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Abstract: One major challenge in constructing a dielectric
loaded traveling wave accelerator powered by an external
rf power source is the difficulty in achieving effcient
coupling. In this paper, we report that we have achieved
high effiency broadband coupling by using a combination
of a tapered dielectric section and a carefully adjusted
coupling slot. We are currently constructing an 11.4 GHz
accelerator structure loaded with a permitivity=20
dielectric. Bench testing has demonstrated a coupling
efficiency in excess of 95% with bandwidth of 600 MHz.
The final setup will be tested at high power at SLAC using
an X-band klystron rf source.

1. Introduction: .

The proposed use of rf driven dielectric based
structures for particle acceleration can be traced to the
early 50’s [1]. Since then, numerous studies have
examined the use of dielectric materials in accelerating
structures[2,3]. Advantages and potential problems of
using dielectric material are discussed in the references.
More that recent development of high dielectric constant
(E -20-40 ), low loss materials (Q- 10,000- 40,000)
warrant a new look at the idea [4, transtech].

One faces a challenging problem when building an
actual dielectric accelerator because outer diameter of the
dielectric is much smaller than the rectangular waveguide
which couples the external rf. Therefore, realising
impedance matching becomes a difficult tasks. There is
also no technical references treating this subject. We
found that by using a combination of side coupled slots
and a tapered dielectric near the coupling slots, one can
efficiently couple the rf from the rectangular waveguide to
the dielectric waveguide. In the prototype 11.4 GHz
dielectric loaded accelerator as shown in Figure 1, we
have achieved >95 Y. power coupling.

II. A Traveling Wave Dielectric Loaded Accelerating
Structure Basics

The dielectric traveling wave acceleratorhas a simple
geometry. Considering a cylindrical structure partially
filled with dielectric material (&)with inner radius a, outer
radius b and conducting wall on the outside. There are
also two ports on the side for RF coupling purposes, as
shown in Figure 1. The axial electric fields inside the
structure can be solved for exactly as
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Here E., B. and Dl are the field amplitudes in the

region O (vacuum) and 1 (dielectric) respectively and are

where P = v = ~/k is phase velocity = of the wave

traveling inside the tube: ~ determines the synchronism
of the wave and the accelerated particles. By properly
choosing a, b and E, one can adjust the phase velocity
accordingly. Thus this proposed scheme works not only
for acceleration of electrons which typically has phase
velocity - c, but also for low phase velocity particle
acceleration, such as heavy ions. The transverse electric
field can be written as ...

...

Er= L a&
(3)
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and the magnetic field H@ = EEr everywhere inside the

tube. By matching the boundary conditions at a and b
( 1?, and D, continuous),all the field components can be

calculated accordingly.
The stored energy per unit length U in the tube is the

sum of contributions from both vacuum and dielectric

Figure 1. Schematic diagram of a dielelectric loaded
traveling wave accelerator.
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field lines so that Odnfl= Bpl ~lR - B1 / ~1 = O. Thus a
single momentum can be confined to a plane, while other
momenta will be subject to the same momentum
dependence, giving a dispersion

J
fi=6jtifl S= Bpl~lRds - @Bp/B.

The vertical field can be applied either with an external
coil set or by tipping the coils. An advantage of tipping
the coils is that the vertical field component can be
tailored to the Iocal bend radius. The coils would be
tipped as shown in figure 4

k
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Figure 4, Tipping and turning coils.

3 COUPLING SECTIONS

It is possible to minimize the mismatch where straight
meets bend by using a veriety of coupling sections. The
mismatch can be caused by two effects: 1) the orbit cannot
adjust smoothly to the position of the equilibrium orbit as
it goes through the bend, and, 2) the magnetic field lines
are displaced from what would be the particle orbit by l/R
(or other) effects. Both of these effects can minimized
using a good coil design.

3.1 Adiabatic Bends

If the mismatch that causes the oscillations in Figure 3 is
spmd out over many Larmor lengths and phases, the
transverse oscillations will be cancelled, unfortunately at
the cost of a long solenoid.
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Figure 5, A two dimensional projection of the motion of
a particle in an adiabatic coupler.

2.2 L=n~

If the overall bend length is adjusted to be equal to an
even number of Larmor oscillations, the particle can exit
from the bend at the point of the cusp (see figure 3)
where it has no momentum perpendicular to the direction
of motion. This method had two problems: 1) the length
of the magnet is fixed and, 2) effects due to coil size can

complicate the effective length of the bend section.
Nevertheless, for small dispersion systems this solution
can be very useful.

2.3 L=2./2 Coupler

While the mismatch produced at discontinuities is
generally a problem, it is possible to use the mismatch
constructively to create a half Larmor oscillation of the
correct size and length to couple into a bend of arbitrary
radius. ‘Ilk can be done by designing a coupling section
with half the bend radius of the primary bend and a length
equal to L = AJ2. The coupling section then brings the
particle to what would be its equilibrium offset AR in the
bend without residual perpendicular momentum. The use
of this technique is complicated by coil radius effects
which can complicate evaluating the section length,
causing mismatch at the ends of the sections.
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Figure 6. A particle orbit in a L = ~12 coupler, showing
mismatch at the end of the section.

2.4 Short Smooth Couplers

An extension of the L = 2J2 coupler is to use a smoothed
curve which has the advantages that dlscontinuities in
both d@ls and its derivatives are avoided. The expression
used by Fernow and Palmer[4],

d@

{
— = 0.5 cot(~) - cot(~
ds

)}>

where the length over which the transition .$ made o =
~/2 seems to be optimum, consistent with tfie arguments
presented in Sections 3.1 and 3.3, see Figure 7.
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Figure 7, Mismatch produced as a function of short,
smooth coupler length.



altering the geometry of the coils causing the
compensating field.

4 ABERRATIONS

Tn addition to the time slewing due to the longer path
4.3 Coil Geometry Efects

traveled by particles on the outside of a bend, there are a The coil geometry interacts strongly with the optics, as
number of aberrations which complicate the optics. shown in figure Z below, which looks at an orbit for two

differrent coil tili.
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Figure Z, Orbits for coil radii r = 0.3 and 0.03.
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Figure X, Grad B drift for orbits with pl # O.

4.2 Shears

Even if all translation of the central orbit is canceled using
a good coil design the orbits off center are subject to a
shear. This shear is a result of mismatches between the
ideal compensation field and that provided by physical
coils. The effects of this sheer are shown if Fig Y, and
the shear can be eliminated by equal right and left bend
angles.
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Figure Y, Shears in large beams over a bend.
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The sum of horizontal and vertical components of the
shear should be constant because the ~
perpendicular field components that
cause it are determined by Amperes. L.(.
law, integrating around the path
shown at right. The relative ‘.L

amplitude of horizontal and vertical shear can be altered by


