
DOE Award #: DE- FG02-08ER25848

Name of the Recipient: Northwestern University

Project Title: Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems

PI: Alok Choudhary

Date of the report: March 18, 2015

Project Final Report/Accomplishments

Project Goal

Computational scientists must understand results from experimental, observational and computational
simulation generated data to gain insights and perform knowledge discovery. As systems approach the
petascale range, problems that were unimaginable a few years ago are within reach. With the increasing
volume and complexity of data produced by ultra-scale simulations and high-throughput experiments,
understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of
data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to
facilitate better understanding of their data, in particular the ability to effectively perform complex data
analysis, statistical analysis and knowledge discovery.

The goal of this work is to enable more effective analysis of scientific datasets through the integration of
enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-
level I/O library layers. We propose to provide software components to accelerate data analytics, mining,
I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of
both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries,
such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2)
Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime
system design; 4) Develop parallel data mining programs as part of runtime library for server-side file
system in PVFS file system; 3) Prototype an active storage cluster, which will utilize multicore CPUs,
GPUs, and FPGAs to carry out the data mining workload.

Background

One common characteristic of most applications is that they are all very data intensive. In many cases,
scaling the simulation from the computation perspective is achieved for tens of thousands of processors,
but performing I/O and subsequent analyses are a major bottleneck and all scientists pointed that out as a
major hurdle to effectively utilizing petascale systems and accelerating discoveries. For example, in
applications such as climate modeling, combustion and astrophysics simulations, dataset sizes range
between 100TB-10PBs and the required compute performance is 100+ Teraops.

Our proposal asks the following fundamental questions: “What if parallel I/O runtime interfaces are
developed in which a user can perform efficient and scalable I/O, and at the same time, the user can
perform scalable analysis, mining, subset operations, and transformations as part of the process of
performing I/O (Figure 1(a))?” Furthermore, “Can this runtime exploit specific architecture features and
hardware in the form of active storage so that these functions can be performed concurrently with
application execution?”

Technical Progress and Accomplishments:

Active storage system – We have developed an active storage system software for parallel I/O. This
system enables data analytic tasks within the context of parallel file systems through three key features:

• Enhanced runtime interface that uses predefined data analytics kernels in parallel file systems: We

expose the semantics of predefined analysis kernels, such as the data type of data blocks on the disk,
to parallel file systems so that execution of embedded kernels is possible on the server.

• File stripe alignment during runtime: In order to allow a file server to perform proper computation on
striped files, our system adjusts to misaligned computational units by pulling missing bytes, when
needed, from the neighboring servers that hold them.

• Server-to-server communication for aggregation and reduction: In order to perform computation
entirely on the server side, servers need to communicate their partial (local) results with other servers
to obtain the complete results. To this end, we augmented the storage servers with basic collective
MPI communication primitives (e.g., broadcast and allreduce).

To demonstrate the effectiveness of our approach, we built an active storage systemon top of a parallel
file system, PVFS, and parallel runtime system library, MPICH2. Figure 1(b) illustrates the high-level
view of our active storage system in our storage deployment architecture. Our active storage approach
utilizes a processing capability within the storage nodes in order to avoid large data transfers.
Computational capabilities, including optional GPU accelerators, within the storage infrastructure are
used to reduce the burden on computationally intensive kernels. The active storage nodes are located on
the same communication network as the client (compute) nodes. On the client side, we use MPI for
communication.

To provide easy use of our active storage system equipped with these analytic kernels, we enhanced the
MPI-IO interface and functionality to both enable analytics and utilize active storage nodes for
performing the data analysis. We chose MPI for our prototyping for two reasons. First, MPI is a widely
used interface, especially in science and engineering applications, and numerous parallel applications are
already written in MPI. Therefore, it would provide an easy migration path for those applications to
effectively utilize our approach. Second, MPI provides a hint mechanism by which user-defined
information can be easily transferred to intermediate runtime libraries, thereby making incorporating data
analysis kernels easier.

In our design, the analysis application on the client nodes uses normal MPI and MPI- IO calls to perform
its I/O and computation/communication. For our active storage-based application, the client invokes our
enhanced MPI-IO calls to initiate both data read and computation, and the corresponding functions and
code are executed on the active storage nodes, which may use any available hardware acceleration
functions. An advantage of this design is that it facilitates a runtime decision within the MPI-IO

Problem setup
decomposition

Application execution
Simulation

I/O, Storage
access

Analyze
(on-line)

Measure
Manage
Archive

Problem setup
decomposition

Application execution
Simulation

I/O, Storage
access

Analyze
(on-line)

Measure
Manage
Archive

!"#$%&'(%)*&
+,-(./&'01

0&2*$'(%)*&
+34(561

07 08 09

0&2*$'(."%):;2/

<<< <<< <<<

Fig. 2. Example illustrating how file stripes can be misaligned to the compute
unit boundary.

point numbers. Each compute unit is 80 bytes long (10 × 8

bytes). Assuming the stripe unit is 64 KB (or 65,536 bytes),
as shown in Figure 2, the original stripe unit contains only
819 variables (i.e., 65,520 bytes). The 820th variable actually
spans both s1 and s2, 16 bytes in s1 and the remaining 64
bytes in s2. Another factor that exacerbates the alignment
problem in parallel file systems is that files are typically
stored in a self-describing manner; in other words, the file
starts with its own header. Although headers are typically
of fixed size, they are rarely aligned with stripe boundaries.
Without properly handling these cases, servers will encounter
partial data elements that cannot be processed. We note that
data alignment also can be done on parallel file systems by
manipulating file formats, such as stripe-aligned headers or use
of footers instead of headers. These additional format changes,
however, could incur huge I/O access time because a separate
file open and rewrite is required for conversion.

Another feature that prevents conventional parallel file sys-
tems from implementing the active storage concept is the
lack of collective communication primitives on the servers.
Collective operations are used extensively in many parallel
applications. Even in active storage architectures where the
computations are performed on the server, we need to have
collective primitives in order to enable entire server-side
operations. In active storage architectures, the computation
cannot be completed without aggregation because the result
on each server is partial. In simple operations that involve
a single pass of execution only, the result can be aggregated
on the client side by combining partial results returned from
the servers. More complex data analysis, however, requires
several passes over the data to finish the computation. In
this case, performing aggregation entirely on the server side
makes more sense. In fact, storage servers have been using
some forms of collective communication, but they are used
for different purposes. For example, the use of server-to-server
communication can significantly improve metadata operations
(e.g., file creation or removal) in parallel file systems [8].
We use this capability to implement analysis routines that use
collective operations for general-purpose communication.

III. DESIGN OF ACTIVE STORAGE SYSTEM FROM

PARALLEL I/O INTERFACE

This section describes our active storage system for exe-
cuting data analysis kernels in parallel file systems. We begin
by presenting our target storage deployment model and an

!!"!##$#%&'#$%
()*+$,%-./

-0+'1$%
(+2"!3$%
4$"5$#*

.!"!##$#%&'#$%()*+$,%($"1$"

6'*7*
8.9

!00$#$"!+2"

2::#2!6'53

;;;;;

0#'$5+%< 0#'$5+%= 0#'$5+%>

*$"1$"%< *$"1$"%= *$"1$"%?

;;;;;

/5+$"0255$0+'25%5$+@2"7

-5!#)*'*%-AA#'0!+'25

.!"!##$#%BC5+',$%D'E"!")

.!"!##$#%&'#$
()*+$,%-./

-0+'1$
(+2"!3$%-./

.!"!##$#%&'#$%()*+$,%F#'$5+

Fig. 3. Overview of our active storage system and our default storage
deployment architecture. There are M clients connected to N active storage
nodes.

overview of our approach. We then discuss the three major
components of our approach in more detail.

A. Storage Deployment Architecture and Overview of Our
Approach

Storage and compute nodes in a cluster can be deployed in
two ways. The first, which is also our default storage deploy-
ment model as illustrated in Figure 3, is to locate storage nodes
separately from compute nodes. This deployment architecture
typically creates a pool of storage nodes to provide highly
parallel I/O. It is widely used in high-performance computing
clusters and cloud storage systems such as Amazon’s S3
platform [2]. The second approach is to collocate storage and
compute activities on the same cluster node. This deployment
model is well suited for the MapReduce/Hadoop programming
model, which schedules a compute task on a node that stores
the input data being processed by that task [14], [22]. In this
paper, we focus mainly on the separate storage deployment
model because this is most common in HPC environment, but
the impact of the overlapped deployment is discussed in the
experimental evaluation section as well.

Figure 3 illustrates the high-level view of our active storage
system in our storage deployment architecture. Our active
storage approach utilizes a processing capability within the
storage nodes in order to avoid large data transfers. Com-
putational capabilities, including optional GPU accelerators,
within the storage infrastructure are used to reduce the bur-
den on computationally intensive kernels. The active storage
nodes are located on the same communication network as the
client (compute) nodes. On the client side, we use MPI for
communication.

To provide easy use of our active storage system equipped
with these analytic kernels, we enhanced the MPI-IO interface
and functionality to both enable analytics and utilize active
storage nodes for performing the data analysis. We chose MPI
for our prototyping for two reasons. First, MPI is a widely used
interface, especially in science and engineering applications,
and numerous parallel applications are already written in MPI.
Therefore, it would provide an easy migration path for those
applications to effectively utilize our approach. Second, MPI
provides a hint mechanism by which user-defined information

(a) (b)

Figure 1: (a) The proposed I/O runtime enhancements with appropriate interfaces to enable on-line, in-
place analysis and data transformations as a part of the I/O runtime. Furthermore, it is proposed that
special nodes in large systems, using the concept of active storage be used. (b) The architecture of our
active storage system. Each file server is an active storage system that is equipped with a GPU and a
local disk.

implementation on where to execute analysis – the
functions could just read and then analyze on
compute nodes, if the cost were lower. The results of
active storage operations then are returned to the
client in the original file read buffer. We note that
higher-level libraries, such as Parallel netCDF can be
easily extended to use this infrastructure. Currently,
users are required to develop their own functions
(e.g., analytics, mining, statistical, subsetting,
searching, etc.), develop their own accelerators using
the GPUs, and embed them with our active storage
APIs so that they can be called from their
applications.

Our system demonstrates a better way of enabling an
active storage system to carry out data analytic
computations as part of I/O operations. The
experimental results obtained with a set of data
analytic kernels, including data-mining kernels,
demonstrate that our system can improve the overall
performance by 50.9%, on average. We show that the
compute-intensive kernels of the k-means data
clustering algorithm can be offloaded to the file
servers that are equipped with local GPU
accelerators, leading to 58.4% performance
improvement when the algorithm became compute-
intensive. Overall, we show that our approach
consistently outperforms the traditional storage model with a wide variety of data set sizes, number of
nodes, and computational loads.

Enhanced Runtime Interface in Parallel File Systems – Each analysis function developed for our
active storage node consists of two versions: traditional C/C++ codes and accelerator-specific codes. The
C/C++ codes are executed on the normal storage server, whereas the accelerator-specific codes are
executed on the accelerator if available and required based on performance considerations.

Since we use MPI-IO as our parallel runtime library, we can explore several options for exposing these
new functions. One option is to use the hints mechanism in MPI-IO and define new hints (key/value
pairs) that specify the data analysis function that gets executed on the server. Another option is to use the
user-defined data representations in MPI-IO. The MPI-IO interface allows users to define their own data
representation and provide data conversion functions. MPI will internally call those functions when
reading the data. While this method supports both predefined and user-defined operations, it is restricted
to MPI-based environments; hence, server codes need to be rewritten in MPI or be interfaced with MPI-
based analysis functions. A third option is to define extended versions of MPI-IO read calls that take an
additional argument specifying the operation to be performed. In this paper, we explore the combination
of both the extended version of MPI read calls and the hints mechanism. While the former provides a way
to specify the operation to be called on the server, the latter allows us to pass application-specific
semantics that are required to complete the specified kernels.

Server-to-Server Communication – Inter-server communication already exists in PVFS to handle
various server operations such as small I/O and metadata operation. Using the server-to-server
communication primitives in PVFS, we implemented two collective primitives: broadcast and allreduce.
We chose these two mainly because they are used in one of our benchmark routines, k-means. While
several viable algorithms exist, our implementation uses the recursive distance-doubling algorithm for

Fig. 6. I/O pipelining depicting how stripe alignment and execution of
embedded kernels are combined into normal I/O pipelining flow. In the
original (normal) file system operations, only the ovals in green are executed.
In the PVFS state machine infrastructure, each oval represents a function
to be executed, and directed edges between them denote the execution
dependencies.

!"!#!$%
&' &(&) &*

&#+,-'

&#+,-(

Fig. 7. Recursive distance doubling algorithm we used to implement
collective primitives. The basic message passing interface is implemented by
using the message pair array state machine [6].

distance, can be executed in parallel. But a reduce operation
must be used as new cluster centers obtained in each server
need to be updated. We note that, while we implemented
these two collective primitives mainly to ease embedding more
complicated data analysis kernels, we believe that they can be
used for other purposes whenever server tasks can benefit by
being cast in terms of collective operations.

IV. EXPERIMENTAL FRAMEWORK

This section describes our experimental platform and the
schemes and benchmarks we used in our experiments.

Fig. 8. The k-means clustering kernel implemented within the PVFS server.
It uses two collective primitives, pvfs_bcast and pvfs2_allreduce.
The primitive pvfs_bcast is used only once for broadcasting initial data
centers chosen randomly, whereas pvfs_allreduce is used three times
for updating new cluster centers, new cluster size, and new δ value.

TABLE I
DEFAULT SYSTEM CONFIGURATION

Parameter Value

Total # of nodes 32
of client nodes 4
of server nodes 4
Main CPU Dual Intel Xeon Quad Core 2.66 GHz per node
Main memory 16 GB per node
Storage capacity 200 GB per node
Stripe unit (file size)/(# of server nodes)
Interconnect 1 Gb Ethernet
Accelerator board 2 NVIDIA C1060 GPU cards

A. Setup

To demonstrate the benefit of our active storage model, we
built a prototype of our active storage system in PVFS [7],
an open source parallel file system developed and maintained
by Argonne National Laboratory, Clemson University, and a
host of other university and laboratory contributors. We also
added an extended version of a file read API to the MPI-IO
implementation [21]. This API allows us to pass an operator to
the PVFS server along with application-specific semantics so
that the servers can execute built-in data analysis kernels. We
performed our experiments on a cluster consisting of 32 nodes,
each of which is configured as a hybrid CPU/GPU system.
We configured each node as either a client (running an MPI
program) or a server (running a PVFS server), depending on
our evaluation schemes (as will be explained in Section IV-B).
The default system configuration of our experiment cluster is

Figure 2. The k-means clustering kernel
implemented within the PVFS server. It uses
pvfs_bcast and pvfs2_allreduce for server-
server broadcasting and allreduction.

both collective operations. These two operations each are built as separate state machines in PVFS, so any
embedded kernel that needs to use collective operations can use these facilities without having to re-
implement them. For instance, the k-means clustering program is composed of multi-phased operations:
cyclic data updates and potentially large computation until convergence. When it is parallelized, the
compute-intensive portion, which is calculating minimum distance, can be executed in parallel. However,
a reduce operation must be used as new cluster centers obtained in each server need to be updated. We
note that, while implementing these two collective primitives mainly to ease embedding more
complicated data analysis kernels, we believe they can be used for other purposes whenever server tasks
can benefit by being cast in terms of collective operations. Figure 2 shows the k-means clustering kernel
we implemented using two collective primitives.

Parallel netCDF – Our work has focused on design of data analytics functions in Parallel netCDF library
(PnetCDF) that can communicate with the active storage servers for offloading the analysis tasks to be
run on the server-side GPUs or FPGAs. We constructed a set of data statistics functions in PnetCDF.
Since data stored in netCDF file format is well defined by its associated metadata, these statistics
functions can utilize this information to calculate the data partitioning among multiple client processes as
well as the I/O servers that store the related file stripes. Metadata is also pushed down to the MPI-IO
library layer using MPI primitive data types in order to identify the partitioning boundaries of file stripes.
We used a parallel K-means data clustering application in our experiments and we were able to execute
the K-means clustering using PnetCDF functions.

CUDA Module –In addition to the common statistic functions, such as sum, max, min, average
operations, we have implemented three data mining applications to run on GPUs: K-means, fuzzy K-
means, and principal component analysis. These programs are written in CUDA and run on NVIDIA
Geforce 8800GT GPUs. Our performance evaluations show the speedups as high as 150 times of the
performance using the state-of-the-art CPUs. We have constructed a data mining library in CUDA that
can be linked by the server-side file system, so the I/O servers equipped with GPU coprocessors can
perform the data mining tasks close to where the data resides. Our hybrid MPI and GPU programs for the
above three data mining applications have been further extended their parallelism on GPU clusters for
very large data sets. We have carried out our experiments on the TeraGrid machine, Lincoln, a large scale
GPU cluster at NCSA.

FPGA Module – In addition to k-means, we have also implemented a principal component analysis
application for network intrusion detection on a Xilinx Virtex-II Pro FPGA. The results achieve a
throughput of up to 24.72 Gbps, which satisfy the needs of Gigabit network connections.

I/O Delegation Subsystem – We have developed various optimizations for the I/O delegate and caching
system. They are software components at the MPI-IO layer where certain I/O tasks, such as file caching
and consistency control are delegated to a small set of compute nodes, collectively termed as I/O delegate
nodes. This layer is implemented at the bottom layer of ROMIO where it intercepts all the system I/O
requests initiated by ROMIO and redirects them to delegate nodes. We incorporated a static file domain
assignment approach from our earlier work on MPI-IO file domain for further performance improvement.
We also explored the opportunity of using more than one delegate processes in a multi-core compute node
machine. This work can greatly benefit the performance of MPI independent I/O whose optimizations
have been considered difficult by the parallel I/O community and almost none exists. We conducted our
experiments using the FLASH and S3D I/O kernels on supercomputers using Lustre parallel file system.
Testing and development were performed on several parallel machines: Abe at NCSA and Franklin at
NERSC. Our experiments show that using MPI independent I/O functions in the two application kernels
can outperform the same kernels using the collective ones. The observed improvement ranges from 2.5
times to 15 times better I/O bandwidth.

In order to simulate the file system server-side active storage functionality, we use the idea and
implementation of the I/O delegation software component to run the data analytics operations at the user

space. The I/O delegation is our earlier work that uses MPI dynamic process management to allocate a set
of separate compute nodes to handle the I/O requests from the application processes. It allows us to
exercise the data analytics interface design and software mechanism to activate the computation on the
servers. The advantage of using this I/O delegation is the flexibility to pass the high-level metadata
among the I/O software layers. It is critical for a data analytics operation to understand the structure of the
data and this information is usually lost when data reaches at the file systems.

We have worked with the PVFS file system team at Argonne National Laboratories to extend the
development on I/O delegation platform to the PVFS file servers. The immediate focus will be to build
the library so the file servers can link and run the data analytics functions. The next step is to identify the
group of servers that hold the required data and participate the operations, so that the proper
communication group, such as MPI communicator, can be created. We will use the file system striping
configuration information and low-level system file metadata status to achieve this goal.

Personel:

Professors: Alok Choudhary and Wei-keng Liao

Postdoc: Kui Gao

Graduate Students: Prabhat Kumar, Afrifa Nisar, and Berkin Ozisikyilmaz,

Collaborators at Argonne National Laboratories: Robert Ross, Rajeev Thakur, Sam Lang, and Seung Woo
Son

Relationships to Other Projects

We collaborated with the Geodesic Grid I/O team led by Karen Schuchardt at Pacific Northwest National
Laboratory to improve the parallel I/O performance of the Global Cloud Resolving Model (GCRM)
framework. GCRM is supported by the DOE SciDAC program as one of the major climate simulation
application frameworks. The geodesic grids used by the GCRM covers the entire earth surface with
clouds with the dimensions of longitude, latitude, and altitude. A 4-Km grid resolution run will contain
42M horizontal cells and generate about 0.3 TB data for each snapshot, assuming 100 vertical layers and
a modest number of 3D variables. A use case study has been created to describe the data model and layout
for geodesic grids, which includes source codes, illustrative figures, input data, and expected outputs. The
URL is: http://cucis.ece.northwestern.edu/projects/DAMSEL/GCRM_write.html

We collaborated with Dr. Anshu Dubey and Christopher Daley, application scientists from the ASC /
Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. The FLASH
code is to study the surfaces of compact stars such as neutron stars and white dwarf stars, and in the
interior of white dwarfs. FLASH code uses an AMR-based domain decomposition method to partition the
data. I/O has long been a performance bottleneck for FLASH in production runs. A use case study has
been created to describe the data model and layout for Adaptive Mesh Refinement grids. The URL is:
http://cucis.ece.northwestern.edu/projects/DAMSEL/damsel_usecase_flash_detail.html

Web Access

The project web page, http://cucis.ece.northwestern.edu/projects/FASTOS/, contains description of the
developed framework.

Presentations:

• Alok Choudhary, "Discovering Knowledge from Massive Social Networks and Science Data - Next
Frontier for HPC", keynote at the International Conference on High Performance Computing,
Bangalore, India December 2011.

• Alok Choudhary, "Developing Scalable and Power-Efficient Data Mining Kernels", in the
Understanding Climate Change Workshop, University of Minnesota, August 2011.

Publications:

1. B. Ozisikyilmaz, G. Memik, and A. Choudhary. Machine Learning Models to Predict Performance of
Computer System Design Alternatives. In Proceedings of the International Conference on Parallel
Processing (ICPP), September 2008.

2. B. Ozisikyilmaz, G. Memik, and A. Choudhary. Efficient System Design Space Exploration Using
Machine Learning Techniques. In Proceedings of The Design Automation Conference (DAC), June
2008.

3. Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling Parallel I/O Performance through I/O
Delegate and Caching System. In the Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Austin, Texas, November 2008.

4. Wei-keng Liao and Alok Choudhary. Dynamically Adapting File Domain Partitioning Methods for
Collec- tive I/O Based on Underlying Parallel File System Locking Protocols. In the Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
Austin, Texas, November 2008.

5. Alok Choudhary, Wei-keng Liao, Kui Gao, Arifa Nisar, Robert Ross, Rajeev Thakur, and Robert
Latham. Scalable I/O and Analytics. In the Journal of Physics: Conference Series, Volume 180,
Number 012048 (10 pp), August 2009.

6. Kui Gao, Wei-keng Liao, Arifa Nisar, Alok Choudhary, Robert Ross, and Robert Latham. Using
Subfiling to Improve Programming Flexibility and Performance of Parallel Shared-file I/O. In the
Proceedings of the International Conference on Parallel Processing, Vienna, Austria, September 2009.

7. Nithin Nakka, Alok Choudhary, Wei-keng Liao, Lee Ward, Ruth Klundt, and Marlow Weston.
Detailed Anal- ysis of I/O Traces for Large Scale Applications. In the Proceedings of the
International Conference on High Performance Computing, Cochin, India, December 2009.

8. Seung Woo Son, Samuel Lang, Philip Carns, Robert Ross, Rajeev Thakur, Berkin Ozisikyilmaz,
Prabhat Ku- mar, Wei-keng Liao, and Alok Choudhary. Enabling Active Storage on Parallel I/O
Software Stacks. In the Proceedings of the 26th IEEE Symposium on Massive Storage Systems and
Technologies, Incline Village, Nevada, May 2010.

9. Seong Jo Kim, Yuanrui Zhang, Seung Woo Son, Ramya Prabhakar, Mahmut Kandemir, Christina M
Patrick, Wei-keng Liao, and Alok Choudhary. Automated Tracing of I/O Stack. In the Proceedings of
the 17th European MPI Users Group conference (EuroMPI), Stuttgart, Germany, September 2010.

10. Prabhat Kumar, Berkin Ozisikyilmaz, Wei-keng Liao, Gokhan Memik, and Alok Choudhary. High
Performance Data Mining Using R on Heterogeneous Platforms. In Workshop on Multithreaded
Architectures and Applications, in conjunction with the International Parallel and Distributed
Processing Symposium, May 2011.

11. Chen Jin, Saba Sehrish, Wei-keng Liao, Alok Choudhary, and Karen Schuchardt. Improving the
Average Response Time in Collective I/O. In the Proceedings of the 18th European MPI Users Group
conference (EuroMPI), Santorini, Greece, September 2011.

12. Kui Gao, Chen Jin, Alok Choudhary, and Wei-keng Liao. Supporting Computational Data Model
Rep- resentation with High-performance I/O in Parallel netCDF. In the Proceedings of the High
Performance Computing Conference, Bengaluru, India, December 2011.

13. Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Delegation-Based I/O Mechanism for High
Performance Computing Systems. In the IEEE Transactions on Parallel and Distributed Systems, vol.
23, no. 2, pp. 271- 279, Feb. 2012. DOI. 10.1109/TPDS.2011.166

