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A. Provide an executive summary, which includes a discussion of I) how the research adds to the 

understanding of the area investigated; 2) the technical effectiveness and economic feasibility of the 
methods or techniques investigated or demonstrated; or 3) how the projectis otherwise of benefit to the 
public. The discussion should be a minimum of one paragraph and written in terms understandable 
by an educated layman. 

 
Hydrogen Production 
 Hydrogen is an ideal renewable chemical fuel yet its production by splitting water with sunlight 
has been one of the most formidable challenges for the last several decades. There is an enormous 
potential for generating hydrogen directly from water by using sunlight. The process can provide 
inexhaustible and pollution free source of fuel replacing oil, gas and coal. Hydrogen can be utilized 
directly in internal combustion engines and can meet energy requirements for transportation as either a 
directly combusted chemical fuel or as component to hydrogen fuel cells. The goal of our project is to 
improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process 
by developing photoanodes with high absorption efficiency in the visible region of the solar radiation 
spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. 
To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a 
higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. 
While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, 
the recent developments show emergence of new nanostructural designs of photoanodes and choices of 
materials with significant gains in photoconversion efficiency. 
 
Nanostructured Metal Hydrides for Hydrogen Storage 
 Development of solid state hydrogen storage materials is a critical challenge due to the  difficulty 
in finding materials that have high gravimetric hydrogen density, stability over cycling, acceptable 
absorption-desorption temperatures, rates, and cost. Magnesium hydride, MgH2, has the highest energy 
density (9 MJ/kg) among all reversible hydrides applicable for hydrogen storage. It combines a high 
gravimetric hydrogen capacity of 7.6 wt with the benefit of low-cost abundantly available magnesium. 
Hydrogenation/dehydrogenation is also fully reversible for Mg. However, Mg suffers from unfavorable 
kinetics and thermodynamics that dis not allow practical applications in the past. 
            Research on Mg has focused on reduction of absorption/desorption temperature which is around 
300°C and to improve the re/de-hydrogenation kinetics. Catalyst additions and alloying have not been 
successful for desired properties so far. Nanostructuring of magnesium improves hydrogen absorption-
desorption rates by benefiting from increased surface area of interaction and decreased diffusion lengths 
of hydrogen into/out-of Mg crystal. Thus both thermodynamics and kinetics of 
hydrogenation/dehydrogenation can be can be enhanced by nanostructuring Mg. 
           Glancing Angle Deposition (GLAD, a.k.a oblique-angle-deposition) has been an effective, easy to 
implement, and cost efficient technique to produce nanostructured coatings of a large variety of materials. 
It is an advanced version of physical vapor deposition (PVD) method and can be implemented through 
applying high vapor flux angles and/or substrate rotation on the sample surface in a sputtering, e-beam or 
thermal evaporation systems. GLAD can be implemented easily for large-scale production systems since 
it is already compatible with the current PVD infrastructure in the industry. Using GLAD metals are 
shown to have unique crystal properties such as non-preferential texture (i.e. crystal orientation) and 
single crystal structure. Magnesium is no exception for these and through the studies within this project, it 
has been shown that sputter-GLAD Mg nanorods have a single crystal structure with enhanced oxidation 
resistance properties. In addition, magnesium is an easy-to-evaporate material for PVD systems where 
very high growth rates can be achieved. 
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               Mg depositions by thermal evaporation GLAD result in highly anisotropic nanotree structures 
composed of very thin (<20 nm) leaf morphologies. Nanotrees are composed of nanoleaves which can 
form groups that reach tens of microns in height and 1-2µm in lateral widths on the substrate. These 
structures are found to have oxidation resistance due to single crystal nature which further helps hydrogen 
diffusion. Studies on nanotrees showed enhanced hydrogen absorption characteristics of Mg. Hydrogen 
absorption was possible at temperatures as low as 100°C. Mg nanotrees absorbed as much as 3.9 wt% 
hydrogen when the temperature is increased from room temperature to 100 oC. As temperature is 
increased to 200, storage value reached up to about 4.4 wt%, and to a maximum storage value of about 
7.3 wt% at 300 oC within ~10 minutes. In addition, significant desorption of hydrogen from magnesium 
hydride nanostructures occurred at temperatures ~200 oC. These enhancements are believed to be mainly 
through reduced size effects that help to alter thermodynamics of the system, decreased diffusion lengths, 
and crystal properties. The further enhancements is believed to be connected to uniform 3D hydride 
formation inside the Mg material, which could otherwise lead to a hydride shell on the outer surface and 
slowed hydrogen diffusion through this shell. 
 GLAD deposited Mg nanotrees offer the opportunity to investigate Mg structures with 
dimensions (<20 nm) that are not possible or is very elaborate with techniques such as high energy ball 
milling and thin film depositions. Thus it gives the opportunity to study nanostructuring effects on 
hydrogen absorption-desorption properties. These structures also open a window to study hydrogen 
diffusion in nanostructures, hydride formation and transformation, nucleation and growth. It is also easy 
to implement catalysts on the vast leaf surfaces and study catalyst effects on Mg metal and metal 
hydrides. Although it may end up different morphologies, by using co-deposition of various materials, 
GLAD Mg structures also allow studying alloys of magnesium. In this project we also demonstrated the 
fabrication of magnesium boride nanostructures using GLAD at room temperature, which was not 
achieved before. Such low temperature synthesis of Mg alloy nanostructures offer the possibility of 
developing new easy-to-fabricate materials for hydrogen storage. 
 
Materials Research for Hydrogen Storage 
Our contributions to hydrogen storage research include the following: 

 
- We developed and successfully demonstrated an improved thermal model for volumetric 
hydrogen storage measurements [1]. In addition to increased accuracy versus empirical thermal 
models, this model allows for consecutive measurements at different temperatures without 
recalibration - which is not possible with empirical correction. This is useful for both cyclic 
sorption studies and temperature dependence studies.  
 
- We synthesized previously untested materials for hydrogen storage properties. Materials tested 
include two titanium decorated conjugated polymers (Ti- polyaniline and Ti-
polyphenylacetylene) inspired by theoretical studies [2]. Contrary to promising theoretical results, 
these Ti-decorated polymers were not found to be useful as hydrogen storage media [3]. 
 
- Group I and II borohydrides are among the highest hydrogen density of all potential storage 
media. However their thermal decomposition temperatures are too high, and reformation 
conditions too extreme. These difficulties are potentially overcome with catalysis. We were the 
first to test LaNi5 alloy as a potential catalyst for LiBH4 decomposition in both bulk and 
nanoparticle forms. A mild catalytic effect was observed, but it was deemed too insignificant to 
warrant further investigation. 
 
- Nanoporous materials have been used to destabilize borohydrides allowing their decomposition 
at lower temperatures [4]. We demonstrated that transition metal doping of the nanoporous 
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scaffold can help with destabilization. Furthermore, our analyses indicate that surface interactions 
play a significant role in destabilization of two different tetraalkylammonium borohydride 
compounds [5]. 

 
 
Provide a comparison of the actual accomplishments with the goals and objectives of the project 
 
 
Hydrogen Production 
Goal:  

Solar-to-hydrogen (STH) efficiency 10% by 2015 by developing photoanodes having efficient light 
absorption in the visible range and a long term corrosion resistance by reaching quantum yield of 30% at 
600 nm for commercial scale H2 production. 

Accomplishments: 

 Synthesized nanotubular TiO2  photoanodes with stepped voltage anodization  and surface 
modification of TiO2 photoanodes with He plasma which minimized charge carrier traps and 
contaminants,  

 Surface doping of the photoanode surface with nitrogen plasma followed by He plasma treatment, 
to form TiO2-xNx at the surface thus leaving the bulk semiconductor for high electron conductivity 
and created oxygen vacancies at the surface for improved photocurrent density, 

 Increased photocurrent density by more than 80% by plasma treatments and enhanced light 
absorption by 55% with modified nanotubular structure compared to the untreated TiO2 

photoanodes, and 
 Synthesized of tandem heterostructured layered electrodes with lower bandgap layer (e.g. WO3, 

TiSi2,) behind a wide bandgap semiconductor (e.g. TiO2) facing the electrolyte, 
 Developed of self-cleaning solar concentrator for operating the PEC devices at irradiance level of 

10 sun for enhancing hydrogen generation rate. 
 
Nanostructured Metal Hydrides for Hydrogen Storage 
 We were able to accomplish original goals and objectives of our project where we demonstrated 
the enhanced effects of GLAD nanostructures on hydrogen storage properties. With the motive to 
investigate maximum hydrogen storage capacity, and adsorption/desorption kinetics in thin films and 
nanostructures of magnesium for hydrogen storage; we have conducted a study of Mg nanostructures 
deposited by GLAD. Their morphological and structural characterization was analyzed through SEM and 
XRD methods. Hydrogen absorption characteristics, thermodynamics and kinetics under different 
temperatures were studied using a new quartz crystal microbalance (QCM) system developed in this 
project. Hydrogen absorption studies were conducted under varying temperatures and compared to the 
behavior at constant temperatures. Desorption performances under constant temperatures were also 
measured. Our results showed superior hydrogen absorption and desorption properties for GLAD Mg 
nanostructures at low temperatures. In addition to the original goals of this project, per the suggestions on 
our previous reports by the DOE reviewers, we also investigated the fabrication and hydrogen storage 
properties of magnesium boride nanostructures using GLAD. We demonstrated the room temperature 
growth of magnesium boride coatings and their low pressure hydrogenation property, which have been 
challenging issues for this attractive material for hydrogen storage applications. 
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Materials Research for Hydrogen Storage 
Goal: Increase of reversible hydrogen storage capacity in complex metal hydrides by developing new 
systems including hydride phases 

 
Accomplishments - We synthesized new polymer materials predicted to be powerful hydrogen absorbers, 
and tested several new catalysis and destabilization techniques for borohydrides. The polymer materials 
were found to have no hydrogen absorbing properties. Some new catalytic effects for borohydrides were 
identified, but all are of insignificant potency to make borohydride based hydrogen storage viable. Our 
research did reveal a potential technique to improve the effectiveness of porous networks when used as 
scaffords for hydride complexes. 

 
Goal: Investigate the effects of nanostructures on adsorption/desorption kinetics, and study surface 
oxidation properties. 

 
Accomplishments - We are the first to analyze organic borohydrides in nanoporous silica networks as a 
model system. Our results are the first to reveal the importance of surface chemical interactions between 
the guest hydride complex and host network. Our results should encourage the use of metal doping and 
surface treatments to increase the effectiveness of porous networks used as scaffolds for hydride 
complexes. 
 
Summarize project activities for the entire period of funding, including original hypotheses, approaches 
used, problems encountered and departure from planned methodology, and an assessment of their impact 
on the project results. Include, if applicable, facts, figures, analyses, and assumptions used during the life 
of the project to support the conclusions. 

 
Hydrogen Production 
Objectives  

 Synthesize nanostructured TiO2-xNx photoanodes and tandem heterostructured photoanodes with 
WO3 and TiSi2 to improve absorption of light in the visible spectrum in conjunction with TIO2 
film at the outer surface forming interface between the solid electrode and the liquid electrolyte, 

 Improve photocatalytic properties of photoanodes by plasma treatments for (a) removing 
contaminants and unwanted surface states, (b) doping the photoanode surface with nitrogen to 
create oxygen vacancies and vacant acceptor states to enhance oxidation of water, (c) Optimizing 
surface structure of nanotubular electrodes for increasing photocurrent density, 

 Design optical system with self-cleaning Fresnel-lens based solar concentrator to operate the PEC 
electrode at 10 sun irradiance, and 

 Optimize surface structure of the layered electrodes for minimizing the charge carrier traps. 
 

Approach  

 To address the problem related to the wide bandgap of TiO2, one approach is to develop a hybrid 
nanostructured photoanode comprised of thin-film layers of semiconductors with lower bandgap (e.g. 
WO3, TiSi2,) behind a wide bandgap semiconductor (e.g. TiO2) facing the electrolyte [6]. Similar 
photoanodes can be synthesized with nanotubular structures with outer layer of titanium dioxide (TiO2) 
covering nanotubes of WO3, CdS or TiSi2. The low bandgap semiconductors have high efficiency in light 
absorption covering the visible solar spectrum while TiO2 provides corrosion protection. The layered 
nanotubular electrodes can be arranged in a patterned array for trapping sunlight more effectively 
compared to the densely packed nanotubular structures, providing large illuminated area effective for 
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materials. An electrospray system has been designed for electrostatic coating of TiSi2 particles with 
nanoparticles of TiO2.  

 Further studies are needed to develop (1) Hybrid nanostructured photoanode comprised of thin-
film layers of semiconductors with lower bandgap (e.g. WO3, TiSi2, CdS) behind a wide bandgap 
semiconductor (e.g. TiO2) facing the electrolyte, (2) Patterned array of nanotubular electrodes for trapping 
sunlight more effectively compared to the densely packed nanotubular structures, providing large 
illuminated surface area effective for electrolysis, and (3) Encapsulated nanoparticles of core-shell design 
using narrow and wide bandgap materials.  

Investigation of the charge carrier transport process across the interfaces and removal of charge 
carrier traps at the semiconductor-electrolyte interface by passivation of the dangling bonds for different 
heterostructures, including layered films, nanotubes and nanoparticles would provide further 
improvement of the photoanodes. 

It is desired to develop methods for (1) optimizing the film thickness (in the nanometer to 
micrometer range, to improve tunneling and charge carrier transport), (2) matching the crystalline 
structures of the layered semiconductors and (3) measuring the photocurrent conversion efficiency (IPCE 
vs λ), corrosion resistance, and photo-generated carrier concentration decay rate (by using a rf-
conductivity probe), and (4) investigate the use of self-cleaning solar concentrator for operating the PEC 
at an optimum irradiance level. 

 

                  

Fig 4a.  Illumination of photoanode with self-cleaning solar concentrator at an irradiance level of 10 sun. 
A fiber optics based light coupling is used to allow illumination of the photoanode at the front surface of 
the electrode to minimize reflection loss at the outer glass optical window and at the back surface of the 
inner ITO coated glass substrate. An electrodynamic screen is used to remove dust deposited on the front 
surface of the Fresnel lens. 
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Misra,  “Enhancement of Photoelectrochemical Conversion Efficiency of Nanotubular TiO2 
Photoanodes using Nitrogen Plasma Assisted Surface Modification,” Nanotechnology, Vol. 
20, 2009, 075704. 
 

2. Mazumder, M. K., Biris,  A. S., Johnson, C. E., Yurteri, C. Y., Sims, R. A.,  Sharma, , K. 
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2011. 

9. A. Bhattacharya, T. Karabacak, F. Cansizoglu, M. Wolverton, “An Integrated Approach of 
Hydrogen Storage in Complex Hydrides of Transitional Elements”, Annual DOE Review 
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10. M. J. Wolverton, G. K. Kannarpady, A. Bhattacharyya  “A temperature differential model-
based Sieverts apparatus” Instrumentation Sci. & Tech. 39,2  (2011) 173-197. 

11. M. J. Wolverton, G. K. Kannarpady, A. Bhattacharyya, D. P. Emanis  “Investigation of 
Titanium Decorated Polyaniline and Polyphyenylacetylene for use as Hydrogen Storage 
Materials” Global J. of Inorg. Chem. 2,1 (2011) 12-17. 
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12. M. J. Wolverton, L. L. Daemen, M. A. Hartl “Quaternary Ammonium Borohydride 
Adsorption in Mesoporous Silicate MCM-48.”  Mater. Res. Soc. Symp. Proc. 1262 (2010) 
paper no. 1262-W03-03. 

 
 
c. Networks or collaborations fostered; 
 Nanostructured Metal Hydrides for Hydrogen Storage 
 
Materials Research for Hydrogen Storage 
 

- The experimental data collected for the investigation of borohydride destabilization by 
nanoporous silica was collected at the Los Alamos Neutron Science Center (LANSCE) at Los 
Alamos National Laboratory (LANL). For this portion of the project we wish to acknowledge our 
benefit from the use of the Lujan Center at LANSCE.  

 
d. Technologies/Techniques; 
 Nanostructured Metal Hydrides for Hydrogen Storage 

1. Quartz Crystal Microbalance (QCM) gas absorption/desorption system for the hydrogen storage 
measurements for thin films, nanostructures, and other types of low-weight loading coatings. 

 
Materials Research for Hydrogen Storage 

-We developed a differential thermal model for the reactor component of volumetric 
measurement systems [1]. This model has improved accuracy versus empirical thermal models 
and additionally allows for consecutive measurements at different temperatures without 
recalibration - which is not possible with empirical correction. This is useful for both cyclic 
sorption studies and temperature dependence studies. 

 
f. Other products, such as data or databases, physical collections, audio or video, software 
or netware, models, educational aid or curricula, instruments or equipment. 
Nanostructured Metal Hydrides for Hydrogen Storage 
 
 Materials Research for Hydrogen Storage 

-We fabricated a custom computer automated Sieverts apparatus based on the aforementioned 
temperature differential model [1].  
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