitely long plasma
cylinders with the level of turbulent kinetic energy being ~3 % of the
thermal energy.

7.3.3. Plasma-Driven Material Washout from the Walls in the MAGO
Chamber

Among the sources of impurities that reduce plasma lifetime in the MAGO
chamber are the walls of the chamber. The action of the heat fluxes on the
wall material can result in wall material melting or vaporizing at the
boundary with the plasma, losing of strength, and easily detaching. The heat
fluxes themselves from plasma to the walls are ultimately determined by
thermal conductivity, drift heat transport and plasma radiation. However,
these fluxes can grow considerably because of the presence of
hydrodynamic convective motion that brings hot plasma to the walls or
because of the plasma flow friction against the electrode surface (see
Section 5.3) or an increase in radiation from the plasma after it is
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contaminated by impurities. Plasma contamination imparts a positive
feedback to the system: the increased content of impurities results in
increased heat fluxes to the wall, which, in turn, increases the impurities’
ingress into plasma, and so on.

In this section, following the work of Garanin et al. [7.44 and 7.45], we provide
estimates of heat fluxes to the walls in the MAGO chamber, consideration of
the possible melting or vaporization of the walls, and estimates of the amount of
impurities brought by the MHD-turbulence into the plasma.

Heat fluxes from plasma to electrodes and insulator. Melting or vaporization
of electrode metal and insulator vaporization

Let us estimate the heat fluxes incident on the walls with using different
approaches. The first method of estimating the fluxes involves using the results
of 2D MHD computations, where these fluxes are determined by thermal
conductivity for magnetized plasma and its radiation. The drawback of these
estimates is that many effects evolving at small distances from the surface are
not reproduced in the computations, because of the grid size limitations.
Moreover, the computations do not take into account some physical phenomena,
such as the plasma friction against the surface (which, according to Section 5.3,
can be of a kinetic nature, i.e., ions interact with the metal surface at distances
smaller than the Larmor radius), the Hall effect, and the Nernst effect.

Another way to obtain such estimates is to use the results of 1D analysis of
near-electrode layers in the MAGO chamber (see Section 5.3). This
approach takes into account the above-mentioned physical phenomena, as
well as models the turbulence caused by large near-electrode plasma
velocity gradients. The drawback of these estimates is that they do not take
into account flows from heated plasma, since, in this work, the near-
electrode layers are considered for cold plasma acceleration. Let us start
with these estimations.

According to Section 5.3.1, when plasma with a density of 70=6-10"" cm™ is
accelerated in a magnetic field B ~10° G, heat fluxes in the near-cathode
and near-anode layers equal approximately ¢ ~ 26-52 J/cm’us at time

t = 0.5 us, when the plasma velocity far from the electrodes is 40 cm/us. By
this time, the volume density of heat release in the copper wall is

~qﬁ ~6-12 kI /cm’
K
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(k ~ 107° cm?/us is the coefficient of copper temperature conductivity) or
heat release per mass unit is ~ 0.7-1 kJ/g, which may exceed the heat
required for melting copper, which is ~ 0.6 kJ/g.

When the residual low-density plasma with the density o= 1.5-10" cm™ is
accelerated in the vicinity of the nozzle, the near-anode heat fluxes, which
on the average are 2400 Jem’us, are especially significant. Since the flow
time of the residual plasma through the nozzle is ~ 0.3 us, the heat release
on the anode per mass unit can be ~ 100 kJ/g, which significantly exceeds
the heat of vaporization for copper, which is ~ 6 kJ/g.

The estimates of the heat fluxes onto the walls for a small chamber with a
radius of 6 cm, obtained using 2D computations, yield a maximum for the
heat flux on the walls of ~30 J/cm® and a radiation energy flux of ~ 40 J/em’
(under assumption that the level of impurities is ~5-10 Torr of oxygen).
The characteristic times are ~2 us, and the heat release per mass unit is

~ 6 kJ/g, which is on the order of the copper vaporization heat.

According to the 2D computations, radiation fluxes to the insulator are

~1 J/cmz, and their action time is ~ 1 us. Since, for ceramics, the coefficient
of temperature conductivity per mass unit is ~ 0.2—-1 gz/cm4s, the heat release
per mass unit, ~ 6 kJ/g, warms up its surface layer higher than 2000° C. Such
temperatures can cause the vaporization of ceramics, and in this vapor,
breakdowns and the H-thrown discharge may occur (Section 6.5).

Instability of Tangential Discontinuity at the Plasma—Electrode Interface

In the MAGO chamber at the plasma—-electrode interface, there is a tangential
discontinuity: plasma flows along the electrode with velocities of u

~ 10" cm/s (near the nozzle the velocities are up to ~ 10® cm/s), and the
electrode material, which can be in the melted or vaporized state at the surface
and whose density is considerably higher than that of the plasma, is at rest. At
this interface, a tangential instability [7.8] should develop whose increments

y=k &u (7.3.9)
\ 0.,

(0p, Pm) are plasma and electrode material densities, & is the wave number)
are inversely proportional to the square root of the electrode material
density. Thus, the development of this instability is most dangerous in the
case of plasma contact with the vaporized electrode.
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Turbulence Developing at the Plasma—Metal Interface and the Ingress of
Impurities into Plasma

Let us consider the distribution of a heavy material in a light one (plasma)
in a developing tangential instability. Beginning with the formula (7.3.9)
and using, for the characteristic turbulent velocities v, the formulae
applicable to 3D turbulence, we can assume that

where p is the local density, « is a small coefficient, characteristic for
turbulent pulsations. Since the velocities v transport the material a distance
of x ~ vt, the density distribution can take the form
2
aut
P~P | = -

X

Then the total mass of the heavy material brought into plasma from the unit
area per time unit is

dm px , u’t
— ~—~a'p—~ap u. 7.3.10
pralan Py P, ( )

The relation (7.3.10) was earlier used in Bakhrakh et al. [7.46] for describing
experimental data on strong shockwave damping in a tube. Comparison of the
calculations and experiments gave the value of the constant o = 0.02. The 2D
numerical computations performed showed that this value is reasonable for
describing mixing of a heavy fluid and a light fluid in the 2D case.
Nevertheless, we tried to estimate the material washout from the walls in the
MAGO chamber at the phase of preliminary heating, using more complicated
qualitative models of 2D turbulence with reasonable dependences in different
extreme cases. At the phase of the MAGO plasma compression, we used the
relation (7.3.10) for estimation of the material washout from the walls.

Plasma-Driven Material Washout from the MAGO Chamber Walls in the
Phase of Preliminary Heating

As we have noted already, the turbulent plasma motion in the azimuthal
magnetic field in the MAGO systems can be 2D, because the magnetic field
impedes the bending of the magnetic-field lines and occurrence of the
corresponding flows. Garanin ef al. [7.47] studied the transport of impurities
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from the walls with regard to axisymmetric MHD 2D flows in a bounded
region. The process of the mixing of wall material with plasma was
described in Garanin et al. [7.47] by the 1D diffusion equation

9P _ div(DVp),
as

where p is the concentration of impurities, D is the turbulent diffusion
coefficient, consisting of two parts, determined by the turbulent motion set
in the chamber volume and the turbulent motion that is caused by the
plasma convection development on the boundary with the cold wall:

D =D, + D.. The dependence of the impurities’ turbulent diffusion
coefficients on the characteristics of those flows was determined for the
case of 2D turbulent flows, and numerical factors in the formulas for D were
determined in the case of m = 0 stable plasma with an azimuthal magnetic field.

Garanin et al. [7.47] ascertained that turbulent diffusion is unable to bring
the material away from the wall by itself, because the 2D turbulent diffusion
coefficients decrease fast as the wall is approached. To determine the
material flows from the walls, near-wall processes (molecular diffusion,
physical viscosity, heat conduction, heat-driven release of impurities from
the wall, heterogeneity of density, etc.) should be included. But if only
numerical hydrodynamic calculations are used for the transport of impurities, in
a uniform fluid the result will depend on the spatial grid, and the material flows
from the walls will decrease with a spatial grid refinement. We can, however,
specify two factors that can result in the finite value of flows from the walls.
First, it is the finite width of the layers of melted or vaporized wall material.
Second, in the vicinity of the walls where the material density gradients can be
high, we should assume that the diffusion coefficient D, is not the same as in the
2D case [7.47], but, qualitatively, the same as in the 3D case. This change
also leads to a finite value for the flows of impurities from the walls.

On the basis of the 1D model, with account taken of the two factors resulting in
finite values for the flows, we estimated the impurity washout from the MAGO
chamber walls. We used the 1D computation results for plasma cooling to take
into account specific profiles of the values in the chamber, which required
generalization of the model for the case of arbitrary (stable and unstable)
plasma profiles. In addition, in the 2D calculations we took into account the
time dependences of characteristic turbulent plasma velocities.

The calculations have shown that by the times 0.5—1 us after heated plasma
is generated in the central area of the chamber, the mass of light-element

gas impurities is less than 1 % of the plasma mass, which is insufficient to
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explain the X-ray diode signals obtained in the experiments. However, a
significant gas amount has mixed in with the plasma by the time of a few
microseconds, which agrees with the post-experiment values of gas leakage
in the chamber training and experiments at the Cascade facility.

It was found that, in the case of vaporization of the surface of copper walls,
the amount of copper impurities in the chamber can be 0.2—0.4 % of the
plasma mass in 0.5-1 us, which, given the considerable uncertainties
attending the estimates, can explain the diode signals. Thus, mixing in of the
copper impurities can be an important and even determining factor that
affects the energy losses in the chamber. The estimates obtained agree well
with the calculations of the X-ray diode signals of the Dante spectrometer,
shown in Section 3.4.4.

Plasma-Driven Material Washout from the MAGO Chamber Walls in the
Phase of Plasma Compression

The formula for the mass washout rate (7.3.10) with the specified value of
the coefficient o = 0.02 is used to estimate the mass washout from the
MAGO chamber walls during the compression of preheated plasma by a
hemispherical chamber wall. We write a set of two equations:

"_’”=aﬁ%5 , (7.3.11)
a

muR = const = mouRy . (7.3.12)
The first equation is the formula for the washout rate (7.3.10). The second
one is the angular momentum conservation law for plasma motion in
vortices. This equation takes into account the angular acceleration of the
vortices in plasma and their deceleration due to the involvement in this
motion of the mass that has been washed out from the walls. In the
equations (7.3.11) and (7.3.12)
m is the total plasma mass, including the washed-out mass;
S is the surface area of the walls surrounding the plasma;
V is the plasma volume;
R is the radius of the plasma-compressing hemisphere.
Strictly speaking, the projection of the plasma angular momentum onto the
direction perpendicular to » and z that is under consideration is not conserved

for the plasma moving in the axisymmetric MAGO chamber. However, we
can provide the following in justification of the formula (7.3.12). As follows
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from the Thomson theorem [7.8], the quantity proportional to rotz - ZS' is

conserved in the ideal fluid flow. In the compression of the 2D region, if
rot i is assumed to be on the order of u/R (the main contribution to the

turbulent motion’s kinetic energy will not be made by smaller-scale motions)
and dS ~ R, then u,R ~ const. u R ~ const. To obtain (7.3.12) therefrom, we

assume that the mixing of the washed-out mass and the plasma proceeds with
conservation of momentum rather than energy.

By substituting u, from (7.3.12) into (7.3.11) and changing the variable ¢ to

the variable R( j—ﬁ =-u ), we obtain
4

(7.3.13)

am ap moum/?
dA’ l/”

Here, f is the coefficient in the formula §= %, S= 3J17R2, Vo= %J‘L’/\ﬁ,

=45 and the quantities with the subscript 0 are initial values of mass,
tangential velocity, and radius. The solution of equation (7.3.13) can be
written as

R
2 Nraplol L. (7.3.14)
/770 Z/// A)

Here we assumed that the radial compression velocity u, is time-independent.

We also note that the writing of the initial equations (7.3.11) and (7.3.12)
means that, during the entire process of plasma compression (from the very
beginning), we assume the presence of vaporized material in a sufficiently
large amount (such that it does not have enough time to become washed out
completely) over the entire surface area of the chamber walls. The available
2D MHD computations of plasma flow in the chamber suggest that by the
initial moment of compression, the walls are vaporized only in some
locations (which represent a small portion of the total area). However,
according to the estimates, starting from the degree of compression of ~ 2
(by volume), the bremsstrahlung alone of the pure DT plasma yields, on
average for the entire surface of the walls, an energy flux of ~ 10"
erg/cm’s, which is sufficient for the copper vaporization.

With the above provisos taken into account, we can assume that the

numerical estimates presented below yield results that are correct in the
terms of the order of magnitude, albeit slightly overestimated.
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Using the obtained formula (7.3.14), we estimate the washed-out mass for a
case in which the plasma velocity in the chamber at the initial time of
compression is u ~ 10’cm/s (based on the results of the 2D MHD
computations) and the velocity of the plasma compression by the

R
hemispherical shell is u, ~ 10° cm/s. In this case, for 7? =2 (the

R
compression degree is d = 8), R ; for —2=5 (6= 125), 7 s,
7, R 7,

The result obtained, with account taken of the fact that estimates under
discussion are very approximate, can be formulated as follows. The mass
washed out from the chamber walls during plasma compression in the
MAGO chamber at the compression degrees of interest to us is of the order
of magnitude of the DT-gas mass itself. If this is correct, it follows that in
the experiments on the DT plasma compression in the MAGO chamber, the
chamber walls (or the wall coating) should be made not of copper, but of
light materials (e.g., graphite or beryllium), so that the radiation losses of
the DT plasma heavily contaminated by the wall material do not cool the
plasma too rapidly.

It should be said that the obtained estimates are based on the hypothesis of
conservation of angular momentum in plasma compression or, to be more
exact, on the hypothesis that, in the plasma compression, the 2D turbulent
kinetic energy increases in inverse proportion to the area of the 2D
cross-section of the region (not including the mixing, of course). There is a
probability that this hypothesis does not hold. It should be also noted that,
according to the results of Section 7.3.1, the dissipation of kinetic energy in
2D turbulence is determined by real physical viscosity, and determining the
kinetic energy of turbulent motion and, with it, the amount of washed-out
mass (7.3.14) in the MAGO experiments requires computations that take
into account the physical viscosity of magnetized plasma [7.33].

CONCLUSION

According to the estimates, the value for heat flux at which the copper wall
begins to vaporize in the MAGO chamber (with a characteristic duration of
heat flux of ~ 107 s) is ~ 3-10'* erg/cm’s. The same parameter for a ceramic
(Al,O5) insulator is ~ 10" erg/cmzs. The estimates based on different 1D
and 2D computations show that such heat fluxes can occur during plasma-
chamber operation.

The estimates of the turbulent washout of impurities from the walls by plasma
showed that, at the stage of plasma preheating in the MAGO chamber, by the
times 0.5 — 1 us after heated plasma is generated in the central area of the
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chamber, the mass of light-element gas impurities is less than 1% of the plasma
mass, which is insufficient to explain the X-ray diode signals obtained in the
experiments. However, a considerable amount of gas is mixed in by the time of a
few microseconds, which agrees with the values of gas leakage measured post-
experimentally in the chamber training and experiments at the Cascade facility.

It was found that in the case of vaporization of the surface of the copper
wall, the amount of copper impurities in the chamber by time 0.5—1 us can
be 0.2-0.4% of the plasma mass, which, given the considerable
uncertainties of the estimates, could explain the diode signals. Thus, the
mixing in of the copper can be an important and even determining factor
affecting the energy losses in the chamber.

It was also found that the mass of the material washed out from the MAGO
chamber walls during the process of plasma compression by a
hemispherical shell can be of the same order as the mass of compressed DT-
gas. If the experiments show this to be true, then, in order to prevent the
wall impurities from cooling the plasma too rapidly, the MAGO chamber
walls and the insulator may be fabricated from light materials (carbon or
beryllium for the walls, boron carbide or boron nitride for the insulator) for
the experiments on plasma compression.

7.3.4. Simulation of MAGO Plasma Compression by Imploding Liner with
Account Taken of Convection

In Section 2.1.2, we have already presented the parameters of the plasma
obtained in the MAGO chamber. In a number of experiments in the
coaxial cylindrical volume with a height 8 cm, an external radius of

R ~ 10 cm, and an internal radius of 1.2 cm, DT plasma was obtained
with the following parameters:

mean density n = 8:10"7cm”,

mean temperature 7= 250 eV,

characteristic current in the plasma / ~ 4 MA,
characteristic magnetic field in plasma B ~ 0.15 MG,

characteristic 8 ~ 0.6,

which makes it possible to consider this plasma as suitable for ignition in its
quasi-spherical compression. According to the estimates presented in
Section 2.1.2, if such plasma lives in MAGO for ~107 s, then the ignition in
the MAGO/MTF system can be achieved using an implosion system with a
liner energy of ~20 MJ and a velocity of ~1 cm/us. In the joint
VNIIEF/LANL experiment HEL-1 (High Energy Liner), a liner with similar
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parameters (energy of ~25 MJ, velocity of ~0.8 cm/us) has been obtained
[7.48]. In the experiment, a portion of the liner remained solid (unmelted),
persisting against the Rayleigh-Taylor instability.

This Section, following the work of Buyko et al. [7.49], presents the results
of 1D quasi-spherical simulations and 2D simulations (with account taken
of convection) of MAGO plasma compression by a solid liner, with the
parameters characteristic of the HEL-1 experiment. In both simulations, the
plasma was assumed to be of pure hydrogen without impurities.

1D Quasi-Spherical Simulation

The 1D quasi-spherical MHD simulation was conducted in the channel
approximation (Section 2.1.2). We assumed for the quasi-spherical
compression calculation that the channel width changed proportionally to
the radius. In the simulation, magnetic diffusion, classic electron and ion
thermal conductivities [7.33], and radiation transport along the channel in
the “forward-reverse” approximation [7.50] were taken into account.
Enhanced thermal conductivity resulting from the development of
turbulence in the plasma was not taken into account. Nor was the effect of
thermonuclear energy release on the plasma and liner heating.

The entire plasma volume can be regarded as consisting of channel sectors
in each of which the width varies in proportion to the spherical radius. The
simulation was performed for a sector in-between the equator and the pole,
which we considered as most representative. Therefore, in our calculation
we assumed that the plasma parameters were those obtained in the MAGO
experiments—density n = 8 - 10'"cm™ and temperature T = 250 eV—but the
magnetic field in the plasma corresponded to a somewhat higher current,
I=35 MA. The radius of the central copper rod along which the plasma
magnetizing current flowed was also taken to be somewhat larger at

r = 1.6 cm than the cylindrical radius of the MAGO chamber internal rod at
r=1.3 cm. In the simulation, the plasma, initially located within the range
1.6 cm <r <10 cm, was compressed by an aluminum liner 0.44 cm thick
and with the initial velocity of 0.8 cm/us. If we assume that the height of
this liner equaled to its radius, then its energy was 25 MJ, and, thus, the
liner had the characteristics obtained in the HEL-1 experiment.

The simulation showed that the maximum internal energy of the DT plasma
(all the integral values are given for the spherical segment width equal to the
radius), equal to 3.1 MJ, was achieved at the time 8.84 us. The system total
energy, which was about 25 MJ and was initially contained mainly in the
liner kinetic energy, at this time was distributed among different
components: magnetic energy (plasma f was ~1), liner and internal rod
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heating by thermal fluxes from plasma, remainder of liner kinetic energy,
etc. The elastic energy tied up in liner compression was chief among these
components. Magnetic and thermal pressure reduced the radius of the
internal rod down to 1.3 cm, and the plasma was compressed to a layer

0.32 cm thick and achieved a density 3.9 - 10*” cm™. The neutron yield,
under compression, was 3- 1018, and the full width at half-maximum was
0.91 us. In the simulation, the total thermonuclear energy release was

8.9 MJ, i.e., greater by a factor 2.9 than the maximum internal energy of the
DT plasma; this means that the ignition was achieved in this simulation.

Fig. 7.24 shows profiles of density p, temperature 7, pressure p, and
magnetic field B obtained in the simulation at time ¢ =9 us, close to the
time of neutron generation maximum.
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Fig. 7.24. Profiles of density p, temperature T, pressure p, and magnetic filed B in
the system including internal rod, plasma, and liner at time t = 9 us.
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2D Simulation of Plasma Compression

To assess the effect of 2D convection on the plasma cooling processes
associated with plasma compression, we performed a numerical 2D
simulation of plasma compression by a liner. It was assumed that the plasma
initially occupying a hemispherical volume with the radius of 10 cm and
magnetized with current / =4 MA running along a cylindrical rod of

r=1.3 cm radius was compressed by an incompressible hemispherical liner
with an initial thickness of 0.44 cm, a density of 2.7 g/cm’, and an initial
velocity of 0.8 cm/us. The 2D effects were considered only for the DT
plasma, the liner shape was assumed to be purely spherical, and the internal
rod and the hemisphere base were assumed to be absolutely rigid. The initial
density and initial temperature of the plasma were assumed to be
n=2810"cm™ and T'= 250 eV, respectively. All the plasma boundaries (the
liner, the internal rod, and the hemisphere base) were assumed to be ideally
conductive and cold.

The maximum internal energy of the DT plasma was reached in this
simulation at time 8.7 us and equaled 7.9 MJ, when the liner’s internal
radius was 1.54 cm. The magnetic energy at that time was 4.7 MJ, such that
the characteristic magnetic field was 29 MG. The neutron yield at the
compression maximum was 6 - 10'®, and the characteristic width of the
neutron pulse was 0.15 us. The thermonuclear energy value in this
simulation also exceeded the maximum internal energy of the DT plasma,
i.e., ignition was also achieved in this simulation.

The plasma density and temperature isolines at times ¢ = 6.4 us and
t = 8.4 us are shown in Figs. 7.25 and 7.26.

Calculations show that in the experiments with the 0.4-m-diameter DEMG,
it is possible to obtain the second neutron peak produced by the MAGO
plasma compression with a quasi-spherical liner. The second neutron peak
can be higher than the first one obtained during the plasma generation, even
with plasma volume compression as low as d = 10 (if one compares neutron
generation rates at the moment at which volume compression was 10
against the neutron generation rate from the preheated plasma).

At higher levels of plasma compression, the simulations predict
considerably higher neutron generation rates, e.g., at 6 = 100, the neutron
generation rate is ~10'® us™. Such levels of plasma compression are quite
feasible with good symmetrization of the liner system, because the values of
the typical maximum plasma compression predicted in 1D simulations are
much higher (6 ~ 1000).
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Fig. 7.25. Plasma density and temperature isolines at time t = 6.4 us.
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Fig. 7.26. Plasma density and temperature isolines at time t =8.4 us

CONCLUSION

The presented results of the numerical simulations confirm the feasibility of
achieving ignition with MAGO plasma compression by liners with
experimentally achieved characteristics. The 1D and 2D simulations took
into account the main physical effects and processes; some of them taken
into account in 1D simulation, and others, in 2D simulation. Taking
convection into account in the 2D calculation does not result in considerable
plasma cooling and do not impede the achievement of ignition.
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