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Project Final Report/Accomplishments 

Project Goal 

Computational scientists must understand results from experimental, observational and computational 
simulation generated data to gain insights and perform knowledge discovery. As systems approach the 
petascale range, problems that were unimaginable a few years ago are within reach. With the increasing 
volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, 
understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of 
data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to 
facilitate better understanding of their data, in particular the ability to effectively perform complex data 
analysis, statistical analysis and knowledge discovery. 

The goal of this work is to enable more effective analysis of scientific datasets through the integration of 
enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-
level I/O library layers. We propose to provide software components to accelerate data analytics, mining, 
I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of 
both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, 
such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) 
Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime 
system design; 4) Develop parallel data mining programs as part of runtime library for server-side file 
system in PVFS file system; 3) Prototype an active storage cluster, which will utilize multicore CPUs, 
GPUs, and FPGAs to carry out the data mining workload. 

Background 

One common characteristic of most applications is that they are all very data intensive. In many cases, 
scaling the simulation from the computation perspective is achieved for tens of thousands of processors, 
but performing I/O and subsequent analyses are a major bottleneck and all scientists pointed that out as a 
major hurdle to effectively utilizing petascale systems and accelerating discoveries. For example, in 
applications such as climate modeling, combustion and astrophysics simulations, dataset sizes range 
between 100TB-10PBs and the required compute performance is 100+ Teraops.  

Our proposal asks the following fundamental questions: “What if parallel I/O runtime interfaces are 
developed in which a user can perform efficient and scalable I/O, and at the same time, the user can 
perform scalable analysis, mining, subset operations, and transformations as part of the process of 
performing I/O (Figure 1(a))?” Furthermore, “Can this runtime exploit specific architecture features and 
hardware in the form of active storage so that these functions can be performed concurrently with 
application execution?” 

Technical Progress and Accomplishments: 

Active storage system – We have developed an active storage system software for parallel I/O. This 
system enables data analytic tasks within the context of parallel file systems through three key features: 

• Enhanced runtime interface that uses predefined data analytics kernels in parallel file systems: We 



expose the semantics of predefined analysis kernels, such as the data type of data blocks on the disk, 
to parallel file systems so that execution of embedded kernels is possible on the server.  

• File stripe alignment during runtime: In order to allow a file server to perform proper computation on 
striped files, our system adjusts to misaligned computational units by pulling missing bytes, when 
needed, from the neighboring servers that hold them. 

• Server-to-server communication for aggregation and reduction: In order to perform computation 
entirely on the server side, servers need to communicate their partial (local) results with other servers 
to obtain the complete results. To this end, we augmented the storage servers with basic collective 
MPI communication primitives (e.g., broadcast and allreduce). 

To demonstrate the effectiveness of our approach, we built an active storage systemon top of a parallel 
file system, PVFS, and parallel runtime system library, MPICH2. Figure 1(b) illustrates the high-level 
view of our active storage system in our storage deployment architecture. Our active storage approach 
utilizes a processing capability within the storage nodes in order to avoid large data transfers. 
Computational capabilities, including optional GPU accelerators, within the storage infrastructure are 
used to reduce the burden on computationally intensive kernels. The active storage nodes are located on 
the same communication network as the client (compute) nodes. On the client side, we use MPI for 
communication. 

To provide easy use of our active storage system equipped with these analytic kernels, we enhanced the 
MPI-IO interface and functionality to both enable analytics and utilize active storage nodes for 
performing the data analysis. We chose MPI for our prototyping for two reasons. First, MPI is a widely 
used interface, especially in science and engineering applications, and numerous parallel applications are 
already written in MPI. Therefore, it would provide an easy migration path for those applications to 
effectively utilize our approach. Second, MPI provides a hint mechanism by which user-defined 
information can be easily transferred to intermediate runtime libraries, thereby making incorporating data 
analysis kernels easier. 

In our design, the analysis application on the client nodes uses normal MPI and MPI- IO calls to perform 
its I/O and computation/communication. For our active storage-based application, the client invokes our 
enhanced MPI-IO calls to initiate both data read and computation, and the corresponding functions and 
code are executed on the active storage nodes, which may use any available hardware acceleration 
functions. An advantage of this design is that it facilitates a runtime decision within the MPI-IO 
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Fig. 2. Example illustrating how file stripes can be misaligned to the compute
unit boundary.

point numbers. Each compute unit is 80 bytes long (10 × 8

bytes). Assuming the stripe unit is 64 KB (or 65,536 bytes),
as shown in Figure 2, the original stripe unit contains only
819 variables (i.e., 65,520 bytes). The 820th variable actually
spans both s1 and s2, 16 bytes in s1 and the remaining 64
bytes in s2. Another factor that exacerbates the alignment
problem in parallel file systems is that files are typically
stored in a self-describing manner; in other words, the file
starts with its own header. Although headers are typically
of fixed size, they are rarely aligned with stripe boundaries.
Without properly handling these cases, servers will encounter
partial data elements that cannot be processed. We note that
data alignment also can be done on parallel file systems by
manipulating file formats, such as stripe-aligned headers or use
of footers instead of headers. These additional format changes,
however, could incur huge I/O access time because a separate
file open and rewrite is required for conversion.

Another feature that prevents conventional parallel file sys-
tems from implementing the active storage concept is the
lack of collective communication primitives on the servers.
Collective operations are used extensively in many parallel
applications. Even in active storage architectures where the
computations are performed on the server, we need to have
collective primitives in order to enable entire server-side
operations. In active storage architectures, the computation
cannot be completed without aggregation because the result
on each server is partial. In simple operations that involve
a single pass of execution only, the result can be aggregated
on the client side by combining partial results returned from
the servers. More complex data analysis, however, requires
several passes over the data to finish the computation. In
this case, performing aggregation entirely on the server side
makes more sense. In fact, storage servers have been using
some forms of collective communication, but they are used
for different purposes. For example, the use of server-to-server
communication can significantly improve metadata operations
(e.g., file creation or removal) in parallel file systems [8].
We use this capability to implement analysis routines that use
collective operations for general-purpose communication.

III. DESIGN OF ACTIVE STORAGE SYSTEM FROM

PARALLEL I/O INTERFACE

This section describes our active storage system for exe-
cuting data analysis kernels in parallel file systems. We begin
by presenting our target storage deployment model and an
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Fig. 3. Overview of our active storage system and our default storage
deployment architecture. There are M clients connected to N active storage
nodes.

overview of our approach. We then discuss the three major
components of our approach in more detail.

A. Storage Deployment Architecture and Overview of Our
Approach

Storage and compute nodes in a cluster can be deployed in
two ways. The first, which is also our default storage deploy-
ment model as illustrated in Figure 3, is to locate storage nodes
separately from compute nodes. This deployment architecture
typically creates a pool of storage nodes to provide highly
parallel I/O. It is widely used in high-performance computing
clusters and cloud storage systems such as Amazon’s S3
platform [2]. The second approach is to collocate storage and
compute activities on the same cluster node. This deployment
model is well suited for the MapReduce/Hadoop programming
model, which schedules a compute task on a node that stores
the input data being processed by that task [14], [22]. In this
paper, we focus mainly on the separate storage deployment
model because this is most common in HPC environment, but
the impact of the overlapped deployment is discussed in the
experimental evaluation section as well.

Figure 3 illustrates the high-level view of our active storage
system in our storage deployment architecture. Our active
storage approach utilizes a processing capability within the
storage nodes in order to avoid large data transfers. Com-
putational capabilities, including optional GPU accelerators,
within the storage infrastructure are used to reduce the bur-
den on computationally intensive kernels. The active storage
nodes are located on the same communication network as the
client (compute) nodes. On the client side, we use MPI for
communication.

To provide easy use of our active storage system equipped
with these analytic kernels, we enhanced the MPI-IO interface
and functionality to both enable analytics and utilize active
storage nodes for performing the data analysis. We chose MPI
for our prototyping for two reasons. First, MPI is a widely used
interface, especially in science and engineering applications,
and numerous parallel applications are already written in MPI.
Therefore, it would provide an easy migration path for those
applications to effectively utilize our approach. Second, MPI
provides a hint mechanism by which user-defined information

 
(a)                                                                                 (b) 

Figure 1: (a) The proposed I/O runtime enhancements with appropriate interfaces to enable on-line, in-
place analysis and data transformations as a part of the I/O runtime. Furthermore, it is proposed that 
special nodes in large systems, using the concept of active storage be used. (b) The architecture of our 
active storage system. Each file server is an active storage system that is equipped with a GPU and a 
local disk. 



implementation on where to execute analysis – the 
functions could just read and then analyze on 
compute nodes, if the cost were lower. The results of 
active storage operations then are returned to the 
client in the original file read buffer. We note that 
higher-level libraries, such as Parallel netCDF can be 
easily extended to use this infrastructure. Currently, 
users are required to develop their own functions 
(e.g., analytics, mining, statistical, subsetting, 
searching, etc.), develop their own accelerators using 
the GPUs, and embed them with our active storage 
APIs so that they can be called from their 
applications. 

Our system demonstrates a better way of enabling an 
active storage system to carry out data analytic 
computations as part of I/O operations. The 
experimental results obtained with a set of data 
analytic kernels, including data-mining kernels, 
demonstrate that our system can improve the overall 
performance by 50.9%, on average. We show that the 
compute-intensive kernels of the k-means data 
clustering algorithm can be offloaded to the file 
servers that are equipped with local GPU 
accelerators, leading to 58.4% performance 
improvement when the algorithm became compute-
intensive. Overall, we show that our approach 
consistently outperforms the traditional storage model with a wide variety of data set sizes, number of 
nodes, and computational loads. 

Enhanced Runtime Interface in Parallel File Systems – Each analysis function developed for our 
active storage node consists of two versions: traditional C/C++ codes and accelerator-specific codes. The 
C/C++ codes are executed on the normal storage server, whereas the accelerator-specific codes are 
executed on the accelerator if available and required based on performance considerations. 

Since we use MPI-IO as our parallel runtime library, we can explore several options for exposing these 
new functions. One option is to use the hints mechanism in MPI-IO and define new hints (key/value 
pairs) that specify the data analysis function that gets executed on the server. Another option is to use the 
user-defined data representations in MPI-IO. The MPI-IO interface allows users to define their own data 
representation and provide data conversion functions. MPI will internally call those functions when 
reading the data. While this method supports both predefined and user-defined operations, it is restricted 
to MPI-based environments; hence, server codes need to be rewritten in MPI or be interfaced with MPI- 
based analysis functions. A third option is to define extended versions of MPI-IO read calls that take an 
additional argument specifying the operation to be performed. In this paper, we explore the combination 
of both the extended version of MPI read calls and the hints mechanism. While the former provides a way 
to specify the operation to be called on the server, the latter allows us to pass application-specific 
semantics that are required to complete the specified kernels. 

Server-to-Server Communication – Inter-server communication already exists in PVFS to handle 
various server operations such as small I/O and metadata operation. Using the server-to-server 
communication primitives in PVFS, we implemented two collective primitives: broadcast and allreduce. 
We chose these two mainly because they are used in one of our benchmark routines, k-means. While 
several viable algorithms exist, our implementation uses the recursive distance-doubling algorithm for 

Fig. 6. I/O pipelining depicting how stripe alignment and execution of
embedded kernels are combined into normal I/O pipelining flow. In the
original (normal) file system operations, only the ovals in green are executed.
In the PVFS state machine infrastructure, each oval represents a function
to be executed, and directed edges between them denote the execution
dependencies.
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Fig. 7. Recursive distance doubling algorithm we used to implement
collective primitives. The basic message passing interface is implemented by
using the message pair array state machine [6].

distance, can be executed in parallel. But a reduce operation
must be used as new cluster centers obtained in each server
need to be updated. We note that, while we implemented
these two collective primitives mainly to ease embedding more
complicated data analysis kernels, we believe that they can be
used for other purposes whenever server tasks can benefit by
being cast in terms of collective operations.

IV. EXPERIMENTAL FRAMEWORK

This section describes our experimental platform and the
schemes and benchmarks we used in our experiments.

Fig. 8. The k-means clustering kernel implemented within the PVFS server.
It uses two collective primitives, pvfs_bcast and pvfs2_allreduce.
The primitive pvfs_bcast is used only once for broadcasting initial data
centers chosen randomly, whereas pvfs_allreduce is used three times
for updating new cluster centers, new cluster size, and new δ value.

TABLE I
DEFAULT SYSTEM CONFIGURATION

Parameter Value

Total # of nodes 32
# of client nodes 4
# of server nodes 4
Main CPU Dual Intel Xeon Quad Core 2.66 GHz per node
Main memory 16 GB per node
Storage capacity 200 GB per node
Stripe unit (file size)/(# of server nodes)
Interconnect 1 Gb Ethernet
Accelerator board 2 NVIDIA C1060 GPU cards

A. Setup

To demonstrate the benefit of our active storage model, we
built a prototype of our active storage system in PVFS [7],
an open source parallel file system developed and maintained
by Argonne National Laboratory, Clemson University, and a
host of other university and laboratory contributors. We also
added an extended version of a file read API to the MPI-IO
implementation [21]. This API allows us to pass an operator to
the PVFS server along with application-specific semantics so
that the servers can execute built-in data analysis kernels. We
performed our experiments on a cluster consisting of 32 nodes,
each of which is configured as a hybrid CPU/GPU system.
We configured each node as either a client (running an MPI
program) or a server (running a PVFS server), depending on
our evaluation schemes (as will be explained in Section IV-B).
The default system configuration of our experiment cluster is

 
Figure 2. The k-means clustering kernel 
implemented within the PVFS server. It uses 
pvfs_bcast and pvfs2_allreduce for server-
server broadcasting and allreduction. 



both collective operations. These two operations each are built as separate state machines in PVFS, so any 
embedded kernel that needs to use collective operations can use these facilities without having to re-
implement them. For instance, the k-means clustering program is composed of multi-phased operations: 
cyclic data updates and potentially large computation until convergence. When it is parallelized, the 
compute-intensive portion, which is calculating minimum distance, can be executed in parallel. However, 
a reduce operation must be used as new cluster centers obtained in each server need to be updated. We 
note that, while implementing these two collective primitives mainly to ease embedding more 
complicated data analysis kernels, we believe they can be used for other purposes whenever server tasks 
can benefit by being cast in terms of collective operations. Figure 2 shows the k-means clustering kernel 
we implemented using two collective primitives. 

Parallel netCDF – Our work has focused on design of data analytics functions in Parallel netCDF library 
(PnetCDF) that can communicate with the active storage servers for offloading the analysis tasks to be 
run on the server-side GPUs or FPGAs. We constructed a set of data statistics functions in PnetCDF. 
Since data stored in netCDF file format is well defined by its associated metadata, these statistics 
functions can utilize this information to calculate the data partitioning among multiple client processes as 
well as the I/O servers that store the related file stripes. Metadata is also pushed down to the MPI-IO 
library layer using MPI primitive data types in order to identify the partitioning boundaries of file stripes. 
We used a parallel K-means data clustering application in our experiments and we were able to execute 
the K-means clustering using PnetCDF functions. 

CUDA Module –In addition to the common statistic functions, such as sum, max, min, average 
operations, we have implemented three data mining applications to run on GPUs: K-means, fuzzy K-
means, and principal component analysis. These programs are written in CUDA and run on NVIDIA 
Geforce 8800GT GPUs. Our performance evaluations show the speedups as high as 150 times of the 
performance using the state-of-the-art CPUs. We have constructed a data mining library in CUDA that 
can be linked by the server-side file system, so the I/O servers equipped with GPU coprocessors can 
perform the data mining tasks close to where the data resides. Our hybrid MPI and GPU programs for the 
above three data mining applications have been further extended their parallelism on GPU clusters for 
very large data sets. We have carried out our experiments on the TeraGrid machine, Lincoln, a large scale 
GPU cluster at NCSA. 

FPGA Module – In addition to k-means, we have also implemented a principal component analysis 
application for network intrusion detection on a Xilinx Virtex-II Pro FPGA. The results achieve a 
throughput of up to 24.72 Gbps, which satisfy the needs of Gigabit network connections. 

I/O Delegation Subsystem – We have developed various optimizations for the I/O delegate and caching 
system. They are software components at the MPI-IO layer where certain I/O tasks, such as file caching 
and consistency control are delegated to a small set of compute nodes, collectively termed as I/O delegate 
nodes. This layer is implemented at the bottom layer of ROMIO where it intercepts all the system I/O 
requests initiated by ROMIO and redirects them to delegate nodes. We incorporated a static file domain 
assignment approach from our earlier work on MPI-IO file domain for further performance improvement. 
We also explored the opportunity of using more than one delegate processes in a multi-core compute node 
machine. This work can greatly benefit the performance of MPI independent I/O whose optimizations 
have been considered difficult by the parallel I/O community and almost none exists. We conducted our 
experiments using the FLASH and S3D I/O kernels on supercomputers using Lustre parallel file system. 
Testing and development were performed on several parallel machines: Abe at NCSA and Franklin at 
NERSC. Our experiments show that using MPI independent I/O functions in the two application kernels 
can outperform the same kernels using the collective ones. The observed improvement ranges from 2.5 
times to 15 times better I/O bandwidth. 

In order to simulate the file system server-side active storage functionality, we use the idea and 
implementation of the I/O delegation software component to run the data analytics operations at the user 



space. The I/O delegation is our earlier work that uses MPI dynamic process management to allocate a set 
of separate compute nodes to handle the I/O requests from the application processes. It allows us to 
exercise the data analytics interface design and software mechanism to activate the computation on the 
servers. The advantage of using this I/O delegation is the flexibility to pass the high-level metadata 
among the I/O software layers. It is critical for a data analytics operation to understand the structure of the 
data and this information is usually lost when data reaches at the file systems. 

We have worked with the PVFS file system team at Argonne National Laboratories to extend the 
development on I/O delegation platform to the PVFS file servers. The immediate focus will be to build 
the library so the file servers can link and run the data analytics functions. The next step is to identify the 
group of servers that hold the required data and participate the operations, so that the proper 
communication group, such as MPI communicator, can be created. We will use the file system striping 
configuration information and low-level system file metadata status to achieve this goal. 
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Relationships to Other Projects 

We collaborated with the Geodesic Grid I/O team led by Karen Schuchardt at Pacific Northwest National 
Laboratory to improve the parallel I/O performance of the Global Cloud Resolving Model (GCRM) 
framework. GCRM is supported by the DOE SciDAC program as one of the major climate simulation 
application frameworks. The geodesic grids used by the GCRM covers the entire earth surface with 
clouds with the dimensions of longitude, latitude, and altitude. A 4-Km grid resolution run will contain 
42M horizontal cells and generate about 0.3 TB data for each snapshot, assuming 100 vertical layers and 
a modest number of 3D variables. A use case study has been created to describe the data model and layout 
for geodesic grids, which includes source codes, illustrative figures, input data, and expected outputs. The 
URL is: http://cucis.ece.northwestern.edu/projects/DAMSEL/GCRM_write.html 

We collaborated with Dr. Anshu Dubey and Christopher Daley, application scientists from the ASC / 
Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. The FLASH 
code is to study the surfaces of compact stars such as neutron stars and white dwarf stars, and in the 
interior of white dwarfs. FLASH code uses an AMR-based domain decomposition method to partition the 
data. I/O has long been a performance bottleneck for FLASH in production runs. A use case study has 
been created to describe the data model and layout for Adaptive Mesh Refinement grids. The URL is: 
http://cucis.ece.northwestern.edu/projects/DAMSEL/damsel_usecase_flash_detail.html 

Web Access 

The project web page, http://cucis.ece.northwestern.edu/projects/FASTOS/, contains description of the 
developed framework. 
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