

~~UNCLASSIFIED~~ THIS DOCUMENT CONSISTS OF 5 PAGES
THIS IS COPY 12 OF 12A

~~SECRET~~

DATE 6/16/48 INITIALS R.G.S.

MIM-119

MIM-MH-48-65-0017

Contract Number AT-33-1-GEN-53

MONSANTO CHEMICAL COMPANY - UNIT III

DAYTON, OHIO

RECEIVED
OCT 11 1995

OSTI

UNCLASSIFIED

SPECIAL REREVIEW
FINAL DETERMINATION

M. M. Haring
Laboratory Director

Classification:

Unclassified

Category:

Signature: P. B. Dowd

Date: 3/17/80

Classification changed to
authority of P. B. Dowd by
by Matthew M. Haring 6/18/70
Received by C.W. Huntington 2/14/90
3/21/79

ELECTRODEPOSITION RESEARCH PROGRESS REPORT

THIS DOCUMENT CONTAINS RESTRICTED DATA WITHIN THE MEANING
OF THE ATOMIC ENERGY ACT OF 1946 AND/OR INFORMATION AFFECT-
ING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE
MEANING OF THE ESPIONAGE ACT 50 U.S.C. 31 AND 32, AS AMENDED.
ITS TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY
MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED AND MAY
RESULT IN SEVERE CRIMINAL PENALTY.

Date: May 1-31, 1948

Prepared by: Edward Orban

Distributed: JUN 18 1948

MASTER

-1- UNCLASSIFIED

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

~~SECRET~~

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

~~SECRET~~

UNCLASSIFIED

MIM-119

DISTRIBUTION

1. - Unit III
2. - Unit IV
3. - Site Y
4. - Site Y
5. - Area Manager
6. - Area Manager
7. - Area Manager
8. - Author
9. - Central Files
10. - Central Files
11. - Central Files
12. - Central Files

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

UNCLASSIFIED

~~SECRET~~

~~SECRET~~ UNCLASSIFIED

MLM-119

~~SECRET~~

ELECTRODEPOSITION RESEARCH GROUP

W. Abel, R. Bell, G. Neibel, E. Orban, and W. Raiff

ABSTRACT

Plating of Postum from Hydrofluoric Acid Solutions

Solution Conversion

A cold run was made on the conversion of production nitric acid solutions to hydrofluoric acid solutions. It was found that, although not all the bismuth was removed in the hydrofluoric acid plating solution, there was a tenfold improvement over the amount in the production solution.

Miscellaneous

Hydrogen and calomel half cells have been constructed and are being checked against each other to determine whether the calomel half cells are at the correct potential and whether they check each other.

DETAILED REPORT

I. Plating of Postum from Hydrofluoric Acid Solutions

A. Plate Quality

1. Neutron Emission

The inoperative neutron counter has been repaired. The study of the change of neutron emission with time, which was halted by the breakdown, will be started over.

2. Adherence of Plate

This work has been temporarily interrupted for work of greater urgency.

3. Photographic Examination of Foils

No foils of interest for this work have been produced during this period.

~~SECRET~~ UNCLASSIFIED

~~SECRET~~

~~SECRET~~UNCLASSIFIED
MM-149

B. Solution Conversion

1. Conversion of Production Solutions to Bismuth-free Postum Solutions of Hydrofluoric Acid - (One Person)

In an effort to determine the efficiency of separation of bismuth from postum in production solutions a cold run using a solution containing only bismuth was made. The following steps were used:

- a. One hundred ml. of bismuth solution containing 0.1016 gm. bismuth ion per 100 ml. was precipitated using excess saturated sodium carbonate solution.
- b. The solution was filtered and washed twice (using a "Teflon" filter stick), collecting all rinse waters and original filtrate.
- c. Ten ml. of 10 N hydrofluoric acid solution at 60°C. was added, and the solution and precipitate were stirred under heating for forty-five minutes.
- d. After the solution cooled, it was filtered again through the "Teflon" filter stick, and washed. The filtrate and wash waters were collected as before. (Designated as Filtrate #2).
- e. The remaining precipitate was dissolved in concentrated nitric acid, and the resulting solution was diluted to 2 N nitric acid. (Designated as Precipitate Solution).

The three solutions were analyzed quantitatively in the following manner: They were evaporated to dryness in a weighed platinum dish. The residue was digested in 27 N hydrofluoric acid, then filtered and washed. The residue was evaporated to dryness and weighed. The results are tabulated in Table I.

Table I
ANALYSIS OF BISMUTH SOLUTIONS

<u>Solution</u>	<u>Gm. of Bismuth</u>
Filtrate #1	0.0172
Filtrate #2	0.0102
Precipitate Solution	0.0610
Unaccounted for	0.0122

UNCLASSIFIED
~~SECRET~~

SECRET

UNCLASSIFIED

MM-119

The bismuth unaccounted for was probably lost during the analysis when the residues were washed with concentrated hydrofluoric acid and filtered. The amount lost was due to a small quantity of suspended material passing through the "Teflon" filter stick, and to a small amount of bismuth trifluoride being dissolved in the hydrofluoric acid.

The most desirable results would have been for all the bismuth to be in the first filtrate and the precipitate solution. The fact that some remained in the second filtrate indicated again that the "Teflon" filter may be too porous and that a small amount was dissolving in the hydrofluoric acid. Notwithstanding, this method shows at least a tenfold improvement in the amount of bismuth present in the plating solution; and with this improvement goes the reduced chance of plating out bismuth in the final plating run.

FUTURE PLANS

Several cold runs will be made to refine the technique; then a "hot" run will be tried.

III. Plating of Postum from Nitric Acid and other Media

FUTURE PLANS.

The problem has been assigned, and work on plating of postum on copper out of nitric acid will be started very shortly.

III. The Solubility of Postum in Various Media

This work was temporarily halted, but it is hoped that in the near future there will be some progress to report.

IV. Miscellaneous - (Two Persons)

A good deal of time has been spent in cleaning up hoods, constructing and altering equipment.

Twelve new calomel electrodes were made, and several hydrogen electrodes were constructed. It is planned to check each calomel electrode to the standard hydrogen electrode. In this way we can be positive that we are operating at the correct potentials. The equipment has been set up and details of the measurements will be reported next time.

EO/Rec

THIS DOCUMENT CONTAINS RESTRICTED DATA WITHIN THE MEANING
OF THE ATOMIC ENERGY ACT OF 1946 AND/OR INFORMATION HELD
BY THE MILITARY DEPARTMENT OF THE UNITED STATES WITHIN THE
MEANING OF THE ESPIONAGE ACT (50 U.S.C. SECTION 7701) AS AMENDED.
TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY
MANNER IS PROHIBITED AND IS UNLAWFUL. VIOLATORS ARE SUBJECT TO
SEVERE CRIMINAL PENALTY.

UNCLASSIFIED

~~SECRET~~