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B.  Executive Summary  
This DOE project at the Pennsylvania State University (Penn State) initially involved 

Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected 
alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 
15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct 
integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors 
and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. 
The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected 
restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary 
Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with 
Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State.  
With the assistance of NETL project manager, the Penn State team has since developed a 
collaborative research with Delphi as the new subcontractor and this work involved the testing of 
a stack of planar solid oxide fuel cells from Delphi. 

 
The Penn State work was carried out in the EMS Energy Institute involving the faculty 

members and students in the Department of Energy and Mineral Engineering and the Department 
of Chemical Engineering and involving collaborative discussion with the Penn State Waste 
Water Treatment Facility in the Office of Physical Plants. The work at Penn State focused on the 
development of fuel processors for both ADG and commercial diesel fuels and SOFC tests for 
integration with SOFC power generation systems. Penn State is responsible for the development 
of the sorbents for sulfur removal from commercial diesel fuel and ADG, and sulfur-tolerant and 
carbon-resistant reforming catalysts formulations, testing in lab system, and analyzing the trace 
level contaminants.  

 
Delphi delivered ten button cells of 1" diameter and two 5-cell stacks instead of 9-cell 

stack to Penn State for testing on the alternative fuels as planned. The 9-cell stack was replaced 
by the 5-cell stack due to ease of handling and the fact that there is not a significant difference in 
the electrochemical properties between the two. Penn State conducted a detailed electrochemical 
characterization of the Delphi solid oxide fuel cell (SOFC) and stack unit including fuel 
composition analysis, fuel utilization, air utilization, open circuit voltage, thermal cycle 
degradation, Electrochemical Impedance Spectroscopy (EIS) analysis on the individual cells as 
well as the 5-cell stack both under open circuit conditions as well as under power generation 
regimes, and voltage degradation tests to provide feedback on SOFC operation and further help 
to optimize the stack design and parameters.  

 
The project achievements are highlighted below:  
 

 The literature review on ADG cleanup technology and diesel reforming in fuel processing for 
solid oxide fuel cells has been completed and submitted. 

 A new flow adsorption system for evaluation of adsorbents/sorbents performance in ADG 
cleanup has been designed, built and used for the project.  

 Commercially available adsorbents including activated carbon from Cabot, HTZ-5 from 
Haldor Topsoe, SulfaTrap R7 and SulfaTrap R8 adsorbents from the TDA Research and 
SulfaTreat adsorbent from A Smith/Schlumberger Company have been obtained and 
evaluated for ADG cleanup from simulated ADG gas containing 200 ppmv H2S, 10% N2, 40% 
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CO2 and 50% CH4. It was found that the TDA SulfaTrap R7 adsorbent showed the best 
performance at room temperature, while at 350 °C HTZ-5 was more effective for sulfur 
removal. None of them have the capability to remove CO2 from ADG gas.  

 A new mesoporous alumina support (surface area, 244 m2/g; pore volume, 0.99 cm3/g; and 
pore size, 6.5 nm) has been synthesized and used as the support for ZnO adsorbents. The 
meso-Al2O3 supported ZnO showed a better H2S adsorption capacity than unsupported ZnO 
and the commercial Al2O3 supported ZnO adsorbent.  

 A series of metal oxide based adsorbents have been developed for H2S removal from ADG 
stream and found that TiO2-CeO2 adsorbents were effective for sulfur removal. Further, with 
the addition of copper oxide, the developed CuO-TiO2-CeO2 adsorbent showed much higher 
sulfur adsorption capacity compared to TiO2-CeO2 adsorbent. It was also better than the 
commercially available adsorbent, TDA SulfaTrap R7, which is the best among the 
commercial adsorbents studied in this project. 

 The developed CuO-TiO2-CeO2 adsorbent showed good performance for H2S removal from 
simulated ADG stream at room temperature and under atmospheric pressure, which can treat 
150 L-ADG/g (i.e., 39.2 mg-S/g or 3.92 wt%) with H2S concentration reduced from 200 
ppmv to less than 10 ppbv. The adsorbent material is regenerable. After 5 cycles of 
regeneration at 350 °C with air, a sulfur capacity of 3.04 wt% was retained.  

 The study showed that the sulfur adsorption performance of the CuO-TiO2-CeO2 adsorbent 
was influenced by the preparation method and procedure, and the adsorbent composition. 
There may be a synergetic effect on the H2S adsorption performance for the ternary CuO-
TiO2-CeO2 adsorbent and the intimate interaction between these three components may play 
a critical role for achieving high capacity for H2S adsorption.  

 Novel molecular basket sorbents (MBS) have been developed for ADG cleanup on the basis 
of the concept of “molecular basket”, by loading CO2 and H2S-philic polymer such as 
polyethylenimine (PEI) on a nanoporous support, such as SBA-15, and evaluated in the in the 
flow adsorption system at room temperature using a simulated ADG gas containing 200 
ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4. It was found that the prepared sorbent can 
remove both CO2 and H2S from the ADG gas and the sorbent is regenerable at 100 °C. 

 The characterization showed that at PEI loading below 50 wt%, PEI was completely filled 
into the mesoporous channels. The addition of PEI can improve the dispersion of the SBA-15 
particles. PEI loading higher than 50 wt % resulted in the aggregation of sorbent particles. 

 Other molecular basket sorbents (MBS) have been developed using some typical amine 
compounds including Polyallyamine (PA), polyethylenimine (PEI) and N, N, N′, N′-
Tetramethyl-1,6-hexanediamine (TMHD) and evaluated at room temperature and 
atmospheric pressure. The prepared MBSs are able to adsorb H2S from 2000 ppmv to below 
1 ppmv. 

 The effects of amine structure, i.e., primary, secondary and tertiary amine groups, has been 
studied, the inlet H2S concentration, adsorption temperature, porous properties of the support 
and polymer loading were systematically studied in this project. It was also found that the 
presence of CO2 can significantly inhibit H2S sorption over MBS materials.  

 Another series of molecular basket sorbents called NH3-MBS by loading acidic polymer over 
nanoporous support have been developed for ammonia removal from the ADG gas stream. It 
was found that the polymer loading has a profound impact on the NH3 sorption capacity of 
the NH3-MBS sorbents. 
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 Although silica gel could remove siloxane from the ADG gas stream, the novel mesoporous 
materials such as MCM-41 and SBA-15 are more effective for siloxane removal. 

 Based the novel adsorbent developed for deep desulfurization, ammonia adsorption and 
siloxane removal, a conceptual design of ADG fuel gas processer containing three sorption 
units is proposed and illustrated.  

 
 More than 40 metal-oxide-based adsorbents and 40 activated carbon materials have been 

prepared  and tested in a batch adsorption system and in the fixed-bed flow adsorption 
system for their adsorption performance in sulfur removal from a commercial diesel fuel.  

 The Ni-adsorbents were prepared by different methods and evaluated in a fixed-bed flow 
system for adsorptive desulfurization of ultra-low sulfur diesel. The ultrasonic aid in the 
preparation could improve the performance significantly, by a factor of more than 18. 
Loading 20 wt% of Ni gave the best sorbent for sulfur removal from liquid low-sulfur diesel.  

 The adsorption selectivity of Ni20/MCM-48 adsorbent for different sulfur compounds in 
ULSD and the possible adsorption mechanism over the Ni-based adsorbents has been 
investigated. Over Ni-based adsorbents, sulfur compounds are likely adsorbed on the 
adsorbent surface directly through an interaction between the sulfur atom and the exposed 
nickel atoms, and a part (~6 %) of the adsorbed sulfur compounds react further with the 
surface nickel to release the corresponding hydrocarbons. The results also imply that the 
desulfurization reactivity of the alkyl dibenzothiophenes is dependent on not only the number 
of alkyl groups, but also the size of the alkyl substituent groups at the 4- and 6-positions of 
the alkyl dibenzothiophenes. 

 The new TiO2-CeO2 mixed metal-oxide-based adsorbent has been prepared by using a 
commercial fumed silica (EH-5) and mesoporous silica including SBA-15, MCM-41 and 
MCM-48 as a support, and applied for adsorptive desulfurization (ADS) of ultra-low sulfur 
diesel (ULSD) at room temperature. MCM-48 supported adsorbent showed the best 
adsorption performance among the supports examined. It was found that both the surface 
area and the pore structure of the mesoporous silica support influence the adsorption 
performance of the supported mixed metal oxide adsorbents. 

 Through the comparison of the adsorption performance of the 15 wt% CeO2/MCM-48, 15 
TiO2/MCM-48 and 15 wt% Ti0.9Ce0.1O2/MCM-48, we found that Ce and Ti oxides have a 
strong synergetic effect on the performance of the Ti-Ce-O/MCM-48 adsorbent. 

 We developed a novel air-promoted adsorptive desulfurization (ADS) approach over TiO2-
CeO2 mixed oxides from ultra-low sulfur diesel (ULSD) at ambient conditions, in which air 
can significantly promote ADS over TiO2-CeO2 mixed oxides from ULSD at room 
temperature under atmospheric pressure, with 9 fold increase in ADS breakthrough capacity 
at 1 ppmw-S.  

 We have further developed another novel approach for ultra-deep desulfurization of diesel 
fuel, in which the original fuel was treated by light irradiation before adsorptive 
desulfurization (ADS) over the TiO2–CeO2/MCM-48 adsorbent under ambient conditions. A 
superior capacity of 95 cm3-fuel/g-adsorbent (32 times higher than that with the original fuel) 
was achieved. The promoting effect of light irradiation was likely through in situ peroxides 
generation in fuel under visible light/sunlight, which may oxidize organosulfur to form 
strongly adsorbed sulfones over the adsorbent. 

 The method for fuel-steam mixing and preheating has been investigated for steam reforming 
of diesel fuel. It was found that our design using high temperature steam to preheat and 
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gasify diesel could efficiently avoid early carbon deposition before catalyst bed during diesel 
steam reforming.  

 Several CeO2-Al2O3 supports and Al2O3-supported Ni, Ni-Co, Ni-Fe catalysts with or 
without potassium (K) modification have been prepared and evaluated for steam reforming of 
commercial diesel with 15 ppmw sulfur at 800 °C. It was found that the addition of K and Co 
could improve the performance of Ni/Al catalyst. The Ni-Fe catalyst showed better activity 
and reforming performance than both Ni and Ni-Co catalysts. The addition of iron can 
promote the resistance to both carbon deposition and sulfur poisoning. 

 The prepared catalysts have been characterized by N2 physisorption method to obtain the 
BET surface area and pore volume data, and by H2 temperature programmed reduction 
method to obtain the reducibility of metals and understand the metal-metal and metal-support 
interactions. The results indicate that the proper metal-support interaction may play a vital 
role to achieve high resistance to sulfur poisoning and carbon deposition over Ni based 
catalyst. 

 The spent catalysts after steam reforming of commercial diesel with 15 ppmw sulfur at 800 
°C have been analyzed to obtain the carbon deposit information. It showed that the addition 
of K can significantly suppress the carbon formation. The presence of Co can contribute to 
carbon formation.  

 The prepared catalysts were characterized by sulfur and carbon K-edge XANES, which 
indicate that the presence of Fe may hinder sulfur adsorption on reforming catalysts, thus 
improve sulfur tolerance of Ni-Fe catalyst. While the addition of K can enhance the 
gasification of deposit carbon and therefore reduce the carbon accumulation on the 10Ni-
5Fe-5K/Al reforming catalyst. 

 A conceptual design of a diesel fuel processor including adsorbent unit and reforming unit 
for solid oxide fuel cell and will be reported in the next period. In this conceptual design of 
the diesel fuel processor, it involves two units, i.e., the desulfurization unit and the reforming 
unit. The air-regenerable TiO2-CeO2 mixed oxide adsorbent for deep desulfurization of diesel 
fuel down to below 1 ppm and the highly carbon-resistant and sulfur-tolerant Fe-Ni based 
catalyst for diesel steam reforming developed in this project are applied in the desulfurization 
unit and the reforming unit, respectively. 

 
 A literature review was performed specifically with respect to the issues of fuel cell 

degradation while operating with hydrocarbon fuels as the basis for analyzing the SOFC 
performance stability and degradation with the reformed fuels.  

 With regards to the development of a lab-scale single SOFC test system, electrochemical 
impedance spectroscopy (EIS) analysis was tuned for detailed in situ MEA degradation 
studies and the technical solution for mounting and sealing the single ring cells for the 
electrochemical testing was optimized.  

 A new technique, Electrochemical Frequency Modulation (EFM) has been applied as a 
preliminary trial to study kinetic effects and estimate kinetic parameters on the SOFC stack.  

 The results from EFM technique have been compared with EIS, LSV and LPR (Linear 
Polarization Resistance) to make a comparative treatment of the obtained data and used to 
estimate the extent of accuracy and deviation between values from the three methods. 

 It was observed that the values from the above mentioned techniques were close to each 
other and were of the same order of magnitude. 
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 Delphi has completed the two tests on 2 Delphi Gen 4 Stacks using the five fuel conditions 
agreed upon by Delphi and Penn State. 

 One year of daily Anaerobic Digester Gas volumetric production data has been obtained 
from Penn State’s Waste Water Treatment Plant. 

 The technical progress review meetings with DOE project manager, Mr. Joseph Stoffa, were 
held at Penn State on July 7, 2010, and July 31st, 2013, respectively.  

 With the support of this project, 9 graduate and 1 undergraduate students and 6 research 
associates/assistants have been educated and/or benefited from the project research on fuel 
processing and fuel cell technologies. 

 The research of this project has generated 20 referred journal publications and 9 conference 
papers, with more manuscripts in the chain of publication. 
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C. Introduction 
This DOE research project entitled “Solid Oxide Fuel Cells Operating on alternative and 

Renewable Fuels” was formally established at Penn State late in October 2008 including a 
subcontract to Siemens Energy Inc.  However, the internal restructuring within Siemens led to 
the elimination of the Siemens Stationary Fuel Cell Division in the US.  Unfortunately, this led 
to the Siemens subcontract with Penn State ending on September 23, 2010. With the help of 
DOE management, Penn State then actively searched the industrial partner and teamed up with 
Delphi to develop a collaborative research project involving testing of a commercial stack of 
planar solid oxide fuel cells. The PSU research team and Delphi team had a project kick-off 
teleconference on Aug 3rd, 2012 to discuss the project tasks, timeline and milestones and agreed 
to have regular teleconference every month.  

The objectives of this DOE project at the Pennsylvania State University (Penn State) 
involving the industrial partner Delphi are: 1) to develop new fuel processing approaches for 
using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial 
diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and 
2) to conduct integrated fuel processor –SOFC system tests to evaluate the performance of the 
fuel processors and overall systems. With the Delphi team joining the project the work is to 
demonstrate the feasibility of integrated fuel processor-solid oxide fuel cell system using diesel 
fuel and bio-gas fuel for electrical power generation in support of DOE SECA program mission. 
         After detailed discussions between Delphi and Penn State, it was finalized that instead of 
the initially proposed 9-cell stack, a 5-cell stack will be tested and analyzed at PSU. This was 
mainly due to that a 5-cell stack is much lighter and easier to handle. In terms of technical 
details, they do not have much difference except the fact that a 5-cell stack has a lower OCP of 
about 5 V. A 5-cell debug stack was sent to PSU, to first check on the testing procedures, 
systems and experimental setup before working with the actual SOFC stack. Delphi team has 
conducted two Gen 4 Stack tests under the conditions agreed upon by Penn State and Delphi. 
The five typical fuel compositions covering the possible fuel compositions of ADG reformate 
and diesel fuel reformate after the ADG and Diesel fuel processors were applied for testing. The 
results from these tests have been summarized and compared in this report. 

The work at Penn State EMS Energy Institute focused on the development of fuel 
processors for both ADG and commercial diesel fuels, respectively, for integration with Siemens 
SOFC power generation systems, and Penn State team is responsible for the development of the 
sorbents and reforming catalysts formulations, testing in lab system, analyzing the trace level 
contaminants focusing on fuel processing processor for ADG and commercial diesel fuel. Penn 
State has developed several novel metal oxide based adsorbents for deep sulfur removal from 
both ADG gas and commercial diesel (10 ppb-S for ADG and 1 ppmw-S for commercial diesel) 
and novel polymeric sorbents for the removal of CO2 and H2S.  The developed adsorbents are 
effective and efficient for sulfur removal, exhibited much better performance than the 
commercially available adsorbents selected and evaluated in this project. Novel approaches for 
deep desulfurization of diesel fuel using air promotion and/or light-irradiation have been 
proposed. It was also demonstrated that iron-Ni catalyst was effective for steam reforming of 
diesel fuel with high sulfur-tolerance and carbon-resistance. In addition, PSU team has 
performed Electrochemical Impedance Spectroscopy (EIS) analysis on the individual cells as 
well as the 5-cell stack both under open circuit conditions as well as under power generation 
regimes. 

The details on the technical progress are provided as follows. 
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D. Technical Progress 
1. Research and Development for Alternative Fuel Processing 
1.1. Development of Single SOFC Testing System 

In preparation for the routine SOFC testing required to validate the cleaning and 
reforming methods, lab scale test equipment has been ordered, and the main components of the 
system are being designed. The single SOFC studies include measurements of fuel cell 
performance, durability, and degradation. In addition to voltage-current response, 
electrochemical impedance spectroscopy (EIS) is considered a key technique of SOFC 
characterization in this study.  

Electrochemical impedance spectroscopy can be utilized for the investigation of double-
layer capacitance, electrode processes and complex interfaces in various electrochemical systems 
[1]. Electrochemical impedance is determined by the response of electrochemical cell to a small 
sinusoidal AC amplitude. The current signal resulting from the applied AC potential can be 
measured and will be a sinusoid at equivalent frequency in shifted phase [2]. 
 
In detail [2-3], the sinusoidal potential can be expressed as, 
 
E = Eosin( t)                                                                                                                    (1) 
 
where Eo is the amplitude of the signal and   is angular frequency (i.e. 2 times conventional 
frequency). The current signal as a response is given by 
 
I = Iosin( t +  )                                                                                                               (2) 
 
where   is phase angle separated between potential and signal phase. 
The potential can be written as a sum of potential drop across the resistor and capacitor, 
 
E = ER + EC                                                                                                                                                                                   (3) 
 
where ER and EC are potential drops, respectively, in the resistor and capacitor. 
Here, EC can be expressed using complex function as, 
 
EC = –jXC I                             (4) 
 
where Xc is the capacitive reactance (1/ C).  
Thus, E can be represented as  
 
E = I (R – jXC)                (5) 
 
E = I Z                  (6)  
 
A vector Z (= R – jXC) is called impedance which is composed of both real and imaginary parts 
of impedance and is rewritten as 
 
Z = ZRe – jZim                                                                                                          (7) 
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where ZRe and Zim represent IR and IXC, respectively. 
These impedance measurements of the electrochemical systems allow for differentiating 

the contributions from a series of processes in the cell including charge transfer (electrode 
kinetics), electrolyte and mass transfer resistances [4]. Polarization measurements (i.e. current-
voltage measurements) are commonly used for electrochemical characterization and can be 
useful in the evaluation of the fuel cell performance; with time these results can monitor the 
performance degradation. However, polarization measurements are unable to provide insight on 
the extent of individual effects of each process in the cell on polarization behavior. With this 
regard, AC impedance spectroscopy results in parallel with the polarization analysis of the cell 
are required to better understand the mechanism and microscopic information of electrochemical 
system.  

The characteristics of an electrochemical system can be represented by an equivalent 
electrical circuit. The system can be regarded as simple impedance to sinusoidal perturbation. 
The equivalent circuit consists of two classes of elements according to the dependence on 
frequency. The frequency independent elements can be composed of resistance, inductance, and 
capacitance whereas the frequency dependent elements include Warburg elements and constant-
phase elements. Warburg elements represent the resistance to mass transfer and constant-phase 
elements represent the circuit elements that show a constant phase angle [5]. By establishing an 
equivalent circuit that models the electrochemical cell, the specific components that comprise the 
system can be identified. It is noted that the impedance analysis can offer valuable information 
on the interface between electrolyte and catalyst, component structure, and reaction kinetics 
which are necessary for catching the mechanism of possible degradation of the solid oxide fuel 
cell operating on hydrocarbon based fuels. 

There were a number of studies with EIS used for monitoring of the SOFC performance. 
EIS regarded as a powerful technique for cell life and degradation studies [6, 7]. Also it was used 
for examination of electrode kinetics [8], allowing differentiation between the anode and cathode 
performances, and also for studying response of the SOFC to changes of experimental variables, 
such as fuel or oxygen partial pressures [9]. One of the critical steps in applying EIS is data 
interpretation via circuit modeling. The impedance spectra can be fitted to an equivalent circuit 
composed of a series of resistances, inductance and frequency dependent elements. In the spectra 
of Nyquist plots (Zimag vs. Zreal) obtained by impedance measurements, the arcs generated in low 
frequency region (0.1-100 Hz) represent diffusion and gas conversion, while the arcs measured 
in high frequency region (100-10K Hz) are associated with the electrode polarization resistance 
in the anode and cathode processes and the intercept at high frequency is determined by the 
resistance of electrolyte and interface between the electrodes and electrolyte. The electrode 
polarization resistance indicates the anode and cathode polarization loss and reaction kinetics. 
Thus, the possible degradation in SOFC electrodes during long term fuel cell test can be 
monitored by impedance measurements with respect to the change in the electrode kinetics and 
diffusion resistance as a function of time [10,11]. Furthermore, it is known that different 
frequency region in the impedance spectra can indicate the reaction mechanism in the cell. The 
high frequency spectrum is ascribed to the charge transfer of oxide ions from the interface 
between electrode and electrolyte to the vacancies in the electrolyte. The spectra observed at the 
medium and low frequencies can be attributed to dissociation of oxide ions and diffusion of 
oxide ions to the electrode/electrolyte interface [12,13]. The differentiation of each anode and 
cathode characteristics can be also feasible using different cell configurations where a symmetric 
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For the performance tests, a special fixture to accommodate the button SOFC in the 
furnace is being designed (Figure 2). A button cell will be sealed between the two alumina tubes 
using a gas-tight ceramic sealant (Figure 1b). The separate tube channels are designed to 
provide the maximum separation of the cathodic and anodic feed gases. The Pt mesh attached to 
each side of the button cell serves as a current collector, and the attached Pt leads are insulated 
using ceramic straws. The designed fixture should allow precise control of both fuel gas and air 
flow rates. Nitrogen gas is used to provide the background atmosphere.  

The first SOFC tests were run with two types of reference fuels to experimentally 
simulate the above-mentioned boundary conditions: (1) H2/N2 (1:1) gas mixture and pure H2 and 
(2) ethanol-water (1:1) blend as an example of unreformed liquid fuel. When directly utilized in 
SOFC with Ni-YSZ anodes, ethanol fuel is known to cause carbon deposition and consequent 
cell degradation, but this process can be suppressed by mixing ethanol with water [16-18]. It is 
inferred that operating temperature for ethanol-fueled SOFC may be an important tuning factor, 
since, on one hand, it controls the kinetics of the in-situ reforming reaction (more efficient 
conversion at higher temperature) [16], but, on the other hand, affects carbon deposition (less 
deposit at lower temperature) [19]. The cell was conditioned by running H2/N2 gas mixture and 
pure H2 as fuels for 24 hours. Humidified air was supplied to the cathode side of the cell at a 
flow rate of 128 ml/min through a coiled capillary. Open circuit potential (OCP) measurements 
and performance tests were carried out repeatedly to check the cell functionality at three 
temperatures 650, 750, and 850 oC and ambient pressure. Electrochemical impedance 
spectroscopy (EIS) measurements were carried out using a Gamry Instruments Reference 600 
Potentiostat /Galvanostat/ZRA to determine the ohmic resistance of the cell as well as variations 
in polarization resistances over time depending on temperature and type of fuel. The OCP values 
measured for different types of reference fuels are listed in Table 1. 
 
Table 1. Open circuit potential (OCP) in volts of SOFC operated with different fuels as a 
function of temperature. 

Temperature, oC 650 750 850 
H2/N2 (1:1) 0.954 0.959 0.957 
Ethanol-Water (1:1) 0.692 0.902 0.951 

 
The OCP measured for higher temperatures are consistent with the values reported in the 

literature [16] for both ethanol water blend as well as hydrogen operating on a similar test 
apparatus at 800 oC. The OCP values for the ethanol-fueled SOFC approach the values obtained 
with hydrogen as the temperature is increased, which probably indicates more complete internal 
reforming of ethanol at higher temperatures. The electrochemical impedance spectra were taken 
in a region of high frequencies for the SOFC under open circuit conditions at different 
temperatures. Some of the EIS data for hydrogen gas and ethanol-water mixture as fuels are 
demonstrated in Figures 3 and 4, respectively.  
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Figure 11a is the Nyquist plot displaying the monitored dynamic current in response to a 
variety of frequency potential oscillations around a potential of OCV of 200 mV. This allows us 
to distinguish the real and imaginary parts of the electrical impedance and ultimately to monitor 
the behavior of each electrode in a nondestructive in situ test. Then, by applying a circuit model 
to the data generated from the Nyquist plot we can isolate the MEA Ohmic resistance to ion 
transfer, as well as the charge transfer resistances of the anode and cathode independently. As 
demonstrated in Figure 11b, a mathematical model of the Nyquist plot shows a strong 
correlation to the cells Nyquist behavior presented in Figure 11a. In this model there are three 
intercepts with the x-axis: from left to right (or low to high real impedance) the first intercept is 
the impedance reading as the frequency approaches infinity, this measures the Ohmic resistance 
of the membrane to oxygen ions only; the distance between the first and second intercept shows 
the charge transfer resistance occurring at one of the two electrodes; the distance between the 
second and third intercept (this being very low frequency) is the charge transfer resistance of the 
other electrode. Distinguishing which electrode is which need only be done once and can be 
determined by running the test with considerably different concentrations or compositions of 
fuel, the arc that grows or shrinks is the anode. The location of the 3rd intercept (or the sum of the 
aforementioned three resistances) is exactly the slope of the polarization curve at the tested 
current density. This approach is based on the Kramers-Kronig method of data analysis and 
utilizes a 2-component Voigt electrical model; so long as the polarization curve is linear in the 
immediate neighborhood of the current density the theory holds; as evident in Figure 11b the 
polarization behavior of a SOFC is almost always linear. The data fitting here is carried out by 
complex non-linear least square techniques, which have shown very accurate results, 
specifically, when using reliable software such as Z-view.  

 

          
(a)                                                                              (b)     

Figure 11.  (a) Nyquist plot of SOFC generating power at OCP of 200 mV under hydrogen, and 
(b) Nyquist plot of a circuit model used in data analysis. 

 
An EIS test is carried out at OCV of 200 mV to determine the behavior of each electrode 

operating on the reformate fuel, the polarization data for the SOFC operating under ethanol and 
water fuel is shown in Figure 12. To simulate the degradation expected in a large-scale SOFC 
system, our cell is then allowed to generate power at or near its maximum power density for 
several hours and days with periodic EIS testing (this testing does not interrupt the generation of 
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power). By monitoring the change in EIS results with time and properly analyzing the data we 
can gain a more detailed view into the nature of possible cell degradation.  

 

 
Figure 12. Polarization Curve for SOFC Operating on Ethanol-Water Model Reformate. 
 
1.2. Single SOFC Performance and Degradation Tests on Alternative Fuels  
1.2.1 Experimental 
SOFC Test Setup  

The SOFC setup is a dual flow system, involving two gas inputs: fuel and oxidant into 
the separated cathode and the anode chambers. The anode side of the SOFC cell is connected to 
the fuel flow, which includes humidified hydrogen and carbon dioxide. The cathode side is 
connected to the oxidant supply, which is mainly air (79 % N2 + 21 % O2). The solid oxide fuel 
cells for these experiments are NextCellTM electrolyte supported button cells (Fuel Cell 
Materials). The membrane electrode assembly (MEA) is supported by a dense 150 micron YSZ 
(8 mol. % yttria-stabilized zirconia) membrane, supporting a porous 50 micron Ni-YSZ anode, 
and a porous 50 micron LSM cathode.  

The fuel cell setup comprises of two alumina tubes of different diameter and length. The 
shorter and thinner alumina tube is used for mounting the SOFC cell with the anode side facing 
towards the inside of the tube. The cell is mounted using a high-temperature alumina cement 
(Aremco CeramabondTM 552 High Temperature Ceramic adhesive). The larger and longer 
diameter alumina tube spans across the entire length of the horizontal tube furnace and allows 
the air to flow into the concentric system from the other end towards the cathode side of the 
button cell mounted on the smaller alumina tube (Figure 13). Insulation materials like glass 
wool are provided on both ends of the furnace to maintain steady operating temperature inside 
the tube furnace and minimize heat loss from the system.  

The Membrane Electrode Assembly (MEA) is prepared through the following approach. 
A very thin film of silver paste is applied on both electrodes the anode and cathode and acts as 
the current collector serving the purpose of an interconnect in an SOFC stack. Circular gold 
wires are spot-welded on to the electrode surfaces and connected to silver wires long enough 
which act as leads and therefore are connected to the Solartron electrochemical test station for 
further data recording, treatment, and analysis. 
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(a) 

 
(b) 

Figure 13. (a) Experimental Setup of the Single-SOFC Testing System; (b) Magnified View of 
the Cell Assembly Showing the Gas Flow Directions in and out of the System. 
 
Test Procedure and Equipment  

A Solartron Analytical 1470E Cell Test System Potentiostat and Solartron Analytical 
1252A Frequency Response Analyzer operated via Cell Test software is used to control all 
electrical testing carried out in this study. An Arbin Instruments Fuel Cell Test Station controls 
the system’s flow rates, pressures, and humidification. A Barnstead Thermolyne 21100 tubular 
furnace is employed in this study to control the operating temperature with the help of a 
thermocouple inserted into one of the ends of the furnace. The experimental temperature is 
maintained at 900 °C with a precision of ± 1.0 °C and ambient air is used for SOFC cathode. The 
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heating of the fuel cell system is carried out from room temperature to 900 °C at a rate of 10 °C 
min-1 under 50 cm3s-1 argon anode flow. Another important point worth noting is that the EIS & 
Polarization equipment, which is currently in the lab, has a maximum voltage measurement 
range of 10 V and maximum current measurement range of 4 A.       

GC sampling bags will be used to collect the gas samples from exhaust lines of the fuel 
and oxidant outlet.  The samples will be analyzed by gas chromatography (GC) to quantify the 
amount of fuel and oxidant utilization in the anode and cathode side electrochemical reaction 
respectively. If possible perhaps after testing with initial apparatus, a high temperature zirconia 
oxygen sensor could also be used to estimate the concentration of oxygen inside the larger 
diameter tube to evaluate the difference on oxygen concentration in the oxidant after the 
electrochemical reaction takes place at the cathode.  

The sold oxide fuel cells used in these experiments were NextCell-B button cells with 
1.256 cm2 active area (Fuel Cell Materials). The SOFC membranes in these cells were 150 μm 
dense yttria stabilized zirconia (YSZ), 8 mol. % yttria. The anode layer was a porous 50 μm 
nickel-YSZ cermet, and the cathode layer was a porous 50 μm lanthanum strontium manganite 
(LSM). 

For the recent tests, the SOFC membrane electrode assemblies were prepared in the 
following manner. A 99.99 % purity gold wire (Alfa-Aesar), used as current collector, was 
adhered to both the anode and cathode sides of the button cell by covering the wire and electrode 
with a silver paste (SPI supplies). The SOFC was then pasted onto an alumina tube using 
Armeco ceramabond, alumina paste, with the anode side facing into the tube. This method so far 
provided the most efficient contact between the electrode and current collector.   
 
Control and analysis software and data logging 

System software which are Cell Test (EIS System) and MITS Pro 5.0 (Arbin gas flow 
system); compatible to the equipment used, are installed in the setup computer which provide 
real time intuitive control of the testing system. These software packages provides real time 
indications of all the measured parameters and allow plotting of cell voltage, current and 
impedance data obtained directly from the fuel cell stack. Real time variable monitoring and 
control is very important because it will allow us to have quick access to useful information and 
thus estimate any discrepancies in the parameters of a particular ongoing experiment. ZView, an 
EIS analysis software from Scribner Associates, will also be used at the post-experimental stage, 
for further EIS equivalent circuit modeling, fitting and simulation of both individual and the 
Delphi SOFC stack. 
 
Electrochemical characterization – EIS testing and modeling 

To measure the effects of the internal processes occurring within a solid oxide fuel cell is 
a difficult and arduous task. Hence, modeling and simulation provides a valuable capability of 
predicting cell performance and understanding how it is influenced by external factors such as 
the flow rate of fuel and oxidant streams, the stoichiometric composition of both streams, 
variation in temperature, or changes in the electrical current drawn from the cell. 

As a first step towards the project, a literature review has been completed on 
electrochemical impedance spectroscopy and its application to solid oxide fuel cells to extract 
the key parameters. The experimentally obtained data will be modeled using the commercially 
available ZView software  V3.2c. The data will be tested with Kramers-Kronig transformations 
to check for internal consistency and further analysis will be done to account for degradation 
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over long periods of time. Equivalent circuit modeling approach will be used for treating the data 
where the distributed parameters will account for the different physical processes controlling the 
system. Sensitivity analysis will be conducted by varying decision variables such as cell area, 
thickness of channels, interconnects etc. This process of optimization is expected to indicate a 
clear trade-off between compactness and temperature, which is directly related to degradation. 
Identification and quantification of key processes in the fuel cell stack, such as gas diffusion, 
oxygen surface exchange kinetics and O2- diffusivity in cathode, gas diffusion in anode, charge 
transfer reaction and ionic transport, is critical to the overall impedance analysis. 
 
1.2.2 Test results 
1.2.2.1 Test results on single SOFC 

A Ni-YSZ anode SOFC button cell fueled with pure ADG is used to generate electrical 
power in Figure 14. Stable power generation was observed for greater than 80 hours. The initial 
increasing power density is a result of the membrane electrode assembly preparation method. 
This power density plot demonstrates the first 80 hours of power generation from the SOFC 
button cell across a 5 Ω external load. The power generation from ADG showed no significant 
carbon deposition on the anode or in the system. AGD that has had H2S sufficiently removed is 
feasible for long-term stable power generation in Ni-YSZ anode SOFCs. 
 

 
Figure 14. Power Density of Single SOFC Operated with ADG Fuel at 5 Ω External Load 
Recorded Over Time: T = 900 °C, P = 1.0 bar, Air Fed LSM Cathode.  
 

Performance curves of Ni-YSZ anode SOFC button cells fueled by ADG and hydrogen 
are compared in Figure 15. The diagram plots the cell voltage vs. current density and specifies 
the open circuit potential (OCP), area specific resistance (ASR) and peak power density obtained 
from these data. The maximum power density generated with anaerobic digester gas was 89.4% 
that of hydrogen. The use of ADG directly or co-fed with hydrogen as a fuel in SOFCs is 
feasible for stable power generation. 
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Figure 15. Polarization Curves for SOFC Operated with Hydrogen and Anaerobic Digester Gas 
fuel. T = 900 °C; P = 1.0 atm; Air Fed Cathode. 
 

Figure 16 shows the example of the data collected from the SOFC operating on ADG 
fitted to an electrical equivalent circuit model before and after H2S poisoning. The data were 
taken in situ during a power generation test. The equivalent circuit model under development is 
designed to separate reaction kinetic effects from mass transport effects in the SOFC, as well as 
to identify the effects of H2S in ADG powered SOFCs. The electrical equivalent circuit model 
used to fit the impedance data plotted in Figure 16 is shown in Figure 17.  
 

 
Figure 16. Nyquist plot displaying real vs. imaginary impedance over a frequency range of 30 
kHz to 0.1 Hz fitted with an electrical equivalent circuit model shown in Fig. 4. Pure ADG is fed 
to the Ni-YSZ anode before and after H2S poisoning (left before, right after). The shown EIS 
data were obtained during SOFC operation under 5Ω external load. Fuel: ADG /air, T = 900 °C, 
P = 1.0 bar.  
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Constants. The original concepts of EFM can be deduced from the Butler-Volmer equation as 
mentioned in the early works on this technique. Similar to EIS, EFM is an AC excitation method, 
where a small signal is applied to the fuel cell. In EFM, two sine waves at different frequencies 
are generated, which is used to stimulate the cell simultaneously. It is known that current is a 
non-linear function of potential so that the systems also responds in a non-linear way to the 
potential perturbation. The electrical current contains responses from the input frequencies as 
well as sum, difference and multiples of the two input frequencies. The two frequencies are 
selected to optimize the output. The frequencies should be as high as possible so as to reduce the 
time of operation and be sufficiently low so that the charging of the double layer does not 
contribute to the current response. The amplitude of the signal excitation is also selected to be as 
low as possible, just like EIS. In their work, Bosch et al. described empirical relationships 
between the electrochemical parameters and the current responses at different intermodulation 
frequencies. These relations could be easily used in this case also for calculation of the exchange 
current density. There is also an internal check devise, named as causality factors, which helps to 
perform a validation of the data and estimate the presence of any background noise. The noise 
could be originating from the instrument or the system itself. The causality factors, 2 and 3, are 
used as baseline data verification to help decide if the data obtained through EFM can be 
analyzed further. Significant deviation from the ideal values of 2 and 3 is the result of a system 
probably with high background noise or an incorrect selection of electrochemical model. 

 
Mathematical Treatment 
      The relation between activation overpotential ( ) and current density ( i ) is represented 
by the Butler-Volmer equation at each electrode-electrolyte interface (which means that the 
equation is applied separately at the anode and cathode), shown here  

i=i0 [ exp ቀ
αnF

RT
 ηቁ -	exp ቀ

-βnF

RT
 ηቁ  ሿ                                                                       [1] 

In this equation i0 is the exchange current density, α and β are the anodic and cathodic 
transfer coefficients respectively, n is the number of electrons transferred by the corresponding 
electrode reaction, F is Faraday's constant, R is universal gas constant and T is the absolute 
temperature.   

The mathematical analysis for the EFM technique should be mentioned here as these 
results are important to define and estimate the exchange current, Tafel parameters and also the 
causality factors. A potential perturbation consisting of two sine waves of different frequencies is 
applied to the fuel cell: 

ߟ  ൌ ܷ଴ 	sin߱ଵݐ ൅ ܷ଴	sin	߱ଶݐ	[2]                                                                               
where ߟ is the overpotential, ܷ଴ is the amplitude of the potential perturbation and ߱ଵ, ߱ଶ are the 
perturbation frequencies. 

The potential perturbation described in Equation (2) is substituted in Equation (1) 

 i = ݅଴	ሾ	exp ቀ
ఈ௡ி

ோ்
	ሼܷ଴ 	sin߱ଵݐ ൅ ଴ܷ	sin	߱ଶݐ	ሽቁ 

െ	exp ቀ
ିఉ௡ி

ோ்
	ሼܷ଴ 	sin߱ଵݐ ൅ ܷ଴	sin	߱ଶݐሽ	ቁ	ሿ                                            [3] 

 i = ݅଴	ሾexpሺ
ఈ௡ி

ோ்
	ܷ଴	 sin߱ଵݐሻ	expሺ

ఈ௡ி

ோ்
	ܷ଴	 sin߱ଶݐሻ	 

     െ	expሺ
ିఉ௡ி

ோ்
	ܷ଴	 sin߱ଵݐሻ	expሺ

ିఉ௡ி

ோ்
	ܷ଴	 sin߱ଶݐሻሿ	                            [4] 

The exponential parts are expanded according to the Taylor series: 

exp	ሺ
ఈ௡ி

ோ்
	ܷ଴	 sin߱ଵݐሻ = 1 + 

ఈ௡ி

ோ்
	ܷ଴ 	sin߱ଵݐ  + 

ଵ

ଶ
ሺ
ఈ௡ி

ோ்
	ܷ଴ 	sin߱ଵݐሻଶ   





 

51 
 

  + 
ଵ

଺
ሺ
ఈ௡ி

ோ்
	ܷ଴ 	sin߱ଵݐሻଷ + ...                                       [5] 

Similarly after doing the Taylor expansion for rest of the terms and doing some algebraic 
manipulation yields the values of the current at the perturbation frequencies and also the 
harmonic and intermodulation frequencies: 

iω1 = iω2 = i0 (
	ఈ௡ி

ோ்
	ܷ଴ 	൅	

ఉ௡ி

ோ்
	ܷ଴ሻ                                                                           [6] 

i 2ω1 = i 2ω2 = 
ଵ

ସ
i0 [ሺ

	ఈ௡ி

ோ்
	ܷ଴ሻଶ 	െ ሺ	ఉ௡ி

ோ்
	ܷ଴ሻଶሿ                                                           [7] 

i 3ω1 = i 3ω2 = 
ଵ

ଶସ
i0 [ሺ

	ఈ௡ி

ோ்
	ܷ଴ሻଷ 	൅ ሺ	

ఉ௡ி

ோ்
	ܷ଴ሻଷሿ                                                          [8] 

i ω1 ± ω2 =  
ଵ

ଶ
i0 [ሺ

	ఈ௡ி

ோ்
	ܷ଴ሻଶ 	െ ሺ	

ఉ௡ி

ோ்
	ܷ଴ሻଶሿ                                                               [9] 

i 2ω1 ± ω2 = i ω1 ± 2ω2 = 
ଵ

଼
i0 [ሺ

	ఈ௡ி

ோ்
	ܷ଴ሻଷ 	൅ ሺ	

ఉ௡ி

ோ்
	ܷ଴ሻଷሿ                                             [10] 

Solving the equations (6 - 10), for the exchange current, i0, both the Tafel parameters 
ோ்	

ఈ௡ி
  and 

ோ்

ఉ௡ி
, 

i0 = 
௜ಡభ,ಡమ

మ

ଶ	ට଼௜ಡభ,ಡమ		௜	ഘభ	േ	మಡమ		ି	ଷ௜ഘభ	േ	ಡమ	మ
                                                                       [11] 

ோ்	

ఈ௡ி
	ൌ 	

௜ಡభ,ಡమ	௎బ

௜	ഘభ	േ	ωమ	ା	ට଼௜ಡభ,ಡమ		௜	ഘభ	േ	మಡమ		ି	ଷ௜ഘభ	േ	ಡమ	మ
                                                     [12]  

ோ்

ఉ௡ி
	ൌ 	

௜ಡభ,ಡమ	௎బ

ି	௜	ഘభ	േ	ωమ	ା	ට଼௜ಡభ,ಡమ		௜	ഘభ	േ	మಡమ		ି	ଷ௜ഘభ	േ	ಡమ	మ
                                                   [13] 

The current values mentioned above denote the current response to the perturbation 
function at those particular frequencies. Therefore, ݅னଵ,னଶ  means the current component 
measured at frequencies ߱ଵ	and ߱ଶ. The current components are averaged and applied in the 
equations (11) through (13) to estimate the electrochemical parameters. 
      For checking the validity of the assumed model and also the data, two causality factors 
are defined which serves as an internal check during data analysis. The causality factors are 
related to the current components as follows: 

Causality factor (2) = 
௜ഘభ	േ	ಡమ		

௜మഘభ	
                                                                           [14] 

Causality factor (3) = 
௜మഘభ	േ	ಡమ	
௜యഘభ

                                                                           [15] 

      If there is a relation between the perturbation signal and the current response, the current 
components should ideally follow both the causality factor values of 2 and 3. Sometimes, 
measurements might by influenced by background noise which might arise from the equipment 
or from the system. Data validity and reliability can be easily checked by performing this simple 
post-test calculation. 
      This work is an effort to apply and introduce EFM to a fuel cell system for calculating the 
value of the exchange current densities and Tafel parameters. Conceptually corrosion systems 
and fuel cell systems are similar in nature with the similar defining kinetic models. The kinetics 
of a corrosion process can be explained with the Butler-Volmer equation with the “ideal” current 
termed as corrosion current, which is called exchange current in case of fuel cell systems.  The 
response of an electrochemical system to a certain perturbation should follow similar non-linear 
behavior irrespective of whether it is a corrosion system or a fuel cell system.  We expect and 
propose that the original theory for the technique should be similar for all electrochemical 
systems, such that the results generated from the technique should work for both corrosion 
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systems as well as fuel cell systems. The results from this technique have been compared with 
EIS, LSV and LPR (Linear Polarization Resistance) to make a comparative treatment of the 
obtained data and used to estimate the extent of accuracy and deviation between values from the 
three methods. 
 
1.3.2. Electrochemical Measurement & Instrumentation 
      The fuel used in the experiments was pure hydrogen (3 % humidified) and all the four 
different measurements (EFM, EIS, LPR & LSV) were carried under similar operating 
conditions. After the reduction of the cells, wet H2 was supplied to the anode side of the SOFC 
stack with a flow rate of 2.5 L min-1, and the cathode was supplied with air at a flow rate of 5 L 
min-1. All of the gases used were as received from Praxair Inc. For measuring the EIS at open 
circuit conditions, a Solartron 1252A Frequency Response Analyzer was used in conjunction 
with a 1470 E Cell Test System. The frequency range for which the impedance data was 
obtained ranged from 10 kHz to 0.1 Hz. This allows all the possible electrochemical processes to 
be represented in the Nyquist plots. The stack generated a large amount of current. This resulted 
from its larger surface area of the individual cells. The Solartron system could not be used due to 
its current limitations. For this reason, a HP 6060B electronic load was used to perform the linear 
sweep (LSV) due to its high current handling capability of 60 A. Anodic overpotential ranging 
from 0 mV to 400 mV was used to generate the current-overpotential data which would then be 
used to perform the Tafel analysis. Equivalent Circuit Modeling was performed using ZView on 
the obtained EIS spectra to determine the corresponding resistances associated with the fuel cell 
system. EFM measurements were carried out using the Gamry Reference 600 and the EFM 140 
software package. The frequencies used were 2 Hz and 5 Hz. The base frequency used was 1 Hz. 
The values of the electrochemical parameters observed from EFM were directly obtained from 
the Gamry software framework system. Tests were repeated multiple times to check the 
consistency and repeatability. 
 
1.3.3. EFM Results – Comparative Analysis with EIS, LSV and LPR 
1.3.3.1 EIS Data and Nyquist Plots 
      Impedance spectra were recorded for a single cell (Cell 1) considering the conditions 
which were mentioned before. It was made sure that the gas flow and temperature conditions 
remained similar throughout the entire test schedule. Five sets of EIS data were recorded at 
different times of the day, each at intervals of 3 hours. This was performed to verify the obtained 
values drift significantly with passage of time or there is negligible change in them. A Nyquist 
Plot at open circuit conditions is shown in Figure 35. The impedance plot obtained in the figure 
is for N = 3. Plots of N = 1 to N = 5 have not been shown because it was found that the nature of 
the impedance spectra did not change with the specified operating conditions. 
      The EIS plot obtained is shown in Figure 35.  Identification of different sections of the 
EIS plots gives us information on the corresponding electrode processes.  Change in the spectra 
with changing operating conditions shows the dependency of the particular variable on the 
corresponding portion of the EIS spectra. It is seen that the first high frequency arc (centered 
around 10 Hz) is completely dependent on the partial pressure of oxygen (21 % O2 to 100 % O2) 
on the cathode side and the second mid frequency arc (centered around 0.15 Hz) is mainly 
dependent on the partial pressure of hydrogen and also the operating temperature on the anode 
side. It is thus noted that the first arc corresponds to the cathodic charge transfer kinetics and O2- 
diffusivity. The second arc is also a function of polarization and with increasing current load on 
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termed as an intermodulation spectrum which has the y-axis as the current and x-axis as 
frequency. The spectra recorded at N = 3 has been shown in Figure 39. 
 
Table 10. Values of the exchange current density and causality factors obtained from the Gamry 
EFM software. 

Data Acquisition 
Points 

Exchange Current 
Density  

i0 (mA/cm2) 

Causality Factor 
(2) 

Causality Factor (3) 

N = 1 1.8000 1.783 2.790 
N = 2 1.7028 1.838 3.019 
N = 3 1.8721 1.888 3.262 
N = 4 1.8344 1.977 2.788 
N = 5 1.8540 2.018 2.880 

       
Each of the intermodulation frequencies has been recorded inside the Gamry software 

and has been employed in empirical relations shown by Bosch. et al in their work. As can be 
seen in their work, there are causality factors (2) and (3) which serve as internal checks for the 
validity of the data. This helps in checking if the data is reliable and if at all could be used for 
further analysis. Causality factors are also calculated automatically in the software. The data 
obtained here (Table 10) are checked with the causality factors and are made sure that those data 
which satisfy with acceptable causality are chosen and included in this work. Usually the 
causality factors chosen as a standard for collecting data ranged from with +/- 0.5 from the ideal 
values of 2 and 3.  

The exchange current density was measured using three very different electrochemical 
techniques at same operating and process conditions. It was observed that the values were close 
to each other and of the same order of magnitude and were of the same order of magnitude as 
shown in Table 11. It is well known from literature that EIS, LSV and LPR could be used for the 
calculation of exchange current. But in this work, we proposed the use of another powerful 
technique, EFM, in obtaining the value of the exchange current directly from in-situ testing. The 
advantage of EFM is that, it is a non-destructive technique and also is completed within a short 
period of time. One important aspect which is to be considered is that all the three tests have 
been performed using three different instruments from different suppliers. The instrument error 
should be present in all the three data sets, and that should be taken into account while doing the 
comparative analysis. The obtained values are compared with the values reported by other 
authors for solid oxide fuel cells with similar materials composition and operating temperature. 

 
Table 11. Values of the exchange current density obtained from EIS, LSV, LPR & EFM.  

Data 
Acquisition 

Points 

 (mA/cm2)  

EIS 

 (mA/cm2)  

LSV 

(mA/cm2)  

LPR

 (mA/cm2)  

EFM 

N = 1 3.9591 2.287 2.287 1.8000 
N = 2 3.7750 2.288 2.288 1.7028 
N = 3 3.9090 2.357 2.357 1.8721 
N = 4 3.7867 2.317 2.317 1.8344 
N = 5 3.7743 2.258 2.258 1.8540 
 

oi oi oi oi
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The exchange current density is a critical factor in determining the performance of a 
SOFC. It is a measure of the kinetics of the electrochemical charge transfer reaction. In this 
work, the operating conditions used were standard including the fuel. While carrying out the 
degradation analysis of fuel cell stacks under other hydrocarbon fuels and simulated reformate 
streams, it becomes useful to monitor the change of the exchange current density. This helps to 
judge how and to what extent the cell degradation is occurring with regards to change in 
electrochemical properties due to modification in the microstructure properties. In some cases, 
there are various inorganic impurities present in the other hydrocarbon fuel streams. This affects 
the fuel cell by reacting with the anode microstructure or by altering the shape and size of the 
active catalyst surface by reducing the amount of available triple phase sites for electrochemical 
reaction. In such instances, a direct change in the exchange current density is observed, which 
makes it even more imperative to measure them.  
      EFM has been used by many people in corrosion studies. In this work, it has been 
proposed for the first time to be used for solid oxide fuel cells. This provides an opportunity for 
researchers to measure electrochemical parameters and also gives a flexibility to use it along 
with impedance spectroscopy and linear sweep voltammetry to obtain values for exchange 
current. A direct estimation of the exchange current from the software after performing the tests 
gives a leverage to analyze the fuel cell performance instantly rather than collecting EIS data and 
perform theoretical analysis on the experimental results. This takes time before final calculations 
are completed. EFM also gives the values of the Tafel parameters (Tafel Slopes) and 
electrochemical transfer coefficients directly from the obtained data using the software. Even 
though this work does not deal with the above mentioned parameters, more theoretical and 
modeling work is being carried out in regards to analysis of the Tafel parameters which also 
provide very useful information on the kinetic performance of the solid oxide fuel cell. 
 
2. Design of Fuel Processing Systems 
2.1. Development of ADG Fuel Processor Concept (novel) 
2.1.1. Evaluation of commercial sorbents for ADG 

In this project, the recommended commercial adsorbents have been tested. The 
adsorbents include SulfaTrapTM-R7 and SulfaTrapTM-R8 from the TDA Research and the 
SulfaTreat from A Smith/Schlumberger Company. All the adsorbents are recommended by the 
corresponding companies, representing the best adsorbent for sulfur removal from biogas. The 
adsorbents were used as received without further pretreatment. 

Figure 40 shows the breakthrough curves for H2S removal from the simulated ADG gas 
containing 200 ppmv H2S, 10 v% N2, 40 v% CO2, and 50 v% CH4 over the commercial TDA 
SulfaTrap-R7, TDA SulfaTrap-R8 and Smith/Schlumberger SulfaTreat adsorbents at room 
temperature. Under current conditions, all the evaluated adsorbents can removal H2S from the 
gas stream. The H2S concentration in the effluent was below 60 ppbv over these three adsorbents 
before breakthrough. The TDA SulfaTrap-R7 exhibited the best performance for H2S removal. It 
took about 4000 min (about 3 days) to break through, significantly longer than the other two 
adsorbents, as shown in Figure 40. The corresponding breakthrough capacity was about 38.9 
mg-H2S/g. The TDA SulfaTrap-R8 also showed good performance for H2S removal. It took 
about 1700 min to break through. The corresponding breakthrough capacity was about 22.3 mg-
H2S/g. Compared to the TDA SulfaTrap-R7 and -R8 adsorbents, the sorption performance of the 
Smith/Schlumberger SulfaTreat adsorbent for H2S removal at the same conditions was much 
worse. H2S broke through in ca. 95 min. The calculated breakthrough capacity over this 
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 Commercially available adsorbent, ZnO was also tested for ADG cleanup under different 
temperature, i.e., at room temperature (25 °C) and at 350 °C. The ZnO adsorbent (HTZ-5) was 
purchased from Haldor Topsoe. The detailed physical properties of the ZnO adsorbent are listed 
in Table 12. The adsorbent was used as received without further pretreatment. 
 
Table 12. Typical physical parameters of ZnO oxide adsorbent, HTZ-5, Haldor Topsoe. 

 HTZ-5 
Shape  Extrudates 
Size, diameter 4 mm 
Length 4-8 mm 
ZnO (wt%)  > 99 
Al2O3 (wt%) < 1 

 

 
Figure 42.  H2S breakthrough curves for H2S removal from the simulated ADG gas containing 
200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over the commercial ZnO adsorbent at 
different adsorption temperatures. Conditions: Volume of adsorbent bed, 1.9 ml; Pressure, 1 atm.; 
Flowrate, 50 ml/min (GHSV, ~1500 h-1). 

 
Figure 42 shows the breakthrough curves for H2S removal from the simulated ADG gas 

containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over the commercial HTZ-5 ZnO 
adsorbent extrudates at room temperature (25 °C) and 350 °C. Under current conditions, the 
evaluated adsorbent can effectively remove H2S from the gas stream. The H2S concentration in 
the effluent was below 60 ppbv over these three adsorbents before breakthrough. However, the 
operation temperature can significantly affect the desulfurization performance of ZnO adsorbent. 
At room temperature, it took about 550 min to break through over the ZnO adsorbent. The 
corresponding adsorption capacity for H2S was about 4.6 mg/g-A, still showing a good 
performance for ADG cleanup. As expected, raising the sorption temperature can result in the 
significant improvement in the sorption performance. As shown in Figure 42, at 350 °C,  it took 
about 4600 min (or more than 3 days) to break through, significantly longer than the one 
obtained at room temperature. The corresponding breakthrough capacity was about 40.4 mg-
H2S/g-A, which is about one magnitude better than that at room temperature. The results confirm 
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that the conditions can greatly affect the performance of an adsorbent and the ZnO adsorbent 
prefers higher temperature for desulfurization. It demonstrates that commercial HTZ-5 ZnO 
adsorbent can effectively work for H2S removal from ADG gas with very low H2S concentration 
in the effluent before breakthrough, which is necessary for fuel cell applications.  

In those experiments, the outlet CO2 concentrations have also been tracked in the effluent 
by an on-line GC (SRI 8610C) with 5A and silica columns and a thermal conductive detector. 
No CO2 adsorption was observed over the ZnO adsorbent, whether at 25 °C or at 350 °C, 
suggesting that ZnO adsorbent does not have the capability to remove CO2 from ADG gas. It 
demonstrates that commercial HTZ-5 ZnO adsorbent can effectively work for H2S removal from 
ADG gas with very low H2S concentration in the effluent before breakthrough, which is 
necessary for fuel cell applications.  

The H2S adsorption performance of the commercial adsorbents for ADG is summarized 
in the Table 13. The results clearly show that at room temperature, the SulfaTrap-R7 adsorbent 
from TDA Research is the best adsorbent under the conditions studied in this project. The 
commercial ZnO adsorbent, HTZ-5 also exhibited an excellent capacity for H2S removal but 
requires a higher operating temperature of 350 °C. 

 
Table 13. H2S adsorption performance of commercial adsorbents for ADG. 

Adsorbent 
Temp. 
C 

Cap(BT)*, 
LADG/g-sorb 

Cap(BT)*, 
 mg-H

2
S/ml-

sorb 

Cap(BT)*, 
mg-H

2
S/g-sorb 

AC (EC) 25 0.25 0.015 0.07 
HTZ-5 
(ZnO) 

25 16.5 4.0 4.6 
350 145.0 33.7 40.4 

SulfaTreat 25 3.2 0.7 0.9 
SulfaTrap-R8 25 79.6 12.5 22.3 
SulfaTrap-R7 25 139.6 29.3 39.1 

*Cap(BT) = Breakthrough Capacity at H2S level of 100 ppb. 
 

2.1.2. Novel Mesoporous Alumina Supported ZnO Adsorbents for ADG 
Mesoporous alumina support was prepared via the cation-anion double hydrolysis 

method according the literature [23]. Typically, about 3.75 g of aluminum nitrate and 2.32 g of 
triblock copolymer Pluronic P123 (EO20PO70EO20, MW=5800, Aldrich) were completely 
dissolved in 30 g of de-ionized water with stirring. At the same time, a 20 ml of solution 
containing 2.46 g of sodium aluminate was prepared and dropped into the aluminum nitrate 
solution under vigorous stirring. A white precipitate formed immediately. After further stirring at 
room temperature for 1 hr, the mixture was transferred into an autoclave and further treated to 
allow crystallization at 100 °C for 24 h. The resultant solid was recovered by filtration, washed 
with de-ionized water, dried at 100 °C overnight and finally calcined at 550 °C for 6 h with a 
heating rate of 2 °C/min. 

The mesoporous alumina supported zinc oxide adsorbents were prepared by a wet 
impregnation method [24]. In a typical preparation, 300 mL of 2M potassium carbonate was 
added in 200 mL of 2M zinc nitrate solution with stirring. Then a calculated amount of 
mesoporous alumina was added in the suspension, and treated in an ultrasonic bath for 30 
minutes. The mixture was then washed by 200 mL of 0.1M ammonia solution, and then by 100 
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mL of absolute ethanol. The filtrated solid was dried at 120 °C overnight and finally calcined at 
250 °C for 3 h. 

 

 
Figure 43.  XRD profile of the synthesized mesoporous Al2O3 support. 
 

The prepared mesoporous alumina has been characterized by x-ray diffraction (XRD) and 
N2 adsorption-desorption method. Figure 43 shows the XRD profile of the synthesized 
mesoporous alumina support at low angles. A characteristic peak was observed at 2 = 1.32o in 
the diffraction of the synthesized Al2O3, indicating that the synthesized alumina has a typical 
mesoporous structure. It has been further confirmed by the N2 adsorption-desorption 
characterization, as shown below. 
     

 
Figure 44.  N2 adsorption-desorption 
isotherm of mesoporous Al2O3. 

 
Figure 45.  The pore size distribution 
calculated by BJH method. 

 
Figure 44 shows the nitrogen adsorption-desorption isotherm for the synthesized alumina 

support. A typical type IV adsorption isotherm with a H1 hysteresis loop is obtained, indicating 
the uniform meso-structure of the synthesized Al2O3. On the basis of the nitrogen adsorption-
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desorption isotherm, the surface area, pore volume and pore size of the mesoporous Al2O3 
support can be calculated. Figure 45 shows the pore size distribution curve calculated by BJH 
method. It shows that the material has a relative narrow distribution of the pore size, suggesting a 
uniform meso-structure. The mesoporous Al2O3 support synthesized in this period has a surface 
area of 244 m2/g, a pore volume of 0.99 cm3/g and a pore diameter of 6.5 nm. The surface area of 
the meso-Al2O3 support material is much higher than that of commercially available -Al2O3, 
whose surface area is about 150 m2/g. 

 

 
Figure 46.  H2S breakthrough curves for H2S removal from the simulated ADG containing 200 
ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over mesoporous alumina supported ZnO 
adsorbents at room temperature. Conditions: Volume of adsorbent bed, 2 ml; Pressure, 1 atm.; 
Flow-rate, 50 ml/min (GHSV, 1500 h-1). 

 
Figure 46 shows the breakthrough curves for H2S removal from the simulated ADG gas 

containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over the mesoporous Al2O3 
supported ZnO adsorbents with different ZnO loadings at room temperature. For comparison, the 
commercial ZnO pellet adsorbent was also performed for the simulated ADG cleanup and the 
obtained breakthrough curve for H2S removal is presented in Figure 8. At room temperature, the 
ZnO pellet shows a good performance for H2S removal. It can treat about 24.7 L/g-ZnO of ADG 
before the outlet H2S concentration is higher than 1 ppm. The corresponding adsorption capacity 
is 6.9 mg-H2S/g-ZnO. When ZnO was loaded onto the mesoporous Al2O3 support at 10 wt%, the 
H2S adsorption performance has been significantly improved. Before breakthrough at 1 ppmv, 
the treated ADG volume by 10 wt% ZnO/meso-Al2O3 adsorbent reaches as high as 44.5 L/g-
ZnO, which is almost double of that of the commercial ZnO pellet. The corresponding H2S 
adsorption capacity is also getting to 12.4 mg-H2S/g-ZnO. The results suggest that using 
mesoporous alumina with high surface area as a support is beneficial to promote the performance 
of ZnO adsorbent for H2S removal from ADG.     

However, when ZnO loading increases to 20 wt%, the performance of ZnO/meso-Al2O3 
adsorbent decreases much. Over the 20 wt% ZnO/meso-Al2O3 adsorbent, the treated ADG 
volume is about 21.5 L/g-ZnO before breakthrough with an adsorption capacity of 6.0 mg-
H2S/g-ZnO. The value is much lower than that for 10 wt% ZnO/meso-Al2O3, and even lower 
than that for the commercial ZnO pellet. Although there is no characterization data for the 
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mesoporous Al2O3 support ZnO adsorbents, generally lower loading gives better dispersion and 
smaller particles. Thus, the current results indicate that the H2S adsorption capacity and ZnO 
usage for H2S adsorption can be greatly promoted by loading onto a high surface area support 
with the improvement in the particle size and the dispersion of ZnO. 

 

 
Figure 47. H2S breakthrough curves for H2S removal from the simulated ADG containing 200 
ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over mesoporous alumina and commercial 
alumina supported ZnO adsorbents at room temperature. Conditions: Volume of adsorbent bed, 2 
ml; Pressure, 1 atm.; Flow-rate, 50 ml/min (GHSV, ~1500 h-1). 

 
The beneficial effect on the adsorption performance of alumina supported ZnO 

adsorbents by using mesoporous alumina instead of commercial -Al2O3 has been investigated in 
this report period. Figure 47 shows the breakthrough curves for H2S removal from the simulated 
ADG gas containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over the mesoporous 
Al2O3 and commercial -Al2O3 supported ZnO adsorbents at 20 wt% of ZnO loading. Compared 
to ZnO/meso-Al2O3, the treated ADG volume over the ZnO/-Al2O3 adsorbent is smaller, about 
15.3 L/g-ZnO. The adsorption capacity is around 4.3 mg-H2S/g-ZnO, lower than that of 
ZnO/meso-Al2O3 adsorbent (6.0 mg-H2S/g-ZnO). The result exhibits that mesoporous alumina is 
a better support than commercial -Al2O3 for the preparation of supported ZnO adsorbents.  
 
2.1.3. Novel metal oxide based adsorbents for sulfur removal from ADG 

In this project, mesoporous titania-ceria metal oxide adsorbents were prepared via a urea 
precipitation/gelation according to the literature [25]. Prior to urea precipitation, aqueous 
solutions were prepared using cerium ammonium nitrate (NH4)2Ce(NO3)6 (Aldrich, 99.99%), 
titanium oxysulfate TiOSO4 · xH2SO4 · xH2O (Aldrich, Ti: 18.5 wt %), and urea CO(NH2)2 
(Aldrich 99+%). The total amount of cerium ammonium nitrate and titanium oxysulfate was 
0.075 mol, but the Ti:Ce mole ratio was varied between 1:0 to 0:1. In a typical preparation, the 
prescribed amounts of cerium ammonium nitrate and titanium oxysulfate were dissolved in 200 
mL of distilled water, respectively. Ammonium cerium nitrate aqueous solution was added to the 
titanium solution. The mixed aqueous solution was then added to 800 mL of aqueous solution 
containing 70 g of urea and stirred vigorously by a magnetic stirrer. The solution was heated to 
90-95 °C and held there for 8 h, while the total liquid volume was kept at 1000 mL. The resulting 
precipitant was filtered and dried overnight in an oven at 110 °C. The dried precipitant was 
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crushed into powder and calcined in static air by heating at a rate of 1.5 °C/min from room 
temperature to 450 °C and kept at 450 °C for 6 h in a muffle furnace. 

A series of TiO2-CeO2 mixed oxide adsorbents have been prepared with different Ti/Ce 
molar ratio including 9:1; 5:5 and 1:9 and evaluated for H2S adsorption from model ADG steam 
containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 at room temperature. The obtained 
breakthrough curves and the calculated adsorption capacity are presented in Figure 48 and 
Table 14, respectively.  

 

 
Figure 48. H2S breakthrough curve for H2S removal from the simulated ADG gas containing 
200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over mesoporous TiO2-CeO2 mixed oxide 
adsorbent with different Ti/Ce molar ratio at room temperature. Conditions: volume of adsorbent 
bed, 2 ml; pressure, 1 atm.; flow-rate, 50 ml/min (GHSV, 1500 h-1). 
 
Table 14. The calculated adsorption capacity for TiO2-CeO2 material with different Ti/Ce ratio. 

Sample Temp., C 
Breakthrough Capacity,  

L-ADG/g 
Breakthrough Capacity, 

mg-H2S/g 
Ti0.9Ce0.1O2 25 40.5 11.3 
Ti0.5Ce0.5O2 25 3.2 0.9 
Ti0.1Ce0.9O2 25 23.7 6.6 

 
  The Ti0.9Ce0.1O2 adsorbent showed the best adsorption capacity for H2S adsorption for the 
model ADG at the studied conditions.  It can treat about 40.5 L/g of ADG, corresponding to an 
adsorption capacity of 11.3 mg-H2S/g-adsorbent. With the decrease of Ti/Ce ratio from 9 to 1, 
i.e., Ti0.5Ce0.5O2 adsorbent, the adsorption performance of formed material dropped significantly, 
being 0.9 mg-H2S/g-adsorbent, which is only 8% of that for the Ti0.9Ce0.1O2 adsorbent. 
Interestingly, with the further decrease of the Ti/Ce ratio to 1/9, i.e., the adsorption performance 
increased again. The adsorption capacity was about 6.6 mg-H2S/g-adsorbent over the 
Ti0.1Ce0.9O2 adsorbent. The change in the adsorption capacity of the titania-ceria mixed oxide 
based adsorbents with the Ti/Ce ratio may suggest the adsorption sites over titania-ceria mixed 
oxide adsorbents may vary with the change of Ti/Ce ratio. So does the textural structure of 
titania-ceria mixed adsorbents.  
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As it can be seen from the Figure, the fresh adsorbent showed a good performance of H2S 
removal from model ADG stream at room temperature. It treated about 50 L of ADG per gram of 
adsorbent before H2S broke through. After regeneration, the adsorption capacity decreased with 
the increase of regeneration time gradually. It was about 40 and 36 L of ADG per gram of 
adsorbent being treated before H2S broke through for the first and second cycle of regeneration, 
respectively.  After that, a quick drop in the adsorption capacity was observed. It was 20 and 10 
L of ADG being cleaned over every gram of regenerated adsorbent, much lower than that of the 
fresh adsorbent. Promisingly, for 4th to 6th cycle of regeneration test, the decrease in the 
adsorption capacity became less.  

To clearly show the trend of adsorption capacity of Ti0.9Ce0.1O2 adsorbent with the 
regeneration cycles, the adsorption capacity as a function of regeneration cycles has been plotted 
and presented in Figure 50. Obviously, the Ti0.9Ce0.1O2 adsorbent cannot be fully regenerated 
under current conditions. The adsorption capacity for H2S decreased with the increase of 
regeneration cycles.  After 6 cycles, the adsorption capacity was about 4.1 mg-H2S/g-adsorbent, 
about 28% of that for the fresh adsorbent. Interestingly, the adsorption capacity did not change a 
lot, indicating that the adsorbent may be able to be regenerated at this level.  

To further improve the H2S adsorption performance of Ti-Ce adsorbent, copper 
incorporated Ti-Ce-O adsorbent has been prepared as the same procedure for the preparation of 
Ti-Ce-O by a co-precipitation method. The molar ratio of the prepared Cu-Ti-Ce-O adsorbent is 
1:9:1 for Cu:Ti:Ce. The Cu-Ti-Ce-O adsorbent has been evaluated for H2S removal from the 
simulated ADG containing 200 ppmv H2S-10% N2-40% CO2-50% CH4 at room temperature and 
1 atm. The obtained H2S breakthrough curve is presented in Figure 51. For comparison, those 
H2S breakthrough curves obtained over Ti-Ce-O adsorbent, SulfurTrap R7 and SulfaTreat 
adsorbents are also presented. 

 

 
Figure 51. H2S breakthrough curve over Cu-Ti-Ce mixed oxide adsorbent at room temperature. 
Conditions: Gas, 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4; Volume of adsorbent bed, 2 
ml; pressure, 1 atm.; flow-rate, 50 ml/min (GHSV, 1500 h-1). 

 
As it can be seen, Cu-Ti-Ce-O adsorbent exhibited very good performance for ADG 

cleanup. It can treat about 150 L-ADG/g before H2S broke through. The corresponding 
adsorption capacity is 41.7 mg-H2S/g, better than the best commercial adsorbent, SulfaTrap R7,  
tested in this project, which can treat about 139 L-ADG/g with an adsorption capacity of 39.1 
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mg-H2S/g. The current result shows that the Cu-Ti-Ce-O adsorbent is more promising for ADG 
cleanup. More detailed study on this material will be carried out.  

For comparison, the copper incorporated Ti-Ce-O adsorbent has also prepared by wet 
impregnation method and evaluated for H2S adsorption from model ADG steam containing 200 
ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 at room temperature. As shown in Table 15, for 
the Cu-containing Ti-Ce-O adsorbents, different preparation method may generate the different 
status of copper particles with different physical and chemical properties, thus may result in 
different adsorption performance.  
 
Table 15. The adsorption capacity of different adsorbents. 

Sample 
Temp., 
C 

Breakthrough Capacity,  
L-ADG/g 

Breakthrough Capacity, 
mg-H2S/g 

Ti-Ce 25 40.5 11.3 
Cu-Ti-Ce (7) 25 149.5 41.7 

Cu-Ti-Ce (10) 25 120 33.4 
Cu-Ti-Ce* 25 178.2 49.7 

10% CuO/Ti-Ce* 25 136.2 38.0 
SulfaTrap R7 25 139 39.1 

SulfaTreat 25 3.2 0.9 
Conditions: Gas, 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4; Volume of adsorbent bed, 2 
ml; pressure, 1 atm.; flow-rate, 50 ml/min (GHSV, 1500 h-1). * Flow-rate, 200 ml.min (GHSV, 
5454 h-1). 
 

 
Figure 52. H2S breakthrough curves over Ti-Ce, Cu-Ti-Ce-(7), Cu-Ti-Ce-(10) and TDA 
SulfurTrap R7 adsorbents at room temperature.  

 
Additionally, during the preparation of Cu-Ti-Ce-O, the pH value was controlled to 7 and 

10. The prepared Cu-Ti-Ce-(7) and Cu-Ti-Ce-(10) adsorbents have been evaluated for H2S 
removal from the simulated ADG containing 200 ppmv H2S-10% N2-40% CO2-50% CH4 at 
room temperature and 1 atm. The obtained H2S breakthrough curve is presented in Figure 52. 
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For comparison, those H2S breakthrough curves obtained over Ti-Ce adsorbent and TDA 
SulfurTrap-R7 adsorbents are also presented. The obtained adsorption capacity is also listed in 
Table 15. Over the Cu-Ti-Ce-(7) adsorbent, about 150 L-ADG/g can cleaned before H2S broke 
through. The corresponding adsorption capacity is 41.7 mg-H2S/g. When, the Cu-Ti-Ce 
adsorbent was prepared at pH=10, the adsorption capacity for H2S showed worse. The amount of 
ADG treated over Cu-Ti-Ce-(10) adsorbent was about 120 L-ADG/g (or 33.4 mg-H2S/g), much 
lower than that of Cu-Ti-Ce-(7) adsorbent. It suggests that the preparation condition can affect 
the adsorption performance of the Cu-Ti-Ce adsorbent. It should be highlighted that both 
adsorbents exhibited much higher sulfur adsorption capacity than the best commercial adsorbent, 
TDA SulfaTrap R7, which can treat about 90 L-ADG/g with an adsorption capacity of 25.0 mg-
H2S/g at the studied conditions in this work. 

To better understand the difference in the adsorption performance of Cu-Ti-Ce-O 
adsorbents for H2S removal, the following characterizations have been performed. Figure 53 
shows the nitrogen adsorption-desorption isotherms for Ti-Ce, fresh Cu-Ti-Ce (7), spent Cu-Ti-
Ce (7) and 10% CuO/Ti-Ce adsorbents. A typical type-IV adsorption isotherm with a H1 
hysteresis loop was obtained over all Ti-Ce based adsorbents, indicating the Ti-Ce-based metal 
oxide adsorbents have a uniform meso-structure prepared by co-precipitation method. After 10 
wt% CuO was impregnated to Ti-Ce adsorbent, the S-shape adsorption isotherm was still 
observed suggesting the meso-structure was preserved. For the sample of spent Cu-Ti-Ce (7), 
after ADG cleanup, the N2 isotherm still showed a similar shape to that of the fresh one, 
suggesting the purification process did not destroy the pore structure.  

 

 
Figure 53. N2 adsorption isotherms obtained 
at -196 °C. 

 
Figure 54. H2-TPR Profiles. 

 
Table 16. The porous properties of Ti-Ce oxide-based adsorbents. 

Sample BET Surface Area, m2/g Pore Volume, ml/g Pore Diameter, nm 
Ti-Ce  280 0.35 4.3 
Cu-Ti-Ce (7) 331 0.26 3.7 
Cu-Ti-Ce (10) 212 0.24 3.7 
10% CuO/Ti-Ce  230 0.19 3.6 
Spent Cu-Ti-Ce (7) 269 0.21 3.4 

 
On the basis of the nitrogen adsorption-desorption isotherms, the BET surface area, pore 

volume and pore size of Ti-Ce based metal oxide adsorbents can be calculated, which are listed 
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in Table 16. All the Ti-Ce based adsorbents showed a narrow pore distribution in the range of 3-
5 nm, which hints the uniform pore structure of the prepared materials. The Ti-Ce (9:1) 
adsorbent has a surface area of 280 m2/g, a pore volume of 0.35 ml/g and a pore size peaked at 
4.3 nm. After 10 wt% CuO loading by impregnation, the surface area, pore volume and pore size 
decreased to 230 m2/g, 0.19 ml/g, and 3.6 nm, respectively, suggesting that the loaded CuO may 
located inside the pore channels of Ti-Ce support [26,27]. For the sample of Cu-Ti-Ce (7) 
prepared by co-precipitation method, it showed a higher surface area, but lower pore volume and 
smaller pore diameter compared to Ti-Ce (9:1) material, being 331 m2/g, 0.26 ml/g and 3.7 nm, 
respectively. After ADG cleanup, the surface area decreased a lot, being 269 m2/g, while there 
was only a slight change in pore volume and pore diameter as shown in Table 16. It may suggest 
that surface copper species are mainly responsible for sulfur removal in ADG stream. The 
current result reveals that high surface area is beneficial to the Ti-Ce based adsorbents for ADG 
cleanup and may be more important than pore volume and pore size. When the pH value was 
adjusted to 10, the resultant Cu-Ti-Ce-(10) adsorbent also showed very similar data in texture 
properties: a surface area of 212 m2/g, a pore volume of 0.24 ml/g and a pore size of 3.7 nm. The 
current result clearly reveals that the final pH value for material preparation does not affect the 
texture properties of the Cu-Ti-Ce adsorbent. There must be other reasons causing the great 
change in sulfur adsorption capacity of the Cu-Ti-Ce adsorbent obtained at different pH value. 

The redox property of Ti-Ce-O based adsorbents has been examined by H2-TPR 
technique and the results are shown in Figure 54. For comparison, the H2-TPR profile of a 
commercial copper oxide powder purchased from Aldrich is also presented. As it can be seen, 
the Ti-Ce (9:1) adsorbent showed a wide and weak reduction peak ranged from 300 to 600 °C, 
which may mainly relate to the partial reduction of CeO2 in the mixed metal oxide [25]. The low 
reduction peak may be due to high oxygen deficiency in the material [25]. The bulk CuO gave a 
wide reduction peak from 200 to 600 °C with centered at about 410 °C, as shown in Figure 4. 
After loading 10 wt% CuO over Ti-Ce (9:1) material, there are three main reduction peaks 
located at 230, 275 and 410 °C, respectively, suggesting three different types of copper oxide 
species. The bulk-like copper oxide may contribute to the reduction peak at 410 °C, while the 
reduction occurred at 230 °C may be attributed to those CuO species located inside the pores. 
The reduction peak at 275 °C can be tentatively attributed to those small CuO particles located 
over the external surface of Ti-Ce support. Over Cu-Ti-Ce (1:9:1) adsorbent prepared by co-
precipitation method, only two strong reduction peaks are observed at 210 and 230 °C. It may 
suggest that CuO species over Cu-Ti-Ce (1:9:1) adsorbent are only located inside the pores and 
the two reduction peaks can be attributed to the reduction of CuO to Cu2O and the further 
reduction of Cu2O to Cu, respectively. The current H2-TPR results clearly show that CuO species 
in Cu-Ti-Ce (1:9:1) adsorbent is easier to reduce than those in 10% CuO/Ti-Ce (9:1) adsorbent, 
which may be a reason that the Cu-Ti-Ce (1:9:1) adsorbent gave a better performance of sulfur 
removal.  

We have further examined the redox property of Ti-Ce-O adsorbents prepared at different 
pH value by H2-TPR technique and the results are shown in Figure 55. As seen, the Ti-Ce 
adsorbent showed a wide and weak reduction peak ranged from 400 to 650 °C, which may 
mainly relate to the partial reduction of CeO2 in the mixed metal oxide [25]. The low reduction 
peak may be due to high oxygen deficiency in the material [25]. Over Cu-Ti-Ce adsorbent 
prepared by co-precipitation method, only two strong reduction peaks are observed at 189 and 
216 °C. It may suggest that CuO species over Cu-Ti-Ce adsorbent are only located inside the 
pores and the two reduction peaks can be attributed to the reduction of CuO to Cu2O and the 
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further reduction of Cu2O to Cu, respectively. As shown in Figure 5, the Cu-Ti-Ce-(7) and Cu-
Ti-Ce-(10) adsorbents showed very similar H2-TPR profiles, giving the same reduction peaks. It 
indicates that the final pH value in the material preparation does not change the redox property of 
Cu-Ti-Ce adsorbent. However, the peak area, which represents the hydrogen consumption for 
CuO reduction is different. The amount for Cu-Ti-Ce-(7) adsorbent was higher than that for Cu-
Ti-Ce-(10) adsorbent. The area of reduction peak at the temperature range of 100-300 °C for the 
Cu-Ti-Ce-(10) adsorbent is about 80% of that for the Cu-Ti-Ce-(7) adsorbent, i.e., the CuO 
amount in the Cu-Ti-Ce-(10) adsorbent is about 80% of that in the Cu-Ti-Ce-(7) adsorbent. We 
have noticed that the adsorption capacity of the Cu-Ti-Ce-(10) adsorbent (120 L-ADG/g) is also 
about 80% of that for the Cu-Ti-Ce-(7) adsorbent (150 L-ADG/g). The H2-TPR results support 
that the amount of CuO over the Cu-Ti-Ce adsorbent decreased with the increase in the pH value 
from 7 to 10 during co-precipitation. The current study also implies that the active component for 
sulfur adsorption over the Cu-Ti-Ce adsorbent is mainly the copper oxide species. 

 

 
Figure 55. H2-TPR Profiles.  

Figure 56. XPS Cu 2p spectra for standard 
CuO, Cu2O samples and Cu-Ti-Ce-(7) 
adsorbent.  

 
XPS analysis was conducted to understand the surface chemical state of Cu, Ti, Ce, and 

O in Cu-Ti-Ce-(7) oxides. Figure 8 shows the XPS Cu 2p1/2 and Cu 2p3/2 spectra of Cu-Ti-Ce-
(7) mixed oxides prepared via co-precipitation at pH value of 7. For comparison and 
identification, the standard XPS Cu 2p spectra from CuO and Cu2O were also collected and 
presented in Figure 56. As can be seen, the Cu 2p peaks for CuO sample was at 934, 942, 944, 
954 and 962 eV. As for the Cu2O sample, the typical Cu 2p peaks located at 933 and 952 eV. 
Over the Cu-Ti-Ce-(7) adsorbent, the XPS Cu 2p signal was much lower compared to the CuO 
and Cu2O samples. The Cu 2p3/2 peaks at 933 and 934 eV were clearly observed, indicating that 
the chemical state of Cu in the Cu-Ti-Ce-(7) adsorbent may contain both Cu2+ and Cu+, which 
may be the reason why the Cu-Ti-Ce-(7) adsorbent showed such a good performance for sulfur 
removal.  

Figure 57 shows the XPS Ti 2p1/2 and Ti 2p3/2 spectra of the standard TiO2 sample and 
the Cu-Ti-Ce-(7) mixed oxide adsorbent prepared via co-precipitation at pH value of 7. The 
standard TiO2 sample gave the XPS Ti 2p peaks at 458.8 and 464.7 eV. Over the Cu-Ti-Ce-(7) 
adsorbent, the Ti 2p peaks located 458.4 and 464.2 eV, suggesting a clear red shift in binding 
energy for Ti in the Cu-Ti-Ce-(7) adsorbent compared to pure TiO2 sample. This red shift in the 
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Ti 2p binding energy implies that the oxidation state of Ti in the Cu-Ti-Ce-(7) mixed oxide 
adosrbent was estimated as lower than 4+, probably being reduced by the co-existence of Ce in 
the bulk, as observed by Watanabe et al. [25].  

 

 
Figure 57. XPS Ti 2p spectra for the 
standard TiO2 sample and the Cu-Ti-Ce-(7) 
adsorbent. 
 

 
Figure 58. XPS Ce 3d spectra for the 
standard CeO2 sample and the Cu-Ti-Ce-(7) 
adsorbent.  

Figure 58 shows the XPS Ce 3d spectra of the standard CeO2 sample and the Cu-Ti-Ce-
(7) mixed oxide adsorbent prepared via co-precipitation at pH value of 7. Ce 3d spectrum of 
CeO2 shows six peaks at 917.9, 908.5, 902.0, 899.5, 890.2, and 883.5 eV. These peaks represent 
the presence of Ce4+ [1]. The intensity of these six peaks decreased greatly over the Cu-Ti-Ce-(7) 
adsorbent. The peak intensity at 908.5 and 890.2 eV even vanished. In addition, the peak position 
for the other four peaks shifted to a lower binging energy, becoming 916.7, 901.4, 898.9 and 
882.7 eV. These changes in the Ce 3d XPS spectra point to the increased Ce3+ concentration of 
total Ce in the Cu-Ti-Ce-(7) mixed oxide compared to the CeO2 sample [25].  

Figure 59 shows O 1s spectra of CuO, Cu2O, TiO2, CeO2 and Cu-Ti-Ce-(7) mixed oxide 
adsorbent. Binding energy of O 1s for surface oxygen of these oxides was 529.6 eV for TiO2, 
529.0 eV for CeO2, 529.7 eV for CuO and 530.6 eV with a shoulder at 531.6 eV for Cu2O, 
respectively, suggesting that the binding energy for O 1s changes slightly with the adjacent  
metal element. As for the Cu-Ti-Ce-(7) adsorbent, the binding energy of O 1s for the surface 
oxygen was 529.9 eV, slightly higher than those for TiO2 and CuO, close to the one for Cu2O. 
No individual O 1s peak corresponding to these TiO2, CeO2, CuO and Cu2O appears in the 
spectra of Cu-Ti-Ce-(7) mixed oxide. Such a binding energy of the O 1s for the Cu-Ti-Ce-(7) 
adsorbent may suggest that Cu, Ti and Ce chemically interact with one aother in the CuO-TiO2-
CeO2 mixed oxide. In other words, the mixed oxides are not mixtures of these three different 
oxides but rather a uniform solid solution in which Cu, Ti and Ce have chemical interactions, 
which may reduce the chemical state of these elements. 

Consequently, the XPS analysis on Cu, Ti, Ce and O elements over the Cu-Ti-Ce-(7) 
adsorbent showed that the introduction of CuO, TiO2 into CeO2 can cause the partial reduction of 
all these three metal oxides which may induce the formation of oxygen vacancy on the surface. 
As observed over Ti-Ce series adsorbents for desulfurization of organic sulfur compounds from 
liquid hydrocarbon fuels, the oxygen vacancy played a critical role for sulfur removal from the 
simulated ADG gas stream under room temperature and atmospheric pressure [25]. Further XPS 
analysis on the Cu-Ti-Ce adsorbents prepared via wet impregnation, incipient wet impregnation, 
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co-precipitation at pH value of 10 and physically mixing of CuO oxide and the prepared Ti-Ce 
material is need to clarified the effect of preparation method on their desulfurization performance 
for H2S removal from the anaerobic digest gas.  
 

 
Figure 59. XPS O 1s spectra for CuO, 
Cu2O, TiO2, CeO2 and the Cu-Ti-Ce-(7) 
adsorbent.  
 

 
Figure 60. H2S adsorption capacity as a 
function of regeneration cycle number over 
the CuO-TiO2-CeO2 (7) adsorbent. H2S 
adsorption and adsorbent regeneration was 
performed at room temperature and 350 °C, 
respectively.  

 
The prepared CuO-TiO2-CeO2 (7) adsorbent has been evaluated for H2S removal from 

the simulated ADG containing 200 ppmv H2S-10% N2-40% CO2-50% CH4 at room temperature 
and 1 atm. The spent adsorbent was then regenerated in situ with flowing air (50 ml/min) at 350 
°C for 30 min. The adsorption-regeneration has been carried out for 5 cycles. Figure 60 shows 
the calculated adsorption capacity as a function of regeneration cycle number over the CuO-
TiO2-CeO2 (1:9:1) adsorbent. For comparison, the adsorption capacity obtained over the fresh 
TDA SulfaTrap R7 adsorbent is also presented. As seen, with the increase of regeneration cycle 
number, the adsorption capacity decreases. It was about 1.26 mmol-H2S/g-Ads (or 42.8 mg-
H2S/g-Ads) for the fresh CuO-TiO2-CeO2 (1:9:1) adsorbent. After 1st regeneration, the 
adsorption capacity slightly dropped to 1.19 mmol-H2S/g-Ads, about 94% recovered. Then the 
adsorption capacity decreased gradually to 1.03, 0.99 and 0.95 mmol-H2S/g-Ads for the 2nd, 3rd 
and 4th regeneration, showing a recovery of 82%, 78% and 75%, respectively. The decreasing 
trend suggests that the adsorption capacity of CuO-TiO2-CeO2 (1:9:1) adsorbent can be partially 
recovered. It is worth mentioning that the regenerated adsorbent still shows a high capacity for 
H2S removal. Compared to the fresh TDA SulfaTrap R7 adsorbent, which has a capacity of 0.73 
mmol-H2S/g-Ads, the regenerated CuO-TiO2-CeO2 (1:9:1) adsorbent showed much higher 
capacity. Even after 5 adsorption-regeneration cycles, the obtained capacity still reached 0.95 
mmol-H2S/g-Ads, about 30% higher than that for the fresh TDA SulfaTrap R7 adsorbent. The 
current results strongly imply that the developed CuO-TiO2-CeO2 (1:9:1) adsorbent in this 
project is promising for H2S removal from biogas. 

In order to better understand the role of Cu in the Cu-Ti-Ce-O adsorbent, the prepared 
Cu-Ti and Cu-Ce and Cu/Ti-Ce(P-M) adsorbents have been prepared and evaluated for H2S 
removal from the simulated ADG containing 200 ppmv H2S-10% N2-40% CO2-50% CH4 at 
room temperature and 1 atm. The obtained H2S breakthrough curve is presented in Figure 61. 
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For comparison, those H2S breakthrough curves obtained over Ti-Ce, Cu-Ti-Ce-(7) adsorbent 
and TDA SulfurTrap R7 adsorbents are also presented. The obtained adsorption capacity is listed 
in Table 17.  

 
Figure 61. H2S Breakthrough Curves over Ti-Ce, Cu-Ti, Cu-Ce, Cu/Ti-Ce (P-M), Cu-Ti-Ce-(7), 
and TDA SulfurTrap R7 Adsorbents at Room Temperature.  
 
Table 17. The Adsorption Capacity of Different Adsorbents. 

Sample Temp., C 
Breakthrough Capacity,  

L-ADG/g 
Breakthrough 

Capacity, mg-H2S/g 
Ti-Ce 25 52 14.4 
Cu-Ti 25 6.3 1.8 
Cu-Ce 25 44.3 12.3 
Cu/Ti-Ce (P-M) 25 0.8 0.2 
Cu-Ti-Ce-(7) 25 150 41.7 
TDA SulfaTrap R7 25 90 25.0 

Conditions: Gas, 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4; Volume of adsorbent bed, 2 
ml; pressure, 1 atm.; flow-rate, 200 ml.min (GHSV, 5454 h-1). 
   

As seen, Cu-Ce adsorbent can treat about 44 L-ADG/g (or 12.3 mg-H2S/g) before 
breakthrough. Compared to the Ti-Ce adsorbent which has a breakthrough capacity of 52 L-
ADG/g (or 14.4 mg-H2S/g), it is slightly lower. However, over the Cu-Ti adsorption, the 
adsorption performance for H2S removal from the simulated ADG stream is much worse. It can 
only treat about 6.3 L-ADG/g (or 1.8 mg-H2S/g), which is significantly lower than that of Cu-Ce 
and Ti-Ce, about 7 and 9 times lower. The results may suggest that the Ti-Ce composition may 
be more crucial for achieving a good adsorbent with high performance for H2S adsorption from 
the model ADG stream under the studied conditions. 

With the addition of copper, the adsorption performance was improved significantly. 
Over the Cu-Ti-Ce-(7) adsorbent, about 150 L-ADG/g can cleaned before H2S broke through. 
The corresponding adsorption capacity is 41.7 mg-H2S/g. However, when, the Cu-Ti-Ce 
adsorbent was prepared by physical mixing method, i.e., the Cu/Ti-Ce (P-M) adsorbent, the 
adsorption capacity for H2S showed significantly worse. The amount of ADG treated over Cu/Ti-
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Ce (P-M) adsorbent was only about 0.8 L-ADG/g (or 0.2 mg-H2S/g), more than two order of 
magnitude lower that of Cu-Ti-Ce-(7) adsorbent. The best commercial adsorbent, TDA 
SulfaTrap R7, can treat about 90 L-ADG/g (or 25.0 mg-H2S/g) at the studied conditions in this 
work. In our previous report, we have showed that the Cu-Ti-Ce adsorbents prepared via co-
precipitation at pH=10, via wet impregnation method and via incipient wet impregnation method 
exhibited great difference in the breakthrough capacity for H2S removal from ADG stream. It 
supports that the preparation condition can greatly affect the adsorption performance of the Cu-
Ti-Ce adsorbent. Among the prepared Cu-Ti-Ce samples, the one prepared via co-precipitation at 
pH value of 7 showed the best, while the one prepared by physically mixing copper oxide with 
Ti-Ce mixed oxide gave the worst performance for H2S. 

The adsorbents including TiO2-CeO2, CuO-TiO2, CuO-CeO2 and CuO/TiO2-CeO2-(p) 
were characterized by nitrogen physisorption for their porous properties including surface area, 
pore volume and pore diameter.  Figure 62 shows the nitrogen adsorption-desorption isotherms 
for TiO2-CeO2, CuO-TiO2, CuO-CeO2 and CuO/TiO2-CeO2-(p) adsorbents. The result for the 
CuO-TiO2-CeO2 adsorbent prepared by co-impregnation method with pH value at 7 is also 
presented for comparison. As can be seen, the typical type-IV adsorption isotherm with a H1 
hysteresis loop was obtained over the TiO2-CeO2, CuO-TiO2 and CuO-TiO2-CeO2 adsorbents, 
indicating these adsorbents have a uniform meso-structure prepared by co-precipitation method. 
The CuO/TiO2-CeO2-(p) adsorbent prepared by physical mixing of CuO and TiO2-CeO2 also 
gave a type-IV isotherm with a H1 hysteresis loop, suggesting that the meso-structure of TiO2-
CeO2 is pertained. Over the CuO-CeO2 adsorbent, although a hysteresis loop can be observed, it 
is locating at lower P/P0 value and show much smaller, compared to other adsorbents.  

 

 
Figure 62. N2 adsorption isotherms obtained 
at -196 °C. 

     
Figure 63. Pore size distribution calculated 
by BJH method from N2 desorption branch. 

 
On the basis of the nitrogen adsorption-desorption isotherms, the BET surface area, pore 

volume and pore size of these adsorbents can be calculated, which are listed in Table 18. The 
pore size distribution calculated by BJH method from the N2 desorption branch is presented in 
Figure 63. All the adsorbents showed a narrow pore distribution in the range of 3-5 nm, which 
hints the uniform pore structure of the materials prepared in this work. The TiO2-CeO2 adsorbent 
has a surface area of 223 m2/g, a pore volume of 0.25 ml/g and a pore size peaked at 3.6 nm as 
shown in Table 2. For the sample of CuO-TiO2-CeO2 prepared by co-precipitation method, it 
showed a surface area of 218 m2/g, a pore volume of 0.24 ml/g and a pore size peaked at 3.6 nm. 
After TiO2-CeO2 was physically mixed with commercial CuO, the formed CuO/TiO2-CeO2-(p) 
adsorbent gave a surface area of 193 m2/g, a pore volume of 0.23 ml/g and a pore size peaked at 
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4.2 nm. Both the surface area and pore volume were slightly smaller than those for the TiO2-
CeO2 adsorbent and CuO-TiO2-CeO2 adsorbents. As for the Cu-TiO2 and CuO-CeO2 adsorbent, 
the obtained surface areas were even smaller compared to Ti-Ce based adsorbents. The surface 
area was 113 and 158 m2/g, and pore volume was 0.16 and 0.12 ml/g, respectively, for the Cu-
TiO2 and CuO-CeO2 adsorbent. It is expected higher surface area may give a higher adsorption 
capacity, which will be examined in the next report period for H2 removal from a simulated 
ADG.  

 
Table 18. The porous properties obtained from the nitrogen isotherm for the adsorbents. 

Sample BET Surface Area, m2/g Pore Volume, ml/g Pore Diameter, nm 
TiO2-CeO2 223 0.25 3.6 
CuO-TiO2-CeO2 218 0.24 3.6 
CuO-TiO2 113 0.16 4.5 
CuO-CeO2 158 0.12 3.9 
CuO/TiO2-CeO2-(p) 193 0.23 4.2 

 

   
Figure 64. H2S Breakthrough Curves over Ni-Ti-Ce-O, Co-Ti-Ce-O, Zn-Ti-Ce-O, and Cu-Ti-
Ce-O Adsorbents for H2S Adsorption from a Model ADG Containing 200 ppmv H2S-10% N2-
40% CO2-50% CH4 at Room Temperature and a Flow Rate of 0.2 L/min.  
 

Beside the Cu-Ti-Ce adsorbent, we have studied some other trinary metal oxides 
adsorbents including Ni-Ti-Ce-O, Co-Ti-Ce-O and Zn-Ti-Ce-O adsorbents for H2S removal from 
the simulated ADG stream with the composition of 200 ppmv H2S-10% N2-40% CO2-50% CH4 
at room temperature and atmospheric pressure. The obtained H2S breakthrough curves are 
presented in Figure 64. The obtained adsorption breakthrough capacities calculated from 
breakthrough curves are listed in Table 19. For comparison, the obtained results for the Cu-Ti-
Ce-O adsorbent are also presented. As it can be seen, over all the trinary metal oxides adsorbents 
studied in this work, before breakthrough, H2S was completely captured by the adsorbents and 
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the outlet H2S concentration was below the detection limit of the analyzer, i.e., < 10 ppbv. That 
is, more than 99% of H2S was removed. It suggests that all the trinary metal oxides adsorbents 
have high affinity to H2S, though the breakthrough time is different over these adsorbents with 
different transition metal oxides incorporated. For example, it took about 7 hours of adsorption to 
break through for the Zn-Ti-Ce-O adsorbent, while about 9 hours of adsorption was needed to 
break through for the Ni-Ti-Ce-O adsorbent. In other words, for the Zn-Ti-Ce-O adsorbent, every 
gram of the adsorbent can treat about 88.6 liter of raw ADG with 200 ppmv H2S to be less than 
10 ppbv. The corresponding breakthrough capacity was 24.6 mg-H2S/g-adsorbent. Furthermore, 
the breakthrough curve quickly jumps after breakthrough, which implies that the adsorption 
kinetics over these trinary metal oxides adsorbents is fast. 
 
Table 19. The H2S adsorption breakthrough capacity for different adsorbents. 

Sample Temp., C 
Breakthrough Capacity,  

L-ADG/g 
Breakthrough Capacity, 

mg-H2S/g 
Ni-Ti-Ce-O 25 111.4 31.0 
Co-Ti-Ce-O 25 91.0 25.3 
Zn-Ti-Ce-O 25 88.6 24.6 
Cu-Ti-Ce-O 25 150 41.7 

TDA SulfaTrap R7 25 90 25.0 
Conditions: Gas, 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4; Volume of adsorbent bed, 2 
ml; pressure, 1 atm.; flow-rate, 200 ml.min (GHSV, 5454 h-1). 
   

As seen, the H2S adsorption performance of the trinary metal oxides adsorbent is closely 
related to the type of transition metal oxide that was incorporated into the trinary metal oxides 
adsorbent. The Ni-Ti-Ce-O adsorbent can treat about 111.4 L-ADG/g-sorb (or 31.0 mg-H2S/g-
sorb) before breakthrough. Using the cobalt oxide instead of NiO, the adsorption capacity of the 
Co-Ti-Ce-O adsorbent is lower. It can treat about 91.0 L-ADG/g-sorb (or 25.3 mg-H2S/g-sorb) 
before breakthrough. The adsorption capacity is even less when zinc oxide is used. The 
breakthrough capacity of the Zn-Ti-Ce-O adsorbent is about 88.6 L-ADG/g-sorb (or 24.6 mg-
H2S/g-sorb). Among the trinary metal oxides adsorbents tested in this project, the Cu-Ti-Ce-O 
shows the best performance for H2S removal from the simulated ADG with 200 ppm H2S at 
room temperature. The current results further support that the adsorption performance of M-Ti-
Ce-O adsorbent varies with the composition of the transition metal oxide. The intimate 
interactions between the three components of MOx, TiO2 and CeO2 play a critical role for the 
superior adsorption performance of the M-Ti-Ce-O adsorbent for H2S. So far, the Cu-Ti-Ce-O 
adsorbent is the best for deep desulfurization of ADG for fuel cells under room temperature. 
Nonetheless, all the trinary metal oxides adsorbents developed in this period exhibit either 
comparable H2S removal capacity to the commercial adsorbent, TDA SulfaTrap R7 adsorbent, or 
even better.   

In order to understand the effect of porous properties on the sulfur adsorption 
performance, we have conducted the N2 physisorption characterization in this period. Figure 65 
shows the nitrogen adsorption-desorption isotherms for the Ni-Ti-Ce-O, Co-Ti-Ce-O, Zn-Ti-Ce-
O, and Cu-Ti-Ce-O adsorbents obtained at -196 °C. A typical type-IV adsorption isotherm with a 
H1 hysteresis loop was obtained over all these adsorbents, indicating the metal oxides adsorbents 
have a uniform meso-structure prepared by co-precipitation method. However, the hysteresis 
loop for the Co-Ti-Ce-O and Zn-Ti-Ce-O adsorbents located at a higher P/P0 value, compared to 
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the Ni-Ti-Ce-O and Cu-Ti-Ce-O adsorbents, suggesting a larger pore diameter for the Co-Ti-Ce-
O and Zn-Ti-Ce-O adsorbents. The Ni-Ti-Ce-O and Cu-Ti-Ce-O adsorbents have the same 
position for the hysteresis loop, implying a similar pore structure of these two adsorbents despite 
different metal oxide was incorporated into the framework of the meso-structure.  
 

 
Figure 65. N2 Adsorption Isotherms for Ni-Ti-Ce-O, Co-Ti-Ce-O, Zn-Ti-Ce-O, and Cu-Ti-Ce-O 
Adsorbents Obtained at -196 °C. 

 
Table 20. The porous properties of the trinary Ni-Ti-Ce-O, Co-Ti-Ce-O, Zn-Ti-Ce-O and Cu-Ti-
Ce-O adsorbents. 

Sample BET Surface Area, m2/g Pore Volume, ml/g Pore Diameter, nm 
Ni-Ti-Ce-O 314 0.38 3.70 
Co-Ti-Ce-O 245 0.39 4.56 
Zn-Ti-Ce-O 263 0.39 4.41 
Cu-Ti-Ce-O 237 0.32 4.02 

 
On the basis of the nitrogen adsorption-desorption isotherms, the BET surface area, pore 

volume and pore size of the Ni-Ti-Ce-O, Co-Ti-Ce-O, Zn-Ti-Ce-O, and Cu-Ti-Ce-O adsorbents 
can be calculated, which are listed in Table 20. All the adsorbents showed a narrow pore 
distribution in the range of 2-7 nm, which hints the uniform pore structure of the adsorbent 
materials prepared. The Ni-Ti-Ce-O adsorbent has a BET surface area of 314 m2/g, a pore 
volume of 0.38 ml/g and a pore size peaked at 3.70 nm. For the sample of Co-Ti-Ce-O, it showed 
a BET surface area of 245 m2/g, a pore volume of 0.39 ml/g and a pore size peaked at 4.56 nm. 
When the ZnO was incorporated in the Ti-Ce-O, the Zn-Ti-Ce-O adsorbent showed a higher 
BET surface area of 263 m2/g, but a similar pore volume of 0.39 ml/g and a pore size of 4.41 nm. 
All these trinary metal oxides adsorbents showed higher BET surface area, larger pore volume 
and pore diameter than the Cu-Ti-Ce-O adsorbent, which has the value of 237 m2/g, 0.32 ml/g 
and 4.02 nm for the BET surface area, larger pore volume and pore diameter, respectively. 
Considering that the Cu-Ti-Ce-O adsorbent exhibits a much better adsorption capacity than any 
these Ni-Ti-Ce-O, Co-Ti-Ce-O, and Zn-Ti-Ce-O adsorbent, it should be concluded that the 
chemical composition of the trinary metal oxides adsorbent is more important than the porous 
properties of the adsorbent.  
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2.1.4. Novel MBS sorbents for ADG cleanup 
2.1.4.1 PEI-based MBS sorbents  

We also have developed the novel molecular basket sorbent by loading 50 wt% of 
polyethylenimine (PEI) on mesoporous molecular sieve SBA-15 support (termed as PEI-
50/SBA-15) for ADG cleanup. Figure 66 shows the breakthrough curves for CO2 and H2S 
removal from the simulated ADG gas containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% 
CH4 over the novel PEI-50/SBA-15 molecular basket adsorbent at room temperature (25 °C).  

 

 
Figure 66.  CO2 and H2S breakthrough 
curves for CO2 and H2S removal from the 
simulated ADG gas containing 200 ppmv 
H2S- 10 v% N2-40 v% CO2-50 v% CH4 over 
PEI-50/SBA-15 adsorbent at room 
temperature. Conditions: Volume of 
adsorbent bed, 21.4 ml; Weight, 4.6 g; 
Pressure, 1 atm.; Flow-rate, 50 ml/min 
(GHSV, ~140 h-1). 
 

 
Figure 67. CO2 and H2S breakthrough 
curves for CO2 and H2S removal from the 
simulated ADG gas containing 200 ppmv 
H2S- 10 v% N2-40 v% CO2-50 v% CH4 over 
PEI-50/SBA-15 adsorbent at 75 °C. 
Conditions: Volume of adsorbent bed, 21.4 
ml; Weight, 4.6 g; Pressure, 1 atm.; Flow-
rate, 50 ml/min (GHSV, ~140 h-1). 

At room temperature, the molecular basket sorbent, PEI-50/SBA-15 can effectively 
remove H2S as well as CO2 from the ADG gas stream, which is significantly different from other 
studied commercial adsorbents in this project. Those commercial adsorbents can only work for 
H2S removal and do not have affinity to CO2. Before breakthrough, both CO2 and H2S 
concentrations in the effluent were below the detector limitation of the analyzer, i.e., CO2 
concentration below 500 ppmv and H2S concentration below 60 ppbv. Unlike other commercial 
adsorbents, it can also be observed that the breakthrough curve quickly reached the saturation 
point after the breakthrough point, indicating the very fast sorption kinetics over the PEI-
50/SBA-15 sorbent.   

In our previous study, it was found that the best sorption performance can be obtained at 
75 °C for CO2 capture. Thus, we have also investigated the cleanup performance of MBS at 75 
°C. Figure 67 shows the breakthrough curves for CO2 and H2S removal from the simulated 
ADG gas containing 200 ppmv H2S- 10 v% N2-40 v% CO2-50 v% CH4 over the novel PEI-
50/SBA-15 molecular basket adsorbent at 75 °C. It can be seen that before breakthrough, both 
CO2 and H2S concentrations in the effluent were below the detector limitation of the analyzer, 
i.e., CO2 concentration below 500 ppmv and H2S concentration below 60 ppbv, even at higher 
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temperature, as observed at room temperature. In addition, unlike other commercial adsorbents, 
the breakthrough curves for both CO2 and H2S quickly reached the saturation point after the 
breakthrough point, indicating the very fast sorption kinetics over the PEI-50/SBA-15 sorbent.  
From the breakthrough curves, it should be pointed out that when CO2 broke through, the outlet 
H2S concentration became significantly higher, reaching 560 ppmv, far from its initial 
concentration, which was about 200 ppmv. Then, the H2S concentration fell back to its feeding 
concentration. The phenomenon strongly suggests that the sorption of CO2 over the MBS is 
stronger and can significantly affect the sorption H2S. Additionally, there is a competition 
sorption between CO2 and H2S in the MBS sorbent and the part of ad sorbed H2S was kicked out 
of the sorption sites by CO2, which resulted in a high peak in the H2S breakthrough curve shown 
in Figure 67. 
 
Table 21.  Sorption capacities of PEI-50/SBA-15 for CO2 and H2S separation at room 
temperature.   

Temp, °C Breakthrough Capacity, mg/g Saturation Capacity, mg/g 

25 
CO2 54.9 77.5 
H2S 0.024 0.029 

75 
CO2 102.0 127.7 
H2S 0.039 0.039 

 
Based on the breakthrough curves, the corresponding sorption capacity including 

breakthrough capacity and saturation capacity can be calculated. The computed capacities are 
presented in Table 21. The PEI-50/SBA-15 sorbent showed high sorption capacity for CO2 
capacity. The sorption capacity reached 54.9 mg-CO2/g-S and 77.5 mg-CO2/g-S for 
breakthrough capacity and saturation capacity, respectively. However, for H2S removal, the 
sorption capacity of PEI-50/SBA-15 sorbent was low. It was only 0.024 mg-H2S/g-S and 0.029 
mg-H2S/g-S for breakthrough capacity and saturation capacity, respectively. When the sorption 
temperature was raised to 75 °C, the PEI-50/SBA-15 sorbent showed high sorption capacity for 
CO2 capacity. The sorption capacity reached 102.0 mg-CO2/g-S and 127.7 mg-CO2/g-S for 
breakthrough capacity and saturation capacity, respectively. The adsorption capacity for H2S 
was also increased slightly compared to that at 25 °C. the sorption capacity of PEI-50/SBA-15 
sorbent for H2S removal was 0.039 mg-H2S/g-S and 0.039 mg-H2S/g-S for breakthrough 
capacity and saturation capacity, respectively. The value is significantly lower than those of the 
tested commercial adsorbents such as SulfaTrap and ZnO adsorbents. 

The prepared PEI/SBA-15 sorbents have been characterized by SEM and TGA methods.  
Figure 68 shows the SEM images of SBA-15 and PEI/SBA-15 sorbents. As it can be seen, the 
road-like morphology stacked into tower-like arrays was observed over the calcined SBA-15, 
which was composed of small SBA-15 particles (Figure 68a). The size of most particles was 
below 1 m. After PEI loading, the morphology of the formed materials changed significantly. 
For the sample with 30 wt% PEI loading, it can be seen that the shape was almost the same as 
that of pure SBA-15, except some parts of particles were separately dispersed (Figure 68b). 
However, for PEI-50/SBA-15, highly dispersed particles were observed. The average particle 
size was still below 1 m (Figure 68c). No agglomerates or larger clusters were observed in 
PEI-50/SBA-15, suggesting that the loaded PEI was completely filled into the pore channels of 
SBA-15, which is consistent with the results from XRD and N2 adsorption-desorption. 
Furthermore, the sorbent particles became highly dispersed after the 50 wt% loading of PEI, 



 

which m
particles
(Figure
of the p
The SEM
SBA-15
surface 
conclusi

 

Figure 
65/SBA

 
T

studied 
gravime
compari
observe
moisture
potentia
was obs
weight 
started 

may benefit
s agglomera

e 68d), stron
particles and
M images c

5 when the P
of the parti
ions from b

68.  SEM im
A-15. 

The thermo
by TGA. 

etric analys
ison, the re
d over pur
e and/or ot

al to adsorb 
served when
loss was 2 
at above 1

t the CO2 s
ated and th
ngly indicat
d/or fill in th
clearly indic
PEI loading
icles when 
oth the XRD

(a) SBA-15

(c) PEI-50/
mages of (a)

o-chemical p
Figure 69

sis profiles 
sults from p
e SBA-15 
ther gases 
the moistur

n the temper
% when th

150 °C wit

sorption. Wi
e spherical 
ting that a s
he gaps betw
cate that the
g is 50 % or
the PEI loa
D and N2 ad

5                  

/SBA-15     
) SBA-15, (

properties o
9 shows th

of SBA-1
pure PEI ar
before 100
like CO2, 
re and/or ot
rature was h

he temperatu
th a sharp 

 

ith continuo
balls with 
ignificant a
ween the sm
e introduced
r less, while
ading is high
dsorption-de

         
                  

         
                  

(b) PEI-30/S

of SBA-15, 
he thermal 
5 samples 

re also prese
 °C, probab
suggesting 
ther gases a
higher than 
ure was inc
weight los

ous increasi
the diamete

amount of P
mall particle
d PEI is loc
e the excessi
her than 50
esorption ch

                  

                  
SBA-15, (c) 

PEI and PE
gravimetri
with diffe

ented. Ther
bly due to 
the SBA-1

at room tem
100 °C, un

creased to 1
ss appearin

ing PEI loa
er up to 20 

PEI exists on
es, leading t
cated inside 
ive PEI is c

0 %, which 
haracterizati

  (b) PEI-30

    (d) PEI-6
 PEI-50/SB

EI-loaded S
ic and the 
rent PEI-lo

re was abou
the desorp

15 prepared
mperature. A
ntil 600 °C. 
100 °C, and
ng at about

ading to 65 
mm was r

n the extern
to the agglo
the pore ch

coated on th
is in accord

ions. 

0/SBA-15 

65/SBA-15 
A-15 and (d

BA-15 sam
differentia

oading amo
ut 7 % of w
tion of the 

d in this wo
Almost no w

For the pur
d then deco
t 200 °C. W

81 

wt%, the 
ecognized 

nal surface 
omeration. 
hannels of 
he external 
d with the 

 

 

d) PEI-

mples were 
al thermal 
ounts. For 
weight loss 

adsorbed 
ork has a 

weight loss 
re PEI, the 
omposition 
When the 



 

tempera
decomp

 

Figure 
30/SBA
and (h) 

 
A

as show
addition
than tha
meso-ch
°C. Wit
°C for P
The inte
identifie
loaded P
With th
weaker,
PEI-65/
tempera
65/SBA
the exte
the bar
decomp
(DTGA
techniqu

 
2.1.4.2 O

O
Polyally
(TMHD
trimetho
molecul

ature was h
position proc

69. (A) TG
A-15, (d) PE

pure PEI. 

After PEI w
wn in Figur
n, the tempe
at for the pu
hannels of S
th increasing
PEI-30/SBA
eraction be
ed in our ea
PEI in SBA
e increase o
 and thus, t

/SBA-15 an
atures (abou

A-15 and PE
ernal surface
rrier of the
position pea

A) results a
ues.     

Other amin
Other amin
ylamine (PA

DA), (3-ami
oxysilane (M
lar structure

igher than 
cess. At 600

(A)  
GA and (B
EI-50/SBA-

was loaded in
re 69B, sug
erature rang
re PEI. This
SBA-15. Fo
g the PEI lo

A-15, to 200
tween the l
arly in-situ 
A-15. Thus,
of PEI loadi
the highly d
nd PEI-70/S
ut 198 °C 

EI-70/SBA-1
e of SBA-15
e decompos
ak tempera
are consiste

ne-based M
e based MB

A), polyethy
inopropyl) 
MAPTMS) 
e of which i

300 °C, the
0 °C, decom

                  
) DTGA p
15, (e) PEI

nto SBA-15
ggesting tha
ge for the de
s change can
or PEI-15/S
oading amo
0 °C for PE
loaded PEI
FTIR study

, lower PEI
ing, the inte
dispersed PE
SBA-15 sam
and 200 °C

15 samples, 
5 particles, 
sed produc
ature increa
ent with th

MBS sorben
BS sorbents
yleimine (P
trimethoxy
and [3-(die
is depicted 

 

e rate of w
mposition of 

       
                  
rofiles for 
I-60/SBA-1

5, the sharp 
at the decom
ecompositio
n be attribut

SBA-15, the
ount, the pea
EI-50/SBA-1
 and the su
y, which m
I loading ex
eraction betw
EI decompo
mples, the 
C, respectiv
the excessi
leading the 
t diffusion 

ased. Conse
he conclusi

ts  
s have also 
PEI) and N,
silane (APT

ethylamino) 
in Figure 7

weight loss d
PEI was alm

                  
(a) SBA-15
5, (f) PEI-6

weight loss
mposition te
on of loaded
ted to the un
e decompos
ak temperat
15 and even
urface silan

may greatly i
xhibited hig
ween PEI a

osition temp
peak temp

vely). This 
ive amount 
agglomerat
and heat 

equently, th
ion obtaine

been invest
, N, N′, N′-
TMS, Aldr
propyl] trim

70, were use

decreased, i
most compl

                 (
5, (b) PEI-
65/SBA-15,

s occurred a
emperature 
d PEI was s
niform disp
sition peak 
ture progres
n to 188 °C
nol groups o
improve the

gher decomp
and the SBA
perature dec
eratures sh
change ind
of the loade
tion of the p
transfer, a

he TGA a
ed from o

tigated in th
-Tetramethy
rich), [3-(m
methoxysila
ed as typica

indicating a
ete.  

(B) 
15/SBA-15
, (g) PEI-7

at lower tem
of PEI dec

significantly
ersion of PE
temperature
ssively shift

C for PEI-60
of SBA-15 
e thermal s
position tem

A-15 surface
creased. How
hifted back 
dicates that
ed PEI was 
particles.  It
and as a r
and differen
ther charac

his project, 
yl-1,6-hexan

methylamino
ane (DEAPT
al primary, 

82 

a different 

 

, (c) PEI-
0/SBA-15 

mperatures, 
reased. In 

y narrower 
EI into the 
e was 220 
ted to 215 
0/SBA-15. 

has been 
tability of 

mperature. 
e becomes 
wever, for 
to higher 

t for PEI-
coated on 

t enhances 
result, the 
ntial-TGA 
cterization 

including 
nediamine 
o) propyl] 
TMS), the 
secondary 



 

and terti
for H2S 

 

         (a)
 

             
Figure 
N, N′, 
(APTM
[3-(dieth

 

Figure 
curves 
H2S sor
gas strea
 

T
presence
presence
for H2S
which i
with the
structure

0
0

10

20

30

40

400

500

O
u

tl
et

 C
on

c.
 o

f 
H

2S
 (

p
p

m
)

iary amine c
sorption ov

   
)                  

    (d)         
70. The mo
N′-Tetrame

S) (RH2N-)
hylamino) p

71. H2S 
on the diff
rption from 
am with the

The prepare
e of CO2 fo
e of CO2 ar

S sorption w
mplies that 
e presence 
e can be des

0 2

 NR
3
-SB

 NH
2
-SB

 NH-SB
 TMHD
 PA(30)/
 PEI(50)

compounds
ver amine ba

                  

   
                   

olecular stru
ethyl-1,6-he
), (e) [3-(me
propyl] trim

sorption 
ferent amine

the gas str
e presence o

ed MBS ma
or ADG clea
re all presen
with CO2 in

tertiary am
of high con
signed and s

4

 

Time (m

BA-15

BA-15

BA-15
DA(50)/SG

/SG
)/SG

 to study th
ased MBS. 

     (b)        

                  
ucture of (a)
exanediamin
ethylamino)

methoxysilan

breakthrou
e sorbents 
ream from 

of CO2. 

aterials have
anup. The o
nted in Figu
n both ami

mine group 
ncentration 
synthesized

6

min)

 

he effect of a

                   

        (e)      
 polyallylam
ne (TMHD
) propyl] trim
ne (DEAPTM

 
ugh 
for 
the 

F
H
b
s
C

e been evalu
obtained bre
ure 71. It is 
ine-impregn
is more pro
CO2 such 

d. 

8

H
S

So
rp

.C
ap

.(
m

g-
H

S/
g-

so
rb

)

amine struct

   
                  

  
                  

mine (PA), (
DA), (d) (3

methoxysila
MS) (R3N-)

Figure 72. E
H2S sorption
based sorben
stream with
CO2. 

uated for H2
eakthrough c

clear that t
nated sorben
omising for
as biogas i

Primary
0

5

10

15

20

25

H
2S

 S
or

p.
 C

ap
. (

m
g

H
2S

/g
so

rb
)

ture on the 

                  

                  
(b) polyethy
-aminoprop
ane (MAPT
. 

Effect of am
n capacity o
nts for H2S 
h and with

2S removal 
curves for H
ertiary amin
nts and am
r H2S remov
if the appro

y amine Secon

sorption per

     (c) 

     (f) 
yleimine (PE
pyl) trimeth
TMS) (R2HN

mine structu
of the differ
sorption fro

hout the pr

with and w
H2S sorption
ne groups w

mino-grafted
val in the g
opriate tertia

ndary amine T

 amine load

 amine load

 amino-graf

 amino-graf

83 

rformance 

 

 

EI), (c) N, 
hoxysilane 
N-) and (f) 

ure on the 
rent amine 
om the gas 
esence of 

without the 
n with the 

were better 
d sorbents, 
gas stream 
ary amine 

Tertiary amnie

ding (w/o CO
2
)

ding (with CO
2
)

fted (w/o CO
2
)

fted (with CO
2
)

 



 

84 
 

Table 22 and Figure 72 present the H2S sorption capacities of the amino-grafted and 
amine-impregnated sorbents with different amine structure for H2S sorption from the gas stream 
with and without the presence of CO2. Comparing with two tertiary amine functionalized 
sorbents, the amino-grafted sorbent, NR3-SBA-15, has a higher H2S sorption capacity than 
THMDA(50)/SG. One possible reason is that the steric hindrance of THMDA polymer impedes 
the sorption of H2S molecules over amine groups. Another reason is because of the support as 
SBA-15 has more advantages than silica gel including higher surface area and uniform pore 
structure. The H2S sorption capacities on primary and secondary amino-grafted sorbents, 
however, are much lower than those of the primary and secondary amine-impregnated sorbents, 
which is not as expected.  

 
Table 22. H2S sorption capacities of the amino-grafted and amine-impregnated sorbents for H2S 
sorption from the gas stream with and without the presence of CO2. 

Sorbent 
H2S sorption capacity, mg-H2S/g-sorb 

without CO2 with CO2 
NR3-SBA-15 4.14 3.51 
NH2-SBA-15 2.07 0 
NH-SBA-15 5.07 2.28 
THMDA(50)/SG 0.75 0.79 
PA(30)/SG 14.24 0.36 
PEI(50)/SG 23.72 0.30 

 
Considering that under dry conditions, the tertiary amine does not react with CO2 but still 

can work with H2S molecules as follows: 
CO2 + R3-N ≠                                                     (3) 
H2S + 2R3-N = R3-N-HSH-N-R3                        (4) 

It is projected that the use of tertiary amine may eliminate the negative effect of CO2 on H2S 
sorption. Thus, we have further investigated the effect of CO2 presence on the H2S sorption 
performance of the TMHDA based adsorbents.  
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Figure 73. H2S sorption capacity on different weight percentage of TMHDA loading on SBA-
15. Conditions: T, 25 °C; Feed-gas, 500 ppm H2S-CO2-N2; Flow rate, 15 ml/min. 
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First, we examined the effect of TMHDA loading on the H2S sorption capacity of 
TMHDA/SBA-15 sorbents and found that the sorption capacity decreased with the increase of 
TMHDA loading amount. However, the sorption capacity increased again when the TMHDA 
loading amount was increased to 80 wt%. To confirm the result, the 80 wt% THMDA loaded 
sample was re-examined. In addition, to identify the optimum TMHDA loading, the loading 
amount of THMDA was further lowered to 10 wt% in this report period. The prepared sorbents 
were evaluated for H2S sorption from the simulated biogas containing 500 ppmv H2S-10% CO2 
in N2 at 25 °C. Figure 73 shows the H2S breakthrough and saturation sorption capacity of 
TMHDA/SBA-15 sorbents as a function of TMHDA loading amount. The obtained saturation 
and breakthrough capacity over TMHDA/SBA-15 adsorbents with different TMHDA loadings 
for H2S adsorption with the presence of 10% CO2 are listed in Table 23. 
 
Table 23. H2S breakthrough and saturation sorption capacities of TMHDA/SBA-15 adsorbents 
with different TMHDA loadings for H2S sorption from the gas stream with the presence of 10 
v% CO2 at room temperature and atmospheric pressure.  

Sample S Cap.  
(mg-H2S/g-sorb) 

BT Cap.  
(mg-H2S/g-sorb) 

SBA-15 0.49 0.17 
TMHDA(10)/SBA-15 0.78 0.47 
TMHDA(15)/SBA-15 0.83 0.45 
TMHDA(20)/SBA-15 0.55 0.31 
TMHDA(30)/SBA-15 0.52 0.22 
TMHDA(50)/SBA-15 0.35 0.19 
TMHDA(80)/SBA-15 0.33 0.19 

 
As can be seen from the figure, the H2S sorption capacity was increased with the increase 

of TMHDA loading up to 15wt%. SBA-15 alone showed a lower capacity for H2S sorption. The 
saturation and breakthrough capacity was 0.49 and 0.17 mg-H2S/g-sorb, respectively. When 10 
wt% TMHDA was loaded, the sorption was increased. It was 0.78 and 0.47 mg-H2S/g-sorb for 
the saturation and breakthrough capacity, respectively. Increasing TMHDA amount to 15 wt%, 
the saturation and breakthrough capacity was also increased to 0.83 and 0.45 mg-H2S/g-sorb, 
respectively. However, further increasing the TMHDA amount, both the saturation and 
breakthrough capacities decreased, gradually. The TMHDA(50)/SBA-15 and 
TMHDA(80)/SBA-15 sorbents showed the saturation capacity of 0.35 and 0.33 mg-H2S/g-sorb, 
respectively, which are even less than that of SBA-15 alone. It may be because the pore channels 
of SBA-15 were blocked by TMHDA at higher TMHDA loadings, resulting in the decrease in 
the H2S sorption capacity. The maximum H2S sorption capacity was obtained over the 
TMHDA(15)/SBA-15 sample, suggesting that the optimum TMHDA loading over SBA-15 for 
H2S sorption from biogas at °C was about 15 wt%.  

Second, the effect of the gas hourly space velocity (GHSV) on the H2S sorption capacity 
of the optimum sorbent, TMHDA(15)/SBA-15 was studied by changing the gas flow rate. The 
GHSV studied was 377, 628 and 1004 h-1, respectively. The obtained H2S saturation sorption 
capacity as a function of GHSV is presented in Figure 74. Obviously, the increase of the GHSV 
results in the decrease of the H2S sorption capacity. At higher GHSV, that is higher flow rate, the 
residence time is much shorter, i.e., a shorter contact time. As a consequence, the sorption 
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capacity is lower. The result suggests that lower GHSV is preferred in order to get a higher H2S 
sorption capacity over the TMHDA(15)/SBA-15 sorbent. 
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Figure 74. H2S sorption capacity of 
TMHDA(15)/SBA-15 at different gas hourly 
space velocity (GHSV). Conditions: T, 25 
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on TMHDA(15)/SBA-15 with different CO2 
inlet concentration. Conditions: T, 25 °C; 
Feed-gas, 500 ppm H2S-CO2-N2; Flow rate, 
15 ml/min. 

 
Third, the effect of CO2 concentration on the H2S sorption capacity of 

TMHDA(15)/SBA-15 was examined as biogas normally contains up to 40-60 vol% CO2, which 
may significantly affect the sorption performance of TMHDA/SBA-15 sorbent for H2S. Figure 
75 shows the H2S breakthrough curves on the TMHDA(15)/SBA-15 sorbent at different inlet 
concentration of CO2. Compared to the case with the presence of CO2, H2S broke through 
slightly later and it took a little longer time to reach the saturation when CO2 was not present. It 
can also be seen that the H2S breakthrough curves were not almost overlapped for the CO2 feed 
concentration of 10, 20 and 40 vol%. The breakthrough point was almost the same. This result 
indicates that the inlet CO2 concentration (up to 40 vol%) does not significantly influence the 
H2S sorption performance of TMHDA(15)/SBA-15 sorbent. Thus, TMHDA(15)/SBA-15 can be 
feasible for H2S sorption from biogas. 

Fourth, the effect of inlet H2S concentration on the H2S sorption capacity of 
TMHDA(15)/SBA-15 was investigated at 25 °C. The obtained H2S saturation sorption capacity 
was plotted in Figure 76 as a function of inlet H2S concentration. The H2S saturation capacity 
increased with the increase of the inlet H2S concentration, but not a linear relationship. The trend 
shown in Figure 76 may suggest that the H2S sorption over TMHDA(15)/SBA-15 sorbent may 
obey the Langmuir sorption mechanism, thus could be described by the Langmuir equation and 
isotherm.  

The equation of Langmuir isotherm is presented in Equation (1), in which, Ce and q are 
the inlet concentration of H2S in the gas stream and the H2S saturation capacity at equilibrium, 
respectively. K is the adsorption equilibrium constant and qm is the maximum adsorption 
saturation capacity of the sorbent. If H2S obey the Langmuir isotherm, a plot of 1/q versus 1/Ce 
will be a straight line, as described as Equation (2). 
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CO2. Over C5 support, H2S breakthrough capacity increased to 2.27 mg-H2S/g-sorb with the 
presence of 10 vol% CO2 from 0.94 mg-H2S/g-sorb without CO2. As for the TMHDA(15)/C5 
sorbent, the breakthrough capacity even increased to 4.32 mg-H2S/g-sorb, an increase of 400% 
compared that without CO2 presence. The results suggest that the presence of CO2 promotes H2S 
sorption over C5 and TMHDA(15)/C5 sorbents. More work need to conduct to fully understand 
the promotion effect of CO2 on H2S sorption over the C5 and TMHDA(15)/C5 sorbents. 
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Compared to the C5 support, the TMHDA loaded sorbent, TMHDA(15)/C5 exhibited a 
significantly higher breakthrough capacity. It is about 90% increase in the H2S sorption 
breakthrough capacity. It may be attributed to the fact that the amine compound, TMHDA could 
provide more basic active sites for the H2S sorption on the surface of the sorbent. 
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Figure 80. H2S breakthrough capacities compared with SBA-15 and C5 as a support with and 
without the presence of CO2. Conditions: T, 25 °C; Feed-gas, 500 ppm H2S-(10 vol% CO2)-N2; 
Flow rate, 15 ml/min. 
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The NH3-TPD profiles for the PAM-15/SBA-15, PAM-25/SBA-15 and PAM-30/SBA-15 
adsorbents are presented in Figure 82. As can be seen, all the adsorbents can adsorb ammonia 
from the gas stream containing 2 v% NH3 at the temperature of 40 °C. With the increase of 
temperature under helium flow, the adsorbed ammonia can be desorbed. The desorption can be 
completed at 100 °C. In addition, with increasing the PAM loading amount, the TCD signal 
becomes stronger, indicating more ammonia being released. In other words, the adsorbent with 
higher PAM loading shows higher adsorption capacity for ammonia. Besides, a secondary 
desorption peak located at the desorption time of about 20 minutes can be observed over the 
sample with higher PAM loadings, especially for the PAM-30/SBA-15 sorbent. It may suggest 
that secondary adsorption sites may exist over the PAM-30/SBA-15 sorbent and increase with 
the increase of PAM loading amount. 

On the basis of the desorption curve, the corresponding adsorption capacity of the 
adsorbent can be calculated, which is about 3.36 mmol-NH3/g-sorbent (i.e., 5.7 wt%), 4.21 
mmol-NH3/g-sorbent (i.e., 7.1 wt%), and 3.96 mmol-NH3/g-sorbent (i.e., 6.7 wt%) for the PAM-
15/SBA-15, PAM-25/SBA-15 and PAM-30/SBA-15 adsorbents, respectively. Figure 83 shows 
the ammonia adsorption capacity as a function of PAM loading over the PAM/SBA-15 
adsorbents measured by NH3-TPD. Clearly, increasing the PAM loading amount from 15 to 25 
wt%, the ammonia adsorption capacity increased. The ammonia uptake over the PAM-25/SBA-
15 adsorbent is about 25% higher than that for the PAM-15/SBA-15 adsorbent. However, further 
increasing PAM loading to 30 wt%, a decrease in ammonia adsorption capacity was observed, 
though the drop was not much, only about 6%. In this study, 25 wt% of PAM loading is the 
optimized amount for PAM/SBA-15 adsorbent for ammonia adsorption.  
 

 
Figure 83. Ammonia adsorption capacity as a function of PAM loading over the PAM/SBA-15 
adsorbents measured by NH3-TPD method.  
 

Although SBA-15 based molecular basket sorbent (MBS) showed a good performance 
for ammonia adsorption and was able to reduce the ammonia level to the point required for fuel 
cell applications, the support, mesoporous SBA-15 is not commercially available and the 
preparation cost is very high, thus the use of SBA-15 may not be practical for the project. Thus, a 
serial of NH3-MBS materials for ammonia removal on the basis of the “molecular basket” 
concept using some commercially available silica support including fumed silica (FS, Cab-O-Sil 
M-5, Aldrich), silica-gel A (SG-A, Merck grade 10180), silica-gel B (SG-B, Davisil grade 644), 
silica-gel C (SG-C, Merck grade 7734). The porous properties of these silica supports are listed 

0

20

40

60

80

0 10 20 30 40

N
H

3
up

ta
ke

, m
g/

g

PAM loading, wt%



 

91 
 

in Table 24. The polymer was loaded via wet impregnation method. The polymer loading 
amount was 15, 30, and 50 wt%. The prepared MBS has been termed as PAM(x)/y, where x 
represents the loaded polymer amount in weight percentage of the total adsorbent and y 
represents the used support. After drying in the vacuum oven at 100 °C for overnight, the 
adsorbents were evaluated for ammonia adsorption by NH3-TPD method. 

 
Table 24. The porous properties of commercially available silica supports. 

Sample BET Surface Area, m2/g Pore Volume, ml/g Pore Diameter, nm 
FS 214 0.55 14.0 

SG-A 750 0.68 4.0 
SG-B 300 1.15 15.0 
SG-C 550 0.80 6.0 

 
Table 25 shows the ammonia adsorption capacity of the NH3-MBS adsorbents with 30 

wt% PAM polymer loading for ammonia adsorption from a model gas contain 2 v% NH3 in He 
at 40 °C measured by TPD method. It can be seen that the adsorption capacity varies with the 
support used. Among the tested samples, the PAM(30)/SG-B showed highest capacity for NH3 
adsorption, being about 33.3 mg-NH3/g-sorb. The adsorption capacity of PAM(30)/SG-A was 
similar to that of PAM(30)/FS, being 29.4 and 25.2 mg-NH3/g-sorb, respectively, slightly lower 
than that of PAM(30)/SG-B. When SG-C was used as the support, the adsorption capacity for 
NH3 was much lower, being only about 13.7 mg-NH3/g-sorb, which is less than half of that 
obtained over the PAM(30)/SG-B adsorbent. 

 
Table 25. The NH3 adsorption capacity of different NH3-MBS with 30 wt% PAM polymer 
loading measured by TPD method. 

Sample Capacity, mg-NH3/g-sorb 
PAM(30)/FS 25.2 

PAM(30)/SG-A 29.4 
PAM(30)/SG-B 33.3 
PAM(30)/SG-C 13.7 

 
Thus, SG-B was chosen as the best silica support for the further study. A series of 

PAM/SG-B adsorbents have been prepared by loading different amount of PAM onto the SG-B 
support, including PAM(15)/SG-B, PAM(30)/SG-B and PAM(50)/SG-B adsorbents. The 
adsorbents were further evaluated for NH3 adsorption from the gas stream containing 2 v% NH3 
at the temperature of 40 °C by TPD method. On the basis of the desorption curve, the 
corresponding adsorption capacity of the adsorbent can be calculated, which is about 7.9 mg-
NH3/g-sorb, 33.3 mg-NH3/g-sorb, and 12.9 mg-NH3/g-sorb for the PAM(15)/SG-B, 
PAM(30)/SG-B and PAM(50)/SG-B adsorbents, respectively. Figure 84 shows the ammonia 
adsorption capacity as a function of PAM loading over the PAM/SG-B adsorbents measured by 
NH3-TPD. Clearly, increasing the PAM loading amount from 15 to 30 wt%, the ammonia 
adsorption capacity increased. The ammonia uptake over the PAM(30)/SB-G adsorbent is about 
3 times higher than that for the PAM(15)/SG-B adsorbent. However, further increasing PAM 
loading to 50 wt%, a decrease in ammonia adsorption capacity was observed. About 2.5 times 
drop in the adsorption capacity was observed over the PAM(50)/SG-B adsorbent, compared to 
that for the PAM(30)/SB-G adsorbent. In this study, 30 wt% of PAM loading is the optimized 



 

92 
 

amount for PAM/SB-G adsorbent for ammonia adsorption under the conditions studied in this 
work. 
 

Figure 84. Ammonia adsorption capacity as 
a function of PAM loading amount over the 
PAM/SG-B adsorbent measured by NH3-
TPD method.  

 
Figure 85. NH3 sorption capacity as a 
function of the surface area of the 
supporting materials at the PAM loading of 
15, 30 and 50 wt%. 

 
As shown above, the measured NH3 sorption capacities of the supported PAM sorbents 

were quite different with the PAM loading amount and the supporting material used including 
silica gel, MCM-41 and SBA-15. Since the pore properties of the supports are also quite 
different, it is important to identify the relationship between the NH3 sorption capacity and the 
pore properties of the supporting materials including the surface area, pore volume and pore size. 
Thus, the relationship between the pore properties of the support and the NH3 sorption capacity 
of the supported PAM sorbents over different supports has been examined in this report period.  

Figure 85 shows the relationship of the NH3 sorption capacity versus the values of the 
surface area of the supports with different PAM loadings including 15, 30 and 50 wt%. It can be 
seen that with 15 wt% PAM loading, the NH3 sorption capacity increased with the increase of 
the surface area of the support. Higher surface area benefits the dispersion of loaded PAM 
polymer over the support, so that more sorption sites could be exposed for NH3 sorption. As a 
result, a higher sorption capacity could be achieved with higher surface area. However, no 
obvious relationship between the NH3 sorption capacity and the surface area of the support was 
observed at PAM loading of 30 and 50 wt%. It suggests that at the PAM loading higher than 30 
wt%, the surface area is not a determined factor any more for the NH3 sorption capacity of the 
supported PAM sorbents, due likely to the promotion in polymer dispersion is limited at high 
PAM loadings. 

Figure 86 shows the relationship of the NH3 sorption capacity versus the pore volume of 
the support with different PAM loadings including 15, 30 and 50 wt%. In this case, there is no 
relationship between the NH3 sorption capacity and the pore volume over the 15 wt% PAM 
loaded sorbents. It may imply that the pore volume of the support does not influence the NH3 
sorption when the PAM loading is only 15 wt%. On the contrary, a good relationship between 
the NH3 sorption capacity and the pore volume can be obtained over the 30 and 50 wt% PAM 
loaded sorbents. Over both sorbents, the measured NH3 sorption capacity increased with the 
increase of the pore volume of the supporting material, indicating that the pore volume of the 
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support plays a vital role in determining the NH3 sorption capacity of the supported PAM 
sorbents with PAM loading higher than 30 wt%. The higher the pore volume is, the more the 
PAM amount can be loaded inside pore channels. Consequently, a higher sorption capacity could 
be attained. 

 

 
Figure 86. NH3 sorption capacity as a 
function of the pore volume of the 
supporting materials at the PAM loading of 
15, 30 and 50 wt%. 
 

 
Figure 87. NH3 sorption capacity as a 
function of the pore size of the supporting 
materials at the PAM loading of 15, 30 and 
50 wt%. 

Figure 87 shows the relationship of the NH3 sorption capacity versus the pore size of the 
support with different PAM loadings including 15, 30 and 50 wt%. It can be seen that with 15 
and 30 wt% PAM loading, there is no obvious relationship between the NH3 sorption capacity 
and the pore size of the support over the supported PAM sorbents. It may imply that the pore size 
of the support is large enough to accommodate PAM loading and does not influence the NH3 
sorption when the PAM loading is below 30 wt%. When PAM loading is increased to 50 wt%, 
however, a slight increase in the measured NH3 sorption capacity is observed with the increase of 
the pore size of the supporting material, indicating that the pore size of the support is also 
important in determining the NH3 sorption capacity of the supported PAM sorbents at PAM 
loading of 50 wt% or higher. At low PAM loadings such 15 and 30 wt%, about 3 nm of pore size 
is large enough for PAM diffusion toward pore channels, thus exhibiting no influence. However, 
at high PAM loading, e.g. 50 wt%, the pore size could limit the diffusion of PAM inside pores. 
With a larger pore size, more PAM could easily diffuse inside and be accommodated within 
pores, showing a higher NH3 sorption capacity. 

In summary, the above results indicate that 1) the pore properties of the supporting 
material associated with PAM loadings has a profound impact on the NH3 sorption capacity of 
the supported PAM sorbents; 2) at 15 wt% of PAM loadings, the NH3 sorption capacity is 
mainly affected by the surface area of the support, while the pore volume and pore size has no or 
little influence on the sorption capacity; and 3) The promotion effect of the pore volume is 
observed over the supported PAM sorbents with 30 and 50 wt% PAM loading. While the pore 
size exhibits the influence on the sorption capacity only when the PAM loading is 50 wt% or 
higher.  
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2.1.6. Adsorbents for siloxane removal 
In this project, siloxane compounds are also targeted contaminants to be removed. 

Among siloxanes detected in biogases, the linear hexamethyldisiloxane (L2), and the cyclic 
trimeric hexamethylcyclotrisiloxane (D3) and tetrameric octamethylcyclotetrasiloxane (D4) are 
usually the most abundant [28]. It is suggested in literature that compared to activated carbon, 
silica gel is more promising for siloxane removal in terms of adsorption capacity and 
regenerability [29]. Thus, we have purchased commercial silica gel samples testing for siloxane 
removal, which will be used as a baseline for this project. Two type of silica gel samples with 
different pore diameter and particle size were obtained from Sigma-Aldrich, i.e., 10 nm & 70-
230 meshes and 6 nm & 230-400 meshes, which is termed as Silica Gel-10 and Silica Gel-6, 
respectively. Considering that MCM-41 and SBA-15 are typical silica-based mesoporous 
molecular sieves with high surface area, larger pore volume and pore diameter, they may be 
better for siloxane adsorption compared to silica gel material. Therefore, in this period, both 
silica gel samples, MCM-41 and SBA-15 adsorbents have been examined for siloxane removal. 
For a quick screening, a larger siloxane concentration (about 0.305 mg/mL) was applied and the 
hexamethyldisiloxane was used as the model siloxane compound.  

 

 
Figure 88. Breakthrough curves of 
hexamethyldisiloxane (L2) over the (a) 
silica gel (10 nm & 70-230 mesh), (b) silica 
gel (6 nm & 230-400 mesh), (c) MCM-41 
and (d) SBA-15 at room temperature from a 
model gas containing 0.305 mg/mL of L2 in 
nitrogen.  
 

 

 
Figure 89. Breakthrough and saturation 
capacity of hexamethyldisiloxane (L2) over 
the adsorbents at room temperature from a 
model gas containing 0.305 mg/mL of L2 in 
nitrogen.  

Figure 88 shows the breakthrough curves of L2 over the silica gel (pore size of 10 and 6 
nm,), MCM-41 and SBA-15 adsorbents. As it can be seen, the silica gel adsorbent exhibited a 
good performance for L2 siloxane removal at room temperature, which is in agreement with that 
reported in literature [29]. In addition, the silica gel samples showed a different adsorption 
capacity. Over the Silica Gel-10 adsorbent, about 1.38 L/g of biogas could be treated before the 
L2 siloxane could be detected in the effluent. The treated biogas amount was about 2.25 L/g over 
the Silica Gel-6 adsorbent before breakthrough, which is about 63.5% higher than that for the 
Silica Gel-10 adsorbent. Compared to silica gel samples, the prepared MCM-41 and SBA-15 
showed a better performance for L2 siloxane removal. Before breakthrough, the treated model 
biogas volume was 2.81 and 2.49 L/g over the MCM-41 and SBA-15 adsorbent, respectively.  
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On the basis of breakthrough curves, the corresponding breakthrough capacity and 
saturation capacity of the adsorbents studied in this work can be calculated. The results are 
presented in Figure 89. Over the silica gel samples, the saturation capacity and breakthrough 
capacity of 556.4 and 422.0 mg-L2/g for the Silica Gel-10 sample and 786.5 and 686.3 mg-L2/g 
for the Silica Gel-6 sample, respectively. Among the four adsorbents, The MCM-41 showed the 
highest breakthrough capacity of 857.1 mg-L2/g with a good saturation capacity of 1076.3 mg-
L2/g. The highest saturation capacity was obtained over the SBA-15 adsorbent, which was 
1419.9 mg-L2/g, about 80.5% increase of that for the Silica Gel-6 sample. The current results 
indicate that MCM-41 and SBA-15 are better than silica gel for siloxane removal at room 
temperature. 

Based on literature [28], the cyclic siloxane should also be studied. Thus we also used the 
cyclic tetrameric octamethylcyclotetrasiloxane (D4) as the model siloxane compound, which was 
purchase from Sigma-Aldrich. A model gas containing N2 saturated at room temperature with D4 
(molecular weight, 296.6; melting point, 17.5 °C; boiling point, 172 °C; vapor pressure at 25 °C, 
140 Pa [30]) by a bubbler was used for this ICP-MS calibration. Two N2 gas lines controlled by 
the mass flow controllers are set up to adjust and obtain the desired D4 concentration for the 
calibration curve measurement: one is for D4 bubbling (containing about 1382 ppm D4) and the 
other is to dilute the stream containing D4. The mixture gas was monitored on-line by the GC-
ICP-MS. 
 

 
Figure 90.  Real-time ICP-MS Signal for 
D4 at Different Concentrations. 
 

 
Figure 91.  Calibration Curve of D4 for the 
ICP-MS. 

The calibration of the ICP-MS for D4 silxoane was carried out for the concentrations 
ranging from 0.7 to 34.5 ppm. Figure 90 shows the ICP-MS signal at different concentration of 
D4 and Figure 91 shows the typical calibration curve for D4 siloxane. The calibration curve 
gives a good linearity with high R2 value. The minimum concentration of siloxane was 0.7 ppm 
due to the limitation of the mass flow controller. The detecting limit for ICP-MS is much lower.  

Figure 92 shows the breakthrough curve of 20 ppm D4 siloxane adsorption on the silica 
gel adsorbent at room temperature and atmospheric pressure. We selected a commercial silica gel 
as an adsorbent to removal siloxane from the model ADG. A high-purity grade silica gel (Merk 
Grade 10184) with pore size of 10 and 6 nm, particle size at 70-230 mesh and a surface area of 
300 m2/g was used. The ADG gas flowrate was about 200 mL/min. Figure 93 shows the ICP-
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It should be pointed out that if CO2 removal is not required, the mixed metal oxides 
adsorbent and the H2S-MBS using tertiary amine will be a good option for deep desulfurization 
of ADG fuel gas. However, if the partial and/or full removal of CO2 is required as well as the 
removal of H2S, the task-specific H2S-MBS materials loaded with primary and/or secondary 
amine compounds such as polyethylenimine are recommended.  

Similarly to the deep desulfurization stage, the NH3 adsorption and siloxane removal 
stages can be operation in the same way. The regeneration of NH-MBS will be performed at 90-
120 °C. While a much higher temperature is required to recover the adsorption capacity of 
mesoporous silica for siloxane as high temperature is needed to fully convert siloxane to silica 
under air flow. The upgraded ADG fuel gas will then pass through a short guard-bed packed with 
activated carbon to removal other in-significant trace contaminants. The deep cleaned ADG fuel 
gas will supply to the SOFC stack, which provides the power for various usages.  

It should be pointed out that the energy required for the regeneration of solid adsorbents 
for the three stages in the ADG fuel processor is self-supported in this design by incorporating a 
secondary battery. The battery is initially charged ex-situ and provides the power for the starting 
of the processor. When the processor is under running condition, the battery can be fully charged 
by the SOFC stack and continuously supply the energy needed for the adsorbent regeneration 
chamber and other parts. 
 
2.2. Commercial Diesel Fuel Processor 
2.2.1. Desulfurization of Diesel Fuel 
2.2.1.1. Supported-Ni adsorbent 

In this project, we have developed the mesoprous molecular seive supported nickel 
adsorbents for deep desulfurization of commercial diesel fuel containing 15 ppmw sulfur. The 
molecular sieve, SBA-15 was synthesized according to the procedure reported by Wang et al. 
[27,31], who modified the method initially reported by Zhao et al. in 1998 [32]. Typically, a 
homogeneous mixture, which was composed of triblock copolymer Pluronic of P123 
(EO20PO70EO20, MW=5800, Aldrich) and tetraethyl orthosilicate (TEOS) in hydrochloric acid, 
was stirred at 40 ºC for 20 h, and then further treated at 100 ºC for 24 h. The solid product was 
filtered and washed with plenty of water, dried in an oven at 100 ºC, and subsequently calcined 
at 550 ºC for 6 h under an air flow (100 ml/min).  

The SBA-15-supported nickel sorbent were prepared by an incipient wetness 
impregnation (IWI) method. The desired amount of Ni(NO3)2.6H2O was dissolved in 
tetrahydrofuran (THF), and the solution was slowly added into the support material at room 
temperature under the mechanical stir without or with  ultrasonic  aid  in a VWR-Model 75T 
ultrasonic bath. For the ultrasonic aid case, after adding the solution, the mixture was kept in the 
ultrasonic bath for 3 h at room temperature. The mixture was then dried in an oven at 100 ºC 
overnight. The dried samples were then reduced in a fixed-bed reactor under a pure hydrogen gas 
flow at 550 ºC for 4 h.  

Evaluation of the ADS performance of sorbents was conducted in a fixed-bed flow 
sorption system with a stainless steel column (4.6 mm I.D. x 150 mm length). About 0.8-1.1 g 
(depending on the packing density of the sorbent) of the dried sorbent (before reduction) was 
packed into a stainless steel column, and then was reduced in situ under a pure hydrogen flow at 
550˚C for 4 h. When the temperature of the column was decreased to the room temperature 
under the hydrogen flow, the column was disconnected to the system and sealed quickly.  After 
weighting the sealed column to estimate the weight of the reduced nickel-based sorbent by 
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By combination of the results of the ADS selectivity for the different sulfur compounds 
in the ULSD and the ADS of 4,6-DMDBT on Ni20/MCM-48, it is clear that the sulfur 
compounds are first adsorbed on the surface directly through an interaction between the sulfur 
atom in the compounds with the exposed nickel, and then, only a small part of the adsorbed 
sulfur compounds (~6 %) react further with the surface nickel through DE, IFE and DFE 
pathways to eliminate the sulfur atom by hydrogenolysis to form the surface nickel sulfide and 
release the corresponding hydrocarbon part from the surface to the liquid. It should be mentioned 
that the ADS was conducted in the absence of hydrogen gas. The required hydrogen for the 
formation of those hydrocarbons may come from the nickel surface or other hydrocarbons in the 
fuel. The results suggest that introducing hydrogen to the nickel surface should accelerate the 
hydrogenolysis of the adsorbed sulfur compounds and the release of the corresponding 
hydrocarbon part, and thus, providing more accessible nickel atoms to interact with other sulfur 
compounds, as also reported by Landau et al. [39].    

   In comparison of the ADS of ULSD and the model fuel on Ni20/MCM-48, the ADS 
breakthrough capacity of Ni20/MCM-48 for the model fuel is about 5.8 mg-S/g-sorb, which is 
about 3 times higher than that for ULSD. In addition of the higher sulfur concentration in the 
model fuel, there may be two other reasons: 1) ULSD contains more refractory sulfur 
compounds than the model fuel which contains 4,6-DMDBT only, such as 4-E,6-MDBT 6-E,2,4-
DMDBT, and 4,6-DEDBT having larger size of the alkyl groups at the 4- and/or 6-positions; 2) 
ULSD contains 12 ppmw of nitrogen compounds, which is the same magnitude as the sulfur 
compounds, while the nickel-based sorbents usually have higher affinity to the nitrogen 
compounds than the sulfur compounds, as reported in our previous study [40]. 

 
2.2.1.2. Mixed-Metal-Oxides-based adsorbents 
2.2.1.2.1 Multi-Mixed-Metal-Oxides-based adsorbents 

In this project, more than 40 multi-mixed-metal oxides including: Ti0.9Ce0.1O2, 
Ti0.1Ce0.9O2, Al-Ti-Ce-O, Zr-Al-Ti-Ce-O, V-Al-Ti-Ce-O, Cu-Al-Ti-Ce-O, Zn-Al-Ti-Ce-O, Co-
Al-Ti-Ce-O, Ni-Al-Ti-Ce-O, Mo-Al-Ti-Ce-O, Sm-Al-Ti-Ce-O, Mn-Al-Ti-Ce-O, Fe-Al-Ti-Ce-O, 
Cr-Al-Ti-Ce-O, W-Al-Ti-Ce-O, Pt-Al-Ti-Ce-O, etc., have been synthesized. The adsorption 
desulfurization activity of these metal oxides were tested using real diesel fuel with 15 ppmw 
sulfur in a batch system. The adsorption procedures for screening adsorbents are shown as 
follows: The adsorbents were dried at 110 Ԩ for more than 10 hours before testing. About 0.5 g 
of the adsorbent and 5.0 g of the commercial diesel fuel were added into the test tube with a 
stirring bar. The tube was sealed with a cap, and set at room temperature, and the magnetic 
stirring was turn on.  The adsorption time is 2 hours. After the adsorption experiment, the treated 
diesel fuel was separated from the adsorbent by centrifugation and moved into a small bottle for 
analysis. 

The total sulfur concentrations in the diesel fuel were determined using an Antek 9000S 
total sulfur analyzer. The sulfur detection limit of the total sulfur analyzer in the normal working 
range is 0.5 ppmw sulfur. The sulfur contents after adsorption and the determined adsorption 
capacities of various adsorbents are shown in Table 26.The result indicated that the sulfur 
content in the fuel was able to be reduced to below 1 ppmw by using metal oxides Ti-Ce-Zr-O, 
Au-Al-Ti-Ce-O, Ti-Ce-Al-O and Pt-Al-Ti-Ce-O. The adsorption tests indicate that the sulfur 
content can be reduced to below 1 ppmw by using metal oxides Cu-Al-Ti-Ce-O, Mo-Al-Ti-Ce-
O, Ni-Al-Ti-Ce-O, Fe-Al-Ti-Ce-O and Pt-Al-Ti-Ce-O in a batch adsorption system at room 
temperature under atmospheric pressure.  
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these adsorbents were found good for ADS of jet fuels in our previous study. One of the probable 
reasons may be due to strong steric hindrance of alkyl groups in the sulfur compounds existing in 
the ultralow sulfur diesel, such as 4,6-dimethyldibenzothiophene. 
 
2.2.1.2.2 Multi-layer adsorption process using multi-mixed-metal-oxides adsorbent 

As shown above, the adsorptive desulfurization activities of the multi-mixed metal oxides 
were not good for desulfurization of a commercial diesel fuel with 15 ppmw sulfur. In order to 
increase the adsorption capacity of metal oxides, the multi-layer adsorption method was used. 
With the integration of activated carbon as the guarded-bed may benefit the adsorptive 
desulfurization process for diesel fuel. Consequently, about 40 activated carbons provided by 
different companies were first tested and screened for desulfurization of low sulfur diesel fuel in 
a batch system. The weight ratio of the diesel fuel to activated carbon was 25/1. The adsorption 
tests were conducted at the room temperature under atmospheric pressure. The total sulfur 
concentration in the diesel fuel was determined by an ANTEK 9000NS total sulfur analyzer. The 
sulfur detection limit of the total sulfur analyzer is 0.5 ppmw. The activated carbon was 
pretreated at 120 °C in a vacuum oven for 6 hours before adsorption test. The results are listed in 
Table 27. 

 
Table 27. Sulfur content in commercial diesel fuel after 2-hours adsorption over different 
activated carbons in a batch system at room temperature. 

Activated carbon 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 

Sulfur content 
after adsorption 

11.8 9.6 11.2 11.1 12.1 11.4 11.8 14.9 22.3 9.4 

Activated carbon 11# 12# 13# 14# 15# 16# 17# 18# 19# 20# 
Sulfur content 
after adsorption 

6.1 12.5 11.4 7.9 10.6 11.6 11.1 8.8 10.8 11.6 

Activated carbon 21# 22# 23# 24# 25# 26# 27# 28# 29# 30# 

Sulfur content 
after adsorption 

8.1 8.7 17.4 12.1 12.0 10.4 14.0 10.6 9.4 10.8 

Activated carbon 31# 32# 33# 34# 35# 36# 37# 38# 39# 40# 

Sulfur content 
after adsorption 

10.1 7.8 10.7 19.6 14.6 10.2 11.1 17.4 11.2 13.9 

 
It can be seen from Table 27 that sulfur cannot be sufficiently removed from the fuel by 

these tested activated carbons. Some samples even got higher final sulfur concentration after 
adsorption than the initial sulfur content in the starting fuel, probably resulting from more fuel 
being adsorbed than sulfur over those carbon samples. The best was achieved on the activated 
carbon sample #11 with the sulfur content down to ca. 6 ppmw after 2-hrs adsorption. The results 
strongly suggest that activated carbon is not an efficient adsorbent for sulfur removal from a 
commercial diesel fuel and only activated carbon alone can not work well for deep ADS of the 
commercial diesel fuel.  

Based on the batch adsorption results, six activated carbons with better adsorption 
performance were selected and tested in a fixed-bed flow system. The activated carbon was 
packed in a standard stainless steel column (4.6 mm I.D. and 150 mm Length). The packed 
columns were placed in a multi-channel convection oven. Before adsorptive desulfurization, the 
adsorbent bed was pretreated with Argon at a flow rate of 60 mL/min at ambient pressure, heated 
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to 300 °C at a temperature ramp of 10 °C/min, and kept at this temperature for 2 hours. After 
pretreatment, the oven temperature was then decreased to room temperature. In the adsorptive 
desulfurization, the argon gas flow was stopped, the commercial diesel fuel was sent into the 
adsorbent column by a HPLC pump, flowed up through the adsorbent bed at a liquid hourly 
space velocity (LHSV) of 4.8 h-1. The effluent from the top of the column was collected 
periodically for analysis. The breakthrough curves of commercial diesel fuel over six selected 
activated carbons are shown in Figure 104. 

 

 
Figure 104. Breakthrough curves of commercial diesel fuel over six different activated carbon 
adsorbents in a fixed-bed flow system. 
 

Like the metal oxides, the outlet sulfur content increased gradually over the activated 
carbon adsorbents with the increase of the treated fuels. However, none of them can reduce the 
sulfur below 1 ppmw. It indicates that the ADS performance of these activated carbon adsorbents 
is poor, although some activated carbons worked well for ADS of jet fuels in our previous study. 
The desulfurization performance of the studied samples decreased as follows: Maxsorb > 
Westvaco > Nuchar SN-20 > Nuchar SA-20 > GLC > WPH. Combined with the previous data 
using metal oxides as adsorbents for ADS of commercial diesel fuel, it suggests that high 
performance can not be achieved if only one adsorption column is used. It will be a good option 
that a multi-column desulfurization process is applied for ADS of diesel fuel by using our 
developed adsorbents. Accordingly, the best activated carbon sample, Maxsorb was selected as 
one of the adsorbents for the multi-column tests.  

In the multi-column test, the bentonite was used in the first layer as a guard bed. The 
activated carbon, Maxsorb was used in the second layer as another guard bed. The third layer can 
be changed by different adsorbents. Multi-mixed-metal oxide M-Al-Ti-Ce-O was used in the 
third layer in this experiment. Bentonite and activated carbon were pretreated in argon flow at 
300 oC for 2 hours, while M-Al-Ti-Ce-O was pretreated in air at 300 oC for 2 hours before 
adsorption tests. Figure 105 shows the ADS results of the single layer, two layers and three 
layers with Bentonite, Maxsorb activated carbon and Al-Ti-Ce-O adsorbent. Bentonite alone has 
not apparent function in ADS of commercial diesel fuel. Moreover, the adsorption performance 
of Al-Ti-Ce-O adsorbent does not increase (even worse) if only the Bentonite was used as the 
guard bed. If activated carbon Maxsorb was used as the guard bed, the adsorption capacity of Al-
Ti-Ce-O increased. The treated fuel was 6.8 g-F/g-A when the outlet sulfur content was 1ppm, 
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which was 2 times higher than that obtained on the Al-Ti-Ce-O adsorbent alone (2.3 g-F/g-A). 
The sulfur adsorption capacity of Al-Ti-Ce-O by using activated carbon as the guard bed is 0.1 
mg-S/g-A. In the three layers process with Al-Ti-Ce-O as the adsorbent and both the Bentonite 
and activated carbons as the guard beds, similar result to the two-layers process with Al-Ti-Ce-O 
as the adsorbent and the activated carbons as the guard bed is obtained, as expected. 
 

 
Figure 105. Breakthrough curves of 
commercial diesel fuel over Bentonite, 
Activated carbon Maxsorb, Al-Ti-Ce-O 
adsorbents in the single layer, two layers and 
three layers processes.  
 

 
Figure 106. Breakthrough curves of 
commercial diesel fuel over Bentonite, 
Activated carbon Maxsorb, Mo-Al-Ti-Ce-O 
adsorbents in the single layer, two layers and 
three layers processes. 

 
Figure 107. Breakthrough curves of 
commercial diesel fuel over Bentonite, 
Activated carbon Maxsorb, reduced Mo-Al-
Ti-Ce-O adsorbents in the single layer, two 
layers and three layers processes.  

 
Figure 108. Breakthrough curves of 
commercial diesel fuel over three layer 
adsorption method.  

 
The similar adsorption step and method were applied for Mo-Al-Ti-Ce-O, which is 

shown in Figure 106. The bentonite bed has no apparent helping in sulfur adsorption since the 
breakthrough curves are similar to those obtained from the two layers and three layers adsorption 
tests. The treated fuel was 6.3 g-F/g-A at 1 ppmw of the outlet sulfur content when the activated 
carbon was used as the guard bed. It is about 5 times higher than that obtained on Mo-Al-Ti-Ce-
O adsorbent alone (1 g-F/g-A). The corresponding sulfur adsorption capacity was 0.1 mg-S/g-A. 
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Compared to Mo-Al-Ti-Ce-O adsorbent, the reduced Mo-Al-Ti-Ce-O adsorbent showed 
better adsorption performance and higher sulfur uptake than the origin one. Therefore, the 
reduced Mo-Al-Ti-Ce-O was also investigated. The adsorption results are displayed in Figure 
107. Like Al-Ti-Ce-O and Mo-Al-Ti-Ce-O adsorbents, when the bentonite and the activated 
carbon were as the guard beds in the three-layer adsorption process, the adsorption performance 
of the reduced Mo-Al-Ti-Ce-O adsorbent also increased significantly. The treated fuel was 27.8 
g-F/g-A at 1 ppmw of the outlet sulfur content. It is about 2 times higher than that obtained on 
reduced Mo-Al-Ti-Ce-O adsorbent alone (9 g-F/g-A). The corresponding sulfur capacity was 0.4 
mg-S/g-A for this multi-layer adsorption test. 

Additionally, multi-mixed-metal oxide Ni-Al-Ti-Ce-O was reduced in hydrogen and the 
ADS was conducted by the multi-layer method as that for Al-Ti-Ce-O, Mo-Al-Ti-Ce-O and 
reduced Mo-Al-Ti-Ce-O adsorbents. The result obtained from adsorption by three-layer process 
with the bentonite in the first layer, activated carbon in the second layer and the reduced Ni-Al-
Ti-Ce-O in the third layer is shown in Figure 108. For comparison, the results obtained over the 
metal oxides Al-Ti-Ce-O and Mo-Al-Ti-Ce-O, reduced Mo-Al-Ti-Ce-O with the same three-
layer process are presented. With the reduced Ni-Al-Ti-Ce-O adsorbent in the process, about 
13.8 g-F/g-A of fuel can be treated with the outlet sulfur content below 1 ppmw. The 
corresponding sulfur capacity is 0.2 mg-S/g-A. As displayed in Figure 10, the reduced Mo-Al-
Ce-Ti-O adsorption using the multi-layer adsorption method has the best performance for ADS 
of commercial diesel fuel. The desulfurization performance of the studied samples decreased as 
follows: reduced Mo-Al-Ce-Ti-O (27.8 g-F/g-A) > reduced Ni-Al-Ce-Ti-O (13.8 g-F/g-A) > Al-
Ce-Ti-O (6.8 g-F/g-A) > Mo-Al-Ce-Ti-O (6.3 g-F/g-A). 
 
2.2.1.2.3 Supported mixed-metal-oxides adsorbent 

Different supports, including Na-Y zeolite, γ-Al2O3, bentonite, fumed silica, SBA-15, 
MCM-41 and MCM-48 were either purchased from Aldrich or synthesized in our lab and used as 
the support without further treatment. The support, SBA-15, MCM-41 and MCM-48 was 
prepared by the hydrothermal synthesis method. The surface area, pore volume and pore size of 
different support materials have been examined and the data are presented in Table 28. For 
comparison, the data for Ti-Ce-Al-O mixed metal oxide adsorbents are also listed. Fumed silica, 
EH-5 has a surface area of 315 m2/g which is slightly larger than that of Ti-Ce-Al-O material 
(280 m2/g), a pore volume of 0.70 cc/g and a pore size of 11.1 nm. Other mesoporous silica 
shows much higher surface area, 950 m2/g for SBA-15, 1229 m2/g for MCM-41 and 1281 m2/g 
for MCM-48. It should also be noted that both SBA-15 and MCM-41 have a one dimensional 
pore structure, while it is a three-dimensional pore structure in MCM-48. 

Figure 109 shows the effect of the supports on adsorption capacity of TiO2-CeO2 oxides 
for ADS of ULSD. From Figure 10, it can be seen that the positive effect of the supports follows 
the order of MCM-48 > MCM-41 > SBA-15 > Fumed Silica > Bentonite >γ-Al2O3 > Na-Y.  

Figure 110 shows the effect of supports on the breakthrough capacity of TiO2-CeO2 
oxides for ADS of ULSD. It can be seen that using Na-Y, γ-Al2O3 and Bentonite as support of 
TiO2-CeO2 oxides showed negative effect on ADS. The low ADS breakthrough capacity of Na-
Y with high surface area and micro porosity may be due to the large size of 4,6-DMDBT 
molecule with dimension of 1.0 nm*0.63 nm, which  limits diffusion of 4,6-DMDBT through the 
narrow micropore channel of Na-Y. The lower breakthough capacity mesoporous γ-Al2O3 and 
Bentonite could be possibly due to 1) a strong interaction between TiO2-CeO2 oxides and 
alumina support, thus supported TiO2-CeO2 oxides had less activity to O2 in air for peroxide 
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generation; 2) low surface area of the two supports, resulting in the bigger particle size of TiO2-
CeO2 oxides with lower activity.  

 
Table 28. Physical properties of different supports. 
Support Composition Pore size Surface Area Provider Commercial ID
  (nm) (m2/g)   
Zeolite NaY Si-Al-O/Na+ micro 900 Aldrich Linde LZ-Y52 
γ-Al2O3 Al-O 5.8 ~200 SASOL Puralox 
Bentonite Si-Al-O/Na+ meso 300-400 Alfa Aesar - 
Fumed silica SiO2 11.1 315 CABOT EH-5 
SBA-15 SiO2 6.6 950 * - 
MCM-41 SiO2 2.74 1229 * - 
MCM-48 SiO2 2.36 1281 * - 
Ti-Ce-Al-O** - 4.7 280 * - 

*prepared by hydrothermal method in the lab;  
**as non-supported TiO2-CeO2 oxides. 
***Experiment Condition: batch adsorption system; fuel of ULSD-BP; sorbent-to-fuel ratio of 0.1g:2g; 
adsorption T of 25 C. 
 

 
Figure 109. Effect of Support on 
Adsorption Capacity of TiO2-CeO2 Oxides 
for ADS of ULSD in Batch Adsorption 
System. 
 

 
Figure 110. Mass-based Breakthrough 
Curves for ADS of ULSD over Three 
Supported TiO2-CeO2 Oxides.  

 
Figure 111 and Figure 112 show the effect of the mesopore molecular sieve supports on 

the breakthrough capacity of TiO2-CeO2 oxides for ADS of ULSD. It was found that using 
fumed silica, SBA-15, MCM-41 or MCM-48 as a support of TiO2-CeO2 oxides gave a positive 
effect on ADS. The positive effect can be contributed to high surface area of the support, which 
results in the smaller particle size of TiO2-CeO2 oxides with higher activity. However, by 
correlating the surface area with the ADS breakthrough capacity, as shown in Figure 113, it was 
found that the slope of the mesopore-molecular sieve-supported TiO2-CeO2 oxides is higher than 
that of the unsupported Ti-Ce-Al-O, suggesting that the mesopore molecular sieve supports play 
an important role in ADS.  
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Figure 111. Mass-based breakthrough 
curves for ADS of ULSD over four 
mesopore-molecular-sieve-supported TiO2-
CeO2 oxides.  
 

 
Figure 112.  Volume-based breakthrough 
curves for ADS of ULSD over four 
supported TiO2- CeO2 oxides. 

 
Figure 113. Correlation between surface 
area and ADS breakthrough capacity of the 
supported TiO2-CeO2 oxides. 

 
Figure 114. Effect of support of TiO2-CeO2 
oxides on ADS capacity from ULSD in the 
flow system. 

 
On the basis of the sorbent mass, as shown in Figure 111, it can be seen that the ADS 

breakthrough capacity decreases in the order of MCM-48 > MCM-41 > SBA-15 > EH-5, while 
on the basis of the sorbent volume, as shown in Figure 4, it can be seen that the ADS 
breakthrough capacity decreases in the order of MCM-48 > MCM-41 = EH-5 > SBA-15. The 
change of the order for EH-5 is due to the higher packing density of EH-5 in comparison with 
MCM-48, MCM-41 and SBA-15. 

In summary, Figure 114 shows the breakthrough capacity for ADS of ULSD over the seven 
supported TiO2-CeO2 oxides in flow system. It can be seen that the ADS breakthrough capacity 
follows the order of MCM-48 > MCM-41 > SBA-15 > Fumed Silica > unsupported TiO2-CeO2 
oxides > Bentonite > γ-Al2O3 > NaY. The order obtained in the flow system is in good 
accordance with the order obtained in the batch system, as shown in Figure 109. 
 To further enhance the adsorption performance, the activated carbon was applied as a 
guard-bed as described previously. Figure 115 shows the ADS breakthrough curves of ULSD 
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over the AC, Ti-Ce-O/EH-5, and AC+Ti-Ce-O/EH-5. It can be seen from Figure 115 that the 
ADS capacity of AC+Ti-Ce-O/EH-5 tripled the ADS capacity of Ti-Ce-O/EH-5, and 12 times 
higher htan that of AC alone. Results suggest that there is a synergetic effect between AC and Ti-
Ce-O/EH-5 for ADS of ULSD. 
 

 
Figure 115. Breakthrough curves for ADS 
of ULSD over the AC, Ti-Ce-O/EH-5, and 
AC+Ti-Ce-O/EH-5 (Only weight of Ti-Ce-
O/EH-5 was used for calculation of ADS 
capacity of (AC+ Ti-Ce-O/EH-5). 

 
Figure 116. Breakthrough curves of sulfur 
compounds from ULSD over the AC, Ti-Ce-
O/MCM-48, and AC followed with Ti-Ce-
O/MCM-48 (Only weight of Ti-Ce-
O/MCM-48 was used for calculation of 
ADS capacity of (AC+ Ti-Ce-O/MCM-48) 
due to low ADS capacity of AC alone. 

 
Figure 116 shows the breakthrough curves of ULSD over the AC, Ti-Ce-O/MCM-48, 

and AC+Ti-Ce-O/MCM-48. It can be seen that the ADS capacity of AC+Ti-Ce-O/ MCM-48 can 
reach 165 g-F/g-sorb, which was double of the ADS capacity of Ti-Ce-O/MCM-48, and 32 times 
higher than that AC alone. A synergetic effect between AC and Ti-Ce-O/MCM-48 was also 
found for ADS of ULSD over AC+Ti-Ce-O/ MCM-48. 

The present results clearly indicate that AC as a guarded bed can significantly increase 
the ADS capacity of the supported Ti-Ce-O. The results suggested that due to the complex 
composition of diesel fuel, there are competitive adsorption between sulfur compounds and 
certain types of compounds in the diesel on the active sites at the supported Ti-Ce-O. While 
using a guarded bed with ACMB-1, ACMB-1 can selectively or more preferentially adsorb and 
remove the certain types of competitive compounds before the feed contacts with the supported 
Ti-Ce-O. Therefore, more active sites on the supported Ti-Ce-O can be used for ADS, resulting 
in improvement of the ADS capacity.  

In order to further understand the fundament of the competitive adsorption over the 
supported Ti-Ce-O for better design of functional sorbent/layered sorbents, adsorptive selectivity 
of the supported Ti-Ce-O adsorbents for different components in diesel fuel needs to be 
investigated in detail. Thus a model diesel fuel was prepared for this purpose. Figure 117 shows 
the breakthrough curves for sulfur compounds over Ti-Ce-O mixed metal oxides from ULSD 
and MDF. Ti-Ce-O mixed metal oxides showed a breakthrough capacity of 57 g-F/g-sorb from 
MDF containing 15 ppw sulfur, which is around 20 times higher than that from the real ULSD. 
Figure 118 shows the breakthrough curves for sulfur compounds over MCM-48 supported Ti-
Ce-O mixed metal oxides adsorbent from ULSD and MDF. Similarly, over MCM-48 supported 
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Ti-Ce-O mixed metal oxides adsorbent, the obtained breakthrough capacity from MDF was 
about 1024 g-F/g-sorb, around 10 times higher than that from the real ULSD. 
 

 
Figure 117. Breakthrough curves for sulfur 
compounds over Ti-Ce-O mixed metal 
oxides from ULSD and MDF at 25 °C and 
9.6 h-1 LHSV. 

 

 
Figure 118. Breakthrough curves for sulfur 
compounds over MCM-48 supported Ti-Ce-
O adsorbent from ULSD and 15 ppmw 
MDF at 25 °C and 9.6 h-1 LHSV. 

 
Compared to the prepared MDF, the real ULSD is comprised of complex components. 

Diesel fuels consist mainly of saturated and aromatic hydrocarbons. Aromatic hydrocarbons 
include mono-aromatics, such as alkylated benzenes, and polycyclic aromatic hydrocarbons 
(PAHs), such as naphthalenes, fluorenes, and phenanthrenes. Formulated diesel fuels also 
contain additives introduced at very small proportion to improve performance, enhance its 
desirable characteristics and to reduce the undesirable ones, such as anti-oxidant stabilizers, cold 
flow improvers and cetane number improvers. Additionally, trace amount of nitrogen 
compounds and moisture is normally present in the commercial diesel fuels.  

Since real diesel fuel is such a multi-component mixture, selective removal of trace sulfur 
compounds in ppmw scale from diesel fuel is a complex process and can be affected by other 
components. In terms of molecular interactions, not only the affinity between the adsorbate 
molecules and the adsorbent surface, but also the affinity between the solvent molecules and the 
adsorbent surface, and the affinity between the molecules of the solution components both in the 
surface layer and in the bulk phase can affect the adsorption from solution. Thus, the nature of 
solvent components can greatly influence the adsorption of the adsorbate molecules. If the 
affinity between the solvent molecules and the adsorbent surface is not negligible, the 
concentrations of these solvent components can also influence the adsorption of the adsorbate 
molecules, such as sulfur. Therefore, the presence of aromatic hydrocarbons in significant 
quantities, and trace amounts of hetero-atom compounds, especially nitrogen compounds in 
ULSD may have a significant impact on its deep ADS.  

On the contrary, the MDF used in this project has a simple formula including only 
decane, hexadecane, tert-butylbenzene, and 4,6-DMDBT, the ADS capacities obtained from the 
MDF over Ti-Ce-O and MCM-48 supported Ti-Ce-O mixed metal oxides adsorbents were much 
higher than those from real ULSD, as shown in Figures 117 and 118, suggesting that critical 
inhibiting or competitive components for ADS are present in real ULSD. Our results from last 
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quarterly report showed that using AC as a guarded bed could greatly improve the ADS capacity 
of MCM-48 supported Ti-Ce-O adsorbent. A possible explanation is that some inhibiting or 
competitive compounds for ADS are present in ULSD, which is consistent with the results 
shown in Figures 117 and 118. 

 As shown in above that the addition of silver oxide could greatly improve the adsorption 
capacity of the Ti-Ce-O adsorbent, it thus was prepared and evaluated for ADS of ULSD. Figure 
119 shows breakthrough curves of sulfur compounds in ULSD over MCM-48 supported Ag2O, 
Ti-Ag-O, Ti-Ce-O, and Ti-Ce-Ag-O adsorbents. It broke through immediately after the fuel was 
introduced over Ag2O/MCM-48, suggesting that Ag2O alone does not show good ability for 
sulfur removal from ULSD. Using Ag2O to replace CeO2, the resulting Ti-Ag-O/MCM-48 
showed worse ADS performance from sulfur removal from ULSD than the Ti-Ce-O/MCM-48. 
However, when Ag2O was added to Ti-Ce-O, the ADS performance of Ti-Ce-O/MCM-48 was 
improved, from 80 to being 95 g-F/g-sorb over the Ti-Ce-Ag-O/MCM-48. The sulfur 
breakthrough capacity decreased as following order of Ti-Ce-Ag-O/MCM-48 > Ti-Ce-O/MCM-
48 > Ti-Ag-O/MCM-48 > Ag2O/MCM-48. The present results indicate that the addition of Ag2O 
may play an important role in improving the ADS performance of Ti-Ce-O/MCM-48 adsorbent. 
 

 
Figure 119. Breakthrough curves for sulfur compounds in ULSD over four supported metal 
oxides at 25 °C and 9.6 h-1 LHSV. 
 
2.2.1.2.4 Air-promoted desulfurization over mixed-metal-oxides adsorbent 

Figure 120 shows breakthrough curves of total sulfur compounds over TiO2-CeO2 mixed 
oxide adsorbent from ULSD with and without in-situ air flowing. Clearly, with in-situ air 
flowing, ADS breakthrough capacity increased significantly from 2.5 g-F/g-sorb to 22.5 g-F/g-
sorb, suggesting in-situ air promoted significantly the ADS performance of TiO2-CeO2 mixed 
oxides for ULSD. In order to understand the promotion effect of in-situ air, we have studied the 
adsorbed sulfur species over the TiO2-CeO2 mixed oxide adsorbent by washing the spent TiO2-
CeO2 sorbent with a solvent of acetone, which was conducted at 25 °C. The sulfur species in the 
eluent were analyzed by GC-SCD, which is shown in Figure 121. The GC-SCD spectrum of 
ULSD is also presented for comparison.  

In the acetone solvent after washing the spent TiO2-CeO2 sorbent, along with very small 
amount of original sulfur species in ULSD at the retention time range of 15.9-17.2 min, some 
new sulfur species at the retention time range of 17.6-19.0 min with relatively high concentration 
were detected, suggesting the formation of new sulfur species by introducing in-situ air during 
ADS. Compared to our previous results and the literature [41], these new sulfur species can be 
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TiO2-CeO2 adsorbent is about 71% of that for TiO2-CeO2/MCM-48 adsorbent. The comparison 
shows that even promoted by in-situ air flowing, the adsorption performance of TiO2-CeO2 
adsorbent is still worse than that of MCM-48 supported TiO2-CeO2 adsorbent, demonstrating 
that applying a mesoporous support with high surface area and uniform pore structure is a more 
efficient way to improve the adsorption capacity of TiO2-CeO2 mixed oxide adsorbent. 

 

         
(a)                                                                                     (b) 

Figure 123. Breakthrough Curves of Total Sulfur Compounds over TiO2-CeO2 Adsorbent with 
Air Flow and TiO2-CeO2/MCM-48 Adsorbent without Air Flow from ULSD on the Basis of a) 
Adsorbent Weight and b) Adsorbent Volume. Conditions: LHSV, 4.8 h-1; T, 25 °C; air flow, 
10cc/min. 
 

 
Figure 124. Breakthrough Curves for Sulfur Compounds from ULSD over TiO2-CeO2 Mixed 
Oxides with in-situ Air at Different Temperatures. Conditions: LHSV: 4.8 h-1; Air Flow-rate: 10 
cc/min. 
 

Figure 124 shows breakthrough curves of total sulfur compounds from ULSD over TiO2-
CeO2 adsorbent at different temperatures with in-situ air flowing. With the increase of adsorption 
temperature, the ADS performance of TiO2-CeO2 sorbent decreased. At 25 °C, the breakthrough 
capacity was about 22.5 g-F/g-sorb. It became 14, 12, 6 and 2 g-F/g-sorb for the adsorption 
temperature of 50, 80, 100 and 200 °C, respectively. As discussed above, the addition of air flow 
could promote the oxidation of sulfur compounds in ULSD and thus promotes the adsorption 
capacity of TiO2-CeO2 adsorbent. At higher temperature, however, the desorption of adsorbed 
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sulfur and sulfone compounds on the surface is preferred, resulting in the decrease of the 
breakthrough capacity. It should also be noted that at 80 °C or above, no sulfones were detected 
in treated fuel, implying less or no oxidation of sulfur occurred at higher temperatures even with 
air flowing. Knowing that many aromatics and other hydrocarbons exist in ULSD which can be 
also oxidized under air at high temperature, the decrease in adsorption capacity for sulfur 
compounds may be due to the competitive oxidation of hydrocarbons and consequent adsorption 
of hydrocarbon oxides rendered by air at high temperature (>80 °C) over TiO2-CeO2 adsorbent.  

Figure 125 shows the breakthrough curves of different compounds in MDF over TiO2-
CeO2 mixed oxides. The corresponding adsorption selectivity factors and adsorption capacity for 
different compounds were calculated. The results are listed in Table 29 and Table 30, 
respectively. It can be seen that the overall adsorption selectivity follows the order: indole > 
DBTO2 > DBT > MDBT > BT > DMDBT > Phe > Flu ~ MNap > Nap. This selectivity order 
further explained the promoting effect of in-situ air on ADS. We have shown in previous 
quarterly report that in-situ air promoted the formation of sulfone species over TiO2-CeO2 
adsorbents. Here we present that the TiO2-CeO2 adsorbent showed higher adsorption selectivity 
to sulfone compound, compared to the other sulfur compounds. It may be due to much higher 
dipole moment of sulfone compounds.  

 

 
Figure 125. Breakthrough curves of different compounds in MDF over TiO2-CeO2 mixed oxides 
at 25 °C and 9.6 h-1 of LHSV.  
 
Table 29. Adsorption selectivity factor relative to Naphthalene for each compound in MDF over 
TiO2-CeO2 metal oxides. 

 Nap Flu MNap Phe DMDBT BT MDBT DBT DBTO2 Indole 
TiO2-CeO2 1 1.88 1.88 4.76 6.68 7.74 9.44 11.14 25.90 73.31 

 
Table 30. Adsorption capacities (mmol/g) for each compound in MDF over TiO2-CeO2 metal 
oxides. 
TiO2-CeO2 Nap Flu MNap Phe DMDBT BT MDBT DBT DBTO2 Indole 
Breakthrough 0.003  0.006  0.006  0.015 0.021 0.024 0.030 0.035  0.081 0.229 
Saturation 0.008  0.009  0.009  0.017 0.025 0.030 0.043 0.060  0.149 >0.312 
Net 0.005  0.007  0.007  0.012 0.014 0.018 0.030 0.060  0.149 >0.312 

 
It can also be observed that nitrogen compound, indole showed quite high adsorption 

selectivity, suggesting nitrogen compounds in fuel could be competitively adsorbed on TiO2-
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CeO2 adsorbent as well as sulfur compounds including sulfones. The competitive adsorption of 
nitrogen compounds may inhibit ADS over the TiO2-CeO2 adsorbent. In addition, all the sulfur 
compounds showed higher adsorption selectivity than aromatic hydrocarbons, suggesting TiO2-
CeO2 adsorbent has higher affinity to sulfur rather than the aromatic pi-system of aromatic 
compounds. Therefore, the adsorption mode of sulfur compounds over TiO2-CeO2 adsorbent is 
most probably through sulfur atom. It is further supported by the presence of steric hindrance for 
the adsorption of sulfur compounds over TiO2-CeO2 adsorbent, as evidenced by the selectivity 
and capacity order of DBT > MDBT > DMDBT shown in Table 29 and Table 30. 

Figure 126 shows the breakthrough capacity of TiO2, CeO2, and TiO2-CeO2 adsorbents 
for sulfur adsorption from ULSD with and without in-situ air at the sulfur level of 1 ppmw and 4 
ppmw. It can be seen that the introduction of in-situ air showed no effect on ADS capacity of 
CeO2, but a little promotion effect on ADS capacity of TiO2. By doping Ce into TiO2, however, 
the effect of in-situ air on ADS is much more significant. The adsorption capacity in the presence 
of air was about 8-11 times of that without in-situ air. It strongly suggests that the addition of 
CeO2 to TiO2 shows a synergetic effect on the ADS of ULSD, especially when air is present. The 
result may also imply that specific sites on TiO2, rather than on CeO2 could play an important 
role in the ADS of diesel fuel with the presence of air over the TiO2-CeO2 adsorbent. However, 
more studies and detailed characterizations would be necessary to clarify the exact role of CeO2 
in the TiO2-CeO2 mixed oxides adsorbent. 

 

 
Figure 126. Breakthrough capacity of TiO2, 
CeO2, and TiO2-CeO2 adsorbents for sulfur 
adsorption from ULSD with and without in-
situ air at the sulfur level of 1 ppmw and 4 
ppmw. 

 
Figure 127. Sulfur-XANES spectra of the 
spent TiO2-CeO2 adsorbent, the standard 
4,6-DMDBT and standard DBT sulfone 
(DBTO2).  

 
In order to better understand the air-promoted ADS process over the TiO2-CeO2 

adsorbent, the spent TiO2-CeO2 adsorbent was analyzed by sulfur-XANES to identify the sulfur 
species, which may shed light on the air-promoted ADS mechanism over the TiO2-CeO2 

adsorbent. Figure 127 shows the S-XANES spectrum of the spent TiO2-CeO2 adsorbent. For 
comparison, the S-XANES spectra of 4,6-DMDBT and DBTO2 are also presented. The major 
sulfur species on the spent TiO2-CeO2 mixed oxides adsorbent showed a higher oxidation state 
than initial sulfur species, suggesting the oxidation of sulfur species happened on TiO2-CeO2 
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as superoxides (O2
-) on its surface, which may serve as the active sites for oxidation reactions 

[44,46]. In such cases, the active oxygen species activated in oxygen vacancy sites can be the 
key chemical species for various reactions.  

To investigate the active oxygen species on the Ti0.9Ce0.1O2 adsorbent under air flow at 
room temperature, infrared spectroscopy was used due to its capability for the identification of 
the active oxygen species in-situ [47]. Figure 129 shows the diffuse reflectance infrared Fourier 
transform spectroscopy (DRIFTS) profiles of Ti0.9Ce0.1O2 in comparison to the single TiO2 and 
CeO2, with air flowing in-situ at 25 °C. A moderate band appears at around 1126 cm-1, which 
can be assigned to superoxide species, O2

-, based on the theoretic calculation in the references 
[48,49], supporting the formation of superoxide species in the mixed Ti0.9Ce0.1O2 oxides sample. 
Because of the presence of trivalent Ti and Ce in the mixed Ti0.9Ce0.1O2 metal oxides adsorbent, 
the oxygen-vacancy sites can form near the trivalent Ti and Ce which may be able to 
accommodate and activate oxygen from air at room temperature. The accommodated or activated 
oxygen species can further serve as the active species [50,51] and contribute to sulfur oxidation 
to sulfoxides. The IR absorption band located at ca. 1650 cm-1 can be attributed to the bending 
vibrations of hydroxyl group [49]. 

 

 
Figure 129. DRIFTS Profiles of TiO2, 
CeO2, and Ti0.9Ce0.1O2 Under an Air Flow 
Rate of 50 ml/min at 25 °C. 

 
Figure 130. Break-through Capacity of the 
Ti0.9Ce0.1O2 Adsorbent in the First Three 
Regeneration Cycles by Oxidative Air 
Treatment at 400 °C. 

 
Different from the mixed Ti0.9Ce0.1O2 metal oxides sample, there was no clear peak 

related to peroxide species at around 1100-1200 cm-1 [47,52] observed on CeO2 under air flow, 
suggesting no superoxide species formed on CeO2 itself. This may be due to a low concentration 
of the reduced Ce metal ions, or a high vacancy formation energy, or a high peroxide formation 
energy, etc. It should be mentioned that although active oxygen species were not identified in our 
lab-prepared CeO2, it can be generated under certain conditions as reported in literatures [47] 
since the population and the state of each oxygen species varies on the basis of temperature, 
pressure, pretreatment history, and defect density, etc. [53]. The IR spectra of CeO2 show the 
absorption bands at around 1050 and 1320 cm-1, which are the characteristic vibrations of CeO2 
[54]. For the single TiO2, superoxide species with the absorption bands at around 1126 cm-1 can 
be detected with air flowing in-situ at room temperature, as shown in Figure 8 (red line). The 
theoretic calculation showed that the superoxide species formed on the Ti0.9Ce0.1O2 adsorbent are 
more active than those on TiO2 for sulfur oxidation. Therefore, it is likely that more energy is 
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required for the dissociation of superoxide species formed in TiO2 to chemically oxidize 
organosulfur compounds to sulfoxides. The results may further suggest that both oxygen 
activation on the vacancy sites for the formation of superoxide species and the dissociation of the 
activated superoxide species are important for air-promoted ADS over the metal oxides 
adsorbents.  

The regenerability of the adsorbent is also important for the project. Thus, the spent 
Ti0.9Ce0.1O2 adsorbent was regenerated by air at 400 °C. The adsorption performance of the 
regenerated adsorbent was examined. The breakthrough capacity for each cycle is shown in 
Figure 130. The regenerated Ti0.9Ce0.1O2 adsorbent showed a comparable ADS performance 
after 3 cycles, indicating that the adsorption capacity can be recovered by air oxidation. 
However, the adsorption capacity dropped gradually with the cycles of regeneration, hinting that 
the adsorption capacity cannot be fully recovered and a loss of active sites may occur during the 
regeneration of the Ti0.9Ce0.1O2 adsorbent via air treatment.  

To understand the reason why the adsorptive capacity of the Ti0.9Ce0.1O2 adsorbent 
decreased with the regeneration cycles, the fresh and regenerated Ti0.9Ce0.1O2 adsorbents have 
been characterized by XANES technique. Figure 131 shows Ti L2,3-edge XANES spectra of the 
fresh and regenerated Ti0.9Ce0.1O2 (from the 3rd cycle) adsorbents. The calculated percentage of 
Ti3+ and Ti4+ in the adsorbent is listed in Table 31. As can be seen, the amount of Ti3+ in the 
Ti0.9Ce0.1O2 adsorbent decreased after regeneration. The percentage of Ti3+ ion in the regenerated 
Ti0.9Ce0.1O2 adsorbent was about 42.7%, much lower than that of the fresh one, which was about 
60.2%.  

 

 
Figure 131. Ti L2,3-edge XANES spectrum 
of regenerated Ti0.9Ce0.1O2 (from the 3rd 
cycle), and linearly fitted spectrum with 
standard Ti2O3 and anatase TiO2. 

 
Figure 132. Ce M4,5-edge XANES spectra 
of the fresh and the regenerated Ti0.9Ce0.1O2 
(from the 3rd cycle). 

 
 
Table 31. The percentage of Ti3+ and Ti4+ in the fresh and regenerated Ti0.9Ce0.1O2 (from the 3rd 
cycle) adsorbent calculated from the Ti L2,3-edge XANES spectra. 
 Ti0.9Ce0.1O2 Reg. Ti0.9Ce0.1O2 
Reference spectrum Abundance (%) Abundance (%) 
Ti3+ (Ti2O3) 60.2 42.7 
Ti4+ (anatase TiO2) 39.8 57.3 
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Figure 132 shows the Ce M4,5-edge XANES spectra of the regenerated Ti0.9Ce0.1O2 (from 
the 3rd cycle) in comparison with the fresh Ti0.9Ce0.1O2. The M5/M4 ratio which represents the 
ratio of Ce3+/Ce4+ is computed and listed in Table 32. The M5/M4 ratio in the regenerated 
Ti0.9Ce0.1O2 (from the 3rd cycle) adsorbent was 0.868, while it was 0.889 over the fresh 
Ti0.9Ce0.1O2 adsorbent. It implies a decrease in the amount of Ce3+ after regeneration.  
 
Table 32. M5/M4 ratio in the fresh and the regenerated Ti0.9Ce0.1O2 (from the 3rd cycle) 
calculated from Ce M4,5-edge XANES spectra. 

 Ti0.9Ce0.1O2 Reg. Ti0.9Ce0.1O2 
M5/M4 ratio 0.889 0.868

 
As shown above, both the reduced centers of Ti3+ and Ce3+ on the surface of the 

Ti0.9Ce0.1O2 adsorbent decreased after regeneration. Consequently, less active oxygen-vacancy 
sites would be available for oxygen activation and dissociation for sulfur oxidation, resulting in a 
lower adsorption capacity after regeneration. This is in good agreement with the adsorption 
performance of the regenerated adsorbent with cycles as shown in Figure 9. It reveals that the 
reduced centers of Ti3+ and Ce3+ on the Ti0.9Ce0.1O2 surface may be critical for air-promoted 
ADS process. The loss of active sites on the Ti0.9Ce0.1O2 surface may be due to the thermal 
instability of these Ti3+ and Ce3+ sites, or the blocking effect of some active sites by stubborn 
residues on the spent Ti0.9Ce0.1O2 adsorbent that cannot be removed in air regeneration process. 
To clearly clarify the degradation mechanism, however, more work is needed. The understanding 
of the degradation mechanism is crucial for finding a more efficient regeneration method and 
better operating conditions. Moreover, from the perspective of the design of new metal-oxide 
based adsorbents for ADS, it is highly desirable if the regenerability could be taken into account 
initially in the design of an integrated adsorbent formula. 

 
2.2.2. Reforming of Commercial Diesel Fuel 
2.2.2.1. Method for fuel-steam mixing and preheating 

As suggested in our statement of work and the reported literature review on diesel 
reforming, the homogeneous mixing and proper preheating of diesel fuel and steam are of vital 
importance to prevent fuel decomposition before the catalyst bed, thus significantly reducing the 
carbon formation which may block the reactor and the whole process. In our previous studies, we 
have proposed a new design of a mixer for the pre-mixing of jet fuel and steam to minimize the 
coke formation prior to the pre-reforming [55], as shown in Figure 133.  In this design, the fuel 
should be kept at lower temperatures (below 150 °C) before fuel meets steam, i.e., rather than 
allowing the fuel to evaporate itself at the wick, the steam should serve to vaporize the fuel, 
which can thus result in more homogeneous pre-mixing on the basis of the results we found in 
examining the effects of using wick mixer for feed introduction on carbon formation at different 
temperatures. To improve the pre-mixing of jet fuel and steam, a wick material (quartz fiber) was 
added into the stainless steel tube between the outlet of fuel line and the inlet of reactor (the pre-
mixing zone) to prevent the formation of droplets at the end of fuel line, which could lead to un-
stable flow and poor mixing of jet fuel and steam.  

This design was examined for diesel fuel. Although diesel fuel has higher boiling points 
(160 ~ 380 °C) and higher viscosity than jet fuels, the current fuel-steam mixing and preheating 
design was successfully applied for diesel steam reforming process. No carbon formation was 
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Figure 138 shows the catalytic performances of the 10Ni/Al, 10Ni5K/Al and 
10Ni5Co5K/Al catalysts for steam reforming of commercial diesel fuel with 15 ppmw sulfur at 
800 °C and a WHSV of 5.1 h-1. An on-line GC-TCD equipped with a Molecular Sieve 5A 
column and a silica gel column will be used for the analysis of gas products including H2, CH4, 
CO and CO2 (and other light hydrocarbons if present) in the reformate gas. The liquid products 
were periodically collected by a condenser for the conversion calculation on the basis of the 
assumption that all of the remaining fuel in the liquid products is of the same composition as the 
initial fuel.  

It can be seen that the initial H2 yields for both 10Ni/Al and 10Ni5K/Al are ca. 0.16 
mol/gfuel-min (The theoretic H2 yield should be between 0.22-0.23 mol/gfuel-min). The reforming 
activity of 10Ni/Al was stable for 60 h, after which the H2 yield gradually decreased, and finally 
reached ca. 0.04 mol/gfuel-min after 150 h of TOS (time on stream). The significant deactivation 
of 10Ni/Al is most likely due to sulfur poisoning and carbon deposition. With the addition of K, 
although the 10Ni5K/Al catalyst still deactivated somehow, it became much slower comparing to 
the catalyst with Ni only. It is widely accepted that the presence of K can promote the 
gasification of coke on Ni catalyst. Thus, the better resistance of 10Ni5K/Al catalyst to the 
deactivation during steam reforming of commercial diesel could also be attributed to the role of 
K in effective gasification of carbon deposits over the Ni catalyst. With further Co addition (i.e., 
10Ni5Co5K/Al catalyst), the initial H2 yield could be apparently increased to ca. 0.18 mol/gfuel-
min, indicating that the presence of Co may promote the reforming efficiency of Ni catalyst. 
However, with the reaction preceding, the activity of 10Ni5Co5K/Al progressively declined and 
became very close to that of 10Ni5K/Al. According to the above facts, a little promotion effect 
of 5 wt% Co addition is observed for steam reforming of commercially available diesel with 15 
ppmw sulfur over Al2O3 supported Ni catalyst at 800°C.  

These catalysts have been characterized by hydrogen temperature programmed reduction 
(H2-TPR) method to verify the roles of potassium and Co addition. Figure 139 shows the H2-
TPR profiles of 10 wt% Ni/Al2O3 (10Ni/Al), 10 wt% Ni-5 wt% K/Al2O3 (10Ni5K/Al) and 10 wt% 
Ni-5 wt% Co-5 wt% K/Al2O3 (10Ni5Co5K/Al) catalysts. The 10Ni/Al catalyst exhibits a broad 
peak between 500 and 850°C, which can be attributed to the reduction of NiO in intimate 
interaction with the Al2O3 support. With the addition of K, the 10Ni5K/Al catalyst exhibited 
distinctly different H2-TPR behavior from the 10Ni/Al sample. An intensive peak between 350 
and 500 °C can be easily observed. Although it is difficult to tell what species is attributed to at 
current state, it is still clear that the reducibility of the NiO is greatly promoted due to the 
addition of K. In addition, the reduction peak at about 700 °C becomes sharper and wider. 
According to the literature, the reduction of NiO species interacting with alumina support occurs 
at about 550 °C, while the reduction of highly dispersed non-stoichiometric amorphous nickel 
aluminate spinels and diluted NiAl2O4-like phase happens at higher temperatures. The results 
suggest that after potassium addition, the amount of nickel aluminate species also increases in 
addition to the improvement in the Ni reducibility. With further addition of Co, the formed 
10Ni5Co5K/Al catalyst showed similar H2-TPR profile to the 10Ni5K/Al catalyst.  

After reaction, the carbon deposit on the spent catalysts has been analyzed. Figure 140 
shows the amount of carbon deposited on the spent catalysts after 150-h steam reforming of 
commercially available diesel with 15 ppmw sulfur at 800°C. There is about 1.2 g/g-cat of 
carbon deposited on the 10Ni/Al catalyst. After K addition, carbon deposition is significantly 
reduced. It is only ca. 0.2 g/g-cat of carbon over the 10Ni5K/Al catalyst. It is probably because 
that the presence of K facilitates carbon gasification resulting in that the deposited carbon cannot 
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main peak at 856.3 eV with a satellite peak at about 862.7 eV, indicating only NiO exists on the 
both catalysts before reduction. No significant differences in peak shape and intensity are 
observed for the unreduced catalysts. After the reduction (Figure 16B), the Ni 2p XPS peak for 
both catalysts shifted down to 852.6 eV, suggesting the formation of metallic Ni. It is interesting 
to note that the peak intensity for the Ni-Fe/Al2O3 catalyst is obviously lower than that of the 
Ni/Al2O3 catalyst. One possible reason is that the added Fe may cover the Ni metal surface in the 
Ni-Fe/Al2O3 catalyst after reduction.  

On the basis of XPS analysis, the surface chemical composition of the 10wt% Ni/Al2O3 
and 10wt% Ni-5wt% Fe/Al2O3 catalysts before and after H2 reduction can be calculated and the 
results are summarized in Table 34. It can be seen that the Ni/Fe molar ratio on the surface 
decreased from 1.5 for the unreduced Ni-Fe/Al2O3 catalyst to 0.8 for the reduced Ni-Fe/Al2O3 
catalyst. In other words, after reduction, surface iron becomes even richer than that before 
reduction. The change may suggest that upon H2 reduction, Fe may cover Ni metals, which 
further support the conclusion drawn from XPS spectra. Compared Ni/Al2O3 catalyst, the 
enhanced sulfur tolerance of the Ni-Fe/Al2O3 catalyst in steam reforming of commercial diesel 
fuel may likely be attributed to the iron protection on Ni from sulfur contacting by covering Ni 
surface.  

 
Table 34. Surface chemical composition of the 10Ni and 10Ni-5Fe catalysts before and after H2 
reduction (H2 reduction conditions: 100 ml/min of 10% H2/He, 800 ºC, 1 h) by XPS. 

Catalyst Treatment Element (wt%) Ni/Fe  
molar ratio Ni Al O C Fe 

Ni/Al2O3 
Unreduced 8.56 47.96 41.67 1.80 - - 
H2/800 ºC 4.30 53.84 42.66 - - - 

Ni-Fe/Al2O3 
Unreduced 8.66 43.41 40.91 1.40 5.62 1.47 
H2/800 ºC 3.50 50.54 41.94 - 4.02 0.83 

 
Figure 147 shows the Ni 2p XPS spectra of the used 10 wt% Ni/Al2O3 and 10 wt% Ni-5 

wt% Fe/Al2O3 catalysts after steam reforming of commercial diesel with 15 ppmw sulfur at 800 
ºC for 150 h. Both used catalysts show intensive peaks at ca. 586.4 eV, which can be attributed 
to the presence of Ni2+. This result suggests that the surface of these used catalysts was oxidized 
during the storage under ambient conditions. However, there is a pronounced difference between 
the XPS spectra of the two used catalysts: an obvious shoulder at 583.5 eV, which can be likely 
associated with the formation of nickel carbide, is observed over the used Ni catalyst, but it is 
rather weak over the used Ni-Fe catalyst. The difference may imply the formation of nickel 
carbide over the Ni catalyst, while its formation was suppressed over the Ni-Fe catalyst. It is 
known that the formation of nickel carbide is detrimental to hydrocarbon reforming over Ni 
catalysts. Therefore, it appears that the addition of Fe inhibits the formation of nickel carbide, 
which should benefit steam reforming of commercial diesel over the Ni-Fe catalyst. 

The surface elemental composition of the used 10 wt% Ni/Al2O3 and 10 wt% Ni-5 wt% 
Fe/Al2O3 catalysts after steam reforming of commercial diesel with 15 ppmw sulfur at 800 ºC for 
150 h are summarized in Table 35. After the reaction, the concentration of surface Ni over the 
Ni catalyst was determined to be 3.88 wt%, which is much lower than the theoretical value (10 
wt%). Over the Ni-Fe catalyst, the concentration of surface Ni was further decreased to 2.19 
wt%. The weight ratio of surface Fe to surface Ni is 1.6 (3.61/2.19), which is about three times 
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In this conceptual design,the diesel fuel processor involves two units, i.e., the 
desulfurization unit and the reforming unit. The air-regenerable TiO2-CeO2 mixed oxide 
adsorbent for deep desulfurization of diesel fuel down to below 1 ppm and the highly carbon-
resistant and sulfur-tolerant Fe-Ni based catalyst for diesel steam reforming developed in this 
project are applied in the desulfurization unit and the reforming unit, respectively. 

In the desulfurization unit, the diesel fuel is pumped into the adsorption column, which is 
loaded with the TiO2-CeO2 mixed oxide adsorbent with air flowing. The adsorptive 
desulfurization is performed at room temperature. After desulfurization, the products pass 
through a gas-liquid separation unit. The cleaned diesel fuel is then delivered to the reforming 
unit. At the same time, the air flow is circulated back to the adsorbent regeneration unit, which is 
operated at a temperature of 400 °C. The fresh TiO2-CeO2 mixed oxide adsorbent is first 
operated in the desulfurization chamber. After certain time of operation (on the basis of 
adsorbent performance for sulfur removal at 1 ppmw level), the spent adsorbent is then switched 
to the regeneration chamber, where the spent adsorbent will be completely regenerated by air at 
400 °C and the adsorption capacity for sulfur will be fully recovered. The regenerated adsorbent 
is then switched back to the desulfurization chamber for further cycles. In that way, the TiO2-
CeO2 mixed oxide adsorbent can be continuously operated on site for a long time. No manually 
operation is needed for the desulfurization unit until the adsorbent material has to be replaced.  

The cleaned diesel fuel from the desulfurization unit normally contains sulfur content less 
than 1 ppmw and enters the reforming unit. At the preheater, the liquid diesel fuel is heated up 
and evaporated. At the same time, the diesel vapor is mixed with the steam, which is provided by 
a pump through a pre-installed water tank and generated in situ in the preheater. The pre-mixed 
diesel vapor and steam then reacts over the Fe-Ni based reforming catalyst at 800 °C, producing 
a hydrogen rich reformate gas with low sulfur for SOFC. The SOFC stack provides the power for 
various usages. The Fe-Ni catalyst is proven to be highly carbon-resistant and sulfur-tolerant, 
thus can be operated a long time before replacement. Consequently, in the processor, the 
reforming catalyst may be optimized so that it can be replaced during the schedule maintenance 
service.  

It should be pointed out that the energy required for the adsorbent regeneration unit and 
the reforming reactor in the diesel fuel processor is self-supported in this design by incorporating 
a secondary battery. The battery is initially charged ex situ and provides the power for the 
starting of the processor. When the processor is under running condition, the battery can be fully 
charged by the SOFC stack and continuously supply the energy needed for the adsorbent 
regeneration chamber, the steam reforming reactor and other parts. 
 
3. Design Test Platforms to Evaluate Fuel Processing Technology 
3.1. Test on button cells 
            Based on the report provided by Delphi in regards to the work carried out on button cells, 
it was understood that it was quite similar to the experiments conducted at Penn State. The 
testing process was initiated with pure hydrogen to mainly check if the experiment rigs and other 
related electrochemical equipments were according to the specifications and requirements from 
Delphi. Earlier, the suggested process which was employed for constructing the Membrane 
Electrode Assembly (MEA) with the button cell, was according to PSU methodologies. But after 
Delphi provided assistance in a few of the accessories necessary for MEA preparation in a better 
and sophisticated way, the new recipe was also used at PSU. The simulated reformate 
composition was decided mutually by Delphi and PSU and initial testing was accomplished to 
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make sure we get cell performance at acceptable levels for long term testing. Delphi decided on 
the cell conditioning procedure before testing of the inorganic contaminants and the same 
process was accepted and followed at PSU. The initial concentration levels which were selected 
for the contaminants were as follows: 

1. H2S   - 500 ppb  1 ppm  5 ppm 
2. Siloxane  - 20 ppm   50 ppm   100 ppm 
3. Chlorine  - 20 ppm   50 ppm   100 ppm 
4. Ammonia  - 20 ppm   50 ppm   100 ppm 

         Except siloxane the rest of the three contaminants were tested according to the pre-
determined concentration levels. Upon recommendation of PSU based on the results obtained, it 
was concluded that the specified levels were too high for siloxane. The tests were conducted at 
Delphi too and was confirmed and a much lower concentration range was decided for siloxane 
by both parties. In terms of the electrochemical measurements, both groups have used 
Electrochemical Impedance Spectroscopy (EIS) and Polarization curves to understand the 
performance and degradation characteristics of the button cell. In addition to the above 
mentioned techniques, PSU has used a relatively new technique called Electrochemical 
Frequency Modulation (EFM) to understand more about the kinetics of the electrochemical 
reactions and its dependency and relation with the degradation dynamics for the button cells 
under varied operating conditions. The general conclusions until now are similar which both 
Delphi and PSU have obtained.  

 
The evaluation of Delphi’s fuel cell performance, subjected to four contaminants at varying 
levels of each contaminant 
 
Experimental: 
 
            All SOFC’s tested were Ni-YSZ anode supported cell formats. The anode side current 
collector is made from a Ni mesh with four platinum (Pt) wires attached. The cathode current 
collector is made from silver (Ag) mesh with four Pt wires attached. The samples were installed 
in an alumina tube with a glass seal to separate the anode and cathode gasses. Anode gas used to 
reduce and perform baseline test was comprised of 0.5LPM H2 and 0.5LPM N2, the cathode gas 
used was 0.25LPM of air. The sequence of operations was as follows: 
 Seal the button cell in the test stand 
 Reduce the anode in 50%H2/50%N2 for two hours at 750C 
 Measure impedance at 700 mv and 800 mV, IV sweep from OCV to 0.6V.  
 Soak in 50%H2/50%N2 for 24 hrs. @0.6A/cm2 
 Measure impedance at 700 mv and 800 mV, IV sweep from OCV to 0.6V.  
 Soak in reformate (H2 50%, CH4 3%, CO2 22%, N2 20%, H2O 5%) for 24 hrs. 

@0.6A/cm2 
 Add contaminant for up to 100 hours to stabilize 
 Measure impedance at 700 mv and 800 mV, IV sweep to 0.4V  
 End of test 
 

Contaminants used: 
 Sulfur: Introduced as H2S gas with N2 as its carrier gas. 
 Ammonia: introduced as NH3 gas with N2 as its carrier gas. 
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SEM examination of the Ammonia contaminated bulk anode (Figure 158) showed no 
unusual morphology.   
 
Halides 
         Figure 159 shows that tetrachloroethylene introduced to reformate at 100 ppm or less has 
very little effect on the cell. In the graph of Figure 159 the electrochemical impedance spectra 
show that the polar resistance changes were also relatively small. 
 

 
Figure 159. Cell power reduction with increasing tetrachloroethylene concentration. 
 

 
Figure 160.  Electrochemical impedance with increasing tetrachloroethylene concentration. 
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Task 1.0 – Project Management 

The primary objective of this program was to complete the design and build of an 
advanced 25 kWe-class Solid Oxide Fuel Cell (SOFC) stack test article.  The work 
described herein was intended to support the Siemens Energy DOE-sponsored Solid 
State Energy Conversion Alliance (SECA) Coal-based Systems Program (Contract 
number DE-FC26-05NT42613).  The SECA Coal-based Systems Program was a three-
phased program; Siemens Stationary Fuel Cells Division (SFC) successfully completed 
Phase I with the 5,000 hour test of a 10 kWe-class SOFC stack.  The Phase I stack test, 
identified as POCD8R0, contained twenty-four 75 cm active length Delta8 scandia-
stabilized zirconia cells.  The successful completion of the 5,000 hr test enabled 
Siemens SFC to proceed into Phase II of the SECA Program. 

The Phase II objective was the 5,000 hour test of a 25 kWe-class SOFC stack test 
article.  This program supported that objective via the design, fabrication, and assembly 
of the stack test article, referenced in this report as POCD8R1.  Testing of the 
POCD8R1 stack test article was funded by the SECA contract. 

Due to unforeseen delays in the start of this program and to avoid delays in the Phase II 
POCD8R1 stack test, a number of critical path subtask level activities, particularly those 
under Tasks 7.1 and 7.2. were completed under the SECA contract. 

The project was managed per with the Statement of Work (SOW) and the Project 
Management Plan.  Relative to the POCD8R1 stack test article, all activities were 
completed in accordance with the overall SECA Program schedule and the stack test 
article was completed on-time and within budget. 

The POCD8R1 stack test was initiated and ran for approximately 400 hrs before a cell 
failure aborted the test. 

Other elements of this specific program, namely the preparation of the ring cell samples 
and the definition of the SOFC operational parameters were not completed. 

Midway through the period of performance, Siemens decided to cease all SOFC-related 
activities and thus elected to fully terminate this program along with the DOE-funded 
SECA program.  PSU subsequently issued to Siemens a stop-work order, effective 
September 23, 2010. 

Figure 1 presents the program spending. 
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Figure 1. – Program Spending
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Task 2.0 – Research and Development for Alternative 
Fuel Processing 

No work performed under this task. 
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Task 3.0 – Design Fuel Processing System 

No work performed under this task. 
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Task 4.0 – Design SOFC Test Platform 

No work performed under this task. 
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Task 5.0 – Build SOFC Test Platform 

No work performed under this task. 
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Task 6.0 – SOFC Test Platform Installation and Testing 

No work performed under this task. 
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Task 7.0 – POCD8R1 Stack Test Article 

TASK 7.1 – POCD8R1 STACK TEST DESIGN & ANALYSIS 

The objective of this task was to design and build the 25 kWe-class stack test article 
comprised of state-of-the-art Delta8 cells and incorporating design enhancements and 
cost reductions features relative to the POCD8R0 stack test article which was 
successfully tested in Phase I of the SECA Program.   

TASK 7.1.1 – DEFINE OPTIMUM MODULE CONFIGURATION 

The module configuration optimization analysis was completed under companion 
program DE-FC26-05NT42613. 

TASK 7.1.2 – AIR DISTRIBUTION AND EXHAUST SYSTEM 

The design of the spent fuel recirculator was determined to be satisfactory and thus no 
design work was required. 

TASK 7.1.3 - FUEL DISTRIBUTION & RECIRCULATION SYSTEM 

The design of the Fuel Distribution and Recirculation System was thoroughly analyzed to 
confirm there was adequate fuel distribution and fuel recirculation within the test article.  
The primary components evaluated included the fuel barrier, stack liner, and 
recirculation system.   Upon analytical verification of component and system 
performance, the components were successfully fabricated and assembled into the 
stack test article.   

Significant effort was expended to successfully fabricate the dies to form the thermal 
reliefs for fuel distribution components.  The geometry of these thermal reliefs for these 
components was modified to reduce the cost from previous designs 

In addition to defining forming methods, specific tooling and procedures required for 
assembly into the test article were defined and executed.  This tooling permitted 
assembly options which reduced cost from prior fabrication and assembly methods.  

Fuel Barrier 

Cost reduction in the fuel barrier was achieved by reducing the depth of the fuel barrier 
relief and the spacing between the reliefs.  Reductions in the amount of machining, size, 
and weight of the attachment components to the container for the foil were achieved.  A 
forming die shape design was developed that minimized ‘springback’ from the relief, 
maintained the required flatness of the fuel barrier foil while allowing sufficient flexibility 
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to limit the thermal expansion loads.  The net results was a design of the fuel barrier foil 
that was able to be fabricated from  single commercially available width of foil material to 
essentially any practical length.  Figure 2 shows the die used to form the fuel barrier 
assembly.  The fuel barrier assembly is shown in Figure 3. 

 

 

Figure 2 – Fuel Barrier Thermal Relief Forming Die 

 

 

 

Figure 3 – Fuel Barrier Assembly 
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Stack Liner 

The stack liner was fabricated by first seam welding commercially available foil material 
widths into larger single flat sheets of foil.  The foil was then fed into a die to form a 
single thermal relief in the foil.  The die employed in this process was designed as part of 
this activity and greatly simplified fabrication of the stack liner.  This die and fabrication 
process permits stack liners to be fabricated using the same die for modules of different 
sizes.  Previously, stack liners were fabricated by welding narrow panels bent on the 
edges to form the thermal relief.  This approach was problematic due to the limited 
supply of material to form individual panels prior to welding.  The newly developed 
forming process for the liner is significantly less expensive than the prior process in 
which each thermal relief was created by a weld seam due to less welding and less 
material waste.  Simple methods to transport the large, thin foil sheets were defined.  A 
portion of the fabricated stack liner is presented in Figure 4.  A test piece used to 
establish and confirm the pleat spacing prior to liner fabrication is shown in Figure 5.  
The stack liner installed around the module can be seen in Figure 6. 

 

 

Figure 4 -  Stack Liner Fabrication 

In addition to the forming methods, specific tooling and procedures required for 
assembly into the stack test article were defined, validated, and subsequently employed 
in the assembly of the POCD8R1 stack test article.  The assembly of the fuel barrier 
required a special fixture to assure proper assembly into the module container.  The fuel 
barrier was lowered into the container from the top after partial installation of the 
peripheral insulation located beneath the fuel barrier.  Figure 7 shows the fuel barrier 
attached to the lifting fixture prior to installation into the module.  Alignment of the 
attaching bolts and proper mating with the mounting to the inner wall of the container 
was critical.  The assembly fixture successfully installed and located the fuel barrier 
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within the required tolerances.  Prior units were assembled with an intermediate flange 
located at approximately mid-elevation of the container module.   The lift fixture and 
assembly process developed for POCD8R1 eliminated the intermediate flange resulting 
in a substantial cost savings and establishes an assembly process that is applicable to 
larger units.  Figure 8 shows the fuel barrier in the installed position. 

 

Figure 5 - Liner Test Bends to Verify Pleat Spacing 

 

Figure 6 – Stack Liner Installed Around the Fuel Cell Module 
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Figure 7 – Fuel Barrier and Lift Fixture 

 

Figure 8 - Fuel Barrier in the Installed Position 
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Final installation of the remaining components of the Fuel Distribution and recirculation 
system was uneventful.  Slight modifications to the stack liner were necessary to avoid 
interference with heater and instrumentation leads.  Figure 9 shows the instrumentation 
leads crossing over the stack liner. 

 

Figure 9 – Instrumentation Leads Crossing over the Stack Liner 

In addition, the closed end bundle support plate which forms the top of the inlet fuel 
plenum was modified.  The modification was necessary because the alignment of the 
closed end castings were out of position enough to prevent assembly of the top of the 
fuel plenum.  Excessive force between the support pins and the closed end castings 
could apply unwanted axial load to the cells.  

Figure 10 shows the test fit of the pins engaging the closed end castings on the ends of 
the fuel bundles.  Ultimately, these pins were removed after the test fit.  These pins are 
not necessary to react side loads on the bundles for a small stack that will not be 
transported and has limited horizontal thermal expansion.  Modifications for larger stacks 
and those that will experience shipping loads will be necessary.  There are several 
options available.  The position of the closed end castings could be better controlled with 
a more precise fixture during stack assembly.  The engagement of the support pin to the 
casting could be changed to permit more rotational freedom.  The welded end of the 
support pin to the plate could be changed to a mechanical connection which would allow 
more movement to accommodate misalignment.  Most likely a combination of these 
changes will be used in the design of larger units.  Other approaches could be used 
depending on evaluation of function, ease of assembly, and cost. 

Figure 11 shows the top of the fuel plenum in position prior to welding the container 
cover in place.   
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Figure 10 – Test Fit of Upper Positioning Plate 

 

Figure 11 - Upper Positioning Plate Installed Prior to Welding Container Lid 
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TASK 7.1.4 – I&C SYSTEM 

The design of the POCD8R1 stack test article was a scaled version of the atmospheric 
pressure advanced SOFC module (i.e a 250 kWe-class module).  However this stack 
test article had significantly more instrumentation than would typically be found in a 
commercial module.  Additional instrumentation was identified to verify analytical 
predictions for numerous critical components and various aspects of system 
performance. 

Detailed designs, shown in Figure 12, that specified solder, flux, and shrink tubing were 
developed for the thermocouple lead terminations.  Each termination was designed to 
accommodate the local maximum temperature and potentially moist environment. 

 

 

Figure 12 – Thermocouple Lead Terminations 
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A significant effort was directed towards the finalization of the instrumentation routing 
that included the voltage taps, various thermocouple types, and gas sample tubes, as 
shown in Figure 13  The voltage taps and thermocouples required individualized 
implementation of various ceramic insulators including fish spine beads and various 
tubing types.  The sensitivity of the terminations (shrink tubing and solder) to high 
temperatures required the terminations to be maintained at close proximity to the 
container wall.  An expanded metal termination mount was developed to facilitate the 
anchoring of the terminations via the use of high temperature wire-ties, Figure 14. 

 

Figure 13 – Completed Instrumentation 

 

Figure 14 – Termination Mount 
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The finalization of the module instrumentation routing required that the appropriate feed-
through type be specified for the voltage taps, various thermocouple types, and gas 
sample tubes.  A schematic documenting the feed-through routing locations was 
created, Figure 15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 15 – Instrumentation Feed –through Schematic 
 
 
Final hookup of all cell stack and balance-of-plant was successfully completed.  Figure 
16 shows the instrumentation feed-throughs and external wiring on the outside of the 
stack container. 
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Figure 16 – Instrumentation Feed-throughs and External Wiring (pre-test) 

During the startup, operation, and shutdown of the POCD8R1 stack test, only minor I&C-
related operational difficulties were encountered.  These were associated with a failed 
interface card in a datalogger.   Of 148 data channels, there were no failures during the 
test, nor were there any instrumentation or guard heater failures experienced during 
operation. 

Upon termination of the POCD8R1 stack test, the external instrumentation leads, guard 
heater power leads, and sample tubes were disconnected at the container fittings.  All of 
these components were in excellent conditions with no signs of temperature effects or 
distress, as can be seen by comparing Figure 16 (post-test) with Figure 17 (pre-test).  
The power lead assemblies were disassembled and found to be in excellent condition 
(Figure 18).  The peripheral insulation inside the container was damp from condensation.  
However, all internal instrumentation leads and guard heater power leads were in good 
condition with no evidence of shorting or overheating, Figure 19. 

Based on post-test visual analysis it was determined that the I&C System functioned as 
designed. 
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Figure 17 – Instrumentation Feed-throughs and External Wiring (post-test) 

 

Figure 18 – Power Lead Seals 
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Figure 19 – Internal Instrumentation Leads 

 

TASK 7.1.5 - CONTAINER AND THERMAL INSULATION 

The purpose of this task was to design and procure the POCD8R1 container and internal 
insulation.  A parallel effort, performed under companion program DE-FC26-05NT42613, 
was conducted on material characterization and testing to ensure that the selected 
materials were compatible with the metallic container, stacks internals, and the operating 
environment.  

Module Container 

The module container was fabricated, leak tested, and delivered.  Execution of the low 
cost, light gage carbon steel design was successful.  Minor difficulties were encountered 
maintaining the desired cavity tolerance at the top of the container, but this was resolved 
by addition of a stiffening rib.  Although attachment of pipe couplings to the thin wall was 
no problem, welds attaching solid threaded bosses (used to attach internal support 
structures) were prone to cracking, or porosity.  This could be reduced in future designs 
by adding weld material to both the inside and outside surfaces of the container wall.  
Figure 20 shows the module container after installation in the ventilation hood.   

Thermal Insulation 

The POCD8-R1 Test Article incorporated a thermal insulation package, installed 
between the inner walls of the rectangular container and the outer boundary of the cell 
stack liner. The insulation package was split into two regions: a high purity, in contact 
with the fuel inlet at the top and a low purity region around the stack and below the fuel 
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barrier in the stagnant area surrounding the air inlet and exhaust outlet, shown 
schematically in Figure 21. 

 

Figure 20 – POCD8R1 Module Container in the Ventilation Hood 

 

Figure 21 – Peripheral Insulation System 
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Specifically, the insulation package utilized a combination of 1) ceramic blankets, 2) bulk 
fibers as loose fill, and 3) special cast components (Bottom Exhaust Manifold, laminated 
boards, etc.). In addition, Nickel foils were placed at four elevations between blanket 
layers to create a high impedance path to fuel bypass and to limit free convection within 
the porous insulation. Finally, the whole insulation package rested on floor grating and 
screens to prevent direct contact with the wet container floor and prevent insulation 
damage from condensation. 

Originally, the plan was to fill the container lower cavity, below the fuel barrier, with bulk 
fibers and to tamp down uniformly the loose fill to a nominal density of 8 pounds per 
cubic foot (pcf). However, once the stack was lowered in place, it become apparent that 
access for tamping was problematic from the top platform. Also, there was a risk of 
creating the conditions for excessive airborne fiber contamination as a result of tamping. 
Therefore it was decided to use only pre-cut blankets with the exception of a small 
volume above the air inlet which was filled with bulk fibers. The lower cavity was first 
insulated with one vertical layer of blankets installed against the container wall and then 
with a stack of horizontal blankets to restrict the flow of hot gas through gaps and 
minimize heat loss. 

The first component to be installed after the stack was lowered in place within the 
container was the bottom exhaust manifold, Figure 22. This was a Foamfrax HD cast 
insulation material, approximately 30 pcf dry density, which fit between the stack and the 
exhaust outlet, Figure 23. A thermocouple was installed inside the transition channel to 
measure exhaust temperature. On the opposite side, the air inlet manifold shown in 
Figure 24, was covered with a metallic canopy and then the whole volume was filled with 
blankets up to the air inlet flange elevation. The remaining volume was then filled with 
bulk fibers. 

After the fuel barrier was installed, work continued with installation of a multilayer 
assembly of fibrous ceramic blankets, 8 pcf density, cut oversized to account for fiber 
shrinkage in proximity of the hot face and to compensate  for natural settlement. The 
thickness of each Durablanket-S layer is approximately 50 mm (~2 inches) and each 
layer extends over the two opposite sides of the previous layer. This staggered pattern 
arrangement, as shown in Figure 25 at mid elevation, allows effective overlapping of 
multiple layers preventing interstitial cracks between layers which may lead to radiation 
heat losses through the peripheral insulation package. 

Particular care was taken to ensure that the blanket layers were installed snug against 
the stack liner pleats. Additional pieces of blanket material were installed in close 
proximity of the liner were the blanket edge was cut to clear the pleats. 

After installation of the top Nickel foil and instrumentation wiring, shown in Figure 26, 
multiple layers of Saffil HD high purity alumina blankets were installed, Figure 27.. The 
uppermost layer in contact with the container cover lid was a layer of compliant Saffil LD 
mat. 
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Figure 22 - Exhaust Manifold on Bottom of Container 

 

 

 

Figure 23 - Exhaust Manifold and Outlet Insulation Packing 
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Figure 24 -  Air inlet Manifold (as viewed through the container hatch) 

 

 

Figure 25 – Peripheral Insulation Blankets at Mid-elevation (fuel inlet side) 
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Figure 26 – Top of Low Purity Insulation and Nickel Foil Barrier 

 

 

Figure 27 –High Purity Insulation Top Layers 

 



 

 31

The POCD8R1 Stack Test operated for approximately 400 hours during which time the 
container external walls were monitored to gather data to validate the analysis data.  
Thermocouples on the external container wall and surveys with infrared pyrometers 
indicated that the wall temperatures were lower than expected.  Upon disassembly the 
insulation and container had considerable condensation, but no gaps were apparent in 
the insulation.  Corrosion of the container wall was minimal.  Fuel bypass through the 
insulation was slightly higher than expected. 

TASK 7.1.6 – SPENT FUEL RECIRCULATOR 

The existing design of the spent fuel recirculator was determined to be satisfactory and 
thus no design work was required.  

TASK 7.1.7 - EXTERNAL RECIRCULATION LOOP 

The purpose of this task was to design and procure the POCD8R! external recirculation 
loop piping, insulation, and instrumentation. 

The design of the External Recirculation Loop was successfully executed.  Individual 
components were fabricated and/or procured and tested.  The recirculation loop and 
instrumentation were installed, insulated, and leak checked prior to the start of the 
POCD8R1 stack test. 

Figure 28 shows the ejector/prereformer assembly, on a temporary stand, prior to 
installation.  Fuel heater no. 1 and the connecting pipe spool on the actual loop support 
stand are shown in Figure 29 just prior to installation.  A typical weld joint, in this case 
between fuel heater no. 2 and the container inlet feed-through, is shown in Figure 30.   

The recirculation loop piping was insulated with five layers of 2.5 cm (one inch) thick 
Durablanket S.  Figure 31 shows the recirculation loop piping insulation in progress.  The 
finished piping was then wrapped in an alumina jacket, Figure 32. 

The circulator, fuel heaters, and prereformer performed as expected during startup, 
operation, and shutdown.  The individual components, and where possible the loop 
piping, were leak checked on a regular basis with no leaks detected throughput the 
period of operation. 

Following shutdown of the stack test,  after approximately 400 hours of operation, the  
ejector/prereformer assembly, fuel heater no. 2, and the recirculation inlet and outlet 
feed-throughs were removed and inspected.  All were determined to be in good 
condition, Figures 33 through 36, respectively. 
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Figure 28 – Ejector/Prereformer Assembly 
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Figure 29 – Heater No. 1 and Recirculation Loop Pipe Spool 

 

 

Figure 30 – Weld Joint between Fuel Heater 2 and Container Inlet Feed-through
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Figure 31 – Recirculation Loop Piping Insulation in Progress 

 

Figure 32 – Finished Recirculation Loop Pipe between Circulator                          
and Fuel Heater No. 1 
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Figure 33 – Fuel Heater No. 2 and Container Inlet Feed-through with Insulation 
Removed (post-test) 

 

Figure 34 – Bottom of Fuel Heater No. 2 (post-test) 
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Figure 35 – Feed-through Bellows (post-test) 

 

 

Figure 36 – Prereformer Outlet Bellows (post-test) 
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TASK 7.1.8 - TOOLING & FIXTURES 

The purpose of this task was to design, fabricate, and qualify tooling, fixtures, jigs, etc. 
that were needed to assemble and/or install the POCD8R1 test article. 

The POCD8R1 stack test article consisted of 48 Delta8 cells, arrayed into six bundles 
(stacks), each containing eight cells.  Individual bundles were configured into an 
integrated bundle assembly (IBA).  Each of the six IBAs was comprised of the eight cell 
stack, recuperator, air delivery and distribution components, exhaust components, and 
air feed tubes.  Three IBAs were then assembled in to a bundle row.  Thus the stack test 
article contained two bundle rows with three IBAs per row. 

The tooling required to assemble the IBA was redesigned to optimize the assembly 
process and address issues identified during the assembly of the first generation Delta8 
stack test article (POCD8R0).  Utilizing lessons learned from the POCD8R0 stack test 
article assembly and installation, new and improved tooling was successfully 
redesigned, built, and tested. 

The IIBA tooling fixture allowed horizontal assembly of the IBA, as shown in Figure 37. 

After assembly in the horizontal position, the fixture allowed vertical rotation for 
transportation to the next stage of assembly.  Figures 38 shows the IBA being lifted into 
vertical position. 

Bundle rows (consisting of three IBAs and associated components) were assembled in 
the row assembly tooling fixture, Figure 39.  This fixture facilitated the assembly of an 
entire bundle. The fixture provided alignment and support of each IBA, permitted access 
for welding, inspection, and assembly of IBA instrumentation.  The row assembly fixture 
was designed so that it could also to lift the entire row and transport and install it into the 
stack assembly station in preparation for the stack assembly.  (Figure 40).  The stack 
assembly station, Figure 41, was designed and assembled to support the two bundle 
rows during assembly of the remaining stack components.   

A major effort was placed on the design, construction, and qualification of the Stack 
Lifting Fixture, considered to be the most critical tooling/assembly.  This apparatus was 
designed to lift, transport, and position the assembled stack test article inside the 
container.  Qualification included load proof testing prior to the actual lifting of the 
POCD8R1 stack test article and positioning it inside the container to ensure the fixture 
was functional, safe, and compliant with applicable standards 

The design basis of the Stack Lifting Fixture design was a combination of two Row 
Lifters joined together to form the lifting structure for the POCD8R1 stack test article.  
The combined load of stack and lifting fixture was lifted using a commercial 3-ton (2722 
kg) Strongbac® beam. 
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Figure 37 – IBA Assembly Fixture 

 

 

 

Figure 38 – IBA Assembly Fixture (vertical) 
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Figure 39 –Bundle Row Assembly Fixture (left, two IBAs; right, three IBAs)  

 

 

Figure 40 – Bundle Row Lift 
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Figure 41 – Stack Assembly Station 
 
Four vertical channels were connected on the bottom to the row strongbacks, and at the 
top to a hanger assembly to form a rigid frame, shown schematically in Figure 42. The 
hanger assembly was made of three plates, spaced apart by two solid blocks, the whole 
assembly connected with four high strength bolts loaded in double shear. 

All of the Stack Lifter critical components proved to have stresses that were below the 
allowable design loads. 

The overall structure was designed to lift a completely assembled stack test article 
comprising two rows of three bundles each, weighing approximately 2700 lb (rated load).  
Including the Stack Lifting fixture which weighs approximately 730 lb; thus the total 
capacity of the lifting rig was 3,430 lb (1556 kg). 

In compliance with OSHA 1926.251(a)(4) and ASME B30.20 standard requirements, the 
Stack Lifter was tested using a proof load that was 125% of the rated load capacity. 

The Stack Lifter proof test was conducted by loading the fixture, with a 3,379 lb (1533 
kg) dead weight.  The dead weights were uniformly distributed as follows: 

Two base I-beams, 80 lb each, tot. 160 lb (73 kg) 

Three plates (30”x60”x1” thk), each 520 lb, tot. 1560 lb (707 kg) 

Twentyone plates, each 79 lb, tot. 1659 lb (753 kg) for a total of 3,379 lb (1533 kg), 
equivalent to 125% of the R1 stack rated load. 
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The total combined weight of the Strongbac beam (180 lb) and Stack Lifter (731 lb) was 
911 lb (413 kg).  The estimated reading on the scale was therefore 4290 lb.  The actual 
reading on the scale was 4290 lb (1946 kg). The lifting fixture was hoisted as high as the 
hook capacity allowed and the total clearance from ground was measured, Figure 43.  
The recorded height was 137” (11ft-5in) (3.48 m), which provided sufficient clearance 
between the bottom of the fixture and the container top edge at 133.5” (3.39 m). 

At the completion of the test, a visual inspection of all fixture welds and structural 
members was conducted.  No deformation, cracks, or other defects were found. 

The fully assembled stack test article was subsequently lifted from the Stack Assembly 
Station and was positioned smoothly inside the container.  The total weight reading on 
the scale, including Strongbac beam, Stack Lifting Fixture was 3020 lb (1370 kg).  By 
subtracting the combined weight of Strongbac beam and Stack Lifting Fixture (911 lb), it 
was calculated that the as-built stack weight was 2109 lb (957 kg). 

The POCD8R1 stack test article was successfully assembled, transported, and 
positioned inside the module container, as shown in Figures 44 and 45, within schedule 
and budget. 

 

Figure 42 – R1 Stack Lifter Assembly with Detail of Structural Hanger 
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Figure 43 – Stack Lifting Fixture - Proof Load Test 

 

 

Figure 44 – Stack Test Article Being Installed into Container 



 

 43

  

Figure 45 –Stack Test Article and Lifter Positioned Inside the Container 

TASK 7.2 – POCD8R1 MODULE ASSEMBLY 

The design of the POCD8R1 fuel cell module was the scope of companion program DE-
FC26-05NT42613.  A description of the module is included herein as background for the 
module assembly procedure.  

The POCD8R1 stack test article contained 48 scandia-stabilized Delta8 cells with an 
active length of 100 cm, arranged in an array of six bundles, with each bundle containing 
eight cells.  The design of the test article was intended to be a scaled version of the 
conceptual advanced module design, with the advanced module being one of the final 
deliveries in the SECA program.  The stack test article featured numerous components 
and subassemblies identical to those intended for use in the advanced module.  Design 
innovations and cost reduction features relative to the previous stack design (POCD8R0) 
were incorporated herein and their performance to be validated.  Among the cost 
reduction features was the use of cast ceramic parts to replace machined ceramic 
boards and metallic parts.  Significant key design feature included the installation of the 
cells with the open end down and the elimination of in-stack reformer boards.. 

A key design element was the modular subassembly element, the integrated bundle 
assembly (IBA).  The IBA contained a number of net-shape, high purity alumina castings 
and an eight-cell Delta8 bundle.  In addition to the eight cells, the IBA contained an 
integral cast ceramic recuperator, an air box with air feed tubes, a ceramic exhaust/base 
casting, a ceramic seal casting, and a closed-end casting.    The fuel-to-air seal was 
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accomplished using custom machined alumina boards held in the seal casting.  The IBA 
is shown schematically in Figure 46. 

A carbon steel container housed the six IBAs.  The IBAs are arranged in two rows of 
three bundles each.  Electric guard heaters were located around the periphery of the 
cells to facilitate heatup and to reduce lateral thermal temperature gradients on the cells.  
The stack was surrounded by a nickel metal liner to prevent fuel bypass. 

. 

 

 

Figure 46 - Integral Bundle Assembly (IBA) 

 

The stack was thermally insulated by a low purity ceramic blanket insulation (peripheral 
insulation) located outside of the stack liner.  An exploded view of the stack is shown 
schematically in Figure 47.  A fuel barrier, located at the elevation of the open end seal, 
was intended to limit fuel bypass through the peripheral insulation.  The module, in turn, 
was enclosed in a carbon steel outer container, Figure 48 
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Figure 47 – Exploded Stack Assembly 

 

 

Figure 48 – Module Component Layout 
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Task 7.2.1 – Fabricate and Assemble Tooling & Fixtures 

The objective of this task was to design, fabricate, assemble, and qualify specialized 
tooling, jigs, fixtures, etc. that were necessary to assemble the module.  The effort under 
this task was synergistic with that of Task 7.1.8; thus, please refer to Section 7.1.8 for a 
detailed discussion of the work completed under this task. 

TASK 7.2.2 – CELL AND BUNDLE MANUFACTURING 

The objective of this task was to manufacture the Delta8 cells and bundles for use in the 
POCD8R1 stack test.  The test article contained 48 scandia-stabilized zirconia Delta8 
cells with an active length of 100 cm.  The Delta8 cell geometry and materials are shown 
in Figure 49 and Table 1, respectively. 

 

Figure 49 – Delta8 Cell Geometry 

 

Delta8 Cell Materials 

Component Material 

Cathode (Air Electrode) Doped lanthanum manganite 

Cathode – Electrolyte Interlayer 50% cathode + 50% electrolyte 

Electrolyte Scandia stabilized zirconium oxide 

Interconnection Doped lanthanum chromite 

Anode (Fuel Electrode) Nickel – zirconium oxide cermet 

Plating Nickel 

 

Table 1 – Delta8 Cell Materials 

All cells were manufactured utilizing the most advanced manufacturing processing and 
materials at that point in time.  During production of these cells and bundles, data was 
generated and analyzed to better understand and optimize each process step.  In 

Plating 
Electrolyte Interconnection

Cathode (Air electrode) Cathode – Electrolyte Interlayer Anode (Fuel electrode) 
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addition, testing was conducted to improve yield.  As yield issues occurred, analyses of 
potential causes were performed and, where appropriate, process improvements 
implemented.  Cell production occurred in three manufacturing campaigns, with the goal 
being to improve yield with each subsequent campaign utilizing lessons learned from the 
previous campaign.  Overall, cell manufacturing yield improved by more than 80% in the 
third campaign compared to the first campaign. 

All cells and bundles for the POCD8R1 stack test were successfully manufactured and 
assembled.  A single Delta8 cell is shown in Figures 50 and 51 and an eight-cell bundle 
in Figure 52. 

 

Figure 50 – Photograph of Delta8 Cell (open end) 

 

 

Figure 51 – Photograph of Delta8 Cell (open end at left) 
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Figure 52 – Photograph of Eight-cell Bundle 

 

TASK 7.2.3 - DEVELOPMENT MODULE ASSEMBLY DRAWINGS 

This task supported the preparation of the documentation to fabricate and assemble the 
stack and module components supporting the activities discussed in Task 7.2.4. 

Drawings and procedures were generated to determine the sequence of assembly, to 
identify tooling needs during assembly, and for verification of component design and fit-
up.  Several higher level assembly drawings were created to support the activities 
described in the module assembly task.  Drawings were released as needed to support 
the stack and module assembly.  The documentation was subsequently revised to reflect 
as-built information and design improvements that were made during the assembly. 

TASK 7.2.4 - MODULE ASSEMBLY 

The objective of this task was to assemble the module and prepare it for integration with 
the balance-of-plant.  The integration of the module with the balance-of-plant and 
installation of the fully integrated (module and BOP) test article into the test facility were 
the scope of companion program FC26-05NT42613. 

Fabrication of the modular subassembly, the IBA, was initiated upon the availability of 
the first (of six) completed bundle.  Due to manufacturing tolerances of the cells and 
bundles, the open end of each bundle was mapped to insure proper interfacing with the 
open end seal.  The mapped data was processed and used to machine the open end 
seal.  After the open end seal was machined, the fit-up of the seal with the bundle was 
verified.  At this point in the assembly process proceeds with the placement of the open 
end/casting subassembly and closed end seal casting assembly onto the respective 
ends of the bundle.  Figure 53 shows the open-end of the IBA. 
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Each of the six IBAs contained an eight cell bundle, an integral cast ceramic recuperator, 
an air box with air feed tubes, a ceramic exhaust/base casting, a ceramic seal casting, 
and a closed-end casting.  The fuel-to-air seal was accomplished using custom 
machined alumina boards held in the seal casting.  The IBA was shown previously in 
Figure 46.   

 
 

 
Figure 53 – Bundle Assembly Showing Open-end Seal, Casting and 

Instrumentation 
 
The IBAs  were assembled in the horizontal position, rotated to vertical, transported, and 
placed in to the bundle row assembly fixture (see Figures 37 through 39).  A bundle row 
consisted of three IBAs, a common row base weldment, air inlet manifold, and one bus 
bar.  The module thus contained two bundle rows of three IBAs per row. 

The bundle row assembly fixture provided alignment and support of each IBA, permitted 
access for welding and inspection of the bundle-to-bundle electrical connectors, welding 
the bus bar to the bundle, and assembly of the IBA instrumentation.  As discussed 
earlier in this report (Task 7.1.8), the bundle row assembly fixture was also used to lift 
the entire bundle row in to the stack assembly station 

Each bundle row was then lifted and placed onto the stack tray which is positioned on 
the floor within the stack assembly station, Figure 54.  The stack assembly station 
(shown previously in Figure 41), an open frame structure, was designed to temporarily 
support the two bundle rows during assembly of the remaining stack components.   

Module assembly then continued with the installation of the SRZs, recirculation castings, 
and liner seal castings.  Here, also, the power leads were welded to the bus bars and 
the row-to-row connections were welded to the complete the circuit.  The dielectric 
board/instrumentation subassembly was completed and installed in to the stack.  All of 
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the instrumentation along the outside surfaces of the boards, shown in Figure 55, was 
cemented into place within machined slots. 

 

Figure 54 - Placement of Bundle Rows onto the Stack Tray 

 

Figure 55 – Stack Assembly: Dielectric Boards, SRZs, and Recirculation Castings 

The guard heaters subassemblies were completed and installed adjacent to the 
dielectric boards.  The recirculation collection box was installed at the end of the stack 
and banded for support, Figure 56.   
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Figure 56 – Stack Assembly:  Recirculation Collection Box 

The stack liner was installed around the stack and welded into place, Figure 57. 

                         

Figure 57 – Stack LIner 

The outer container (Figure 58) was leak tested and prepared to accept the stack test 
article. 
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Figure 58 – Outer Container 

The stack lifting fixture (Figures 43 and 44) was used to place the stack test article into 
the container.  After the stack was placed into the outer container (see Figure 59), 
module assembly continued with installation of the water barrier, process air piping, 
lower insulation, lateral shipping restraints, and fuel barrier around the stack.  Upper 
insulation was then installed above the fuel barrier followed by installation of the 
recirculation feed-throughs  Installation of the upper insulation continued above the feed-
throughs,.  The upper module is shown in Figure 60. 

 

Figure 59 - Stack Inside Container 
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Figure 60 - Upper Module 

The stack instrumentation (Figure 61) was routed from the stack to the container wall 
(Figure 62).  Each instrumentation lead was fastened to a screen, to anchor the 
connection in a cold region (Figure 63). 

 

Figure 61 – Stack Instrumentation 



 

 54

 

Figure 62 – Instrumentation from Stack to Container Wall 

The upper insulation plug that resides above the stack was then assembled and installed 
into the container (Figure 64).  The plate supporting the insulation rested on brackets 
that attach to the container wall.  A blanket of insulation was placed in the area from the 
upper insulation plug to the container wall, as shown in Figure 65.  The blanket was 
layered up to the elevation of the upper insulation plug support plate, Figure 66. 

The container lid was then lowered down and set in place on top of the mounting 
brackets, as shown in Figure 67.  Once the lid was in place, it was clamped to the 
container in preparation for welding.  Using studs that were part of the upper insulation 
support plate, the plug was then drawn up to insure the upper insulation support plate 
was in contact with the container lid.  The lid was then welded to the outer container. 

 

Figure 63 – Container Wall Instrumentation Anchoring 
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Figure 64 – Upper Insulation Plug 

 

 

Figure 65 – Blanket Insulation around Plug 
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Figure 66 – Upper Insulation  

 

Figure 67 – Outer Container Lid 

 

The power lead bellows flange, Figure 68, was seal welded to the container lid.  
Assembly continued outside of the container with the power lead assembly and cables 
as shown in Figure 69. 
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Figure 68 – Power Lead Assembly 

 

 

Figure 69 – Power Lead Cables 

The next items to be assembled were the ejector and upper fuel heater, Figure 70.  
These components were lowered into place and supported from framework bolted onto 
the container.  The circulator was then placed under the ejector and bolted to the floor.  
The lower heater was then installed and all pipe flanges were clamped in preparation for 
welding.  
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Figure 70 – Ejector, Prereformer, Circulator 

The recirculation feed-throughs were welded to the container then the heater and ejector 
were welded to their respective feed-throughs (Figure 69).  The external piping, upper 
and lower fuel heaters, and the ejector were all insulated.  The piping and insulation was 
then wrapped with metal cladding to help protect it from damage (Figures 72 through 74, 
respectively). 

 

Figure 71 – Recirculation Feed-through (ejector side) 
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Figure 72 – External Loop Piping Insulation 

 

Figure 73 – Insulated Lower Fuel Heater 

 

Figure 74 – External Loop with Metal Cladding 
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Figure 75 shows the completely assembled stack test article installed with in the test 
facility. 

 

 

Figure 75 – POCD8R1 Stack Test Article Installed in the Test Facility 

 
A discussion on the startup, operation, and post-test analysis of the POCD8R1 stack test 
can be found in the final report for companion program DE-FC26-05NT42613. 




