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Project Final Report/Accomplishments 
Project description: 
This project developed a generic and optimized set of core data analytics functions. These 
functions organically consolidate a broad constellation of high performance analytical pipelines. 
As the architectures of emerging HPC systems become inherently heterogeneous, there is a 
need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core 
HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-
aware trend drives the advances in our performance-energy tradeoff analysis framework which 
enables our data analysis kernels algorithms and software to be parameterized so that users 
can choose the right power-performance optimizations. 

Technical Progress and Accomplishments: 
1. Parallel Single-Linkage Hierarchical Clustering: Hierarchical clustering is the problem of 
discovering the large-scale cluster structure of a dataset by forming a dendrogram that attempts 
to capture the clustering behavior in the dataset – from the most general cluster that 
encompasses the entire dataset, all the way to the most stringent clusters that only include a 
single data points each. Hierarchical clustering algorithms can be split into two main types: a) 
agglomerative, in which data points begin in separate clusters which are progressively merged 
until all points are in a single cluster; or b) divisive, in which all points begin in a single cluster, 
and clusters are split until each data point resides in a separate cluster. There are also several 
metrics for deciding which clusters to merge or divide at each level of the hierarchy, including 
single-linkage, complete-linkage, average-linkage, centroid, and Ward’s method. Here, we 
focused on single-linkage agglomerative clustering, in which the clusters with the two closest 
data points are merged at each step. The single-linkage hierarchical clustering problem is 
equivalent to the problem of calculating a minimum spanning tree (MST) on a complete 
weighted graph, where the edge weights are the distance between the corresponding data 
points in the dataset. Hierarchical clustering is a challenging problem to parallelize, as other 
parallel techniques rely on calculating the distance matrix, which is infeasible to store for large 
datasets. 

To parallelize single-linkage hierarchical clustering, we split a large problem instance into 
several smaller, overlapping problem instances that can be solved independently and then 
combined to find the solution to the original problem. To do this, we define the sub-problems by 
splitting the original dataset into k equal parts, and we assign a processor to compute the MST 
for each pair of these parts, using k(k−1)/2 processors. One of the main advantages of this 
technique is that it can compute solutions for each dataset independently, and we only need to 
communicate between processes afterwards, even though we may compute the distance 
between some pairs of points several times (up to twice as many total distance calculations). 
This allows us to achieve good scalability on large-scale distributed memory system. Once we 
have computed the MST for each subgraph, we combine them using a modified version of 
Kruskal’s algorithm. First, we sort the edges of each MST in order of increasing weight, and 



 

  
 

then we combine MSTs two at a time, using a Disjoint Set (or Union-Find) data structure to 
eliminate edges that form cycles (connect vertices in the same component). By combining these 
MSTs in a binary fashion, we can eliminate redundant MST edges quickly and perform the 
combination in parallel. Additionally, by combining the MSTs of datasets that overlap first, we 
can eliminate duplicate edges quickly, reducing the total communication cost of the algorithm. 

The software was developed in C with MPI for interprocess communication. The code was 
compiled and run on the Edison machine at NERSC. Edison is a Cray XC30 supercomputer at 
National Energy Research Scientific Computing Center (NERSC). It has 664 compute nodes 
with 64 GB memory per node. Each node consists of two 8-core Intel Sandy Bridge processors 
at 2.6 GHz.  

We evaluated parallel SLINK on 12 synthetic 
datasets, as well as 4 sampled cosmology 
datasets. We generated two types of synthetic 
data, clustered and uniform random data, 
across both 10 and 20 dimensions in three 
different data sizes: 100k, 500k, and 1M data 
points. For the synthetic clustered data, we 
used 8 random cluster centers with equal-size 
Gaussian distributions around each. The 
largest datasets we tested were the sampled 
cosmology datasets, with 3–5 million data 
points. With the increased amount of 
computation, we saw super-linear speedups on 
all four datasets up to 6050 processes (Figure 
1), even after I/O and communication costs 
were included, most likely due to caching 
effects. This work was published in LDAV 2013 
[LDAV13].  

2. Parallel DBSCAN: DBSCAN is a clustering algorithm that relies on a density-based notion of 
clusters. The algorithm is capable of discovering arbitrary shaped clusters and also able to 
handle noise or outliers effectively. The basic concept of the algorithm is that for each data point 
in a cluster, the neighborhood within a given radius (eps) has to contain at least a minimum 
number of points (minpts), i.e. the density of the neighborhood has to exceed some threshold. 
Although there have been several prior efforts to parallelize DBSCAN, many of them adopt the 
master-slave model. The data is equally partitioned and distributed among the slaves, each of 
which computes the clusters locally and sends back the results to the master, which 
sequentially merges the partial cluster results to obtain the final result. This strategy incurs a 
high communication overhead between the master and slaves, and a low parallel efficiency for 
the merging process.  

We redesign the DBSCAN algorithm using disjoint-set data structure to make it amenable to 
parallelization. Our new DBSCAN algorithm exploits the similarities between region growing and 
identifying connected components in a graph. The algorithm initially creates a singleton tree for 
each data point. It then keeps merging those trees that belong to the same cluster until all the 
clusters are discovered. The algorithm eventually produces multiple trees, each one 
representing a different cluster. To break the inherent data access order and to perform merging 
efficiently, disjoint-set data structure is used. 

 

 
Figure 1: Empirical results for running parallel 
SLINK on the four sampled cosmology 
datasets. 



 

  
 

To perform experiments, we use Hopper, a Cray 
XE6 distributed memory parallel computer where 
each node has two twelve-core AMD ‘MagnyCours’ 
2.1-GHz processors and shares 32 GB of memory. 
Each core has its own 64 KB L1 and 512 KB L2 
caches. Each six cores on the MagnyCours 
processor share one 6 MB of L3 cache. The 
algorithms have been implemented in C/C++ using 
the MPI message-passing library. 

We again used synthetic and real datasets to test 
the scalability of parallel DBSCAN. On a 
astrophysics dataset Halo of 72 million points, we 
recorded a speedup of 5,765 using 8,192 process 
cores (Figure 2). This work was published in 
Supercomputing conference 2012 [SC2012]. 

3. Parallel OPTICS: OPTICS (Ordering Points To Identify the Clustering Structure) is a 
hierarchical density-based clustering algorithm. DBSCAN is a special case of OPTICS. OPTICS 
addresses DBSCAN’s major limitation: the problem of detecting meaningful clusters in data of 
varying density. OPTICS provides an overview of the cluster structure of a dataset with respect 
to density and contains information about every cluster level of the dataset. In order to do so, 
OPTICS generates a linear order of points where spatially closest points become neighbors. 
Additionally, for each point, a spatial distance (known as reachability distance) is computed 
which represents the density. Once the order and the reachability distances are computed using 
eps and minpts, we can query for the clusters that a particular value of eps’ (known as 
clustering distance) would give where eps’ ≤ eps. The query is answered in linear time. One 
example application of OPTICS, which requires high performance computing, is finding halos 
and subhalos (clusters) from massive cosmology data in astrophysics. OPTICS is challenging to 
parallelize though as its data access pattern is inherently sequential. 

To overcome this challenge, we develop a scalable parallel OPTICS algorithm (POPTICS) using 
graph algorithmic concepts. POPTICS exploits the similarities between OPTICS and PRIM’s 
Minimum Spanning Tree (MST) algorithm to break the sequential access of data points in the 
classical OPTICS algorithm. The main idea is that two points should be assigned to the same 
cluster if they are sufficiently close (if at least one of them has sufficiently many neighbors). This 
relationship is transitive so a connected component of points should also be in the same cluster. 
If the distance bound is set sufficiently high, all vertices will be in the same cluster. As this 
bound is lowered, the cluster will eventually break apart forming sub-clusters. This is modeled 
by calculating a minimum spanning tree on the graph using an initial (high) distance bound 
(eps). Then to query the dataset for the clusters that an eps’ ≤ eps would give, one has only to 
remove edges from the MST of weight more than eps’ and the remaining connected 
components will give the clusters. The idea of our POPTICS algorithm is as follows. Each 
processor computes a MST on its local dataset without incurring any communication. We then 
merge the local MSTs to obtain a global MST. Both steps are performed in parallel. Additionally, 
we extract the clusters directly from the global MST (without a linear order of the points) for any 
clustering distance, eps’, by simply traversing the edges of the MST once in an arbitrary order, 
thus also enabling the cluster generation in parallel using the parallel disjoint-set data structure. 
POPTICS shows higher concurrency for data access while maintaining a comparable time 
complexity and quality with the classical OPTICS algorithm.  

POPTICS is parallelized using both OpenMP and MPI to run on shared-memory machines and 
distributed-memory machines, respectively. The same Hopper machine was used for 

 

 
Figure 2: Empirical results for running 
parallel DBSCAN on a cosmology 
dataset. 



 

  
 

experiments with MPI implementation. Our performance 
evaluation used a rich set of high dimensional data 
consisting of instances from real-world and synthetic 
datasets containing up to a billion floating point numbers. 
The speedups obtained on a shared-memory machine 
show scalable performance, achieving a speedup of up to 
27.5 on 40 cores. Similar scalability results were 
observed for the MPI implementation on a distributed-
memory machine with a speedup of 3,008 using 4,096 
processors (Figure 3). In our experiments, we found that 
while achieving the scalability, POPTICS produces 
clustering results with comparable quality to the classical 
OPTICS algorithm. This work was published in 
Supercomputing conference 2013 [SC2013]. 

4. Biological Sequence Analysis: Millions of DNA sequences (reads) are being generated 
every day by Next Generation Sequencing machines. In order to fulfill the dream of 
personalized medicine, high performance algorithms for mapping these sequences to a 
reference genome are needed to identify single nucleotide polymorphisms or rare transcripts. 
We have developed a high-throughput parallel sequence-mapping program named pFANGS. 
pFANGS is designed to find all the matches of a query sequence in the reference genome 
tolerating a large number of mismatches or insertions/deletions. Our design strategy for 
pFANGS is to partition the workload to reduce inter-node communication costs for the 
construction of the global hash table, while repeating some local computations. Using up to 512 
processes, we are able to map approximately 31 million 454/Roche queries of length 500 to a 
reference human genome each hour, allowing up to 5 mismatches. We have produced both 
OpenMP and MPI-OpenMP hybrid implementations [HiPC11]. 

We also developed another bioinformatics kernel 
that estimates the pairwise statistical significance 
(PSSE) for local sequence alignment. As the 
algorithm is both data- and compute-intensive, we 
implemented it on GPUs to accelerate the 
calculation. After carefully studying the algorithm’s 
data access characteristics, we adopted a tile-based 
scheme that can produce contiguous data accesses 
in the GPU global memory and sustain a large 
number of threads to achieve high GPU occupancy. 
We also extended our implementation to take 
advantage of dual GPUs. We observe end-to-end 
speedups of nearly 250 (370) times using (dual) 
Tesla C2050 GPU(s) over the CPU implementation 
on an Intel Core i7 CPU 920 processor [BMC12] 
(see Figure 4). 

5. Query-driven In situ Data Analytics: The data generation process of space-time simulation 
proceeds from one time step to the next and requires the context of only two time steps, while 
storing data for only one time step on the disk. In contrast, visual data analytics often requires 
the full context of the available data, not just a single time step. In fact, simulations that are 
driven by local space-time relationships are largely performed with the purpose of discovering or 
explaining non-local and large-scale space-time relationships through interactive “what-if” data 
exploration. Thus, the fundamental differences in data context and heterogeneity of access 

 
Figure 4: Performance of three strategies 
for multi-pair PSSE. 

 

 
Figure 3: Empirical results for 
running parallel OPTICS. 



 

  
 

patterns demand for analytics-driven data 
management solutions. This necessitates 
making data analytics and data reduction the 
first class citizens of the data management 
design and information query processing. To 
support analytics-driven efficient query 
processing, ISABELLA code offers a 
transformative shift from the traditional 
indexing of data to the indexing of 
information about data compression and 
hierarchical data layout in storage. 
Compared to state-of-the-art scientific data 
management systems (FastBit, SciDB, 
MonetDB), ISABELLA offers upto 10-fold 
data storage reduction and more than 10-fold 
speed-up of per-core processing, and 
scalable multi-node, multi-core, and multi-
GPU performance. Because of its light-
weight storage footprint and embarrassingly 
execution model, ISABELLA’s query engine offers an 8-fold improvement in energy efficiency 
compared to state-of-the-art technologies (Figure 5). ISABELLA enables in-situ, query-driven 
data analytics over compressed data. It supports both precision- and multi-resolution level of 
detail (LoD).  

6. Index-based Data Analysis: In this project, our work on this topic concentrates on two tasks: 
FastQuery software development and algorithm for detecting atmospheric rivers. 

FastQuery software is an extension of FastBit to provide integration with common scientific file 
format libraries such as netCDF and pNetCDF. It enables the use to directly use the indexing 
and searching capability with out converting data to the specific format used by FastBit indexing 
software. In addition, FastQuery software also provides automatic parallelization of indexing and 
query answering operations, which further improve the response time of user data analysis 
[CHA+11, CWP11]. 

An illustration of the high-level architecture of FastQuery is showing in Figure 6. Under the 
XAnalytics project, the key tasks are to implement functions for handling netCDF files and 
pNetCDF files [CWP11]. 

Extreme precipitation events 
on the western coast of North 
America are often traced to an 
unusual weather phenomenon 
known as atmospheric rivers 
(ARs). These events refer to 
filamentary structures in 
atmosphere that transport 
significant amounts of water 
over a long distance in narrow 
bands. In one of the earliest 
studies on this phenomenon, it 
was determined that such a 
structure could carry more 
water than the great river 

FastQuery API

File I/O interface

FQ Parser Index BuilderQuery Processor

Variable table

...

HDF5 NetCDF FITS ......
Data formats

Indexing & Q
uery

Technique
(FastBit)

read data   load index write index

column indexdata
column indexdata

column indexdata

Figure 6: Organization of FastQuery components. 

 
Figure 5: Comparison of energy consumption 
of ISABELA’s query analytics (QA) engine 
with the state-of-art open source query 
engines. 



 

  
 

Amazon. Figure 7 shows an example 
of an atmospheric river that deposited 
record amounts of rainfall on California 
over the course of several days in 
December 2010. For regions such as 
the west coast of the United States, 
atmospheric rivers bring more than half 
of the annual total precipitation and can 
occur in as few as five days. Their 
intensity creates a possibility of 
flooding and wind damage, yet at the 
same time they provide a significant 
amount of the fresh water needed.  

Based on earlier study of Atmospheric 
Rivers, our algorithm works with a 2-D 
mesh defined over the globe. The key 
detection step is to find regions of 
mesh where the integrated water vapor 
(IWV) density is high. After the mesh 
points are identified, we group the 
points into connected regions on the globe. After which, we can measure the length and width of 
the regions. Those connected regions sufficiently long and narrow are declared as Atmospheric 
Rivers. In this work, we make use of an efficient connected component labeling algorithm 
developed earlier to produce an effective algorithm that runs quickly on massively parallel 
machines [BPW+11]. In a test run, we were able to process a 30-year model output in 3 
seconds with 10,000 CPU cores. 

7. High Performance Data Mining Using R on Heterogeneous Platforms: The exponential 
increase in the generation and collection of data has led us in a new era of data analysis and 
information extraction. Conventional systems based on general-purpose processors are unable 
to keep pace with the heavy computational requirements of data mining techniques. High 
performance coprocessors like GPUs and FPGAs have the potential to handle large 
computational workloads. As part of this project, we developed a scalable framework (Figure 8) 
aimed at providing a platform for developing and using high performance data mining 
applications on heterogeneous platforms. The framework incorporates a software infrastructure 
and a library of high performance 
kernels. Furthermore, it includes a 
variety of optimizations which 
increase the throughput of 
applications. The framework spans 
multiple technologies including R, 
GPUs, multi-core CPUs, MPI, and 
parallel-netCDF harnessing their 
capabilities for high-performance 
computations. This work also 
introduces the concept of interleaving 
GPU kernels from multiple 
applications providing significant 
performance gain. Thus, in 
comparison to other tools available 
for data mining, our framework 

 
Figure 7: A sample of observed water vapor content 
in atmosphere. The high concentration of water 
reaching west coast United States is an Atmospheric 
River event in December 2010 (Data source rss.com). 

 
Figure 8: Overview of the framework 



 

  
 

provides an easy-to-use and scalable environment both for application development and 
execution. The framework is available as a software package that can be easily integrated in the 
R programming environment. This work was published in an IPDPS workshop in 2011 
[IPDPS2011]. 

Project Webpage: http://cucis.ece.northwestern.edu/projects/XANALYTICS/ 
Software Tools and Libraries 

• Parallel Data Clustering Algorithms – parallel SLINK, DBSCAN, and OPTICS, along with 
source code and data (http://cucis.ece.northwestern.edu/projects/Clustering/index.html) 

• Fast Max-Clique Finder (http://cucis.ece.northwestern.edu/projects/MAXCLIQUE/index.html) 
• Sequence Mapping Software (http://cucis.ece.northwestern.edu/projects/NGS/agile.html) 
• Accelerated pairwise statistical significance estimation using MPI/OpenMP/GPUs 

(http://cucis.ece.northwestern.edu/projects/PSSE/index.html) 
• Network Instance-Based Biased Subgraph Search (NIBBS) is capable of comparing 

hundreds of genome-scale metabolic networks to identify metabolic subsystems that are 
statistically biased toward phenotype-expressing organisms 
(http://freescience.org/cs/NIBBS/ ). 

• The (alpha,beta)-motif finder  allows for identification of protein functional modules that, in 
addition to metabolic subsystems, could include their regulators, sensors, transporters, and 
even uncharacterized proteins that are predicted to be related to the target phenotype 
(http://freescience.org/cs/ABClique/). 

• MCE-parallel is a scalable, parallel algorithm for the NP-hard clique enumeration problem 
(http://freescience.org/cs/parallelclique/). 

• Bi-clustering approach allows for identification of phenotype-related modules that are 
analyzed to identify potential phenotype-related cross-talking pathways 
(http://freescience.org/cs/bi-clustering/). 

• Dense ENriched Subgraph Enumeration (DENSE) algorithm allows for incorporating partial 
prior knowledge about the proteins involved in a phenotype-related process and enriches 
that knowledge with newly identified sets of functionally associated proteins present in 
individual phenotype expressing organisms (http://freescience.org/cs/DENSE/). 

• System Phenotype-related Interplaying Components Enumerator (SPICE) iteratively 
enumerates statistically significant and phenotype-relevant cellular subsystems and can be 
applied to both network data and gene-expression data (http://freescience.org/cs/SPICE). 

• Metabolic pathway alignment method for evolutionary analysis of metabolic pathways via 
multiple metabolic pathway alignment (software available upon request). 

• Protein network alignment algorithm for evolutionary analysis of protein functional 
association networks via alignment of multiple protein functional association networks 
(software available upon request). 

• Hierarchical Modularity Score (HMS) for functional annotation and functional enrichment 
analysis of hierarchically organized a complementary method to analyze birotein functional 
modules by taking into account an inherent design principle of biological networks, 
hierarchical modularity (http://freescience.org/cs/HMS/). 

• ISABELA-QA is a memory and storage light-weight parallel query processing engine over 
ISABELA compressed scientific data capable of multi-core, multi-node, GPU executions 
(software available upon request). 

• ALACRITY: Fast and memory light-weight query processing (and lossless compression) 
engine for scientific floating point data that is optimized for heterogeneous access pattern 
(software available upon request). 



 

  
 

• Prm_causality a methodology for data-driven, semi-automatic inference of plausible 
phenomenological models (http://freescience.org/cs/prm\_causality/). 

• Forecast Error Detection and Correction (DETECTOR), a hierarchical algorithm for detecting 
and correcting prediction errors in extreme event forecasts (software available upon 
request). 

• Anomalous Community Generator, detects predictive and phase-biased communities in 
contrasting groups of networks (software available upon request). 

• Forecast Oriented Feature Elimination-based Classification of Adverse Spatio-Temporal 
Extremes (FORECASTER), constructs a forecast-oriented feature elimination-based 
ensemble of classifiers for robust forecasting of adverse spatio-temporal extremes (software 
available upon request). 

• FastQuery, https://codeforge.lbl.gov/projects/fastquery/ 
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