
LA-UR-15-22823
Approved for public release; distribution is unlimited.

Title: Damaging HMX/HTPB formulations: In-situ compression imaging using
X-ray micro computed tomography

Author(s): Patterson, Brian M.
Cordes, Nikolaus Lynn
Tappan, Bryce C.
Thompson, Darla Graff
Manner, Virginia Warren

Intended for: Report

Issued: 2015-04-17



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Dama

Bria

Introduct
is routine
and mech
occurred.1

binder in 
(differing 
image the
(micro-CT
allows for
gives us a
individual
binder sys

Results.  
0.5% met
Samples h
J), and fri
Table 1) w
(as small 
10 g scale
the rigidit
prepared o

Figure 1.
form the p

 

aging HMX

an M. Patters

tion.  HMX 
ly used in for

hanical proper
1,2 We have p
order to form
only in subs

ese samples 
T). The explo
r distinction o
a handle on h
l crystals of H
stem in order 

Initial formu
thylene diphe
have undergo
iction (199 N
were provide
~5mm diame

e and sample 
ty affects dam
on 5 g scales 

.  Chemical c
polyurethane 

X/HTPB f
ray 

son, Nikolau

(octahydro-1
rmulations su
rties of HMX

prepared form
m an explosive
stitution of di
under quasi-
osive binder 
of the separat
ow damage o

HMX is also s
to determine 

ulations were 
enyl isocyana
one safety test
N); the materi
ed for micro-C
eter cylinders
2 was mixed

mage properti
with slightly 

components o
binder system

formulatio
micro com

us Cordes, Br

,3,5,7-tetranit
uch as PBX 9
X formulation

mulations with
e that is relati
ioctyladipate 
-static compr
system is un

te component
occurs within 
shown. We ha
how rigidity 

comprised o
ate (isonate),
ting at LANL
ial is approve
CT imaging. 
 using brass c

d using a high
ies and produ
increased am

 

of HMX/HTP
m surrounding

ons: In-situ
mputed to

ryce Tappan

tro-1,3,5,7-tet
9501. Much r
ns such as th
h HMX using 
ively insensit
(DOA) for is

ressive loads 
nique in that 
ts (HMX crys
these materia

ave made sma
plays a role i

of 88% HMX
0.7% lecithin

L, with measu
ed for 500 g 
Samples 1 a
cork borers), 
h-shear remot
uce more rigid

mounts of ison

PB formulatio
g the HMX cr

u compres
mography

n, Darla Thom

trazocine) is 
remains to be
hese, particula
g hydroxyl ter
tive to mild st
sodecyl pelar
using micro

t its density i
stals, binder, 
als. Nano-sca
all changes to
in damage of 

X, 5.4% HTPB
n, and trace 
urements of im
batches. Fou

and 2 were pr
although sam

te mixer on a
d samples (F

nate (Table 1)

on, where HT
rystals and D

ssion imag
y 

mpson, Virg

a powerful h
e learned abou
arly after dyn
rminated poly
timuli, analog
rgonate). We 
o X-ray com
is much low
and voids) by
ale tomograph
o the mechani
f the composit

B, 5.4% dioc
dibutyltin dil
mpact (62.2 c

ur samples (fo
repared with 
mple 1 was m
a 500 g scale.
Figure 1), sam
). 

TPB crosslin
OA performs

ging using 

ginia Manne

high explosiv
ut the perform
namic damag

ybutadiene (H
gous to PBXN
have been ab

mputed tomog
er than HMX
y micro-CT, w
hic compressi
ical stiffness 
te explosive.

ctyladipate (D
laurate as cat
cm), spark (0

formulations 1
identical mat

mixed by hand
.  To examine

mples 3 and 4

nks with Ison
s as a plasticiz

X-

r 

ve that 
mance 
ge has 
HTPB) 
N-110 
able to 
graphy 
X and 
which 
ion of 
of the 

DOA), 
talyst.  

0.0625 
1 – 4; 
terials 
d on a 
e how 

4 were 

 

nate to 
zer. 



Table 1.  HMX/HTPB formulations prepared and tested 

Formulation % HMX 
a 

% HTPB % DOA % Isonate Description 

1  88.0 5.40 5.40 0.50 Hand mix, small scale 
2  88.0 5.40 5.40 0.50 High shear mixer, large scale 
3  87.7 5.38 5.38 0.85 Hand mix, small scale, higher Isonate 
4  87.4 5.36 5.36 1.21 Hand mix, small scale, highest Isonate 

a All HMX is a mixture of 70/30 course/fine. 

The samples were each sequentially 3D imaged using an in-situ load cell at increasing 
compressions. Imaging conditions included: 40 kVp, 10W using a W X-ray tube, over 1000 radiographs 
as the sample was rotated 180o using a Carl Zeiss Microscopy Inc. MXCT system. They were each 
imaged at two resolutions (11.1 and 2.8 μm voxel sizes), one to encompass the entire sample, the second 
image to better resolve the crystals. The samples were then uniaxially compressed within a Deben load 
cell. They were held for 10-15 minutes after compression to allow any residual plastic flow to occur, then 
imaged at this strain. Each cycle required approximately 26 hours. A single reconstructed slice out of the 
full 3D data set at several strains for samples 2-4 shown in Figure 2. Samples 1 (not shown) and 2 exhibit 
a strong visco-plastic flow during uniaxial compression, leading to a large Poisson effect, little cracking 
or separation of the binder from the crystals. However, samples 3 and 4, were much more rigid and 
separation between the binder and crystals is widely seen. The separation between the crystals and binder 
is not uniform throughout the cylinders. 

For these materials, excellent X-ray contrast was seen between the HTPB binder, the HMX 
crystal, and voids, allowing for the segmentation of the material for each. A segmented volume rendering 
is shown in Figure 3 (left). This segmentation leads to direct measurements of individual crystal and void 
sizes and locations.  
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damage of samples under impact, and test the shock sensitivity and run to detonation in damaged samples.  
Preliminary studies have already been performed with HMX/HTPB mixtures, analyzing the shock to 
detonation transition via microwave interferometry. Time permitting, this work will be pursued further, 
and dynamic damage schemes will be investigated. We may also be able to begin a modeling 
collaboration to investigate how the level of sample rigidity relates to damage in impact experiments. 

X-ray Tomography:  The work here shows that with micro-CT we measure the crystal size distribution 
uniformity and lot-to-lot variation in particle and void sizes.  The 3D structure can be used as a starting 
point to mechanical modeling, and tracking individual crystal flow pathways during compression6. 
Analysis of CT data sets at compression points will enable visualization and measurement of HE 
component (crystal, void) changes due to uniaxial compression. We have demonstrated (with Axinte 
Ionita) that this data can be entered into COMSOL. Finally, for softer samples that exhibit stress 
relaxation, information is lost while the stress relaxation occurs. We have demonstrated that it is possible 
to image polymer foams in which a full 3D image is collected in one second, 20 images within 100 
seconds at the synchrotron. It may be possible to do the same with HE, however sample damage may be a 
problem. 
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