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Influence of Shockwave Obliquity on Deformation Twin
Formation in Ta

G.T. (Rusty) Gray IlI', V. Livescu, E.K. Cerreta, T.A. Mason, P.J. Maudlin, and
J.F. Bingert

"I os Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract. Fnergetic loading subjects a material to a “Taylor wave” (triangular wave) loading profile that
experiences an evolving balance of hydrostatic (spherical) and deviatoric stresses. While much has been learned
over the past five decades concerning the propensity of deformation twinning in samples shock-loaded using
“square-topped” profiles as a function of peak stress, achieved most commonly via flyer plate loading, less is
known concerning twinning propensity during non-l-dimensional sweeping detonation wave loading.
Systematic small-scale energetically-driven shock loading experiments were conducted on Ta samples shock
loaded with PETN that was edge detonated. Deformation twinning was quantified in post-mortem samples as a
function of detonation geometry and radial position. In the edge detonated loading geometry examined in this
paper. the average volume fraction of deformation twins was observed to drastically increase with increasing
shock obliquity. The results of this study are discussed in light of the formation mechanisms of deformation
twins, previous literature studies of twinning in shocked materials, and modeling of the effects of shock
obliquity on the evolution of the stress tensor during shock loading.
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Deformation Twinning

Twin initiation or growth occurs when the externally applied shear stress across the K,
plane, resolved in the 1 direction, reaches a “critical” value.
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Fig, 14—Angular frequencies of markings on brass after
550-kbar normal shock. Plane of section includes shock
direction.

C.S. Smith: Trans. AIME (1958)

o Los Alamos

TIONAL LABORATORY



Twinning during shock loading: A complex series of
differing observations
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FI1G. 1.15: Stacking-fault free eneryy versus critical twinning pressure (for
initial twinning in [001] directions) for a number of FCC metals and alloys
where the residual strains were very small or negligible ( <1%), and At = 2us,
i.e. the shock pulse duration shown in Fig. 1.7 was constant atr 2
microseconds). The shaded regimes illustrate the approximate, residual
microstruciures or classes of microstructures which are dominant {from
reference 17).
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Twinning during-shock loading: A complex series of
differing observations in Cu & Ta observations ___

DETONATOR

Gray & Vecchio: Metall. Trans. (1995)

Deformation twins in Ta-10W shocked at 20GPa

Pappu, Kennedy, Murr & Meyers: Scripta Mater.. (1996),
vol. 35, pp. 959-965.

“There was no evidence of these
features in any of the Ta EFP’s. Since

Sanchez, Murr & Staudhammer: Acta Mater., (1997). vol. 45, pp. 3223-3235. shock-waves of higher peak pressures
than necessary for plane-wave shock

“The obliquity of the shock wave seems to suppress induced twinning are involved in EFP

the critical shock pressure of copper, since twinning formation it is believed that the actual,

was observed at pressures of only 11 GPa at the top dynamic deformation process

of the rods in contrast to an established critical either retards or annihilates deformation

twinning pressure of ~ 20 GPa for plane-wave loaded twins.”
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Investigation of shock loading: a question of time
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Strong Shock Loading

* Normal 1D shock compression/release Pos 3 /2 S
* Superimposed spherical & deviatoric stresses

(loosely uncoupled)
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Shear component may lead to localization/fracture in the wake of the shock!
What can produce a significant shear component (significant wrt P)?.....
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Obligue Detonation Waves

......One way of introducing shear is through single-point initiated det wave.
Shear component is function of t and position, although P still dominant at high

Example of explosively loaded flat disc
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obliquity.

Four Regimes Possible:

1. Regular reflection (0 — 58 degrees)

2. Mach reflection (58 — 78 degrees)

3. Regular with multiple metal shocks ( 78- 79)
4. Regular with product rarefaction (79 - 90)
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Oblique Reflection Wave Structures

Regular Reflection

Sl
A HE Products

0°< 0 <60°

B

Regular

(one or two metal shocks)

HE Products

78° <0 <80°

Physics of Fluids, Sternberg & Piacesi, 1966
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Effect of HE-Shock Driven Shock Prestraining on Materials

Constitutive Response of Warheads
/ weapon materials are
preconditioned by HE preshock load

cycle. l

Predictive Performance of Warhead
requires knowledge of shock
hardening
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Shock-Wave Prestrain - Flyer Plate vs. Taylor Wave

Stress

Pulse Duration
0.01 to 5 [W]sec

Shock Release

<100 s

Time

Flyer-Plate

Pulse Duration

~0 [¥]sec
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Experimental Set-Up

* Tantalum Cylinder 1217B , @8mm, 4.47mm thick
* PETN pellet @8mm, 2mm thick, 1.55g/cc

* High voltage slapper foil initiation

* Test geometry:

Side Initiation at Interface Face Initiation
Tantalum — Tantalum

PETN — PETN

EBSD analysis:

*5 scans selected in each region :

= Jeft bottom corner
= center bottom corner
= right bottom corner

* Scan size : 150 um x 150 um

oH-Scan step size: 0.15um
ANSS “ - Los Alamos




UPSET-FORGED Ta Specimen (UF-13)

Optical image @100x

» Qualitatively, the amount of twinning increases from left to right, with a

visibly higher concentration along the upper edge. (adjacent to HE)
» Red rectangles and twin close-up images are shown at larger scale on

the next slide.

A

A"o ;‘H'ﬁ—' L TR —— ""j

IVA'¥¥ > Los Alamos




UPSET-FORGED Ta Specimen (UF-13)- Optical Images




50 um

UPSET-FORGED Ta Specimen (UF-13)- EBSD data

50 um

Bottom Bottom | Bottom
Left Center Right
Avg. twin fraction 0.21 0.47 0.52

» Visually there are more twins in the center and right regions compared to the left region; EBSD confirms
these observations
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Center-Detonated Ta sample

Optical Microscopy

* Twinning appears more profuse in the bottom corners
*Contrast not as strong as in the case of the disc (smaller s/a,\mple)
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Left Bottom Center Bottom Right Bottom




Center-Detonated Ta sample

Summary table

Location Left Center
Bottom | Bottom

Average Twin Fraction 0.172 0.059 0.167

Average Twin Boundary Fraction 0.406 0.128 0.649

Face Initiation

— Tantalum
— PETN
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Modeling of Oblique Shock Loading of Ta

- Consider the interaction of an oblique .
detonation wave (D) with a PETN/metal
interface as depicted by the right-going
regular-reflection wave structure.

LA LLL LTSS
‘The wave D propagates into non-reacted Metal
HE at an angle of obliquity defined by 0 ,
with D reflecting from the interface as agas 4
shock into HE combustion products and

transmitting shock into the Ta metal.

 Application of three-dimensional (3D)
Jump Relationships to each of the three
waves produces a nonlinear set of coupled,
algebraic equations (11 equations
containing 12 unknowns for each wave)
involving conservation principles of mass,
momentum, energy, Equation-of-State (EOS)
and deviatoric constitutive information.
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For Solids: Oblique Shock Equations

* Continuity Jump: b(ﬂm)} 0 where q=-D/sinf¢ +u

* Momentum Jump (m): &'m)—g p(ﬂ-m)_lm =0

* Momentum Jump (s): Ikg'm)—gp(g'm)JkO
* 1% Law Jump: plgrmJe+1/2u-u J+|u-o [m=0
« Constitutive Form: 0 =o\¢g,e,other [Vs... )

* Alternate Constitutive Form: I.Q IS AE

« Strain Jump: E} 1

plgm)

. ﬁ'T'm—p(g-m)zl}[m_-gFQ

BottomLine: 11Egns & 12 Unknowns: o,p,D,u,e

NV

Very nonlinear equation set!
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Tantalum — Spherical & Deviatoric Stress
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Summary

» Shock loading obliquity is known to significantly alter the imposed stress tensor
during shock loading-in particular the ratio of the spherical (hydrostatic) and deviatoric
(shear stresses) components

+ Quantification of the effects of shock prestraining on the post-shock mechanical
behavior, structure evolution, and damage evolution must therefore quantify the
influence of all aspects of shock loading:

- Shockwave profile shape (square, triangle, ramp, sweeping det. wave)

- Shockwave parameters (peak stress, pulse duration, rarefaction rate)

- Shockwave obliquity

- Material properties (chemistry, texture, microstructure, etc.)

» Twin formation during shock loading in Ta is seen to be a strong function of
shockwave obliquity consistent with the effect of obliquity on the stress tensor.

« OIM data can only provide valuable information on twin volume fractions. Coupling
with 3-D reconstruction will facilitate quantitative volume fractions.

 The concept of a “critical twinning pressure” is shown to be relevant to only pure 1-D
shock loading and provides minimal |nS|ght to modeling shock effects in/materials.
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