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an impediment to their application: a priori it can be difficult to judge the fi-
delity of a particular truncation scheme. However, with expanding community
involvement this barrier is being overcome as truncation schemes are explored
and efficacious ones developed.

2 Gap equation

The gap equation in QCD is the DSE for the quark propagator:

Sj(p)-l ,=

=

D,.(k) =

i7 .pAf(p2) + Bf(p2) = Aj(p2) (i-y p+ Mf (p2)) (1)

/

A

zz(i~ . p + 7.7$”) +21 9@.(p – 9) $ypsf(wp(d, (2)
9

(3)

is the dressed-gluon propagator (in Landau gauge, just to be concrete), r~(q, p)
is the dressecl-quark-gluon vertex, m~m is the A-dependent bare f-quark current-

mass and ~A
1

:= JA d4q/(27r)4 represents mnemonically a translationally- in-
variant regu arisation of the integral, with A the regularisation mass-scale. The
renormalisation constants for the quark-gluon-vertex, quark wave function and
mass: Z1(<2, A2), Z2(~2, A2) and- Z~(<z, A2) := Z2(&, A2)–1Z4(~2, A2), de-
pend on the renormalisation point, <, and the regularisation mass-scale. (The
renormalised current-quark mass is mf (~) := Z;lm~m.)

The qualitative features of the QCD solution of Eq. (2) are known. The chi-
ral limit is defined by fi = O, where m is the renormalisation-point-independent
current-quark mass, and for p2 >20 GeV2 the solution of Eq. (2) is3

2 larg~-p’ 27r2’ym
Mo(p ) —

(- (ml)”)
3

“ (2+2/Ad)l-7m‘
(4)

where -y~ = 12/(33 –2iVf ) is the gauge-independent mass anomalous dimension
and (ijq)” is the renormalisation-point-independent vacuum quark condensate.
The existence of DCSB means that (ijq)” # O, however, its actual value de-
pends on the long-range behaviour of Dv.(k) and 17~(q, p), which is modelled
in contemporary DSE studkx. Requiring a good description of light-meson
observable necessitates (~q)” = – (0.24 GeV)3.

The momentum-dependence in Eq. (4) is a crucial, model-independent
result because it is the only behaviour consistent with the definition of the
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vacuum quaxk condensate as the trace of the chiral-limit quark propagator:3

J-(Z/)!= N. *\m’&.Z(<2,A2)tr~ ASo(k).
k

(5)

Any model that generates

Mo(pz) - p-2”, n >1 (6)

will yield (~q)~ = O from the definition of the quark condensate.
Confinement is the absence of quark and gluon production thresholds in

coIour-singlet-to-singlet $-matrix amplitudes. The absence of a Lehmann rep-
resentation for dressed-quark and -gluon propagators is sufficient to ensure
that ?- Therefore the solution of Eq. (2) can also yield information about con-
finement, as shown clearly4 for QED3.

Studies of Eq. (2) that employ a dressed-gluon propagator with a strong
infrared enhancement:5 P(k2) N l/k2, and hence without a Lehmann repre-
sentation, and I’~” (q, p) regular in the infrared: yield S(p) that also does not
have a Lehmann representation. Fine-tuning is not necessary. Such models
also easily account for DCSB,3 with the correct value of {~q)”.

Contemporary DSEG and lattice 7 studies have reopened the possibility
that P(k2) - (k2)P, p ~ 1, for k2 = O; i.e., of an infrared suppression.
The phenomenological consequences of this have been re-explored:g when that
T(k2) obtained in contemporary lattice simulations is used in Eq. (2) with an
infrared-regular dressed-quark-gluon vertex, DCSB does not occur and S(p)
has a Lehmann representation; i.e, there is no signal of confinement. The
P(k2) * (k2)P-form obtained in DSE studies can be made to support a nonzero
condensate via Eq. (2), however, its value is typicallyG~10only 7-30% of that
required to explain observed phenomena, and again S(p) does not exhibit signs
of confinement.8

3 Exploring QCD at nonzero T and p

The dressed-quark propagator at nonzero-(Z’, p) has the general form

1
S(jik) = .+ (7)

Z’Y-~A(j~) + iY@k+ C(fi) + B(jk) ‘

= ’27. ~~A (fi~) – iy@k+ (7C(fik) + @B(fik), (8)

a It is difficult to interpret particle-like singularities in coloured Schwinger functions in a
manner consistent with confinement.8
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where we have omitted the flavour label, fi~ = @“,w~+), Wk+ = w~ + @ and
tik = (2k + l)TT, with k c Z, is the quark’s Matsubara frequency. The com-
ph3X scalar functions: A(F, tik), ~(~, dk) and C(~, ti~) satisfy: fi~~ ~~)” =
~(fi &&l), ~ = A, l?, C’, and although not explicitly indicated they are
functions only of lf12 and G;. The dependence of these functions on their ar-
guments has important consequences in QCD: it can provide an understanding
of quark confinement and is the reason why bulk thermodynamic quantities
approach their ultrarelativistic limits slowly. The nonzero-(T, ~) gap equation
is a straightforward generalisationg of Eq. (2) and the Landau gauge dressed-
gluon propagator has the general form

92qw(lz Q) =

P;V(p):=

(9)

{

o; p and/or v = 4,

b~j -~; p,v=i, j=l,2,3 ‘ (lo)

with PP~v(p)+ F’fv(p, p4) = 6P~—pPpv/(~~E1 PaPa)i /4 ~ = lJ. -”>4“
In studying the formation of a quark-gluon plasma, two transitions are im-

portant: reconfinement and cliral symmetry restoration. The simplest order
parameter for the chhl transition is

A’(t, h) := ReBO@”= O,fro); t := ~ – 1, h := ~. (11)
c

It is a general result that the zeroth Matsubara mode determines the character
of the chiral phase transition.

An order parameter for the reconfinement transition is realisedg via the
Schwinger function:

w

JABO(X, T = O) := T ~ ~ m dpp sin(px) aBO(p, Un),
~=_m 2X2X ~

(12)

where we have set p = O for illustrative simplicity. If OBO(p, Wn) has complex
conjugate poles, yP, then: 1) it doesn’t have a Lehmann representation; and
2) ABO(x, -r = O) has zeros. The position of the first zero, ?$ (t), is inversely
proportional to Im(yP). Thus

~(t) := 1/?-;1 (t), (13)

is a confinement order parameter because K.(t) + Oas t + 0– indicates that a
temperature has been reached at which the poles have migrated to the real-p2
axis and the propagator has acquired a Lehmann representation. (This order
parameter can be generalised to qualitatively different functional realisations
of the absence of a Lehmann representation.)
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4 Locating the phase boundary in the (T, ~)-plane

DSE models constrained at T = O = p can be used to estimate the location
of the phase boundary. The studies we review all use rainbow truncation:

r.(g., ;I@) = v., which is the leading term in a l/Nc-expansion of the vertex;
and Landau gauge, with a dressed-gluon propagator characterised by

PQ, = (p,~k), where D is a m=s-scale P==neter and DM(P%; %) may be

large in the vicinity of p;, = O but must be finite.

4.1 p= O, Tc=?

The model obtained with D = (8/9)m~ and

(16)

where sn~ := p~~ + m; [m; = 8 m2T2 is a gauge boson Debye mass], yields
a finite-T extension of a phenomenologically efficacious one-parameter model
dressed-gluon propagator. 9 The mass-scale mt = 0.69 GeV = 1/0.29 fm was
fixed by requiring a good description of K- and p-meson properties at T = O. At
a renormalisation point of ( = 9.47 GeV, mR = 1.1 MeV yields mr = 140 MeV.

This model has coincident chiral symmetry restoration and reconfinement
transitions at

T~ = 0.15GeV = T? (17)

with mean field critical exponents. Studies that employ the rainbow truncation
11 because contributions to the gapmust give mean field critical exponents

equation that describe the effects of mesonic correlations, which are expected
to dominate near the transition temperature, can only arise as corrections to
the vertex. The behaviour of mx and ~r is depicted in Fig. 1.

As a bona -fide order parameter f~ w (–t)l/2, which is illustrated by
the curve in Fig. 1. Hence, it follows from the pseudoscalar mass formula:3

j: m: = 2 mR(~)(@?)~, that mm diverges at the critical temperature; i.e.,
mn w (–t)–1/4,as illustrated. Qualitatively, these two observations indicate
that at T = T~ there is insufficient attraction in the pseudoscalar channel for
a bound state to formg and while correlations may persist above T$ these are
properly identified as a continuum contribution to the pseudoscalar vertex.
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Figure 1: The pion mass and decay constant are independent of temperature for T S 0.7T3.

4.2 T=o, pc=?

The difficulties encountered in numerical simulations of lattice-QCD at p # O
are described in many contributions to this volume. In studies of the gap
equation it only means that the self energies are complex-valued functions.
The T = O version of the model in the previous section is obtained with

[
; P(F) := :7r2 47r2m:c$4(k) +

1 _ e–[kz /(4~;)l
k2 1 (18)

in Eq. (3). Thk model has12 coincident, first order reconfinement and chiral
symmetry restoring transitions at p= = 0.375 GeV, as measured by the location
of the zero in the p-dependent “bag constant” :13 B(p). It is positiveb when the
Nambu-Goldstone phase is dynamically favoured; i.e., has the highest pressure,
and becomes negative when the Wigner pressure becomes larger, which is why
AC is the zero of B(p). To gauge the magnitude of p= we note that in a two-
flavour free-quark gas the baryon number density pB = 2p3/(3m2) so

PC = 0.375 GeV * p~’+dF = 2.9po, (19)

where p. = 0.16 fm–3. Thk may be compared with the central core density of
a 1.4iYlo neutron star: 3.6-4 .1po, while 0.7pc corresponds to p..

bThe ~~culated value of B(O) = (0.104 GeV)4 = 15 MeV/fm3 is similar to that employed

in bag-like models.
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In this model m. decreases slowly as p increases, with m.(0.7 pc)/m=(0) N
0.94. At this point m= begins to increase although, for p < p., m.(p) does not
exceed m%(0), which precludes pion condensation. The behaviour of mz results
from mutually compensating increases in ~~ and m(~) (@~. ~mis insensitive to

p until p x 0.7 PC, when it increases sharply so that ~r(pz)/.fx(p = O) = 1.25.
The relative insensitivity of mr and tr to changes in p, until very near PC,
mirrors the behaviour of these observable at finite-T.g This study reveals an
anticorrelation between the p-dependence of fr and that of mr.

4.3 T#O, p#O

This is a difficult problem and the most complete studies to date14J5 employ
the simple Ansatz for the dressed-gluon propagator obtained with D = T72/2
and D(p~~; mg) s O in Eq. (15), and the mass-scale o = 1.06 GeV fixed 16 by
fitting r- and p-meson masses at T = O. With this Ansatz the gap equation is

S–1(P, Q) = S;l(F, a) + )i’%.s(fz w-b; (20)

and an integral equation is reduced to an algebraic equation whose solution
exhibits many of the qualitative features of more sophisticated models.

In the chiral limit Eq. (20) reduces to a quadratic equation for ll(j~), which
has two qualitatively distinct solutions. The Narnbu-Goldstone solution, with

(21)

describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(@k), in the absence
of a current-quark mass; and 2) the dressed-quarks are confined, because the
propagator described by these functions does not have a Lehmann representa-
tion. The alternative Wigner solution, for which

(23)

describes a phase of the model with neither DCSB nor confinement.
Here the relative stability of the competing phases is measured by a (T, ,u)-

dependent bag constant: 14 L3(T,p). The line 23(T,p) = O defines the phase
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boundary, and the reconfinement and chiral symmetry restoration transitions
are coincident. For p = O the transition is second order and the critical tem-
perature is T: = 0.159 v = 0.17 GeV, just 12% larger than the value reported
in Sec. 4.1. For any p # O the transition is first-order and the T = O critical

0 – 0.3 GeV, s 30’% smaller than the result in Sec. 4.2.chemical potential is Kc –
The quark pressure, Pq, is easily calculated and l?~ s O in the confined

domain.14 However, this does not mean that the vacuum is unaffected by
changes in (T, p). On the contrary; e.g., in the models described above, the
condensate evolves with these changes, aa it must because it is a dynamical
quantity. At each (T, p) the properties of the hadronic excitations are calcu-
lated in the evolved vacuum and the modification of the quark-constituents’
propagation characteristics, which the condensate’s modification represents,
makes a significant contribution to the (2’, p)-dependence of those properties.

In the reconfined domain, F’~ slowly approaches the ultrarelativistic, free
particle limit, ~uR, at large values of (T, p); e.g., at T - 0.3 q * 2T~, or

P-v-3P:>pq & 0.5 RR. This behaviour results from the persistence of mo-
mentum dependent modifications of the quark propagator into the reconfined
domain, as evidenced by C ~ 1 in Eq. (23), which also entails a “mirroring” of
finite-T behaviour in the p-dependence of the bulk thermodynamic quantities.

The (T, p)-dependence of vacuum and meson properties is easily calculated
in this model; e.g., the vacuum quark condensate is

~ = T/q, ji = p/q; l~.= is the largest value of 1 for which ti~~= S (1/4) +$2
and this also specifies Ulma=,AZ = G;max_~f,~l=(~,til+i@. At T= O=p,

(-(~q)) = q3/(80 m’) = (0.11 q)’. Obvious from Eq. (24) is that (-(qq)) de-
creases continuously to zero with T but increases with p, up to a critical value
of pC(T) when it drops discontinuously to zero: just the behaviour reported
elsewhere.g~l’ That behaviour is a necessary consequence of the momentum-
dependence of the quark self energy, with the finite-(T, y) behaviour of observ-
able determined by

Re(wfil)~ N [T2T2 - p2]’ , (25)

where d is the observable’s mass-dimension. This is confirmed in the chiral
limit expression

8



The anticipated combination p2 – w; appears and even without calculation it
is clear that j. will decrease with T and increase with p.

The (T, p)-response of meson masses is determined by the ladder BSE

where P~ := (~, Qt), with the bound state mass obtained by considering Pt=o.
In this truncation the w- and &mesons are degenerate.

The pion solution of this equation is I’m(Po) = -y5(z81+ ~. ~02) and, con-
sistent with what we saw above, the mass is (T, p)-independent, until very near
the transition boundary. 15 For the p-meson the solution has two components:
one longitudinal, f3P+,and one transverse, 9P–, to ~. Equation (27) yields an
eigenvalue equation for the bound state mass, MP+, and using the chiral-limit
solutions, Eq. (21), one finds immediately that

M~_ = 72/2, independent of T and p. (28)

Even for m # O, MP– changes by < 1% as (T, p) are increased from zero
toward their critical values. This insensitivity is consistent with the absence of
a constant mass-shift in the transverse polarisation tensor for a gauge-boson.

For the longitudinal component one obtains in the chiral limit:

M:+ = &2 – 4(P2 – T2T2) . (29)

The combination p2 – X2T2 again indicates the anticorrelation between the
response of MP+ to T and its response to p, and, like a gauge-boson Debye
mass, that M;+ rises linearly with T2 for ~ = O. The m # O solution for the
longitudinal component is semiquantitatively the same.

The BSE yields qualitatively the same behaviour for the @meson. The
transverse component is insensitive to T and p, and the longitudinal mass,
M++, increases with T and decreases with p. Using q = 1.06 GeV, M@+ =
1.02 GeV for m. = 180 MeV at T = O = p.

In a 2-flavour, free-quark gas at T = O nuclear matter density corresponds
to p = PO := 260 MeV = 0.245 q and the algebraic model yields

MP+(vO) w 0.75MP+(p = O) , M@+(po) x 0.85M@+(p = O) . (30)

Section 4.2 indicates that a better representation of the ultraviolet behaviour
of DNV(k) increases the critical chemical potential by 25Y0. This suggests that
a more realistic estimate is obtained by evaluating the mass at p: = 0.20 q,
which yields

MP+(p&) x 0.85 MP+(y = O) , M@+ (p:) x 0.90M@+(p = O) ; (31)

9



a small, quantitative modification. The difference between Eqs. (30) and (31) is
a measure of the theoretical uncertainty in the estimates in each case. Pursuing
this suggestion further, p = ~2 p~, corresponds to 2%, at which point Mw+ =
MP+ s 0.72 MP+(/J = O) and M4+ % 0.85 Md+(p = O), while at the T = O
critical chemical potential, which corresponds to approximately 3p. in Sec. 4.2,
Mu+ = M@+ = 0.65 Mp+(/J = 0)
maximum possible reductions in

5 Diquark condensation

and M++ s 0.80 M@+ (p = O). These are the
the meson masses.

A direct means of exploring the possibility that SU(NC) gauge theories might
support scalar dlquark condensation is to study the gap equation satisfied by

S(p)-1 := ( S(p)-1 di(p)~~ ~f 75

)–Ai(p)A~ ~f 75 C(S(–p)-l)TCf ‘
(32)

where S(p)-l = i-y .pA(p2) +B&), {Ax, i = 1.. .dc, d= = IV=(NC– 1)/2} are
the antisymmetric generators of SU(NC), C’ = ~2~4 is the charge conjugation
matrix, and here we consider SU(Nf = 2). ~(p)’1 is a matrix in the space of
quark bispinors:

()Q(z) :=;‘);j ,Q(z) :=; (q(z) fjc(fc) ) ,

qc:= –ijc’, g= := qT C. The gap equation is

( )S(p)-1 = so(p)-l + ;$;::cx:~;;flct ,

(33)

(34)

where So(p)–l = diag(i~ . p + m, C(–iV - p + m)TCt) and the form of Z(p)ij
specifies the theory and its truncation. This approach avoids a truncated
bosonisation, which in all but the simplest models is a procedure difficult to
improve systematically and prone to yielding misleading results.

SU(NC = 2): Using the rainbow truncation and a Feynman-like gauge for illus-
trative simplicity, the T = O = p gap equation in this theory yields

A(k2)
p2(A(p2) – 1) = ; ~Ag2D(p–k)p-k-,

k

J
A

B(p2) – m = ❑ B(k2)
g2D(p – ‘) d(kz) ,

k

I

A

A(p2) = ❑ g2D(p-k)~,
k

(35)

(36)

(37)
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where d(p2) = I#A(p2)2 + B@)2 + A(p2)2, and the pseudo-reaMy of SU(2) is
responsible for the identical couplings in Eqs. (36) and (37). Clearly, for m = O
the theory admits degenerate and indistinguishable quark and (colour-singlet)
dlquark condensates. This result is valid independent of the truncation and
gauge, and ia just one of the manifestations of Pauli-Gursey symmetry. Simi-
larly, mesons and baryons, which are diquarks in SU(NC = 2), are degenerate.17
The phase structure of this theory at nonzero-(T, ~) can certainly be very rich.

SU(NC = 3): In this case the interesting possibility is the existence of a colour

antitriplet diquark condensate: {A\ }iz1,2,3 = {22, J5, A7}. Choosing the con-
densate to point in the ~~-direction, the bispinor propagator separates into two
pieces, one parallel and the other perpendicular to the condensate’s direction:

s(p,-l:= (~). (38,

Here, since

(s~;’’:l) =13(:s~,+;si1)+ *A,(s~l-sil), ,39)

the J=SA’ interaction in the gap equation couples the parallel and perpendic-
ular components. In rainbow truncation and using a Feynman-like gauge, the
gap equation yields

[

AL(k2) 5 All(~2)p2(All(p2) – 1) = ~Ag2D(p– k)p-k = + -—
k 13 d,, (W) ‘

[

2 AL(k2) All(k2) 1p2(AL(p2) – 1) = ~Ag2D(p– k)p-k F- +2m ,

/

A

[

Bl(k2) 10~11(~2)
~ll(P2)–~= ~ 92~(P–k) 2=+–— 13 dil(kz) ‘

/

A
13~(p2) – m =

[

4 B1 (k2) Bll(k2)
g2D(p– k) ;= +4—

k 1d,,(k2) ‘

/
A1(P2) = ~ ‘g2D(p– k)m

3k dll(k2) 7

(40)

(41)

(42)

(43)

(44)

~11(P2)= P2AII(P2)2+BII(P2)2 + (Al (p2))2 and dL(p2) = p2AL(p2)2 + BL(p2)2.

11
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The class of models hitherto applied in exploring diquark condensation18
can be characterised as those in which J dQ4 p. k D(p – k) = O. In this class
All = AL s 1 and when Bll = BL s O, which is always a solution, Al # O if
the coupling is large enough. Hence such restricted models admit a rich phase
structure at nonzero-(T, p) because the IIt+L coupling is eliminated.

However, if one includes the next order contribution to the kernel of the
gap equation, the picture can change. One studylg suggests that in that case,
even without the II+1 coupling, Al s O is the only solution at T = O = p.
The effect at nonzero-(T, p) of correcting the kernel has yet to be investigated
but this result signals a need for caution in making inferences about the phase
structure of QCD based on the rainbow-like truncation of this class of models.

The more general class of models in which ~ d~~ p. k D(p – k) # O can be
exemplified by the confining model introduced in Sec. 4.3. In that case, if we
consider Bit = l?l = O, the gap equation is solved with

P2All(P2)2+ (Al(p2))2 = :q2 (45)

and (setting q2 + 1)

AII(P2) = ; (7 + 3~w) , IL(P2) = ; (3 + ~W) . (46)

However, inserting the result for All(p2) into Eq. (45) yields (Al (&))2 ~ O
for all ~; i.e., Al (p2) s O, even in the rainbow truncation. Thus diquark
condensation at T = O = p is bIocked by the II +1 coupling. We expect
that this conclusion will be reinforced if the kernel is improved.20 The effect
of p # O has not yet been explored but this result too advocates caution
in making inferences about the phase structure of QCD based on the simple
models hitherto employed.

6 Epilogue

Hadron observable are insensitive to the behaviour of the interaction at # <
A&D and the rainbow truncation of the gap equation is quantitatively reliable

for p2 z 1 GeV2. Thus the model dependence in our approach is contained in
an apparently small domain. However, as illustrated by the material presented
in this volume, even that small domain of uncertainty admits a large variety
of possibilities; although apparently dktinct Anstitze may really be different
realisations of the same phenomena. It is also a crucizd domain, covering
that in which mesonic correlations (vertex corrections) can influence quark
propagation characteristics, an effect that may become qualitatively important
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as the phase boundary is approached. Much has been achieved in localizing the
model-dependence but more must be done to further ameliorate it. Discussions
of the type represented by this volume are crucial to that endeavour.
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