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Program	
  Scope	
  
 

Understanding the mechanisms of deformation of nanocrystalline (nc) 
materials is critical to the design of micro and nano devices and to develop 
materials with superior fracture strength and wear resistance for applications in 
new energy technologies. In this project we focused on understanding the 
following plastic deformation processes described in detail in the following 
sections: 

 
1. Plastic strain recovery (Section 1). 
2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 
3. The role of partial and extended full dislocations in plastic deformation of nc 

metals (Section 3).  

1. Plastic strain recovery 
	
  
When nc samples are loaded beyond their yield stress and then unloaded part of 
the plastic strain recovers over time. This process was observed by Spolenak 
(Spolenak,2001) in ultrafine grained copper thin films and was termed "reverse 
stress relaxation" and was later named “plastic strain recovery” in the work of 
Rajagopalan (Rajagopalan,2006). Experiments in nc aluminum and gold thin 
films (Rajagopalan,2006)  and more recently in copper thin films (Wei,2011) 
show  recovery of plastic strain ranging from 50% to 100%.  This phenomenon 
was also observed in bulk nc and ultra fine crystalline (ufc) aluminum 
(Lonardelli,2009).   That the amount of plastic strain recovered varies in different 
experiments shows that this process depends on the microstructure, the grain 
size and the loading history.  
 
Several models suggest that the 
inhomogeneous stress field is responsible 
for this process, but the sources of the 
stress and the carriers of plastic strain 
differ among approaches.   The theories 
developed by Spolenak (Spolenak,2001),  
Rajagopalan (Rajagopalan,2006) and 
Koslowski (Koslowski,2010) assume that 
plastic strain recovery occurs as a 
consequence of creep deformation due to 
residual stresses resulting from grain size 
heterogeneity and/or texture.  Grains with 
different size have different yield stress 
due to the Hall-Petch effect with larger 
grains yielding at lower stress. Similarly, 
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grains with favorable orientation have larger plastic deformation due to a larger 
Schmid's factor. Upon unloading, grains with larger plastic activity are in 
compression while some grains remain in tension. This stress difference drives 
recovery of plastic strain until the stress is relaxed. Other approaches suggest 
that plastic strain recovery is driven by grain boundary sliding (Wei,2008) and a 
combination of dislocation processes in samples with grains ranging from 10 nm 
to 30nm (Li,2009).  
 
To understand the effect of residual stresses due to microstructure 
inhomogeneity and dislocation interactions during plastic strain recovery, we 
perform simulations using a phase field dislocation dynamics (PFDD) approach 
in microstructures composed of two types of grains, small grains with size 4nm 
and large grains with size 16nm. The volume fraction of large grains is indicated 
by the quantity vl. Figure 1 shows the stress versus strain and plastic strain 
during cyclic loading for different microstructures with a maximum applied strain 
8%. The Hall-Petch effect is evident and arises from the confinement of 
dislocations in the grains, with a higher yield stress in the samples with smaller 
average grain size independently of the grain size distribution. 
 
To quantify the residual stress upon unloading we calculate the stress distribution 
on different microstructures. Figure 2 shows these residual stress distributions 
after applying a strain εmax=8%. The residual stress for the structure with vl =0.5 
is shown in Figure 2(a), vl =0.0 in Figure 2(b), and vl =1.0 in Figure 2(c). During 
loading large grains deform plastically while small grains are still in the elastic 
regime. Upon unloading the small grains are in tension and the large grains are 
in compression. This can be seen in Figure 2(a) where the stress distribution 
shows two peaks corresponding to the small (positive) and large (negative) 
grains. Figures 2(b) and 2(c) are the residual stress distributions in uniform grain 
size structures and therefore, present only one peak. In this case, the 
heterogeneity of the stress field is a consequence the dislocation structures that 
develop close to grain boundaries and therefore, the microstructure with smaller 
grains presents a wider distribution in Figure 2(b). 
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After unloading the simulated dislocation ensemble evolves with a kinetic Monte 
Carlo (KMC) algorithm in which the dislocation-dislocation interactions, the 
interactions with grain boundaries and residual stresses are built into the energy 
of the PFDD. The KMC method provides a general approach to simulate the 
temporal evolution of complex systems exploring sequences of transitions 
between different states in the system and accounting for thermally activated 
mechanisms linking long time scale stress relaxation to dislocation mechanisms.  

Figure 3, shows the plastic strain recovered over time, for the different grain 
structures after the system is loaded up to εmax=8% and then unloaded. The 
maximum extent of plastic strain recovery occurs for larger grain sizes due to 
extensive dislocation activity as shown in Figure 3(a). However, the maximum of 
the ratio between the plastic strain recovery and the value of plastic strain upon 
unloading, shown in Figure 3(b), occurs for vl =0.50. Even for uniform grain size 
our simulations render plastic strain recovery in contrast to previous models 
(Rajagopalan:2006, Koslowski:2010) that do not consider individual dislocations. 

In summary, the simulations indicate that the inhomogeneous stress fields due to 
the Hall-Petch effect in microstructures with different grain sizes have a strong 
effect on plastic strain recovery. Microstructures with the largest distribution of 
grain sizes, vl = 0.5, acchieve 40% of plastic strain recovery while in the other 
structures the recovery is below 15%. But contrary to the predictions in previous 
models, we observe plastic strain recovery in samples with uniform grain size. 
This is explained by the formation of dislocation structures that create a residual 
stress field, Figure 2, that drives the evolution of dislocations. 
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2 Effect of microstructural variability on the yield stress of nc 
metals  
 

Numerical simulations can be exploited to understand the sensitivity of the 
mechanical properties of materials to the microstructure variability and hence 
improve their performance and reliability. We investigate the effect of the initial 
microstructure of nc nickel, including:  grain size, grain size distribution and initial 
dislocation density, on the yield stress through numerical simulations with  the 
PFDD model. The results reveal that the grain size distribution has a significant 
influence on the yield stress for grain sizes under 32 nm and that the initial 
dislocation density is of key importance to determine the yield stress. Simulations 
with no initial dislocation density exhibit almost size independent stress-strain 
behavior, while Hall-Petch effect is observed in simulations with initial dislocation 
structures.  
In Figure 4 the simulated stress-strain curves for polycrystals with various grain 
sizes, and for initial dislocation density , 16 22.5 10 mρ −= × and  
are shown. When the initial dislocation density is set to zero no size dependency 
is observed. The onset of plastic deformation in this case, is dominated by the 
nucleation of dislocations, which is a size independent process. In contrast, when 
the initial dislocation density is higher, dislocation gliding starts at lower applied 
stress resulting in a marked reduction of the yield stress. 

 

Figure 4: Stress-strain curves for various grain sizes with initial dislocation 
density (a) , (b) , (c) . 

0ρ = 16 25 10 mρ −= ×  

0ρ = 16 22.5 10 mρ −= × 16 25 10 mρ −= ×  



With these results we build a 
response surface function of 
the yield stress as a function 
of the grain size and the 
initial dislocation shown in 
Figure 5. The yield stress 
has a strong dependency on 
the microstructure variability 
and therefore, deterministic 
simulations using the mean 
yield stress can lead to large 
prediction errors. The goal is 
to build a probability density 
function (pdf) that can be 
used to predict a range of 
yield stress due to 
uncertainties in the 
microstructure.  
  
The pdf of the yield stress 
for samples with average 
grain size 8nm, 32 nm and 
64nm is shown in Figure 6.  
We assume that the 
average grain size is known 
but the grain size distribution 
is not given. Therefore for a 
given grain size the pdf of 
the yield stress is a uniform 
distribution. To include the 
effect of the uncertainty of 
the initial dislocation density 
we use a normal distribution 
with mean  
and standard deviation 

. It can be seen 
that when the average grain 
size increases the mean 
value of the yield stress 
decreases. On the other 
hand, the dispersion on the 
predicted yield stress due to 
the initial dislocation density 
is reduced with increasing grain size due to the strong dependency of the yield 
stress on the initial microstructure for small grain size samples. 

16 22.5 10 mρ −= ×

16 20.1 10 m−×

Figure 5: Response surface of the yield stress as a 
function of the average grain size and the initial 
dislocation density for uniform grain size. 

Fig. 7. Predicted PDF of the yield stress for 
average grain sizes d=8nm, 32nm and 64 nm. 
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3. The role of partial and extended full dislocations in plastic 
deformation of nc metals 

	
  
Numerical simulations at the nanometer scale have identified several 
mechanisms of plastic deformation. However, high strain rate regimes are 
required to resolve nanometer length scales. Extrapolating numerical predictions 
at high strain rates to experimental conditions remains an unresolved challenge. 
We perform 3D simulations of the evolution of dislocations using a phase field 
dislocation dynamics approach in which the material gamma surface is 
incorporated to account for dislocations dissociating into partials in Al and Ni. The 
simulations are carried out in nc materials with grain sizes in the range 5-50 nm 
in a 3D cell with periodic boundary conditions. 

The details of the dislocation nucleation process in Al in response to an applied 
strain ε13 = 0.04 and in Ni at ε13 = 0.02 are shown in Figure 8. In both materials a 
leading partial is nucleated from the grain boundary, the yellow area is the 
stacking fault left behind by the leading partial. In Figures 8(b), and 8(c) the 
trailing partials have nucleated and remove part of the stacking fault. Afterwards 
the two partials form extended full dislocations that glide as a pair.  

	
  
	
  
 

 

 

 

 

 

 

 

 

Figure 8: Dislocation nucleation at a grain boundary (a)-(c) in Al and (d)-(f) in Ni 

(a) (b) (c)

(d) (e) (f)

Figure 7: Snapshots of dislocation nucleation process in Al (a-c) and in Ni (d-f).

In the above model the transition from extended full dislocation- to partial dislocation-dominated deformation in
nc metals only depends on the grain size. It is important to note that this approximation does not take into account the
current state of deformation, i.e. strain level. Another model presented by Yamakov et al. [11] introduces a dislocation
splitting distance related to the applied stress. Yamakov et al. [11] suggested that the critical grain size, d

c

, is:

d

c

=
Kb

2
p

�
s f

(1 � ⌧/⌧1)
(16)

where ⌧ is the resolved shear stress in the plane of the dislocations and ⌧1 is the resolved shear stress at which the
distance between partial dislocations is infinitely large. This model predicts that the critical grain size below which
only partial dislocation mediated deformation is relevant increases with the applied stress. However, it is important to
notice that the models in Eqs 15 and 16 do not take into account the nucleation of the trailing partial dislocations, but
just compare the stacking fault width with the grain size.

The e↵ect of the average grain size on the dislocation activity is evident in the PFDD simulations. Fig. 11 (a)
shows how A

p

/A
f

decreases with increasing grain size for applied strains ✏13 = 0.024 and 0.040. It is important to
notice that the di↵erence between partial and extended full dislocations is more pronounced at smaller grain sizes and
at lower applied strains. In Fig. 11(b), A

p

/A
f

decreases with increasing strain level, suggesting that the current state
of deformation is an important factor on the activity of partial and full dislocations in agreement with Eq. 16. For
example, the solid squares in Fig. 11(a) imply that at ✏13 = 0.024, there exists a transition from partial- to extended
full dislocation-mediated deformation around d = 22 nm. However, the open squares in Fig. 11(a) confirm that at
larger deformation ✏13 = 0.04, the deformation is dominated by extended full dislocations for all grain sizes explored
in the current work.

4. Summary

We conducted dislocation dynamics simulations to study the collective behavior of partial and full extended dislo-
cations in nc materials under strain-controlled loading conditions. By incorporating the full material gamma surface,
we can capture stacking fault defects and activities of partial and full extended dislocations. We observe that leading
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Figure 9 shows dislocation structures in one plane of the simulation domain for 
an applied strain ε13 = 0.024 for Ni in grain structures with grain sizes d=10, 15, 
and 30 nm. The dislocation activity in smaller grain size structures occurs only in 
a limited number of grains. The 30 nm and 40 nm grain size structures have a 
larger amount of extended full dislocations.  

	
  

	
  
	
  

	
  
The effect of strain rate on the deformation process is studied in a nc Ni sample 
with an average grain size of 15 nm. The impact on the stress-strain response 
and the evolution of partials and extended full dislocations is investigated. Figure 
10 shows the simulated stress-strain curves, with strain rates in the range 106s−1-
109s−1. A significant growth of the stress with increasing strain rate and an 
overshoot can be observed. 
The stress overshoot is reduced 
with decreasing strain rate, as 
the dislocations have enough 
time to glide and reduce the 
local stress between strain 
increments. Another feature of 
Figure 10 is the jerky character 
of the stress-strain curves at 
lower strain rates, 1 × 106s−1 

and 1 × 107s−1.  

To examine the relative 
contribution of partial and 
extended full dislocations to 
plastic strain at different strain 
rates the area slipped by partial 
and extended full dislocations is 

(a) d = 10 nm (b) d = 15 nm (c) d = 30 nm

Figure 10: Dislocation patterns on cross sections of nc Ni grain structures at an applied strain of ✏13 = 0.024.
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(a) as a function of the grain size for Ni at an applied strain ✏13 = 0.024 and 0.040; (b) as a function of the applied strain for
nc Ni with d = 15 , 30 and 40 nm.
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Figure 9: Dislocation structures in one plane of the simulation domain. Blue 
regions are grain boundaries, yellow areas are stacking faults and green lines 
are dislocations. 
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Figure 3.3: Stress-strain curves of the nc Ni sample with an average grain size of 15 nm at strain
rates from 1⇥ 10

6 to 1⇥ 10

9s�1. The dashed line is the 0.2% strain offset.
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Figure 3.4: Calculated CRSS of Ni in PFDD and experimental values for d=40nm [32].

3.3 Rate-limited onset of dislocation glide

The significant differences among the stress-strain curves in Fig. 3.3 suggests that the activation of
dislocations exhibit different features at different strain rates. The microscopic details of the PFDD
simulations are used in this section to quantify these differences. Figures 3.5 to 3.8 show the area
glided by leading partial dislocations (stacking faults) in yellow and extended full dislocations in
gray at different strain rates.

At a strain rate of 1⇥ 10

6s�1, Fig. 3.5 shows a glide event in a large region involving multiple
grains. After being emitted from a GB, the first dislocation glides and activates dislocations at
neighboring GBs. As the applied strain is increased, trailing partials start gliding forming extended
full dislocations.

At higher strain rates, 1 ⇥ 10

7s�1 to 1 ⇥ 10

9s�1, the onset of dislocations gliding occurs at
several GBs simultaneously, as shown in Figs. 3.6 to 3.8. The number of events increases with
the strain rate. This can be explained as follows. Dislocation glide from a GB starts when the
dislocation can overcome the energy barrier. At lower strain rates, the dislocation can glide over a

8
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measured (Vo, 2008). Figure 11 shows Ap, the stacking fault area, and Af , the 
area swept by extended full dislocations, as a function of the applied strain at 
different strain rates. At strain rates 10

8
s
−1 and 10

9
s
−1

, the activity of partial 
dislocations reaches a maximum and then decreases when trailing dislocations 
start to glide to form an extended full dislocation. In contrast, Af increases 
monotonically with the applied strain in all the cases.  

Even though the onset of dislocation gliding occurs at the same applied strain for 
different strain rates, at lower strain rates partial dislocations can glide larger 
distances and trailing dislocations become active to form extended full 
dislocations during one strain increment in the simulation. At larger strain rates, 
the area glided by partial dislocations is limited during each strain increment 
bounding its contribution to the total slip. This leads to an effective delay in 
plastic strain illustrated in Figure 11. This effective strain delay is responsible for 
the increase in yield stress as the strain rate is larger (Brandl, 2009). 

	
  

The dislocation microstructures that form at different strain rates also have 
striking differences that are exhibited in Figures 12 and 13. At lower strain rate, 
the initial dislocation activity is limited to a few GBs and glide events with large 
areas slipped by extended full dislocations are observed. In contrast, dislocation 
activity is observed simultaneously at several GBs across the entire sample at 
high strain rates but the activity is limited to only leading partial dislocations with 
small areas slipped reducing the plastic strain.  
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Figure 3.9: Area glided by (a) leading partials, A
p

, (b) extended full dislocations, A
f

, and (c)
A = A

f

+

1
2Ap

as a function of the applied strain at different strain rates.

which the slipped area reaches the value A = 75⇥75 nm2, which is the area of the cross section of
the simulation domain. This event coincides with the drop of the stress in the stress-strain curves
for all strain rates. It is also interesting to note that there are multiple plateaus and jumps during
the evolution of A at low strain rate (1⇥ 10

6s�1). The plateaus in A indicate an elastic regime (no
dislocation gliding), while the jumps denote dislocation gliding that correspond to a drop of the
stress in the stress-strain curve.
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Figure 11: Activity of partial dislocations in (a) and extended full dislocations in 
(b). 



	
  
Figure 12: Dislocation glide at strain rate of 1 × 107s−1. The area slipped by a 
leading partial dislocation is in yellow; the area slipped by an extended full 
dislocation is in gray.  

	
  
	
  

	
  
Figure 13: Dislocation glide at strain rate of 1 × 109s−1. The area slipped by a 
leading partial dislocation is in yellow; the area slipped by an extended full 
dislocation is in gray.  
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large area and relax the local stress, reducing the number of events in other grains. This scenario
is different at high strain rates, in which the local stress rises before the dislocations can glide
and, therefore, more leading partial dislocations start gliding from GB to accommodate the applied
strain. This process is also responsible for the initial limited activity of trailing partials to form
extended full dislocations at high strain rates.

(a) ✏̄ = 0.01532 (b) ✏̄ = 0.01547 (c) ✏̄ = 0.01551

Figure 3.5: Dislocation glide at strain rate of 1 ⇥ 10

6s�1. The area slipped by a leading partial
dislocation is in yellow; the area slipped by an extended full dislocation is in gray.

(a) ✏̄ = 0.0164 (b) ✏̄ = 0.0166 (c) ✏̄ = 0.0170

Figure 3.6: Dislocation glide at strain rate of 1 ⇥ 10

7s�1. The area slipped by a leading partial
dislocation is in yellow; the area slipped by an extended full dislocation is in gray.

To examine the relative contribution of partial and extended full dislocations to plastic strain
at different strain rates the area slipped by partial and extended full dislocations is measured. Fig-
ure 3.9 shows A

p

, the stacking fault area, and A

f

, the area swept by extended full dislocations,
as a function of the applied strain at different strain rates. At strain rates 10

8s�1 and 10

9s�1, the
activity of partial dislocations reaches a maximum and then decreases when trailing dislocations
start to glide to form an extended full dislocations. In contrast, A

f

increases monotonically with
the applied strain in all the cases. The plastic strain is proportional to the sum A = A

f

+1/2A
p

,
where the 1/2 arises from the fact that, for the same slipped area the strain accommodated by a
partial dislocation is half a of full dislocation. Figure 3.9(c) displays A as a function of the applied
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(a) ✏̄ = 0.0190 (b) ✏̄ = 0.0212 (c) ✏̄ = 0.0218

Figure 3.7: Dislocation glide at strain rate of 1 ⇥ 10

8s�1. The area slipped by a leading partial
dislocation is in yellow; the area slipped by an extended full dislocation is in gray.

(a) ✏̄ = 0.0272 (b) ✏̄ = 0.0296 (c) ✏̄ = 0.0316

Figure 3.8: Dislocation glide at strain rate of 1 ⇥ 10

9s�1. The area slipped by a leading partial
dislocation is in yellow; the area slipped by an extended full dislocation is in gray.

strain. It can be noted that the slope of the curve A versus the applied strain is the same for all
strain rates after plasticity is driven by gliding of full dislocations (after the stress drop).

Figure 3.9(c) shows a delay on the dislocation activity at higher strain rates. This delay is also
observed by Brandl et al. [11] in MD simulations of nc Al when the stain rate was raised from
10

7s�1 to 10

9s�1 and it is explained by thermal activation. In the current simulations at 0K this
effect can be explained as follows. The onset of gliding of a dislocation is determined by the local
resolved shear stress. Therefore, the onset of gliding occurs at the same applied strain for different
strain rates. At lower strain rates though, partial dislocations are able to glide larger distances
and trailing partial dislocations become active forming extended full dislocations during one strain
increment step in the simulation. These events increase the total plastic strain and reduces the
stress locally. On the other hand, at larger strain rates the area glided by one partial dislocation
is limited during each strain increment. The stress is increased rapidly in the next step and other
leading partial dislocations start glide events that have a small contribution to the total slip. This
leads to the effective delay in plastic strain observed in Fig. 3.9(c) and to the large stress observed
in Fig. 3.3. To illustrate this phenomenon Figure. 3.10 shows the stress-strain curves together with
the evolution of A as a function of the applied strain. The vertical dashed lines indicate the strain at

10
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