Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

Ryan Paul, PhD; Xuliang Dai, PhD, Andrew Hausner

GrafTech International Holdings Inc.

Amit Naskar, PhD; Nidia Gallego, PhD

Oak Ridge National Laboratory

American Carbon Society Workshop, Carbon Fibers and their Composites, April 16-17, 2015

Redefining limits

GrafTech Graphite Solutions

Leader in Graphite Materials

- NYSE: GTI
- Founded 1886
- Unique technologies & expertise
- ~715 patents & pending applications

Value-Added Proposition

- Innovative solutions for wide range of applications including:
 - Energy management
 - Thermal management
 - High temperature processing

Diverse End Markets

- EAF steel production
- · Advanced electronics
- Alternative energy
- Aerospace

Two Business Segments

- Industrial Materials (IM)
 - Graphite electrodes
 - Refractory materials
 - Needle coke
- Engineered Solutions (ES)
 - Flexible graphite
 - Additive materials
 - Carbon composites
 - Advanced graphite materials

Flexible Graphite (Thermal Management)

Advanced Graphite (Energy Management)

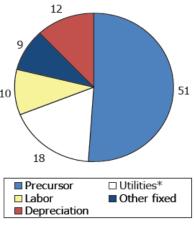
Carbon Composites (High Performance Lightweighting)

Advanced Materials (Multifunctional)

Redefining limits

Agenda

- Motivation for low-cost carbon fibers
- Lignin as a low-cost and renewable carbon fiber precursor
- Unique challenges with lignin as a carbon fiber precursor
- Reported strategies for improving lignin as a precursor
- Overview of GrafTech-ORNL collaboration focused on lignin-based carbon fiber for insulation applications
- Acknowledgement

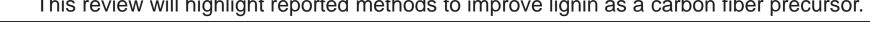

Motivation for Lignin-Based Carbon Fibers

Problem Statement

- Carbon fiber is expensive, which limits industrial uses
- Precursor is 50% of production costs. Lack of proven alternatives

Potential Solution

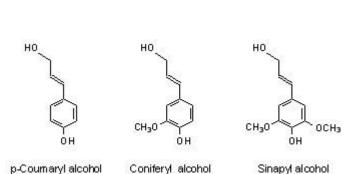
- Lignin has potential to be low-cost renewable precursor
- Higher carbon yields. Reduced energy demand and CO₂ emissions

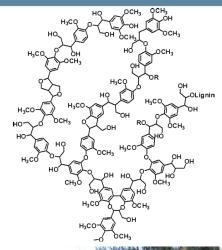


Kline & Company

Current Barriers

- No current supply chain
- Most work at lab or bench scale with little scale-up
- Lignin diversity complicates low-cost melt spinning and stabilization
- Only organosolv hardwood lignin has shown melt spinning without any modification
- Supply chain requires multiple qualified lignin sources without process bottlenecks


This review will highlight reported methods to improve lignin as a carbon fiber precursor.



Lignin is Diverse

- Lignin is a heterogeneous biopolymer
- Glue that holds trees together
- 40-50 million tons per year
- Most abundant after cellulose
- Three main units
- Complex structure
- Not linear like PAN

Biomass sources are diverse

• Softwoods (SW): e.g. pin and spruce. Mostly coniferyl alcohol (guaiacyl lignin)

Hardwoods (HW): e.g. oak, beech poplar, birch. More syringyl alcohol (syringyl lignin)

Grasses: Mainly p-coumaryl alcohol units (graminaceous lignin)


Extraction processes are diverse

- Kraft pulping: Dominant process. Potentially high impurities
- Sulfite pulping: Lignosulfonates are produced
- Organosolv: High purity lignin is produced. Limited availability
- Steam explosion: High purity lignin is produced. Limited availability
- Extraction process large effect on lignin structure

Lignin purity, Tg, molecular weight (MW), rheology depend on biomass and extraction process. Supply chain requires multiple qualified lignin sources without manufacturing bottlenecks.

From Biomass to Carbon Fibers

- Only organosolv HW lignin was melt spun without treatment but stabilization time too long
- HW easier to melt spin while SW easier to stabilize due to chemical structure differences
- High purity needed to melt spin while control of MW / Tg needed for stabilization and high yield
- Supply chain requires multiple qualified lignin sources and no manufacturing bottlenecks

Early Lignin-Based Carbon Fibers

- Otani U.S. patent 3,461,082 (1969) described several lignin-based precursors and methods (melt spinning and dry spinning)
- Kayacarbon lignin carbon fiber was commercially available for brief time. Dry spinning of alkali lignin solution with poly (vinyl alcohol)
- Sudo & Shimizu (1987-1993 patents and papers) described steam-exploded lignin with solvent or alkali extraction. Hydrogenated lignin spinnable but had low yield. Phenolation followed by vacuum thermal treatment almost tripled yield
- Uraki et al (1995-2001 papers) described acetic acid fractionated lignin (organosolv) which showed partial acetylation. HW and SW lignin melt spun, but SWKL lignin did not. Thermal treatment of lignin gave higher MW and better melt spinning

Early Kayacarbon was promising but trumped by other methods.

Melt spinning shown possible with treatments but commercial feasibility not known.

Need clear paths for melt spinning and stabilization of different lignin (control of Tg and MW).

Strategies for Improving Lignin as a Precursor

Purification

Reduction of ash content to improve spinnability

Fractionation

Separation of MW components to improve spinnability and stabilization

Thermal and chemical modification

Elimination of lower MW or derivitization to improve spinnability and stabilization

Polymer blending

Incorporation of plasticizing components to improve spinnability

Fillers

Incorporation of fillers to improve spinnability and tensile strength/modulus

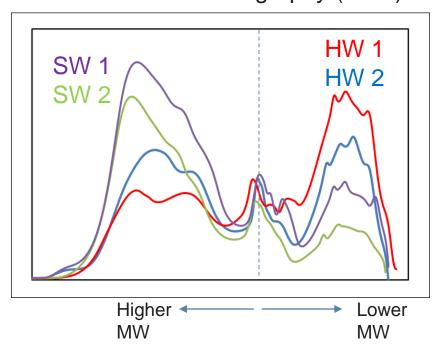
LBCF seen to date show isotropic structure and low to mid tensile strength (25-150 ksi). Applications such as insulation and filtration are suitable initial commercialization markets.

Lignin Purification and Fractionation

Organic solvent purification and fractionation	 Bahl et al (1998) purified HWKL with organic solvents for melt spinning and found it required lower stabilization heating rates. Baker (2008-2012) purified lignin with organic solvents and found the purified lignin showed better thermal stability (transient rheology) but required lower stabilization heating rates. Baker and Gallego (2010) purified and thermally treated lignin to obtain desired molecular weight distribution for melt spinning. Baker et al (2012) purified and thermally treated SWKL for melt spinning. Saito et al (2014) fractionated SWKL with methanol and showed the higher MW fraction had higher Tg and char yield.
Filtration and fractionation	 Nordstrom et al (2012) filtered SWKL and HWKL through ceramic membrane to modifiy molecular weight distribution (permeate). As-is HWKL barely spinnable while SWKL was not spinnable. Blend of SWKL with HWKL permeate had improved spinnability. Showed inverse correlation of Tg and increasing HWKL permeate fraction. Norberg et al (2013) in related work filtered SWKL and HWKL through ceramic membrane to modify molecular weight distribution (permeate). SWKL permeate showed fastest stabilization with potential to skip separate stabilization. SWKL blended with HWKL permeate had slower stabilization.

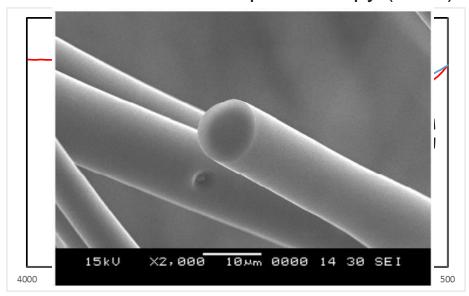
Low MW fraction acts as plasticizer for melt spinning while higher MW fraction gives necessary Tg for stabilization. HW can act as plasticizer for SW for melt spinning.

Lignin Modification


Thermal Treatment	 Kadla et al (2002) performed vacuum thermal treatment at 145 °C for 1 hour to improve melt spinning of organosolv and kraft lignin. Baker et al (2008, 2009) performed thermal treatment to increase organosolv Tg. Qin and Kadla (2012) performed thermal treatment of pyrolytic lignin of bio-oil. Increasing treatment temperature increased MW and Tg while PDI similar, while increasing treatment time increased MW, Tg, and PDI but plateaus after hours. Wells (2013) performed ultrasonication polymerization of kraft lignin.
Acetylation	 Eckert (2007 patent app) described acetylated SWKL. Zhang and Ogale (2014) described acetylated SWKL which was dry spun & stabilized & carbonized under tension to produce fiber with 150 ksi TS.
Butryation	Thunga et al (2014) butyrated SWKL to improve miscibility for blending with PLA. Increasing PLA decreased yield but increased tensile strength/modulus.
Esterification	Chatterjee et al (2014) reported in two papers esterification of organosolv HW, which had small effect on melting behavior, but carbonized fibers showed 3-4X higher BET. Esterification of SWKL enabled melt spinning.
Other Chemical Modification	 Maradur et al (2012) reported oligomerized AN blend with HW. Saito et al (2012-2013) described formaldehyde cross-linked lignin. Wohlman (2010) reported modification of free hydroxyl groups in lignin to add plasticizing ester, ether, or other groups.

Thermal and chemical modifications to lignin can improve Tg, rheology, spinnability, and yield.

Examples


Molecular Weight Distribution by Gel Permeation Chromatography (GPC)

Comparison of HW vs SW

- GPC shows HW has more lower MW fractions while SW has higher MW fractions
- Corresponded to HW being easier to melt spin while SW is easier to stabilize

Functional Groups Analysis by Fourier Transform Infrared Spectroscopy (FTIR)

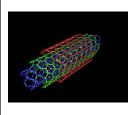
Thermal Treatment of Lignin in Inert Atmosphere 250 °C for 2 hours

- FTIR shows changes (increased ether bonding) which correspond to increase in Tg by 30 °C
- Corresponded to reduction in stabilization time by 10X without negative effect on spinning

Lignin Blends

Blend with polymers	 Kadla et al (2002) reported HWKL blended with 3-5% PEO showed improved melt spinnability but stabilization slower. 3% PEO showed ~10% better TS. Kubo and Kadla (2003) described PVA blended with lignin as a plasticizer. Lower MW PVA showed good spinning. Kubo & Kadla (2005) reported HWKL blended with 5-25% PET showed improved stabilization and tensile strength by 10-17%. Found PP was immiscible in lignin and gave poor tensile results. Compere et al (2005) reported lignin-PET blends with good tensile strength. Baker et al (2011) reported PET, PE MPP but tensile strength not improved. Awal & Sain (2012) reported soda HW and PEO blends for melt spinning. Dallmeyer (2014) reported SWKL blend with PEO.
Blend with lignin	 Nordstrom et al (2011-2013) reported SWKL with HWKL plasticizer Warren (2008) reported HW as plasticizer for SW to enable spinning. Baker et al (2011) reported HW as plasticizer for spinning and faster conversion.
Blend with other	 Ichikawa et al (1992 JP patent) described phenylated lignin coextruded with isotropic pitch to improve carbon fiber properties. Kim et al (2015) blended HW with pyrolized fuel oil then heat treated 230 °C/4h.

HWKL blended with PET or PEO improved spinnability but TS only improved by ~10%. SWKL blended with purified HWKL showed good spinnability.



Lignin Fillers

Organoclay

- **Sevastyanova et al** (2010) reported organoclay added to organosolv HW lignin improved spinnability (increased Tg) and tensile strength. 5 wt% of organoclay nearly doubled tensile strength for two different organoclays tested.
- Qin and Kadla (2012) added organoclay to pyrolytic lignin from bio-oil. Tensile strength was improved by 12%, which was not nearly that reported above for organosolv HW lignin. Found that 1% organoclay was optimum for improvement in tensile modulus.

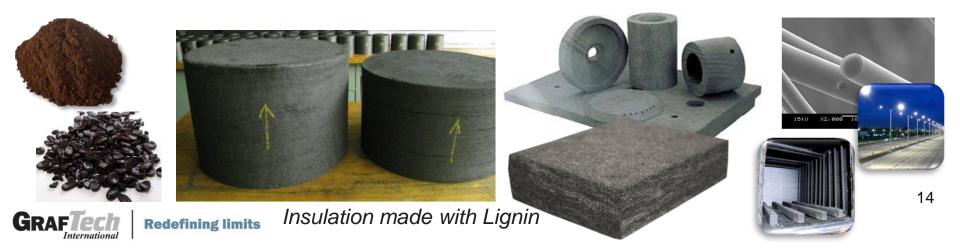
Carbon nanotubes (CNT)

- Baker 2010 (2011 patent application) described up to 10 wt% addition of multiwalled carbon nanotubces (MWCNT) to purified HWKL and blend of SWKL and purified HWKL. Found that melt spinnability was improved. Reported that tensile strength was improved by 20% with MWCNT incorporation.
- **Teng** (2013) reported addition of MWCNT to electrospun SWKL based fibes. Tensile strength not improved. But electrical conductivity improved by 30% with 6% MWCNT (6% was max could be dispersed in fiber).

Addition of fillers improved melt spinnability and improved strength but not step change.

GrafTech-ORNL Collaboration

US DOE Cooperative Agreement DE-EE0005779 (project period 2015-2017)


Objectives

- Develop and demonstrate scalable lignin-based carbon fiber (LBCF) technology
- Demonstrate LBCF in high-temp products and applications, including insulation
- Show progress towards LBCF supply chain

Approach

- Take a fresh look at lignin sources, purification, modification, and stabilization
- Focus on scalable technologies for producing LBCF in ORNL CFTF
- Make 500 pounds of LBCF in year 2 and 5000 pounds in year 3 for insulation

High potential for LBCF to be 50% lower in cost and more insulating than current fibers.

Summary

Motivation for low-cost carbon fibers

Increase adoption rate in industrial applications

Lignin as an potential low-cost and renewable carbon fiber precursor

- Renewable resource decoupled from petroleum based precursors
- Lower cost, energy, and CO₂ emissions than petroleum based precursors

Unique challenges with lignin as a carbon fiber precursor

Diverse structure has prevented single strategy for low cost processing

Reported strategies for improving lignin as a precursor

Purification, fractionation, modification, polymer blending, fillers

Objectives of GrafTech-ORNL collaboration

- Develop LBCF and demonstrate in high-temperature products and applications
- Show progress towards LBCF supply chain

Acknowledgement

Acknowledgement: The information, data, or work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE-0005779.

Disclaimer. The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

