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We review applications of Dyson-Schwinger equations at nonzero temperature,
T, and chemical potential, u, touching topics such as: deconfinement and chiral
symmetry restoration; the behaviour of bulk thermodynamic quantities; the (T, u)-
dependence of hadron properties; and the possibility of diquark condensation.

1 Introduction

Confinement and dynamical chiral symmetry breaking (DCSB) are conse-
quences of the little-understood long-range behaviour of the QCD interaction,
and developing a better understanding of that behaviour is a primary goal
of contemporary nuclear physics. It is a prodigious problem whose solution
admits many complementary strategies. Our approach is to apply a single
phenomenological framework to many observables, thereby identifying the uni-
fying qualitative features. Non-hadronic electroweak interactions are the best
observables to study because the probes, the photon and W, Z bosons, are
very well understood. Following such applications! we can infer consequences
for QCD at extremes of temperature and chemical potential.

Our tools of choice are the Dyson-Schwinger equations? (DSEs), which at
the simplest level provide a means of generating perturbation theory and are
an invaluable aid in proving renormalisability. However, our interest stems
from their essentially nonperturbative character. For example, the DSE for
the quark propagator is the QCD gap eguation. Its complete solution contains
all that is necessary to describe DCSB and yields insights into confinement,
both of which are absent at any finite order in perturbation theory. Further,
the Bethe-Salpeter equations (BSEs) are just another form of DSE and these
equations completely describe meson structure.

The formulation of the DSEs is straightforward but their solution is not.
The equation for a particular propagator or vertex (n-point) function involves
at least one m > n-point function; e.g., the gap equation whose solution is the
dressed-quark propagator (2-point function) involves the dressed-gluon propa-
gator, a 2-point function, and the dressed-quark-gluon vertex, a 3-point func-
tion. Thus in the DSEs we have a countable infinity of coupled equations and
a tractable problem is only obtained if we truncate the system. This has been
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an impediment to their application: a priori it can be difficult to judge the fi-
delity of a particular truncation scheme. However, with expanding community
involvement this barrier is being overcome as truncation schemes are explored
and efficacious ones developed.

2 Gap equation
The gap equation in QCD is the DSE for the quark propagator:
S¢(p)™ =iy -pAs(p°) + Bs(8°) = As(9°) (i - p + My (p?)) (1)
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is the dressed-gluon propagator (in Landau gauge, just to be concrete), I'/%(q, p)
is the dressed-quark-gluon vertex, m?”’ is the A-dependent bare f-quark current-

mass and [ A= f A d%q/(2m)* represents mnemonically a translationally- in-
variant reguqlarisation of the integral, with A the regularisation mass-scale. The
renormalisation constants for the quark-gluon-vertex, quark wave function and
mass: Zl (627 A2)’ Z2(C2’ A2) and Zm(g2a Az) = Z2(<27 A2)—1Z4(C21 A2)7 de-
pend on the renormalisation point, ¢, and the regularisation mass-scale. (The
renormalised current-quark mass is ms(¢) 1= Z,;'m5™.)

The qualitative features of the QCD solution of Eq. (2) are known. The chi-
ral limit is defined by /2 = 0, where 77 is the renormalisation-point-independent
current-quark mass, and for p?> > 20 GeV? the solution of Eq. (2) is®

M()(p2) largé—p2 27"2’)'177, (— (q-Q)O) - , (4)
> o e

where vm = 12/(33—-2N5) is the gauge-independent mass anomalous dimension
and (gq)° is the renormalisation-point-independent vacuum quark condensate.
The existence of DCSB means that {(Gg)° # 0, however, its actual value de-
pends on the long-range behaviour of D, (k) and I'%?(g, p), which is modelled
in contemporary DSE studies. Requiring a good description of light-meson
observables necessitates {Gg)? ~ —(0.24 GeV)3.

The momentum-dependence in Eq. (4) is a crucial, model-independent
result because it is the only behaviour consistent with the definition of the
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vacuum quark condensate as the trace of the chiral-limit quark propagator:?

A
~ (@)} = V. lim 2o A% [ Salk) ®)
-0 . k
Any model that generates
Mo(p®) ~p™*", n>1 - (6)

will yield {(Gg)? = 0 from the definition of the quark condensate.

Confinement is the absence of quark and gluon production thresholds in
colour-singlet-to-singlet S-matrix amplitudes. The absence of a Lehmann rep-
resentation for dressed-quark and -gluon propagators is sufficient to ensure
that2 Therefore the solution of Eq. (2) can also yield information about con-
finement, as shown clearly* for QED3.

Studies of Eq. (2) that employ a dressed-gluon propagator with a strong
infrared enhancement:® P(k2) ~ 1/k2, and hence without a Lehmann repre-
sentation, and I'{%(q, p) regular in the infrared? yield S(p) that also does not
have a Lehmann representation. Fine-tuning is not necessary. Such models
also easily account for DCSB,® with the correct value of {gq)°.

Contemporary DSE® and lattice” studies have reopened the possibility
that P(k?) ~ (k?)?, p < 1, for k* ~ 0; ie., of an infrared suppression.
The phenomenological consequences of this have been re-explored:® when that
P(k?) obtained in contemporary lattice simulations is used in Eq. (2) with an
infrared-regular dressed-quark-gluon vertex, DCSB does not occur and S(p)
has a Lehmann representation; i.e, there is no signal of confinement. The
P(k?) ~ (k?)P-form obtained in DSE studies can be made to support a nonzero
condensate via Eq. (2), however, its value is typically®1? only 7-30% of that
required to explain observed phenomena, and again S(p) does not exhibit signs
of confinement.?

3 Exploring QCD at nonzero T and u

The dressed-quark propagator at nonzero-(T, i) has the general form

1
Sr) = === - - — 7
2 17 - B A(Pr) + tvawes C(Pr) + B(Pr) ™
= =17 - Poa(Px) — tyawkt+ oc(Px) + o (Pr) (8)

41t is difficult to interpret particle-like singularities in coloured Schwinger functions in a
manner consistent with confinement.®




where we have omitted the flavour label, r = (,wr+), wkt+ = wr + ip and
wx = (2k + 1)7T, with k € Z, is the quark’s Matsubara frequency. The com-
plex scalar functions: A(p,@:), B(P,@) and C(P,&,) satisfy: F(P,an)” =
F(p,o—k-1), F = A,B,C, and although not explicitly indicated they are
functions only of |5]? and &?. The dependence of these functions on their ar-
guments has important consequences in QCD: it can provide an understanding
of quark confinement and is the reason why bulk thermodynamic quantities
approach their ultrarelativistic limits slowly. The nonzero-(T, 1) gap equation
is a straightforward generalisation® of Eq. (2) and the Landau gauge dressed-
gluon propagator has the general form

9°D,,(7,Q) = PL(5,0) Ar(5, Q) + PL(5) Ac(p,Q), 9)
. 0; pandforv =4,
PL@) =14, - %’29_; pv=i7j=123" (10)

with PT,(p) + PL,(p,ps) = 640 — Pubu /(T sy Paba)i v =1,...,4.

In studying the formation of a quark-gluon plasma, two transitions are im-
portant: deconfinement and chiral symmetry restoration. The simplest order
parameter for the chiral transition is

X(t,h) := Re Bo(F=0,a0); t:=£—1, h:= ES (11)
T. T
It is a general result that the zeroth Matsubara mode determines the character
of the chiral phase transition.

An order parameter for the deconfinement transition is realised® via the

Schwinger function:

1
272z

Apy(z,7=0):=T Y

n=—co

/0 " dpp sin(pz) oso(p,wn),  (12)

where we have set ¢ = 0 for illustrative simplicity. If o p,(p,w,) has complex
conjugate poles, y,, then: 1) it doesn’t have a Lehmann representation; and
2) Ap,(z,7 = 0) has zeros. The position of the first zero, 75'(t), is inversely
proportional to Im(y,). Thus

Ko(t) = 1/rg'(8), (13)

is a confinement order parameter because ko{t) — 0 as ¢t — 0~ indicates that a
temperature has been reached at which the poles have migrated to the real-p?
axis and the propagator has acquired a Lehmann representation. (This order
parameter can be generalised to qualitatively different functional realisations
of the absence of a Lehmann representation.)
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4 Locating the phase boundary in the (T, p)-plane

DSE models constrained at T = 0 = p can be used to estimate the location
of the phase boundary. The studies we review all use rainbow truncation:
T(gu;; Puwy) = Vv, which is the leading term in a 1/N_-expansion of the vertex;
and Landau gauge, with a dressed-gluon propagator characterised by

AF(pﬂk) = D(pﬂk;mg) ’ AG(pQ;.-) = D(pﬂk;o) ’ ‘ (14)
D(pay;my) = 21°D T80k 6°(5) + Dulparimy) (15)

pa, = (p,%), where D is a mass-scale parameter and Dym(pq,;my) may be
large in the vicinity of p3, = 0 but must be finite.

4.1 p=0,T,=7?
The model obtained with D = (8/9)mZ and

6 o 11— e_sﬂk/(‘lm?)

1
Du(pa,;me) = ‘9—7" _“——SQ ’ (16)
K

where sq, := p§_+ m2 [m2 = 87°T? is a gauge boson Debye mass|, yields
a finite-T" extension of a phenomenologically efficacious one-parameter model
dressed-gluon propagator.® The mass-scale m; = 0.69GeV = 1/0.29fm was
fixed by requiring a good description of 7- and p-meson properties at T = 0. At
a renormalisation point of { = 9.47 GeV, mg = 1.1 MeV yields m, = 140 MeV.
This model has coincident chiral symmetry restoration and deconfinement

transitions at
TX =0.15GeV =Tf° 17

with mean field critical exponents. Studies that employ the rainbow truncation
must give mean field critical exponents!! because contributions to the gap
equation that describe the effects of mesonic correlations, which are expected
to dominate near the transition temperature, can only arise as corrections to
the vertex. The behaviour of m, and f, is depicted in Fig. 1.

As a bona fide order parameter fr o (—t)'/2, which is illustrated by
the curve in Fig. 1. Hence, it follows from the pseudoscalar mass formula:3
f2mZ = 2mp((){gg)?, that m, diverges at the critical temperature; i.e.,
m, o (—t)~1/4, as illustrated. Qualitatively, these two observations indicate
that at T' = TX there is insufficient attraction in the pseudoscalar channel for
a bound state to form® and while correlations may persist above TX these are
properly identified as a continuum contribution to the pseudoscalar vertex.
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Figure 1: The pion mass and decay constant are independent of temperature for T < 0.77X.

42 T=0,p.=7

The difficulties encountered in numerical simulations of lattice-QCD at p # 0
are described in many contributions to this volume. In studies of the gap
equation it only means that the self energies are complex-valued functions.
The T = 0 version of the model in the previous section is obtained with

—[¥*/(4m])]
k2

1—-e

%2_73“2) = -156-7r2 4rm26% (k) + (18)

in Eq. (3). This model has'? coincident, first order deconfinement and chiral
symmetry restoring transitions at p. = 0.375 GeV, as measured by the location
of the zero in the y-dependent “bag constant”:!3 B(u). It is positive® when the
Nambu-Goldstone phase is dynamically favoured; i.e., has the highest pressure,
and becomes negative when the Wigner pressure becomes larger, which is why
}tc is the zero of B(u). To gauge the magnitude of u. we note that in a two-
flavour free-quark gas the baryon number density pp = 2u%/(3%?) so

pe =0.375GeV = piFTF =2.9pg, (19)

where pg = 0.16 fm™3. This may be compared with the central core density of
a 1.4Mg neutron star: 3.6-4.1pg, while 0.7y, corresponds to pg.

®The calculated value of B(0) = (0.104 GeV)* = 15 MeV /fm? is similar to that employed
in bag-like models.




In this model m, decreases slowly as p increases, with m,(0.7 ) /m-(0) =
0.94. At this point m, begins to increase although, for it < p., m.{(p) does not
exceed m(0), which precludes pion condensation. The behaviour of m, results
from mutually compensating increases in f2 and m({){dg)7- fr is insensitive to
¢ until g & 0.7 p., when it increases sharply so that fz(u)/fx(p = 0) = 1.25.
The relative insensitivity of m, and fr to changes in u, until very near g,
mirrors the behaviour of these observables at finite-T.° This study reveals an
anticorrelation between the p-dependence of f, and that of m,. '

43 T#0,u#0

This is a difficult problem and the most complete studies to date**'® employ
the simple Ansatz for the dressed-gluon propagator obtained with D = n?/2
and D(pg,;my) = 0 in Eq. (15), and the mass-scale 7 = 1.06 GeV fixed ¢ by
fitting #- and p-meson masses at T = 0. With this Ansatz the gap equation is

i 1y~ 1 o
S7Hp,wi) = S5 (B, @x) + 2772%5(1), GE)Ve 5 (20)

and an integral equation is reduced to an algebraic equation whose solution
exhibits many of the qualitative features of more sophisticated models.

In the chiral limit Eq. (20) reduces to a quadratic equation for B(f;), which
has two qualitatively distinct solutions. The Nambu-Goldstone solution, with

B(f)k) — {OV 772 — 451‘: H Re(ﬁk) < %2: , (21)

otherwise

2
27 Re(ﬁk) < %

Cpx) = / P ) ) 22
-;- (1 +.,/1+ 2_12 , otherwise (22)
P

describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(f), in the absence
of a current-quark mass; and 2) the dressed-quarks are confined, because the
propagator described by these functions does not have a Lehmann representa-
tion. The alternative Wigner solution, for which

~ . P 1 2,'.]2
k

describes a phase of the model with neither DCSB nor confinement.
Here the relative stability of the competing phases is measured by a (T, u)-
dependent bag constant:'* B(T,p). The line B(T,p) = 0 defines the phase
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boundary, and the deconfinement and chiral symmetry restoration transitions
are coincident. For g2 = O the transition is second order and the critical tem-
perature is T2 = 0.1597n = 0.17 GeV, just 12% larger than the value reported
in Sec. 4.1. For any p # 0 the transition is first-order and the T = 0 critical
chemical potential is u? = 0.3 GeV, ~ 30% smaller than the result in Sec. 4.2.

The quark pressure, P,, is easily calculated and P, = 0 in the confined
domain.!* However, this does not mean that the vacuum is unaffected by
changes in (T, p). On the contrary; e.g., in the models described above, the
condensate evolves with these changes, as it must because it is a dynamical
quantity. At each (T, 1) the properties of the hadronic excitations are calcu-
lated in the ewvolved vacuum and the modification of the quark-constituents’
propagation characteristics, which the condensate’s modification represents,
makes a significant contribution to the (T, 1)-dependence of those properties.

In the deconfined domain, Fy slowly approaches the ultrarelativistic, free
particle limit, Pyg, at large values of (T, pu); e.g., at T ~ 0.3 ~ 272, or
g ~n~ 3u, P, ~ 0.5 Pyr. This behaviour results from the persistence of mo-
mentum dependent modifications of the quark propagator into the deconfined
domain, as evidenced by C # 1 in Eq. (23), which also entails a “mirroring” of
finite-T" behaviour in the pu-dependence of the bulk thermodynamic quantities.

The (T, u)-dependence of vacuum and meson properties is easily calculated
in this model; e.g., the vacuum quark condensate is

—(c?q)|= p et :ZO/ dyy*Re (\/i—-yhcﬁ?) , (245

T =T/n, &= p/7; lnas is the la.rgest value of { for which @? < (1/4) + a?
and this also specifies w;,,,_, A2 = @7 ——w, , b= (7, & +w) At T=0= I,
(={qq)) = n*/(8073) = (0.119)3. Obv1ous from Eq. (24) is that (—(gq)) de-
creases continuously to zero with T but increases with g, up to a critical value
of p.(T) when it drops discontinuously to zero: just the behaviour reported
elsewhere.®12 That behaviour is a necessary consequence of the momentum-
dependence of the quark self energy, with the finite-(T', u) behaviour of observ-
ables determined by

Re(wl)? ~ [7°T2 - ), (25)

where d is the observable’s mass-dimension. This is confirmed in the chiral
limit expression

216N max

fi=

(1+4;12—4@,2—§I\,2) . (26)
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The anticipated combination p2 — w? appears and even without calculation it
is clear that fr will decrease with T and increase with pu.
The (T, p)-response of meson masses is determined by the ladder BSE

- 2 - - -
Ta (e P) = =2 Re {0 S + 2P T (5 P) SGi — 3 P)w} , - (27)

where Py := (P, ), with the bound state mass obtained by considering Py—o.
In this truncation the w- and p-mesons are degenerate.

The pion solution of this equation is 'y (Fp) = v5(¢61 + 7+ P 8,) and, con-
sistent with what we saw above, the mass is (T, s)-independent, until very near
the transition boundary.!® For the p-meson the solution has two components:
one longitudinal, 8, , and one transverse, 6,_, to B. Equation (27) yields an
eigenvalue equation for the bound state mass, M., and using the chiral-limit
solutions, Eq. (21), one finds immediately that

M?_ =9?/2, independent of T and p. (28)

Even for m # 0, M,_ changes by < 1% as (T, p) are increased from zero

toward their critical values. This insensitivity is consistent with the absence of

a constant mass-shift in the transverse polarisation tensor for a gauge-boson.
For the longitudinal component one obtains in the chiral limit:

1
M2, = 57;2 —4(p? - 7°T?). (29)

The combination u? — 7272 again indicates the anticorrelation between the
response of M, to T and its response to g, and, like a gauge-boson Debye
mass, that M 3_,_ rises linearly with T2 for ¢ = 0. The m # 0 solution for the
longitudinal component is semiquantitatively the same.

The BSE yields qualitatively the same behaviour for the ¢-meson. The
transverse component is insensitive to T and p, and the longitudinal mass,
My, increases with T and decreases with g. Using n = 1.06 GeV, My =
1.02GeV for m; = 180MeV at T =0 = p.

In a 2-flavour, free-quark gas at T' = 0 nuclear matter density corresponds
to p = po := 260 MeV = 0.245 7 and the algebraic model yields

M,,.,.(,uo) ~ 0.75Mp+([.t = 0) s M¢+(p,g) ~ 0.85M¢+([J, = 0) . (30)

Section 4.2 indicates that a better representation of the ultraviolet behaviour
of D,,, (k) increases the critical chemical potential by 25%. This suggests that
a more realistic estimate is obtained by evaluating the mass at py = 0.207,
which yields

Mpi (1) = 0.85Mp1 (1 =0) , Myi(pp) = 0.90My(p=0);  (31)
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a small, quantitative modification. The difference between Eqgs. (30) and (31) is
a measure of the theoretical uncertainty in the estimates in each case. Pursuing
this suggestion further, 4 = $/2 pf, corresponds to 2p9, at which point M4+ =
M, = 0.72M,(p = 0) and My, =~ 0.85 My, (p = 0), while at the T =0
critical chemical potential, which corresponds to approximately 3p, in Sec. 4.2,
Mw+ = Mp+ ~ 0.65 Mp+(/l = 0) and M¢+ ~ 080M¢+(ﬂ = 0). These are the
maximum possible reductions in the meson masses.

5 Diquark condensation

A direct means of exploring the possibility that SU(V.) gauge theories might
support scalar diquark condensation is to study the gap equation satisfied by

- S(p)~1 AN PN, T
S :z( A¥(p)A, 7295 C(S(=p) ’%f) (32)

where S(p)~! = iv-pA(p?) + B(p?), {\i,i=1...d, d. = N.(N.—1)/2} are
the antisymmetric generators of SU(N,.), C = 727, is the charge conjugation

matrix, and here we consider SU(N; = 2). S(p)~! is a matrix in the space of
quark bispinors:

— @Y Ay e L (a0 5
Q)= 2 ( . (“;)) Q@) = 7 (32) (), (33)
gc := —3§C, . := q* C. The gap equation is
S =S+ (500 e er) O

where So(p)~! = diag(iy - p + m,C(—iv - p+ m)TCT) and the form of Z(p);; -
specifies the theory and its truncation. This approach avoids a truncated
bosonisation, which in all but the simplest models is a procedure difficult to
improve systematically and prone to yielding misleading results.

SU(V. = 2): Using the rainbow truncation and a Feynman-like gauge for illus-
trative simplicity, the T = 0 = u gap equation in this theory yields

A 2
P -0 =3 [ #Dw-Rp-kg), (35)
A
56" -m=[3) [ 9Dt -0 L), (36)
2w = [ #po-0 5%, (37)
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where d(p?) = p? A(p?)? + B(p?)? + A(p?)?, and the pseudo-reality of SU(2) is
responsible for the identical couplings in Egs. (36) and (37). Clearly, form =0
the theory admits degenerate and indistinguishable quark and (colour-singlet)
diquark condensates. This result is valid independent of the truncation and
gauge, and is just one of the manifestations of Pauli-Giirsey symmetry. Simi-
larly, mesons and baryons, which are diquarks in SU(N, = 2), are degenerate.!”
The phase structure of this theory at nonzero-(7, i) can certainly be very rich.

SU(N. = 3): In this case the interesting possibility is the existence of a colour
antitriplet diquark condensate: {A%}i=123 = {}%,A%,A7}. Choosing the con-
densate to point in the A} -direction, the bispinor propagator separates into two
pieces, one parallel and the other perpendicular to the condensate’s direction:

5:1(—15)"115 S( - lA‘(p)A1 NTFs g

-1 . 1\—D

S)™ = -Al(P)IATis O lsn("P) I3 0 (38)
0 0 0 Si(-p)7*

Here, since

STIE o 1
” 2 -]_ z ._1 8 . _.1
( 0 SIl) =1 (33" +35¢) \/3,\ (s" ST ) (39)

the A*SA¢ interaction in the gap equation couples the parallel and perpendic-
ular components. In rainbow truncation and using a Feynman-like gauge, the
gap equation yields

(40)

A (k?) s A”(kz)]

P4(p*)-1) = /AgzD(p—k)p-k [ 5
k dJ_(kz) 3 d" (k2)

6 -1 = [ #De-np-k [325E) o2
R SN 1 11 .
I DN S

2 =4 [ o-1 55, (44

dy(P*) = p* A (P*)* + By (p*)? + (A1 (p?))? and d o (p?) = P AL (p*)* + BL(p?)%.
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The class of models hitherto applied in exploring diquark condensation®
can be characterised as those in which [dQ4p-kD(p — k) = 0. In this class
Ay = Ay =1 and when B = B, = 0, which is always a solution, A! # 0 if
the coupling is large enough. Hence such restricted models admit a rich phase
structure at nonzero-(T, u) because the || 43 L coupling is eliminated.

However, if one includes the next order contribution to the kernel of the
gap equation, the picture can change. One study!® suggests that in that case,
even without the || 3 L coupling, A! = 0 is the only solution at T = 0 = p.
The effect at nonzero-(T, u) of correcting the kernel has yet to be investigated
but this result signals a need for caution in making inferences about the phase
structure of QCD based on the rainbow-like truncation of this class of models.

The more general class of models in which [dQp-kD(p—k) # 0 can be
exemplified by the confining model introduced in Sec. 4.3. In that case, if we
consider By = B, =0, the gap equation is solved with

PPA (0 + (A () = oo (45)

1
2

and (setting n° — 1)

407 =L (T+3v0+2/7), AL = (3+V0+2/F).  (46)

However, inserting the result for A (p?) into Eq. (45) yields (AY(p?))?> < 0
for all p?; i.e,, A}(p?) = 0, even in the rainbow truncation. Thus diquark
condensation at T = 0 = p is blocked by the || 4L coupling. We expect
that this conclusion will be reinforced if the kernel is improved.2® The effect
of p # 0 has not yet been explored but this result too advocates caution
in making inferences about the phase structure of QCD based on the simple
models hitherto employed.

6 Epilogue

Hadron observables are insensitive to the behaviour of the interaction at p® <
AéCD and the rainbow truncation of the gap equation is quantitatively reliable
for p?> 2 1 GeV2. Thus the model dependence in our approach is contained in
an apparently small domain. However, as illustrated by the material presented
in this volume, even that small domain of uncertainty admits a large variety
of possibilities; although apparently distinct Ansdtze may really be different
realisations of the same phenomena. It is also a crucial domain, covering
that in which mesonic correlations (vertex corrections) can influence quark
propagation characteristics, an effect that may become qualitatively important
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as the phase boundary is approached. Much has been achieved in localising the
model-dependence but more must be done to further ameliorate it. Discussions
of the type represented by this volume are crucial to that endeavour.
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