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Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak

compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257

(2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys.

Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al.,
Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high

spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the

emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which

can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure

when measured within a restricted spectral range matched to the temperature range anticipated for

the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred

from the measured free-free emissivity profile. The pressure and temperature dependences of the

x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray

emission as a constant power of the total neutron yield for implosions of targets of similar design

over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion

simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys.

Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495

(1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the

level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into

the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907667]

I. INTRODUCTION

Measurements of continuum x-ray emission from the

central hot spots of inertial confinement fusion (ICF)1 implo-

sions at stagnation can be directly related to hot-spot condi-

tions using the relatively simple dependence of continuum

spectral emission rates on temperature and density or pres-

sure. Since thermonuclear ignition and high energy gain are

the goals of ICF,2,3 one would naturally look to neutron yield

as the primary measure of implosion performance. The

benchmarks of progress toward ignition, or toward implosion

performance that scales to ignition with higher drive energy,4

however, are specified in terms of core conditions at peak

compression.5 Short of ignition, neutron yield, and x-ray

emission measurements can be used in similar ways to infer

hot-spot conditions.6 The current strategy is to achieve high-

temperature central hot spots within fuel shells compressed

at low entropy to high areal densities. A key measure of

near-ignition performance in ICF, through the Lawson

criterion,7 is the hot-spot pressure.8 Consequently, a direct

relationship between the hot-spot pressure and the measured

hot-spot x-ray continuum emissivity, based as little as possi-

ble on prior assumptions about hot-spot temperature profiles,

normalization to simulations, etc., would be very important.

At a sufficiently high spectral energy, typically

h� > 3 keV for cryogenic implosions on the 60-beam

OMEGA laser system,9 the imploded cores are optically thin

and the x-ray measurements are a direct measure of the emis-

sivity, free of absorption and other transport effects. With

instrument spectral responses narrowed to energies matched

to the anticipated temperature of the hot spot, as will be

described at the end of Sec. II, the free-free (FF) emissivity10

of hot-spot hydrogen scales as the square of the hot-spot

pressure and is nearly independent of the temperature. The

simple pressure dependence of the emissivity, the isobaric

state of the hot spot at stagnation,11,12 and the known temper-

ature–density scaling of the neutron-production rate explain

a simple scaling behavior of the x-ray yield as a constant

power of the neutron yield over a factor-of-10 range in neu-

tron yield in an ensemble of similar targets imploded with a

variety of laser pulses over a broad range of shell isentropes.

This is a quantitative prediction based on our understanding

of isobaric hot spots that has been confirmed with measured

x-ray and neutron yields. In an unstable implosion, a trace

amount of shell material (above �10-ng CH) mixed into the

hot spot (�2.1 lg) can increase the x-ray emission measur-

ably because of the relatively high emissivity per atom of

carbon without significantly altering the deuterium and
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tritium (DT) concentrations that, along with the hot-spot

temperature, determine the neutron yield.

Using the x-ray yield expected from the neutron-yield

scaling as a point of reference, the excess x-ray emission and

the known FF and free-bound (FB) emissivity10 of carbon

provide a measure of this “fuel–shell” mix mass. This mix-

mass estimate is similar in some respects to recent measure-

ments of mix mass in National Ignition Facility (NIF)13

implosions based on the ratio of the x-ray and neutron

yields.14 Earlier measurements15 of mix mass in NIF implo-

sions were based on the K-shell line emission of M-shell

ionization species of higher-Z shell dopants.16 Dopant line

emission indicates mix originating from the doped shell

layers only, while carbon continuum emission indicates

fuel–shell mix originating from anywhere in the capsule

shell.

The pressure profile within an imploded core at the

time of peak emission can be obtained from the emissivity

profile of the object, and the emissivity profile can be

obtained from its projection recorded on an image plane by

an imaging device. The fundamental quantity of radiation is

the specific intensity Ið~x; X̂; �Þ; which is the amount of radi-

ation energy per unit time arriving at a position ~x in space,

per unit area within an infinitesimal area element at this

point, oriented normal to the propagation direction given by

the unit normal vector X̂; per unit spectral range within an

infinitesimal interval of frequency, centered at the fre-

quency �, and traveling within an infinitesimal cone of solid

angle, per steradian, centered on the direction X̂: We will

write it as I� for short. The time-independent equation of

transfer governing the change dI� in the specific intensity of

radiation propagating an infinitesimal distance ds along the

direction X̂ is

dI�
ds
¼ e�

4p
� j�I�; (1)

where the interaction of radiation and matter with each other

is described entirely in terms of the plasma emissivity e� and

the opacity j� of the matter.17 The emissivity specifies the

energy per unit time that is emitted per unit volume isotropi-

cally into all directions, within an infinitesimal interval of

frequency centered at the frequency �. The opacity is the

fraction of the specific intensity absorbed per unit distance of

propagation. We assume that all radiation of interest propa-

gates at the speed of light c without refraction or dispersion

and that any photon scattering involving a change of fre-

quency or direction is accounted for effectively by a combi-

nation of absorption and emission included in e� together

with j�.
In the optically thin limit, there is only emission and no

attenuation, and the solution to the equation of transfer is the

path integral

I� ~xð Þ ¼
ð~x
�1

e� ~rð Þ
4p

d~s: (2)

The integration variable~s is a point along a straight-line pho-

ton path arriving at a point~x on the image plane, and~r is the

position of that point on the path relative to an arbitrary fixed

point of reference within the emitting object. The integration

path is a straight line arriving at the observer position from

arbitrarily far away, indicated symbolically as “�1,” but

only points along the path within the emission source con-

tribute to the integral. The imaging device selects from the

set of all paths X̂ ending at any one~x so that the image repre-

sents a useful projection of the emissivity profile. For the

purposes of this discussion, we assume that the imaging

device records an orthographic projection of the source, such

that the direction X̂ of all paths is the same. In spherical

geometry, Eq. (2) gives the specific intensity as an Abel

transform18 of the emissivity profile. For example, a spheri-

cally symmetric emissivity distribution e�(r) produces the

specific intensity

I� xð Þ ¼ 1

2p

ð1
x

e� rð Þrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p dr; (3)

and the emissivity distribution can be recovered from the

inverse Abel transform of the imaged intensity,

e� rð Þ ¼ �4

ð1
r

dI� xð Þ
dx

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p : (4)

The point x¼ 0 on the image plane is the projection of the

center of the radial emissivity distribution at r¼ 0, and we

assume that all geometrical and optical effects of an actual

camera, such as magnification, etc., have already been taken

into account.

If the emissivity is a known function of pressure alone,

the radial pressure profile of a spherical hot spot can be

inferred from the emissivity profile extracted from the

imaged intensity using Eq. (4). If, in addition, the hot spot is

isobaric, the pressure is constant throughout the hot spot out

to its outer radius R and the emissivity will be constant

within this radius; we find using Eq. (4) that the intensity

profile of its image is elliptical

I� xð Þ ¼ e� 0ð Þ
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2
p

: (5)

The integral of the specific intensity given by Eq. (2) over

the image plane gives the total emitted power per unit solid

angle at the image planeð
I� ~xð Þd2~x ¼

ð ð1
�1

e� ~rð Þ
4p

d~sd2~x ¼ 1

4p

ð
e� ~rð Þd3~r: (6)

Assuming the hot spot radiates isotropically, the total spec-

tral power P� is obtained by applying a factor of 4p. In the

case of the flat emissivity profile of an isobaric core, this

gives

P� ¼
4p
3

R3e� 0ð Þ: (7)

The isobaric sphere, then, possesses a remarkable simplicity:

All quantities pertaining to emission can be described in

terms of a single radius and a single emissivity that depends

on one parameter—the pressure. In Secs. II–V, departures of
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the emissivity from pure pressure dependence, hot spots that

are not strictly isobaric, “fuel–shell mix,” and other compli-

cations will be considered.

II. PRESSURE DEPENDENCE OF X-RAY EMISSION
FROM ISOBARIC HOT SPOTS

The emissivity of an imploded hydrogen hot spot of a

cryogenic implosion is almost entirely the result of FF emis-

sion from hydrogen. The expression for the FF emissivity of

a hot plasma of fully stripped ions at photon frequency �,

temperature T, electron and ion densities ne and ni, respec-

tively, and average nuclear charge squared hZ2i is

eFF
� ¼

32

3

ffiffiffi
p
3

r
a3vHa3

0hZ2ineni

vH

kT

� �1=2

gFFe�h�=kT ; (8)

where a is the fine-structure constant, affi 1/137, a0 is the

Bohr radius, and vH is the K-shell ionization energy of

hydrogen.10 The units of this expression are energy per vol-

ume, per steradian, per time, and per frequency. Throughout

this paper, T¼Te is the electron temperature. Since the hot-

spot hydrogen is almost completely ionized, hZ2i¼ 1, but the

Z dependence in Eq. (8) will be kept, anticipating the discus-

sion in Sec. V of the contamination of the hot spot by carbon

as the result of fuel–shell mix. As will be shown in Sec. V,

the FB contribution to hydrogen emissivity is negligible

under hot-spot conditions.

This emissivity is written in a form first obtained in a

semiclassical treatment by Kramers.19 The correction factor

gFF accounting for quantum-mechanical effects in FF absorp-

tion and emission and also in other absorption and emission

processes was introduced by Gaunt.20 The same Gaunt factor

applies to both emission and absorption, a result of the mi-

croscopic reversibility of these processes.21 Many versions

of the Gaunt factor have been provided over many years by

many authors who, to cite just a few, include correct

isolated-ion quantum wave functions,22 relativistic effects,23

collective effects,24 and high-density effects such as electron

degeneracy25 and strong plasma coupling.26,27 A particularly

simple and accurate Gaunt factor for hydrogen has been pro-

vided by Kulsrud28

gFF ¼
ffiffiffi
3
p

p
ln

b2 þ u
� �1=2 þ b

b2 þ u
� �1=2 � b

2
4

3
5; (9)

where u¼ h�/kT and b2 is an average energy parameter

b2 ¼ �h2k2

2mekT

� �
(10)

representing an effective average initial electron energy.

Kulsrud finds that the value b¼ 0.87 provides a good fit to

an earlier, more-accurate quantum result by Sommerfeld.28

We verify that Eq. (9) is a good approximation to the

standard results of Karzas and Latter22 (KL) in the high-

temperature limit kT � vH; which is the relevant regime for

implosion cores at peak conditions. We also verify that the

asymptotic expression

gFF �
2
ffiffiffi
3
p

p
b

u1=2
(11)

is a useful approximation to Eq. (9) at high photon energies

h� > kT. This is consistent with the sensitive range of the fil-

tered gated monochromatic x-ray imager (GMXI) camera29

(h�� 5 keV), described below, and the expected core tem-

peratures (kT� 2 keV). This is also well into the optically

thin spectral range where emission is directly related to the

hot-spot emissivity. Using Eq. (11) in Eq. (8) provides an

emissivity expression with accurate temperature and photon-

energy scaling that will be used in later discussion of the

interpretation of measured energy-integrated core emission.

Some brief textbook summaries of FF and FB emission

and absorption dismiss the Gaunt factor as a constant correc-

tion of order unity,3 which for our purposes would be a poor

approximation. Equation (11) provides a convenient simplifi-

cation and ensures correct asymptotic scaling behavior. This

asymptotic expression for the Kulsrud Gaunt factor is plotted

in Fig. 1 along with the result of the full expression, Eq. (9),

and KL values.22 The Kulsrud Gaunt factor depends only on

u¼ h�/kT, while the KL results also depend on the parameter

c2 ¼ Z2vH=kT: Here, we simply plot the KL values for

hydrogen (Z¼ 1) at the temperatures 2 keV and 6 keV to

show that the departure of the KL from the Kulsrud values is

small and that their temperature dependence at constant

u¼ h�/kT can be cautiously disregarded for the purposes of

this discussion. The plot range is extended over an order of

magnitude to show that the asymptotic behavior of the

Kulsrud expression is correct. The relevant range of h�/kT
for our chosen imaging instrument, the GMXI, with a

response function denoted here and in Fig. 1 as “B,”

FIG. 1. Plot of the Kulsrud28 approximation to the hydrogen FF Gaunt factor

versus u¼ h�/kT [solid (orange) curve] given by Eq. (9) and its asymptotic

approximation given by Eq. (11) [dashed black curve]. KL values for kT¼ 2

and 6 keV are shown for comparison by the dotted (purple) and dashed–dot-

ted (green) curves, respectively. The relevant range of u for the anticipated

core conditions and instrumentation (GMXI B) is indicated approximately

by the blue shading. The asymptotic behavior of the Kulsrud approximation

agrees with that of the KL22 values.
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indicated by the blue-shaded strip. Here, the agreement

among the four results is particularly close. The KL and

Kulsrud formulations do not consider the effects of relativis-

tic electron motion or the effects of degeneracy and strong

coupling on the energy levels of the ions and on the free-

electron energy distribution. These effects will not be signifi-

cant under hot-spot emission conditions, although the latter

two effects must be considered in the surrounding, relatively

cold compressed shell, particularly earlier in the implosion.27

Evaluating the numerical coefficient in Eq. (11) gives gH,FF

� 0.959 u�0.5, which is very close to gH,FF¼ 0.966 u�0.41, a

numerical fit to the KL hydrogen FF result near h� �
5.39 keV and h�0=kT � 2; anticipating the conditions where

Eq. (11) will be applied.

Let us specialize to fully ionized hydrogen, where

hZ2i¼ 1 and ne¼ ni. We then insert the Kulsrud Gaunt factor

given by Eq. (11) into Eq. (8) and obtain

eFF
� ¼

64

3
ffiffiffi
p
p ba3vHa3

0n2
i

vH

kT

� �1=2 kT

h�

� �1=2

e�h�=kT : (12)

Using the ideal gas equation of state P¼ (neþ ni) kT to

replace density with pressure, we obtain

eFF
� ¼

16

3
ffiffiffi
p
p ba3vHa3

0

P

kT

� �2
vH

h�

� �1=2

e�h�=kT : (13)

This ideal gas equation of state is an approximation to the

more general expression P¼ k(neTeþ niTi), recognizing that

the ion temperature Ti can exceed the electron temperature

during the convergence of shocks that forms the hot spot.

During peak compression, however, the two temperatures

equilibrate rapidly, so Ti¼ Te—a useful approximation that

has been standard in recent discussions of hot-spot dynam-

ics—can be applied here with caution. We will show that

this emissivity is almost exclusively a function of pressure

when measured with an appropriate spectral response.

Three spectral response channels of the GMXI29 x ray

camera are shown in Fig. 2. These response functions are

nearly Gaussian in shape with spectral widths of approxi-

mately Dh� � 1 keV centered at energies near h�0 � 5 keV.

The three channels, denoted A, B, and C, differ in the 1, 2,

and 3-mil thicknesses of Al in their respective filter pack-

ages. These response functions are approximated adequately

for our purposes by a Gaussian function

Fð�Þ ¼ F0e�ð���0Þ2=ðD�Þ2 (14)

with a transmission width D� centered at �0. With a response

function of the form of Eq. (14), the frequency-integrated

emissivity expression obtained using the emissivity given by

Eq. (13) is

E�0;D� ¼
16

3
ffiffiffi
p
p a3vHa3

0b
P

kT

� �2
vH

kT

� �1=2

� F0

ð1
0

kT

h�

� �1=2

e� ���0ð Þ2= D�ð Þ2 e�h�=kTd�: (15)

For the anticipated small values of the parameters D�/�0 and

hD�/kT, we use the leading-order approximation

h

kT

� �1=2 ð1
0

e� ���0ð Þ2= D�ð Þ2 e�h�=kT d�

�1=2

’
ffiffiffi
p
p D�

�0

h�0

kT

� �1=2

e�h�0=kT ; (16)

and we write

E�0;D� ¼
16

3
a3vHa3

0bF0D�
P

kT

� �2
vH

h�0

� �1=2

e�h�0=kT : (17)

Near any given temperature, the temperature dependence of

Eq. (17) can be treated as a power law y� xg fit to the actual

temperature dependence of the form

y ¼ e�1=x

xn
; (18)

where x¼ kT/h�0. The exponent g near a particular value of

x is

g ¼ x

y

dy

dx
¼ 1� nx

x
: (19)

Solving for g¼ 0 gives x¼ 1/n. The temperature dependence

of Eq. (17) is the n¼ 2 case, which gives

kT0 ¼
h�0

2
(20)

as the condition for stationary maximum integrated emissiv-

ity with respect to temperature. So while Eq. (17) is

FIG. 2. Plot of the GMXI29 camera spectral-response functions for three of

its channels. These channels differ by the thicknesses of the Al filter layers

in their respective filter packages. The emissivity of a source, integrated

over one of these response functions, will be exclusively dependent on the

pressure of the source when the source temperatures fall within a narrow

range near the ideal source temperature kT0 indicated for that channel.

022707-4 Epstein et al. Phys. Plasmas 22, 022707 (2015)



explicitly temperature dependent, it can be regarded as inde-

pendent of temperature within a limited range of temperature

centered at kT0. If the KL fit given above were used rather

than the asymptotic Kulsrud expression, Eq. (18) would be

replaced by y ¼ e�1=x=x2:09; displacing the stationary point

of the emissivity to kT0 ¼ h�0=2:09; which is almost the

same as Eq. (20) for the purposes of this discussion. The

applicable range of temperature is easy to determine directly

from Eq. (17) for a desired tolerance. For example, the

integrated emissivity will be within 90% of its maximum

(representing a 65% minimum-to-maximum variation) at

kT0¼ 2.65 keV over the temperature range 1.95 keV< kT
< 3.73 keV for the GMXI “B” response function with the

h�0¼ 5.30-keV center energy. This temperature range is rep-

resentative of cryogenic ICF implosion hot spots.

What we now have in Eq. (17) is an expression for emis-

sivity that is a function of pressure alone, as long as the spec-

tral response of the detector is appropriately matched to the

source temperature range. A nominal temperature value or

profile must be provided to evaluate Eq. (17), but if the

source–instrument matching condition given by Eq. (20) is

satisfied closely enough, the emissivity can be treated as a

function of pressure alone. If the source temperature profile

does deviate from satisfying Eq. (20) to a degree that the

emissivity temperature dependence at fixed pressure cannot

be ignored, Eq. (17) is still valid, but temperature profile

input must then resemble the actual temperature profile

closely enough to avoid throwing off the relationship

between the emissivity and the pressure profiles. A tempera-

ture profile from a simulation may suffice.

III. INFERRING HOT-SPOT PRESSURE FROM X-RAY
EMISSION MEASUREMENTS

The expression for Abel inversion given by Eq. (4) and

the emissivity expression in terms of pressure given by Eq.

(17) allow the pressure profile to be inferred from the imaged

specific intensity I�0
ðxÞ: This will be demonstrated using a

simulated image of OMEGA cryogenic implosion shot

68 791 (Ref. 30). The implosion is simulated with the one-

dimensional (1-D) radiation–hydrodynamics code LILAC,31

and the images are calculated using the post-processor

Spect3D.32 The temperature, density, and pressure profiles of

this implosion at 1.94 ns—the time of stagnation and peak

neutron production—are shown in Fig. 3. A GMXI image of

the emission from this configuration simulated with

Spect3D, using the spectral response function “B” with 2-mil

Al filtering shown in Fig. 2, is shown as the solid dark gray

(orange online) curve in Fig. 4. Spect3D uses the actual

response functions specified for the GMXI [not the Gaussian

approximation used in deriving Eq. (17)] and Gaunt factors

based on the KL model extended to include the effects of

electron degeneracy.23 Spect3D calculates a full solution

of the equivalent of Eq. (1), taking into account all emission

and absorption effects within the entire imploded

configuration.

The simulated imploded configuration in Fig. 3 is sub-

stantially isobaric at P � 22 Gbar out to the radius indicated

by the vertical dashed line at 34 lm. In the simulated

instantaneous image at this time shown in Fig. 4 and in the

plot of the simulated time-integrated image in Fig. 5, this

distance represents the radius of the 17% intensity contour of

the instantaneous image, which has been suggested as one

criterion to use in measuring the size of a hot spot from its

FIG. 3. Simulated OMEGA cryo shot 68 791 (Ref. 30) profiles at 1.94 ns,

the time of peak neutron production. The hot spot (kT> 1.5 keV) appears to

be substantially isobaric at P � 22 Gbar out to the radius indicated by the

vertical dashed line at 34 lm. In the simulated instantaneous image at this

time, this distance represents the radius of the 17% intensity contour,33

which is also shown for reference on the image plots in Figs. 4–6.

FIG. 4. The filtered simulated GMXI image of the simulated implosion core

of OMEGA shot 68 791 at 1.94 ns—the time of peak neutron production.

The left axis is the “B”-channel integrated intensity distribution of the simu-

lated image [solid dark gray (orange) curve (Image)]. The right axis is the

emissivity profile obtained from the inverse Abel transform of the simulated

image [solid light gray (green) curve (Emissivity)]. The image is almost

indistinguishable from the dashed dark gray (purple) curve (Image flat) (left

axis), which is the image of a perfectly flat emissivity profile represented by

the dashed light gray (blue) curve (Emissivity flat) (right axis) extending out

to r¼ 34 lm.
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image.33 This criterion appears to coincide with other criteria

that are more physically significant, although not as directly

measurable, such as the inner half-peak density point of the

imploding mass distribution in Fig. 3 or the half-emissivity

radius seen in Figs. 4 and 5. The temperature range within

this so-defined hot spot is roughly 1.5 keV< kT< 3.5 keV,

which extends only slightly below the temperature range

given in Sec. II for a 65% accuracy limit on Eq. (17) with a

nominal temperature of kT0¼ 2.65 keV. Therefore, the flat

pressure profile in Fig. 3 results in the similarly flat emissiv-

ity profile seen in Fig. 4, even as the temperature varies. This

insensitivity of the inferred pressure profile to the assumed

temperature profile over the radial range of the hot-spot pro-

file is seen more clearly in Fig. 6.

The solid dark gray (orange online) curve in Fig. 4 is the

simulated instantaneous radial intensity distribution of

the image, obtained using the “B” response function, of the

OMEGA cryogenic implosion shot 68 791 at 1.94 ns—the

time of stagnation and peak neutron production shown in

Fig. 3. The solid light gray (green online) curve is the emis-

sivity profile obtained from the inverse Abel transform of

this image using Eq. (4). The image is almost indistinguish-

able from the dashed dark gray (purple online) quarter-

ellipse, which is exactly what Eq. (5) predicts for the image

of a flat emissivity profile extending out to R¼ 34 lm, shown

in Fig. 4 as the dashed light gray (blue online) profile. The

relative deviations of the simulated image from the elliptical

image are very small, in contrast with the larger relative

deviations of the simulated emissivity from a flat emissivity

profile. This is understood as the smoothing effect of the

integration in Eq. (2) on the emissivity profile.

Figure 5 is virtually identical to Fig. 4 in every respect,

other than a relative factor of about 110 ps, which can be

taken as the emission time scale. This simulated image inten-

sity has been integrated over a 300-ps time window centered

at 1.96 ns, long enough to include both the x-ray and neutron

emission times. Again, as was the case with the results shown

in Fig. 4, the image deviates very little from the elliptical

shape, while the simulated emissivity profile deviates more

visibly from a flat profile near the outer radius of the hot spot.

The pressure profile of an imploded hot spot can be

inferred using Eq. (17) from the emissivity profile obtained

FIG. 5. The filtered simulated GMXI image of the simulated implosion core

of OMEGA shot 68 791 integrated over a 300-ps time window centered at

1.96 ns. This interval includes the times of stagnation, peak neutron produc-

tion, and peak x-ray intensity. All plotted quantities in this figure are time

integrated. The left axis is the intensity distribution of the simulated image

[solid gray (orange) curve (Image)]. The right axis is the emissivity profile

obtained from the inverse Abel transform of the image [solid light gray

(green) curve (Emissivity)]. Out to near r¼ 34 lm, the image is almost

indistinguishable from the dashed dark gray (purple) curve (Image flat) (left

axis), which is the image of a perfectly flat emissivity profile represented by

the dashed light gray (blue) curve (Emissivity flat) on the right axis.

FIG. 6. Pressure profiles inferred from the simulated GMXI image shown in

Fig. 4 of the simulated implosion core of OMEGA shot 68 791 at 1.94 ns—

the time of peak neutron production. The pressure profiles were obtained

using Eq. (17) from the emissivity profile obtained from the simulated image

by Abel inversion. From the left axis, the pressure profile plotted as the

lower solid lighter gray (yellow) curve was obtained assuming the ideal

kT0¼ 2.65 keV nominal temperature based on the GMXI response centered

at 5.30 keV, represented on the right axis by the dashed gray (yellow) curve,

and the pressure profile plotted from the left axis as the upper dark gray

(blue) curve was obtained by assuming the radius-dependent temperature

profile from the LILAC hydrodynamic simulation on the right axis repre-

sented by the dashed lighter gray (blue) curve. The vertical dashed line indi-

cates the 17% intensity contour radius—the nominal outer radius of the hot

spot.
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by Abel inversion of the simulated image using Eq. (4). As

discussed in Sec. II, this inferred pressure is insensitive to

the assumed temperature profile if the camera response is

centered at h�0¼ 2kT0, where the hot-spot temperatures are

within a limited range of T0. Exactly how closely the emis-

sivity profile follows the pressure profile will depend on how

far the range of the hot-spot temperature deviates from T0, as

has been described in Sec. II. In principle, any nominal T
value or radial T(r) profile can be used with Eq. (17). For

example, this nominal temperature can be the ideal tempera-

ture T0 matched to the instrument response, or it can be the

logarithmic slope of the hard end of the continuum spectrum,

if it has been measured. Ignoring the Gaunt factor in Eq. (8)

leaves one with the simple eFF
� � e�h�=kT frequency depend-

ence. The additional factor (kT/h�)1/2 in Eq. (12) bends the

logarithmic slope slightly

� d ln eFF
�

� �
dh�

¼ 1

kTinferred

¼ 1

kT
þ 1

2h�
; (21)

but the fractional error in the temperature inferred from

measuring the spectral logarithmic slope dT/T � kT/2 h�, can

be minimized by measuring as high in spectral energy as

possible. Using Eq. (17) with a radially dependent simulated

temperature profile could provide more-accurate results than

a constant nominal temperature.

Using Eq. (17) to infer a pressure profile from an emis-

sivity profile is demonstrated in Fig. 6 for the case of shot

68 791 shown in Fig. 4. Pressure profiles inferred from

the simulated GMXI “B”-channel image of the simulated

implosion core of OMEGA shot 68 791 shown in Fig. 4 at

1.94 ns—the time of peak neutron production. The pressure

profiles were obtained using Eq. (17) from the emissivity

profile obtained from the simulated image by Abel inversion.

The pressure profile plotted as the solid light gray

(orange online) curve was obtained assuming the ideal

kT0¼ 2.65 keV nominal temperature based on the GMXI

response centered at 5.30 keV, represented as the dashed

light gray (orange online) line, and the pressure profile plot-

ted as the dark gray (blue online) curve was obtained by

assuming the radius-dependent temperature profile from the

LILAC hydrodynamic simulation plotted as the dashed dark

gray (blue online) curve. The vertical dashed line indicates

the 17% intensity (half-emissivity) contour radius—the nom-

inal outer radius of the hot spot. Even with these two very

different assumed temperature profiles, the two inferred pres-

sure profiles agree with the simulated pressure profile very

well, up to within a short distance of the edge of the hot spot.

IV. SCALING RELATIONSHIPS OF THE X-RAY YIELD
OF AN ISOBARIC HOT SPOT AT STAGNATION

The energy-integrated emissivity of an isobaric hot spot

tracks its flat pressure profile nearly all the way to its outer

radius R, provided that the source temperature profile does

not deviate too far from the T0 set by the condition

h�0¼ 2kT0, where h�0 is the center of the instrument

response function. If the emissivity per volume is reasonably

uniform over the entire hot spot, as is the case in the example

shown in Fig. 4, the hot spot will produce a total filtered radi-

ated energy or photon yield of

Y�0
¼ 4p

4p
3

R3

� �
DtE�0

; (22)

where the leading factor of 4p represents integration of the

isotropic emissivity over the full sphere of solid angle. If the

gate time or exposure time Dt exceeds the lifetime of the hot

spot, the total effective emission time Dt must be inferred

from another measurement, such as the neutron yield Yn,

assuming that both the neutron and photon emission are lim-

ited by the same hot-spot lifetime. With a radius R obtained

from the GMXI image and the temperature dependence rela-

tively weak, a useful estimate of the hot-spot pressure can be

obtained from Eqs. (17) and (22). This was done for a sizable

ensemble of cryogenic implosion simulation results.30 The

inferred pressures are compared in Fig. 7 with the simulated

central peak pressures. The simulated photon yield was the

time-integrated B-channel emission, the emission time in

Eq. (22) is the quotient of the simulated neutron yield di-

vided by the peak neutron-production rate, and the image

size is the 17%-intensity contour of the simulated GMXI

image. The ensemble of implosions includes shell adiabat

parameters over the range 1.5< ashell< 3.5 and neutron

yields over the range 1.3� 1013<Yn< 1.3� 1014. The close

agreement between the pressures inferred from the simulated

images and the simulated pressure values is convincing,

although not entirely expected, in light of the combined

systematic inaccuracy that might result from equating the

photon and neutron emission lifetimes, using the reasonable

but not unique choice of the 17% contour as the hot-spot

radius, and from assuming that the emissivity of the entire

hot spot is determined by the central pressure at stagnation

alone. This effectively confirms that the agreement between

FIG. 7. The hot-spot pressure inferred from LILAC/Spect3D simulated

images shown in very good agreement with the simulated peak central pres-

sure. Equations (17) and (22) give accurate hot-spot pressures from simu-

lated images for an ensemble of cryogenic simulations representing a broad

range of shell adiabat parameters and neutron yields.
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the simulated and inferred central pressures in Fig. 6 is

obtained for every implosion in this ensemble.

A few interesting new expressions for the scaling of the

photon yield with various parameters of the implosion can

be obtained from Eqs. (17) and (22). First, we write

MSh

R

Dtð Þ2
¼ 4pR2P; (23)

saying that the imploding thin unabated shocked shell of

mass MSh surrounding the hot spot of radius R experiences

an outward acceleration R/(Dt)2 at stagnation, where Dt is

the scale time of the bounce of shell, by the force of the hot-

spot pressure P acting on the inner surface of the shell.12

Next, we can write the adiabatic scaling of the hot-spot

pressure with respect to the hot-spot volume V¼ 4pR3/3 as

P / aHSV�5=3; (24)

where aHS, a hot-spot “adiabat” parameter, distinguishes

among the hot spots of different implosions. The stagnating

hot-spot material is not adiabatic in the usual sense, where

the pressure would scale with the hot-spot density as P/
aHSq

�5/3, because of heat flow out of and material flow into

the hot spot. The hot-spot volume, however, can be treated

as an adiabatic enclosure because the heat conduction out of

the hot spot is exactly compensated by the heat of the mate-

rial ablated off the inner surface of the shell back into the hot

spot at the hot-spot boundary.12 Together, Eqs. (23) and (24)

give the volume–time product

VDt / aHSMShð Þ1=2

P
(25)

needed in Eq. (22). Applying Eq. (17), subject to the condi-

tions given in Sec. II for temperature-independent emissiv-

ity, we obtain the expression

Y�0
/ ðaHSMShÞ1=2P; (26)

which predicts that the photon yield will scale in direct pro-

portion to the hot-spot pressure for an ensemble of similar

cryogenic implosions. This linear scaling is verified in Fig. 8

for the same set of simulations used to obtain the results

shown in Fig. 7, although with more scatter. This additional

scatter may reflect the simplification of the hot-spot dynam-

ics by Eq. (23) and the simplification of the hot-spot energy

balance by Eq. (24) or by the variations in the product

aHSMSh over the ensemble. Accounting for all the details of

Fig. 8 is beyond the scope of this paper, but for now, Fig. 8

suffices to add validity to the scaling arguments that have

been made.

The sample of 1-D OMEGA cryogenic implosion simu-

lations illustrated in Figs. 7 and 8 displays a curious scaling

of the simulated photon yield with the neutron yield,

Y�0
/ Yn

0:57; shown in Fig. 9 (Ref. 30). The value of the scal-

ing index, as well as the fact that the photon and neutron

yields appear to fall along a single curve, can be explained

in terms of the dynamics of isobaric implosion cores at

stagnation. We begin again with the photon yield given by

Eqs. (17) and (22), this time keeping track of the precise

temperature scaling of the photon- and neutron-production

rates. We allow that the scaling index g of the temperature

dependence of Eqs. (18) and (19), as in

y ¼ e�1=x

x2
/ xg; (27)

may deviate from g¼ 0. We expect that g will be small since

our instrumentation and emission source place us near

h�0¼ 2kT0, but the scaling calculation below does not

require this. We apply Eqs. (17), (22), and (27) and obtain

Y�0
/ P2TgVDt: (28)

FIG. 8. The hot-spot pressure simulated by LILAC shown following the pre-

dicted linear scaling with the photon yield. The hot-spot pressure is pre-

dicted to vary in direct proportion to the x-ray yield for an ensemble of

similar cryogenic implosions with shell adiabat parameters and neutron

yields that vary over a wide range.

FIG. 9. Photon-neutron yield scaling in cryo implosion simulations.30 The

x-ray yields of an ensemble of cryo implosion simulations have been found

to scale with the 0.57 power of their respective neutron yields over a broad

range of shell adiabats and neutron yields.
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The neutron yield can be written using the deuterium–tritium

(DT) reaction rate

hrvi / T4þe; (29)

where we obtain the small deviations jej � 1 from a fixed

temperature scaling using the reaction rate by Bosch and

Hale.34 The neutron yield is written as the volume and time

integral

Yn ¼
ð ð

nDnThrvidVdt / P2T2þeVDt: (30)

The neutron-production rate is a function of the deuterium–-

tritium density product nDnT and the ion temperature, so

combining Eq. (29) with the ideal gas equation of state to

form Eq. (30) is another application of the Te¼ Ti equilib-

rium assumption made earlier. While the x-ray emissivity

can be approximated fairly well as uniform over the volume

of an isobaric hot spot, the neutron production varies as an

additional two powers of temperature and, as a result, will be

more center peaked and possibly shorter in duration.

Nevertheless, we proceed assuming that the usual approxi-

mation—that the source volumes and emission times of the

neutrons and photons are the same—is valid to within con-

stant factors that drop out of scaling relationships, and we

apply Eqs. (24), (25), (28), and (30) to obtain

Y�0
/ M

2=9
Sh M

10=9
HS

a4=9
HS

 !p

Yq
n ; (31)

where

p ¼
1þ e� gð Þ=2

1þ 2e=9
(32)

and

q ¼ 5þ 2g
9þ 2e

: (33)

For the nominal values g¼ e¼ 0, this gives q¼ 0.56 for the

neutron-yield scaling exponent, which is very close to the

value obtained from the simulation ensemble, as shown in

Fig. 9. In Eq. (31), the three constant stagnation parameters

aHS, MSh, and the hot-spot mass MHS�R3P/T combine in a

product where the scaling relative to each other is fixed. We

have chosen to write Eq. (31) with this three-parameter prod-

uct scaled such that p¼ 1 for the nominal values g¼ e¼ 0.

The effects of variations of aHS, MSh, and MHS throughout

the simulation ensemble and the effects of the temperature-

dependent scaling corrections g and e will be considered

below, but for now the successful derivation of the value of

the scaling exponent q is clearly an encouraging validation

of the scaling calculations so far.

The alignment of the simulated data points in Fig. 9

along a single curve does make sense in light of Eq. (31).

The neutron yield varies over the ensemble by an order of

magnitude, and the scatter about the curve, attributable to

variations in aHS, MSh, and MHS, is relatively small.

Extracting precise values of these three parameters from sim-

ulations depends on the time resolution of the simulation out-

put as well as on somewhat arbitrary definitions, but it is

clear that the net effect of their variations is much less than

the ranges of the neutron and photon yields. It is interesting

to note that the temperature-dependent scaling corrections

pertain only to the microphysics of photon and neutron pro-

duction, not the design or dynamics of the implosion capsu-

les. Were this yield–yield plot generated with simulations or

measurements of a different ensemble of isobaric implosions

with target masses scaled up by significant factor, for exam-

ple, Eqs. (31)–(33) predict that the overall proportionality

constant would change with the mass and hot-spot adiabat

parameter, but the yield-scaling exponent would be the same

for the same spectral response and source temperatures.

The result q¼ 0.56 quoted above is obtained only

with the nominal values g¼ e¼ 0. Taking this temperature

dependence into account, q is found to be a relatively insen-

sitive function of temperature. For example, the range

q¼ 0.57 6 0.06 is obtained, in reasonably good 10% agree-

ment with the value q¼ 0.57 in Fig. 9, for the relatively

broad range of temperature kT¼ 2.21 6 0.43 keV. Even

though the yield scaling exponent is relatively insensitive to

variations in the hot-spot temperature, it may have diagnostic

value through its temperature dependence. If the fit to KL

results for the FF Gaunt factor described above were used in

place of Eq. (11), the effect would be to reduce g by 0.09,

which would reduce the predicted q values by 3.6% overall.

Equation (31) accounts for the yield-scaling behavior

shown in Fig. 9 because the scaling index given by Eq. (32)

agrees with the fit to the simulation ensemble for typical

hot-spot temperatures and because the scaled product

M
2=9
Sh M

10=9
HS a�4=9

HS of stagnation parameters has negligible cor-

relations with both the photon and neutron yields. The simu-

lation ensemble was constructed to follow a long series of

cryogenic implosion experiments as closely as possible; the

experiments were not designed to control this product. If this

product did have a significant correlation with either the pho-

ton or neutron yields, then Eq. (32) would not agree with the

yield scaling exhibited by the simulation ensemble.

A slightly modified version of Eq. (31) can be derived

by using the scaling expression

MHS � M
1=7
Sh P4=7R16=7 (34)

for the hot-spot mass given by Zhou and Betti.35 We use this

to remove MHS from the calculation, giving the result

Y�0
/ ðM4=11

Sh Þ
p0Yq0

n ; (35)

where

p0 ¼
1þ e� gð Þ=2

1þ 2e=11
(36)

and

q0 ¼ 7þ 2g
11þ 2e

: (37)
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These are only a slight departure from Eqs. (31)–(33).

Remarkably, the only stagnation parameter appearing is MSh,

or, in other words, the normalized photon yield Y�0
=Yq0

n

� M
4p0=11
Sh is a function of the shell mass alone.

The two sets of equations [Eqs. (31)–(33) and Eqs.

(35)–(37)] are both correct, but the latter is the more-final

result, with some hot-spot parameter dependences elimi-

nated. This was accomplished by introducing Eq. (34), which

brings additional approximations into the calculation that

were made to evaluate thermal transport in evolving inner-

shell density and temperature profiles.12 These are the same

approximations that were made in establishing the hot-spot

adiabatic behavior expressed as Eq. (24); the hot-spot pres-

sure varies adiabatically with respect to the hot-spot volume

during the approach to stagnation.

The p0 and q0 values obtained from Eqs. (36) and (37),

respectively, are plotted as functions of hot-spot temperature

in Fig. 10 as solid gray (orange online), right-hand scale,

and solid black, left-hand scale, curves, respectively. The

left-hand scale is only one-fifth the numerical length of the

right-hand scale, indicating that q0, like q, is a relatively

insensitive function of temperature. The respective

temperature-scaling indices e and g of the photon- and

neutron-production rates are also plotted in this figure. The

gray (blue online) shaded range of temperature corresponds

to the temperature range of kT¼ 2.5 to 3.1 keV, which is the

one-standard-deviation range of the neutron-averaged tem-

perature values of the simulations in the ensemble repre-

sented in Fig. 9. The q0 curve reflects this temperature range

onto the corresponding shaded range of q0 values. This range

of q0 values includes the value q0 ¼ 0.57 value obtained from

the simulation ensemble in Fig. 9. This shows that Eq. (37)

is consistent with the yield scaling index obtained from the

simulation ensemble in Fig. 9 for typical hot-spot tempera-

tures. Equation (35) is likewise consistent with the same

value, q¼ 0.57, but at slightly lower temperatures that are

also typical of hot-spot stagnation conditions. With Eq. (37),

however, consistency is obtained with neutron-averaged

temperatures, which are characteristic of the neutron source,

making this perhaps the more-convincing demonstration of

consistency.

V. ENHANCED X-RAY EMISSION AS A MEASURE
OF FUEL–SHELL MIX

The yield scaling results in Fig. 9 were obtained from

LILAC31 1-D hydrodynamic simulations, which do not

model unstable hydrodynamic behavior. Implosions with

shell adiabat parameters in the lower end of the range

1.5< ashell< 3.5 have thinner shells that are more susceptible

to the Rayleigh–Taylor instability36 during the deceleration

phase of the implosion. Breakup of the unstable shell would

leave some amount of the shell carbon mixed into the hot

spot at the time of stagnation. Since carbon is much more

emissive than hydrogen, very small concentrations of carbon

can significantly increase the x-ray emission. Since the simu-

lated photon and neutron yields in Fig. 9 exhibit a Y�0
/

Y0:57
n behavior, the normalized simulated yield quotient

Y�0
=Y0:57

n forms a constant normalized photon yield when

plotted as a function of any quantity, such as the shell adiabat

parameter, as shown by the blue squares in Fig. 11. The

same quantity derived from actual measured yields is plotted

as orange circles. These values are generally constant, in

agreement with the 1-D simulated results, for shell adiabat

parameter values above the ashell � 2.3 value, but they show

a distinct excess photon yield below this point. This has been

FIG. 10. Yield-scaling indices p0 and q0 and the photon and neutron

temperature-scaling indices g and e plotted as functions of temperature. The

yield-scaling indices p0 [plotted as the solid gray (orange) curve from the

right axis] and q0 (solid black curve from the left axis) are functions of tem-

perature through the temperature-dependent scaling indices g [dashed light

gray (blue) curve from the right axis] and e [dashed dark gray (purple) curve

from the right axis] of the photon- and neutron-production rates, respec-

tively. The q0 curve shows that the q0 ¼ 0.57 value from Fig. 9 is within the

range of q0 corresponding to the temperature range kT¼ 2.5 to 3.1 keV,

which is within one standard deviation of the mean neutron-averaged tem-

perature of the simulation ensemble shown in Figs. 7 and 8. These ranges of

q0 and kT are shown highlighted with gray (blue) shading and are seen to be

related by q0 versus kT (black curve).

FIG. 11. Excess photon yield as a measure of fuel–shell mix. The normal-

ized yield quotient Y�0
=Y0:57

n is nearly constant for the simulated implosions,

according to the results plotted here and in Fig. 9 as (blue) squares. The

same quotient calculated from measured yields is plotted as (orange) circles.

These measurements conform to the 0.57 power scaling for higher shell

adiabat parameters ashell> 2.3. As unstable shells break up during the decel-

eration phase of the implosion, carbon can be mixed into the hot spot from

the shell, which accounts for the excess x-ray emission above the amount

expected from the yield scaling. This twofold to threefold enhancement can

be attributed to masses of 125 to 250 ng of shell CH mixed uniformly into

the hot spot. (Figure 8 from Ref. 30).
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attributed to the expected contamination of the hot spot by

shell carbon. We extend this analysis to infer the mass of

shell material mixed into the hot spot from measurements of

this excess emission.

Using the FF emission of hydrogen as a pressure diag-

nostic assumes a pure hydrogen core. Any mix of non-

hydrogen into the hot spot will raise the per-ion emissivity of

the hot spot. The twofold-to-threefold enhancement of the

normalized measured hot-spot emission shown in Fig. 11 for

low-adiabat implosions can be interpreted in terms of con-

tamination of the hot spot by shell carbon. The emission

from a carbon-contaminated hot spot will have a strong

contribution from radiative recombination, which is FB

emission, the time inverse of photoionization or bound-free

(BF) absorption. The carbon emission will have comparable

FF and FB contributions with much stronger total emission

per ion than hydrogen.

Following a conventional approach, we discuss the com-

bined FF and FB emissivity in parallel by considering their

respective absorption cross sections. The Kramers photon

absorption cross sections are

rFF �ð Þ ¼
256p5=2

3
ffiffiffi
3
p aa5

0neZ2 vH

kT

� �1=2 vH

h�

� �3

gFF (38)

for FF absorption by an ion of total charge Z and

rBF �ð Þ ¼
64p

3
ffiffiffi
3
p aa2

0

Z4

p5

vH

h�

� �3

gBF; h� 	 vp

0; h� < vp

8><
>: (39)

for BF absorption by the photoionization of the single elec-

tron bound to a nucleus of charge Z in principal quantum

level p (Ref. 10). We keep the explicit dependence of rBF(�)

on p for now, but only the ground-state p¼ 1 photoionization

contribution will be significant. The Gaunt factors gFF and

gBF account for departures from the Kramers semi-classical

approximation. Based on the micro-reversibility of each pro-

cess, the Gaunt factor for emission also applies to absorption.

The ionization-edge cutoff energy vp of the BF cross section

is the ionization energy of the bound electron in the p
shell. This can be expressed using the Bohr formula

vp ¼ Z2vH=p2 � Dv: We only mention continuum lower-

ing37 Dv for completeness, showing only its effect on v.

Since x-ray measurements are made far above this h�¼ vp

cutoff, we will not consider it further. Further discussion

beyond the scope of this paper should consider continuum

lowering and other high-density effects in more detail.

The hot-spot plasma is accurately described as nearly

completely ionized, with the fully ionized atoms accounting

for essentially all the FF and FB emission and with only a

trace of the H-like species remaining to provide BF absorp-

tion. We neglect excited states and consider only the density

ni,1 of ground-state (p¼ 1) H-like ions and the density ni,2 of

the fully stripped species, so that ni,1þ ni,2¼ ni, where ni is

the total ion density of element i. Certainly for hydrogen and

carbon, ni,1 will be very small, and all other ionization spe-

cies can be neglected. Using criteria provided in Ref. 10, it is

easily verified that hot-spot stagnation times are far longer

and densities are far higher than those required to maintain

collision-dominated, detailed-balance, quasi-static local ther-

modynamic equilibrium (LTE) ionization-species popula-

tions. Therefore, we may use the Saha equation10

ni;2ne

ni;1
¼ 2

a3
0

g2

g1

kT

4pvH

� �3=2

e�vi=kT ; (40)

where g1 and g2 are the statistical weights of the bound and

stripped states, respectively. The statistical weights for H-like

and stripped ions are g1¼ 2p2 and g2¼ 1, respectively.

The FF opacity jFF
� for the fully ionized species with nu-

clear charge Z,

jFF
� ¼

256p5=2

3
ffiffiffi
3
p aa5

0neni;2Z2gi;FF

vH

kT

� �1=2 vH

h�

� �3

1� e�h�=kTð Þ;

(41)

accounts for the entire FF contribution from that element

since lower degrees of ion ionization contribute less, in

proportion to their fractional populations. We can be more

precise now by stipulating that the Gaunt factor gi,FF pertains

to the fully stripped species of element i. The correction for

stimulated emission is included. Considering a mixture of

elements i, using n2 � ni, we have
P

i niZ
2
i gi;Z;FF ¼

nihZ2gZ;FFi; where ni is the total ion density, and

jFF
� ¼

256p5=2

3
ffiffiffi
3
p aa5

0ninehZ2gFFi
vH

kT

� �1=2 vH

h�

� �3

1� e�h�=kTð Þ:

(42)

The BF opacity for a single element is written in similar

terms. Here, only the H-like species population ni,1 is rele-

vant in the fully ionized limit, giving simply

jBF
� ¼ ni;1

64p

3
ffiffiffi
3
p aa2

0

Z4

p5

vH

h�

� �3

1� e�h�=kTð Þgi;BF (43)

for the spectral range above the ionization edge. The BF

opacity written in this way has strong hidden temperature

and density dependence through ni,1. The more-stationary

product ni,2ne is substituted using the Saha equation

[Eq. (40)] to obtain

jBF
� ¼

256p5=2

3
ffiffiffi
3
p aa5

0n2ne

vH

kT

� �3=2 g1

g2

Z4

p5

vH

h�

� �3

� 1� e�h�=kTð Þe v�Dvð Þ=kTgi;BF: (44)

Again, considering a mixture of elements i, using ni,2 � ni,

we can writeX
i

niZ
4
i eðv�DvÞ=kTgi;BF ¼ nihZ4eðv�DvÞ=kTgBFi; (45)

giving

jBF
� ¼

256p5=2

3
ffiffiffi
3
p aa5

0nine

vH

kT

� �3=2 g1

g2

1

p5

vH

h�

� �3

� hZ4e v�Dvð Þ=kTgZ;BFi 1� e�h�=kTð Þ: (46)
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Applying the appropriate values for g1, g2, and p given above

for the H-like species, we have

jBF
� ¼

512p5=2

3
ffiffiffi
3
p aa5

0nine

vH

kT

� �3=2 vH

h�

� �3

� hZ4e v�Dvð Þ=kTgZ;BFi 1� e�h�=kTð Þ: (47)

In LTE, the Kirchhoff relationship17 e�¼j�B�(T) is the sta-

tistical detailed-balance relationship between emissivity and

opacity, or between any one absorption process and its time-

inverse emission process. Therefore,

eBF
�

eFF
�

¼ jBF
�

jFF
�

(48)

and, applying Eqs. (42) and (47),

eBF
�

eFF
�

¼ 2vH

kT

� �
hZ4e v�Dvð Þ=kTgBFi
hZ2gFFi

: (49)

This ratio is independent of density, except at higher densities

where continuum lowering Dv � n
1=3
i becomes important. To

gauge the relative importance of the participating processes,

we set aside the Gaunt factors temporarily and write

hZ4eðv�DvÞ=kTgBFi � hZ4i; (50)

which is a valid simplification at very high temperatures,

kT � v 	 vH; and

hZ2gFFi � hZ2i: (51)

It is easy to see from Eqs. (49)–(51) that we have been

correct in neglecting FB emission in hydrogen, relative to FF

emission, but that the hZ4i=hZ2i charge scaling of the FB-to-

FF ratio predicts significant FB emission from mid-Z
contaminants, in addition to their FF emission, even if they

are present in trace amounts relative to hydrogen.

It may appear paradoxical that the BF-to-FF ratio given

by Eq. (49) is independent of density, considering that BF

absorption is initiated by a two-body (photon–ion) interac-

tion, implying that its opacity is linear in density, while FF

absorption is initiated by a three-body (photon–electron–ion)

interaction, implying that its opacity is second order in den-

sity. In general, the ratio of densities in the BF-to-FF opacity

ratio is density dependent, but since we are working in the

near-complete ionization regime where all the bound-

electron species are H-like, the Saha equation [Eq. (40)]

removes this density dependence.

The Planck function in the Kirchhoff relationship can be

written as

B� Tð Þ ¼
vHa2 h�

vH

� �3

8p2a2
0

1

eh�=kT � 1
: (52)

The individual emissivity contributions are, then

eFF
� ¼

32

3

ffiffiffi
p
3

r
a3vHa3

0ninehZ2gFFi
vH

kT

� �1=2

e�h�=kT ; (53)

repeating Eq. (8), and

eBF
� ¼

64

3

ffiffiffi
p
3

r
a3vHa3

0nine

vH

kT

� �3=2

hZ4e v�Dvð Þ=kTgBFie�h�=kT ;

(54)

with a total emissivity

e� ¼
32

3

ffiffiffi
p
3

r
a3vHa0

3nine

vH

kT

� �1=2

� hZ2gFFi þ 2
vH

kT

� �
hZ4e v�Dvð Þ=kTgBFi

	 

e�h�=kT : (55)

This expression can be evaluated to obtain the enhancement

of the photon yield resulting from the increase in both

hZ2gFFi and hZ4eðv�DvÞ=kTgBFi from CH shell–mix contami-

nation. Formally, CH mix reduces the neutron yield through

the nDnT product of fuel ion densities in Eq. (30), which is

only minutely affected by a trace contamination. Equation

(30) itself, then, need not be altered in any way.

As was noted in Sec. II, the Kulsrud Gaunt factor

for hydrogen differs only slightly from the more reliable KL

values for hydrogen in our relevant temperature range, but it

is not applicable to carbon under ICF hot-spot conditions or

to FB emission. Power-law fits to KL results have been

obtained near h�0 � 5.39 keV and h�0=kT � 2 for the Gaunt

factors needed to evaluate Eq. (55) (Ref. 22). These are

gH;FF�0:966ðh�=kTÞ�0:41; gH;FB�0:299ðh�=5:39keVÞ�0:430;

gC;FF�1:28ðh�=kTÞ�0:23; gC;FB�0:926ðh�=5:39keVÞ�0:141:

(56)

The FF Gaunt factors depend on temperature because the FF

absorption cross section is an average over the

Maxell–Boltzmann distribution of initial free-electron states.

The FB Gaunt factor, on the other hand, does not depend on

temperature because all properties of the single-electron

bound states are attributes of the ion, not the free-electron

plasma. We find that adding a fraction fCH¼ 2.4% by atom

of CH to a pure hydrogen core, as in the uniform mix of shell

polymer into the hot spot, doubles the emissivity at h�0 �
5.39 keV. This represents a mix mass of DMCH¼ 125 ng in

the example described in Sec. II, where the hot-spot mass is

MHS¼ 2.1 lg, which happens to be the mean hot-spot mass

of the entire ensemble of simulations analyzed in Sec. IV.

The standard deviation of hot-spot masses in this ensemble

is only 17%, so the emission-doubling mix mass is roughly

the same for all the implosions. The measured emission

enhancements of the low-adiabat implosions plotted in Fig.

11 range over factors from 2 to 3, which correspond to a

range of mix mass from 125 ng to 250 ng. The enhancement

factor corresponding to a 2.4%-by-atom contamination level

is shown plotted as the black (blue online) curve in Fig. 12

as a function of temperature. Within the range of plausible

hot-spot temperatures indicated by the blue-shaded region,

2 keV< kT< 3 keV, the enhancement factor is a weak func-

tion of temperature, primarily the result of the temperature

dependences of the relevant Gaunt factors listed in Eq. (56).
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The yield-ratio scaling index q, plotted as the solid gray

(orange online) curve, varies with temperature in the conta-

minated core, as it does in the pure hydrogen core in Fig. 10,

plotted here as the dashed gray (orange online) curve. The

small difference between these two curves is accounted for

by the Gaunt factors for the FB emission, which accounts for

very roughly half the emission in Fig. 12 and none of the

emission in Fig. 10, does not depend on temperature. The

dashed black (blue online) line shows the enhancement fac-

tor (unity) corresponding to zero contamination.

The additional radiative cooling from a trace concentra-

tion of CH mix may lower the temperature of the hot spot and

reduce the neutron yield. The effects of a modest temperature

drop on the yield scaling, the x-ray yield normalization, and

the x-ray yield mix enhancement are shown in Figs. 10 and

12, where it is seen that they will most likely be small. The

only one of the equations leading to these results that is poten-

tially affected by hot-spot cooling is Eq. (24), which is

obtained from the balance of inner-shell ablation into the hot

spot and thermal conduction loss out of the hot spot into the

shell that establishes an adiabatic hot-spot volume. This equa-

tion was derived by neglecting radiation losses from the

uncontaminated hot spot, and we continue to assume that this

approximation is valid if the radiation losses are increased by

only a modest factor by a trace contamination by CH. The

other equations used to obtain the photon-neutron yield scal-

ing are not affected by radiation. The effect of mix on the

photon-neutron yield scaling enters our analysis through the

Z-dependent terms in Eq. (55). Figure 12, however, shows

that the nominal 2.4% contamination has a reasonably small

effect on the photon-neutron yield scaling parameter. We

may, then, use the same yield normalization for clean and

contaminated hot spots, and the normalized photon yield will

be affected relatively little, other than by a factor that depends

almost exclusively on the CH contamination concentration.

This is the enhancement factor shown in Fig. 12 for the case

of 2.4% CH contamination.

To estimate the importance of hot-spot radiation cool-

ing, we begin with a conservative estimate of the emission

time of an uncontaminated hot spot at stagnation

srad ¼ �E= _E; (57)

where

E ¼ 3

2
P (58)

is the thermal energy density and where

_E ¼ �
ð1

0

eFF
� d� (59)

is the integrated emission per volume, assuming free escape

over the entire spectrum. The emissivity eFF
� given by

Eq. (13) can be used. The result

srad � 1:25
kT=2:8 keVð Þ3=2

P=87:6 Gbarð Þ ns (60)

is expressed showing the temperature and pressure scaling in

units of 2.8 keV and 87.6 Gbar, respectively, which are the

average values from our simulation ensemble. This cooling

time of 1.25 ns is an order of magnitude larger than the

stagnation time or hot-spot lifetime of 79 ps, which is the

ensemble-average neutron burnwidth value, indicating that

uncontaminated hot spots will emit no more than one tenth

of their thermal energy during stagnation. In the simulation

ensemble, the radiation loss fraction is closer to rough-

ly� 0.15. Figure 11 shows that a doubling of the normalized

emission is typical, suggesting that about a third of the hot-

spot energy may be radiated away, which is considerable.

Nevertheless, examining Fig. 12 shows that the doubling

effect of a 2.4% contamination at a temperature near 3 keV

is still close to a doubling effect at 2 keV and that the drop in

the scaling index caused by a 2.4% contamination at a tem-

perature near 3 keV is substantially reversed as the tempera-

ture approaches 2 keV. Our reliance on an adiabatic hot spot

through Eq. (24), then, may not be a quantitatively reliable

assumption for more than a trace CH mix concentration, but

we claim that it is adequate for our immediate purpose of

obtaining first estimates of hot-spot mix masses.

A set of similar mix-mass measurements has been

reported for cryogenic implosions on the NIF based on the

ratio of the x-ray and neutron yields.14 To describe this tech-

nique in terms of the discussion above, we write Eq. (28)

once again, but with the mix effect included as in Eq. (55)

Y�0
/P2 e�h�=kT

T2�g

vH

kT

� �1=2

1þ hZið Þ

� hZ2gFFi þ 2
vH

kT

� �
hZ4e v�Dvð Þ=kTgBFi

	 

VDt: (61)

FIG. 12. Photon-yield enhancement resulting from a 2.4% CH, by atom,

contamination of the hot spot, as a function of temperature. The photon

emissivity of a hot spot is expected to double when contaminated at this

level. This enhancement factor varies with hot-spot temperature, as shown

by the black (blue) from the left axis. The light gray (blue) shaded band

emphasizes the range of temperature within one standard deviation of the

simulation ensemble mean neutron-averaged hot-spot temperature. The solid

gray (orange) curve from the right axis shows the modified scaling index q0

of the yield quotient Y�0
=Yq

0

n as a function of temperature, and the dashed

(orange) curve shows the original zero-mix scaling index for comparison.

The black (blue) horizontal dashed line shows the enhancement level (unity)

corresponding to zero contamination.
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Our discussion parallels the discussion in Ref. 14 to some

extent, although the mix-mass estimates presented in Ref. 14

are based ultimately on emissivity values obtained from

detailed atomic calculations, rather than the Kramers–Gaunt

formulation underlying Eq. (61). The ratio of the photon to

neutron yield can be constructed from Eq. (30) and Eq. (61)

with the result being

Y�0

Yn
/ e�h�=kT

T4þe�g

vH

kT

� �1=2

1þ hZið Þ

� hZ2gFFi þ 2
vH

kT

� �
hZ4e v�Dvð Þ=kTgBFi

	 

(62)

to within fixed constants. This is the quantity that was meas-

ured in the NIF experiments. In forming this ratio, the pres-

sure factors, the hot-spot volumes, and the emission times

cancel. It was assumed here as well that the temperature and

neutron emission rate were spatially uniform, that the elec-

tron and ion temperatures were equal, and that the photon

and neutron emission volumes and times were equal. Since

OMEGA and non-igniting NIF implosions stagnate in com-

parable temperature ranges, we can examine this yield ratio

in an approximate fashion by allowing g¼ e¼ 0, and apply-

ing the Kulsrud limit gFF / T0.5 for both hydrogen and

carbon and the same temperature independence for gFB,

which is a better approximation near h�0¼ 10.85 keV used

in the NIF measurements than near h�0¼ 5.30 keV used in

the OMEGA experiments. This gives

Y�0

Yn

/ e�h�=kT

T4
1þ hZið Þ hZ2i þ 2

vH

kT

� �
gBF

gFF

hZ4i
	 


: (63)

The argument supporting the mix-mass estimates based on

measurements of this yield ratio in the NIF experiments is

that, according to an equation very much like Eq. (63), the

yield ratio is related directly to the charge averages, and con-

sequently to the mix atomic fractions

hZni ¼ 1þ 6n � 1ð Þ fCH

2
: (64)

Since the hydrogen and carbon are nearly fully ionized, the

ion charges are effectively fixed, and everything else is a

weak function of temperature.14 Based on the condition

given by Eq. (19) for n¼ 4, the leading factor of Eq. (63) is

independent of temperature for a range of temperatures cen-

tered at kT0 ¼ h�0=4 or kT0¼ 2.71 keV, which is almost

exactly the center of the range of temperatures, 1.7 keV< kT
< 3.9 keV given in Ref. 14 as the range of applicable source

temperatures. These NIF mix-mass measurements are

another example of how making x-ray measurements at an

appropriate spectral energy simplifies their analysis in a very

important way.

The contamination fractions measured on OMEGA at

the level of fCH¼ 2.4% to 4.8% are similar to the range of

mix fractions measured on the NIF.14 Given the obvious

dissimilarities between NIF indirect-drive implosions driven

by two orders of magnitude more laser energy than the

OMEGA direct-drive implosions, the similar mix fractions

become an interesting point of comparison for future consid-

eration. A few remarks will suffice for now. We note that the

NIF capsules are roughly twice the diameter of the OMEGA

capsules.38 Assuming naively that all characteristic lengths

and times of an implosion scale in direct proportion to the

initial capsule radius, i.e., if the experiments on the two

platforms were self-similar versions of each other, then the

material composition profiles should be self-similar as well.

Comparable mix fractions would result from shell perturba-

tion amplitudes growing to comparable fractions of the cap-

sule radius. For spherical-harmonic perturbation modes of

the same harmonic order, the perturbation wavelengths scale

with radius. The saturation amplitude, which is the point

where linear perturbation growth transitions to nonlinear

growth and, perhaps, turbulent mix, occurs at a specific ratio

of amplitude to wavelength.39 Since both the wavelengths

and the amplitudes scale in direct proportion to the capsule

radius, the transition to turbulence should be self-similar in

both series of implosions. No doubt, this self-similarity does

not apply to all aspects of an implosion.4 If mix is regarded

as a surface phenomenon, comparable mix masses per

volume indicate roughly twice the mix mass per shell area in

the NIF capsules than in the OMEGA targets since the

former have roughly twice the volume-to-surface-area ratio

as the latter. These tentative remarks do not identify which

series of implosions was more unstable or which of the two

mix fractions is larger, relative to expected performance,

but it is clear that mix measurements are now possible and

experimental progress in addressing these and other ques-

tions can be expected in the future.

VI. CONCLUSIONS

The scaling behavior of the x-ray emissivity of hydrogen

hot spots in ICF implosions has been examined. Using the

pressure- and temperature-dependence of x-ray continuum

emission, we have shown that the pressure can be inferred

from the emissivity measured within a specific spectral

energy range without requiring accurate prior knowledge of

the source temperature. This is significant because the pres-

sure is a key parameter characterizing an isobaric hot spot;8

it is a measure of the scaled-equivalent ignition performance

of an implosion; and it is an example of a quantity that can

be measured in direct or advantageous ways with spectral

responses that have been optimized to the task.

The scaling relationship between the photon and neutron

yields of OMEGA cryogenic implosions that has been

observed in simulation results and used to isolate excess

x-ray emission from low-adiabat implosions has been

explained. We have brought together x-ray emission and

neutron yield scaling results to produce the first estimates of

the fuel–shell mix mass in OMEGA implosions. The scaling

properties of both the x-ray emissivity at the chosen spectral

energy and the neutron yield allow one to normalize the

x-ray emission with respect to the scaled neutron yield so

that excess normalized emission becomes a measure of the

CH polymer mass from the shell that has mixed into the hot

spot during the implosion, up to the time of stagnation. It is a

matter of some interest that this neutron–photon scaling,
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which has gone unexplained in the past, is now understood.

It is of particular interest to the progress of cryogenic implo-

sion research on the OMEGA Laser System that we have

estimates of the mix mass. In a number of important respects,

this approach to mix-mass estimation is similar to that of the

x-ray continuum-based mix-mass measurements on the NIF.

It is interesting that both sets of measurements describe simi-

lar levels of mix contamination, and the implications of this

will be interesting to consider in the future.

ACKNOWLEDGMENTS

This material was based upon work supported by the

Department of Energy National Nuclear Security

Administration under Award No. DE-NA0001944, the

University of Rochester, the New York State Energy

Research and Development Authority, and the Office of

Fusion Energy Sciences No. DE-FG02-04ER54786. The

support of DOE does not constitute an endorsement by DOE

of the views expressed in this article.

1J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature 239, 139

(1972).
2J. D. Lindl, Phys. Plasmas 2, 3933 (1995); J. D. Lindl, P. Amendt, R. L.

Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O.

L. Landen, and L. J. Suter, ibid. 11, 339 (2004).
3S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam
Plasma Interaction, Hydrodynamics, Hot Dense Matter, International

Series of Monographs on Physics (Clarendon Press, Oxford, 2004).
4R. Nora, R. Betti, K. S. Anderson, A. Shvydky, A. Bose, K. M. Woo, A.

R. Christopherson, J. A. Marozas, T. J. B. Collins, P. B. Radha, S. X. Hu,

R. Epstein, F. J. Marshall, R. L. McCrory, T. C. Sangster, and D. D.

Meyerhofer, Phys. Plasmas 21, 056316 (2014).
5V. N. Goncharov, T. C. Sangster, R. Betti, T. R. Boehly, M. J. Bonino, T.

J. B. Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R. Epstein, R. K.

Follet, C. J. Forrest, D. H. Froula, V. Yu. Glebov, D. R. Harding, R. J.

Henchen, S. X. Hu, I. V. Igumenshchev, R. Janezic, J. H. Kelly, T. J.

Kessler, T. Z. Kosc, S. J. Loucks, J. A. Marozas, F. J. Marshall, A. V.

Maximov, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, D. T.

Michel, J. F. Myatt, R. Nora, P. B. Radha, S. P. Regan, W. Seka, W. T.

Shmayda, R. W. Short, A. Shvydky, S. Skupsky, C. Stoeckl, B. Yaakobi,

J. A. Frenje, M. Gatu-Johnson, R. D. Petrasso, and D. T. Casey, Phys.

Plasmas 21, 056315 (2014).
6P. T. Springer, C. Cerjan, R. Betti, J. A. Caggiano, M. J. Edwards, J. A.

Frenje, V. Yu. Glebov, S. H. Glenzer, S. M. Glenn, N. Izumi, O. Jones, G.

Kyrala, T. Ma, J. McNaney, M. Moran, D. H. Munro, S. Regan, T. C.

Sangster, S. Sepke, H. Scott, R. P. J. Town, S. V. Weber, and B. Wilson,

EPJ Web Conf. 59, 04001 (2013); C. Cerjan, P. T. Springer, and S. M.

Sepke, Phys. Plasmas 20, 056319 (2013).
7J. D. Lawson, Proc. Phys. Soc. London, B 70, 6 (1957).
8R. Betti, P. Y. Chang, B. K. Spears, K. S. Anderson, J. Edwards, M.

Fatenejad, J. D. Lindl, R. L. McCrory, R. Nora, and D. Shvarts, Phys.

Plasmas 17, 058102 (2010); S. H. Glenzer, D. A. Callahan, A. J.

MacKinnon, J. L. Kline, G. Grim, E. T. Alger, R. L. Berger, L. A.

Bernstein, R. Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, S. C.

Burkhart, R. Burr, J. A. Caggiano, C. Castro, D. T. Casey, C. Choate, D.

S. Clark, P. Celliers, C. J. Cerjan, G. W. Collins, E. L. Dewald, P.

DiNicola, J. M. DiNicola, L. Divol, S. Dixit, T. D€oppner, R. Dylla-Spears,

E. Dzenitis, M. Eckart, G. Erbert, D. Farley, J. Fair, D. Fittinghoff, M.

Frank, L. J. A. Frenje, S. Friedrich, M. Gatu Johnson, C. Gibson, E.

Giraldez, V. Glebov, S. Glenn, N. Guler, S. W. Haan, B. J. Haid, B. A.

Hammel, A. V. Hamza, C. A. Haynam, G. M. Heestand, M. Hermann, H.

W. Hermann, D. G. Hicks, D. E. Hinkel, J. P. Holder, D. M. Holunda, J. B.

Horner, W. W. Hsing, H. Huang, N. Izumi, M. Jackson, O. S. Jones, D. H.

Kalantar, R. Kauffman, J. D. Kilkenny, R. K. Kirkwood, J. Klingmann, T.

Kohut, J. P. Knauer, J. A. Koch, B. Kozioziemki, G. A. Kyrala, A. L.

Kritcher, J. Kroll, K. La Fortune, L. Lagin, O. L. Landen, D. W. Larson,

D. LaTray, R. J. Leeper, S. Le Pape, J. D. Lindl, R. Lowe-Webb, T. Ma, J.

McNaney, A. G. MacPhee, T. N. Malsbury, E. Mapoles, C. D. Marshall,

N. B. Meezan, F. Merrill, P. Michel, J. D. Moody, A. S. Moore, M. Moran,

K. A. Moreno, D. H. Munro, B. R. Nathan, A. Nikroo, R. E. Olson, C. D.

Orth, A. E. Pak, P. K. Patel, T. Parham, R. Petrasso, J. E. Ralph, H.

Rinderknecht, S. P. Regan, H. F. Robey, J. S. Ross, M. D. Rosen, R.

Sacks, J. D. Salmonson, R. Saunders, J. Sater, C. Sangster, M. B.

Schneider, F. H. S�eguin, M. J. Shaw, B. K. Spears, P. T. Springer, W.

Stoeffl, L. J. Suter, C. A. Thomas, R. Tommasini, R. P. J. Town, C.

Walters, S. Weaver, S. V. Weber, P. J. Wegner, P. K. Whitman, K.

Widmann, C. C. Widmayer, C. H. Wilde, D. C. Wilson, B. Van

Wonterghem, B. J. MacGowan, L. J. Atherton, M. J. Edwards, and E. I.

Moses, ibid. 19, 056318 (2012).
9T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H.

Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J.

Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P.

Verdon, Opt. Commun. 133, 495 (1997).
10H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University

Press, Cambridge, England, 1997).
11S. Yu. Gus’kov, O. N. Krokhin, and V. B. Rozanov, Nucl. Fusion 16, 957

(1976).
12R. Betti, M. Umansky, V. Lobatchev, V. N. Goncharov, and R. L.

McCrory, Phys. Plasmas 8, 5257 (2001).
13W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures,

Nucl. Fusion 41, 567 (2001); G. H. Miller, E. I. Moses, and C. R. Wuest,

Opt. Eng. 43, 2841 (2004); S. H. Glenzer, B. K. Spears, M. J. Edwards, E.

T. Alger, R. L. Berger, D. L. Bleuel, D. K. Bradley, J. A. Caggiano, D. A.

Callahan, C. Castro, D. T. Casey, C. Choate, D. S. Clark, C. J. Cerjan, G.

W. Collins, E. L. Dewald, J.-M. G. Di Nicola, P. Di Nicola, L. Divol, S. N.

Dixit, T. D€oppner, R. Dylla-Spears, E. G. Dzenitis, J. E. Fair, L. J. A.

Frenje, M. Gatu Johnson, E. Giraldez, V. Glebov, S. M. Glenn, S. W.

Haan, B. A. Hammel, S. P. Hatchett II, C. A. Haynam, R. F. Heeter, G. M.

Heestand, H. W. Herrmann, D. G. Hicks, D. M. Holunga, J. B. Horner, H.

Huang, N. Izumi, O. S. Jones, D. H. Kalantar, J. D. Kilkenny, R. K.

Kirkwood, J. L. Kline, J. P. Knauer, B. Kozioziemski, A. L. Kritcher, J. J.

Kroll, G. A. Kyrala, K. N. LaFortune, O. L. Landen, D. W. Larson, R. J.

Leeper, S. Le Pape, J. D. Lindl, T. Ma, A. J. Mackinnon, A. G. MacPhee,

E. Mapoles, P. W. McKenty, N. B. Meezan, P. Michel, J. L. Milovich, J.

D. Moody, A. S. Moore, M. Moran, K. A. Moreno, D. H. Munro, B. R.

Nathan, A. Nikroo, R. E. Olson, C. D. Orth, A. Pak, P. K. Patel, T.

Parham, R. Petrasso, J. E. Ralph, H. Rinderknecht, S. P. Regan, H. F.

Robey, J. S. Ross, J. D. Salmonson, C. Sangster, J. Sater, M. B. Schneider,

F. H. S�eguin, M. J. Shaw, M. J. Shoup, P. T. Springer, W. Stoeffl, L. J.

Suter, C. A. Thomas, R. P. J. Town, C. Walters, S. V. Weber, P. J.

Wegner, C. Widmayer, P. K. Whitman, K. Widmann, D. C. Wilson, B. M.

Van Wonterghem, B. J. MacGowan, L. J. Atherton, and E. I. Moses,

Plasma Phys. Control. Fusion 54, 045013 (2012).
14T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key, L. J. Atherton, L.

R. Benedetti, D. K. Bradley, D. A. Callahan, P. M. Celliers, C. J. Cerjan,

D. S. Clark, E. L. Dewald, S. N. Dixit, T. D€oppner, D. H. Edgell, R.

Epstein, S. Glenn, G. Grim, S. W. Haan, B. A. Hammel, D. Hicks, W. W.

Hsing, O. S. Jones, S. F. Khan, J. D. Kilkenny, J. L. Kline, G. A. Kyrala,

O. L. Landen, S. Le Pape, B. J. MacGowan, A. J. Mackinnon, A. G.

MacPhee, N. B. Meezan, J. D. Moody, A. Pak, T. Parham, H.-S. Park, J.

E. Ralph, S. P. Regan, B. A. Remington, H. F. Robey, J. S. Ross, B. K.

Spears, V. Smalyuk, L. J. Suter, R. Tommasini, R. P. Town, S. V. Weber,

J. D. Lindl, M. J. Edwards, S. H. Glenzer, and E. I. Moses, Phys. Rev.

Lett. 111, 085004 (2013).
15S. P. Regan, R. Epstein, B. A. Hammel, L. J. Suter, J. Ralph, H. Scott, M.

A. Barrios, D. K. Bradley, D. A. Callahan, C. Cerjan, G. W. Collins, S. N.

Dixit, T. Doeppner, M. J. Edwards, D. R. Farley, S. Glenn, S. H. Glenzer,

I. E. Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, J. D.

Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, T. Ma, J. J.

MacFarlane, R. C. Mancini, R. L. McCrory, N. B. Meezan, D. D.

Meyerhofer, A. Nikroo, K. J. Peterson, T. C. Sangster, P. Springer, and R.

P. J. Town, Phys. Plasmas 19, 056307 (2012); S. P. Regan, R. Epstein, B.

A. Hammel, L. J. Suter, H. A. Scott, M. A. Barrios, D. K. Bradley, D. A.

Callahan, C. Cerjan, G. W. Collins, S. N. Dixit, T. D€oppner, M. J.

Edwards, D. R. Farley, K. B. Fournier, S. Glenn, S. H. Glenzer, I. E.

Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, O. S. Jones, J.

D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, T. Ma, J. J.

MacFarlane, A. J. MacKinnon, R. C. Mancini, R. L. McCrory, N. B.

Meezan, D. D. Meyerhofer, A. Nikroo, H.-S. Park, J. Ralph, B. A.

Remington, T. C. Sangster, V. A. Smalyuk, P. T. Springer, and R. P. J.

Town, Phys. Rev. Lett. 111, 045001 (2013).

022707-15 Epstein et al. Phys. Plasmas 22, 022707 (2015)

http://dx.doi.org/10.1038/239139a0
http://dx.doi.org/10.1063/1.871025
http://dx.doi.org/10.1063/1.1578638
http://dx.doi.org/10.1063/1.4875331
http://dx.doi.org/10.1063/1.4876618
http://dx.doi.org/10.1063/1.4876618
http://dx.doi.org/10.1051/epjconf/20135904001
http://dx.doi.org/10.1063/1.4802196
http://dx.doi.org/10.1088/0370-1301/70/1/303
http://dx.doi.org/10.1063/1.3380857
http://dx.doi.org/10.1063/1.3380857
http://dx.doi.org/10.1063/1.4719686
http://dx.doi.org/10.1016/S0030-4018(96)00325-2
http://dx.doi.org/10.1088/0029-5515/16/6/007
http://dx.doi.org/10.1063/1.1412006
http://dx.doi.org/10.1088/0029-5515/41/5/309
http://dx.doi.org/10.1117/1.1814767
http://dx.doi.org/10.1088/0741-3335/54/4/045013
http://dx.doi.org/10.1103/PhysRevLett.111.085004
http://dx.doi.org/10.1103/PhysRevLett.111.085004
http://dx.doi.org/10.1063/1.3694057
http://dx.doi.org/10.1103/PhysRevLett.111.045001


16B. A. Hammel, H. A. Scott, S. P. Regan, C. Cerjan, D. S. Clark, M. J.

Edwards, R. Epstein, S. H. Glenzer, S. W. Haan, N. Izumi, J. A. Koch, G.

A. Kyrala, O. L. Landen, S. H. Langer, K. Peterson, V. A. Smalyuk, L. J.

Suter, and D. C. Wilson, Phys. Plasmas 18, 056310 (2011).
17S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960).
18R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed.

(McGraw-Hill, Boston, 2000).
19H. A. Kramers, Philos. Mag. 46, 836 (1923).
20J. A. Gaunt, Proc. R. Soc. London, A 126, 654 (1930).
21A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1966),Vol.

II, p. 664 ff.
22W. J. Karzas and R. Latter, Astrophys. J. Suppl. Ser. 6, 167 (1961).
23M. Nakagawa, Y. Kohyama, and N. Itoh, Astrophys. J. Suppl. Ser. 63, 661

(1987).
24F. Perrot, Laser Part. Beams 14, 731 (1996); V. N. Tsytovich, R. Bingham,

U. de Angelis, and A. Forlani, J. Quant. Spectrosc. Radiat. Transfer 57,

241 (1997).
25A. N. Cox, in Stars and Stellar Systems, edited by L. H. Aller and D. B.

McLaughlin, Stellar Structure, Vol. VIII (The University of Chicago

Press, Chicago, 1965), p. 195.
26B. F. Rozsnyai, Phys. Rev. A 43, 3035 (1991); S. Mazevet, L. A. Collins,

N. H. Magee, J. D. Kress, and J. J. Keady, Astron. Astrophys. 405, L5

(2003).
27S. X. Hu, L. A. Collins, V. N. Goncharov, T. R. Boehly, R. Epstein, R. L.

McCrory, and S. Skupsky, Phys. Rev. E 90, 033111 (2014).
28R. M. Kulsrud, Astrophys. J. 119, 386 (1954).
29F. J. Marshall and J. A. Oertel, Rev. Sci. Instrum. 68, 735 (1997).
30T. C. Sangster, V. N. Goncharov, R. Betti, P. B. Radha, T. R. Boehly, D.

T. Casey, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R.

Epstein, C. J. Forrest, J. A. Frenje, D. H. Froula, M. Gatu-Johnson, V. Yu.

Glebov, D. R. Harding, M. Hohenberger, S. X. Hu, I. V. Igumenshchev, R.

Janezic, J. H. Kelly, T. J. Kessler, C. Kingsley, T. Z. Kosc, J. P. Knauer, S.

J. Loucks, J. A. Marozas, F. J. Marshall, A. V. Maximov, R. L. McCrory,

P. W. McKenty, D. D. Meyerhofer, D. T. Michel, J. F. Myatt, R. D.

Petrasso, S. P. Regan, W. Seka, W. T. Shmayda, R. W. Short, A. Shvydky,

S. Skupsky, J. M. Soures, C. Stoeckl, W. Theobald, V. Versteeg, B.

Yaakobi, and J. D. Zuegel, Phys. Plasmas 20, 056317 (2013).
31J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L.

Henke, Phys. Rev. A 36, 3926 (1987).
32J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A.

Pereyra, High Energy Density Phys. 3, 181 (2007); Prism Computational

Sciences, Inc., Madison, WI 53711.
33G. A. Kyrala, S. Dixit, S. Glenzer, D. Kalantar, D. Bradley, N. Izumi, N.

Meezan, O. L. Landen, D. Callahan, S. V. Weber, J. P. Holder, S. Glenn,

M. J. Edwards, P. Bell, J. Kimbrough, J. Koch, R. Prasad, L. Suter, J. L.

Kline, and J. Kilkenny, Rev. Sci. Instrum. 81, 10E316 (2010); M. A.

Barrios, S. P. Regan, L. J. Suter, S. Glenn, L. R. Benedetti, D. K. Bradley,

G. W. Collins, R. Epstein, B. A. Hammel, G. A. Kyrala, N. Izumi, T. Ma,

H. Scott, and V. A. Smalyuk, Phys. Plasmas 20, 072706 (2013).
34H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).
35C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).
36L. Rayleigh, Proc. London Math Soc. XIV, 170 (1883); G. Taylor, Proc.

R. Soc. London Ser. A 201, 192 (1950); S. Chandrasekhar, in

Hydrodynamic and Hydromagnetic Stability, International Series of

Monographs on Physics (Clarendon Press, Oxford, 1961).
37J. C. Stewart and K. D. Pyatt, Jr., Astrophys. J. 144, 1203 (1966).
38S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B.

A. Hammel, L. J. Atherton, R. C. Cook, M. J. Edwards, S. Glenzer, A. V.

Hamza, S. P. Hatchett, M. C. Herrmann, D. E. Hinkel, D. D. Ho, H.

Huang, O. S. Jones, J. Kline, G. Kyrala, O. L. Landen, B. J. MacGowan,

M. M. Marinak, D. D. Meyerhofer, J. L. Milovich, K. A. Moreno, E. I.

Moses, D. H. Munro, A. Nikroo, R. E. Olson, K. Peterson, S. M. Pollaine,

J. E. Ralph, H. F. Robey, B. K. Spears, P. T. Springer, L. J. Suter, C. A.

Thomas, R. P. Town, R. Vesey, S. V. Weber, H. L. Wilkens, and D. C.

Wilson, Phys. Plasmas 18, 051001 (2011).
39S. W. Haan, Phys. Fluids B 3, 2349 (1991).

022707-16 Epstein et al. Phys. Plasmas 22, 022707 (2015)

http://dx.doi.org/10.1063/1.3567520
http://dx.doi.org/10.1080/14786442308565244
http://dx.doi.org/10.1098/rspa.1930.0034
http://dx.doi.org/10.1086/190063
http://dx.doi.org/10.1086/191177
http://dx.doi.org/10.1017/S0263034600010430
http://dx.doi.org/10.1016/S0022-4073(96)00121-5
http://dx.doi.org/10.1103/PhysRevA.43.3035
http://dx.doi.org/10.1051/0004-6361:20030759
http://dx.doi.org/10.1103/PhysRevE.90.033111
http://dx.doi.org/10.1086/145836
http://dx.doi.org/10.1063/1.1147688
http://dx.doi.org/10.1063/1.4805088
http://dx.doi.org/10.1103/PhysRevA.36.3926
http://dx.doi.org/10.1016/j.hedp.2007.02.016
http://dx.doi.org/10.1063/1.3481028
http://dx.doi.org/10.1063/1.4816034
http://dx.doi.org/10.1088/0029-5515/32/4/I07
http://dx.doi.org/10.1063/1.2746812
http://dx.doi.org/10.1112/plms/s1-14.1.170
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1086/148714
http://dx.doi.org/10.1063/1.3592169
http://dx.doi.org/10.1063/1.859603

	s1
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	s2
	d8
	d9
	d10
	d11
	f1
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	f2
	s3
	f3
	f4
	f5
	f6
	d21
	s4
	d22
	f7
	d23
	d24
	d25
	d26
	d27
	d28
	f8
	f9
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	d36
	d37
	s5
	f10
	f11
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	d45
	d46
	d47
	d48
	d49
	d50
	d51
	d52
	d53
	d54
	d55
	d56
	d57
	d58
	d59
	d60
	d61
	f12
	d62
	d63
	d64
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39

