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We describe formal work that relates the finite-volume spectrum in a quantum field theory

to scattering and decay amplitudes. This is of particular relevance to numerical calculations

performed using Lattice Quantum Chromodynamics (LQCD). Correlators calculated using

LQCD can only be determined on the Euclidean time axis. For this reason the standard

method of determining scattering amplitudes via the Lehmann-Symanzik-Zimmermann re-

duction formula cannot be employed. By contrast, the finite-volume spectrum is directly

accessible in LQCD calculations. Formalism for relating the spectrum to physical scattering

observables is thus highly desirable.

In this thesis we develop tools for extracting physical information from LQCD for four

types of observables. First we analyze systems with multiple, strongly-coupled two-scalar

channels. Here we accommodate both identical and nonidentical scalars, and in the lat-

ter case allow for degenerate as well as nondegenerate particle masses. Using relativistic

field theory, and summing to all orders in perturbation theory, we derive a result relating

the finite-volume spectrum to the two-to-two scattering amplitudes of the coupled-channel

theory. This generalizes the formalism of Martin Lüscher for the case of single-channel

scattering. Second we consider the weak decay of a single particle into multiple, coupled

two-scalar channels. We show how the finite-volume matrix element extracted in LQCD

is related to matrix elements of asymptotic two-particle states, and thus to decay ampli-

tudes. This generalizes work by Laurent Lellouch and Martin Lüscher. Third we extend



the method for extracting matrix elements by considering currents which insert energy, mo-

mentum and angular momentum. This allows one to extract transition matrix elements

and form factors from LQCD. Finally we look beyond two-particle systems to those with

three-particles in asymptotic states. Working again to all orders in relativistic field theory,

we derive a relation between the spectrum and an infinite-volume three-to-three scattering

quantity. This final analysis is the most complicated of the four, because the all-orders

summation is more difficult for this system, and also because a number of new technical

issues arise in analyzing the contributing diagrams.
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Chapter 1

INTRODUCTION

In this thesis we present formalism that allows one to extract scattering and decay

amplitudes from numerical calculations of quantum chromodynamics (QCD). QCD is the

accepted underlying theory of the strong interaction and it contains very rich phenomen-

logy but also poses great theoretical challenges. Here we consider the goal of extracting

physical predictions from lattice QCD (LQCD), which is a regularization of the theory that

makes numerical calculation possible. We analyze systems with multiple strongly interact-

ing particles (hadrons) in the initial or final states. In fact, the relations that we present

in this thesis provide the only known method to study such processes quantitatively, with

systematically improvable uncertainties. The formalism thus offers important opportunities

to better understand the predictions of QCD and, by comparing predictions to experimental

results, to investigate new physics models.

To fully explain the applications of this work, we begin by establishing the currently

accepted underlying theory of our universe, the Standard Model (SM). In Section 1.1 we

summarize the Standard Model by describing the history of its construction. We then

review the history of QCD, our main focus within the SM, in Section 1.2. In Section 1.3 we

give a detailed, quantitative discussion of QCD. Next, to better motivate our interest, in

Section 1.4 we describe a number of specific processes that can be studied using the results

we derive. With these established we turn in Sections 1.5 and 1.6 to two technical aspects

of numerical LQCD that are central to the work of this thesis. These are Euclidean time

(1.5) and finite volume (1.6). We also summarize our main results in Section 1.6.
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1.1 Brief history of the Standard Model1

In 1897, Sir Joseph John (J.J.) Thomson demonstrated that cathode rays are comprised

of charged particles with mass over one thousand times smaller than that of the hydrogen

atom [2, 3]. Twenty years later, Ernest Rutherford found the particle that makes up the

rest of hydrogen’s mass. By examining a nuclear reaction between nitrogen and alpha

particles (helium nuclei), he discovered a postively charged particle with mass very close

to the hydrogen atom, which he named the proton. It was soon clear that the proton and

electron alone could not account for all of the known elements. The next heaviest element,

helium, was found to have a nucleus with twice the proton charge, but roughly four times

the mass. This observation was explained with the discovery of the neutron, a neutral twin

of the proton, by Sir James Chadwick in 1932 [4]. Simultaneous with this work, the particle

nature of light was developed from 1900 to 1924, primarily by Max Planck, Albert Einstein,

and Arthur Compton [5, 6, 7, 8, 9]. Thus, by 1932, a beautifully simple picture of matter

and light had emerged, up to a few exceptions that we now describe.

The first important complication was the prediction of antiparticles by Paul Dirac. These

emerged as solutions to a relativistic wave equation that Dirac had found in 1927 [10,

11]. In 1931 Carl Anderson discovered the anti-electron or positron, confirming the bold

prediction [12]. This lead to the new understanding that every particle has an antiparticle

with opposite charge.2 In a very short period the number of fundamental building blocks

was nearly doubled and the puzzle of matter/anti-matter asymmetry was born.

Another complication appeared in 1930 with the discovery of the neutrino. Looking

at the beta decay of various nuclei, Wolfgang Pauli and others recognized that the energy

distribution was not consistent with the two visible decay products. Pauli posited that a

third invisible particle must be carrying away the missing energy. A more complete and

predictive theory of beta decay was then provided by Enrico Fermi, who named the missing

particle the neutrino [13, 14].

Within a few years the story broadened yet again with the prediction by Hideki Yukawa

1This account is drawn heavily from Ref. [1]

2Certain particles with zero charge, such as the photon, turn out to be their own antiparticles.
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of a new type of particle called a meson. The meson was motivated by the question of

what holds nuclei together. For example, the two positively charged protons in a helium

nucleus would repel in the absence of some short-ranged attractive strong force. That the

electromagnetic force is mediated by the photon was already well established, so it was

natural that Yukawa should look for some strong-force mediating particle. He further found

that the mass of the mediator was dictated by the size of nuclei to be nearly 300 times that

of the electron [15].

In 1937 two separate groups, Anderson and Neddermeyer on the west coast of the United

States and Street and Stevenson on the east, identified Yukawa’s particle in cosmic rays [16,

17, 18]. However, these investigations were plagued by some confusion. The problem, as was

finally settled in 1947 by Cecil Powell and collaborators, was the existence of two different

types of particles in cosmic rays [19, 20]. One is the meson predicted by Yukawa, now called

the pi meson or pion, the other is a heavier cousin of the electron, called the muon, which

has no direct relation to the strong force. For a brief period in this year, it was possible to

believe that all fundamental particles had been discovered.

The illusion of completeness did not last long. In December of 1947 Rochester and

Butler published a cloud chamber photograph that showed a heavy neutral particle which

had decayed into two oppositely charged pions [21]. The new particle was named the K-

meson, later shortened to kaon. This began an explosion of discovery, with dozens of new

particles appearing in the 1950s as collider and detector technology improved. The newfound

abundance completely disrupted the simple organized picture. In 1955, in his Nobel Prize

acceptance speech, Willis Lamb joked that “the finder of a new elementary particle used

to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a

$10,000 fine.” [22] This multitude of particles was explained in the 1960s and 1970s with

the development of the quantum theory of the strong force. We discuss this work in some

detail in the next section and do not pursue it further here.

The theory of the electromagnetic and weak interactions reached its modern form slightly

before that of the strong force. First quantum electrodynamics (QED), the quantum theory

governing the interaction of charged particles via photon exchange, was developed. Its main

architects included Hans Bethe, Freeman Dyson, Sin-Itiro Tomonaga, Julian Schwinger and
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Richard Feynman [23, 24, 25, 26, 27, 28, 29, 30, 31]. The framework, which had remarkable

predictive power and would become the standard for all future quantum field theories, was

largely complete within a few years of the pion and the kaon discoveries, by 1950. Over a

decade later in 1961, Sheldon Glashow combined the then well-established QED with the

weak interaction into a single unified theory [32]. Six years after this, Steven Weinberg and

Abdus Salam incorporated the newly formulated Higgs mechanism into Glashow’s frame-

work, thereby reaching the modern theory of the electroweak interaction [33, 34]. Thus,

already by 1967, the electroweak part of the Standard Model was fully in place. The com-

pletion of the strong interactions were roughly half a decade behind.

The Higgs mechanism within the electroweak sector resolved certain theoretical issues

and in doing so predicted an additional particle, a spin-zero scalar called the Higgs boson [35,

36, 37]. The experimental verifcation of this new particle was a long way off and would be

preceeded by the discovery of three other bosons in the theory, the massive vector particles

that mediated the interaction, called W+, W− and Z. The mass of these vectors gave the

weak interaction a short range, just as with the strong interaction and Yukawa’s meson. In

contrast to the strong interaction however, no weak bound states were available to set the

scale for the exchange particles.

But the theory of Glashow, Weinberg and Salam provided a firm prediction for the weak

vector masses, with the mass landing around 100 times that of the proton. The construction

of a collider to find the weak vector bosons began at CERN in the late 1970s and culminated

in 1983 with the discovery by Carlo Rubbia’s group of both the charged and neutral vec-

tors [38, 39]. At this point the Standard Model was on firm ground, awaiting discoveries of

only three more particles, with the most prominent being the unique fundamental spin-zero

boson called the Higgs.

The saga ends nearly three decades later. At this point all Standard Model particles

had been found except for the immensely important Higgs boson. Searches for the elusive

particle had begun at CERN in the 1990s and had continued at Fermilab through 2011,

when the collider there was shut down. In this period plans were devised and pushed forward

at CERN to build a Large Hadon Collider (LHC), with primary focus being the discovery of

the final missing piece. The gargantuan effort achieved first data collection in March 2010.
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The LHC continued to take data over the next two years and finally, on July 4th of 2012,

the ATLAS and CMS collaborations announced in a joint press conference the discovery of

a Higgs-like boson with mass over 130 times that of the proton [40, 41].

With this achievement the Standard Model was completed, some 115 years after the

discovery of its first fundamental building block.

1.2 Brief history of Quantum Chromodynamics

As mentioned above, experiments in the 1950s showed that a large number of new parti-

cles, collectively called hadrons, are produced in proton and electron collisions. Drawing

on earlier work from Eugene Wigner and Werner Heisenberg, Kazuhiko Nishijima, Tadao

Nakano and Murray Gell-Mann discovered how to organize this “particle zoo”, classifying

the new particles according to electric charge and isospin as well as a new property de-

noted strangeness [42, 43, 44, 45, 46]. In 1963, Gell-Mann and George Zweig independently

proposed that the classification could be efficiently explained by introducing smaller consi-

tutients inside the hadrons, spin-1/2 fermions called quarks [47, 48, 49].3 At that time three

different kinds, or flavors, were needed. These were named up, down and strange.

Shortly after Gell-Mann and Zweig’s papers, in a footnote in a 1965 preprint, Boris Stru-

minsky noted that the Ω− hyperon must contain three quarks of the same flavor (strange)

and the same spin. However, being identical fermions, quarks are required to be in a state

that is anti-symmetric under particle exchange. Struminsky argued that this anti-symmetry

could only be accomplished by introducing a new quantum number [51].

Similar observations were made in the same year by Moo-Young Han with Yoichiro

Nambu as well as independently by Oscar W. Greenberg [52, 53]. These groups proposed

3Zweig preferred the term “ace” for the particle he proposed, but it was Gell-Mann’s terminology that

became widely accepted. Gell-Mann also said later that he was undecided on the spelling of the new word,

until he found a passage in James Joyce’s Finnegans Wake [50]:

Three quarks for Muster Mark!

Sure he has not got much of a bark

And sure any he has it’s all beside the mark.



6

that quarks possess an additional degree of freedom, called color, and that each quark flavor

forms a triplet of color. In more technical language, Han and Nambu as well as Greenberg

suggested that quarks transform as the three-dimensional (fundamental) representation of

an SU(3) gauge group.4 The mathematical structure of such a theory had already been

developed over a decade earlier by Chen Ning Yang and Robert Mills [54]. In a gauge theory,

additional vector particles called gauge bosons are automatically included. These particles

transform as the adjoint of the gauge group, which is eight-dimensional in the present

case, corresponding to an octet of particles known as gluons. Gluons mediate the quark

interactions and are responsible for holding quarks together inside hadrons. This quantum

theory of quarks and gluons, which is known as Quantum Chromodynamics (QCD), is the

modern accepted theory of the strong interaction.

Although the quantum numbers of the three lightest quarks were understood by 1965,

the physics community was still divided about whether the constituents should be under-

stood as an organizational tool or as fundamental particles. The central concern was that

no experiments had shown quarks in isolation, and these should have been easy to identify

since they were predicted to have fractional electric charge. In 1968 James Bjorken pro-

posed certain relations in deep inelastic scattering of electrons and protons which, if seen

experimentally, would confirm that the protons were composed of pointlike constituents [55].

These were verified by experiments at SLAC in 1969 and provided strong evidence for a

particle interpretation of quarks [56, 57].

Nevertheless, in the years that followed the community was still far from unified about

the nature of the constituents. The absence of isolated quarks in experiment, as well as

the apparently ad hoc implementation of color to avoid the Pauli exclusion principal, left

many particle physicists uneasy. This doubt was largely resolved in what came to be known

as the November Revolution, a new meson discovery that was announced in November of

1974 [58, 59]. The new meson had actually already been seen by C. C. Ting and collaborators

in the Summer of 1974. However Ting wanted to check the results before announcing them,

4SU(3) is the group formed by matrix multiplication on set of all complex three-by-three matrices U

which satisfy UU† = 1 and detU = 1.
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and so the discovery was kept quiet until Burton Richter’s group at SLAC also saw the

particle. Ting named the particle J and Richter called it ψ, and so the modern designation

contains both these labels. The J/ψ is a neutral meson, which was heavier than any that

had been seen before. Particularly striking was that the state has a very long lifetime

compared with others of similar mass. These observations were explained by identifying the

J/ψ as a bound state of a new quark, called charm, together with a charm anti-quark. The

introduction of the charm quark provided a rich set of predictions that were later confirmed,

and for most, this breakthrough firmly established the existence of quarks. Indeed, two still

heavier quarks have since been discovered: the bottom quark in 1977 and the top quark in

1995, both at Fermilab [60, 61, 62].

The heavier quark discoveries were particularly significant, because the properties of

mesons built from heavier quarks are easier to predict. To explain this fact, we now present

the final crucial step toward the modern understanding of the strong interaction. This is

the discovery of asymptotic freedom by David Gross and Frank Wilczek and independently

by David Politzer, in 1973 [63, 64]. In their Nobel Prize winning works, Gross, Politzer

and Wilczek showed that the coupling constant which governs the strength of the strong

interaction decreases with increasing energy. Indeed, the early 1970s were a crucial time for

developing technical understanding of QCD. In the year before Gerard ’t Hooft and Martinus

Veltman proved that QCD was renormalizable, meaning that the theory was calculable to

any fixed order in perturbation theory [65].5 Asymptotic freedom and renormalizability

imply that perturbative analysis is both rigorous and predictive, but only for high energy

observables. For example, heavier-quark mesons are more amenable to perturbative analysis

than those built from up, down and strange. Experiments at PETRA in 1979 found clear

evidence for the validity of this perturbative understanding, and the approach was confirmed

at the few percent level with the LEP experiments at CERN [66, 67].

The flipside of asymptotic freedom is that the strength of the coupling constant increases

with decreasing energy. This makes plausible, but does not prove, that interactions at

5Interestingly Gerardus ’t Hooft understood the scaling of QCD a year before the publications of Gross,

Politzer and Wilczek, and apparently deemed it unworthy of publication.
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low energies are so strong that the relevant degrees of freedom change. More precisely, if

the interactions are strong enough, then the energy cost to isolate quarks produces new

quark anti-quark pairs out of the vacuum. In this description, the interquark potential

is expected to increase linearly with separation, like the potential of a taut string. It

follows that energy rises indefinitely with separation until the string is broken by a new

particle/antiparticle pair. This idea is called confinement. It explains why quarks are never

seen in isolation, because such a state would cost infinite energy. Although no formal proof

exists, the evidence by now is overwhelming.

1.3 Detailed description of QCD6

We now completely specify the modern theory of the strong force, QCD. We do not directly

use the results of this section anywhere below and only include it for completeness.

We begin by specifying the quark-field-dependent terms of the QCD Lagrangian density

Lq = −Ψi,x(−i /Dij +mxδij)Ψj,x , (1.1)

where i, j are color indices running from 1 to 3 and x is a flavor index running from 1 to 6.

(In many cases the sum runs only up to 2, 3, or 4, as the heavier quarks can be neglected.

The quark flavors of the standard model are summarized in Table 1.1.) Each Ψi,x field is a

four-component Dirac spinor, with Dirac indices suppressed.

Here we have also introduced

/Dij = γµDµ,ij = γµ[∂µδij − igAaµT aij ] , (1.2)

where γµ is a Dirac matrix satisfying [γµ, γν ] = −2gµν with gµν the mostly-plus Minkowski

metric, pµpνg
µν = −[p0]2 +p2. The second term in Eq. (1.2) results in a quark-quark-gluon

coupling. It consists of the gluon field Aaµ, the generator matrix T aij and the strong coupling

constant g. Here a runs over the 8 generators of SU(3) and T aij is understood to be in the

fundamental representation.

It remains only to specify the pure-glue or Yang-Mills part of the theory

LYM = −1

4
F cµνF cµν , (1.3)

6Conventions in this section are taken from Ref. [68]
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up down strange charm bottom top

mass (MeV) 2.3+0.7
−0.5 4.8+0.5

−0.3 95± 5 1,275± 25 4,180± 30 160,000+5,000
−4,000

charge +2/3 −1/3 −1/3 +2/3 −1/3 +2/3

Table 1.1: Basic properties of the six quarks in the Standard Model. All masses are in MS

renormalization scheme. For the lightest three the renormalization scale is µ = 2 GeV and

for the heaviest three the scale is equal to the particle mass [69].

where

F cµν = ∂µA
c
ν − ∂νAcµ + gfabcAaµA

b
ν . (1.4)

Note that this part of the Lagrangian density gives three and four-gluon vertices. This self

interaction of the exchange particles is the central feature that distinguishes a non-abelian

gauge theory from an abelian gauge theory.

The total Lagrangian density is thus L = Lq +LYM and the action is S =
∫
d4xL. From

this one can formally determine any correlator using the path-integral relation

〈0|T Ôn(xn) · · · Ô1(x1)|0〉 =
1

Z

∫
DADΨDΨ exp[iS] On(xn) · · · O1(x1) , (1.5)

where T denotes time ordering and

Z ≡
∫
DADΨDΨ exp[iS] . (1.6)

It is not, however, a priori clear that this path-integral is well-defined. One way to make

sense of the integral is in perturbation theory. As we have already mentioned, it is now

well established that the theory is calculable at any fixed order in perturbation theory. To

perform such calculations one must gauge-fix and then regularize and renormalize ultraviolet

divergences. Certain quantities also suffer from infrared divergences but these cancel in any

physical observable. Perturbative QCD is not relevant to the present work and we therefore

make no further mention of this extensive field.
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Another tool for understanding QCD is to consider a modified theory in which spacetime

is discretized. By this we mean that quark fields are restricted to only take values on a lattice

of points

ψ(x) −→ ψ(an) , (1.7)

where a is the lattice spacing and n is a four-vector of integers. Additional work is needed

to completely define and make sense of the discretized theory. We do not describe the

steps here but merely assert that it is well understood how to define a discretized path

integral and then how to perform a continuum limit to recover desired physical quantities.

Discretizing QCD is the only known way to regulate ultraviolet divergences without first

performing a perturbative expansion. Since perturbation theory does not describe the low-

energy properties of the theory, the availability of a nonperturbative regulator is crucial.

Although important progress has been made via analytic studies of LQCD, the bulk

of modern focus is on numerical calculations of the theory. This requires restricting the

discretized theory to a finite (usually periodic/antiperiodic) spacetime, so that the path

integral reduces to a finite-dimensional integral. In addition, because the integration space

is so large, numerical work relies on Monte Carlo sampling to approximate the desired result.

This technique only applies when the integrand is positive definite, and thus cannot be used

with the complex oscillatory factor, exp[iS]. For this reason the numerical path-integral

must be performed in Euclidean rather than Minkowski field theory.

In this work we consider the role of Euclidean time and finite volume in extracting

physical observables from LQCD. In particular, we are interested in processes that have

two or more on-shell hadrons in the initial or final state.7 Before describing how LQCD

7As we describe in more detail in the finite-volume section below, extracting observables is often easier

when only one (or zero) hadrons appears in the initial or final state. For example, matrix elements of local

operators between single-particle states can be directly extracted by taking an appropriate limit on Euclidean

time coordinates. This approach is already being widely used in precision numerical studies. I am currently

working with Jack Laiho and Ruth S. Van de Water to extract matrix elements relevant for neutral kaon

mixing. These matrix elements predict the rate at which a kaon oscillates into an anti-kaon. Our study

considers operators both within and beyond the Standard Model, and comparison with experiment will thus

provide constraints on new physics models.
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can be used to study such processes we present a series of specific examples to motivate our

interest.

1.4 Multi-hadron physics within and beyond the Standard Model

In this section we discuss various decay and scattering processes that have multiple hadrons

in the initial/final state. The specific cases that we consider highlight the significance of the

work presented in the following chapters. However, it is important to emphasize that the

examples are only illustrative, and that the formalism that we present below is much more

general. In particular, in this thesis we derive formalism to extract the following quantities

from numerical LQCD:

1. two-to-two scattering amplitudes, for scalar particles in systems with any number of

coupled two-particle channels,

2. weak decay matrix elements, with a two-scalar final state that is coupled to other

two-particle channels,

3. one-to-two scalar transition matrix elements, for currents that inject energy, momen-

tum and angular momentum,

4. three-to-three scattering quantities, for identical scalar particles with no other open

scattering channels.

Numerical LQCD is the only known first-principles approach for predicting these quantities

from the underlying theory. Since a method for extracting these observables was unavail-

able before this work, we think the results are an important asset in reaching a detailed,

quantitative understanding of the strong interaction.

The rest of this section is organized as follows. In Subsection 1.4.1 we discuss the

decay K → ππ. The formalism for determining this decay rate from LQCD was devel-

oped by Martin Lüscher and Laurent Lellouch in the (very good) approximation that the

lightest two quarks have equal mass [70]. In Subsection 1.4.2 we discuss various phenomeno-

logically interesting two-particle resonances including a0(980) and f0(980). These can be
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systematically studied with our coupled two-scalar scattering formalism (1 above). Next in

Subsection 1.4.3 we consider D → ππ,KK, which is accessible via our weak decay relation

(2), in the approximation where coupling to higher particle states is neglected. In Subsec-

tion 1.4.4 we discuss various semi-leptonic/photonic processes such as such as πγ → ππ.

These are accessible from lattice calculations via our formal developments for transition ma-

trix elements (3). Finally in Subsection 1.4.5 we discuss three particle resonances including

N(1440) → Nππ and ω(782) → πππ. Our three-particle analysis (4) represents progress

towards first principles analysis of these states.

1.4.1 K → ππ

Mesons with the quantum numbers of one strange antiquark and one of the lightest two

quarks are called kaons. These particles have a rich phenomenology and provide important

opportunities for testing and constraining physics that goes beyond the Standard Model

(BSM physics). Because strangeness is conserved in QCD, kaons can only decay through

the weak interactions. Decays can be leptonic as well as semileptonic, involving both leptons

and hadrons, and purely hadronic. The last of these provides an opportunity to explore the

interplay of weak and strong interactions, with incoming and outgoing QCD states coupled

only via charged weak vectors, W±. An old problem in this sector, specifically in K → ππ

decays, is the ∆I = 1/2 rule. This “rule” is the experimental observation, made nearly sixty

years ago, that kaons (which have isospin of one-half) decay to the isospin-zero state with a

much higher rate than to the isospin-two state [71, 72, 73]. The enhancement is measured

to be [74]

Re
[
AK−→ (ππ, I=0)

]

Re
[
AK−→ (ππ, I=2)

] = 22.2± 0.1 . (1.8)

Here A is a decay amplitude and so the ratio of rates is larger, equal to the ratio of magni-

tudes squared.

The ∆I = 1/2 rule predates QCD, and early attempts to understand the observation

were completely unsuccessful. Evaluating matrix elements of

[s̄γµ(1− γ5)u] [ūγµ(1− γ5)d] , (1.9)



13

within the quark-model, one finds that the ratio of amplitudes should be order one, in stark

tension with experiment [74].

Understanding was greatly improved with the advent of QCD and the operator product

expansion. Using these tools, the decay amplitudes can be determined from matrix elements

of a low-energy effective hamiltonian [75, 76, 77, 78, 79]

H∆S=1
eff =

GF√
2

8∑

i=1

[
(V ∗usVud)zi(µ)− (V ∗tsVtd)yi(µ)

]
Qi(µ) (µ < mc) , (1.10)

where Qi(µ) are four quark operators and zi(µ) and yi(µ) are Wilson coefficients. The latter

contain information on scales above the renormalization scale µ, and for CP conserving

processes only the zi(µ) are numerically relevant. Here we have also introduced the Fermi

decay constant GF = 1.16637(1)× 10−5 GeV−2 as well as certain elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, Vxy [69].

The Wilson coefficients can be calculated perturbatively for µ & 1 GeV. Indeed major

progress in the understanding of the ∆I = 1/2 rule was made when it was observed that

the quark evolution, represented by the Wilson coefficients, leads to both an enhancement

of the I = 0 and a suppression of the I = 2 final state [75, 76, 80, 81, 82, 83]. Nevertheless,

perturbative effects are not sufficient to fully explain Eq. (1.8) and the low energy QCD

matrix elements are needed.

We do not display the explicit forms of the four-quark operators Qi(µ) here, but only

comment that these include that of Eq. (1.9), which is due to W+ exchange [see Figure

1.4.1(a)], as well as penguin operators such as [74]

∑

q

[s̄γµ(1− γ5)d] [q̄γµ(1− γ5)q] ,
∑

q

[s̄γµ(1− γ5)q] [q̄γµ(1− γ5)d] , (1.11)

where the sum runs over up, down and strange. These operators arise from so-called penguin

diagrams like that shown in Figure 1.4.1(b).

To extract K → ππ amplitudes, one must determine

〈ππ, I|Qi(µ) |K0〉 . (1.12)

These matrix elements must be calculated using non-perturbative techniques, with the only
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Figure 1.1: Feynman diagrams responsible for K → ππ: (a) tree-level W-exchange diagram

(b) one-loop penguin diagram.
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known sytematically improvable option being LQCD.8 A full-error-budget calculation is now

being implemented by the RBC/UKQCD collaboration [88, 89, 90]. The methodology is

fully in place, results for the I = 2 final state with a complete error budget are available [91],

and complete results for the more challenging I = 0 final states should become available in

the next few years. At that stage we will finally learn whether and in what manner QCD

can explain the ∆I = 1/2 rule and the observed CP-violation9 rate in K → ππ decays.

1.4.2 Two-particle resonances

The rich resonance structure observed in hadronic scattering experiments is expected to

be completely described by QCD. Here we consider the energy regime where only two-

particle channels are open. The scattering amplitudes connecting these channels contain all

information about the two-particle resonances of the theory.

More precisely, the eigenstates of the QCD hamiltonian are asymptotic states built only

from those mesons and baryons that are stable in the absence of the electroweak interaction.

All predictions of the theory are contained within the scattering matrix (S-matrix) which

is the matrix of overlaps between all possible incoming and outgoing asymptotic states. In

the two-particle sector, the S-matrix may be expressed in the space of open two-particle

channels together with angular momentum which, at fixed energy, completely specifies the

states. The simplest case is a single two-particle channel, for which the matrix reduces to a

single phase for each value of angular momentum, SJ = exp[2iδJ ]. A resonance is defined

as a sharp increase of the phase-shift δJ as a function of the two-particle center of mass

(CM) frame energy. A more rigorous definition is possible if one knows the analytic form

of S in the complex CM-energy plane. Then a resonance is defined as a pole located off the

real axis.

In Chapter 2 we present a method for extracting the S-matrix from LQCD, for a system

with multiple strongly-coupled two-scalar channels. By extracting scattering observables at

8Other options include the vacuum saturation approximation, which fails completely, and the large Nc

(number of colors) expansion, which predicts the correct order of magnitude for the decay rates [77, 84, 85,

86, 87].

9C is charge conjugation symmetry, P is parity.
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many energies and fitting the result to a well-motivated analytic function, one can use this

method to determine S off the real axis. The poles in the result then give the full resonance

structure of the theory.

This method has already been applied in a full LQCD calculation, at unphysically heavy

391 MeV pion mass, to the I = 1/2 πK, ηK system [92].10 This study, which considers

JP = 0+, 1−, 2+, demonstrates that the formalism can be applied to physically relevant

systems and that resonance properties can be rigorously extracted. In particular, the authors

find a narrow scalar resonance and a broad tensor resonance resembling the K∗0 (1430) and

the K∗2 (1430) respectively. In the J = 1− channel they find a bound state below πK

threshold. This is expected to become the experimentally known narrow resonance at

physical pion masses.

Many other states could be investigated using this approach. For example, QCD phe-

nomenologists are interested in better understanding two scalar resonances with energies

close to the KK threshold, known as the a0(980) (I = 1) and the f0(980) (I = 0). These

are sufficiently narrow that it seems well-motivated to associate them with certain excited

states of the quark model. However they do not fit into the scalar qq̄ nonet, and thus other

solutions are required. Possible alternatives include interpreting the narrow resonances as

tetraquark states or as KK molecules [93, 94, 95, 96, 97, 98]. In general these are model-

dependent descriptions, but in certain contexts a more rigorous definition can be applied. In

this sector much insight could be gained by using LQCD to extract resonance pole positions,

as well as to determine overlaps of various operators with scattering states at the pole.

1.4.3 D → ππ,KK

In December of 2011 the LHCb experiment at CERN reported evidence for CP-violation

in (the difference of) D0 → π+π− and D0 → K+K− decays [99]. Although the initially

reported rate was larger than naive expectations from the Standard Model, there was suf-

ficient uncertainty in the Standard Model prediction for it to be consistent with the result

10Note that the η is a resonance for physical pion mass but is a stable particle for the pions used in this

calculation.
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(see, e.g. Refs. [100, 101, 102, 103, 104, 105]). The violation was then reduced in a more

complete analysis from May of 2014 [106]. Nevertheless, it is interesting to understand

whether a calculation of such decays using lattice methods is feasible.

In the context of LQCD the issue turns out to be a generic field-theoretic question of

whether decays into multiple, strongly-coupled channels can be analyzed. In Chapter 3 we

demonstrate that this is possible and detail the method for decay into coupled two-scalar

channels. This formalism allows one to analyze D → ππ,KK in the approximation where

coupling to higher-particle states is neglected. This can likely only offer a rough guide of the

physical decay rates. A qualitative indication of this (ignoring differences in phase space)

is that the f0(1500) has a 50% branching fraction to ππππ, while the branches to ππ, KK

and ηη are ∼ 35%, 9% and 5%, respectively [69].

1.4.4 One-to-two transition matrix elements

A LQCD calculation of proton-proton fusion through the weak interaction, pp → de+νe,

would allow for a direct theoretical prediction of this fundamental process which powers

the sun. The MuSun Collaboration will measure a related process, muon capture on deu-

terium [107]. At low energies, these two processes are described by the same two-nucleon

contact interaction [108], providing an opportunity to over-constrain these reactions for

which there is currently discrepancy between experimental results [109, 110] and theory

calculations [108, 111].

Another example of particular interest is the heavy meson decay B0 → K∗`+`− →
πK`+`− which could be used to probe physics beyond the Standard Model. Also for this

process there is currently tentative tension between experimental results [112, 113, 114, 115,

116] and Standard Model predictions [117, 118, 119, 120].

In Chapter 4 we demonstrate how to unambiguously study 1→ 2 form factors via lattice

QCD. Specifically our formalism allows one to extract matrix elements of energy/angular-

momentum injecting currents between a one-particle state and a two-particle asymptotic

state. This is a first step towards constructing a formalism for the determination of 2→ 2

form factors, which is directly relevant for pp→ de+νe.
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1.4.5 N(1440)→ Nππ, ω(782)→ πππ, K∗2 (1430)→ Kππ

A better understanding of the Roper resonance N(1440) has been an important goal of

QCD phenomenologists for decades. It is unnatural from the perspective of quark models,

since its mass is lower than that of the negative-parity ground state N(1535) [121, 122].

As with the other states discussed, a quantitative prediction of the N(1440) properties

from first principles QCD in only possible via LQCD. Also as above, the formalism to

extract the resonance’s properties from the underlying theory is currently unavailable. In

the present work we take an important step towards this formalism. Specifically, in Chapter

5, we analyze a single scalar particle with no coupling between odd and even particle states.

Within this set-up we derive a relation between the three-particle finite-volume spectrum

and a particular (non-standard) infinite-volume quantity. Our formalism is strictly valid

for three pion states in QCD and could be used to investigate the ω(782) resonance, which

decays to three pions.11

Future work will generalize this to accommodate non-identical and non-degenerate scalar

particles and also particles with spin. This will allow one to treat the Roper resonance and

also K∗2 (1430)→ Kππ. This is well-motivated by the current status of LQCD calculations.

In particular, the aforementioned LQCD calculation of πK, πη scattering was limited, in

the J = 2+ sector, by the opening of the K∗ → Kππ threshold [92]. Our formalism for

this system could thus potentially allow lattice practitioners to extract physical information

from existing numerical data.

11For physical pion masses the resonance would also couple to five-pion states, invalidating the analysis

presented here. This issue would potentially be evaded in simulations with unphsyically heavy pions. Here

one must determine what range of pion masses gives a resonant ω(782) which only decays to three-pion

states. Practically one would likely proceed to analyze the three-particle spectrum at some pion mass

without knowing the phenomenology. If the extracted resonance sits between three and five particle masses

then the concluded properties are formally rigorous. If the resonance exceeds the five particle threshold,

then the result must be interpreted with a systematic uncertainty due to the neglected on-shell state.
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1.5 Euclidean time

Having discussed a number of interesting processes with two or more hadrons in the initial

or final states, we now return to the task of understanding how these can be studied using

LQCD. As mentioned above, this thesis emphasizes the role of Euclidean time and finite

volume in extracting multi-hadron observables. In this section we carefully discuss the

former.

We first recall the main motivation: Numerical lattice QCD calculations can only be

performed using Euclidean time. This is because only Euclidean path integrals have a real

positive integrand that can be evaluated using Monte Carlo techniques. For this reason, it is

paramount to understand what information can be extracted from numerically determined

correlators with Euclidean time coordinates. In the following subsection we carefully define

the Euclidean correlator. Then, in Subsection 1.5.2, we discuss the difficulties of extracting

physical scattering information from these objects.

1.5.1 Definition of the Euclidean correlator

We begin with the Minkowski two-point correlator

〈0|Ô2(x0,x)Ô1(y0,y)|0〉 =
1

Z

∫
DADΨDΨ exp[iS] O2(x0,x)O1(y0,y) , (1.13)

where we have assumed x0 > y0. Restricting attention to the left-hand side, we insert a

complete set of states and use the identity for time translation of quantum operators to

reach

〈0|Ô2(x0,x)Ô1(y0,y)|0〉 =

∑

n

∫
d3P

(2π)32En,P
exp[−iEn,P(x0 − y0)] 〈0|Ô2(0,x)|n,P〉〈n,P|Ô1(0,y)|0〉 . (1.14)

Here we label eigenstates of the Hamiltonian by their total momentum P as well as by a

collective label n, which encodes all other properties. We stress that n might also include

continuous degrees of freedom, so that the schematic sum may also contain integrals. We

also assume throughout that the ground state is unique and has zero energy.
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If the integrals in Eq. (1.14) are convergent, then it is clear that extending x0 − y0 into

the negative complex plane will only improve this convergence. In particular, if we rotate

to pure imaginary values of the same magnitude, denoted −i(x4 − y4), then the relation

becomes

〈0|ÔE,2(x4,x)ÔE,1(y4,y)|0〉 ≡
∑

n

∫
d3P

(2π)32En,P
exp[−En,P(x4 − y4)] 〈0|Ô2(0,x)|n,P〉〈n,P|Ô1(0,y)|0〉 . (1.15)

This is the definition of the Euclidean correlator.

We next claim that this Euclidean correlator, and its generalization to any number of

fields, is defined by a modified path integral. To review the derivation of the path-integral

formula, we do not work within QCD but instead consider a one-dimensional, real scalar field

theory. This captures the basic points of the derivation but avoids a number of complicating

details.

We begin by expressing the time dependence via the time evolution operator, but in

contrast to Eq. (1.15), we do so without inserting a complete set of states. Assuming

x4 > y4, we find

〈0|ÔE,2(x4)ÔE,1(y4)|0〉 = 〈0|ÔE,2(0) exp[−Ĥ(x4 − y4)]ÔE,1(0)|0〉 , (1.16)

=
1

Z ′
lim

(T+→+∞, T−→−∞)

∫
dφ

∫
dφ′

× 〈φ′|e−Ĥ(T+−x4)ÔE,2(0)e−Ĥ(x4−y4)ÔE,1(0)e−Ĥ(y4−T−)|φ〉 ,
(1.17)

where we have introduced

Z ′ ≡ lim
(T+→+∞, T−→−∞)

∫
dφ

∫
dφ′ 〈φ′| exp[−Ĥ(T+ − T−)]|φ〉 . (1.18)

Here |φ〉 is an eigenstate of our one-dimensional field φ̂(0) with eigenvalue φ. To see that

Eq. (1.17) holds, note that the integrals over eigenstates of φ̂(0) can be rewritten as linear

combinations of Hamiltonian eigenstates. The exponential factors then remove all excited

states and the 1/Z ′ pre-factor cancels the coefficients on the two vacuum states.

The next step is to write each time evolution operator as a product of N � 1 factors

which each evolve by an infinitesimal amount. For example

exp[−Ĥ(x4 − y4)] = exp[−Ĥε] exp[−Ĥε]× · · · × exp[−Ĥε] , (1.19)
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where Nm factors appear on the right-hand side and ε ≡ (x4 − y4)/Nm. We then insert a

complete set of states

1 =

∫
dφ |φ〉〈φ| , (1.20)

between each pair of adjacent infinitesimal time-translators. This gives a large number of

factors with the form

〈φτ+1|e−Ĥε|φτ 〉 , (1.21)

where τ is an integer labeling the various variables of integration.

If we assume the Hamiltonian takes the standard form Ĥ = Π̂2/2+V (φ̂) then this factor

can be further simplified

〈φτ+1|e−Ĥε|φτ 〉 =

∫
dΠ

2π
〈φτ+1|Π〉〈Π|e−εΠ̂

2/2e−εV (φ̂)|φτ 〉+O(ε2) , (1.22)

= C exp
[
− ε

{1

2

(φτ+1 − φτ )2

ε2
+ V (φτ )

}]
+O(ε2) . (1.23)

Absorbing all factors of C into Z = Z ′/CN and dropping O(ε2) terms, we deduce

〈0|ÔE,2(x4)ÔE,1(y4)|0〉 =
1

Z

∫
Dφ exp[−SE ]O(x4)O(y4) , (1.24)

where

∫
Dφ ≡




N+∏

τ=N−

∫
dφτ


 , (1.25)

SE ≡ ε
N+∑

τ=N−

LE(τ) ≡ ε
N+∑

τ=N−

[
1

2

(φτ+1 − φτ )2

ε2
+ V (φτ )

]
, (1.26)

O(τ) ≡ 〈φτ+1|Ô(0)|φτ 〉 , (1.27)

and

Z ≡
∫
Dφ exp[−SE ] . (1.28)

Finally, if we take the limit in which the time slices become arbitrarily close together

(ε→ 0) then Eq. (1.26) becomes

SE ≡
∫ ∞

−∞
dτLE(τ) ≡

∫ ∞

−∞
dτ

[
1

2
[∂τφ(τ)]2 + V [φ(τ)]

]
. (1.29)
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Actually, this limit is highly subtle, since it involves approaching an infinite continuum of

integration variables. We will not pursue this issue further here but merely assert that

practitioners of LQCD are concerned with taking the (closely related) continuum limit in

order to extract physical observables. Although there is no proof that the limit is well-

defined, numerical implementation has been highly successful.

Next observe that the quantity SE , in Eq. (1.29), is a modified form of the action

that defines the real scalar field theory. In particular, it is reached by rotating the time

coordinate from the real to the imaginary axis, and then relabeling. This is also the correct

prescription to identify the Euclidean path-integral of QCD, one rotates from (x0,x) to real

(x4,x), where x4 = ix0

iS = i

∫
dx0

∫
dxL(x0,x) (1.30)

=

∫

I
dx4

∫
dxL(−ix4,x) (1.31)

−→
∫

R
dx4

∫
dxL(−ix4,x) ≡ −

∫
d4xELE(xE) ≡ −SE . (1.32)

To go from Eq. (1.30) to (1.31), we have simply relabeled x0 = −ix4. The subscript I
indicates that integration is along the imaginary x4 and therefore real x0 axis. Here the

first two lines are trivially equivalent and only involve relabeling. To go from Eq. (1.31) to

(1.32), we rotate the integration contour to the real x4 axis. Thus, in this step the action

changes from a functional of fields on real x0 to a functional of fields on real x4.

Returning to notation that is appropriate for QCD we reach

〈0|TOE,n(xE,n) · · · OE,1(xE,1)|0〉

=
1

Z

∫
DAEDΨEDΨE exp[−SE ] OE,n(xE,n) · · · OE,1(xE,1) , (1.33)

where T denotes time ordering and

Z ≡
∫
DAEDΨEDΨE exp[−SE ] . (1.34)

As already mentioned, the discretized version of this path-integral can be numerically eval-

uated. We now consider how the Euclidean time signature limits the information that one

can extract.
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1.5.2 Extracting Minkowski correlators from infinite-volume Euclidean correlators

Because numerical lattice calculations are performed in a finite volume and with nonzero

lattice spacing, the Euclidean correlators that one extracts will differ from those of the

infinite-volume continuum theory. However, it is at least in principle possible to run cal-

culations with many different lattice and box sizes, and so to systematically reduce these

effects. With this in mind, we now consider what information can be extracted from numer-

ically determined, infinite-volume/continuum correlation functions, evaluated at Euclidean

time. We will find that physical multi-hadron observables cannot be determined in this way,

and this will motivate the remainder of this work, which relies on finite-volume as a tool to

overcome the obstacle.

The first natural question is whether it is possible to convert

〈0|TOE,n(xE,n) · · · OE,1(xE,1)|0〉num −→ 〈0|TOn(xn) · · · O1(x1)|0〉num , (1.35)

where the subscript indicates that the functions are known numerically. This represents an

ill-posed problem in most cases of interest [123], and the issue has been quantititatively in-

vestigated in the context of inverse Laplace transforms [124]. To understand the connection,

it is neccesary to first introduce the momentum-space Euclidean correlator

GE(qE,1, · · · , qE,n) ≡
∫
d4xE,1 · · · d4xE,n exp[−i(x1,4q1,4 + · · ·+ xn,4qn,4)]

× exp[−i(x1 · q1 + · · ·+ xn · qn)] 〈0|TOE,n(xE,n) · · · OE,1(xE,1)|0〉 . (1.36)

Next observe thatGE can be written as the Laplace transform of the position-space Minkowski

correlator. This is achieved by rotating the x4 integrals from the real to the imaginary axis.

Here one must take care to rotate the contours in the direction that gives damping at in-

finity. For example, considering the case when all q4 < 0, we split all x4 integrals into the

positive and negative halves of the real axis. For the term with all positive ranges we rotate

to the positive imaginary axis to find

GE(qE,1, · · · , qE,n) = in
∫ x0=∞

x0=0
d4x1 · · · d4xn exp[−x0

1|q1,4| − · · · − x0
n|qn,4|]

× exp[−i(x1 · q1 + · · ·+ xn · qn)] 〈0|TOn(xn) · · · O1(x1)|0〉+ · · · , (1.37)
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where · · · indicates a series of similar terms that arrise from integrals over the negative real

axis. We generally expect the Laplace transform to converge, since the Minkowksi correlator

has oscillatory time dependence, so the integrand above decays exponentially with time. We

thus deduce that the problem of analytic continuation may be reexpressed as that of finding

the inverse Laplace transform

GE(qE,1, · · · , qE,n)num
−→

inverse LT 〈0|TOn(xn) · · · O1(x1)|0〉num . (1.38)

Ref. [124] discusses in great detail why this problem is “severely ill posed”. The authors

first point out that, while the Laplace transform is continuous, its inverse is not. The

argument introduces a sequence of functions fn(x0), with n = 1, 2, 3, · · · , together with

their Laplace transforms gn(q4). The authors demonstrate that it is possible to construct a

sequence such that as n→∞

∫ ∞

0
dq4|gn(q4)|2 −→ 0 while

∫ ∞

0
dx0|fn(x0)|2 −→∞ . (1.39)

To see the significance of this, we introduce G(q4) as the exact Laplace transform, and

observe that G(q4)num,n ≡ G(q4) + gn(q4) defines a sequence of approximations that im-

prove with increasing n. Specifically, the approximations improve in the sense that the

norm of G(q4)num,n − G(q4) vanishes with increasing n. (Recall that the norm squared is

defined as the integral of the function’s magnitude squared, as given in Eq. (1.39).) Re-

markably, however, the difference between the exact inverse F (x0) and the approximate

inverses F (x0)num,n ≡ F (x0) + fn(x0) has divergent norm in the limit n→∞.

The situtation is improved if we include the assumption that F (x0) must be a continuous

function. In this case the approximate inverse Laplace transform will at least formally

approach the exact result. However if the norm of G(q4)−G(q4)num,n is bounded by some

vanishing ε, then the norm of F (x0)− F (x0)num,n will only vanish as [log(ε)]−1. Thus, the

errors in the inverse are significantly enhanced.

Abandoning the approach of direct analytic continuation, progress can be made by

recalling that we are often interested in the momentum-space Minkowski correlator. This
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is defined as

G(q1, · · · , qn) ≡
∫
d4x1 · · · d4xn exp[i(x0

1q
0
1 + · · ·+ x0

nq
0
n)]

× exp[−i(x1 · q1 + · · ·+ xn · qn)] 〈0|TOn(xn) · · · O1(x1)|0〉 . (1.40)

We thus consider whether it is justified to rotate the integration and so deduce

G(q1, · · · , qn)
?
= (−i)n

∫
d4xE,1 · · · d4xE,n exp[x1,4q

0
1 + · · ·+ xn,4q

0
n]

× exp[−i(x1 · q1 + · · ·+ xn · qn)] 〈0|TOE,n(xE,n) · · · OE,1(xE,1)|0〉 . (1.41)

This is closely related to the preceeding analysis. The difference is that we are working

here with the momentum-space Minkowski correlator rather than the momentum-space Eu-

clidean correlator. In Figure 1.2 we summarize the four types of correlators and the relation-

ships between them. Note that the Laplace transform is used to change between position

and momentum space while simultaneously changing between Euclidean and Minkowski

time. It turns out that Laplace transforming the Euclidean position-space correlator to

extract the Minkowski momentum-space correlator works for certain momenta ranges, but

fails generally.

Consider, for example, the simplest possible case of a two point function in free scalar

field theory. We slightly modify the definition given in Eq. (1.40), instead taking

G(k) ≡
∫
d4x exp[i(x0k0 − x · k)] 〈0|Tφ(x)φ(0)|0〉 =

1

i

1

−[k0]2 + ω2
k − iε

, (1.42)

where we have introduced ωk ≡
√

k2 +m2, with m the mass of the scalar particle. Here

only one Fourier transform was performed because the second simply generates a momentum

conserving delta-function which plays no role in the present argument.

It is next useful to consider the expression at an intermediate stage when only the spatial

integral has been evaluated

G(k) =
1

2ωk

∫
dx0 exp

[
ix0k0 − i(ωk − iε)|x0|

]
. (1.43)

When the Euclidean spatial correlator in Eq. (1.41) is used to attempt the same result, one

instead arrives at

G(k)
?
= − i

2ωk

∫
dx4 exp

[
x4k

0 − ωk|x4|
]
. (1.44)
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momentum 
space

h0|O(x) · · · |0i

G(p, · · · ) GE(pE , · · · )

h0|OE(xE) · · · |0ia.c.

a.c.

f.t. f.t.l.t.?

position 
space

Minkowski 
time

Euclidean 
time

Figure 1.2: Summary of the various relations between Minkwoski/Euclidean time and posi-

tion/momentum space correlators. The letters between the various correlator pairs indicate

the relation: a.c. for analytic continuation, f.t. for Fourier transform, l.t. for Laplace trans-

form. The question mark on l.t. emphasizes that the transform does not always correctly

relate the correlators, as we discuss in the text.
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We deduce that Eq. (1.44) only produces the correct result for [k0]2 < ω2
k. Outside of this

region the Euclidean integral is divergent and therefore clearly gives no information about

the true Minkowski propagator. The problem arises because the contour at infinity, which

is implicitly neglected in going from Eq. (1.43) to Eq. (1.44) (more generally from (1.40)

to (1.41)), gives an important contribution once the magnitude of k0 exceeds ωk. (Indeed

the neglected contour gives a divergent contribution which, if correctly accounted for, must

cancel the divergence in Eq. (1.44) to give the known result.)

In this simplest of cases the convergence issue can be resolved by splitting the range of

integration as was done in Eq. (1.37) above, and then treating [k0]2 < ω2
k and [k0]2 > ω2

k

separately. In this way one can reproduce the free Minkowski propagator, except for the iε

shift of the single-particle pole. However, this cumbersome approach does not generalize well

to the more-complicated correlators of interacting theories. In particular, no implementation

of Laplace transforms can give the correct result for an interacting theory at energies above

multi-particle thresholds. The reason is that in this case the result is imaginary due to the

integration (with iε prescription) along the multi-particle branchcut. Since Eq. (1.41) is

pure real, up to an overall phase, the correct result cannot be reproduced.12 We direct the

reader to Ref. [125] for additional discussion as well as a more physically interesting example

where the Laplace transform is valid.

We conclude this section by offering a final attempt to extract physical information

from numerically determined Euclidean correlation functions. Maiani and Testa studied

infinite-volume Euclidean correlators of the form [126]

Gq(t1, t2) = 〈πq(t1)π−q(t2)J(0)〉 , (1.45)

where J(0) is a current with the quantum numbers of two pions. They considered taking

a large t1 limit followed by a large t2 limit. This would naively interpolate a two-pion out

state, but as one might expect from the preceding discussion, a more complicated structure

emerges.

12Looking to Eq. (1.41) we see that the integral is real as long as the correlator is invariant under xi → −xi
for all i. This is satisfied as long as parity is a symmetry of the theory.
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In a careful and thorough analysis, the authors found

Gq(t1, t2)
t1�t2�0−→ Zπ

2ωq
exp[−ωq(t1 + t2)]

×
[
(1/2)

(
〈πqπ−q, out|J(0)|0〉+ 〈πqπ−q, in|J(0)|0〉

)
+ C exp[2(ωq −mπ)t2] + · · ·

]
, (1.46)

where · · · indicate terms that are suppressed in the large time limit. Observe that the first

term in square brackets involves an average of in- and out-states, rather than the outstate

alone. This is not so surprising since the correlator is known to be real and the average

has this property. The average is not particularly problematic. For example, below the

four-particle threshold the average could be used to determine the two-particle phase shift,

which is the only physically relevant scattering information anyway.

This information is however unavailable, as a result of the second term in square brackets.

Note that this term increases with increasing t2 and thus dominates the on-shell matrix

elements in the large time limit. The coefficient C depends on off-shell matrix elements

with no clear physical interpretation. Note that the second term is only growing for nonzero

q and in fact has no t2 dependence at threshold (q = 0). Indeed, Maiani and Testa also

considered the threshold limit of this result, and found that it does produce a useful result

G0(t1, t2)
t1�t2�0−→ Zπ

2mπ
〈π|J(0)|π〉

(
1− a

√
mπ

4πt2
+ · · ·

)
. (1.47)

where a is the S-wave scattering length.

In summary, in this section we have argued that no analytic continuation, in position

or momentum space, is possible above two-particle threshold. We have further shown that

taking asymptotic time limits directly on Euclidean correlators only provides scattering

information at threshold. This would appear severely limiting for LQCD, but fortunately,

as we describe in the next section, the problem can be circumvented.

1.6 Finite volume

Having argued that multi-hadron observables cannot be extracted from numerically deter-

mined, infinite-volume Euclidean correlators, we now consider the effects of finite-volume.

We work throughout the remaining text with a finite periodic spatial-volume of linear ex-

tent L. We continue to treat the time direction as infinite. This is well motivated because
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finite-Euclidean-time (equivalently finite-temperature) effects are smaller in typical numer-

ical calculations and also because the difficulties faced in infinite-volume are most easily

overcome by only compactifying spatial directions.

The finite-volume theory has a discrete energy spectrum which varies with L. The

discrete tower of states may be organized according to all quantum numbers which are

conserved in finite-volume, and it is useful to separately consider the spectrum in each

subspace. For concreteness consider states with the quantum numbers of two pions in a given

isospin channel (I = 0, 1, 2) and with zero total momentum. We denote the spectrum in

this subspace by E1(L), E2(L), · · · . Two-pion states are disjoint from single and three-pion

states because they have different eigenvalues under G-parity, which we treat as an exact

symmetry here. We stress that quantum numbers are the only tool for classifying states,

because we have no concept of asymptotic states to classify multi-particle configurations.

For example two and four-particle states can only be separated kinematically, and we do so

by restricting attention to 0 < E < 4mπ, with mπ the physical pion mass. Observe next

that, for any finite n, En(L) approaches 2mπ in the limit L → ∞. Thus in this limit the

spectrum contains no information about particle interactions. On the other hand, at finite

L the values of E1(L), E2(L), · · · must differ from those of two-free particles as a result of

particle interactions. It follows that an expression which specifies the values of these finite-

volume energies should contain information about the interactions, and thus information

about scattering.13

The relation between the finite-volume spectrum and scattering amplitudes was worked

out by Martin Lüscher, for the case of a single two-particle channel with zero total momen-

tum [127, 128]. In this seminal work, Lüscher derived a relation that allows one to extract

the two-pion elastic scattering phase-shift, δJ , and thus also the S-matrix, SJ = exp[2iδJ ],

from the finite-volume spectrum.

The derivation proceeds by first providing a relation between low-energy QCD and non-

relativistic quantum mechanics. Specifically one can construct an energy-dependent po-

13Consider also that the spectrum of QCD in finite-volume as well as the scattering properties of its low

lying states are nonperturbative questions. Thus, although neither can be predicted analytically from the

quark-field Lagrangian, it is possible that an analytic relation between them exists.
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tential UE , such that the Schrödingier equation with UE gives a wave function with an

asymptotic form dictated by δJ . Lüscher then provided a thorough analysis of the quantum

mechanical system in finite-volume, to determine how the asymptotic wave-function may

be extracted from the spectrum. The resulting expression gives the physical observables

δJ(En) from the discrete levels En(L).

This work was further generalized to states with nonzero total momentum in the finite-

volume frame [129, 130, 131]. Ref. [130] also provided an alternative, purely field theoretic

derivation of Lüscher’s quantization condition. To describe this generalization we introduce

P as the total momentum of the system. We further introduce notation for the center of

mass (CM) frame spectrum E∗1(L), E∗2(L), · · · . This is related to the moving frame spectrum

via

E∗ =
√
E2 −P2 . (1.48)

The kinematic restriction mentioned above is now re-expressed as 0 < E∗ < 4mπ.

In this thesis we generalize the result further to describe systems with any number of

strongly coupled two-scalar channels. The particles may be identical or non-identical and

degenerate or non-degenerate and may have nonzero total momentum. For example, our

formalism accommodates the coupled ππ and KK system if coupling to four-(and higher)-

particle states is neglected.

Our derivation, presented in Chapter 2 below, follows the field-theoretic approach of

Ref. [130]. Specifically, we diagrammatically evaluate a finite-volume two-to-two correla-

tor to all orders in perturbation theory. As a result of the finite-volume condition, all

momenta must satisfy p ∈ (2π/L)Z3. In particular, the loop momenta appearing in Feyn-

man diagrams are summed over this discrete space, rather than integrated as in standard

infinite-volume calculations. Since we are after infinite-volume quantities, our goal is to

quantitatively relate the finite-volume sums with infinite-volume integrals. Following [130],

we show in Chapter 2 that, if one neglects terms exponentially suppressed in mπL, then it

is possible to give a compact relation between finite-volume and infinite-volume diagrams.

It is further possible to sum all diagrams to reach a simple expression for the finite-volume

correlator. The poles in this correlator determine the finite-volume spectrum and so the
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analysis described gives a quantization condition for the energies of the compactified theory.

Crucially, this quantization condition depends only on on-shell scattering amplitudes as well

as known kinematic functions.

Preceding this work were a number of papers studying the generalization of the Lüscher

quantization condition to multiple two-body channels [132, 133, 134, 135] and assessing its

utility. The work of Ref. [132] uses non-relativistic quantum mechanics, while Ref. [133] is

based on a non-relativistic effective field theory. References [134] and [135] are based on

relativistic field theory, and give an explicit result [Eq. (3.5) of Ref. [134]] for the case of

two s-wave channels in which the total momentum vanishes and in which the contributions

from higher partial waves are assumed negligible. Our result is the first to consider nonzero

total momentum and to accommodate all partial waves.

Going beyond the strong interaction, Lüscher’s quantization condition can also be used

to extract weak matrix elements from LQCD. In particular, one can derive a relation be-

tween the matrix element that is available on the lattice, connecting a single-particle state

to a finite-volume two particle state, and the infinite volume matrix element which deter-

mines the decay rate. This result was provided by Lellouch and Lüscher in Ref. [70] (and

generalized to a moving frame in Refs. [130, 131]). They showed that the relation between

finite- and infinite-volume matrix elements of HW emerges if one considers how Lüscher’s

result is modified when one perturbatively includes this weak hamiltonian as a shift to the

QCD hamiltonian.

With the coupled channel quantization condition of Chapter 2 in hand, we show in

Chapter 3 how to generalize the Lellouch-Lüscher result to extract weak decays into multiple

strongly-coupled two-particle channels. In this case, each two-particle finite-volume state

is associated with all of the infinite-volume two-particle asymptotic states. One thus finds

that the finite-volume matrix element is equal to a linear combination of the infinite-volume

matrix elements of interest.

An important limitation of the Lellouch-Lüscher approach is that it only provides matrix

elements for scalar operators which do not inject energy or momentum into the system.

Thus the derivation cannot accommodate processes with two-hadrons in the final state if

these also include a momentum-carrying photon or lepton current. Using non-relativistic
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field theory, the authors of Ref. [136] provided an alternative approach for deriving matrix

element relations like that of Lellouch and Lüscher. In Chapter 4 we present a model-

independent extension of this idea that is based in relativistic field theory. Our result is

a relation of finite- and infinite-volume matrix elements of operators that insert arbitrary

angular momentum as well as linear momentum and energy.

Finally, it is becoming increasingly important to also include three-hadron states in the

extraction of scattering information from the finite-volume spectrum. This is a necessary

step towards relating finite-volume matrix elements with infinite-volume matrix elements

with three-particle states. This issue has been considered in Refs. [137, 138, 139] but a

relativistic and model-independent relation is still unavailable. In Chapter 5 we derive a

relativistic and model-independent relation between the three-particle finite-volume spec-

trum and a non-standard infinite-volume quantity. The derivation in similar in structure

to that of Chapter 3. However the diagrams that appear are more complicated and the

separation of finite-volume and infinite-volume expressions is more difficult. [140]
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Chapter 2

SCATTERING OF MULTIPLE TWO-PARTICLE CHANNELS1

2.1 Multiple-channel extension of quantization condition

In this section we derive an extension to multiple two-body channels of the Lüscher quan-

tization condition, which relates the infinite volume scattering amplitudes to finite volume

energy levels. We assume throughout a cubic spatial volume with extent L and periodic

boundary conditions. The (Minkowski) time direction is taken to be infinite. The total

momentum

~P =
2π~nP
L

(~nP ∈ Z3) (2.1)

is fixed but arbitrary, i.e. the quantization condition we derive holds for a “moving frame” as

well as a stationary frame. We first consider the case of only two open channels, describing

the extension to an arbitrary number of channels at the end of this section.

We take each channel to contain two massive, spinless particles. The particles of channel

one are labeled pions and are taken to be identical with mass m1 = Mπ. The particles

of channel two, called kaons, are taken non-identical, though still degenerate, with mass

m2 = MK . What we have in mind is that the first channel corresponds to the I = 0 ππ

state, and the second to the I = 0 KK state. Including both identical and non-identical

pairs allows us to display the factors of 1/2 that appear in the former case. We consider

degenerate particles to simplify the presentation, but describe the generalization to non-

degenerate masses at the end of this section.

For concreteness, and to match the physical ordering, we take the pion to be lighter than

the kaon. For our results to hold, we must assume that the thresholds for three or more

particles lie above the two kaon threshold. If we assume a G-parity like symmetry, so that

1This chapter and the following chapter are taken from Ref. [140].
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only even numbers of pions can couple to a two-pion state, then the ordering we need is

2Mπ < 2MK < E∗ < 4Mπ , (2.2)

where E∗ is the center of mass (CM) energy. The only possible scattering events are then

1→ 1: π π → π π

1→ 2: π π → K K

2→ 1: K K → π π

2→ 2: K K → K K .

(2.3)

If E∗ drops below 2MK , only the ππ channel is open and the problem reduces to that

discussed by Lüscher [141, 127, 128, 142].

The inequality 2MK < 4Mπ does not, of course, hold for physical pions and kaons—the

four and six pion thresholds occur below that for two kaons. Nevertheless, the coupling to

these higher multiplicity channels is weak at low energies, and our results should still hold

approximately as long as we are not too far above the two kaon threshold. Indeed, it may

be that, in the I = 0 case, the ηη channel becomes important before that with four or more

pions. If so, our formalism would still apply, generalized to three channels as described

below. The approximation of ignoring channels with more than two particles will become

increasingly poor as the energy increases, and will likely give only a rough guide by the

D mass. A qualitative indication of this (ignoring differences in phase space) is that the

f0(1500) has a 50% branching fraction to 4π, while the branches to ππ, KK and ηη are

∼ 35%, 9% and 5%, respectively [69].

The two channel quantization condition is obtained by a straightforward generalization

of the single-channel approach of Ref. [130]. To make this note somewhat independent

of that reference, we reiterate some of the pertinent details. We begin by introducing a

two body interpolating field σ(x) (not necessarily local) which couples to both channels.

Following Ref. [130] we then define

CL(P ) =

∫

L;x
ei(−

~P ·~x+Ex0)〈0|σ(x)σ†(0)|0〉 (2.4)



35

where P = (E, ~P ) is the total four momentum of the two particle system (in the frame

where the finite volume condition is applied), and

∫

L;x
=

∫

L
d4x (2.5)

is the spacetime integral over finite volume. The relation to the CM energy used above is

E∗ =

√
E2 − ~P 2 . (2.6)

The poles of CL give the energy spectrum of the finite volume theory, and thus the condition

that CL diverge is precisely the quantization condition we are after.

To proceed to a more useful form of the condition, we follow Ref. [130] and write CL in

terms of the Bethe-Salpeter kernel, as illustrated in Fig. 2.1(a):

CL(P ) =

∫

L;q
σj,q
[
z2∆2

]
jk,q

σ†k,q

+

∫

L;q,q′
σj,q
[
z2∆2

]
jk,q

iKkl;q,q′
[
z2∆2

]
lm,q′σ

†
m,q′ + · · · . (2.7)

The notation here is as follows. Indices j, k, l and m refer to the channel, and take the

values 1 or 2. The two particle intermediate states are summed/integrated as is appropriate

to finite volume ∫

L,q
=

1

L3

∑

~q

∫
dq0

2π
. (2.8)

The summand/integrand includes the product of two fully dressed propagators

[
z2∆2

]
ij,q

= δijηi
[
zi(q)∆i(q)

][
zi(P − q)∆i(P − q)

]
, (2.9)

where

zj(q)∆j(q) =

∫
d4xeiqx〈φj(x)φj(0)〉 (2.10)

∆j(q) =
i

q2 −m2
j + iε

. (2.11)

Here φ1 and φ2 are interpolating fields for pions and kaons, respectively, chosen such that

zj = 1 on shell. η1 = 1/2 and η2 = 1 account for the symmetry factors of the diagrams. K

is related to the Bethe-Salpeter kernel

iKij;q,q′ = iBSij(q, P − q,−q′,−P + q′) , (2.12)
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Figure 2.1: (a) The initial series of ladder diagrams which builds up CL [see Eq. (2.7)]. The

Bethe-Salpeter kernels iK are connected by fully dressed propagators. The dashed rectangle

indicates finite volume momentum sum/integrals. (b) and (c) The series which build up

the matrix element A and the scattering amplitude iM. Note that these series contain

only the momentum integrals appropriate to infinite volume. (d) The resulting series for

the subtracted correlator [see Eqs. (2.17) and (2.26)]. Each dashed vertical line indicates

an insertion of F , which carries the entire volume dependence (neglecting exponentially

suppressed dependence).
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with BSij the sum of all amputated j → i scattering diagrams which are two-particle-

irreducible in the s-channel (with particles of either type). Finally, σj,q and σ†j,q′ describe

the coupling of the operators σ and σ† to the two-particle channel j. Their detailed form is

not relevant; all we need to know is that they are regular functions of q.

We emphasize two important features of Eq. (2.7). First, it does not rely on any choice

of interactions between the pions and kaons, such as those predicted by chiral perturbation

theory. All the quantities that enter can be written in terms of non-perturbatively defined

correlation functions. Second, the kernel iK and the propagator dressing function z have

only exponentially suppressed dependence on the volume [127]. Thus, if L is large enough

that such dependence is negligible (as we assume hereafter), we can take iK and z to have

their infinite-volume forms.

The dominant power-law volume dependence enters through the momentum sums in the

two-particle loops. To extract this dependence, we use the identity derived in Ref. [130],

which relates these sums for a moving frame to infinite-volume momentum integrals plus

a residue. Before stating the identity we recall the relevant notation. For any four vector

kµ = (k0,~k) in the moving frame, kµ∗ = (k0∗,~k∗) is the result of a boost to the CM frame.

In particular, the total four-momentum (E, ~P ) boosts to (E∗,~0) in the CM frame. We also

need the quantities

q∗j =
√

(E∗)2/4−m2
j , (2.13)

which are the momenta of a pion (j = 1) or kaon (j = 2) in the CM frame. The identity

then reads (no sum on i here):

∫

L;k
f(k)ηi∆i(k)∆i(P − k)g(k) =

∫

∞;k
f(k)ηi∆i(k)∆i(P − k)g(k) +

∫
dΩq∗dΩq∗′ f

∗
i (q̂∗) Fii(q̂∗, q̂

′∗)g∗i (q̂
′∗) , (2.14)

with ∫

∞;k
=

∫
d4k

(2π)4
. (2.15)

We introduce two functions f(k) and g(k) to correspond to the momentum dependence

entering from the left and right of the loop integrals, as well as that from the dressing

functions [see Fig. 2.1(a)]. The functions f and g must have ultraviolet behavior that renders
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the integral/sum convergent. In addition, the branch cuts they contain, corresponding to

four or more intermediate particles, must be such that, after the k0 contour integration,

they introduce no singularities for real ~k. This condition holds when 0 < E∗ < 4Mπ. The

last line of (2.14) depends on the values of the functions f and g when the two particles are

on-shell, and thus only on the direction of the CM momentum, q̂∗. Specifically, if qµi is the

moving frame momentum that boosts to the on-shell momentum (E∗/2, ~qi
∗), then

f∗i (q̂∗) = f(qi) , g∗i (q̂
∗) = g(qi) . (2.16)

Finally the quantity F , which depends on q∗, L and the particle mass, contains the power-

law finite-volume dependence of the loop sum/integral.2 Its form is given below in Eqs. (2.23)-

(2.25). Note that it is diagonal in channel space, i.e. it cannot change pions into kaons. It

can, however, insert angular momentum, due to the breaking of rotation symmetry by the

cubic box.

The key point of the identity is that the difference between finite and infinite volume

integrals depends on on-shell values of the integrand, allowing the finite-volume dependence

to be expressed in terms of physical quantities. Applying the identity to each loop integral

in Fig. 2.1(a), one then rearranges the series by grouping terms with the same number of

insertions of F . The volume-independent term with no F insertions is of no interest, since

it does not lead to poles. Thus we drop it and consider the difference

Csub(P ) ≡ CL(P )− C∞(P ) . (2.17)

In the remaining diagrams with F insertions, all terms to the left of the first F and to the

right of the last are grouped and summed into new endcaps which we label Aj and A′j [see

Fig. 2.1(b)]. These quantities equal certain matrix elements of the interpolating field σ [130]

Aj(k̂
∗) ≡ 〈~k∗,−~k∗; j; out|σ†(0)|0〉|~k∗|=q∗j (2.18)

A′j(k̂
∗) ≡ 〈0|σ(0)|~k∗,−~k∗; j; in〉|~k∗|=q∗j . (2.19)

2The result (2.14) is equivalent to Eqs. (41-42) of Ref. [130], although we have done some further

manipulations to the last line of (2.14) to bring it into a matrix form. Also, we have included a factor of ηi

in F , rather than keeping it explicitly as in Ref. [130].
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In contrast to [130] we include no wavefunction renormalization factors, because our single

particle interpolating fields satisfy on-shell renormalization conditions. Having summed up

the ends the next step is to do the same for the series which appears between adjacent F
insertions [Fig. 2.1(c)]. As indicated in the figure, this series generates the infinite volume

scattering amplitude iMij . We thus deduce an alternative series for Csub built from A, A′

and iMs, all connected by Fs [Fig. 2.1(d)].

We stress that the analysis just performed is a straightforward generalization of the

single channel analysis of Ref. [130]. All that has changed is that F and M are now 2× 2

matrices in channel space, and A and A′ vectors.

To proceed, we decompose A, A′,M and F in spherical harmonics, defining coefficients

via

Aj(k̂
∗) ≡

√
4πAj;`,mY`,m(k̂∗) (2.20)

A′j(k̂
∗) ≡

√
4πA′j;`,mY

∗
`,m(k̂∗) (2.21)

Mij(k̂
∗, k̂

′∗) ≡ 4πMij;`1,m1;`2,m2Y`1,m1(k̂∗)Y ∗`2,m2
(k̂
′∗) (2.22)

Fij(k̂∗, k̂
′∗) ≡ − 1

4π
Fij;`1,m1;`2,m2Y`1,m1(k̂∗)Y ∗`2,m2

(k̂
′∗) , (2.23)

where a sum over all `’s and m’s is implicit. The factors of 4π are present so that we match

the conventions of Ref. [130]. They imply, for example, that for a purely s-wave amplitude,

M is the same in the two bases (for the 4π cancels with the two spherical harmonics). The

kinematical factor F is given in Ref. [130] (aside from the above-noted factor of ηi) and

takes the form3

Fij;`1,m1;`2,m2 ≡ δijFi;`1,m1;`2,m2

= δijηi

[
Re q∗i
8πE∗

δ`1`2δm1m2 −
i

2E∗

∑

`,m

√
4π

q∗ `i
cP`m(q∗ 2

i )

∫
dΩ Y ∗`1,m1

Y ∗`,mY`2,m2

]
. (2.24)

3An additional difference from Ref. [130] is the appearance of Re q∗i rather than q∗. This is discussed in

the next section.
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Here the volume-dependence enters through the sums4

cP`m(q∗ 2) =
1

L3

∑

~k

ω∗k
ωk

eα(q∗ 2−k∗ 2)

q∗ 2 − k∗ 2
k∗ `
√

4πY`,m(k̂∗) − δ`0P
∫

d3k∗

(2π)3

eα(q∗ 2−k∗ 2)

q∗ 2 − k∗ 2
, (2.25)

with ωk =
√
~k2 +m2

i being the energy of a particle with momentum ~k, and ω∗k the energy

after boosting to the CM frame. The properties of these sums are discussed in Ref. [130].

We are now in a position to write down the final result. The series indicated in Fig. 2.1(d)

gives

Csub(P ) = −
∞∑

n=0

A′F [−iMF ]nA , (2.26)

= −A′ 1

F−1 + iMA . (2.27)

Here all indices are left implicit and may be restored in the obvious way. For example,

A′FMFA = A′i;`1,m1
Fij;`1,m1;`2,m2Mjk;`2,m2;`3,m3Fkl;`3,m3;`4,m4Al,`4,m4 . (2.28)

As C∞ has no poles in the region of E∗ that we consider (below 4Mπ), the poles in CL must

match the poles in Csub. The desired quantization condition is then just that the matrix

between A′ and A have a divergent eigenvalue. This may be written as

det
(
F−1 + iM

)
= 0 , (2.29)

where we recall that the matrices now act in the product of the two-dimensional channel

space and the infinite-dimensional angular-momentum space. More precisely, F is diagonal

in channel space but has off-diagonal elements between different angular momentum sectors

(as allowed by the symmetries of the cubic box and the momentum ~P ), whileM is diagonal

in angular momentum but off-diagonal in channel space.

Equation (2.29) is the main result of this section. It has exactly the same form as that for

the single channel given in Ref. [130] (aside from the change of notation in which symmetry

4We are slightly abusing the notation here for the sake of clarity. cP`m depends not only on q∗ 2 but

also on mi, but we keep the latter dependence implicit. The dependence is made explicit at the end of this

section.



41

factors are contained in F rather than kept explicit). The generalization to more than

two two-particle channels is now immediate. As long as E∗ is kept below the four particle

threshold of the lightest particle the arguments above go through in the same manner. One

need only extend the values of the channel indices, taking care to include the appropriate

symmetry factor ηj for each channel. The final result then has exactly the form of Eq. (2.29).

To make the formal expression (2.29) useful in practice one assumes that there is some

`max, above which the partial wave amplitudes are negligible

M`>`max
ij = 0 . (2.30)

One can then show that, although F couples ` ≤ `max to ` > `max, the projection contained

in M is sufficient to collapse the required determinant to that in the ` ≤ `max subspace.

The argument for this result is given for one channel in Ref. [130] and generalizes trivially

to the multiple channel case. Thus one finds that Eq. (2.29) still holds, but with M and F

now understood to be finite dimensional matrices both in channel space and in the partial

wave basis, with ` running up to `max.

To conclude this section we comment briefly on two generalizations of the result. We

first consider the case when not just a single σ but rather a set of operators {σa} is of

interest. This is likely to be the case in practice since multiple operators may be needed

to find combinations with good overlaps with the finite-volume eigenstates. If there are n

such operators, then CL generalizes to an n× n matrix:

CabL (P ) =

∫

L;x
ei(−

~P ·~x+Ex0)〈0|σa(x)σ†b(0)|0〉 . (2.31)

The generalization of Eq. (2.27) is effected by replacing A′ with an n× 2 matrix

(
A′1 A′2

)
−→




A
′a=1
1 A

′a=1
2

A
′a=2
1 A

′a=2
2

...
...




(2.32)

and A with a 2× n matrix


A1

A2


 −→



Ab=1

1 Ab=2
1 · · ·

Ab=1
2 Ab=2

2 · · ·


 . (2.33)
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The key point, however, is that the matrix between A′ and A is unchanged, so that the

quantization condition (2.29) is unaffected. This is as expected, since the operators used to

couple to states cannot affect the eigenstates themselves.

The second generalization is to the case of non-degenerate particles. The expressions

given above remain valid as long as one makes three changes. First, the symmetry factors

ηi become unity for all non-degenerate channels. Second, q∗i in Eqs. (2.24) is replaced by

the solution of

E∗ =
√
q∗ 2
i +M2

ia +
√
q∗ 2
i +M2

ib , (2.34)

which is the CM momentum when the channel contains particles of masses Mia and Mib.

Third, when evaluating cP`m using Eq. (2.25), one should use one of the masses Mia or Mib

when determining ωk, ω
∗
k and ~k∗. One can show that both choices lead to the same result.

The third change emphasizes that the kinematic functions cP`m depend not only on q∗i

but also on the particle masses. This can be made explicit by rewriting them in terms of a

generalization of the zeta-function introduced in Ref. [129]. The result is [143, 144, 145, 146]

cP`m(q∗ 2) = −
√

4π

γL3

(
2π

L

)`−2

ZP`m[1; (q∗L/2π)2] , (2.35)

ZP`m[s;x2] =
∑

~n

r`Y`m(r̂)

(r2 − x2)s
, (2.36)

where γ = E/E∗, ~n runs over integer vectors, and ~r is obtained from ~n by r‖ = γ−1[n‖−c~nP ]

and r⊥ = n⊥, where parallel and perpendicular are relative to ~P , and 2c = (1 + (M2
1a −

M2
1b)/E

∗ 2). The sum in Z`m can be regulated by taking s > (3 + `)/2 and then analytically

continuing to s = 1. This shows that mass dependence enters through the difference5

M2
ia −M2

ib. One can derive (2.35) by generalizing the method used for the degenerate case

in Ref. [130].

5The apparent lack of symmetry under the interchange Mia ↔ Mib can be understood as follows. One

can show that ZP`m → (−)`ZP`m under this interchange (so that for degenerate masses the zeta-functions for

odd ` vanish [129]). This sign flip for odd ` must hold also for the cP`m, and it does because the interchange

of masses leads to ~k∗ → −~k∗ at the pole. The sign flip is canceled in the expression for F , Eq. (2.23), since

the product Y`1,m1(~k∗)Y ∗`2,m2
(~k

′∗) also changes sign. This is because, when ` is odd, the integral over dΩ

in the definition of F , Eq. (2.24), enforces that `1 + `2 is odd. The overall effect is that the quantization

condition is symmetric under mass interchange, as it must be.
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2.2 Multiple-channel quantization condition for s-wave scattering

For the remainder of this article we focus on the simplest case, `max = 0, in which only

s-wave scattering is significant. In this section we determine the explicit form for the finite-

volume quantization condition when there are two channels. We also present compact forms

for the condition when an arbitrary number of two particle channels are open.

With only s-wave scattering, the two channel quantization condition takes the form

[(F s1 )−1 + iMs
11][(F s2 )−1 + iMs

22]− [iMs
12][iMs

21] = 0 , (2.37)

where

F si = ηi

[
Re q∗i
8πE∗

− i

2E∗
cPi

]
(2.38)

cPi ≡ cP (q∗ 2
i ) ≡ cP00(q∗ 2

i ) , (2.39)

and the superscript on F and M is a reminder that only ` = 0 contributes.

To simplify Eq. (2.37), and in particular to re-express it as an equation between real

quantities, it is useful to recall first the single-channel analysis. This has the additional

benefit of showing how the two-channel result collapses to the known single-channel result

in the appropriate kinematic regime, namely

2Mπ < E∗ < 2MK . (2.40)

In this regime q∗2 becomes imaginary, and the second channel contributes negligibly be-

cause cP [Eq. (2.25)] becomes exponentially volume-suppressed and Re q∗ in F2 [Eq. (2.24)]

vanishes.6 Sending F2 → 0 we find that the quantization condition becomes

[Ms
11]−1 = η1

[
− iq∗1

8πE∗
− 1

2E∗
cP (q∗ 2

1 )

]
. (2.41)

Note that the pion momentum q∗1 is real for the energy region considered.

6The appearance of Re q∗ rather than q∗ in Fi can be understood by reviewing the derivation of F

in Ref. [130]. The term enters as the difference between principal part and iε prescriptions. When q∗ is

imaginary there is no pole and different ways of regulating give the same result.



44

Naively one might think that Eq. (2.41) gives two conditions, the separate vanishing

of the real and imaginary parts. This is not the case, however, because the vanishing of

the imaginary part is a volume-independent condition which is guaranteed to hold by the

unitarity of the S-matrix. This can be seen by expressing M in terms of the real phase

shift δ(q∗),

Ms
11 =

8πE∗

η1q∗1

[
e2iδ(q∗1) − 1

2i

]
=

[
η1q
∗
1

8πE∗
[cot δ(q∗1)− i]

]−1

. (2.42)

Here e2iδ is the one dimensional unitary S-matrix in the partial wave basis. Given Eq. (2.42),

it is manifest that the imaginary part of Eq. (2.41) holds automatically. The real part of

(2.41) then gives the moving frame generalization of the Lüscher result in the familiar partial

wave form [128, 130, 131]

tan δ(q∗1) = − tanφP (q∗1) , (2.43)

where

tanφP (q∗) =
q∗

4π

[
cP (q∗ 2)

]−1
. (2.44)

We now return to the CM energies for which both channels are open, 2MK < E∗ < 4Mπ,

and generalize Eq. (2.43). The first step is to recall the relationship between the scattering

amplitude and the S-matrix. Unitarity implies that

Ms −Ms † = iMs †P 2Ms , (2.45)

where P 2 is a diagonal matrix containing the phase-space factors, whose square root is

P =
1√

4πE∗




√
η1q∗1 0

0
√
η2q∗2


 . (2.46)

We note that, when expressed in terms of q∗, the form of P is still valid if the two particles

in the channel are non-degenerate. We also note that the form (2.45) holds for an arbitrary

number of two-particle, s-wave channels, with P generalized in the obvious way.

The solution to the unitarity relation is

iMs = P−1 (Ss − 1)P−1 (2.47)
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where Ss is a dimensionless, unitary 2× 2 matrix. To proceed, we need to parametrize Ss.

First we note that Ss can be taken to be symmetric. This is because of the T-invariance

of the strong interactions, together with the fact that angular momentum eigenstates have

definite T-parity (in our case, positive). Thus in the 2× 2 case, Ss is determined by three

real parameters. We use the “eigenphase convention” of Blatt and Biedenharn [147],

Ss =




cε −sε

sε cε






e2iδα 0

0 e2iδβ







cε sε

−sε cε


 , (2.48)

where the notation sx = sinx and cx = cosx will be used throughout. The three real

parameters δα, δβ, and ε generalize the single δ which appears in the one channel case. The

parameter ε quantifies the mixing between the mass eigenstates of channels one and two

(the pions and kaons) and the S-matrix eigenstates. The phases δα and δβ are, for arbitrary

ε, associated with both channels. Of course, in the limit ε→ 0 they reduce, respectively, to

the phase shifts of pion and kaon elastic scattering.

Substituting the form of Ss into Eq. (2.47) and then placing this in Eq. (2.37) and

simplifying, we deduce7

[
tan δα + tanφP (q∗1)

] [
tan δβ + tanφP (q∗2)

]

+ sin2ε [tan δα − tan δβ]
[
tanφP (q∗1)− tanφP (q∗2)

]
= 0 . (2.49)

This is the main result of this section. One can use it in one of two ways: to predict the

spectrum given knowledge of the scattering amplitude from experiment or a model, or to

determine the S-matrix parameters from a lattice calculation of the spectrum. In the former

case, we note that all quantities appearing in (2.49), i.e. δα, δβ, ε, q∗i and φP , are functions

7We emphasize that the physical content of Eq. (2.49), namely that there is a relation between scattering

amplitudes and energy levels, does not depend on the parametrization chosen for the matrix Ss. This is

clear either from Eq. (2.37) or from Eq. (2.58) below. An advantage of our choice of parametrization is that

it shows that Eq. (2.37) only implies one real condition (rather than two), an observation which must hold

for any parameterization. We also note that the freedom to independently change the phases of ππ and KK

states, which leads to Ss → U†SsU , with U a diagonal unitary matrix, does not change the quantization

condition, as can be seen most easily from Eq. (2.58) below.
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of E∗. One can thus search, at given spatial extent L and total momentum ~P , for values of

E∗ which satisfy Eq. (2.49). If the condition holds for a particular E∗k , then

Ek(L;~nP ) =

√
E∗2k + ~P 2 (2.50)

is in the spectrum of the finite-volume moving-frame Hamiltonian. Here we choose to write

Ek as a function of ~nP rather than ~P , since, in practice, it is the former quantity which is

held fixed as one varies L.

The second use of (2.49) is the most relevant for the discussion in subsequent sections.

For a given choice of E∗, one finds, through a lattice calculation, three pairs {L,~nP } for

which there is a spectral line Ek such that E∗k [defined in Eq. (2.50)] is equal to E∗. One could

use a fixed ~nP and consider multiple spectral lines (the simplest choice conceptually), or use

three different choices of ~nP (probably more practical since one would not need to determine

so many excited levels). In either case, one ends up with three versions of Eq. (2.49), all

containing the desired quantities δα(E∗), δβ(E∗) and ε(E∗), but having different values of

the φP (q∗j ). Solving these equations one determines, rather than the angles themselves,

the quantities tan δα, tan δβ, and sin2 ε at CM energy E∗. For our discussion we therefore

restrict

δα,β ∈ [−π/2, π/2] and ε ∈ [0, π/2] . (2.51)

Having determined the restricted phases over a range of energies, one can afterward relax

the constraints in order to build continuous curves as a function of energy. We direct the

reader to Refs. [134, 135] for discussion of other methods for extracting the three scattering

parameters.

We emphasize that Eq. (2.49) has a very intuitive form. If δα = δβ or m1 = m2 or

ε = 0 then the second line vanishes and the result reduces to two copies of the one channel

quantization condition [Eq. (2.43)]. To see that this makes sense, note that for identical

phase shifts, the ε matrix commutes through the phase matrix and we recover two uncoupled

channels. Similarly if the masses are degenerate then the eigenstates of the S-matrix will

also be mass eigenstates leading to the decoupled form. Finally, the decoupling for ε = 0 is

an obvious property of the parametrization [Eq. (2.48)].
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An alternative solution to the unitarity relation (2.45) can be given in terms of the

K-matrix used in Ref. [134]. Specifically, (2.45) is satisfied if

(Ms)−1 = M − iP 2/2 , (2.52)

with M any real symmetric 2× 2 matrix. If we set

M =
1

8πE∗
‖√η‖K−1 ‖√η‖ , (2.53)

[where double bars denote a diagonal matrix, so that ‖η‖ = diag(
√
η1,
√
η2)], and further

set ~P = 0, then one can show that the two-channel quantization condition given above can

be manipulated into the form given in Eq. (3.5) of Ref. [134] in terms of the real, symmetric

matrix K.

We now generalize Eq. (2.49) to N s-wave channels. As noted above, the form of the

unitarity relation (2.45) holds for any N , and the same is true for its solution (2.47). In the

latter, the N channel S-matrix can be parametrized as8

S = R−1
∥∥e2iδ

∥∥R , (2.54)

with R an SO(N) matrix, and

∥∥e2iδ
∥∥ = diag

[
e2iδα , e2iδβ , · · ·

]
. (2.55)

Together with Eqs. (2.54) and (2.55) one needs the N ×N generalization of F , which has

been discussed in the previous section. From these definitions one can straightforwardly

work out the quantization condition for N coupled channels.

We conclude this section by describing two additional ways of writing the quantization

condition, both of which make the higher channel generalization especially clear. Observe

first that, for any number of open channels,

F−1 = P−1
∥∥1− e−2iφ

∥∥P−1 . (2.56)

Combining this with (2.47), it follows that

F−1 + iM = P−1
[
S −

∥∥e−2iφ
∥∥
]
P−1 . (2.57)

8The remainder of this paper is limited to the s-wave, so we drop the superscript s hereafter.
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Since P−1 has no singularities in the kinematic regime we consider, the quantization condi-

tion can be rewritten as

det
[
S −

∥∥e−2iφ
∥∥
]

= 0 . (2.58)

This form shows that the symmetry factors cancel from the quantization condition in gen-

eral. Although Eq. (2.58) looks like it will lead to one complex and thus two real conditions,

it turns out that it leads only to a single real condition. This follows from the identity

∥∥1 + itφ
∥∥×

[
S −

∥∥e−2iφ
∥∥
]
×
[
R−1

∥∥1− itδ
∥∥R
]

= 2i
[
R−1

∥∥tδ
∥∥R+

∥∥tφ
∥∥
]
, (2.59)

where tx = tanx. It gives a manifestly real rewriting of the quantization condition,

det
[
R−1

∥∥tδ
∥∥R+

∥∥tφ
∥∥
]

= 0 . (2.60)

This form leads directly to the result (2.49) in the two channel case, and collapses to

the single-channel result (2.43) for any channel that decouples from the rest. If any of

the channels contain non-degenerate particles, this enters only through the values of the

kinematic functions tφ, as discussed in the previous section.
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Chapter 3

WEAK DECAYS INTO MULTIPLE TWO-PARTICLE CHANNELS

3.1 Multiple-channel extension of the Lellouch-Lüscher formula

Having found the two channel quantization condition, we are now in a position to work

out the two channel generalization of the LL formula which relates weak matrix elements in

finite and infinite volume. The derivation follows the original work by Lellouch and Lüscher,

Ref. [70], which was extended to a moving frame by Refs. [130, 131].

We begin by introducing a third channel which is decoupled from the original two. This

contains a single particle, which we call a D-meson, whose mass satisfies

MD > 2Mπ, 2MK . (3.1)

We next introduce a weak perturbation to the Hamiltonian density

H(x)→ H(x) + λHW (x) , (3.2)

where λ is a parameter which can be varied freely and can, in particular, be taken arbitrarily

small. The perturbation HW is defined to couple channels one and two (pions and kaons) to

the third (D-meson) and nothing more. It is convenient to choose it to be invariant under

time reversal (T) symmetry. The generalization to perturbations which are not T invariant

is described at the end of the section.

Consider now the finite volume spectrum, first in the absence of the perturbation. The

spectrum of two-particle states with ~P = 2π~nP /L is determined by Eq. (2.49). It is L-

dependent and L can therefore be tuned to make one of the levels, call it kD, degenerate

with the energy of a single (moving) D meson

EkD =

√
M2
D + ~P 2 (3.3)

With L fixed in this way, we now turn on the weak interaction. At leading order in degen-
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= Ak→Di∆Mjk AD→j

Figure 3.1: The diagram giving rise to the amplitude perturbation ∆M [See Eq. (3.9)].

erate perturbation theory this changes the energies to

E(1) = E(0) ± λV |MW | (3.4)

where V = L3, E(0) = EkD , and the finite-volume matrix element is

MW = L〈kD|HW (0)|D〉L. (3.5)

The subscripts L on the states indicate that they are normalized to unity, unlike the rel-

ativistically normalized infinite volume states. Superscripts (1) are used throughout this

section to indicate that the quantity includes both the leading order and the O(λ) correc-

tion, while superscripts (0) indicate the unperturbed quantity. The effect of the perturbation

may also be written in terms of the CM energy as

E∗(1) = MD ± λ∆E∗ (3.6)

∆E∗ =
E(0)V |MW |

MD
. (3.7)

Of course, in addition to affecting the finite volume energy spectrum, the weak pertur-

bation also changes the infinite volume scattering amplitudes. The leading order effect is

generated by the diagram of Fig. 3.1, which gives

M(1) =M(0) ± (−λ∆M) (3.8)

with

∆Mj,k =
〈j|HW (0)|D〉〈D|HW (0)|k〉

2E(0)V |MW |
. (3.9)
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The indices j and k run over the two two-particle channels. This perturbation may equiva-

lently be represented through shifts in δα, δβ and ε

δ(1)
α (E∗) = δ(0)

α (E∗)± λ∆δα(E∗) (3.10)

δ
(1)
β (E∗) = δ

(0)
β (E∗)± λ∆δβ(E∗) (3.11)

ε(1)(E∗) = ε(0)(E∗)± λ∆ε(E∗) , (3.12)

The explicit forms of the perturbed phases are given in Eqs. (3.21)-(3.23) below.

The calculation now proceeds as follows. When the quantities

δ(0)
α (E∗), δ

(0)
β (E∗), and ε(0)(E∗) (3.13)

are placed in the quantization condition [Eq. (2.49)], the condition is satisfied by construc-

tion at E∗(0) = MD. Alternatively if one places

δ(1)
α (E∗), δ

(1)
β (E∗), and ε(1)(E∗) (3.14)

into the same condition then it must be satisfied when evaluated at the perturbed CM

energy E∗(1), but only to linear order in λ. The constant order term in the λ expansion

is just the unperturbed condition, and so it is the vanishing of the O(λ) term that is of

interest. The condition that this term vanish gives the relation between finite and infinite

volume weak matrix elements that we are after.

The only detail left to discuss, before substituting into the quantization condition and

expanding in λ, is the explicit forms of the amplitude corrections to δα, δβ and ε. Before

these are found it is useful to determine the constraints on the infinite volume matrix

elements which arise from Watson’s theorem. As shown in App. A, time reversal invariance

and unitarity constrain the matrix elements to be such that the following two quantities are

real:

v1 = e−iδα
[√

q∗1η1AD→ππ cε +
√
q∗2η2AD→KK sε

]
, (3.15)

v2 = e−iδβ
[
−
√
q∗1η1AD→ππ sε +

√
q∗2η2AD→KK cε

]
. (3.16)

Here

AD→ππ ≡ 〈ππ|HW (0)|D〉 , (3.17)
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and similarly for the KK case, normalized so that the decay rates to each channel are

ΓD→j =
q∗j ηj

8πM2
D

|AD→j |2 =
1

2MD
P 2
jj |AD→j |2 . (3.18)

This relation holds also if the particles in a channel are non-degenerate (requiring η = 1). All

energy-dependent parameters in (3.15) and (3.16), i.e. δα, δβ, ε and q∗j , are to be evaluated

at E∗ = MD.

The results (3.15) and (3.16) hold when the phases of the states are chosen so that the

S-matrix is symmetric (as is possible given T invariance). This does not determine the signs

of the two matrix elements, and these signs are unphysical. More precisely, the relative sign

ambiguity is the same as the ambiguity in the sign of ε, so once we have fixed the latter to

be positive, the relative sign is physical. The overall sign remains unphysical, and can be

chosen, for example to set v1 ≥ 0,

Inverting the relations (3.15) and (3.16) yields

AD→ππ =
1√
q∗1η1

[
v1e

iδα cε−v2e
iδβ sε

]
(3.19)

AD→KK =
1√
q∗2η2

[
v1e

iδα sε +v2e
iδβ cε

]
. (3.20)

Inserting these in ∆M, Eq. (3.9), and using the relation betweenM and S, Eq. (2.47), and

the parametrization of S, Eq. (2.48), we find that perturbations to δα, δβ and ε are real.

This is a consistency check on the calculation (or an alternative derivation of the Watson’s

theorem constraint). Specifically, we find

∆δα = −N v2
1 (3.21)

∆δβ = −N v2
2 (3.22)

∆ε = −N v1v2

cα cβ(tα− tβ)
(3.23)

where tα = tan δα, etc., and

N =
1

16πE(0)MDV |MW |
. (3.24)

We now have all the ingredients to substitute into the quantization condition and deter-

mine the LL generalization. We emphasize that, when the expansion in λ is performed, δα,

δβ and ε each contribute both from the amplitude corrections of Eqs. (3.21)-(3.23) and from
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the shift in the energy, (3.6). The other contributions arise from the energy dependence of

φi = φP (q∗i ). Substituting and simplifying, we find the main result of this section

C1v
2
1 + C2v

2
2 + C12v1v2 = CM2 |MW |2 (3.25)

where

C1 =
π

16

t1 + t2 +2 tβ +(t2− t1)(1− 2 s2
ε )

c2
α

(3.26)

C2 =
π

16

t1 + t2 +2 tα +(t1− t2)(1− 2 s2
ε )

c2
β

(3.27)

C12 =
π

4
(t1− t2)

sεcε
cαcβ

(3.28)

CM2 =
π2MDV

2(E(0))2

2

[
t′1
q∗1

(
t2 + tβ +(tα− tβ) s2

ε

)
+

t′2
q∗2

(
t1 + tα +(tβ − tα) s2

ε

)

+
4 t′α
MD

(
t2 + tβ +(t1− t2) s2

ε

)
+

4 t′β
MD

(
t1 + tα +(t2− t1) s2

ε

)

+
4 s2

ε
′

MD
(t1− t2)(tα− tβ)

]
,

(3.29)

and where we use the additional notation

ti = tanφP [q∗i ] . (3.30)

All quantities are evaluated at the D mass, and we have dropped the superscript (0). The

primes on φi indicate derivatives with respect to q∗i while those on δα, δβ and ε indicate

derivatives with respect to E∗. In each case, these are the natural variables on which

the quantities depend. We have checked that this formula reduces to (two copies of) the

single-channel LL result if ε→ 0.

We now describe how the result (3.25) can be used in practice. A lattice calculation

yields the finite-volume matrix element |MW |, and the aim is to determine the infinite-

volume matrix elements AD→ππ and AD→KK . Using the generalized quantization condition

(2.49) for three different spectral lines (all chosen to have E∗ = MD) one can determine δα,

δβ and ε as described in the previous section. Repeating the procedure at a slightly different

energy allows a numerical determination of the required derivatives. One now evaluates

|MW | at the degenerate point on one of the spectral lines. The knowledge of the S-matrix
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parameters and their derivatives, together with the value of L, allows one to calculate the

values of the four C’s [Eqs. (3.26)-(3.29)]. Combined with the value of |MW |, one then finds

from Eq. (3.25) a quadratic constraint on v1 and v2. Repeating the procedure for a second

spectral line gives an independent constraint, which allows for the determination of v1 and

v2 up to a two-fold ambiguity corresponding to the unknown relative sign. Finally, repeating

for a third spectral line resolves the sign ambiguity. With v1 and v2 determined in this way,

one can obtain the infinite-volume matrix elements using Eqs. (3.19) and (3.20). Although

this procedure is rather elaborate, we note that (for the case of two channels) three spectral

lines are needed both for the determination of the parameters of the S-matrix and of the

LL factors.

We conclude this section by commenting that Eq. (3.25) factors as

sgn(C1)(c1v1 + c2v2)2 = CM2 |MW |2 (3.31)

where

c1 =
√
|C1| c2 = sgn[C1C12]

√
|C2| . (3.32)

The only new information encoded in Eqs. (3.31) and (3.32) relative to Eq. (3.25) is that

4C1C2 = C2
12 , (3.33)

which can be shown to hold by applying Eq. (2.49) to Eqs. (3.26)-(3.28). Although the

factorized form (3.31) is simpler, it does not reduce the number of values of L that are

needed because there remains a sign ambiguity (from the square root) at each L. What it

does make clear, however, is that the generalized LL condition will fail when the signs of

C1 and CM2 are opposite. Presumably this cannot happen for physical values of the phase

shifts. We stress that this issue also arises in the original one-channel set-up, where the LL

formula only makes sense if
d(δ + φP )

dq∗
> 0 . (3.34)

We return to these sign constraints in the next section.

The form (3.31) also allows one to write the LL condition as a factored form in terms

of the desired matrix elements,

|cπAD→ππ + cKAD→KK |2 = |CM2 ||MW |2 , (3.35)
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where cπ and cK are complex, and can be determined from the above results. As this

equality holds for any T-invariant form of weak perturbation and for any decay particle, it

must imply a relation between finite and infinite volume states

L〈kD| ∝ cπ〈ππ, out|+ cK〈KK, out|+ . . . . (3.36)

Here the ellipsis indicates the ππ and KK states of higher angular momentum which are

needed to satisfy the periodic boundary conditions. Indeed, as noted in the original deriva-

tion of Ref. [70], the use of theD-meson is simply a trick to obtain the normalization factors.1

It follows that Eq. (3.35) must also hold for perturbations which are not T-invariant.

The appearance of the linear combination in Eq. (3.36) can be better understood from

an alternative derivation of the LL formula, to which we now turn.

3.2 Alternative derivation of Lellouch-Lüscher formula

In this section we present a different derivation of the two channel LL relation which has the

following advantages: (a) it does not require determining the shifts ∆δα, ∆δβ and ∆ε, but

rather works directly with the change in M; (b) it gives one directly a condition with the

factored form, proportional to the left hand side of Eq. (3.35); (c) it allows one to rewrite

the LL condition in a simpler form in which the only inputs required are the derivatives of

the energies with respect to L along the three spectral lines. This form is likely to be more

practical.

We work directly with the condition det(F−1 + iM) = 0, and keep results for general

number of channels, N , as far as possible. We begin by defining

X = F−1 + iM (3.37)

Y = S −
∥∥e−2iφ

∥∥ . (3.38)

1In the one-channel case, an alternative line of argument has been developed for obtaining the LL

relation, based on matching the density of two-particle states in finite and infinite volumes [148]. In the

present case, we do not see how to use this approach to determine the relative normalization, cK/cπ, of

the two components in the finite volume state. Thus we think that this approach could provide only a

consistency check.
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and recall from Eq. (2.57) that

X = P−1YP−1 . (3.39)

The quantization condition detX = 0 is equivalent to X having an eigenvector with vanish-

ing eigenvalue. We label this eigenvector −→e X . Note also that the symmetry of X implies

(−→e X)Tr =←−e X is a left eigenvector, also with zero eigenvalue.

Now we can formulate the LL condition in a relatively compact form. As above, letM(0)

be the scattering amplitude at CM energy E∗ = MD. Similarly, let F (0) be the finite-volume

factor at this CM energy and for one of the values of box size L for which the quantization

condition holds. Then for

X (0) ≡ (F (0))−1 + iM(0) , (3.40)

we have

←−e XX (0)−→e X = 0 . (3.41)

Now, while holding L fixed, we change the energy by ±λ∆E = ±λV |MW | and change M
to M(0) ∓ λ∆M, and require that the quantization condition still hold. Thus we have, to

linear order in λ,

det(X (0) + λ∆X ) = 0 , (3.42)

where

∆X = ±∆E
∂X
∂E

∣∣∣∣∣
L

± (−i∆M) . (3.43)

It follows that there must be a new eigenvector of the form

−→e X + λ∆−→e X (3.44)

which is annihilated by the perturbed matrix. From the O(λ) term in

[←−e X + λ∆←−e X
] [
X (0) + λ∆X

] [−→e X + λ∆−→e X
]

= 0 , (3.45)

we deduce

←−e X∆X−→e X = 0 . (3.46)

Using the explicit form of ∆X this becomes

∆E ←−e X ∂X
∂E

∣∣∣∣∣
L

−→e X =←−e Xi∆M−→e X , (3.47)
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where the derivative is evaluated at E∗ = MD.

We can slightly simplify this result by expressing the left hand side in terms of Y rather

than X , and thus removing factors of P−1. The point is that, when the derivative acts on

the P−1 factors in X , the contribution to the left hand side vanishes, since one can still act

(either to the left or the right) on the zero-eigenvector. Thus we can rewrite the condition

in terms of the zero eigenvector of Y, which is

−→e Y = P−1−→e X . (3.48)

The new form is

∆E ←−e Y ∂Y
∂E

∣∣∣∣∣
L

−→e Y =←−e X [i∆M]−→e X . (3.49)

We now focus on the 2 × 2 case. To proceed, we need the explicit form for −→e Y , which

is given, up to an overall normalization factor, by

−→e Y =




1

zei(φ2−φ1)


 (3.50)

where z is the real quantity

z = tε
sin(δβ + φ1)

sin(δβ + φ2)
. (3.51)

It is clear from the form of Eq. (3.49) and the relation (3.48) that the normalization of −→e Y

is irrelevant and so we have chosen a relatively simple unnormalized form.

We evaluate the right hand side of Eq. (3.49) using the form of ∆M, Eq. (3.9). It is

immediately apparent that the result factorizes, given that ∆M is an outer product. This

will hold for all N . In the N = 2 case we have

←−e X [i∆M]−→e X = ie−2iφ1
M2
∞

8πMDE(0)V |MW |
, (3.52)

where

M∞ = eiφ1
√
q∗1η1AD→ππ + z eiφ2

√
q∗2η2AD→KK . (3.53)

Here we have used the assumed T-invariance of HW . We have pulled out the phase e−2iφ1 so

that M∞ is real. Its reality is not obvious, but can be established using the results derived
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from Watson’s theorem and given in App. A. In particular, an algebraic exercise shows that

M∞ = sin(φ1 − φ2)

[
−v1

cε
sin(δα+φ2)

+ v2
sε

sin(δβ+φ2)

]
, (3.54)

and we recall that the quantities v1 and v2 [defined above in Eqs. (3.15)-(3.16)] are real.

The result (3.53) makes clear that, for any choice of HW , one ends up with the matrix

element to a given (complex) linear combination of 〈ππ| and 〈KK| states, since all the

factors (φ1, φ2 and z) are determined by E(0) and L. Indeed, what the LL method has

allowed us to do is determine the coefficients of the s-wave 〈ππ| and 〈KK| components

within the finite-volume state. As mentioned above, this decomposition has nothing to do

with HW , and thus we can use the result for any HW , including one involving T-violation.

By comparing the result (3.53) to the general decomposition of the finite-volume state,

Eq. (3.36), we can read off the ratio of the coefficients,

cK
cπ

= ei(φ2−φ1) z

√
q∗2η2

q∗1η1
. (3.55)

It is interesting that the relative phase between cK and cπ is determined by the kinematic

phases φj . Given the form of ∆M, and the fact that, in Eq. (3.52), it is sandwiched between

←−e X and −→e X , it follows that the zero eigenvector itself gives the relative size of the ππ and

KK contributions:

−→e X ∝



cπ

cK


 . (3.56)

This illustrates in a direct way that the linear combination which appears is completely

independent of the form of HW , since the eigenvector of X knows nothing about this per-

turbation.

Having discussed the right hand side of Eq. (3.49) in some detail we now turn to the left.

Specifically, we show that it is possible to write the left-hand side in terms of the derivative

of the spectral energy with respect to L. To motivate this form, we first recall that the LL

result of the previous section depends on δα, δβ and ε and their derivatives, evaluated at

E∗ = MD. As described in Sec. 3.1, the three S-matrix parameters may be determined,

using Eq. (2.49), by finding three different pairs {L,~nP } for which there is a spectral line
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Ek(L;~nP ) satisfying E∗k(L;~nP ) = MD [see Eq. (2.50)]. Furthermore, by slightly changing

the three L values, one can determine δα, δβ and ε at slightly different energies and thus

deduce the derivatives at MD.

The point of reiterating these steps is to note that, since the lattice simulation actually

gives the energy spectrum as a function of L, it would be preferable if the LL result could be

rewritten directly in terms of the properties of the spectrum. In this way the extra step of

separately working out the phase shifts and their derivatives would be avoided. This turns

out to be possible, as we now show.

We use the quantization condition in the form detY = 0. To stay on a spectral line

Ek(L;~nP ) as we vary E away from the moving frame D-meson energy E(0), we need to vary

L in such a way that this condition remains fulfilled. We note that, while F depends on

both E∗ and L, S depends only on E∗. Thus we use E∗ and L as independent variables.

Then the condition to stay on a spectral line becomes

0 =←−e Y
[

∆E∗
∂Y
∂E∗

∣∣∣∣∣
L

+ ∆L
∂Y
∂L

∣∣∣∣∣
E∗

]
−→e Y , (3.57)

which leads to
dE∗k
dL

∣∣∣∣∣
line

= −
←−e Y ∂Y

∂L
−→e Y

←−e Y ∂Y
∂E∗
−→e Y

. (3.58)

Here, in the left-hand side, the subscript “line” indicates that the derivative is along a

spectral line with fixed ~nP .

The key features of Eq. (3.58) are that the denominator on the right-hand side is, up to a

simple overall factor, equal to the quantity appearing on the left hand side of the Eq. (3.49),

while the numerator is a kinematic factor. Specifically, using

←−e Y ∂Y
∂E∗
−→e Y =

E∗

E
←−e Y ∂Y

∂E
−→e Y , (3.59)

and
dEk
dL

∣∣∣∣∣
line

=
E∗k
Ek

dE∗k
dL

∣∣∣∣∣
line

−
~P 2

EL
(3.60)

(which follows since E2 = (E∗)2 + (~PL)2/L2 and because ~PL is fixed along the spectral

line), we find

←−e Y ∂Y
∂E
−→e Y = −2ie−2iφ1

∂φ1

∂L + z2 ∂φ2

∂L

dEk
dL

∣∣
line

+
~P 2

EL

. (3.61)
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Combining this with (3.49) and (3.52) we conclude

M2
∞

16πMDE(0)V 2|MW |2
= −

∂φ1

∂L + z2 ∂φ2

∂L

dEk
dL

∣∣
line

+
~P 2

E(0)L

. (3.62)

We thus have found an alternative form of the LL relation which is simpler than Eq. (3.25),

and also likely to be more practical.

The single channel version of (3.62) is instructive. It can be written, using Eq. (3.18),

in terms of the decay rate:

ΓD→ππ =
2E(0)V 2|MW |2

MD


 − ∂φ

∂L

dEk
dL

∣∣
line

+
~P 2

E(0)L


 . (3.63)

This form holds both for identical and non-identical particles, with the symmetry factor

being contained in Γ. It also sheds light on the sign constraints discussed in the previous

section. The right-hand side must be positive. Based on numerical studies, we find that

∂φ/∂L is always positive, implying that the denominator, which is proportional to dE∗k/dL,

must be negative.

The same holds for the two-channel result, Eq. (3.62). In order for the right-hand side to

be positive, the denominator must be negative. Since we could do the LL analysis on almost

any spectral line, this appears to imply that dE∗k/dL < 0 in general. The only exception is

for a state with E∗k below the two particle threshold. Such a state occurs, for example, as

the lowest energy state for ~P = 0 if there is an attractive interaction. For such a state one

has dE∗k/dL = dEk/dL > 0, i.e. of the “wrong” sign. But in this case the LL analysis does

not apply, because the particle lies below threshold in infinite volume.
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Chapter 4

ONE-TO-TWO TRANSITION MATRIX ELEMENTS1

In order to determine transition matrix elements, both two- and three-point correlation

functions are needed. From two-point correlation functions one can most easily extract

the finite-volume spectrum. From appropriate ratios of two- and three-point correlation

functions one may also obtain finite-volume matrix elements of external currents. In Sec-

tion 4.1, we present a derivation of the finite-volume two-point correlation functions for one

and two-particle systems.2 In this analysis, we consider an arbitrary number of two-particle

channels which mix with arbitrarily strong couplings. We restrict attention to spin-zero

particles, but do formally accommodate all two-particle angular-momenta states. From the

two-point correlators of such systems one can obtain expressions for the one and two-particle

finite-volume spectrum. The finite-volume corrections to the masses of single particles are

exponentially suppressed in mπL, where L is the spatial extent of the finite volume and

mπ is the pion mass [141]. As long as one requires mπL>∼ 4, then the finite-volume correc-

tions to the masses are percent level. We neglect such exponentially suppressed corrections

throughout.

In contrast to single-particle states, the finite-volume energy spectrum above two-particle

threshold cannot be directly identified with infinite-volume observables. The spectrum does

however encode information about the infinite-volume on-shell scattering amplitude. The

formalism responsible for connecting the finite-volume spectrum with scattering information

is known as the Lüscher method [127, 128]. This approach has been investigated and

generalized in various contexts [129, 150, 151, 152, 153, 154, 155, 131, 130, 156, 157, 143,

1This chapter is taken from Ref. [149]

2Although it is customary in the literature to label correlation functions by the total number of particles

in the initial and final state, since the number of particles is not a well-defined quantity in finite-volume

we choose to simply refer to correlation functions that have no insertion of external currents as two-point

correlation functions and those that do have an external current insertion as three-point correlation functions.
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145, 158, 159, 160, 161, 162, 163, 132, 140, 146, 164, 165, 134, 166] including most recently

a method for describing all 2→ 2 systems with arbitrary quantum numbers, open channels

and boundary conditions [167]. There have also been attempts to generalize this formalism

for three-particle systems [137, 138, 139, 168], but a general solution for the three body

system in a finite volume has not been found. Finally, in the energy regime of elastic

scattering, the formalism has been extensively implemented in numerical lattice simulations.

See for example Refs. [169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,

183, 184, 185, 186, 187, 188].

Section 4.1 of this work recovers the well-know quantization condition for a system with

any number of two-scalar channels, with arbitrary angular momentum as well as total linear

momenta. The result is

det[M(En)] = det
[
K(En) +

(
FV (En)

)−1
]

= 0, (4.1)

and was first obtained in Refs. [140, 146]. Here K is the two-particle K-matrix (defined in

Eq. 4.39 and related to the scattering amplitude via Eq. 4.41) and FV is a volume-dependent

kinematic matrix (defined in Eq. 4.30). Both of these are matrices over angular momenta

as well as all open two-particle channels, and the determinant is understood to act on this

direct-product space. Until recently, the only numerical implementation of the coupled-

channel formalism was by Guo in an exploratory numerical calculation of a two-channel

system in 1 + 1 dimensional lattice model [189]. The first application of this formalism

in a lattice QCD calculation was by the Hadron Spectrum collaboration in a benchmark

calculation of the πK-Kη systems [92], which unambiguously demonstrates that coupled-

channel systems can be studied via lattice QCD.

In Section 4.2 of the paper, we derive a non-perturbative relation for the relativistic

three-point correlation function. We first review how currents can be properly subduced onto

irreps of the finite-volume symmetry groups. Having defined the subduced current, we pro-

ceed to evaluate the three-point function corresponding to a process ϕ1 → {ϕ2ϕ3, ϕ4ϕ5, . . .},
where ϕi label single-scalar states. For systems where the initial and/or final states have

overlap with multi-particle states the relationship between the finite-volume matrix element

of a current and its infinite volume analog is not obvious. This was fist pointed out by Lel-
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louch and Lüscher in the context of K → ππ weak decays [70]. In their seminal work, they

showed that the absolute value of the transition matrix element in finite-volume is propor-

tional to the physical transition matrix element, with a proportionally factor that depends

on the S-wave phase shift of the final state. This proportionality factor is commonly referred

to as the LL-factor. This formalism has been extended to systems with nonzero total mo-

mentum [130, 131, 190], systems with multiple strongly coupled two-scalar channels [140],

π0 → γγ [191], Nγ → Nπ [136]3, as well as 2→ 2 processes that are mediated by the weak

interaction [153, 123, 192, 146]. See Refs. [193, 194, 195, 88] for recent examples of the

implementation of this formalism on LQCD calculations of the K → ππ decay amplitude.4.

In this work we generalize the Lellouch-Lüscher result by allowing the current to insert

arbitrary momentum and energy to the system. We restrict ourselves to an initial state that

transforms as either a scalar or a pseudoscalar but consider final states in any irrep of the

relevant finite-volume symmetry group. As already mentioned, we also consider multiple

strongly-coupled two-particle states. Within this generic framework, we find a master equa-

tion that relates the finite-volume matrix elements of currents with the physically relevant

infinite-volume counterpart

∣∣∣〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Pf −Pi)|EΛi,0Pi;L〉

∣∣∣

=
1√

2EΛi,0

√[
A†Λf ,nf ;Λµ RΛf ,nf AΛf ,nf ;Λµ

]
, (4.2)

where J̃ [J,P,|λ|]
Λµ (0,Pf −Pi) is a current whose quantum numbers and labels are thoroughly

defined in Section 4.2.1. |EΛi,0Pi;L〉 and |EΛf ,nfPf ;L〉 respectively denote the initial and

3In the production of this manuscript a similar and independent work by A. Agadjanov, et al., appeared

in the literature [136]. In their work, the authors considered pion-photoproduction off a nucleon, Nγ → Nπ

in the non-relativistic limit. The authors demonstrated how to study transitions amplitudes for systems

with nonzero intrinsic spin. In doing so, they restrict the final two-particle state to be at rest and neglect

corrections due to partial wave mixing, but they do allow for the finite volume of the systems to have an

asymmetry along one of the Cartesian axes.

4For historically relevant theoretical and numerical developments regarding nonleptonic weak decay on

the lattice see Refs. [196, 197, 198, 199, 200, 201, 202, 190, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,

213, 214, 215, 216].
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final finite-volume states; the former has the energy and the quantum numbers of a single

particle while the latter has that of two particles. Our result relates this finite-volume

matrix element to

〈a, Pf , JmJ ;∞|J̃ [J,P,|λ|]
Λµ (0,Q;∞)|Pi;∞〉 = [AΛµ;JmJ ]a (2π)3 δ3(Pf −Pi −Q) , (4.3)

were a is a channel index denoting the two particle flavors in the asymptotic state. In

Eq. 4.2, A is understood as a column vector (and A† a row) in the combined angular-

momentum/channel space. Finally RΛf ,nf , defined in Eq. 4.104 below, is a matrix in the

same space that depends only on the strong-interaction as well as the linear extent of the

finite volume. It is the coupled-channel and arbitrary-angular-momentum generalization of

the LL-factor. On all quantities the subscript Λf indicates that angular-momentum space

has been projected onto a particular finite-volume irrep, and nf is an integer labeling the

finite-volume level considered.

Just like the quantization condition of the two-particle spectrum, the master equation

for finite-volume matrix elements can be significantly simplified by considering specific ex-

amples. In order to illustrate how this is done, in Section 4.2.4 we consider several examples.

First, Section 4.2.4 demonstrates that in the limit that the current considered is a pseu-

doscalar that injects zero total momentum, the master equation reproduces the well known

result of K → ππ [70, 130, 131, 190]. In Section 4.2.4 we consider the matrix element for

πγ → ππ → ρ. For this case the two hadrons in the final states are exactly degenerate and

therefore odd and even partial waves do not mix, even when the system is boosted. Par-

ity and angular momentum conservation requires that the final state cannot have overlap

with an S-wave. Therefore the final state is in a P-wave with leading order contamination

from the F-wave. By neglecting this contamination, we obtain an explicit expression for

the P-wave LL-factor for such a system, and find large volume deviation from the well

known S-wave result. For processes where the final states are composed of nondegener-

ate particles, odd and even partial waves will in general mix. Furthermore, in general all

strongly-coupled channels that can go on-shell will be present in the final state. Even in

the example above for sufficiently high energies we must consider πγ → {ππ,KK̄, . . .}.
With these complexities in mind, in Section 4.2.4 we discuss the implication of the master
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equation for systems with coupled channels, regardless of whether the mixing in an infi-

nite volume effect (e.g., ππ −KK̄) or a finite volume artifact (e.g., S and P-wave mixing).

In Section 4.2.4 we demonstrate how this result reproduces previously known relation for

D → {ππ,KK̄} [140].5

Although it is most convenient to perform LQCD calculation using periodic boundary

conditions in a cubic volume, one may also run simulations with twisted boundary conditions

(TBCs) [217, 154] in a volume that is an arbitrary rectangular prism. Ref. [167] showed how

to compactly incorporate all of these scenarios into a single generic result. For completeness

Appendix C reviews how the results presented here can be implemented for volumes with

generic geometry and twisted boundary conditions.

4.1 Two-point correlation functions

In this section we derive expressions for the one-particle and two-particle two-point cor-

relation functions in a finite volume. To achieve this we must first define appropriate

interpolating operators. These are most conveniently classified according to the irreducible

representations (irreps) of the relevant symmetry group. For a system at rest in a finite

cubic volume, the symmetry group is the octahedral group, Oh. In order to accommodate

systems with half-integer spin, one has to consider the double cover of the octahedral group,

denoted by ODh [218]. For systems in flight with total momentum P, the symmetry is re-

duced to a subgroup of Oh or ODh , defined by the subset of octahedral transformations which

leave P invariant. This is referred to as a little group and will be labeled LG(P).

Let ϕΛµ(x0,P) denote a single particle interpolating operator at Euclidean time x0 with

momentum P and in row µ of the Λ irrep of LG(P).6 Because Λµ are good quantum numbers

in finite volume, the one-particle two-point functions will not mix states in different rows

or irreps

C
(1)
Λ′µ′,Λµ(x0 − y0,k) ≡ 〈0|ϕΛ′µ′(x0,k)ϕ†Λµ(y0,−k)|0〉 ∝ δΛ′,Λδµ′,µ . (4.4)

5In both the present work and [140] the formalism neglects coupling to states with more than two

particles.

6For details regarding the construction of these operators from quark and gluonic degrees of freedom we

direct the readers to Refs. [219, 220, 221, 156, 222, 223, 224, 225, 226, 158] and references therein.
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In this study, we will focus on the scenario where the single-particle states are either

pseudoscalars or scalars.7 In such cases there is a single one-dimensional irrep that has

overlap with the particle of interest, and the irrep is exclusively specified by its momentum.

For example, as shown explicitly in Tables 4.1(a) & (b), the pseudoscalar mesons are in the

A−1 irrep of Oh when at rest and in the A2 irrep of LG(k) when in flight. Therefore, it is

sufficient to define the single particle interpolating operators in terms of their momenta and

we will drop the Λµ subscript. We thus introduce

C(1)(x0 − y0,k) ≡ 〈0|ϕ(x0,k)ϕ†(y0,−k)|0〉 = e−E
(1)
k (x0−y0)|〈0|ϕ(0,k)|E(1)k;L〉|2

+O
(
L3e−E

(1)
3,th(x0−y0)/E

(1)
3,th

)
, (4.5)

where L is the linear extent of the finite cubic spatial volume and E
(1)
k , E

(1)
3,th denote the

lowest two eigenvalues of the moving-frame Hamiltonian, in the subspace that has overlap

with 〈0|ϕΛµ(0,k). We have assumed x0 > y0 to order the operators before inserting a

complete set of states. As the subscript suggests, in QCD the first excited energy E
(1)
3,th

corresponds to a state in the vicinity of the three-particle threshold.

One can also calculate the correlation function’s leading time dependence directly from

the fully dressed single particle propagator (see Fig. 4.1(c))

C(1)(x0 − y0,k) = L3

∫
dP0

2π

(
1

2ωk(iP0 + ωk)
+ · · ·

)
eiP0(x0−y0)

= L3 e
−ωk(x0−y0)

2ωk
+O

(
L3 e−E

(1)
3,th(x0−y0)/E

(1)
3,th

)
, (4.6)

where ωk =
√
m2 + k2, with m equal to the physical infinite-volume pole mass. In the first

line, the ellipses denote corrections that are finite at the single particle pole. This includes

terms with poles at higher values of imaginary P0 which correspond to higher energy states.

7For QCD near the physical point there are no stable scalar particles, only pseudoscalar mesons. At

unphysical quark masses, by contrast, one finds stable scalar particles as well. Additionally, although LQCD

is the motivation for this work, this formalism is model independent and is relevant for studying hadronic

physics as well as atomic physics in a finite volume. (See Refs. [227, 228] and references within for examples

of atomic physics calculations performed in a finite volume.) See Ref. [136] for insight into how to deal with

states with nonzero spin in the non-relativistic limit.
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(a)

Group JP Λ(µ) [CJΛ ]µ,λ
ODh 0± A±

1 (1) 1
QL
2π

= (0, 0, 0) 1± T±
1 (1) δ1,λ

1± T±
1 (2) δ0,λ

1± T±
1 (3) δ−1,λ

2± T±
2 (1) δ1,λ

2± T±
2 (2) (δ2,λ − δ−2,λ)/

√
2

2± T±
2 (3) δ−1,λ

2± E±(1) δ0,λ
2± E±(2) (δ2,λ + δ−2,λ)/

√
2

(b)

LG(Q) |λ|η̃ Λ(µ) S η̃,λΛµ

Dic4 0+ A1(1) 1
QL
2π

= (0, 0, n) 0− A2(1) 1
1 E(1) (δs,+ + η̃δs,−)/

√
2

1 E(2) (δs,+ − η̃δs,−)/
√

2

2 B1(1) (δs,+ + η̃δs,−)/
√

2

2 B2(1) (δs,+ − η̃δs,−)/
√

2
Dic2 0+ A1(1) 1

QL
2π

= (n, n, 0) 0− A2(1) 1
1 B1(1) (δs,+ + η̃δs,−)/

√
2

1 B2(1) (δs,+ − η̃δs,−)/
√

2

2 A1(1) (δs,+ + η̃δs,−)/
√

2

2 A2(1) (δs,+ − η̃δs,−)/
√

2
Dic3 0+ A1(1) 1

QL
2π

= (n, n, n) 0− A2(1) 1
1 E(1) (δs,+ + η̃δs,−)/

√
2

1 E(2) (δs,+ − η̃δs,−)/
√

2

2 E(1) (δs,+ − η̃δs,−)/
√

2

2 E(1) −(δs,+ − η̃δs,−)/
√

2

Table 4.1: (a) Shown are the subduction coefficients, [CJΛ]µ,λ used to project states onto the

irreps of ODh for integer spin particles. (b) Shown are the subduction coefficients determined

in Ref. [226], for |λ| ≤ 2, where s = sign(λ) and η̃ = (−1)l+J used to project operators onto

the irreps of the Dic4, Dic2, and Dic3 groups as shown in Eq. 4.79.
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We emphasize that, in arriving at this identity, we have used the on-shell renormalization

convention in which the residue of the single particle propagator is set to 1. This convension

is equivalently expressed as

〈0|φ(0,0)|E(1)k;∞〉 = 1 , (4.7)

where φ(x0,x) is the Fourier transform of ϕ(x0,k) and |E(1)k;∞〉 is the infinite-volume

one-particle state with relativistic normalization

〈E(1)k′;∞|E(1)k;∞〉 = 2ωk(2π)3δ3(k′ − k) . (4.8)

By comparing Eqs. 4.5 & 4.6, we deduce E
(1)
k = ωk and

|〈0|ϕ(0,k)|E(1)k;L〉| =
√

L3

2ωk
. (4.9)

These relations hold up to exponentially suppressed corrections of the form e−mL, which we

discuss in more detail below. We stress that Eq. 4.9 is only a statement of renormalization

convention on ϕ together with the normalization convention for finite-volume states

〈E(1)k;L|E(1)k;L〉 = 1 . (4.10)

As will become evident in Section 4.2, the choice of residue equal to one does not impact the

final result, Eq. 4.2. Any other choice for the residue would exactly cancel. The motivation

for deriving Eq. 4.9 in the manner just presented is that it provides a straightforward warm-

up for our analysis of the two-particle two-point correlation function, to which we now turn.

The two-particle correlation function can be determined by considering an alternative

energy range and using two- instead of one-particle interpolating fields. For the sake of

generality, we consider a system with N coupled two-particle channels. We label the masses

in the jth channel mj,1 and mj,2, with mj,1 ≤ mj,2. We continue to restrict our attention

to spin zero particles. The particles in the jth channel can go on-shell if the c.m. energy E∗

satisfies mj,1 + mj,2 ≤ E∗ < E∗th. Here E∗th is the energy of the first allowed multi-particle

threshold, boosted to the c.m. frame.8 In practice we must require E∗ � E∗th, because if

8For a system with G-parity, e.g., ππ, this corresponds to the four-particle threshold, for any other

system this corresponds to the three-particle threshold.
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E∗ is too close to the multi-particle threshold then the neglected exponentially suppressed

corrections become enhanced.

The on-shell c.m. relative momentum for the jth channel satisfies

k∗2j,on =
E∗2

4
−

(m2
j,1 +m2

j,2)

2
+

(m2
j,1 −m2

j,2)2

4E∗2
. (4.11)

Functions and coordinates evaluated in the c.m. frame will always have a superscript “ ∗ ”,

and it important to remember that a function f in a moving frame that depends on k

can always be related to the c.m. frame function f∗ via f∗(k∗) ≡ f(k). This just defines

a coordinate change and does not imply anything about the Lorentz representation of f .

Coordinates in the moving frame and c.m. frame are related by standard Lorentz transfor-

mations. For example, if we consider a particle with mass m, momenta k and k∗ in the

moving and c.m. frames, then

√
m2 + k∗2 = γ(

√
m2 + k2 − βk||), k∗|| = γ(k|| − β

√
m2 + k2), k∗⊥ = k⊥, (4.12)

where γ = E
E∗ and β = |P|

E .

Two-particle interpolating operators in a given irrep can be written as a linear combina-

tion of products of single particle interpolating operators with appropriate Clebsch-Gordan

coefficients [226, 186, 219, 220, 221, 156, 222, 223, 225]. By first considering an energy range

where only a single channel is present, one can readily write down the relevant two-body

operator

OΛµ(x0,P, |P−k|, |k|) =
∑

R∈LG(P)

C(PΛµ;Rk;R(P−k))ϕ(x0, Rk)ϕ̃(x0, R(P− k)), (4.13)

where in general ϕ and ϕ̃ may be identical or non-identical operators and R is understood

as an element of the representation of LG(P) defined by action on three-dimensional spatial

vectors. In order to minimize unnecessary notation, we will suppress the dependence of O
on |P− k| and |k| from now on.9

9All throughout this work O will denote an operator that has overlap with a two-particle state and ϕ will

refer to a single particle operator, although in general these two will access all states with the corresponding

quantum numbers of the operator.
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To completely specify the Clebsch-Gordan coefficients, we now introduce {k}P as the

set of all momenta that are reached by applying a rotation in LG(P) to k. We then

denote the irreps of particles one and two by Λ1({P−k}P) and Λ2({k}P) respectively, and

define the Clebsch-Gordan coefficient, C(PΛµ;Rk;R(P − k)), to project the two particles

in Λ1({P− k}P)⊗Λ2({k}P) onto Λ(P), µ. This may also be expressed as an innerproduct

of states

C(PΛµ;Rk;R(P− k)) ≡
〈
Λ(P), µ

∣∣Λ1({P− k}P), R(P− k); Λ2({k}P), Rk
〉
, (4.14)

from which follows
∑

R∈LG(P)

|C(PΛµ;Rk;R(P− k))|2 = 1 . (4.15)

The simplest nontrivial example of this operator construction is reached by setting the

total momentum to zero, setting k = 2π
L k̂ ≡ q(1)k̂, and taking the two-particle operator to

be in the A+
1 irrep

OA+
1

(x0,0) =
σ√
6

[ϕ(x0, q(1)ẑ)ϕ̃(x0,−q(1)ẑ) + ϕ(x0,−q(1)ẑ)ϕ̃(x0, q(1)ẑ)

+ ϕ(x0, q(1)x̂)ϕ̃(x0,−q(1)x̂) + ϕ(x0,−q(1)x̂)ϕ̃(x0, q(1)x̂)

+ ϕ(x0, q(1)ŷ)ϕ̃(x0,−q(1)ŷ) + ϕ(x0,−q(1)ŷ)ϕ̃(x0, q(1)ŷ)],

(4.16)

where σ =
√

1/2 if ϕ and ϕ̃ are the same operators and σ = 1 otherwise. If we give the

system a nonzero boost along ẑ, then the symmetry group is reduced to LG(ẑ). Consider

the scenario where the momentum of the ϕ field has magnitude q(1) and that of ϕ̃ has

magnitude
√

2q(1). With these single-particle operators, we can construct a two-particle

operator that transforms in the A1 irrep [186]

OA1(x0, q(1)ẑ) =
1

2

[
ϕ(x0, q(1)x̂)ϕ̃(x0, q(1)(ẑ− x̂)) + ϕ(x0, q(1)ŷ)ϕ̃(x0, q(1)(ẑ− ŷ))

+ ϕ(x0,−q(1)x̂)ϕ̃(x0, q(1)(ẑ + x̂)) + ϕ(x0,−q(1)ŷ)ϕ̃(x0, q(1)(ẑ + ŷ))
]
. (4.17)

In general, there might be N open channels contributing to a given state. For example,

in the case where isospin is equal to zero or one, an infinite volume ππ state can mix with a

KK̄ state, and both must thus have nonzero overlap with the corresponding finite-volume
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state. It is convenient to introduce an index, e.g. “a”, to the interpolating operator in

Eq. 4.13 to indicate the infinite-volume channel that it interpolates

OΛµ(x0,P) −→ OΛµ,a(x0,P). (4.18)

For example, OΛµ,a could refer to a ππ-like or a KK̄-like operator. With this, we can write

a generic correlation function for a two-particle system that has been projected onto a given

irrep as

C
(2)
Λµ,ab(x0 − y0,P) = 〈0|OΛ′µ′,a(x0,P)O†Λµ,b(y0,−P)|0〉

= δΛ,Λ′δµ,µ′
∑

n

e−EΛ,n(x0−y0)〈0|OΛµ,a(0,P)|EΛ,nP;L〉〈EΛ,nP;L|O†Λµ,b(0,−P)|0〉

+O
(
L6e−Eth(x0−y0)/E2

th

)
, (4.19)

where EΛ,n is the nth two-particle eigenenergy of the Λ-irrep of LG(P). This is the two-

body analog of Eq. 4.5. In general we expect multiple two-body states below the first

multi-particle threshold, Eth, and hence include a sum over n.

The correlation function can also be written in terms of the interactions of the two-

particle system. The leading order (LO) contribution to the correlation function (first

diagram in Fig. 4.1(a)) is determined by considering the limit in which the interactions

vanish, and as a result the different channels cannot mix. We find

C
(2,LO)
Λµ,ab (x0 − y0,P) = L6

∫
dP0

2π
eiP0(x0−y0)C̃

(2,LO)
Λµ,ab (P0,P) , (4.20)

where

C̃
(2,LO)
Λµ,ab (P0,P) ≡ δab

1

η

∫
dk0

2π

∑

R∈LG(P)

× C(PΛµ;Rk;R(P− k))G(k)G(P − k)C∗(PΛµ;Rk;R(P− k)) . (4.21)

Here we have introduced the fully dressed propagator

G(k) ≡
∫
d4xe−ikx〈0|Tφ(x)φ†(0)|0〉 , (4.22)

with on-shell renormalization limk0→iωk(k2 + m2)G(k) = 1. We have also introduced the

symmetry factor η which is equal to 1/2 if the particles identical and have momenta that

are related by LG(P) rotations, and equal to 1 otherwise.
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Observe here that G(k) is the infinite-volume fully dressed propagator. Really

C̃
(2,LO)
Λµ,ab (P0,P) should be constructed from the finite-volume analog of G(k). However, as

long as [P 2
0 +P2]1/2 has an imaginary part with magnitude below E∗th, then using the infinite-

volume propagator only incurs exponentially suppressed corrections of the form e−mπL, with

mπ the lightest mass in the spectrum. This is discussed in more detail in the context of

the Bethe-Salpeter kernel below. We deduce that our expression for C̃
(2,LO)
Λµ,ab (P0,P) is only

valid in a strip of the complex P0 plane which runs along the real axis and is bounded by

[P 2
0 + P2] = −E∗2th .

We now complete the analysis of C
(2,LO)
Λµ,ab (x0 − y0,P), by first evaluating k0 and k′0

integrals, and then evaluating the integral on P0. Define

ωj,1 ≡
√
m2
j,1 + (P− k)2 , ωj,2 ≡

√
m2
j,2 + k2 . (4.23)

In performing the k0 and k′0 integrals we encircle the pole at iωj,2 and this fixes the “2”

particle in the jth channel to be on-shell with free energy ωj,2. By energy conservation, the

“1” particle will have energy −iP0 − ωj,2. Specifically we find

C
(2,LO)
Λµ,ab (x0 − y0,P) = δab

L6

η

∫
dP0

2π
eiP0(x0−y0)

∑

R∈LG(P)

|C(PΛµ;Rk;R(P− k))|2
4 ωa,1 ωa,2(iP0 + (ωa,1 + ωa,2))

+O
(
L6e−Eth(x0−y0)/E2

th

)
. (4.24)

Note here that the first term gives a pole in the P0 plane that sits in the region where our

expression for C̃
(2,LO)
Λµ,ab (P0,P) is valid. We do not control the exact form of the second term,

which decays according to some above-threshold energy. The precise form of the above

threshold term is not needed for our final result.

To include higher orders we need only assume that the correlation function, defined in

Eq. 4.19, is correctly reproduced by the all-orders summation of a skeleton expansion built

from Bethe-Salpeter kernels and fully dressed propagators. In particular we define the NLO

correlator as the contribution built from a single insertion of the Bethe-Salpeter kernel, K.

The kernel is depicted in Fig. 4.1(b) and is defined as the sum of all amputated four-point

diagrams that are two-particle irreducible in the s-channel. We find

C
(2,NLO)
Λµ,ab (x0 − y0,P) = L6

∫
dP0

2π
eiP0(x0−y0)C̃

(2,NLO)
Λµ,ab (P0,P) , (4.25)
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Figure 4.1: a) Shown is the definition of the finite volume two-particle correlation function.

The solid lines denote two-particles in the “1” channel, dashed lines denote particle in the

“2” channel. The correlation function is written in terms of the c.m. kernel, K∗, and the

fully dressed single particle propagators. b) Shown is K∗ for the first channel, which is the

sum of all two-particle irreducible s-channel diagrams. Explicitly shown are examples of

diagrams that are included in the kernel: contact interactions, t- and u-channel diagrams.

In general, all diagrams allowed by the underlying theory where the intermediate particles

cannot all simultaneously go on-shell are absorbed into the kernel. As described in the text,

in this study we are restricted to energies where only two-particle states are allowed to go

on-shell. c) Shown is the definition of the fully dressed one particle propagator in terms of

the one particle irreducible (1PI) diagrams.
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where

C̃
(2,NLO)
Λµ,ab (P0,P) = − 1

L3

∑

R,R′∈LG(P)

C(PΛµ;R′k;R′(P− k))

×
∫
dk′0
2π

∫
dk0

2π
G(k′)G(P − k′)K(P, k, k′)G(k)G(P − k)C∗(PΛµ;Rk;R(P− k)) .

(4.26)

In general, the kernel is a function of volume, but since the c.m. energy is restricted to

satisfy m1 +m2 ≤ E∗ � E∗th the intermediate particles appearing in the kernel cannot all

simultaneously go on-shell. Therefore, one can show using Poisson’s resummation formula

[
1

L3

∑

q

∫ ]
f(q) =

∑

n6=0

∫
dq

(2π)3
f(q) eiLn·q,

that the difference between finite- and infinite-volume kernels is exponentially small in mL.

In writing the Poisson resummation formula the following notation has been introduced

[
1

L3

∑

q

∫ ]
≡
(

1

L3

∑

q

−
∫

dq

(2π)3

)
. (4.27)

Since we neglect these corrections, the result discussed here holds only for mπL � 1. We

will neglect any terms in the correlation function that are exponentially suppressed with the

mass of any particle in any coupled channel since O(e−miL) ≤ O(e−mπL). These corrections

have been previously determine for ππ [229] and NN systems [230] in an S-wave, as well as

the ππ system in a P-wave in Ref. [231, 232].

Higher order contributions to the correlation function can be readily evaluated by making

the following replacement

− [K(P, k, k′)]a,b −→ −[TL(P, k, k′)]a,b , (4.28)

where

− [TL(P, k, k′)]a,b

= −[K(P, k, k′)]a,b +

∫
dl0
2π

ξj
L3

∑

l

[K(P, k, l)]a,jGj(l)Gj(P − l)[TL(P, l, k′)]j,b , (4.29)

and the summation over the intermediate channel j is implicit.
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A convenient expression for TL can be found utilizing the machinery developed by Kim,

Sachrajda, and Sharpe [130]. In order to determine the finite-volume corrections to the

correlation function, it is sufficient to know the difference between finite-volume momentum

sum and infinite-volume momentum integral acting on the two-particle poles. Using a

principal-value prescription to define the integral at the pole, we observe

ξj

[
1

L3

∑

l

∫ ]
P.V.

[K(P, k, l)]a,j [K(P, l, k′)]j,b
4 ω1,P−l ω2,l(ω1,P−l + ω2,l − P0,M )

≡

− [K∗off,onFVK∗on,off ]a,b +O(e−mπL), (4.30)

where the c.m. kernel, K∗off,on, is the kernel for a system where the two incoming particles

are evaluated on-shell, while the outgoing particles are left off-shell. Here we have also

introduced the Minkowski energy P0,M ≡ −iP0. Note, if one chooses to use an iε prescription

for the propagator, this would lead to a second contribution to the right-hand side of

Eq. 4.30, due to the residue of the infinite volume integral on the left hand side. This

choice does not affect our result for the finite-volume correlation function.

In writing the right-hand side of Eq. 4.30, the kernels and the finite volume function

have been written as matrices over angular momentum. The matrix elements of FV in the

spherical harmonic basis are found to be [130, 140, 146]

[
FVj
]
lml;l′ml′

= − ξj
8πP ∗0,M


∑

l′′,m′′

(4π)3/2

k∗l
′′

j,on

cdl′′m′′(k
∗2
j,on;L)

∫
dΩ Y ∗l,mlY

∗
l′′,m′′Yl′,ml′


 . (4.31)

The function cdlm is defined as

cdlm(k∗2j ;L) =

√
4π

γL3

(
2π

L

)l−2

Zd
lm[1; (k∗jL/2π)2], Zd

lm[s;x2] =
∑

r∈Pd

|r|lYl,m(r)

(r2 − x2)s
, (4.32)

where γ = P0,M/P
∗
0,M , the sum is performed over Pd =

{
r ∈ R3 | r = γ̂−1(m− αjd)

}
, m is

a triplet integer, d is the normalized boost vector d = PL/2π, αj = 1
2 [1+(m2

j,1 −m2
j,2)/P ∗20,M ]

[143, 144, 145], and γ̂−1x ≡ γ−1x||+x⊥, with x||(x⊥) denoting the x component that is par-

allel(perpendicular) to the total momentum, P. In Appendix C we show the generalization

of this for asymmetric volumes with twisted boundary conditions.

We mention a subtlety here with the definition of cdlm(k∗2j ;L) for k∗2j < 0. The definitions

given above continue to hold for subthreshold momenta, but only if the appropriate analytic
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continuation is implemented. To understand this in detail we first observe that the sum

defining Zd
lm diverges for s < 3/2 + l/2 and in particular diverges for s = 1. The function

Zd
lm is thus understood to be defined via analytic continuation from s > 3/2+ l/2. To make

this definition more apparent in the present context we give the equivalent form from Kim,

Sachrajda and Sharpe10

cdlm(k∗2j,on;L) = − 1

γL3

∑

k∗

exp[α(k∗2j,on − k∗2)]

k∗2j,on − k∗2
k∗l
√

4πYlm
(
k̂
∗)

+ δl0 P.V.

∫
dk∗

(2π)3

exp[α(k∗2j,on − k∗2)]

k∗2j,on − k∗2
, (4.33)

where the sum is over all k∗ ∈ (2π/L)Pd and the limit α → 0+ is understood. This

definition makes the ultraviolet regularization, which is implicit in the analytic continuation

in s, more explicit. For continuation to k∗2j,on < 0 it is convenient to rewrite the integral as

an iε prescription and a remainder

P.V.

∫
dk∗

(2π)3

exp[α(k∗2j,on − k∗2)]

k∗2j,on − k∗2
=

∫
dk∗

(2π)3

exp[α(k∗2j,on − k∗2)]

k∗2j,on − k∗2 + iε
+
ik∗j,on

4π
. (4.34)

The subthreshold continuation of the left hand ride is defined as the following limit of the

right-hand side

lim
k∗j,on→iκj

[∫
dk∗

(2π)3

exp[α(k∗2j,on − k∗2)]

k∗2j,on − k∗2 + iε
+
ik∗j,on

4π

]

= −
[∫

dk∗

(2π)3

exp[−α(κ2
j + k∗2)]

κ2
j + k∗2

+
κj
4π

]
, (4.35)

where κj is the binding momentum of the jth channel.

We next turn to the Bethe-Salpeter kernel which, like FV , can be expressed as a matrix

in angular momentum

K∗off,off (P ∗0 ,k
∗
i ,k
∗
f ) = 4π

∑

l,ml,l′,ml′

Ylml(k̂
∗
f )Y ∗l′ml′ (k̂

∗
i ) [K∗off,off (P ∗0 , k

∗
i , k
∗
j )]lml,l′ml′ . (4.36)

Here we consider a kernel in which both the initial and final states are off-shell. More

precisely, we assume ki,0 = iωki and kf,0 = iωkf , but no additional constraints. These

10Our definition of clm differs from Ref. [130] by an overall sign.
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relations, which arise from contour integration as discussed, do not give on-shell two-particle

states since P0 − k0,i 6= iωP−ki and P0 − k0,f 6= iωP−kf . Nevertheless, it is still possible to

change to the c.m. frame, expressing the kernel in terms of (P ∗0 ,k
∗
i ,k
∗
f ) as indicated above.

Note that the matrix defined in Eq. 4.36 is diagonal,

[K∗off,off (P ∗0 , k
∗
i , k
∗
j )]lml,l′ml′ ∝ δl,l′δml,m′l . (4.37)

This follows from the rotational invariance of the infinite-volume theory, equivalently from

the fact that the only angular dependence in the c.m. frame is k̂
∗
i · k̂

∗
f . Finally, we comment

that the on-shell point is contained within Eq. 4.36 and is accessed by constraining the three

momenta magnitudes to k∗i = k∗f = k∗on. We return to this discussion in the context of the

quantization condition below.

Directly following Kim, Sachrajda and Sharpe by summing over all possible insertions

of the Bethe-Salpeter kernel, we find

− TL = Koff,off −Koff,on
1

1 + FVK
FVKon,off . (4.38)

Here we have introduced the two-to-two K-matrix, which is defined as the sum of all infinite-

volume, amputated 2→ 2 diagrams with loop integrals defined via principal-value prescrip-

tion11

[K(P, k, k′)]a,b ≡ −[K(P, k, k′)]a,b

+ ξj P.V.

∫
dl

(2π)3

∫
dl0
2π

[K(P, k, l)]a,jGj(l)Gj(P − l)[K(P, l, k′)]j,b . (4.39)

This object is explicitly shown in Fig. 4.2(b) for a single channel scenario. Observe that

in Eq. 4.38 we have given subscripts on K to indicate whether the incoming and outgoing

states are on or off-shell. K with no subscript is reserved for the on-shell K-matrix.

11The use of pole prescription here is somewhat subtle. If we restrict the Euclidean-signature time

component P0 to be real, then no pole prescription is needed. However if P0 is imaginary and thus P0,M

is real, then poles appear in the region of integration. Our definition requires always performing time

component integrals with P0,M off the real axis, as in the standard iε prescription. This produces integrals

over spatial components of the form of Eq. 4.30. These are always to be evaluated with real P0,M and with

the principal value pole prescription. Alternatively one may use the iε prescription for the entirety of each

two-particle loop integral, but then one must take only the real part.
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We contrast the K-matrix to the scattering amplitude,M, which is defined as the sum of

all infinite-volume, amputated 2→ 2 diagrams with integration defined via iε prescription

(as shown in Fig. 4.2(a) for a single channel)

[M(P, k, k′)]a,b ≡ −[K(P, k, k′)]a,b

+ ξj

∫
d4l

(2π)4
[K(P, k, l)]a,jGj(l)Gj(P − l)[M(P, l, k′)]j,b . (4.40)

The on-shell K-matrix can be directly related to the on-shell scattering amplitude by intro-

ducing a kinematic matrix that is diagonal over the N open channels

P = diag(
√
ξ1q∗1,

√
ξ1q∗1, . . . ,

√
ξNq∗N )/

√
4πE∗. For a system with angular momentum

J = l = l′, the amplitudes MJ and KJ are related via [140],

M−1
J = K−1

J − iP2/2, (4.41)

and the scattering amplitude and the S-matrix via

iMJ = P−1 (SJ − I) P−1. (4.42)

Substituting TL for K in Eq. 4.26 gives the full correlation function

C
(2)
Λµ,ab(x0 − y0,P) =

L6

∫
dP0

2π
eiP0(x0−y0)

{
C̃

[2,O(K)]
Λµ,ab (P0,P)− CTΛµ

[
Y
L3

1

K + (FV )−1 Y†
]

ab

C∗Λµ

}

+O
(
L6e−Eth(x0−y0)/E2

th

)
. (4.43)

The first term of the integrand is defined as

C̃
[2,O(K)]
Λµ,ab (P0,P) ≡ C̃(2,LO)

Λµ,ab (P0,P) +
1

L3

∑

R,R′∈LG(P)

C(PΛµ;R′k;R′(P− k))

×
∫
dk′0
2π

∫
dk0

2π
G(k′)G(P − k′)Koff,off (P, k, k′)G(k)G(P − k)

× C∗(PΛµ;Rk;R(P− k)) . (4.44)
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= +A + +...

= + + +...H

= + + +...

= + +...+K

M i✏ i✏ i✏

P.V. P.V. P.V.

i✏ i✏ i✏

P.V. P.V. P.V.

(a)

= +A + +...

= + + +...H

= + + +...

= + +...+K

M i✏ i✏ i✏

P.V. P.V. P.V.

i✏ i✏ i✏

P.V. P.V. P.V.

(b)

Figure 4.2: In order to illustrate the differences and similarities between the a) scattering

amplitude, M, and the b) K-matrix, K, we show their diagrammatically representation for

the single-channel case in terms of the kernels (defined in Fig. 4.1(b)) and infinite volume

loops. The infinite volume loops of the scattering amplitude are evaluated using the iε

prescription, while those of the K-matrix are evaluated using the principal value, as explicitly

shown. For multichannel scenarios one simply upgrades the kernels and two-particle loops

to be matrices in the number of open channels as depicted in Fig. 4.1. Note that the single

particle propagators are fully dressed as defined in Fig. 4.1(c).
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We have also introduced new notation for the second term

[CΛµ]lm,a ≡
√

4π
∑

R∈LG(P)

C(PΛµ;R(P− k);Rk) Ylm(R̂k
∗
) , (4.45)

[Y(P0, R(P− k), Rk, k)]a,b ≡
∫
dk′0
2π

G(k′0, Rk)G(P0 − k′0, R(P− k))Koff,on(P, k, k′)a,b ,

≡ 4πYl′m′(R̂k
∗
) [Y(P ∗0 )]a,l′,m′;b,l,m Y ∗l,m(k̂∗) . (4.46)

We stress that Y depends on off-shell K-matrices. This dependence is unavoidable in the

two-particle correlation function and will persist in our final result. However, we will see

that the off-shell contributions cancel when we consider the ratio of finite and infinite-volume

matrix elements of external currents.

In order to evaluate the integral over P0 we first note that the free poles of the integrand

exactly cancel. This is a nontrivial observation that cannot be reached unless one formally

keeps all partial wave contributions that have overlap with the irrep of interest. In particular,

in Appendix B, along with showing an explicit proof of the cancelation of the free poles,

we show that by truncating the scattering amplitude to be in an S-wave the free poles in

general do not cancel. The cancellation of free poles assures that the only contribution to

Eq. 4.43 is from integration around poles of the interacting system. To evaluate these, we

introduce

M(P0,M ) ≡ K(P0,M ) +
(
FV (P0,M )

)−1
. (4.47)

Now note that the finite-volume two-particle spectrum is given by energies for which

M(P0,M ) has a vanishing eigenvalue. This is Lüscher’s quantization condition, given in

Eq. 4.1 above. At this stage we think it useful to discuss the connection of this result to

previous work. We first observe that, although the condition in terms of M(P0,M ) is most

convenient for the bulk of our analysis, here it is useful to reexpress it as

det[(K(P0,M ))−1 + FV (P0,M )] = 0 . (4.48)

Substituting Eq. 4.41 into this form then gives

det[(M(P0,M ))−1 + FViε(P0,M )] = 0 , (4.49)
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where FViε(P0,M ) ≡ iP2/2 + FV (P0,M ). This shows the equivalence of the present result to

those appearing in Refs. [127, 128, 129, 130, 140, 146].

Next we consider Eq. 4.48 for energies in the vicinity of the lowest two-particle threshold.

In this case we need only consider the S-wave scattering for the lowest two-particle channel.

The quantization condition becomes

ξ

8πP ∗0,M

[
k∗ cot δ(k∗)− 4πcd00(k∗2;L)

]
= 0 . (4.50)

We may analytically continue this result below threshold by replacing k∗ = i|k∗| = iκ.

In this continuation 4πcd00(k∗2;L) = −κ plus exponentially suppressed corrections.12 We

deduce

k∗ cot δ(k∗)

∣∣∣∣
k∗=iκ

+ κ = 0 , (4.51)

which is the standard, infinite-volume condition for a bound state.

Returning to the P0 integral in Eq. 4.43, we write the inverse of M(P0,M ) in terms of a

determinant and adjugate,

1

M(P0,M )
≡ 1

det[M(P0,M )]
adj[M(P0,M )]. (4.52)

This equation defines the adjugate which is also equal to the transpose of the cofactor

matrix. It implies that, as P0,M approaches a two-particle energy, M(P0,M )−1 will diverge

in proportion to det[M(P0,M )]−1 such that adj[M(P0,M )] remains finite. This separation,

into diverging prefactor times finite matrix, makes Eq. 4.52 useful for evaluating the residue

of the two-particle poles. Looking at the variation of the quantization condition about the

energy eigenvalues, we find

det[M(P0,M )]| = det[M(En)] (4.53)

+(P0,M − En) tr

[
adj[M(P0,M )]

∂M(P0,M )

∂P0,M

]∣∣∣∣
P0,M=En

+O((P0 − iEn)2)

= −i(P0 − iEn) tr

[
adj[M(P0,M )]

∂M(P0,M )

∂P0,M

]∣∣∣∣
P0,M=En

(4.54)

+O((P0 − iEn)2) .

12We stress that this corrections may be large near threshold so that keeping the exponentially suppressed

terms may be important.
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With this in hand, one can perform the integral in Eq. 4.43 to find

C
(2)
Λµ,ab(x0 − y0,P) = L3

∑

n

e−EΛ,n(x0−y0) CTΛµ
[
YΛ,n RΛ,n Y†Λ,n

]
ab
C∗Λµ, (4.55)

RΛ,n = adj[M(P0,M )] tr

[
adj[M(P0,M )]

∂M(P0,M )

∂P0,M

]−1
∣∣∣∣∣
P0,M=EΛ,n

,(4.56)

where YΛ,n is the value of Y (defined in Eq. 4.46) if evaluated at the nth interactive two-

particle pole. Here the sum over n runs over a finite set of energies that lie below the next

multi-particle threshold. We are constrained to this region because our expression for the

integrand of the P0 integral was only valid for a range of imaginary P0 as already discussed

above.

By comparing this result to Eq. 4.19, we find that the matrix elements of the interpolating

operators in general satisfy

〈0|OΛµ,a(0,P)|EΛ,nP;L〉〈EΛ,nP;L|OΛµ,b(0,P)|0〉 =

L3 CTΛµ
[
YΛ,n RΛ,n Y†Λ,n

]
ab
C∗Λµ (4.57)

and in the case that a = b it implies

|〈0|OΛµ,a(0,P)|EΛ,nP;L〉| = L3/2

√
CTΛµ

[
YΛ,n RΛ,n Y†Λ,n

]
aa

C∗Λµ, (4.58)

where the repeated indices in the right-hand side are not summed. Equations 4.57 & 4.58

are the main results of this section.

We now turn to applying this result to specific examples. In doing so we find it useful

to introduce

N ?
Λ ≡ CTΛµC∗Λµ = 4π

∑

R,R′∈LG(P)

∑

l,ml

× Ylml(R̂′k
∗
) Y ∗lml(R̂k

∗
) C(PΛµ;R′(P− k);R′k) C∗(PΛµ;R(P− k);Rk). (4.59)

For the case where the system is not boosted or when the system is restricted to be in an

S-wave, this reduces to the number of elements in {k}P. Otherwise, this depends on the

number of elements being summed as well as the magnitude of the boost, the masses of the

particles and the energy of the system. In all cases, the quantitiy can be easily evaluated
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numerically once the Clebsch-Gordan coefficients have been determined. For the systems

of interest, these have been previously calculated in Ref. [186].

4.1.1 Single channel S-wave result

Here we consider the case where the orbital angular momentum is restricted to the S-wave.

For this scenario to formally be applicable, the irrep of interest has to have strong overlap

with the S-wave and all higher contributions must be vanishingly small. This is particularly

relevant for the ππ system near threshold. At rest the LO contamination to the S-wave is

due to l = 4 and in the moving frame the NLO contamination is due to l = 2, both of which

are suppressed at low energies. In this scenario M is a one by one matrix and its adjugate

is one, using Eq. 4.56 one obtains that the residue at the nth pole is

RS,n =
[
∂M/∂P0,M

]−1|P0,M=EΛ,n
=

[
8πE∗n
ξq∗n

1

cos2 δS

[∂(δS + φ00)

∂P0,M

]
|P0,M=EΛ,n

]−1

, (4.60)

where we have introduced the pseudophase φd
lm with (lm) angular momentum in the moving

frame

q∗Λ,n cotφd
lm = − 4π

q∗lΛ,n

cdlm(q∗2Λ,n;L). (4.61)

As seen in Eq. 4.58, the overlap of two body interpolating operator also depends on the

off-shell K-matrix, where either the incoming state or outgoing is on-shell while the other

state remains off-shell. In general, in this limit the lth spherical harmonic decomposition of

the K-matrix can be written as a function of the total energy and momentum of the system

and the magnitude of the off-shell momentum in the c.m. frame, Kl,off,on[(E,P), p∗off ].

For instance, when the system has zero boost, then p∗off would corresponding to a free

momentum 2π|n|/L, where n is an integer triplet. Similarly, one can define the spherical

harmonic decomposition of the Y Eq. 4.46. By suppressing the arguments of these quantities

and considering the limit where only the S-wave contributes, we find the following overlap

for the two-body operator with the nth eigenstates of the finite volume Hamiltonian

|〈0|OΛµ(0,P)|EΛ,nP;L〉| = L3/2

(
ξq∗n

8πE∗n

N ?
Λ YS Y†S cos2 δS[

∂(δS + φ00)/∂P0,M

]
|P0,M=EΛ,n

)1/2

.(4.62)
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We note that the off-shell functions, strongly depend on the operator used in the deter-

mination of the correlation function, but as will be shown in Section 4.2, the exact form

of these functions do not matter. What does matter is that one uses the same two-body

operators for the two-point correlation functions as in the three-point correlation functions.

It is only in this case that the dependence on the off-shell scattering amplitudes cancels.

When restricted to the S-wave channel, N ?
Λ is just equal to the number of momenta be-

ing summed over. Although it might be naively surprising that the matrix element of the

two-particle operator depends on the off-shell scattering amplitude, this is the mechanism

that is responsible for making an operator with off-shell momenta have overlap with a state

which, by the definition, is on-shell. Lastly, it is worth mentioning that this result clearly

explains why if one constructs an operators with a particular set of discrete momenta the

resulting correlation function will have largest overlap with the nearest eigenstate. This

is because the amplitude of each exponential scales as ∼
√
|YS |2. From the definition of

this, Eq. 4.46, one observes that they divergent in the limit that the free energy given to

the two-particle operator, Efree, coincides with the on-shell energy, EΛ,n. In fact, one can

shown that near this pole, the overlap factor scales as ∼ |EΛ,n − Efree|−1. In Section 4.2.4

we show that this result reproduces the well known LL-factor in a moving frame.

4.1.2 ππ in a P-wave

In the case that the two particles of interest are degenerate, parity is still a good quantum

number, even in when the total momentum is nonzero. As a result, odd and even partial

waves in the ππ systems do not mix. Therefore, when interested in studying scattering

in the P-wave ππ channel, the LO partial wave contamination to consider is due to the

F-wave. By neglecting this contribution, M can be written as a one by one matrix, and the

quantization condition can be in general be written as

cot δP +
(

cotφd
00 + αd

20,Λ cotφd
20 + αd

22,Λ cotφd
22

)
= 0. (4.63)

For systems with d = 0 and cubic volumes, the cd2m exactly vanish. For systems with

non-zero total momenta or for asymmetric volumes, cd2m do not necessarily vanish and the

values of αd
20,Λ and αd

22,Λ for d2 ≤ 3 are shown in Table 4.2.
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d (00n) (nn0) (nnn)

αd
20,A1

= 2√
5
αd
20,A1

= − 1√
5
, αd

22,A1
= −i

√
6
5
αd
22,A1

= −2i
√

6
5

αd
20,E = − 1√

5
αd
20,B1

= 2√
5

αd
22,E = i

√
6
5

αd
20,B2

= − 1√
5
, αd

22,B2
= i

√
6
5

Table 4.2: Nonzero values of αd
20,Λ and αd

22,Λ for d2 ≤ 3. For the T−1 irrep of ODh , the cd2m

vanish, therefore there is no need to define αd
2m,Λ for this irrep.

Following the steps that led to Eq. 4.62, one finds that the overlap of the two-particle

interpolating operator with the nth finite volume eigenstate for a two-particle systems in a

P-wave is equal to

|〈0|OΛµ(0,P)|EΛ,nP;L〉| = L3/2

(
ξq∗n

8πE∗n
N ?

Λ YP Y†P cot2 δP

)1/2

×


csc2 δP

∂δP
∂P0,M

+ csc2 φd
00

∂φd
00

∂P0,M
+
∑

m=0,2

α2m,Λ csc2 φd
2m

∂φd
2m

∂P0,M



∣∣∣∣∣∣

−1/2

P0,M=EΛ,n

.(4.64)

Again, we find that this overlap factor depends on the derivative of the P-wave phase shift

and the pseudo phase φd
00, but also depends nontrivially on the derivative of the pseudo

phases φd
20 and φd

22. Note that for a system composed of indistinguishable particles, such as

the ππ system, one must set the symmetry factor ξ equal to 1/2. In Section 4.2.4 we show

this leads to the needed LL-factor for πγ → ππ when the final state is in a P-wave.

4.1.3 πK for J ≤ 1

As a slightly more complicated example, we consider the πK operator. For such system

with zero total momentum, parity is a good quantum number and as a result odd and even

partial waves do not mix. If we restrict the angular momentum to satisfy J ≤ 1, the system

could be in a S- or P-wave. The corresponding cubic irreps would be the A+
1 and T−1 , and the

matrix elements of their respective operators are described by Eqs. 4.62 & 4.64, respectively.
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For the πK systems, ξ must be set to one. For boosted system, parity is non longer a good

quantum number. As a result odd and even partial waves will mix. By neglecting D-wave

contamination, one can observe that for boosted systems at least one irreps will have large

overlap with P-wave states and no overlap with the S-wave. One can readily identify such

irreps as E for d = (00n), B1 and B2 for d = (nn0), and E for d = (nnn). For these irreps,

the overlap factor is again shown in Eq. 4.64. The non-vanishing values for αd
20,Λ and αd

22,Λ

for d2 ≤ 3 are given in Table 4.2. The A1 irrep for these boost vectors will be an admixture

of S- and P-wave. As an example, consider the A1 in the Dic4 group, namely the symmetry

group for d = (00n). This irrep mixes the (l,m) = {(0, 0), (1, 0), . . .} partial waves. In this

space one can write down the finite volume function FV and the on-shell/off-shell K-matrices

for this irrep as

Dic4 A1 : FVA1
=

q∗A1,on

8πE∗A1




cotφd
00 cotφd

10

cotφd
10 cotφd

00 + 2/
√

5 cotφd
20


 , (4.65)

Kon,on;A1 =
8πE∗A1

q∗A1,on




[cot δS ]−1 0

0 [cot δP ]−1


 , (4.66)

Kon,off ;A1 =




Kon,off ;S 0

0 Kon,off ;P


 . (4.67)

The quantization condition can be written as

Dic4 A1 : det[MA1 ] = det
[
Kon,on;A1 +

(
FVA1

)−1
]

= 0. (4.68)

In order to evaluate |〈0|OA1,0,P|EA1,nP;L〉|, we first need to evaluate the adjugate of MA1 ,

adj[MA1 ] =




[MA1 ]22 − [MA1 ]12

− [MA1 ]21 [MA1 ]11


 , (4.69)

and we define the Clebsch-Gordan coefficients as vectors in the spherical harmonic basis,

CA1 =
√

4π
∑

R∈LG(P)

C(PA1;R(P− k);Rk)




Y00(R̂k
∗
)

Y10(R̂k
∗
)


 . (4.70)
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we obtain the overlap factor for the A1 irrep for the Dic4 group as follows,

|〈0|OA1µ,0,P|EA1,nP;L〉| = L3/2

(
CTA1

Koff,on;A1 YA1 adj[MA1 ] Y†A1
C∗A1

)1/2

tr
[
adj[MA1 ]

∂MA1
∂EA1,n

]1/2
. (4.71)

Similar expressions can be found for the A1 irreps of the Dic2 and Dic3 groups, the only

differences would be the values of the finite volume functions and the K-matrices appearing

in Eqs. 4.68 & 4.67 and the Clebsch-Gordan coefficients appearing in Eq. 4.70. For example,

the A1 irrep of the Dic2 mixes the (l,m) = {(0, 0), (1,−1), (1, 1), . . .} partial waves.

Dic2 A1 :

FVA1
=

q∗A1,on

8πE∗A1




cotφd
00 i3/2 Re[cotφd

11] i1/2 Re[cotφd
11]

−i1/2 Re[cotφd
11] cotφd

00 − cotφd
20/
√

5 −
√

6/5 cotφd
22

−i3/2 Re[cotφd
11]

√
6/5 cotφd

22 cotφd
00 − cotφd

20/
√

5



,

Kon,on;A1 =
8πE∗A1

q∗A1,on




[cot δS ]−1 0 0

0 [cot δP ]−1 0

0 0 [cot δP ]−1


 , (4.72)

Kon,off ;A1 =




Kon,off ;S 0 0

0 Kon,off ;P 0

0 0 Kon,off ;P


 .

Similarly, one can write down the Clebsch-Gordan coefficients as a three-dimensional vector

in this space,

CA1 =
√

4π
∑

R∈LG(P)

C(PA1;R(P− k);Rk)




Y00(R̂k
∗
)

Y1−1(R̂k
∗
)

Y11(R̂k
∗
)



. (4.73)
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The final piece needed is the evaluation of the adjugate of a three-dimensional matrix

adj[MA1 ] =




∣∣∣∣∣∣∣∣

[MA1 ]22 [MA1 ]23

[MA1 ]32 [MA1 ]33

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

[MA1 ]12 [MA1 ]13

[MA1 ]32 [MA1 ]33

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[MA1 ]12 [MA1 ]13

[MA1 ]22 [MA1 ]23

∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣

[MA1 ]21 [MA1 ]23

[MA1 ]31 [MA1 ]33

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[MA1 ]11 [MA1 ]13

[MA1 ]31 [MA1 ]33

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

[MA1 ]11 [MA1 ]13

[MA1 ]21 [MA1 ]23

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

[MA1 ]21 [MA1 ]22

[MA1 ]31 [MA1 ]32

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

[MA1 ]11 [MA1 ]12

[MA1 ]31 [MA1 ]32

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[MA1 ]11 [MA1 ]12

[MA1 ]21 [MA1 ]22

∣∣∣∣∣∣∣∣




.(4.74)

These two examples explicitly illustrate how partial wave mixing can be appropriately dealt

with in numerical studies of the two-point correlation function. Similarly, one can con-

sider the scenario where the scattering amplitudes couples different on-shell channels, in

Section 4.2.4 we discuss how to determine the LL-factor for such systems.

4.2 Three-point correlation functions
and the generalized Lellouch-Lüscher formula

Having discussed two-point correlation functions extensively in the previous section, we

now proceed to the main focus of this work, three-point correlation functions. In particular,

we are interested in processes where an external current annihilates a single-particle state

and creates a two-particle state. Such a transition was first considered in this context by

Lellouch and Lüscher, who derived a relation between a finite-volume matrix element and

the physical decay rate for K → ππ [70]. The weak Hamiltonian is the external current

in that process, and thus the analysis is restricted to scalar currents which insert zero

momentum. Here we extend the result by allowing the external current to inject arbitrary

four momentum and to be in any irrep of the finite-volume symmetry group. This is

particularly relevant for meson photoproduction processes such as πγ → ππ as well as

meson decays of the form φ1 → φ2φ3X, where X denotes an arbitrary leptonic current.

Even the relatively simple example of πγ → ππ illustrates that the finite-volume final state
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mixes different angular momenta, due to the reduction of rotational symmetry, as well as

states with different particle content. For example the ππ state mixes with KK̄ as well as

ππππ, etc.13 Following the discussion of the previous section, we accommodate any number

of strongly-coupled channels, but restrict attention to energies for which only two-particle

states can go on-shell.

4.2.1 Construction of currents in irreps of LG(Q)

In order to construct the three-point correlation function, we must first define currents in

irreps of the finite-volume symmetry groups. We begin by defining a current of interest

in the infinite-volume theory. As a specific example, consider a four-vector current which

couples an incoming single-particle state, with momentum Pi, to an outgoing (asymptotic)

two-particle state, where one particle has momentum k and the other Pf − k. Defining

hν(Pi, Pf − k, k) as the LO transition amplitude for this process, we introduce

Jν(x) =
ξ

L9

∑

Pf ,k,Pi

∫
dPf,0

2π

dPi,0
2π

dk0

2π
ei(Pi−Pf )·x

× ϕ̄†(−Pf + k) ϕ̃†(−k) ϕ(Pi) hν(Pi, Pf − k, k). (4.75)

Here ξ = 1/2 if ϕ̄ = ϕ̃ and otherwise ξ = 1. The zero component of this four-vector current

transforms trivially under rotations, also within the finite-volume subgroups. By contrast,

the spatial vector (or pseudovector) is in the J = 1 irrep of SO(3), and thus transforms

under multiple irreps of the finite-volume groups.

In order to discuss the subduction of the vector current onto irreps of the octahedral

group and the little groups, it is convenient to first Fourier transform

J̃j(x0,Q) =

∫
d3xe−iQ·xJj(x)

=
ξ

L6

∑

Pf ,k,Pi

∫
dPf,0

2π

dPi,0
2π

dk0

2π
ei(Pi,0−Pf,0)x0 ϕ̄†(Pf − k) ϕ̃†(−k) ϕ(Pi) (4.76)

× hj(Pi, Pf − k, k) δPf ,Q+Pi ,

13Similar to the case of D → {ππ,KK̄} decays studied in Ref. [140].
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and also to switch from Cartesian to spherical-harmonic basis

J̃±1 = ∓ 1√
2

(J̃x ± iJ̃y), J̃0 = J̃z . (4.77)

For non-zero Q, the azimuthal component of the vector current is only a good quantum

number if the ẑ axis and the momentum axis coincide. It is thus convenient to instead use

operators in the helicity basis. These are found by defining R as an active rotation from

(0, 0, |Q|) to Q and D(J)
m1m2(R) as the m1m2 component of the corresponding Wigner-D

matrix in the J representation. With this, one can rotate from the spherical-harmonic to

the helicity basis

J̃λ(y0,Q) =
∑

m

D(1)∗
mλ (R) J̃m(y0,Q). (4.78)

We are now in position to decompose the current into irreps of the finite-volume sym-

metry groups. First restricting attention to J̃λ(y0,0), we comment that the current can be

subduced onto the Λ irrep of Oh using the subduction coefficients, [CJΛ]µ,λ [226]. As can be

seen in Table 4.1(a), for this case the subduction is trivial. The J = 1 irrep becomes the

T1 irrep of the octahedral group, with each element of the helicity basis equal to one of the

three µ values labeling the finite-volume counterpart. For systems in flight one may define

a similar subduction. In this case nontrivial linear combinations arise, given by

J̃ [J,P,|λ|]
Λµ (y0,Q) =

∑

λ̂=±|λ|

S η̃λ̂Λµ J̃
[J,P ]

λ̂
(y0,Q), (4.79)

where now J and P specify the angular momentum and parity of the system at rest.

Table 4.1(b) shows the values of S η̃λΛµ for systems with integer J ≤ 2 and LQ/2π =

{(0, 0, n), (n, n, 0), (n, n, n)} and all other possible cubic rotations are determined in Ref. [226].

Having discussed how to subduce the vector current onto a definite irrep of LG(Q), one

can easily generalize this for currents of any rank,

J̃α,β,...,ω(x0,Q) −→ J̃ [J,P,|λ|]
Λµ (x0,Q). (4.80)

The discussion that follows is relevant for arbitrary rank currents with either positive or

negative parity that have been properly subduced onto the irreps of the corresponding
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symmetry group. The key point is that, by taking appropriate linear combinations, one can

transform an operator in any basis to one that transforms as an irrep of the finite-volume

group. The linear combinations of currents imply linear combinations of the transition

amplitudes so that both J̃ and h may be reexpressed in terms of finite-volume irreps, and

the form of Eq. 4.75 is preserved in the new basis

J̃ [J,P,|λ|]
Λµ (x0,Q) =

ξ

L6

∑

Pf ,k,Pi

∫
dPf,0

2π

dPi,0
2π

dk0

2π
ei(Pi,0−Pf,0)x0 ϕ̄†(−Pf + k) ϕ̃†(−k) ϕ(Pi)

×h[J,P,|λ|]
Λµ (Pi, Pf − k, k) δPf ,Q+Pi . (4.81)

Finally, in order to consider scenarios where there is N > 1 open two-particle channels, one

need only generalize this expression to

J̃ [J,P,|λ|]
Λµ (x0,Q) =

N∑

a=1

ξa
L6

∑

Pf ,k,Pi

∫
dPf,0

2π

dPi,0
2π

dk0

2π
ei(Pi,0−Pf,0)x0 ϕ̄†a(−Pf + k) ϕ̃†a(−k) ϕ(Pi)

×h[J,P,|λ|]
Λµ (Pi, Pf − k, k, a) δPf ,Q+Pi , (4.82)

where ϕ̄†a and ϕ̃†a create the two particles in the ath channel and h
[J,P,|λ|]
Λµ (Pi, Pf − k, k, a) is

the LO transition amplitude for that channel.

4.2.2 Three-point correlation function

Having properly defined the current of interest, we proceed to evaluate three-point cor-

relation functions. Arriving at the result with an arbitrary number of open two-particle

states is straightforward after one determines the single-channel result. We thus suppress

the channel index for the time being and use Eq. 4.81 for the current. We begin by writing

down the analogous expression to Eq. 4.19, when a current with arbitrary momentum is

inserted at time t = y0,

C
(1→2)
Λfµf ;Λµ(xf,0 − y0; y0 − xi,0) = 〈0|OΛfµf (xf,0,Pf ) J̃ [J,P,|λ|]

Λµ (y0,Q) ϕ†(xi,0,−Pi)|0〉

=
∑

nf

e
−EΛf ,nf

(xf,0−y0)
e−EΛi,0

(y0−xi,0)〈0|OΛfµf (0,Pf )|EΛf ,nfPf ;L〉

×〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Q)|EΛi,0Pi;L〉〈EΛi,0Pi;L|ϕ†(0,−Pi)|0〉. (4.83)

In the second line we have assumed xi,0 < y0 < xf,0.
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Figure 4.3: a) Diagramatic representation for the three-point correlation function for pro-

cesses involving a single incoming particle and outgoing two-particle state. This is written

in terms of the LO transition amplitudes, one of which is explicit shown in (b), and the

Bethe-Salpeter kernel, depicted in Fig. 4.1(b). The wiggly line is meant to depict an inte-

ger spin external current that can inject arbitrary four-momenta. Note that disconnected

diagrams appearing in the LO transition amplitudes vanish except in the case where the

current has the same quantum numbers as one of the outgoing external legs.
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In order to get insight as to how one can interpret 〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Q)|EΛi,0Pi;L〉,

we also evaluate the correlation function diagrammatically, as depicted in Fig. 4.3.14 First

observe that the transition amplitude, shown in Fig. 4.3(b), is defined in analogy to the

Bethe-Salpeter kernel as the sum of all amputated diagrams that are two particle irreducible

in the s-channel. The object differs from the Bethe-Salpeter only in the form of external legs

and in the insertion of a new contact interaction associated with the electroweak process of

interest. To evaluate the three-point correlator we must sum all diagrams that appear when

the external legs of the transition amplitude are contracted with the single incoming particle

and outgoing two-particle state. We perform the calculation of the three-point correlator in

two steps, first considering the contraction of the incoming state with the current

D(1)(y0 − xi,0) =
1

L3

∑

Pi′

∫
dPi′,0

2π
eiPi′,0y0〈ϕ(Pi′)ϕ

†(xi,0,−Pi)〉

× h[J,P,|λ|]
Λµ (Pi′ , Pf − kf ′ , kf ′)δPf ,Q+Pi′

(4.84)

=

(
e−(y0−xi,0)EΛi,0

2EΛi,0

)
h

[J,P,|λ|]
Λµ (Pi, Pf − kf ′ , kf ′)δPf ,Q+Pi

+O
(
e−E3,th(y0−xi,0)/E3,th

)
,

(4.85)

where Pi,0 = iEΛi,0. The remaining contractions, between the current and the final two-

particle operator, give

D(2)(xf,0 − y0) =
ξ

L3

∑

Pf ,kf

∫
dPf,0

2π

dkf,0
2π

e−iPfy0〈OΛfµf (xf ,Pf ) ϕ̄†(−Pf + kf ) ϕ̃†(−kf )〉

× h
[J,P,|λ|]
Λµ (Pi, Pf − kf , kf ) δPf ,Q+Pi . (4.86)

The LO contribution of this term is found to be

D(2,LO)(xf,0 − y0) = L3

∫
dPf,0

2π
eiPf,0(xf,0−y0)

∑

R∈LG(Pf)

C(PfΛfµf ;R(Pf − kf );Rkf )

×
h

[J,P,|λ|]
Λµ (Pi, Pf − kf , kf )

4 ω1 ω2(iPf,0 + (ω1 + ω2))
δPf ,Q+Pi + · · · , (4.87)

14Note that Fig. 4.3 shows the expression for the correlation function when arbitrary number of final

two-particle states are present. The single channel scenario is recovered by suppressing the dependence on

the a index and reducing all matrices in the channel space to scalars.
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where the ellipses denote contributions associated with higher energy poles of the free two-

particle propagator. Note that the symmetry factor cancels.

To complete our calculation of C(1→2), it remains only to include all higher order correc-

tions to D(2). These arrise from insertions of the Bethe-Salpeter kernel between the current

and the two-body operator. All contributions are included by making the substitution

h
[J,P,|λ|]
Λµ (Pi, Pf − kf , kf ) −→ h

[J,P,|λ|]
Λµ (Pi, Pf − kf , kf )

− ξ

L3

∑

kf ′

TL(Pf , kf ′ , kf ) h
[J,P,|λ|]
Λµ (Pi, Pf − kf ′ , kf ′)

4 ω1,Pf−kf ′ ω2,kf ′ (ω1,Pf−kf ′ + ω2,kf ′ + iPf,0)
+ · · · , (4.88)

where the ellipses again denote higher energy poles.

To give the final result we must first define H[J,P,|λ|]
Λµ (Pi, Pf − kf , kf ) as the sum over

all infinite-volume diagrams contributing to the transition amplitude, evaluated using the

principal-value prescription (as depicted in Fig. 4.4(b) for a single channel). This is also

given by

H[J,P,|λ|]
Λµ (Pi, Pf − kf , kf ) ≡ h[J,P,|λ|]

Λµ (Pi, Pf − kf , kf )

+ ξ

∫

kf ′
P.V.

Koff,off (Pf , kf ′ , kf ) h
[J,P,|λ|]
Λµ (Pi, Pf − kf ′ , kf ′)

4 ω1,Pf−kf ′ ω2,kf ′ (ω1,Pf−kf ′ + ω2,kf ′ + iPf,0)
+ · · · . (4.89)

In addition we define Hlm;Λµ =
∫
dΩ Y ∗lml(k̂

∗
f ) H[J,P,|λ|]

Λµ (Pi, Pf ′ − kf , kf ), which is the pro-

jection of this amplitude onto the spherical harmonic basis of the outgoing state. Note that

this requires evaluating the transition amplitude in the frame where the final two-particle

state is at rest.

Putting all the pieces together and performing the integral over Pf,0, one finds the
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following expressions for the three-point correlation function

C
(1→2)
Λfµf ;Λµ(xf,0 − y0; y0 − xi,0) =

(
e−(y0−xi,0)EΛi,0

2EΛi,0

)∫
dPf,0

2π
eiPf,0(xf,0−y0)δPf ,Q+Pi

×




C(PΛfµf ; (Pf − kf ); kf )H[J,P,|λ|]

Λµ (Pi, Pf − kf , kf )

4ω1,Pf−kf ′ω2,kf ′ (ω1,Pf−kf ′ + ω2,kf ′ + iPf,0)
− CTΛfµfY

1

K + (FV )−1HΛµ,onL
3 + · · ·





=

(
e−(y0−xi,0)EΛi,0

2EΛi,0

)
L3
∑

nf

e
−EΛf ,nf

(xf,0−y0)CTΛfµfYΛf ,nfRΛf ,nfHΛf ,nf ;ΛµδPf ,Q+Pi

+ · · · , (4.90)

where the ellipses denote contribution from high energy poles. Note that, just like in the

two-point correlation function, the free-particle poles do not contribute due to the careful

cancelation of the two objects inside the braces.

By comparing Eqs. 4.83 & 4.90 and multiplying with the complex conjugate expression,

one finds an identity for the finite-volume matrix element

∣∣∣〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Pf −Pi)|EΛi,0Pi;L〉

∣∣∣

=

(
L3

2EΛi,0

) √(CTΛfµf YΛf ,nf RΛf ,nf HΛf ,nf ;Λµ)(HT
Λf ,nf ;Λµ RΛf ,nf Y†Λf ,nf C∗Λfµf )

|〈0|OΛµ(0,Pf )|EΛf ,nfPf ;L〉| |〈EΛi,0Pi;L|ϕ†(0,−Pi)|0〉|
(4.91)

=
1√

2EΛi,0

√√√√(CTΛfµf YΛf ,nf RΛf ,nf HΛf ,nf ;Λµ)(HT
Λf ,nf ;Λµ RΛf ,nf Y†Λf ,nf C∗Λfµf )

CTΛfµf YΛf ,nf RΛf ,nf Y†Λf ,nfC
∗
Λfµf

,

(4.92)

where we have used Eqs. 4.9 & 4.58 to write the second equality. It is important to emphasize

the dependence that CTY has on the two-body interpolators used, and it is essential to use

the same interpolators in the two-point and three-point functions for the second equality

to follow. Indeed, although we constructed our two-body interpolators from scalar fields

(with residue one at the mass pole), this result holds for any interpolating field with the

desired quantum numbers. Any nontrivial overlap factors cancel between numerator and

denominator.
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= +A + +...

= + + +...H

= + + +...

= + +...+K

M i✏ i✏ i✏

P.V. P.V. P.V.

i✏ i✏ i✏

P.V. P.V. P.V.

(b)

Figure 4.4: In order to illustrate the differences and similarities between the transition

amplitudes a) A and b) H, we show their diagrammatically representation for the single-

channel case in terms of the LO transition amplitudes (defined in Fig. 4.3(b)), kernels

(defined in Fig. 4.1(b)) and infinite volume loops. The infinite volume loops of A are

evaluated using the iε prescription, while those of H are evaluated using the principal value,

as explicitly denoted. For multichannel scenarios one simply upgrades the kernels and

two-particle loops to be matrices in the number of open channels and the LO transition

amplitude becomes a vector in the space as depicted in Fig. 4.3. Single particle propagators

are fully dressed as defined in Fig. 4.1(c).
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For multichannel systems, one needs to evaluate the three-point correlation function

using a current that couples to all open channels, as defined in Eq. 4.82. In this case one

has the freedom to choose which flavor of two-particle operator is used in evaluating the

correlation function. We define

C
(1→2)
Λfµf ,a;Λµ(xf,0 − y0; y0 − xi,0) = 〈0|OΛfµf ,a(xf,0,Pf )J̃ [J,P,|λ|]

Λµ (y0,Q)ϕ†(xi,0,−Pi)|0〉

=
∑

nf

e
−EΛf ,nf

(xf,0−y0)
e−EΛi,0

(y0−xi,0)〈0|OΛµ,a(0,Pf )|EΛf ,nfPf ;L〉

× 〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Q)|EΛi,0Pi;L〉〈EΛi,0Pi;L|ϕ†(0,−Pi)|0〉. (4.93)

This generic representation of the three-point function is diagrammatically depicted in

Fig. 4.3(a). Following the steps above, it is straightforward to see that Eq. 4.92 gener-

alizes to

∣∣∣〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Pf −Pi)|EΛi,0Pi;L〉

∣∣∣ =

1√
2EΛi,0

√√√√(CTΛfµf [YΛf ,nf RΛf ,nf HΛf ,nf ;Λµ]a)([HT
Λf ,nf ;Λµ RΛf ,nf Y†Λf ,nf ]a C∗Λfµf )

CTΛfµf [YΛf ,nf RΛf ,nf Y†Λf ,nf ]aaC∗Λfµf
,

(4.94)

where the repeated channel indices on the right-hand side are not summed.

We now show that this result is equivalent to the main result of this work, Eq. 4.2 above.

To do so we define

V(a)
b ≡ Y†Λf ,nf ;a,bC

∗
Λfµf

, (4.95)

where a and b are channel indices. We stress that, for each fixed value of a, V(a)
b is a column

in angular-momentum/channel space. Suppressing the channel index, b, this notation allows

us to rewrite Eq. 4.94 as

∣∣∣〈EΛf ,nf ;L|J̃ [J,P,|λ|]
Λµ |EΛi,0;L〉

∣∣∣ =

1√
2EΛi,0

√√√√ [V(a)† RΛf ,nf HΛf ,nf ;Λµ][HT
Λf ,nf ;Λµ RΛf ,nf V(a)]

[V(a)† RΛf ,nf V(a)]
. (4.96)

Here we have dropped all momentum and time labels for compactness of notation.
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We next observe that RΛf ,nf , which is Hermitian and therefore diagonalizable, has only

one non-zero eigenvalue. To see this, recall that RΛf ,nf is equal to a scalar prefactor

times adj[M(P0,M = EΛ,n)]Λf . The adjugate here is understood as a matrix in angular-

momentum/channel space, that has been projected onto the Λf subspace. We now consider

the adjugate as a function of εn ≡ P0,M −EΛ,n, and show that all but one of its eigenvalues

vanishes as εn → 0. Recall the defining relation

adj[M(εn)] = det[M(εn)] [M(εn)]−1 . (4.97)

Formally diagonalizing both sides, we argue that exactly one of the eigenvalues of [M(εn)]−1

scales as 1/εn and the rest are finite.

Note that the divergence of two eigenvalues, which we discount, would imply the exis-

tence two orthogonal states that are exactly degenerate in finite volume. This represents

two possibilities. The first is that distinct energies coincide only at certain values of L.

This would imply a level crossing, which does not occur unless the Hilbert space divides

into distinct, non-interacting subspaces. The second possibility is that the finite volume

spectrum includes states that are degenerate for all values of L. This occurs whenever there

is a symmetry relating the finite-volume states. However, in the present context the matrix

has been projected to a particular irrep and row. It follows that, within the subspace that

we consider, exactly one of the eigenvalues of [M(εn)]−1 scales as 1/εn. This in turn implies

that the determinant of M(εn) vanishes as εn or faster, and thus all but one of the adjugate’s

eigenvalues vanishes.

We denote the nonzero eigenvalue of RΛf ,µf by λ and the corresponding eigenvector,

E. We also introduce E1,E2, · · · as the remaining orthonormal set that is annihilated by

RΛf ,nf . These eigenvectors span the space, so we may substitute V(a) = cE +
∑
ciEi and

deduce

∣∣∣〈EΛf ,nf ;L|J̃ [J,P,|λ|]
Λµ |EΛi,0;L〉

∣∣∣ =
1√

2EΛi,0

√
[c∗λE† HΛf ,nf ;Λµ][HT

Λf ,nf ;Λµ cλE]

λc∗E† Ec
, (4.98)

=
1√

2EΛi,0

√
Tr
[
λE† HΛf ,nf ;ΛµHT

Λf ,nf ;Λµ E
]
, (4.99)

=
1√

2EΛi,0

√
Tr
[
HT

Λf ,nf ;Λµ λEE† HΛf ,nf ;Λµ

]
, (4.100)
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where in the first line we acted RΛf ,nf on each eigenvector, in the second line we canceled

common factors and inserted a redundant trace, and in the third we used the cyclic property

of the trace. Observing finally that

RΛf ,nf = λEE† , (4.101)

we conclude

∣∣∣〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Pf −Pi)|EΛi,0Pi;L〉

∣∣∣ =

1√
2EΛi,0

√[
HT

Λf ,nf ;Λµ RΛf ,nf HΛf ,nf ;Λµ

]
. (4.102)

4.2.3 Relation of H to infinite-volume matrix elements

In this section we relate HΛf ,nf ;Λµ;JmJ = HΛf ;Λµ;JmJ (E∗Λf ,nf ) to infinite-volume matrix

elements. Here we have given the full set of indices including JmJ = lm, which was

suppressed in the steps above. We have also emphasized that the label nf only refers to

the particular two-particle pole at which the transition amplitude is evaluated. Finally, we

stress that the subscript Λf on H indicates that the angular momentum space has been

projected onto a finite-volume irrep. For example in the case of Λf = A+
1 the transition

amplitude will include J = 0, J = 4 and certain higher waves, but not J = 2, J = 3.

However by considering different irreps one can in principal sample all partial waves, and

so construct an unprojected vector HΛµ;JmJ .

To give the relation to physical matrix elements, we first connect this transition ampli-

tude, defined using principal-value prescription, to the amplitude defined via iε prescription.

We label the latter AΛµ;JmJ . Both amplitudes are explicitly shown in Fig. B.1 and the rela-

tionship between the two is found by noting that the difference in each two-particle loop is

a simple kinematic factor, determined by the residue of the propagators at the poles. This

is very similar to the relation between K and M discussed above. We find

A = H + K
(
iP2/2

)
H + K

(
iP2/2

)
K
(
iP2/2

)
H + · · · =

[
1

1−K (iP2/2)

]
H

=

[
1

K−1 − (iP2/2)

]
K−1 H =M K−1 H. (4.103)
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For systems where there is only a single channel present these are just scalars, otherwise

these are matrices in the space of open channels. Note that H is pure real and thus the

phases of A are determined entirely by the strong interaction, as encoded in K−1M. In the

single channel case we see that the phase of A is equal to the elastic scattering phase of the

two-particle channel considered. Thus Eq. 4.103 is simply the generalization of Watson’s

theorem for multichannel systems. This relation motivates the definition

RΛf ,nf = [M−1† K R KM−1]Λf ,nf , (4.104)

which allows us to compactly display our main result in terms of A, as in Eq. 4.2 above.

AΛµ;JmJ is trivially related to the infinite-volume matrix element of the current. To see

this, we first rewrite the current J̃ [J,P,|λ|]
Λµ (x0,Q), Eq. 4.82, in infinite volume and set x0 = 0,

J̃ [J,P,|λ|]
Λµ (0,Q;∞) =

N∑

a

ξa

∫
d4Pf
(2π)4

d4Pi
(2π)4

d4k

(2π)4
ϕ̄†a(−Pf + k) ϕ̃†a(−k) ϕ(Pi)

×h[J,P,|λ|]
Λµ (Pi, Pf − k, k, a)(2π)3δ3(Pf −Pi −Q). (4.105)

Note that we still label the current by Λµ. The linear combinations that relate this basis to

more standard infinite-volume bases are discussed above and are perfectly well defined, even

though the finite-volume symmetry group does not play a role at this stage. Requiring only

that states are normalized according to the standard infinite-volume relativistic convention

(Eq. 4.8) and also that the single-particle operators have propagators with unit residue

(Eq. 4.7) one arrives at Eq. 4.3.

4.2.4 Examples of applications of Eq. 4.2

K → ππ decay amplitude

First, we demonstrate that this formalism properly recovers the well known result for K →
ππ weak decay. In this case, the initial state is a single kaon and the external current

is a pseudoscalar. The current cannot inject any momentum, so we set Pf = Pi. By

conservation of angular momentum, the infinite-volume current can only create a two-pion

state in an S-wave. For a finite-volume system we restrict ourselves to irreps that have

strong overlap with S-wave and we neglect higher partial wave contributions. Within this
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approximation, our master equation gives the following relationship between the infinite-

volume transition amplitude and the finite-volume matrix element

|AS,nf |2

|〈ππ,EnfP,Λfµf ;L|J̃ [0,−1,|0|]
Λµ (0,0)|K,EKP;L〉|2

=
16πEi E

∗
nf

q∗nf ξ

∂(δS + φd
00)

∂P0,M

∣∣∣∣
P0,M=Enf

.(4.106)

For the problem at hand Ei is equal to the energy of the incoming kaon and the symmetry

factor ξ is equal to 1/2. If one wishes, it is straight forward to replace the derivative with

respect to total energy with a derivative with respect to relative momentum. Doing so, one

finds agreement with Refs. [70, 130, 131, 190] in the limit that the initial and final state

are exactly degenerate. Note that, since the current is evaluated at a specific time slice, the

current need not conserve energy and this result reflects that fact. For processes such as

K → ππ this is an artifact, and one would want to assure to extract a ππ energy level that

is in the vicinity of the kaon energy.

πγ → ππ form factor

Unlike the previous example, for a process such as πγ → ππ the external current can inject

arbitrary momentum. For such a process, the lowest energy configuration of the final state

is a P-wave. Therefore, it is expected that the Lellouch-Lüscher factor gets modified. Since

the two particles in the final state are degenerate, odd and even partial waves cannot mix.

By ignoring contamination from the F-wave and using the results of Section 4.1.2 one finds

the generalization of the previous result for two particles in a P-wave,

|AΛfµf ,nf ;Λµ;J=1|2

|〈ππ,EnfPf ,Λfµf ;L|J̃ [1,−1,|λ|]
Λµ (0,Pf −Pi)|π,EiPi;L〉|2

= 16πEi
Enf
q∗nf ξ

sin2 δP

×


csc2 δP

∂δP
∂P0,M

+ csc2 φd
00

∂φd
00

∂P0,M
+
∑

m=0,2

α2m,Λf csc2 φd
2m

∂φd
2m

∂P0,M



∣∣∣∣∣∣
P0,M=Enf

,(4.107)

where α2m,T−1
= 0 and the values of α2m,Λf for other relevant irreps are given in Table 4.2.

The J = 1 superscript on the transition amplitude means that we have integrated it against

one of the l = 1 spherical harmonics. As discussed above, this projection is performed in

the two-particle center of mass frame. Again one may set ξ = 1/2 for this case, since the

two outgoing particles are identical. Observe that the right-hand side does not depend on

the representation of the current or the single-particle state.
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The right-hand side effectively corrects for the large finite-volume artifacts associated

with the two-particle state. This gives a one-to-one mapping between the finite-volume and

infinite-volume form factors for this process. The result thus allows one to determine, using

LQCD, the same quantity that is extracted from experiments. If one wants to evaluate this

form factor at the ρ pole, in order to study processes such as πγ → ρ, then it is necessary to

analytically continue into the complex plane [192]. This requires parameterizing the form

factor as function of the exchange momentum as well as the relative momentum between

the two pions in the P-wave. By fitting this function to the LQCD results, one can study

the behavior of the form factor as a function of the exchange momentum at the resonance

pole.

Two-dimensional case

As we have already stressed before, partial wave mixing is inevitable when performing

calculations in a finite volume, and Eq. 4.2 reflects this reduction of rotational symmetry.

In addition, the final two-particle state may in general have overlap with more than one

infinite-volume state. This leads us to consider a generic scenario where the matrix R in

Eq. 4.2 is two dimensional. In order to avoid introducing additional notation we consider the

form of the main result using infinite-volume quantities that are defined via principal-value

prescription, namely Eq. 4.102.

In Section 4.1.3 we discussed one explicit example for a πK boosted state, where we

neglected contributions from J ≥ 2 partial waves. We could also consider a system with

two open channels where we ignore partial wave mixing, e.g., ππ −KK̄. In the first case,

the finite volume matrix FVΛf will have off-diagonal terms but the K-matrix will be diagonal.

In the second case this is reversed; the K-matrix has non-zero off diagonal terms while FVΛf
is diagonal. In order to accommodate these two scenarios simultaneously, we allow the K-

matrix and the FVΛf matrix to have off diagonal terms. The spectrum of this system must

satisfy

det[MΛf ] = det

[
KΛf +

(
FVΛf

)−1
]

= 0. (4.108)

Requiring the determinant of MΛf to vanish, implies that we can generically write its
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adjugate in the following form,

adj[MΛf
]|P0,M=EΛf ,nf

=




[
MΛf

]
22

−eiθΛf
√[

MΛf

]
22

[
MΛf

]
11

−e−iθΛf
√[

MΛf

]
22

[
MΛf

]
11

[
MΛf

]
11


 ,

(4.109)

where θΛf is an unknown real phase.

Inserting the above expression into Eq. 4.102, one finds

∣∣∣〈EΛf ,nfPf ;L|J̃ [J,P,|λ|]
Λµ (0,Pf −Pi)|EΛi,0Pi;L〉

∣∣∣
2

=
1

2EΛi,0

×




[H]21
[
MΛf

]
22

+ [H]22
[
MΛf

]
11
− 2[H]1[H]2

√[
MΛf

]
11

[
MΛf

]
22

cos[θΛf ]

tr
[
adj[MΛf ]

∂MΛf

∂P0,M

]




∣∣∣∣∣∣∣
P0,M=EΛf ,nf

(4.110)

where the subscripts of HΛfµf ,nf ;Λµ have been suppressed in the last line for compactness.

This nontrivial result illustrates the power of Eq. 4.2.

D →
{
ππ,KK̄

}
decays

Assuming sufficiently heavy pion masses where the multi-particle threshold lies above the

energy of the D mesons, Eq. 4.110 allows for the studies of D →
{
ππ,KK̄

}
decays. To find

the equivalence between the result presented in the previous section and the result presented

in Ref. [140], we rederive the result of Ref. [140] using notation presented here. This allows

for a more compact representation of the result. In Ref. [140], the authors followed the trick

first utilized by Lellouch and Lüscher in the studies of K → ππ decays. We present this

method in the context of the two-channel system.

The argument proceeds by modifying the ππ −KK̄ correlation function, by including

a contribution to the Hamiltonian density due to the weak interaction. We denote this

perturbative shift by λHW (x), where λ is a free parameter that allows us to organize an

expansion. The modified Hamiltonian density allows for ππ−KK̄ states and the D meson

state to mix, both in a finite and infinite volume. Considering first the finite-volume theory,

we tune the box size L such that the D state and some ππ −KK̄ finite-volume state are
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exactly degenerate (for a given total momentum). The presence of the weak interaction will

break the degeneracy and result in two nearly degenerate states with energies

E(1) = ED ± λL3 |〈EDP;L|HW (0)|D,EDP;L〉|, (4.111)

where we have only kept the leading order contribution in λ and where ED =
√
M2
D + P2

with MD the D meson mass. Turning to the infinite-volume theory, the weak perturbation

has the effect of modifying the scattering amplitude. This modification is due to the addi-

tional interaction that couples the D to the two-particle states. The shift in the scattering

amplitude contains two insertions of the weak Hamiltonian, one for transitioning from two

particles to the D and one for transitioning back to two particles. Thus the shift is gener-

ically O(λ2), but in the present case we are evaluating the amplitude at an energy which

is shifted by O(λ) from ED. This enhances the change of the scattering amplitude to be

O(λ). Putting these two pieces together one finds [140]

M(1) =M(0) ∓ λ∆ M (4.112)

where

∆M =
1

2EDL3|〈EDP;L|HW (0)|D,EDP;L〉|




|AD→ππ|2 AD→ππA†D→KK̄

A†D→ππAD→KK̄ |AD→KK̄ |2


 .

(4.113)

We next find it convenient to rewrite this perturbation to the scattering amplitude as a

perturbation to the K-matrix. To do this, we follow the reasoning of Eq. 4.103 and observe

that the only difference between the transition amplitude and the scattering amplitude is

that for the latter we need to include the imaginary part of the diagrams associated with

both incoming as well as outgoing two particle states. This leads to the following relation

between ∆M and ∆K,

∆K = KM−1 ∆MM−1 K. (4.114)

At this point we can combine the shift in the finite-volume spectrum with the shift in

the infinite-volume K-matrix to determine the leading order modification to M, defined in
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Eq. 4.47. We find that the matrix is shifted by an amount

λ∆M = λ∆E
∂M
∂P0,M

∣∣∣∣
P0,M=ED

∓ λ∆K. (4.115)

where ∆E = L3|〈EDP;L|HW (0)|D,EDP;L〉|. Of course, the quantization must also be

valid for the perturbed theory. We thus deduce that the linear shift to the determinant of

M should vanish

det[M(λ)]| = det[M(0)] + λtr [adj[M(0)] ∆M] = λ tr [adj[M] ∆M]|P0,M=ED
= 0, (4.116)

where we have used the fact that M(0) also has vanishing determinant, since this defines

the quantization condition of the unperturbed theory.

Showing that this result is equivalent to Eq. 4.110 require some algebra. First we rewrite

the relation as

∆E =
tr [adj[M] ∆K]

tr
[
adj[M ∂M

∂P0,M

]

∣∣∣∣∣∣
P0,M=ED

=
1

2ED




∣∣[H]1
√

[M]22 − [H]2
√

[M]11

∣∣2

tr
[
adj[M] ∂M

∂P0,M

]
L3 |〈EDP;L|HW (0)|D,EDP;L〉|



∣∣∣∣∣∣
P0,M=ED

, (4.117)

where we have used Eq. 4.103, 4.109 & 4.114 in finding the second equality above. Finally,

using Eq. 4.111, one obtains

L6|〈EDP;L|HW (0)|D,EDP;L〉|2

=
1

2ED



∣∣[H]1

√
[M]22 − [H]2

√
[M]11

∣∣2

tr
[
adj[M] ∂M

∂P0,M

]



∣∣∣∣∣∣
P0,M=ED

. (4.118)

This is equivalent to Eq. 4.110 for the special case where the initial and final states are

exactly degenerate, have the same total momentum and θΛf = 0. Note that the left hand

side of the above equation contains an extra factor of L6, this is because the current in

Eq. 4.110 is in momentum-space.

In deriving this result following Lellouch and Lüscher trick one is forced to consider a

scenario where the final two-particle state is degenerate with the heavy single particle state.
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For D →
{
ππ,KK̄

}
decays, this would make the ππ highly relativistic with an overall

energy that is above the four-particle threshold, unless one considers very heavy pion masses

or unphysically light charm quarks. In deriving Eq. 4.110 we made no assumptions of the

sort and as a result the initial and final states can have arbitrarily different energies. This

of course would mean that D →
{
ππ,KK̄

}
one would necessarily evaluate form factors

with large exchanged energies, but ultimately one would need to extrapolate to the zero

exchanged momenta limit to recover the physical process of interest.

B → πK form factors

One example where partial wave mixing may in general not be small is in the studies of

B → πK form factors. This is due to the fact that for boosted systems the final state will

be an admixture of even and odd partial waves. In particular, if interested in case where

the infinite volume final state has overlap with the K∗(892) resonance, we must consider

irreps that have strong overlap with the πK P-wave. If the final state is at rest or if it

is in the E irrep for d = (00n), B1 and B2 for d = (nn0), or E for d = (nnn), and if we

neglect the contribution from the D and higher partial waves by following the discussion of

Section 4.1.3 one finds that the ratio of the infinite and finite volume form factors for vector

or pseudo vector currents satisfies Eq. 4.107 where the symmetry factor ξ must be set equal

to 1.

For the A1 irrep of the Dic4 group, one simply needs to insert the expressions for the

on-shell K-matrix in Eq. 4.65 along with FA1 in Eq. 4.67 onto Eq. 4.110 to find the relation

between the finite volume and infinite volume form factors. Because of the symmetries of

the infinite volume only one of the transition amplitudes is non vanishing. For example, if

we consider the case where the current is a current subdued from J = 1 with odd parity,

then HS,nf ;Λµ must exactly vanish. Therefore for vector currents Eq. 4.110 simplifies down
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to

|AP0,nf ;Λµ|2

|〈πK,EnfPf ,Λfµf ;L|J̃ [1,−1,|λ|]
Λµ (0,Q)|B0, EB0Pi;L〉|2

=

2EΛi,0 cos2 δP

∣∣∣∣∣∣∣

tr
[
adj[MΛf ]

∂MΛf

∂P0,M

]

[
MΛf

]
11

∣∣∣∣∣∣∣
P0,M=EΛf ,nf

. (4.119)

where AP0,nf ;Λµ denotes the P-wave transition amplitude with zero helicity. This follows

from the helicity decomposition of the A1 irrep of the Dic4 group as shown in Table 4.1(b).

For a pseudo vector current or for rank two tensor currents neither HS,nf ;Λµ nor HPm,nf ;Λµ

need vanish. Therefore one necessarily must use Eq. 4.110. For the A1 irreps of the Dic2

group one must input the finite volume function and scattering matrices defined in Sec-

tion 4.1.3 onto the general result for the matrix element of the currents, Eq. 4.102.

As discussed in the previous section, this result does not require that the initial and

final state are exactly degenerate. For studies of B meson decays on the lattice, allowing

the initial and final states to be non-degenerate is a necessity, since our formalism does not

support multi (more than two) particle states. This result is thus of significance for studies

of B meson decays with large energy exchange, such that the final state is below all multi

particle thresholds.

Finally, it is important to remember that if interested in studying form factors involving

the isospin-1/2 Kπ in the final state, one necessarily must consider the admixture of this

with Kη. Although the inelasticity is seen to be small at physical values, this will depend

on the quark masses used to perform the calculation. Furthermore, for unphysically large

quark masses, such as those in used in Refs. [233, 234], the Kη threshold is significantly

closer to the Kπ threshold than it is in nature. In order to include this mixing between the

channels one will have to use Eq. 4.110 when there are two open channels with negligible

partial wave mixing or in general Eq. 4.2.
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Chapter 5

THREE-PARTICLE SCATTERING

In the last few years, lattice QCD calculations of the properties of resonances have be-

come widespread.1 Most use a method first proposed by Lüscher in Refs. [127, 128, 142],

in which the finite-volume spectrum (obtained using lattice simulations) can be related to

infinite-volume scattering amplitudes. This method initially applied to two-particle sys-

tems below the inelastic threshold, but has since been extended to systems with multiple

two-particle channels [133, 134, 135, 140, 146]. A striking example of the practical imple-

mentation of this multi-channel formalism is the recent lattice study of the properties of

kaon resonances [92].

Lattice calculations can now routinely determine many spectral levels for a given set

of total quantum numbers, and can do so for quark masses approaching physical values.

This means that channels involving three or more particles are opening up and must be

incorporated into the formalism. Examples include ω → 3π, K∗ → Kππ, and N∗ → Nππ.

Indeed, the study of Ref. [92], although using an unphysically heavy pion mass of 390 MeV,

was limited by the opening of the Kππ channel. Thus there is strong motivation to extend

the finite-volume formalism to include three (or more) particles.

First steps in this direction have been taken in Refs. [138] and [139]. The former work

considers the problem in a non-relativistic context, and shows that the finite-volume spec-

trum is determined (via integral equations) by infinite-volume scattering amplitudes. The

latter work reaches the same conclusion in the case in which pairs of particles interact only

in the s-wave. Related problems have also been considered in Refs. [238] and [239]. We

attempt here to go beyond these works by considering a relativistic theory in which we

make no approximation concerning the nature of the two-particle interactions.

Our approach is a generalization of the diagrammatic, field-theoretic approach intro-

1For recent reviews see Refs. [235, 236, 237].
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duced for two particles in Ref. [130]. The finite-volume spectrum is determined by the poles

in an appropriate finite-volume correlation function. The method consists of rewriting this

correlation function, diagram by diagram, in terms of infinite-volume contributions and

kinematic functions which depend on the volume. Summing all diagrams then leads to the

desired quantization condition. This approach is straightforward in the two-particle case,

but several complications arise with three particles. In the end, however, we are able to

obtain a simple-looking quantization condition [Eq. (5.18)], which succeeds in separating

finite-volume dependence into kinematical functions.

As in the two-particle quantization conditions, our result is formal in that it involves

a determinant over a infinite-dimensional space. Practical applications require truncation

of this space. It turns out that such a truncation can be justified for three particles by a

simple extension of the arguments used for two particles.

The main drawback of our result is that it depends on a non-standard infinite-volume

three-to-three scattering quantity, a modified three-particle K-matrix. The relation of this

quantity to physical scattering amplitudes is as yet unclear, but it is under active investi-

gation. Nevertheless, given the results of Refs. [138, 139] in the non-relativistic context, we

think it very likely that such a relation exists. In light of this, and given the complicated

and lengthy nature of the derivation of our result, we think it appropriate to present this

derivation in a separate article. The remainder of this article is organized as follows. We

begin, in Sec. 5.1, by presenting our main result. This in itself requires a fairly lengthy

introduction and explanation of notation. We next, in Sec. 5.2, describe briefly how the

result might be used in practice. The core of the paper is Sec. 5.3, in which we derive our

main result. We conclude and discuss the future outlook in Sec. 5.4.

We include three appendices for technical details. Appendix D, derives the key sum-

integral difference identity used throughout the derivation Appendix E describes the prop-

erties of the modified principal-value pole prescription that we use. Finally, Appendix F

discusses in detail an example of using our quantization condition in the isotropic approxi-

mation.

A sketch of the result has been given previously in Ref. [168], although some of the

technical remarks in that work are incorrect and have been corrected here.
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5.1 Quantization Condition

In this section we present the three-particle quantization condition. To explain the

result requires some preliminary discussion, particularly about the three-particle scattering

amplitude. It also requires the introduction of some rather involved notation. We have

attempted to make this section self-contained so that the reader can skip the subsequent

lengthy derivation if desired.

Lattice calculations can determine the spectrum of QCD in finite spatial volumes. We

assume here a cubic spatial volume of extent L with fields satisfying periodic boundary

conditions. We take L large enough to allow neglect of exponentially suppressed corrections

of the form e−mL, where m is the particle mass. We assume that discretization errors are

small and can be ignored, and so work throughout with continuum field theory (zero lattice

spacing).

We work in general in a “moving frame”. That is, we consider states with non-zero

total three-momentum ~P . This three momentum is constrained by the boundary conditions

to satisfy ~P = 2π~nP /L, with ~nP a vector of integers. The total moving-frame energy is

denoted E, while E∗ is the energy in the center of mass (CM) frame: E∗2 = E2− ~P 2. (The

superscript ∗ is used throughout this work to indicate a quantity boosted to an appropriate

CM frame.) The goal of this section is, at fixed fixed {L, ~P}, to determine the spectrum of

the finite-volume system in terms of infinite-volume scattering amplitudes.

We choose a simple theory for this study: a single real scalar field φ describing particles

of physical mass m. Thus all results in this work hold for identical particles. For simplicity,

we assume the Lagrangian has a Z2 symmetry that prevents vertices having an odd number

of particles. (For pions in QCD this is G-parity.) We otherwise include all vertices, with

any even number of fields, and make no assumptions about relative coupling strengths.

Given the Z2 symmetry, the Hilbert space splits into even- and odd-particle states. We

are interested here in the latter, which are those created from the vacuum by the field φ

(or by φ3, φ5, etc.). The spectrum in this sector consists of an isolated single-particle state

with E∗ = m, followed by a tower of states that lie close (for large L) to the energies of

three free particles in the finite volume. Such states begin at E∗ ≈ 3m, and it is these
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that we focus on. Their energies typically are shifted from those of three free particles

by a difference ∆E which scales as an inverse power of L. Once E∗ reaches 5m, one also

has states which lie close to the energies of five free finite-volume particles. Our derivation

breaks down at this point. Thus we focus on the range m < E∗ < 5m, within which it turns

out that the only infinite-volume observables that enter are quantities related to two-to-two

and three-to-three scattering.2

An additional technical requirement is that the two-particle K-matrix remain finite in

the kinematical range of interest. This range runs from 0 < E∗2 < 4m, where E∗2 is the

two-particle CM energy. Thus this region extends well below the threshold at E∗2 = 2m,

requiring appropriate analytic continuation of the K-matrix. This requirement means that

|δ| < π/2 for all angular momenta below the four-particle threshold—the interactions can

be neither attractive enough to produce a resonance nor overly repulsive.

We next establish our notation for three-particle kinematics, considering first the case

where all particles are on shell. If the momenta of two of these particles are ~k and ~a,

then that of the third is fixed to be ~bka ≡ ~P − ~k − ~a by momentum conservation. The

corresponding energies are denoted

ωk =

√
~k2 +m2 , ωa =

√
~a2 +m2 , and ωka =

√
(~P − ~k − ~a)2 +m2 , respectively. (5.1)

The momenta ~k and ~a cannot be chosen freely: on-shell and total energy constraints require

E = ωk + ωa + ωka . (5.2)

It is convenient to separate the three particles into a “spectator”, which we take to be

that with momentum ~k, and the remaining two-particle pair, with four-momentum P2 =

(E − ωk, ~P − ~k). The energy of this pair in its CM-frame (which we stress is different, in

general, from the CM-frame of all three particles) is labeled E∗2,k, where

E∗22,k = (P2)2 = (E − ωk)2 − (~P − ~k)2 . (5.3)

2Were we to remove the Z2 symmetry, we would also need to include two-to-three amplitudes, as has

been done in Ref. [138].
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For Eq. (5.2) to hold, we must have that E∗2,k ≥ 2m. For fixed total energy-momentum,

this condition holds only for a finite regions of ~k.

We now boost to the two-particle CM frame, which requires a boost velocity of

~βk ≡ −
~P − ~k
E − ωk

. (5.4)

We denote by (ω∗a,~a
∗) and (ω∗ka,

~b∗ka) the four vectors reached by boosting (ωa,~a) and

(ωka,~bka), respectively. If Eq. (5.2) holds, then we have

ω∗a = ω∗ka =
E∗2,k

2
and ~a∗ = −~b∗ka , (5.5)

while the magnitudes of the momenta in the two-particle CM frame satisfy

a∗ = b∗ka = q∗k ≡
√
E∗22,k/4−m2 . (5.6)

Thus, once (E, ~P ) and ~k are fixed, the remaining degrees of freedom for three on-shell

particles can be labeled by a single unit vector, â∗. This is simply the direction of motion

for one of the two non-spectator particles in their two-particle CM frame. We will often

parametrize the dependence on this direction in terms of spherical harmonics.

We can also interchange the roles of ~k and ~a, treating the latter as the spectator. In this

case the CM energy of the non-spectator pair is E∗2,a where

E∗22,a ≡ (E − ωa)2 − (~P − ~a)2 , (5.7)

while the required boost has velocity

~βa = −
~P − ~a
E − ωa

. (5.8)

This boost leads to (ωk,~k)→ (ω∗k,
~k∗), and the on-shell condition implies

k∗ = q∗a ≡
√
E∗22,a/4−m2 , (5.9)

so that the three on-shell particles [with fixed (E, ~P )] are parametrized by ~a, k̂∗. This

discussion exemplifies the notation that we will use repeatedly below, wherein the subscripts

denote which momentum is that of the spectator, and it is clear from the context in which

two-particle CM frame starred quantities are defined.
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Also relevant are situations in which two of the particles, say those with momenta ~k and

~a, are on shell, while the third is not. The energy-momentum of the third particle is then

(E − ωk − ωa,~bka). As long as E∗22,k > 0, we can still boost to the two-particle CM-frame

(with boost velocity ~βk), leading to

(ωa,~a) −→ (ω∗a,~a
∗) , and (E − ωk − ωa,~bka) −→ (E∗2,k − ω∗a,−~a∗) . (5.10)

In this case, however, a∗ 6= q∗k, so the degrees of freedom are now parametrized by ~k and

the vector ~a∗. As in the on-shell case, also here we can exchange the roles of ~k and ~a. As

long as E∗22,a > 0, we can boost (ωk,~k) by ~βa to define (ω∗k,
~k∗), with k∗ now unconstrained.

We use these coordinates to express the momentum dependence of the on-shell quan-

tities appearing in the final result. We start with two-to-two scattering, which occurs as

a subprocess within the larger three-to-three interactions. We denote the two-to-two scat-

tering amplitude by M2 and the corresponding K-matrix3 by K2. Assuming the particle

with momentum ~k is the unscattered spectator, an appropriate functional dependence is

M2(~k, â′∗, â∗) and K2(~k, â′∗, â∗). In each, the role of the first argument is kinematic. Know-

ing the spectator momentum, as well as the total energy-momentum, one can determine

the lab-frame total momentum of the scattering pair [(E − ωk, ~P − ~k)] as well as the boost

velocity ~βk needed to move to the scattering CM-frame. In the latter frame, â∗ and â′∗ are,

respectively, the initial and final directions of one of the scattered particles. Decomposing

the dependence on these directions into spherical harmonics, we write4

K2(~k, â′∗, â∗) = 4πY ∗`′,m′(â
′∗)K2;`′,m′;`,m(~k)Y`,m(â∗) , (5.11)

and similarly for M2. Here and in the following there is an implicit sum over repeated in-

dices. The factor of 4π is conventional [130]. Rotational invariance implies thatK2;`′,m′;`,m(~k) ∝
δ`′,`δm′,m, and that for each ` there is only one independent physical quantity, the scattering

phase-shift in the given partial wave.

3Our K-matrix K2 is standard above threshold, while below threshold it is defined by analytic continu-

ation. This is discussed further below [see Eqs. (5.32), (5.101) and (5.102)].

4This is the only exception to our notation involving superscript ∗. The ∗ on Y ∗`m indicates complex

conjugation.
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Now we turn to three-to-three scattering. Although our final quantization condition

contains a three-particle K-matrix, we first discuss the standard three-to-three scattering

amplitude, M3. This allows us to describe a new issue that arises with three particles in a

more familiar context. As usual,M3 is the sum of all connected six-point diagrams with ex-

ternal legs amputated and on shell. We write its functional dependence asM3(~k′, â′∗,~k, â∗),

where now the “spectator” momentum changes from the initial (~k) to the final (~k′) state.

The two direction vectors â∗ and â′∗ are defined in the corresponding two-particle CM

frames, which are different for the initial and final states. We stress that M3 is symmetric

under particle interchange separately in the initial and final states, so that the choice of

spectator is arbitrary. We use asymmetric coordinates because of the presence of two-to-two

scatterings.

We would like to decompose M3 into spherical harmonics, as in Eq. (5.11). Although

we can do this formally, we do not expect the sum over angular momenta to converge

uniformly. This is because of a complication not present in the two-to-two case: the three-

to-three scattering amplitude has physical singularities above threshold.5 These singularities

have nothing to do with bound states, but are instead due to the possibility of two particles

scattering and then traveling arbitrarily far before one of them scatters off the third particle

(see Fig. 5.1). The three-particle interaction can thus become arbitrarily non-local. This

means that, even at low energies, a truncation of the angular momentum sum is not justified,

since a truncated expansion will give a function that is everywhere finite. Because truncation

is crucial for practical applications of the quantization condition, we must find a way around

this problem.

Our solution is to introduce an intermediate quantity that has the same singularities as

the three-to-three scattering amplitude but depends only on the on-shell two-to-two ampli-

tudeM2. This is possible because divergences in the three-to-three scattering amplitude are

always due to diagrams with only pairwise scatterings, with all intermediate states on shell.6

5The properties and physical consequences of these singularities are discussed, for example, in Refs. [240,

241, 242, 243].

6Indeed, a diagram with n two-to-two scatterings is divergent if and only if it is kinematically possible

to have n classical pairwise scatterings (not counting events with zero momentum transfer). For degenerate
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Figure 5.1: Example of singular contribution to the on-shell three-to-three scattering am-

plitude. Dashed lines are on-shell, amputated, external propagators, while the solid line is

a fully dressed propagator, which can in general be off-shell. Filled circles represent two-

to-two scattering amplitudes. The internal (solid) line can become on shell for physical

external momenta, corresponding to two isolated two-to-two scattering events.

Labeling this intermediate quantity Msing,3, we define the “divergence-free” amplitude by

Mdf,3(~k′, â′∗,~k, â∗) ≡M3(~k′, â′∗,~k, â∗)−Msing,3(~k′, â′∗,~k, â∗) . (5.12)

This is shown diagrammatically in Fig. 5.2. By construction, Mdf,3 is a smooth function,

and therefore has a uniformly convergent partial-wave expansion:

Mdf,3(~k′, â′∗,~k, â∗) = 4πY ∗`′,m′(â
′∗)Mdf,3;`′,m′;`,m(~k′,~k)Y`,m(â∗) . (5.13)

The singular part, Msing,3, must be included without partial-wave decomposition. A dia-

grammatic definition of Msing,3 in sketched in Fig. 5.2; it can be defined formally as the

solution to an integral equation. Since we do not need this quantity in this work we do not

go into the details here.

As already noted above, our quantization condition depends not on Mdf,3 but rather

on a closely related K-matrix-like quantity Kdf,3. Roughly speaking, this is built up of the

same Feynman diagrams as Mdf,3, and has the above-threshold divergence removed in a

similar way. However, to define Kdf,3 a modified principal-value (PV) pole prescription is

used instead of the iε prescription, and there are some additional subtleties. Thus we delay

particles only three scatterings are possible so there are two divergent diagrams. For non-degenerate particles

further scatterings are possible. This is explained in Ref. [240]. As we will find, our derivation requires that

we subtract all the diagrams that are needed to render the non-degenerateMdf,3 finite, even though all but

two of these are finite for the degenerate case we study.
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Figure 5.2: Diagrammatic definition of the divergence-free three-to-three amplitude,Mdf,3.

In the subtracted term, filled circles represent on-shell two-to-two scattering amplitudesM2.

Dashed cuts stand for simple kinematic factors that appear between adjacent M2. These

factors have the requisite poles so that the subtracted terms cancel the singularities inM3.

The S outside the square brackets indicates that the subtracted terms are symmetrized.

a full definition until we present the derivation of the quantization condition. What matters

here is that Kdf,3 is a non-singular, infinite-volume quantity, closely related to the scattering

amplitude. It is also separately symmetric under initial and final particle interchange. Its

functional dependence and harmonic decomposition is as for Mdf,3:

Kdf,3(~k′, â′∗,~k, â∗) = 4πY ∗`′,m′(â
′∗)Kdf,3;`′,m′;`,m(~k′,~k)Y`,m(â∗) . (5.14)

We stress that Kdf,3;`′,m′;`,m(~k′,~k) is not diagonal in ` or m, since two-particle angular mo-

mentum is not a good quantum number in three-to-three scattering. It is also noteworthy

that our derivation of the quantization condition automatically leads to removal of the

divergent part from Kdf,3. Thus not only is the subtraction reasonable from the perspec-

tive of defining useful infinite-volume observables (i.e. allowing a convergent partial-wave

expansion) it also arises naturally in our investigation of the finite-volume theory.

We are now in a position to present the quantization condition: a relation between

K2, Kdf,3 and the finite-volume spectrum. This relation involves three-particle phase space

restricted by the constraint of finite-volume. In particular, we need K2;`′,m′;`,m(~k) and

Kdf,3;`′,m′;`,m(~k′, k) only for ~k,~k′ ∈ (2π/L)Z3. We therefore define the finite-volume restric-
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tions of these amplitudes

K2;k′,`′,m′;k,`,m ≡ δk′,kK2;`′,m′;`,m(~k) for ~k ∈ (2π/L)Z3 , (5.15)

Kdf,3;k′,`′,m′;k,`,m ≡ Kdf,3;`′,m′;`,m(~k′,~k) for ~k′,~k ∈ (2π/L)Z3 . (5.16)

The left-hand sides of these equations are to be viewed as matrices in an extended space

with indices7

[finite volume momentum ~k ∈ (2π/L)Z3]× [two particle angular momentum] . (5.17)

All other quantities entering our final result will also be matrices acting on this space.

The finite-volume spectrum is determined by

det
[
1 + F3Kdf,3

]
= 0 , (5.18)

where the determinant is over the direct product space just introduced. The matrix F3 is

F3 ≡
F

2ωL3

[
−2

3
+

1

1 + [1 +K2G]−1K2F

]
, (5.19)

where

[
1

2ωL3

]

k′,`′,m′;k,`,m
≡ δk′,kδ`′,`δm′,m

1

2ωkL3
, (5.20)

Gp,`′,m′;k,`,m ≡
(
k∗

q∗p

)`′ 4πY`′,m′(k̂
∗)H(~p )H(~k )Y ∗`,m(p̂∗)

2ωkp(E − ωk − ωp − ωkp)

(
p∗

q∗k

)` 1

2ωkL3
, (5.21)

Fk′,`′,m′;k,`,m ≡ δk′,kF`′,m′;`,m(~k) , (5.22)

F`′,m′;`,m(~k) = F iε`′,m′;`,m(~k) + ρ`′,m′;`,m(~k) , (5.23)

F iε`′,m′;`,m(~k) =
1

2

[
1

L3

∑

~a

−
∫

~a

]
4πY`′,m′(â

∗)Y ∗`,m(â∗)H(~k)H(~a )H(~bka)

2ωa2ωka(E − ωk − ωa − ωka + iε)

(
a∗

q∗k

)`+`′
,

(5.24)

7Our notation for the momentum indices, k and k′, is somewhat imprecise. These each are stand-ins

for three-dimensional integer vectors labeling the allowed finite-volume momenta. In other words, when-

ever a spectator momentum occurs as an index, it indicates implicitly that the corresponding three-vector

momentum is one of those allowed in finite volume.
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where
∫
~a ≡

∫
d3a/(2π)3 and the sum over ~a in F runs over all finite-volume momenta. Here

ρ is a phase-space factor defined by

ρ`′,m′;`,m(~k) ≡ δ`′,`δm′,mH(~k)ρ̃(P2) , (5.25)

ρ̃(P2) ≡ 1

16π
√
P 2

2

×




−i
√
P 2

2 /4−m2 (2m)2 < E∗22,k ,

|
√
P 2

2 /4−m2| 0 < E∗22,k ≤ (2m)2 ,

(5.26)

where we recall that P2 is the four-momentum of the non-spectator pair. Finally, H is a

smooth cut-off function to be defined shortly.

The quantization condition Eq. (5.18) is our main result, and will be derived in Sec. 5.3.

Here we work our way through the definitions, explaining the origin and meaning of each

contribution. As noted above, Kdf,3 is closely related to the divergence-free part of the full

three-to-three scattering amplitude. The singular parts of this amplitude end up in the

quantity F3, where they lead to chains of the form . . .K2GK2GK2 . . . which are obtained

by expanding out [1 + K2G]−1K2. These chains arise from subtraction terms like those in

Fig. 5.2, with the filled circles now representing on-shell K-matrices K2 (rather than M2).

The singular “cuts” between K-matrices give rise to the kinematical factors G.

In the definition of G, Eq. (5.21), we are using the notation described in Eqs. (5.1)-(5.10),

with ~p in place of ~a. Observe in particular that G makes use of the off-shell phase-space

described in the paragraph containing Eq. (5.10). Since both ~k and ~p can equal any finite-

volume three momentum, (E − ωk − ωp,~bpk) will generally not be on shell. For this reason

the magnitude of ~k∗ (defined via a boost with velocity ~βp) and that of ~p∗ (boost velocity ~βk)

are unconstrained. These magnitudes appear in the factors (k∗/q∗p)
`′ and (p∗/q∗k)

`, which

remove singularities due to the spherical harmonics and so ensure that G is non-singular for

~k∗ or ~p∗ equal to zero. (A similar factor (a∗/q∗k)
`+`′ appears in F for the same reason.)

The final ingredient in G is the function H (which appears also in F ). The role of H

is to provide a smooth ultraviolet cut-off on the sum over spectator momentum. There are

two cut-off functions, H(~p) and H(~k), because G has different spectator momenta in its left-

and right-handed indices (~p and ~k, respectively). To understand the need for the cut-off we

note that, for fixed (E, ~P ), as the spectator momentum (say ~k) increases in magnitude, the

energy-momentum of the other two particles falls below threshold, E∗2,k < 2m. Now, in the
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quantization condition (5.18), the determinant runs over all values of spectator momentum,

which leads to values of E∗22,k arbitrarily far below threshold. Once E∗22,k ≤ 0, however, the

boost needed to define p∗ becomes unphysical (|βk| ≥ 1). The cut-off function H(~k) resolves

this issue. It has the properties

H(~k) =





0 , E∗22,k ≤ 0 ;

1 , (2m)2 < E∗22,k .

(5.27)

where the first condition removes unphysical boosts and the second ensures that the cut-off

does not change the contributions from on-shell intermediate states. In the intermediate

region, 0 < E∗22,k < (2m)2, H(~k) interpolates between 0 and 1. For reasons that will become

clear in the derivation below, this interpolation must be smooth. An example of a function

which does the job is

H(~k) ≡ J(E∗22,k/[4m
2]) , (5.28)

with

J(x) ≡





0 , x ≤ 0 ;

exp
(
− 1
x exp

[
− 1

1−x

])
, 0 < x ≤ 1 ;

1 , 1 < x .

(5.29)

This function is plotted in Fig. 5.3.

It would also be consistent with the requirements stated so far to have H remain smooth

but transition more rapidly from 0 to 1. In that case, however, the difference between a

sum and an integral over H will be enhanced
[

1

L3

∑

~k

−
∫

~k

]
H(~k) = O(e−∆L) , (5.30)

with ∆ the width of the drop-off region. Since these corrections are neglected, an en-

hancement from using too small a width would invalidate our final result. We must thus

additionally require [
1

L3

∑

~k

−
∫

~k

]
H(~k) = O(e−mL) . (5.31)

In other words we must ensure that m is the smallest energy scale in the problem, and thus

take ∆ ≈ m. The form sketched in Fig. 5.3 satisfies this requirement.
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Figure 5.3: Plot of the smooth cutoff function H(~k) ≡ J(E∗22,k/[4m
2]). The function varies

from 0 to 1 as E∗22,k ≡ (E − ωk)2 − (~P − ~k)2 varies from 0 to 4m2. Using this range ensures

that the function has width ∆ ≈ m in the space of spectator momentum ~k.
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The appearance of sub-threshold momenta is a general feature of the three-particle

quantization condition, as first pointed out in Ref. [138]. Indeed, for spectator momenta such

that 0 < E∗22,k < (2m)2, the two-particle K-matrices in F3 are evaluated below threshold.

Our modified PV prescription [denoted P̃V and defined in Eqs. (5.59) and (5.66) below]

ensures that this is achieved by analytic continuation.8 The cut-off functions in G (and in

F ) ensure that these sub-threshold contributions are absent for E2,k ≤ 0. The three-particle

amplitude Kdf,3 must also be evaluated for sub-threshold momenta, which is achieved by

analytic continuation.

The final matrix that enters the quantization condition is F . This is the kinematic

factor that brings in finite-volume effects. Its definition uses the notation introduced in

Eqs. (5.1)-(5.10). As shown in Eq. (5.22), it is diagonal in spectator momentum, and is

thus a essentially a two-particle quantity. Indeed, the matrix F iε(~k) defined in Eq. (5.24) is

essentially the same as the kinematic quantity of the same name introduced in Ref. [130] in

the formulation of the two-particle quantization condition in a moving frame. The precise

relation, given in Eq. (D.10) in Appendix D, allows F iε to be written in terms of general-

izations of the zeta-functions introduced in Refs. [127, 128]. The only difference between

our F iε and that of Ref. [130] is that we use a different ultraviolet cut-off—our cut-off is

provided by the product of three H functions. This change in cut-off leads, however, to

differences which are exponentially suppressed as L→∞.

The kinematic factor which enters the quantization condition is F rather than F iε. The

difference between these two quantities, given by Eq. (5.23), is the phase space factor ρ, a

quantity that appears repeatedly in the derivation of Sec. 5.3 and which is diagonal in an-

gular momentum. For example, the relation between the two-particle scattering amplitude

and K-matrix is [see Eq. (5.102)]

M−1
2 = K−1

2 + ρ , (5.32)

8This is in distinction to the standard PV prescription, which leads to a cusp in K2 at threshold. Our

definition is the same as that used in studies of bound-state energies using Lüscher’s two-particle quantization

condition (see, e.g., Refs. [244, 143]). In particular, the quantity (a∗)2`+1 cot δ`(a
∗) has a Taylor expansion

in (a∗)2 that can be analytically continued to (a∗)2 < 0.
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The ρ term in F arises because of our use of a modified PV pole prescription. As can be

seen from Eq. (5.24), F iε is the difference between a sum and integral of three-particle cut,

with the integral defined using the iε prescription. The ρ term in Eq. (5.23) is exactly what

is needed so that F itself is the sum-integral difference with the integral defined by the

P̃V prescription. The latter is the quantity that appears naturally in our derivation. This

means that F is real. In addition, as we move below threshold [E∗22,k < (2m)2], while F iε

drops to zero rapidly, since the summand/integrand is no longer singular, ρ (and thus F )

grows since |q∗k| is increasing. Eventually, however, as E∗22,k approaches zero, this growth is

overcome by the decrease in the cut-off function H, such that ρ vanishes for E∗22,k ≤ 0.

The quantization condition (5.18) is similar in form to that for two particles [see Eq. (5.100)

below, as well as Refs. [129, 130, 140, 146]]. In principle, they are both to be used in the

same way: if one knows the scattering amplitudes K2 and Kdf,3 then, for a given choice of

{L, n~P }, the quantization conditions predict the finite-volume energy levels. Of course, what

we are really interested in is inverting this prediction, i.e. using numerically determined en-

ergy levels to extract information about infinite-volume scattering amplitudes. This more

challenging task is discussed in the following section.

5.2 Truncating the quantization condition

In this section we discuss how one might use the three-particle quantization condition,

Eq. (5.18), in practice. Specifically, we assume that, using lattice simulations, one has

determined some number of three-particle energy levels for a set of choices of {L, ~P}. From

this information, we want to learn as much as possible about Kdf,3.

The first step is to assume that, using Lüscher’s two-particle quantization condition and

its generalizations, the two-particle K-matrix K2;`′,m′;`,m(~k) has been determined. To do so

in practice one must assume that K2 is negligible for large enough angular momenta, which

is a good approximation for a given two-particle energy. Specifically, we assume K2 = 0 for

` > `max,2. In this case the two-particle quantization condition is truncated to a solvable

finite matrix condition. In addition, since lattice results inevitably determine the K2 (or,

equivalently, the phase shifts) only for a discrete set of kinematical points, we assume that
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these have been suitably interpolated and/or extrapolated to obtain continuous functions.

In the three-particle case, we are dealing with a larger index space, containing the

additional sum over finite-volume spectator momenta. However, the regulator function H

provides an automatic truncation of this sum. This occurs because, for fixed (E, ~P ), there

are a finite number of values of ~k for which H(~k) is non-vanishing. We call this number

of values N . This automatically truncates G and F (which contain H(~k)) to be N × N
matrices in spectator-momentum space, with all other entries vanishing. Since K2 always

sits between factors of F and G [as can be seen by expanding out the nested geometric

series in Eq. (5.19)], K2 is also effectively truncated (in the sense that the terms in K2 lying

outside the N ×N block do not contribute). Since F3 always has an F at both ends (again

after expanding out), it also is truncated. Finally, expanding out the determinant (e.g.

using detZ = exp Tr lnZ) one sees that Kdf,3 always has an F3 on both sides and so it also

is effectively truncated.9

Next we consider the spherical harmonic indices. As already noted, we assume K2

is truncated in these indices at `max,2. To reduce the determinant condition to a finite-

dimensional space, we must further assume that Kdf,3 is truncated, in both ` and `′, at

`max,3. This is reasonable because Kdf,3 is a smooth function, as is made clear in the coarse

of defining it, in Sec. 5.3 below. Defining `max as the larger of `max,2 and `max,3, we find

that all factors of F and G appearing in the quantization-condition are projected onto a

(2`max + 1)× (2`max + 1) subspace of the angular-momentum space. This follows from the

argument already given above: expanding in F and G, one finds that every factor of these

two kinematic matrices sits between (and is thus truncated by) factors of either K2 or Kdf,3.

The net result is that the quantization condition collapses to that for truncated matrices

of size (2`max + 1)N × (2`max + 1)N . In this way the formal result has been turned into

something more practical.10

9The fact that the sum over ~k is truncated makes sense in the limit of weak interactions. If all interactions

vanish, then, for given ~P , there will only be a finite number of free three-particle states with energies below,

or in the vicinity of, any given choice for E. It is primarily these states which are mixed by interactions to

form the finite-volume eigenstates with Ei < E.

10We suspect that it is inconsistent to choose `max,3 < `max,2, because three-particle scattering involves
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The final step is to assume a parametrization of the ~k′ and ~k dependence of the non-zero

angular-momentum components of Kdf,3. We stress again that Kdf,3 is not diagonal in its

angular-momentum indices (unlike K2) so that there will be quite a number of components

to parametrize. Nevertheless, given a finite number of parameters, and knowledge of K2

(including analytic continuation below threshold), each of the measured energy levels gives,

when inserted into the quantization condition, a relation between the parameters. Nonethe-

less, given knowledge of K2 (including analytic continuation below threshold), each of the

measured three-particle energy levels gives a relation between the parameters characteriz-

ing Kdf,3. Thus, given enough energy levels one can solve for any finite set of parameters.

Although this sounds complicated, we note that the recent kaon resonance study of Ref. [92]

was able to deal with multiple (two-particle) channels using a suitable parametrization and

many energy levels.

We close this section by working out the simplest possible case of the above-described

program. We assume that bothK2 andKdf,3 are s-wave dominated (i.e. `max,2 = `max,3 = 0),

and that Kdf,3 is a function only of the total three-particle CM energy. These assumptions

are summarized by

K2(~k, â′∗, â∗) = Ks2(E∗2,k) and Kdf,3(~k′, â′∗,~k, â∗) = Kiso
df,3(E∗) . (5.33)

All matrices entering the quantization condition thus collapse toN×N matrices in spectator-

momentum space, and have the explicit forms

Ks2;k′,k ≡ δk′,k Ks2(E∗2,k) , (5.34)

Ksdf,3;k′,k ≡ Kiso
df,3(E∗) , (5.35)

Gsp,k ≡
H(~p )H(~k)

2ωkp(E − ωk − ωp − ωkp)
1

2ωkL3
, (5.36)

F sk′,k ≡ δk′,k
1

2

[
1

L3

∑

~a

−
∫

~a

]
H(~k )H(~a )H(~bka)

2ωa2ωka(E − ωk − ωa − ωka + iε)
+ δk′,kH(~k)ρ̃(P2) .

(5.37)

two-to-two subprocesses. Indeed the latter are the leading cause of complications in the derivation presented

below. The most natural choice appears to us to be `max,3 = `max,2, although we do not know how to

demonstrate that this is a rigorous requirement.
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Since E∗ is fixed, all N2 entries of the matrix Ksdf,3;k′,k have the same value. It therefore

has only one non-zero eigenvalue, NKiso
df,3(E∗). If we work in the basis in which Ksdf,3 is

diagonal, then, irrespective of the form of F3, the quantization condition (5.18) reduces to

the single equation:

1 + F iso
3 Kiso

df,3(E∗) = 0 . (5.38)

Here

F iso
3 ≡

∑

~k,~p

1

2ωkL3

[
F s
(
−2

3
+

1

1 + [1 +Ks2Gs]−1Ks2F s
)]

k,p

(5.39)

is (up to a factor of 1/N) the projection of F s3 into the subspace spanned by the eigenvector

of Ksdf,3 with non-zero eigenvalue. We stress that the sums over ~k and ~p are both truncated

to N contributions by the factors of H contained in F s.11

The result (5.38) is strikingly simple. If we know Ks2 for two-particle CM energies in

the range 0 < E∗2,k < E∗ −m, then we can evaluate F3,s, a real function depending only

on E and L. Evaluating this function at a value of Li for which Ei is known to be in the

finite-volume spectrum, then gives, using Eq. (5.38), Kiso
df,3(E∗i ) = −1/F iso

3 (Ei, Li). This

is conceptually very similar to the application of the two-particle quantization condition,

which, in the single-channel limit, can be written as 1 + FK2 = 0 [see Eq. (5.100) in the

following section]. The difference is that the quantity F3 contains information about two-

particle scattering, while F is simply a kinematic function. This difference reflects the fact

that, in the three-particle case, particles can interact pairwise as well as all together.

One concern one might have about the isotropic approximation and the result (5.38) is

that one apparently only obtains a single energy level whereas N free three-particle levels

enter the analysis. It thus seems that some finite-volume states have been lost. In fact, all

but one of the free states are present once one takes into account that the equality of all N2

11The truncations that enter through the H functions can also be relaxed in the isotropic limit if desired.

Recall that H(~k) was required to vanish for E∗22,k < 0, see Eq. (5.29). This is necessary because otherwise

the various starred quantities that enter F and G become ill-defined. However, as is clear from Eqs. (5.37)

and (5.36), all of these starred quantities are absent in the isotropic limit. Thus H(~k) may have support

for E∗22,k < 0, as long as Ks2(E∗2,k) is a well-defined smooth function which is known over the energy range

included. This extension of H is required to show that our quantization condition reproduces the threshold

expansion of Refs. [245, 246]. This check is presented in a separate note, to appear.
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elements of the truncated Kdf,3 will not be exact. This is shown in a particular example in

Appendix F.12

5.3 Derivation

In this section we present a derivation of the quantization condition described in the

previous section. Following Ref. [130], we obtain the spectrum from the poles in the finite-

volume Minkowski-space correlator13

CL(E, ~P ) ≡
∫

L
d4xei(Ex

0−~P ·~x)〈0|Tσ(x)σ†(0)|0〉 . (5.40)

Here T indicates time-ordering and σ(x) is an interpolating field coupling to states with an

odd number of particles. The Fourier transform, implemented via an integral over the finite

spatial volume, restricts the states to have total energy E and momentum ~P = 2π~nP /L.

The simplest choice for σ(x) is a one-particle interpolating field, φ(x), since in the inter-

acting theory this will couple to states with any odd number of particles. In a simulation,

however, it is advantageous to use a choice with larger overlap to the three-particle states

of interest. An example is

σ(x) =

∫

L
d4yd4zf(y, z)φ(x)φ(x+ y)φ(x+ z) , (5.41)

with f a smooth function with period L in all directions.

At fixed {L,~nP },14 the spectrum of our theory is the set of CM frame energies E∗j ,

j = 1, 2, · · · for which CL(Ej , ~P ) has a pole, with Ej = (E∗2j + ~P 2)1/2. Our goal is thus to

12A similar issue arises with the two-particle quantization condition when one truncates the angular

momentum expansion. The “lost” states involving higher angular momenta are recovered if one reintroduces

the higher partial wave amplitudes but with infinitessimal strength. The quantization condition then has

solutions corresponding to free two-particle states projected onto states in appropriate irreps of the finite-

volume symmetry group.

13Minkowski time turns out to be convenient for our analysis, even though numerical lattice determinations

of the spectrum work in Euclidean time. The point is that the finite-volume spectrum is the same, however

it is determined.

14It is more natural to think in terms of {L,~nP } rather than {L, ~P}, since ~nP is quantized whereas ~P

varies with L.
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include all contributions to CL which fall at most like a power of 1/L, and determine the

pole structure. In the previous section we summarized the main result of this work, but

made no reference to the correlator in doing so. The connection is given by the following

identity, the demonstration of which is the task of this section:

CL(E, ~P ) = C∞(E, ~P ) + iA′
1

1 + F3Kdf,3
F3A . (5.42)

This result is valid up to terms exponentially suppressed in the volume, terms which we will

discard implicitly throughout this section. The quantities A′ ≡ A′k′,`′,m′ and A ≡ Ak,`,m are,

respectively, row and column vectors in [finite-volume momentum]×[two-particle angular

momentum] space. Since A and A′ do not enter the quantization condition, we have not

given their definitions above. Indeed, we think it most useful to introduce their definitions as

they emerge in our all orders summation. We have also introduced C∞, which is an infinite-

volume correlator whose definition we will also build up over the following subsections.

A key technical issue in the derivation is the need to use a non-standard pole prescription

when definining momentum integrals in infinite-volume Feynman diagrams. This is at the

root of the complications in definining A′, A and C∞. Despite these complications, it

is possible to show that these quantities have the key property of having no poles, but

only branch cuts.15 It follows that, at fixed {L,~nP }, CL diverges at all energies for which

the matrix between A and A′ has a divergent eigenvalue. In addition, as long as Kdf,3 is

nonzero, diverging eigenvalues of F3 leave the finite-volume correlator finite. The spectrum

is therefore given by energies for which [1 + F3Kdf,3] has a vanishing eigenvalue, which is

the quantization condition quoted above.

The demonstration of Eq. (5.42) proceeds by an all-orders analysis of the Feynman

diagrams building up the correlator. As we accommodate any scalar field theory (assuming

only a Z2 symmetry), Feynman diagrams consist of any number of even-legged vertices,

as well as one each of the interpolating fields σ and σ†, connected by propagators. The

15More precisely, we show that all diagrams which contribute to A′, A and C∞ have no poles. In certain

cases, however, poles can arise from the all orders summation. Such poles always appear in A′, A, C∞

and Kdf,3 in such away as to cancel each other, so that CL remains finite. We explain this in detail after

completing the derivation, at the very end of this section.
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finite-volume condition enters here only through the prescription of summing (rather than

integrating) the spatial components of all loop momenta

1

L3

∑

~q=2π~n/L

∫
dq0

2π
over all ~n ∈ Z3 . (5.43)

We now introduce the crucial observation that makes our derivation possible: Power-law

finite-volume effects only enter through on-shell intermediate states. This motivates a reor-

ganization of the sum of diagrams into a skeleton expansion that keeps all on-shell intermedi-

ate states explicit, while grouping off-shell states into Bethe-Salpeter kernels. Heuristically,

the importance of on-shell intermediate states can be understood by noting that on-shell

particles can travel arbitrarily far, and are thus maximally affected by the periodic bound-

ary conditions. By contrast, off-shell states are localized so that the effect of finite-volume

is smaller (and, indeed, exponentially suppressed in general).

The technical justification for this description begins by noting that the difference be-

tween a sum and an integral acting on a smooth (i.e. infinitely differentiable) function f(~q )

falls off faster than any power of 1/L [128].16 As noted above, we treat terms with this

highly suppressed scaling in L as negligible, and thus set

[
1

L3

∑

~q

−
∫

~q

]
f(~q ) = 0 . (5.44)

By contrast, if a function d(~q ) is not continuous but instead diverges for some real ~q, or if

some derivative diverges, then the sum-integral difference receives power-law corrections

[
1

L3

∑

~q

−
∫

~q

]
d(~q ) = O(L−n) , (5.45)

for some positive integer n. We keep all such contributions.

A convenient tool to determine when the summands of Feynman diagrams are singular is

time-ordered perturbation theory (TOPT).17 In this method one first does all k0 integrals,

leaving only the sums over spatial components of loop momenta. (In a continuum application

these would, of course, be replaced by integrals.) Each Feynman diagram then becomes a

16This is what we refer to as exponentially suppressed, although strictly it is not equivalent.

17For a clear discussion of this method see Chapter 13 of Ref. [247].
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sum of terms corresponding to the different time-orderings of the vertices. Within a given

time ordering, each pair of neighboring vertices leads to an energy denominator,

1

Ecut −
∑

y∈cut ωy
. (5.46)

Here Ecut is total energy flowing through the propagators in the “cut”, which is the vertical

line between adjacent vertices. The propagators have momenta ~py and on-shell energies

ωy. For our correlator Ecut can be E, 0 or −E, depending on the time ordering. All other

factors in the summand are non-singular: they arise from momentum dependence in the

vertices or from 1/ω factors.

Given the assumed Z2 symmetry and our choices of σ and σ†, the cuts in the diagrams

contributing to CL can only involve an odd number of particles. Furthermore, given the

restriction m < E∗ < 5m, the only energy denominators which can vanish must involve

three particles in the cut, i.e.

1

E − ωk − ωa − ωka
. (5.47)

Thus it is only when a three-particle state goes on shell that replacing the sum over spatial

momenta with an integral can lead to power-law corrections.

The only subtlety in the application of this result to our analysis is that m (which

appears in ω2
k = ~k2 + m2 and in the condition on E∗) should be the physical and not the

bare mass. Technically this arises because the usual geometric sum of irreducible two-point

correlation functions shifts the pole position in the dressed propagator to the physical mass.

This sum should be done before applying the TOPT analysis.18

We can now describe the skeleton expansion we use for CL, which is displayed in Fig. 5.4.

Since only three-particle intermediate states can go on-shell, we display them explicitly, and

18Doing things in this order makes the application of TOPT more complicated, because the dressed

propagator itself now has multiple-particle poles. This subtlety does not affect our analysis because all we

are taking from TOPT is the conclusion that divergences occur when a time integral extends, undamped,

over an infinite range. Thus it is the long-time dependence of the dressed propagator that matters, and

this has the same form as that that of a free propagator but with the physical mass. We stress that we use

TOPT only to identify diagrams that can lead to power-law corrections. We do not use TOPT to do the

calculation, but rather use the standard relativistic Feynman rules.
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use a notation indicating that their momenta are summed. Intermediate states with five or

more particles cannot go on shell for our range of E∗, and so sums over the momenta of such

intermediate states can be replaced by integrals.19 These contributions can be grouped into

infinite-volume Bethe-Salpeter kernels, which are defined below.

Each diagram in the expansion contains “endcaps” σ̃† and σ̃ on the far left and far

right, respectively. These are each functions of the off-shell momenta of three attached

propagators, subject to the constraint that they total (E, ~P ). Thus they can be written

σ̃ = σ̃(q, p) and σ̃† = σ̃†(q, p). For the example of the σ operator given in Eq. (5.41),

σ̃(q, p) = f̃(q, p)+ f̃(p, P −p−q)+ f̃(P −p−q, q)+ f̃(p, q)+ f̃(P −p−q, p)+ f̃(q, P −p−q) ,
(5.48)

where

f̃(q, p) =

∫

L
d4x d4y eipx+iqyf(x, y) . (5.49)

Note here that we use the mostly-minus metric, px = p0x0 − ~p · ~x. The exact forms of σ̃

and σ̃′ not important to the final answer. We only require that they are analytic in the

complex q0 and p0 planes and fall off fast enough at infinity to justify the contour integrals

we perform below.

Between the endcaps, each diagram contains some number of two-to-two and three-to-

three Bethe-Salpeter kernels. The two-to-two Bethe-Salpeter kernel iB2 was introduced in

Ref. [128]. It is the sum of all four-point diagrams (with external propagators amputated)

that are two-particle irreducible in the s-channel, see Fig. 5.5a. Thus this kernel is the sum

of all diagrams which have no on-shell intermediate states when the total CM energy being

fed into the kernel is below 4m. Because iB2 contains no on-shell intermediate states, the

summands of all contributing terms are smooth functions of summed momenta. It follows

that finite-volume corrections are exponentially suppressed and for our purposes negligible.

We thus work from now on with the infinite-volume version of the kernel.

Similarly, iB3 contains no diagram in which three propagators carry the total energy

19Here we are using the language of TOPT although we are calculating using relativistic propagators

in which multiple time-orderings are contained within a single diagram. If we focus on a particular cut,

however, then there is only one time ordering in which all particles can go on-shell.
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Figure 5.4: Skeleton expansion defining the finite-volume correlator. The rightmost blob in

all diagrams represents a function of momentum σ̃†, whose specific form is determined by

the interpolating fields defining the correlator. The leftmost blob represents an analogous

function, σ̃. Any insertion between these with four legs represents a two-to-two Bethe-

Salpeter kernel iB2. Any insertion with six legs represents an analogous three-to-three kernel

iB3. All lines connecting kernels and σ̃-functions represent fully-dressed propagators. The

dashed rectangles indicate that all loop momenta are summed rather than integrated, due to

the finite-volume condition. The regions bounded by these rectangles also emphasize chains

of loops that have common coordinates which prevent the diagram from factorizing. This

is one of the central complications faced in this work. (For example the top line, with only

three-to-three insertions, does factorize and is therefore a straightforward generalization of

the two particle case.)
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iB3 ≡ +

b)

a)

+ + · · ·

+ + · · ·+iB2 ≡

Figure 5.5: Examples of Feynmann diagrams contributing to (a) iB2, the two-to-two Bethe-

Salpeter kernel and (b) iB3, the analogous three-to-three kernel.

and momentum (E, ~P ). Diagrams with one propagator carrying the total energy and mo-

mentum as well as any odd number greater than three are allowed, see Figure 5.5b. The

technical definition of this quantity is slightly more complicated because of the possibil-

ity of having single-particle intermediate states. To give the definition, we first introduce

three intermediate quantities iB̃3→3, iB̃1→3, iB̃3→1. In each case iB̃n→m is the sum of

all amputated diagrams, with n incoming and m outgoing external lines, which are three-

particle irreducible in the s-channel. Next we introduce a modified, fully-dressed propagator

∆̃(q). This differs from the standard propagator, defined in Eq. (5.51) below, only in that

its self-energy graphs are three-particle irreducible (as opposed to the usual one-particle

irreducible). In terms of these ingredients, our three-to-three kernel is

iB3 ≡ iB̃3→3 + iB̃3→1∆̃iB̃1→3 . (5.50)

In direct analogy to the two-to-two case, iB3 is the sum of all diagrams with no on-shell

intermediate states when the CM energy is between m and 5m. Again we drop exponentially

suppressed corrections and work with the infinite-volume version of the kernel.

We stress that the need for two kinds of kernels follows directly from requiring that both

iB2 and iB3 contain only connected diagrams. For example, one might think that only the

top line of Fig. 5.4 is needed, as long as one chooses an alternative iB3 which accomodates

pairwise scatterings. This is attractive since the top line closely resembles the two-particle

skeleton expansion of Ref. [130], in which the correlator is written as a ladder series of two-
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particle loops. However, in the three-particle sector this approach results in iB3 containing

Dirac delta functions, which is a problem because we rely on smoothness of the kernel in

our derivation. For this reason the three-particle case is fundamentally different. After

much investigation, we found it most convenient to require that iB3 only contain connected

diagrams and thus display all pairwise scatterings explicitly.

Finally, in our skeleton expansion all kernels and interpolating functions are connected

by fully-dressed propagators,

∆(q) ≡
∫
d4x eiq·x〈0|Tφ(x)φ(0)|0〉 . (5.51)

Here φ(x) is a one particle interpolating field defined with on-shell renormalization

lim
q0→ωq

∆(q)[(q2 −m2)/i] = 1 . (5.52)

Since we are working with fully dressed propagators, we do not include self-energy contribu-

tions explicitly in our skeleton expansion. We use infinite-volume fully-dressed propagators

throughout, which is justified because the self-energy graphs do not contain on-shell inter-

mediate states.

In summary, the skeleton expansion of Fig. 5.4 displays explicitly all the intermediate

states that can go on shell and give rise to power-law corrections. All intermediate states

which cannot go on-shell are included in the infinite-volume two-to-two and three-to-three

Bethe-Salpeter kernels.

In the remaining subsections, we work through the different classes of diagrams appearing

in this expansion. First, in Sec. 5.3.1, we sum diagrams containing only iB2 kernels on the

same pair of propagators (second line of Figure 5.4). Then, in Secs. 5.3.2 and 5.3.3, we

sum diagrams with, respectively, one or two changes in the pair that is being scattered

(third and fourth lines of Figure 5.4). At this stage, we can extend the pattern and sum

all diagrams built from iB2 kernels with any number of changes in the scattered pair. This

is done in Sec. 5.3.4. Incorporating three-to-three insertions at this point is relatively easy,

and is done in Sec. 5.3.4, leading to the final result for CL given in Eq. (5.42).

As we proceed we identify the diagrams contributing to K2 and Kdf,3, as well as A,A′

and C∞. The precise definitions of these infinite-volume quantities will thus emerge step

by step.
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a

C
(0)
L ≡ P − k − a

k

Figure 5.6: Finite-volume correlator diagram with no kernel insertions.

+ + + · · ·+

1

C
(1)
L ⌘

k k k

Figure 5.7: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions, with no change in the scattered pair.

5.3.1 Two-to-two insertions: no switches

In this section we sum the diagrams of Figs. 5.6 and 5.7. Each diagram contains only B2

insertions, all of which scatter the same pair of propagators. We separate the diagram with

no B2 insertions, labeled C
(0)
L [Fig. 5.6], from the sum of diagrams with one or more insertion,

denoted C
(1)
L [Fig. 5.7]. We refer to these diagrams as having “no switches”, meaning that

the pair that is scattered does not change. This designation anticipates subsequent sections

in which we sum diagrams with one or more switches in the scattered pair.

An important check on the calculation of this subsection is obtained by noting that

the no-switch diagrams are the complete set appearing in a theory of two different particle

types, with one of the types non-interacting. This is the case provided that the correlator

is constructed with fields that interpolate one free particle and two interacting particles.

Thus the result for C
(0)
L + C

(1)
L must be that for the full finite-volume correlator in the

two-plus-spectator theory. This check is discussed below.

We begin our detailed calculation by determining the finite-volume residue of the no-
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insertion diagram of Fig. 5.6. This diagram represents the expression20

C
(0)
L ≡ 1

6

1

L6

∑

~k,~a

∫
da0

2π

∫
dk0

2π
σ(k, a)∆(k)∆(a)∆(P − k − a)σ†(k, a) , (5.53)

where the 1/6 is the symmetry factor. We stress that the ∆’s are fully dressed propagators,

with the normalization given in Eq. (5.52).

We first evaluate the a0 and k0 integrals using contour integration, wrapping both con-

tours in the lower half of the respective complex planes. Each contour encircles a one-particle

pole [a0 = ωa− iε and k0 = ωk− iε] as well as three-particle (and higher) poles from excited-

state contributions to the propagators. The result of integration may thus be written

C
(0)
L =

1

6

1

L6

∑

~k,~a

[
σ([ωk,~k], [ωa,~a])∆(P − k − a)σ†([ωk,~k], [ωa,~a])

2ωk2ωa
+R(~k,~a)

]
, (5.54)

where R(~k,~a) is the contribution from excited-state poles. Here k and a appearing in

∆(P −k−a) are now understood as on-shell four-vectors, a fact that we have made explicit

in the arguments of σ and σ†. We next note that ∆(P−k−a) can be split into its one-particle

pole plus a remainder:

∆(P− k− a) =
i

2ωka(E − ωk − ωa − ωka)
+ r(~k,~a) . (5.55)

Substituting Eq. (5.55) into Eq. (5.54) gives

C
(0)
L =

1

6

1

L6

∑

~k,~a

[
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])

2ωk2ωa2ωka(E − ωk − ωa − ωka)
+R′(~k,~a)

]
, (5.56)

where R′ is the sum of R and the term containing r. This grouping is convenient because

R′(~k,~a) is a smooth function of ~k and ~a for our range of E, since we have explicitly pulled out

the three-particle singularity. Indeed, we are free to further adjust the separation between

first and second terms, as long as the latter remains smooth. For the following development

we need to include the damping function H(~k) in the singular term. We recall that H(~k),

defined in Eqs. (5.27) and (5.28), is a smooth function which equals unity when the other

20In the remainder of this article we drop tilde’s on the Fourier-transformed interpolating operators,

σ̃(k, a) and σ̃†(k, a), since we no longer use the position-space forms.
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two particles (those with momenta a and P −k−a) are kinematically allowed to be on

shell (for the given values of E and ~k). In particular, if we multiply the singular term by

1 = H(~k) + [1−H(~k)], then the 1−H(~k) term cancels the singularity, leading to a smooth

function that can be added to R′ to obtain a new residue R′′:

C
(0)
L =

1

6

1

L6

∑

~k,~a

[
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωk2ωa2ωka(E − ωk − ωa − ωka)
+R′′(~k,~a)

]
. (5.57)

At this stage we want to rewrite C
(0)
L as an infinite-volume (L-independent) quantity

plus a remainder. Infinite-volume quantities differ only in that loop-momenta are integrated

rather than summed. We can thus pull out the infinite-volume object by replacing each sum

with an integral plus a sum-integral difference. We stress that integrals, unlike sums, require

a pole-prescription. We are free to use any prescription we like, and it turns out to be most

convenient to make a non-standard choice which we call the “modified principle-value” or

P̃V prescription. This is defined in the present context as follows21

1

2
P̃V

∫

~a

iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωa2ωka(E − ωk − ωa − ωka)

≡ 1

2

∫

~a

iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωa2ωka(E − ωk − ωa − ωka + iε)
− σ∗`′,m′(~k)iρ`′,m′;`,m(~k)σ†∗`,m(~k) . (5.59)

where

ρ`′,m′;`,m(~k) ≡ δ`′,`δm′,mH(~k)ρ̃(P2) (5.60)

ρ̃(P2) ≡ 1

16π
√
P 2

2

×




−i
√
P 2

2 /4−m2 (2m)2 < P 2
2 ,

|
√
P 2

2 /4−m2| P 2
2 ≤ (2m)2

(5.61)

was introduced in Eq. (5.25) above. Here P2 = (E−ωk, ~P−~k) is the four-momentum flowing

through the upper two particles. Recall also that E∗22,k = P 2
2 , and q∗k =

√
P 2

2 /4−m2.

21In the definition of P̃V we are using σ and σ† which are continuous functions of ~a and ~k. Since these

were originally defined only for discrete finite-volume momenta, this requires a continuation of the original

functions. We require only that the continuation is smooth and slowly varying. More precisely we demand
[

1

L3

∑

~a

−
∫

~a

]
σ([ωk,~k], [ωa,~a]) = O(e−mL) . (5.58)
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To complete the definition we need to explain the meanings of the on-shell quantities

σ∗`′,m′(
~k) and σ†∗`,m(~k). Similar quantities will appear many times below so we give here a

detailed description. First recall that (ω∗a,~a
∗) is the four-vector obtained by boosting (ωa,~a)

with velocity ~βk = −(~P − ~k)/(E − ωk). This boost is only physical if E∗2,k > 0, a constraint

which is guaranteed to be satisfied by the presence of H(~k) in Eq. (5.59). We now change

variables from ~a to ~a∗ and define

σ∗(~k,~a∗) ≡ σ([ωk,~k], [ωa,~a]) , (5.62)

and similarly for σ†. The left-hand side exemplifies our general notation that, if the mo-

mentum argument is a three-vector, e.g. ~k, then the momentum is on-shell, e.g. k0 = ωk. If

the argument is a four-momentum, e.g. k, then it is, in general, off shell. Here we include a

superscript ∗ on σ to indicate that it is strictly a different function from that appearing in

say Eq. (5.57), since it depends on different coordinates (in particular on momenta defined

in different frames). Next we decompose σ∗ and σ†∗ into spherical harmonics in the CM

frame

σ∗(~k,~a∗) ≡
√

4πY`,m(â∗)σ∗`,m(~k, a∗) (5.63)

σ†∗(~k,~a∗) ≡
√

4πY ∗`,m(â∗)σ†∗`,m(~k, a∗) , (5.64)

where there is an implicit sum over ` and m. Our convention, used throughout, is that the

quantities to the left of the three particle “cut” are decomposed using Y`,m’s while those to

the right use the complex conjugate harmonics. Finally, with the “starred” quantities in

hand we can define on-shell restrictions. As explained in the introduction, P−k−a is only

on shell if a∗ = q∗k, so we define

σ∗`,m(~k) ≡ σ∗`,m(~k, q∗k) , σ†∗`,m(~k) ≡ σ†∗`,m(~k, q∗k) . (5.65)

These are the quantities appearing in the “ρ” term in Eq. (5.59). If E∗2,k < 2m, then the

~a,~bka pair are below threshold, and σ∗`,m and σ†∗`,m must be obtained by analytic continuation

from above threshold.

The reason for using this rather elaborate pole prescription is that we want the integral

over ~a to produce a smooth function of ~k. This allows the sum over ~k to be replaced by
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an integral. If we were to instead use the iε prescription, then the resulting function of ~k

would have a unitary cusp at E∗2,k = 2m. This observation leads us to consider a principal-

value pole prescription instead. Recall that ρ is defined so that, for E∗2,k > 2m, Eq. (5.59)

simply gives the standard principal-value prescription. It turns out that this choice does

give a smooth function of ~k, provided that one uses analytic continuation to extend from

E∗2,k > 2m to E∗2,k < 2m. This is accomplished by our subthreshold definition of ρ, which

is then smoothly turned off by the function H(~k). A derivation of the smoothness property

is given in Appendix E. We stress that the P̃V prescription is always defined relative to a

spectator momentum, here ~k.

A slightly more general form of the P̃V prescription is instructive and will be useful

below. For any two-particle four-momentum P2 for which the only kinematically allowed

cut involves two particles, we can write

P̃V

∫

a
A(P2, a)B(P2, a)∆(a)∆(P2 − a) =

∫

a
A(P2, a)B(P2, a)∆(a)∆(P2 − a)

− 2iJ(P 2
2 /[4m

2])ρ̃(P2)

[∫

â∗
A∗(P2,~a

∗)B∗(P2,~a
∗)

] ∣∣∣∣∣
a∗=
√
P 2

2 /4−m2

. (5.66)

Here A and B are smooth, non-singular functions of their arguments. The quantities A∗

and B∗ are defined in a similar way to σ∗ above, e.g. A∗(P2,~a
∗) = A(P2, [ωa,~a]), where the

boost to the two-particle CM has velocity −~P2/P
0
2 . The function J , defined in Eq. (5.29),

ensures that this boost is well defined.22 Finally, the angular integral is normalized such

that
∫
â∗ 1 = 1. The form (5.66) makes clear that the prescription can be defined for four-

momentum integrals (and not just three-momentum integrals) and that its dependence on

external momenta enters entirely through P2. We have also used the angular independence

of ρ to rewrite the subtraction term as an angular average in the CM frame. The two

functions A and B could be combined into one, but are left separate since in our applications

we always have separate functions to the left and right of the cut.

Returning to the main argument, we now substitute

1

L3

∑

~a

= P̃V

∫

~a
+

[
1

L3

∑

~a

−P̃V

∫

~a

]
, (5.67)

22Here J is playing the role of H(~k) = J(P 2
2 /[4m

2]) in Eq. (5.59).
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into Eq. (5.57) to reach

C
(0)
L =

1

6

1

L3

∑

~k

P̃V

∫

~a

[
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωk2ωa2ωka(E − ωk − ωa − ωka)
+R′′(~k,~a)

]

+
1

6

1

L3

∑

~k

[
1

L3

∑

~a

−P̃V

∫

~a

]
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωk2ωa2ωka(E − ωk − ωa − ωka)
. (5.68)

Note that the sum-integral-difference operator annihilates R′′(~k,~a) up to exponentially sup-

pressed terms. As already noted, we can replace the sum over ~k with an integral in the first

term, resulting in the infinite-volume quantity

C(0)
∞ ≡

1

6

∫

~k
P̃V

∫

~a

[
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωk2ωa2ωka(E − ωk − ωa − ωka)
+R′′(~k,~a)

]
. (5.69)

Note that no pole prescription is required for the ~k integral.

The second term in Eq. (5.68) is then the finite-volume residue. First we note that we

can multiply the summand/integrand by H(~a)H(~bka), since the remainder cancels the pole

and thus has vanishing sum-integral difference. Next we use the identity for sum-integral

differences presented in Eq. D.1 of Appendix D. This is based on an extension of the work

of Ref. [130] to include the effects of subthreshold momenta and the P̃V prescription. The

essence of the identity is that the sum-integral difference picks out the on-shell residue of the

singularity multiplied by a kinematic function. In more detail the identity makes use of the

analytic properties of σ∗`,m(~k, a∗) and σ†∗`,m(~k, a∗), the functions defined in Eqs. (5.62-5.64)

above. The result is that

C
(0)
L = C(0)

∞ +
1

L3

∑

~k

1

6ωk
σ∗`′,m′(

~k)iF`′,m′;`,m(~k)σ†∗`,m(~k) , (5.70)

= C(0)
∞ + σ∗k′,`′,m′

1

6ωkL3
iFk′,`′,m′;k,`,mσ

†∗
k,`,m , (5.71)

where the finite-volume kinematical function is

F`′,m′;`,m(~k) ≡ F iε`′,m′;`,m(~k) + ρ`′,m′;`,m(~k) , (5.72)

F iε`′,m′;`,m(~k) ≡ 1

2

[
1

L3

∑

~a

−
∫

~a

]
4πY`′,m′(â

∗)Y ∗`,m(â∗)H(~k)H(~a)H(~bka)

2ωa2ωka(E − ωk − ωa − ωka + iε)

(
a∗

q∗k

)`+`′
, (5.73)
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off-shell

= +

F

on-shell

Figure 5.8: Diagrammatic representation of Eq. (5.75). This important identity is used

throughout the derivation.

and

Fk′,`′,m′;k,`,m ≡ δk′,kF`′,m′;`,m(~k) , σ∗k,`,m ≡ σ∗`,m(~k) ,

and σ†∗k,`,m ≡ σ
†∗
`,m(~k) for ~k ∈ (2π/L)Z3 (5.74)

are the restrictions of the on-shell functions to finite-volume momenta. These definitions are

first given in Eqs. (5.22-5.24) above. All indices in Eq. (5.71) are understood to be summed,

including k and k′ which are summed over the allowed values of finite-volume momenta.

This index structure appears repeatedly in our derivation, and from now on we leave indices

implicit. Indeed, using the matrix notation introduced in Section 5.1, we can write the final

result compactly as

C
(0)
L = C(0)

∞ + σ∗
iF

6ωL3
σ†∗ . (5.75)

This is the main result of this subsection.

Our treatment of the 3-particle cut will be recyled repeatedly in the following, except that

σ and σ† will be replaced by other smooth functions of the momenta. Since no properties

of σ and σ† other than smoothness were used in the derivation of Eq. (5.75), the result

generalizes immediately. It is useful to have a diagrammatic version, and this is given in

Fig. 5.8. The key feature of the result is that the finite-volume residue depends only on on-

shell restrictions of the quantities appearing on either side of the cut (analytically continued

below threshold as needed).

Before considering diagrams containing two-to-two insertions, we take stock of the im-

pact of using the non-standard P̃V pole prescription. First we relate C
(0)
∞ [defined in
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Eq. (5.69)] to the conventional infinite-volume form which uses the iε prescription. The

latter is

C(0),iε
∞ ≡ 1

6

∫

~k,~a

[
iσ([ωk,~k], [ωa,~a])σ†([ωk,~k], [ωa,~a])H(~k)

2ωk2ωa2ωka(E − ωk − ωa − ωka + iε)
+R′′(~k,~a)

]
, (5.76)

=
1

6

∫

k,a
σ(k, a)∆(k)∆(a)∆(P−k−a)σ†(k, a) , (5.77)

where
∫
k ≡

∫
d4k/(2π)4, etc., indicate integrals over four-momenta. To obtain the second

line, which is the standard expression for the Feynman diagram, we have reversed the steps

leading from Eq. (5.53) to (5.57). It then follows from the definition of the P̃V prescription,

Eq. (5.59), that

C(0)
∞ = C(0),iε

∞ −
∫

~k
σ∗(~k)

iρ(~k)

6ωk
σ†∗(~k) . (5.78)

This relation is similar in form to Eq. (5.75), with the “F -cut” being replaced by a “ρ-cut”.

The key point for present purposes is that the ρ-cut term in Eq. (5.78) does not introduce

poles as a function of E. This follows from noting that ρ is a finite function of (E, ~P ) and

~k, which has a finite range of support in the latter.

We can also determine the form of the finite-volume correction if we use the iε prescrip-

tion throughout, including in F [see Eq. (5.73) above]. This connects our result to earlier

work on two-particle quantization conditions, e.g. Ref. [130], where F iε was used. Defining

F iεk′,`′,m′;k,`,m ≡ δk′,kF iε`′,m′;`,m(~k) , (5.79)

it follows from Eq. (5.73) that

Fk′,`′,m′;k,`,m = F iεk′,`′,m′;k,`,m + δk′,k ρ`′,m′;`,m(~k) . (5.80)

Combining the results above we then find

C
(0)
L = C(0),iε

∞ + σ
iF iε

6ωL3
σ† +

[
1

L3

∑

~k

−
∫

~k

]
σ∗(~k)

iρ(~k)

6ωk
σ†∗(~k) . (5.81)

Thus we see that, were we to use quantities defined using the iε prescription, we would need

to account for the additional finite-volume correction coming from the last term, which

arises due to the cusp at threshold.23 This extra term greatly complicates the all-orders

23This term is absent in the two-particle analysis, where there is only a single value of ~k (the total

momentum flowing through the two-particle system).
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summation of diagrams. We have found it is more convenient to approach the analysis of

finite-volume diagrams in two steps: first relate finite-volume quantities to P̃V-quantities

(for example relating C
(0)
L to C

(0)
∞ ), and then relate P̃V-quantities to those defined with the

standard iε prescription (C
(0)
∞ to C

(0),iε
∞ ). We concentrate on the first step in this article.

We now turn to diagrams of Fig. 5.7. We recall that only three-particle on-shell inter-

mediate states lead to power-law finite-volume dependence. To isolate such terms we first

do the k0 integral and keep only the pole at k0 = ωk. Other poles will be collected into

infinite-volume quantities, as for C
(0)
L . This means that we can replace ∆(k) with 1/(2ωk)

and set k0 = ωk in all finite-volume terms. Furthermore we can pull out the sum

1

L3

∑

~k

1

2ωk
(5.82)

and consider the summand at fixed values of ~k. The result of these steps is shown in

Fig. 5.9a.

At each fixed value, we are left precisely with all scattering diagrams for two particles

with energy-momentum (E − ωk, ~P − ~k). We can thus follow the approach of Ref. [130] to

obtain the answer for this set of diagrams. In particular, we can repeatedly use the sum-

integral difference identity of Eq. (5.75) and Fig. 5.8 to replace sums over the two-particle

loop momenta with integrals plus factors of F . As already noted, the identity holds if either

σ or σ† (or both) are replaced by B2. This substitution is also indicated in Fig. 5.9a.

Our next step is to sum all diagrams into a convenient form by regrouping terms accord-

ing to the number of F insertions. This is depicted in Fig. 5.9b. We first consider terms

with no F insertions. These are conveniently combined with the smooth terms arising when

the k0 contour encircles higher-particle poles, yielding

C(1)
∞ =

∫

~k
P̃V

∫

a
P̃V

∫

a′

∫
dk0

2π
σ(k, a)∆(a)∆(P−k−a)∆(k)

× iK2;off(a, P−k−a,−a′)∆(a′)∆(P−k−a′)σ†(k, a′) . (5.83)
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Figure 5.9: (a) Diagrams contributing power-law finite-volume contributions to C
(1)
L . The

dashed line for the bottom propagator indicates that the k0 integration has been done and

only the one particle pole kept, giving rise to the factor of 1/2ωk. The inset shows the effect

of substituting the identity of Fig. 5.8. (b) Result for C
(1)
L after grouping terms according to

the number of F insertions. Diagrams with no insertions combine with the terms neglected

in (a) to give C
(1)
∞ . In diagrams with at least one insertion of F the factors to the left

and right are σ∗ + A′(1,u) and σ†∗ + A(1,u), respectively. The factors between F -insertions

(denoted by black circles) are two-to-two K-matrices. The final term in the curly braces

must be subtracted since it is included in the first term but is not part of the definition of

C
(1)
L . (c) Definition of A′(1,u). The superscript u indicates that the unscattered particle is

also the particle whose momentum is singled out by the coordinate system. Dashed lines

for external momenta indicate both that they are on shell and that they are amputated.
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Here we are using the definition of P̃V given in Eq. (5.66), while the off-shell K-matrix is

iK2;off(a, b,−a′) = iB2(a, b,−a′) +
1

2
P̃V

∫

a1

iB2(a, b,−a1)∆(a1)∆(b1)iB2(a1, b1,−a′)

+

(
1

2

)2

P̃V

∫

a2

P̃V

∫

a1

iB2(a, b,−a1)∆(a1)∆(b1)iB2(a1, b1,−a2)∆(a2)∆(b2)iB2(a2, b2,−a′)

+ . . . , (5.84)

or equivalently

iK2;off(a, b,−a′) = iB2(a, b,−a′)

+
1

2
P̃V

∫

a1

iB2(a, b,−a1)∆(a1)∆(b1)iK2;off(a1, b1,−a′) . (5.85)

For both K2;off and B2 we display only three of the (inflowing) momentum arguments, the

fourth being given by momentum conservation: a + b = a1 + b1 = a2 + b2. If all external

momenta are on-shell, K2;off becomes the usual physical two-particle K-matrix K2, which

is real and smooth (in our kinematic range) because the P̃V prescription is identical to the

PV prescription in this regime. Within C
(1)
∞ , the K-matrix is needed also below threshold,

and our use of the P̃V prescription ensures that K2;off is smooth (cusp-free) in this regime

as well. These results allow the overall sum over ~k to be replaced with an integral (for which

no pole prescription is needed).

We stress that in Eq. (5.83) the integral over k0 must be done before the other loop

integrals. This either puts the lower line on shell (leading to the cuts which are dealt with

by the P̃V prescription) or leads to intermediate states without a singularity (for which

no pole prescription is needed). The need to keep track of the ordering of integrals is an

unpleasant feature of the P̃V prescription.

We next sum all terms with exactly one F insertion, obtaining

C
(1)
L,1F = σ∗

iF

2ωL3
A(1,u) +A′(1,u) iF

2ωL3
σ†∗ +A′(1,u) iF

2ωL3
A(1,u) , (5.86)

= (σ∗ +A′(1,u))
iF

2ωL3
(σ†∗ +A(1,u))− σ∗ iF

2ωL3
σ†∗ . (5.87)

Here σ∗ and A′(1,u) (σ†∗ and A(1,u)) are understood as row (column) vectors in the k, `,m

space introduced above. The vectors σ∗ and σ†∗ have been defined in Eq. (5.74), while
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A′(1,u) and A(1,u) are new. To define these, we begin with the functions

A′(1,u)(~k, a) ≡ 1

2
P̃V

∫

a′
σ(a′, k)∆(a′)∆(P−k−a′)iK2;off(a′, P−k−a′,−a) , (5.88)

A(1,u)(~k, a) ≡ 1

2
P̃V

∫

a′
iK2;off(a, P−k−a,−a′)∆(a′)∆(P−k−a′)σ†(a′, k) , (5.89)

in which k = [ωk,~k] is on shell while a is not. The superscripts u indicate that the first

momentum argument (here ~k) is also the momentum of the particle that is unscattered

by the two-to-two K-matrix. We next set the momenta k and a on shell, convert to CM

coordinates for the scattered particles, and decompose in spherical harmonics:24

A
′(1,u)
`′,m′ (

~k, a∗)
√

4πY`′,m′(â
∗) ≡ A′(1,u)(~k, [ωa,~a]) , (5.90)

√
4πY ∗`,m(â∗)A

(1,u)
`,m (~k, a∗) ≡ A(1,u)(~k, [ωa,~a]) . (5.91)

Finally we project on-shell and restrict to finite-volume momenta

A
′(1,u)
k,`′,m′ ≡ A

′(1,u)
`′,m′ (

~k, q∗k) and A
(1,u)
k,`,m ≡ A

(1,u)
`,m (~k, q∗k) , with ~k,~k′ ∈ (2π/L)Z3 . (5.92)

This gives the vector forms appearing in Eq. (5.86). The diagrammatic definition of A′(1,u)

is given in Fig. 5.9c.

To see that Eq. (5.86) is valid, first observe that terms with a single F insertion fall into

three classes: (1) those with no B2 kernels to the left of the F insertion but one or more to

the right; (2) those with no kernels to the right but one or more to the left; (3) those with

one or more B2 kernels on both sides of the single F insertion. These give rise, respectively,

to the three terms in Eq. (5.86), after performing the sums over insertions of B2 to obtain

the factors of K2;off contained in A′(1,u) and A(1,u). Finally, observe that coordinates that

are commom with the single F -insertion are projected onto the on-shell, finite-volume phase

space, leading to the now-familiar matrix structure.

At this stage we can easily generalize to terms with (n > 1) F insertions between B2

kernels. We find

C
(1)
L,nF = (σ∗ +A′(1,u))

iF

2ωL3
[iK2iF ]n−1(σ†∗ +A(1,u)) . (5.93)

24Note that here we do not add a superscript ∗ to A and A′ when one of the momenta is in the CM

frame. This would make the notation too heavy. The presence of the harmonic subscripts `,m serves as an

alternative indicator that we are using a CM momentum.
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Here we are using the matrix definition of K2 given in Eq. (5.11). In words, this says that,

between insertions of F , one can have any number of B2’s connected by P̃V integrals, and

these sum to give K2. Summing over n, including the n = 0 result C
(1)
∞ , we obtain

C
(1)
L = C(1)

∞ + (σ∗ +A′(1,u))
[
A
]
(σ†∗ +A(1,u))− σ∗ iF

2ωL3
σ†∗ , (5.94)

where

A ≡ iF

2ωL3

1

1 +K2F
=

1

1 + FK2

iF

2ωL3
. (5.95)

Combining with our earlier expression (5.75) for C
(0)
L gives the main result of this subsection

C
(0)
L + C

(1)
L = C(0)

∞ + C(1)
∞ + (σ∗ +A′(1,u))

[
A
]
(σ†∗ +A(1,u))− (2/3)σ∗

iF

2ωL3
σ†∗ . (5.96)

We have succeeded in separating the correlator into factors of F , which depend on the

volume, and infinite-volume quantities.

The calculation just described follows very closely the derivation of the two-particle

quantization condition in a moving frame given in Ref. [130]. This is because, for the dia-

grams of Fig. 5.7, the third particle is a spectator whose main impact is to take momentum

away from the other two particles. One difference in the present calculation, however, is

that the 1/6 symmetry factor for the no-insertion diagram, Fig. 5.6, is such that it does not

match with those in the geometric sum leading to the factor of
[
A
]

in the second term in

Eq. (5.96). This is the reason for the appearance of the last term in our result.

We can make the connection to the result of Ref. [130] more precise by considering

instead the theory in which the spectator is of a different type from the other two particles

and does not interact. For such a theory the symmetry factor for Fig. 5.6 is 1/2, and the

last term in Eq. (5.96) is absent. Indeed, for this theory we have already calculated all

possible diagrams, with the final result

C2+spec
L − C2+spec

∞ = (σ∗ +A′(1,u))
[
A
]
(σ†∗ +A(1,u)) . (5.97)

The spectrum is given by the poles of CL. Since infinite-volume quantities do not lead to

poles, CL diverges if and only if
[
A
]

has a divergent eigenvalue. This gives the quantization

condition

det
[
K−1

2 + F
]

= 0 , (5.98)
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where the determinant is over our [finite-volume momentum]×[angular momentum] space.

Because both iK2;k′,`′,m′;k,`,m and iFk′,`′,m′;k,`,m are diagonal in k, k′ space, this condition

may be rewritten as
∏

~k

D(~k) = 0 , (5.99)

where

D(~k) ≡ det
ang mom

[
K2(~k)−1 + F (~k)

]
. (5.100)

The quantities appearing in this equation are defined in Eqs. (5.11) and (5.74), and have

only angular-momentum indices, since ~k is fixed.

This result is exactly what we expect given given the two-particle quantization condition

of Ref. [130]. To see this, we note that, using Eqs. (5.59) and (5.60) to convert the P̃V into

the iε prescription, M2;`′,m′;`,m(~k) is related to K2;`′,m′;`,m(~k) by

iM2 = iK2 + iK2(iρ)iK2 + · · · = iK2
1

1 + ρK2
. (5.101)

Here all arguments and indices are implicit. It follows that

M−1
2 (~k)−K−1

2 (~k) = ρ(~k) = F (~k)− F iε(~k) , (5.102)

where the last equality follows from Eq. (5.72). Thus we can rewrite the quantity appearing

in the “2+spec” quantization condition as

D(~k) ≡ det
ang mom

[
M2(~k)−1 + F iε(~k)

]
. (5.103)

If this vanishes for one of the finite-volume choices of ~k, then there is a finite-volume state

in the “2+spec” theory.

The connection to the result of Ref. [130] can now be made. If the spectator, which

is necessarily on-shell since it is non-interacting, has momentum [ωk,~k], then the total

momentum of the other two particles is P2 = [E−ωk, ~P − ~k]. For the full “2+spec” theory

to have a finite-volume state, the two interacting particles with momentum P2 must have a

finite-volume state. The condition for this, as given in Ref. [130], is exactly D(~k) = 0. This

agreement provides a useful check on our formalism.25

25Note that F iε (and not F ) is the kinematic factor derived in Ref. [130]. Also, the ultra-violet cut-off
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+ · · ·+ +
k k k

p p p
C

(2)
L ⌘

Figure 5.10: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions, with one switch in the scattered pair.

5.3.2 Two-to-two insertions: one switch

In this section we sum the diagrams of Fig. 5.10. Each diagram has at least one B2

insertion on exactly two different pairs of particles. In other words, the diagrams have

one switch in the pair that is scattered. We denote the sum of all such diagrams by C
(2)
L .

Throughout this section we call the momentum of the incoming spectator particle k and

that of the outgoing spectator p, as shown in the figure. We refer to the three propagators

which appear at the location where the scattered pair changes as the “switch state”. The

presence of a switch leads to the first appearance of a three-particle scattering quantity in

our analysis.

To determine the volume-dependent contribution of these diagrams we first evaluate the

p0 and k0 integrals. Since we know from earlier considerations that intermediate states with

used in the definition of F iε in Ref. [130] differs from that we use, but this leads only to a difference that is

exponentially suppressed in L. Finally, we take this opportunity to comment on potential confusion regarding

the definitions in earlier papers of F iε below two-particle threshold. In particular in Ref. [140], for example

in Eqs. (24) and (25), the above-threshold definition of F iε is split into real and imaginary parts, with the

principal-value pole prescription used to define the latter. In contrast to the P̃V prescription of the present

article, the principal-value in [140] is replaced with a simple prescription-free integral below threshold. In

addition, the imaginary part of F iε, the term that we call ρ here, is set to zero below threshold in Ref. [140].

The upshot is that the difference between P̃V used here and principal-value in [140] exactly cancels the

difference between ρ defined here and the analog in [140], so that the definition of F iε is consistent in the

two papers. A useful pneumonic to keep track of this issue generally is as follows: When the quantization

condition is written in terms of M−1
2 , then the finite-volume quantity added to the inverted scattering-

amplitude should become exponentially suppressed below two-particle threshold. This ensures that one

recovers the correct finite-volume bound state condition.
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three on-shell particles are needed to obtain power-law volume dependence, at least one of

the two poles at p0 = ωp and k0 = ωk must be encircled. For concreteness we enumerate

the four types of terms: (a) each contour encircles its one-particle pole; (b) the p0 contour

encircles its pole but the k0 contour encircles all other contributions; (c) as in (b) but with

k0 and p0 exchanged; and (d) both contours encircle everything but the one-particle poles.

We now consider the loop sums/integrals that remain when holding ~p and ~k fixed; these are

all two-particle loops involving either the upper two particles (to the left of the switch state)

or the lower two (to the right). For type (d) terms the summands have no singularities and

thus all sums can be replaced with integrals. Similarly, in type (b) and (c) terms, the two-

particle loops on one side of the switch state cannot go on-shell and may thus be replaced

by integrals. For all remaining two-particle loops in terms of types (a), (b) and (c), the

summand is singular. Here we substitute the identity of Eq. (5.75), thereby separating each

loop into an infinite-volume contribution and an F -factor residue.

There are thus two disjoint regions where insertions of F appear: to the left of the switch

state and to the right. It is useful to break our analysis into four classes, defined by whether

or not each side of the switch state has at least one insertion. We label these as

(1) F, F, (2) −, F, (3) F,−, (4) −,− , (5.104)

so that class (1) contains all terms with at least one F insertion both to the left and right

of the switch state, class (2) contains terms with no such insertions to the left but at least

one to the right, etc. Observe that type (a) terms appear in all four classes, while types (b)

and (c) only appear in classes (2+4) and (3+4) respectively.

We now analyze the four classes in turn, starting with (1). Because all terms in this class

have both k0 and p0 one-particle poles, the chains of F ’s, B2’s and P̃V-integrated loops to

the left and right of the switch state can each be independently summed exactly as in the

previous subsection. This leads to

(σ∗ +A′(1,u))
[
A
]
iK(2,u,u)

3

[
A
]
(σ†∗ +A(1,u)) . (5.105)

The new feature here is the quantity K(2,u,u)
3 ≡ K(2,u,u)

3;p,`,m;k,`′,m′ which arises from the switch

state, and is a contribution to the three-to-three scattering amplitude. It is shown diagram-
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matically in Fig. 5.11a, to which we refer for the notation for momenta. To define it we

proceed in the by-now familiar steps, beginning with the partially off-shell quantity

iK(2,u,u)
3 (~p,~a,~k,~a′) ≡ iK2;off(a, P−p−a,−k)∆(P−p−k)iK2;off(P−p−k, p,−a′) . (5.106)

At this stage p, k, a and a′ are on shell, while P −p−k, P −p−a and P −k−a′ are not.

We have parametrized iK(2,u,u)
3 with incoming and outgoing spectator momenta, ~k and ~p,

as well as incoming and outgoing momenta of one of the scatterers, ~a′ and ~a. In the second

step we change the frame used to define the scatterer momenta and then we decompose in

spherical harmonics

K(2,u,u)
3 (~p,~a,~k,~a′) ≡ 4πY ∗`,m(â∗)K(2,u,u)

3;`,m;`′,m′(~p, a
∗,~k, a′∗)Y`,m(â′∗) , (5.107)

where ~a∗ is defined by boosting (ωa,~a) → (ω∗a,~a
∗) with velocity ~βp, and ~a′∗ is defined by

boosting the corresponding primed vector with ~βk. Next we recall that all incoming and

outgoing particles are on-shell if and only if a′∗ = q∗k and a∗ = q∗p. Thus we define the

on-shell version of K(2,u,u)
3 as

K(2,u,u)
3;`,m;`′,m′(~p,

~k) ≡ K(2,u,u)
3;`,m;`′,m′(~p, q

∗
p,
~k, q∗k) . (5.108)

The final step is to restrict to finite-volume momenta

K(2,u,u)
3;p,`,m;k,`′,m′ ≡ K

(2,u,u)
3;`,m;`′,m′(~p,

~k ) for ~k, ~p ∈ (2π/L)Z3 . (5.109)

This gives the matrix contained in the result Eq. (5.105).

Several further explanations are in order. First, K(2,u,u)
3 in Eq. (5.105) is on-shell on

both “sides” because it is sandwiched between factors of F . This is because [A], defined

in Eq. (5.95), has an F on both ends. Second, the boosts to CM momenta ~a∗ and ~a′∗

are always well defined because F contains factors of H(~p) (on the left) and H(~k) (on the

right). Third, sub-threshold momenta occur in both left and right CM frames as ~p and ~k

are varied, requiring analytic continuation of the K(2,u,u)
3 . Fourth, all factors from external

propagators are contained in the [A]’s, so K(2,u,u)
3 is a contribution to the amputated three-to-

three scattering amplitude. Fifth, the superscript “(2, u, u)” indicates that this contribution

involves two factors of K2;off , and that, on both sides, the particles singled out by the label
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C
(2)
L,0F ⌘

~k

}â0⇤

~k

}â0⇤
â⇤{
~p

iK(2,u,u)
3 ⌘

A
0(2,u)
L ⌘

(a)

(b)

(c)

Figure 5.11: Diagrammatic definitions of (a) iK(2,u,u)
3 , (b) A

′(2,u)
L and (c) C

(2)
L,0F . In (b) and

(c) the dotted box encloses momenta that are summed rather than integrated. The solid

circle represents the two-particle K-matrix. Other notation as above.

(~p on the left, ~k on the right) are unscattered. And, finally, although the result (5.105) has

a symmetric form, it is important to note that K(2,u,u)
3 switches the spectator momentum

index from p to k.

We now turn our attention to class (2) contributions, i.e. those with no F insertions to

the left of the switch state but at least one such insertion on the right. As noted above,

these contributions come from terms of types (a) and (b). In the former, the p0 and k0

integrals both encircle one-particle poles, but all two-particle loops with p as the spectator

are integrated using the P̃V prescription. In the latter, only the k0 integral encircles the

one-particle pole, so all two-particle loop sums to the left of the switch state can be replaced

by integrals. Combining these contributions, we find

A
′(2,u)
L

[
A
]
(σ†∗ +A(1,u)) , (5.110)
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where the new quantity A
′(2,u)
L is shown diagrammatically in Fig. 5.11b. It is a contribution

to the left end-cap involving one switch. It is given by

A
′(2,u)
L;k,`′,m′ ≡ A

′(2,u)
L;`′,m′(

~k, q∗k) [with k ∈ (2π/L)Z3] , (5.111)

where

A
′(2,u)
L;`′,m′(

~k, a′∗)
√

4πY`′,m′(â
′∗) ≡ A′(2,u)

L (~k, [ωa′ ,~a
′]) (5.112)

and

A
′(2,u)
L (~k, a′) ≡ 1

2

1

L3

∑

~p

P̃V

∫

a

∫

p0

σ(p, a)∆(a)∆(P−p−a)

× iK2;off(a, P−p−a,−k)∆(p)∆(P−p−k)iK2;off(p, P−p−k,−a′) (5.113)

[with
∫
p0 ≡

∫
dp0/(2π)] is the end-cap amplitude with k on shell but a not. The subscript L

is a reminder that this quantity contains important finite-volume effects. These arise from

the sum over ~p with a singular summand (from the switch state). The superscript (2, u)

refers to the presence of two factors of K2;off and the fact that the particle carrying the

momentum that is singled out by the coordinate system (here ~k) is unscattered.

Class (3) contributions mirror those from class (2), with the roles of the parts of the

diagrams to the left and right of the switch state interchanged. The total result is

(σ∗ +A′(1,u))
[
A
]
A

(2,u)
L , (5.114)

where

A
(2,u)
L;p,`,m ≡ A

(2,u)
L;`,m(~p, q∗p) [with p ∈ (2π/L)Z3] , (5.115)

with

A
(2,u)
L;`,m(~p, a∗)

√
4πY`′,m′(â

∗) ≡ A(2,u)
L (~p, [ωa,~a]) (5.116)

and

A
(2,u)
L (~p, a) ≡ 1

2

1

L3

∑

~k

P̃V

∫

a′

∫

k0

iK2;off(a, P−p−a,−k)∆(k)∆(P−p−k)

× iK2;off(p, P−p−k,−a′)∆(a′)∆(P−k−a′)σ†(k, a′) . (5.117)
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Finally, we turn to class (4) contributions, which have no F insertions on either side of

the switch state. Combining contributions from types (a-d), we find [see Fig. 5.11c]

C
(2)
L,0F =

1

4

1

L6

∑

~p,~k

P̃V

∫

a,a′

∫

p0

∫

k0

σ(p, a)∆(a)∆(P−p−a)∆(p)iK2;off(a, P−p−a,−k)

×∆(P−p−k)iK2;off(P−p−k, p,−a′)∆(a′)∆(P−k−a′)∆(k)σ†(k, a′) . (5.118)

Adding this to the results from the other classes, we obtain

C
(2)
L = (σ∗ +A′(1,u))

[
A
]
iK(2,u,u)

3

[
A
]
(σ†∗ +A(1,u)) +A

′(2,u)
L

[
A
]
(σ†∗ +A(1,u))

+ (σ∗ +A′(1,u))
[
A
]
A

(2,u)
L + C

(2)
L,0F . (5.119)

At this stage we have achieved only a partial separation of finite-volume effects, because

A
′(2,u)
L , A

(2,u)
L and C

(2)
L,0F still contain momentum sums that cannot be replaced by integrals.

In addition, K(2,u,u)
3 suffers from the problem, discussed in the introduction, of diverging for

certain physical momenta. In the remainder of this section we derive identities for these four

quantities that allow a complete separation of finite-volume effects and avoid divergences in

the 3→ 3 scattering amplitude.

We begin with K(2,u,u)
3 , and separate it into two terms, one which is singular but only

depends on the on-shell K2, and another which is regular. We do this separation in a way

that allows generalization to diagrams with more switches. In particular, we will analyze

the partially off-shell quantity K(2,u,u)
3 (~p,~a,~k,~a′), defined in Eq. (5.106), although for this

subsection we only need the on-shell version of this quantity [as in Eq. (5.108)]. In fact, we

keep the four momentum arguments completely general so that the boosts to the CM-frames

for a and a′ need not be defined.

Our first step is to write the intermediate propagator as

∆(P−p−k) =
iH(~p)H(~k)

2ωkp(E − ωp − ωk − ωkp)
+Ra(~p,~k) . (5.120)

The first term contains the on-shell singularity, while the second is smooth. We focus for

now on the singular term in (5.120) and substitute this into K(2,u,u)
3 , Eq. (5.106). The

presence of the H factors means that we can boost to the CM frames for the {k, P−p−k}
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and the {P −p−k, p} pairs, and decompose the dependence on ~k∗ and ~p∗ into spherical

harmonics. The result is that the singular contribution becomes

iK(2,u,u)
3 (~p,~a,~k,~a′) ⊃ iK2||off||off `m(~p;~a||k∗)iGa`,m;`′,m′(~p,

~k)iK2||off `′m′||off(~k; p∗||~a′) , (5.121)

where

iGa`,m;`′,m′(~p,
~k) ≡

i4πY`,m(k̂∗)H(~p)H(~k)Y ∗`′,m′(p̂
∗)

2ωpk(E − ωp − ωk − ωpk)
, (5.122)

and

√
4πK2||off||off `m(~p;~a||k∗)Y`,m(k̂∗) ≡ K2;off(a, P−p−a,−k) (5.123)

√
4πY ∗`′,m′(p̂

∗)K2||off `′m′||off(~k; p∗||~a′) ≡ K2;off(P−p−k, p,−a′) . (5.124)

In the latter two definitions, the two subscripts “off” are a reminder that both incoming

and outgoing scattering pairs, have one particle off-shell. If the “off” is followed by angu-

lar momentum indices, this indicates that the scattered pair has been boosted to its CM

frame and the angular dependence decomposed into spherical harmonics. The arguments

of K2;off;off list respectively the spectator momentum, the momentum of one of the incom-

ing scattered pair, and the momentum of one of the outgoing pair. If a CM-frame boost

has been done, the argument is the magnitude of the CM-frame momentum. This hybrid

notation is needed to maintain generality.

The next step is to write the singular part of (5.121) in terms of on-shell K-matrices. This

is straightforward as we can expand the boosted momenta k∗ and p∗ about their on-shell

values, q∗p and q∗k respectively. At the same time, we want the remaining non-singular term

to be a smooth function of ~p and ~k, since this is required below. The spherical harmonics

Y`,m(k̂∗) and Y ∗`′,m′(p̂
∗) are not, however, smooth at ~k∗ = 0 (for ` > 0) and ~p∗ = 0 (for

`′ > 0), respectively. To resolve this problem, and pull out an appropriate singular term,

we introduce the finite difference operator δ. This can act to the right or left on K2, with

its action being

δ K2||on `′m′||off(~k;~a′) ≡ K2||off `′m′||off(~k; p∗||~a′)− (p∗/q∗k)
`′K2||on `′m′||off(~k;~a′) , (5.125)

K2||off||on `m(~p;~a) δ ≡ K2||off||off `m(~p;~a||k∗)−K2||off||on `m(~p;~a)(k∗/q∗p)
` . (5.126)
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Here we have defined the “on-off” and “off-on” K-matrices as

K2||on `′m′||off(~k;~a′) ≡ K2||off `′m′||off(~k; q∗k||~a′)

and (5.127)

K2||off||on `m(~p;~a) ≡ K2||off||off `m(~p;~a||q∗p) .

Note that if a scattering pair is on shell then it does not have a corresponding momentum

argument (since the latter is fixed by kinematics).

Inserting Eqs. (5.125) and (5.126) into Eq. (5.121) we obtain

iK(2,u,u)
3 (~p,~a,~k,~a′) ⊃

iK2||off||on `m(~p;~a)
[
iGb`,m;`′,m′(~p,

~k) +Rb`,m;`′,m′(~p,
~k)
]
iK2||on `′m′||off(~k;~a′) , (5.128)

with

iGb`,m;`′,m′(~p,
~k) ≡

(
k∗

q∗p

)` i4πY`,m(k̂∗)H(~p)H(~k)Y ∗`′,m′(p̂
∗)

2ωpk(E − ωp − ωk − ωpk)

(
p∗

q∗k

)`′
, (5.129)

and

Rb`,m;`′,m′(~p,
~k) ≡ δ iGa`,m;`′,m′(~p,

~k)(p∗/q∗k)
`′

+ (k∗/q∗p)
`iGa`,m;`′,m′(~p,

~k) δ + δ iGa`,m;`′,m′(~p,
~k) δ . (5.130)

The result (5.128) has achieved our goals. Only the Gb term is singular, because the factors

of δ in Rb [which act on the K-matrices appearing in Eq. (5.128)] give differences which

vanish when P−p−k goes on shell and thus cancel the singularity in Ga. More precisely

the analyticity of K2 near the on-shell point is required to demonstrate the cancellation.

For example, the difference defined in Eq. (5.125) scales as p∗ − q∗k, the same scaling as the

denominator of Gb, so that the product is a finite smooth function. This is discussed in

detail in Appendix D. Furthermore, the extra powers of k∗ and p∗ ensure that Gb is smooth

when ~k∗ or ~p∗ vanish. Finally, the Gb term multiplies K-matrices in which k∗ (to the left)

and p∗ (to the right) are on shell.

The end result of this analysis is that

K(2,u,u)
3 (~p,~a,~k,~a′) = D(2,u,u)(~p,~a,~k,~a′) +K(2,u,u)

df,3 (~p,~a,~k,~a′) (5.131)
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Figure 5.12: Diagrammatic version of the decomposition of K(2,u,u)
3 (~p,~a,~k,~a′) given in

Eq. (5.131). External dashed lines indicate on-shell momenta, whereas momenta flowing

along the solid external lines are, in general, off shell. All external propagators are ampu-

tated. The first term on the right-hand side is the singular term D(2,u,u), with the double

dashed lines representing Gb. The two K2 are evaluated on-shell for all momenta that

flow along dashed propagators. The second term represents the divergence-free amplitude

K(2,u,u)
df,3 .

where the singular part is

iD(2,u,u)(~p,~a,~k,~a′) = iK2||off||on `m(~p;~a)iGb`,m;`′,m′(~p,
~k)iK2||on `′m′||off(~k,~a′) (5.132)

and the divergence-free part of the amplitude is

iK(2,u,u)
df,3 (~p,~a,~k,~a′) ≡ iK2;off(a, P−p−a,−k)Ra(~p,~k)iK2;off(P−p−k, p,−a′)

+ iK2||off||on `m(~p,~a)Rb`,m;`′,m′(~p,
~k)iK2||on `′m′||off(~k,~a′) . (5.133)

The relation (5.131) is shown diagrammatically in Fig. 5.12. The key property of K(2,u,u)
df,3

is that it is a smooth, non-singular function of its arguments. It is smooth when ~k∗ or ~p∗

vanish because K(2,u,u)
3 is smooth at these values and, as just discussed, this is also true of

the Gb term.
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The quantity Gb is closely related to the matrix G introduced in Eq. (5.21). In particular,

Gb`,m;`′,m′(~p,
~k) = Gp,`,m;k1,`1,m1 [2ωL3]k1,`1,m1;k,`′,m′ for p, k ∈ (2π/L)Z3 , (5.134)

where

[2ωL3]k1,`1,m1;k,`′,m′ ≡ δk1,kδ`1,`′δm1,m′2ωkL
3 . (5.135)

Finally, with this groundwork laid, we can return to the quantity relevant for the one-

switch analysis, namely K(2,u,u)
3 with external momenta on shell and taking finite-volume

values. In this case we can decompose the external CM-frame momenta in spherical har-

monics, and connect back to our matrix notation:

K2||off||on `m(~p;~a)
∣∣∣
a∗=q∗p ,~p∈(2π/L)Z3

=
√

4πY ∗`′,m′(â
∗)K2;p,`′,m′;p,`,m (5.136)

K2||on `m||off(~k;~a′)
∣∣∣
a′∗=q∗k,

~k∈(2π/L)Z3
= K2;k,`,m;k,`′,m′

√
4πY`′,m′(â

′∗) . (5.137)

This allows us to write the decomposition into singular and smooth parts in matrix form

iK(2,u,u)
3;p,`,m;k,`′,m′ ≡ iK2iG[2ωL3]iK2 + iK(2,u,u)

df,3;p,`,m;k,`′,m′ , (5.138)

where, as usual,

4πY ∗`,m(â∗)K(2,u,u)
df,3;p,`,m;k,`′,m′Y`′,m′(â

′∗) = K(2,u,u)
df,3 (~p,~a,~k,~a′)

∣∣∣
a∗=q∗p ,a′∗=q

∗
k,{~p,~k}∈(2π/L)Z3

.

(5.139)

We next derive an identity for A
′(2,u)
L , which is defined in Eqs. (5.111-5.113). The basic

approach is our standard move of replacing the sum over ~p with a P̃V integral and a sum-

integral difference, the latter giving rise to a factor of F . However, the presence of the switch

state introduces new features compared to previous applications, so we work through the

steps in some detail.

We first introduce the fully-integrated counterpart to A
′(2,u)
L , which we call A′(2,u). It is

defined exactly as for A
′(2,u)
L [Eqs. (5.111-5.113) and Fig. 5.11b] except that the sum over ~p

is replaced by a P̃V-integral. This is the first example of an infinite-volume quantity with

multiple P̃V-integrals. As we have already mentioned, a consequence of our nonstandard

regulator is that the order of integration is important. In the definition of A
′(2,u)
L , the integral
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over ~k is done last. The difference between the two quantities can be written as

A
′(2,u)
L (~k, a′)−A′(2,u)(~k, a′) =

[
1

L3

∑

~p

−P̃V

∫

~p

]
A′(1,u)(~p, k)

H(~k)∆(P−p−k)

2ωp
iK2;off(k, P−p−k, a′) , (5.140)

where k = [ωk,~k]. To obtain this form we have used the fact that A′(1,u)(~p, k) [defined

in Eq. (5.88)] is a smooth function of ~p, so that the only singularity in p comes from the

switch state. Also, we have done the p0 integral and kept only the particle pole, since other

poles give non-singular contributions which have vanishing sum-integral differences. Finally,

we have added in the cut-off function H(~k), which is allowed since it does not change the

singularity.

To use the sum-integral identity, we need to expand A′(1,u)(~p, k) in spherical harmonics

with respect to ~p∗, i.e. treat k as the spectator and boost to the CM frame of the other two

particles [with boost velocity −(~P −~k)/(E−ωk)]. This is different from the expansion used

earlier, in Eq. (5.90), where p was treated as the spectator. Thus we define [see Fig. 5.13a]

A
′(1,s)
`,m (~k, p∗)

√
4πY`,m(p̂∗) ≡ A′(1,u)(~p, [ωk,~k]) . (5.141)

where the superscript “s” indicates that the particle carrying the momentum singled out by

the coordinate system, here ~k, is one of those scattered by the K2 inside A′(1,u). We stress

that A
′(1,s)
`,m and A

′(1,u)
`,m are different expansions of the same underlying function—we are just

using different coordinate systems. We also note that the boost defining ~p∗ is well defined

because of the presence of H(~k).

As a final step, we must also decompose the off-shell two-particle K-matrix into spherical

harmonics:

4πY ∗`,m(p̂∗)K2;off;`,m;`′,m′(~k, p
∗, a′∗)Y`′,m′(â

′∗) ≡ K2;off([ωp, ~p ], P−p−k,−[ωa′ ,~a
′]) , (5.142)
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This allows us to write

A
′(2,u)
L;k,`′,m′ −A

′(2,u)
k,`′,m′ =

[
1

L3

∑

~p

−P̃V

∫

~p

]
A
′(1,s)
`1,m1

(~k, p∗)
i4πY`1,m1(p̂∗)H(~k)Y ∗`2,m2

(p̂∗)

2ωp2ωP−p−k(E − ωk − ωp − ωpk)
iK2;off;`2,m2;`′,m′(~k, p

∗, q∗k) ,

(5.143)

where we have explicitly pulled out the particle pole in the P −p−k propagator, since

the remainder is non-singular. This has the form for which we can apply the sum integral

identity, from which we deduce

A
′(2,u)
L = A′(2,u) + 2A′(1,s)iF iK2 , (5.144)

where the on-shell matrix form of A′(1,s) is

A
′(1,s)
p,`,m = A

′(1,s)
`,m (~p, q∗p) with ~p ∈ (2π/L)Z3 . (5.145)

The factor of two in (5.144) appears because F contains a symmetry factor of 1/2 which is

absent in the switch-state contribution.

The new quantity 2A′(1,s) will later be combined with A′(1,u) in order to form an object

which, aside from one subtlety, is symmetric under particle interchange. To understand this

point, first observe that there are three independent ways that the external momenta can

be assigned to the diagram: (i) ~p is the spectator with ~k one of the scattered pair (giving

A′(1,u)), (ii) ~p is one of the scattered pair with ~k the spectator (giving A′(1,s)), and (iii)

~p and ~k form the scattered pair. This is illustrated in Fig. 5.13b. For the symmetry to

hold we must sum these three with equal weights: (i)+(ii)+(iii).26 This differs from the

combination that arises naturally in our derivation, (i)+2(ii). It turns out, however, that

we can replace 2 (ii) with (ii)+(iii), and thus obtain a truely symmetric combination. We

do this repeatedly below, and thus explain here the justification for this change.

Momentum assignment (iii) leads to a quantity we call A′(1,s̃) that is related to A′(1,s)

as follows:

A
′(1,s̃)
p,`,m = (−1)`A

′(1,s)
p,`,m . (5.146)

26We stress that here we are discussing on-shell quantities; the symmetry cannot hold if one of the particles

is off shell.
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This is because the assignments (iii) and (ii) differ simply by the interchange of the two

particles that have been boosted to their CM frame. (These are the particles with momenta

k and P − p − k.) This interchange is the same as a parity tranform in the CM frame,

leading to the result (5.146). We also note that A
′(1,u)
p,`,m is only non-vanishing for even ` given

the symmetry of K2. Thus the desired combination

A
′(1)
p,`,m ≡ A

′(1,u)
p,`,m +A

′(1,s)
p,`,m +A

′(1,s̃)
p,`,m (5.147)

satisfies

A
′(1)
p,`,m =




A
′(1,u)
p,`,m + 2A

′(1,s)
p,`,m ` even ,

0 ` odd .

(5.148)

This means that we can make the replacements

2A
′(1,s)
p,`,m −→ A

′(1,s)
p,`,m +A

′(1,s̃)
p,`,m and A

′(1,u)
p,`,m + 2A

′(1,s)
p,`,m −→ A

′(1)
p,`,m (5.149)

as long as only even values of ` contribute.

To see that only even values of ` contribute, first recall from Eq. (5.144) that A′(1,s) is

connected by an F to a factor of K2. Next, note that the symmetry of K2 implies that

only even angular momenta appear in its expansion. Finally, use the result Eq. D.11 in

Appendix D that Fp,`,m;k`′,m′ vanishes if `+ `′ is odd. Together these imply that, since `′ is

even, ` is also.

It turns out that, throughout the derivation, “(s)” quantities always appear opposite

those with a “(u)” superscript. The latter always have the requisite symmetry so that only

even angular momenta contribute. Consequently, by the argument just given, we can always

replace 2(s) with (s) + (s̃). For the sake of brevity, we do not do this explicitly, but keep in

mind that this replacement is allowed. At the end of the derivation, once we have summed

contributiions from any number of switches, we make the replacement explicit so as to allow

symmetrization.

The identity for A
(2,u)
L is derived in exactly the same way as that for A

′(2,u)
L and we

simply state the result:

A
(2,u)
L = A(2,u) + iK2iF2A(1,s) . (5.150)

Here A
(2,u)
p,`′,m′ and A(1,s) are the left-right “reflections” of the corresponding A′ quantities.
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(a) A′(1,s)(~k, p∗) ≡
k

p*

(b) A′(1)(~k, p∗) ≡

k
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Figure 5.13: (a) Definition of A′(1,s), in which the momentum singled out by the coordinate

system (here ~k) is that of a particle that scatters. (b) Definition of the symmetrized quantity

A′(1).

Finally we consider C
(2)
L,0F , defined in Eq. (5.118) and Fig. 5.11c. Our aim is to deter-

mine the finite-volume residue that results when we convert the two momentum sums into

integrals. The two-particle loops are both rendered non-singular by the P̃V integrals over a

and a′, so the only singularity is that in ∆(P−p−k). To isolate this, both p0 and k0 integrals

must circle the particle poles. (If other poles are encircled in either integral, the remaining

summand is non-singular and both sums can be immediately changed to integrals.) We

then have to choose which sum to evaluate first. Our convention, here and below, is to work

from left to right. Thus we first convert the sum over ~p into an integral plus an F term. The

detailed steps are exactly as for A
′(2,u)
L , except that here we have A(1,u) on the right rather

than K2. For the contribution in which ~p is integrated, there are no more singularities, so

the sum over ~k can be converted directly into an integral. For the F -term, however, the

sum over ~k must remain. The result of this analysis is that

C
(2)
L,0F = C(2)

∞ + 2A′(1,s)
iF

2ωL3
A(1,u) , (5.151)
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where C
(2)
∞ is the infinite-volume version of the single-switch correlator:

C(2)
∞ =

1

4
P̃V

∫

~k
P̃V

∫

~p
P̃V

∫

a,a′

∫

p0

∫

k0

σ(p, a)∆(a)∆(P−p−a)∆(p)iK2;off(a, P−p−a,−k)

×∆(P−p−k)iK2;off(P−p−k, p,−a′)∆(a′)∆(P−k−a′)∆(k)σ†(k, a′) . (5.152)

The factor of 1/(2ωL3) in the last term in Eq. (5.151) arises because F is defined to contain

the contributions from only two of the three propagators in the switch state. The overall

factor of 2 in this term arises because F contains a symmetry factor of 1/2 that is absent in

the switch state. We stress here, for the final time, that the order of P̃V-integration matters

in the definition of this infinite-volume quantity.

Our “left to right convention” has given an asymmetric result, with A′(1,s) to the left of

A(1,u) and no “uFs” term. This lack of symmetry can, however, be corrected a posteriori,

as will be explained when we consider the result from any number of switches.

Inserting the identities (5.138), (5.144), (5.150) and (5.151) into Eq. (5.119) we find the

final result of this section

C
(2)
L − C(2)

∞ = (σ∗ +A′(1,u))
[
A
] [
iK2iG2ωL3iK2 + iKdf,3

(2,u,u)
] [
A
]
(σ†∗ +A(1,u))

+A′(2,u)
[
A
]
(σ†∗ +A(1,u)) + (σ∗ +A′(1,u))

[
A
]
A(2,u)

+ [2A′(1,s)]iF iK2

[
A
]
(σ†∗ +A(1,u)) + (σ∗ +A′(1,u))

[
A
]
iK2iF [2A(1,s)]

+ 2A′(1,s)
iF

2ωL3
A(1,u) . (5.153)

This is the main result of this subsection. The right-hand side is the finite-volume residue

of all one-switch diagrams.

5.3.3 Two-to-two insertions: two switches

In this section we sum the diagrams of Fig. 5.14. These are all diagrams that have

two switches in the pair that is scattered. We denote the sum of all such diagrams by

C
(3)
L . Throughout this section we refer to leftmost (rightmost) triplet of propagators, at the

point where the scattering pair changes, as the left (right) switch state. We label the three

different spectator momenta p, r and k, as shown in the figure.
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+ · · ·+ +C
(3)
L ⌘

k k kp p p

r r r

Figure 5.14: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions and with two switches in the scattered pair.

We provide a detailed analysis of two-switch diagrams before analyzing diagrams with

any number of switches for two reasons. First, a new type of intermediate quantity with

finite-volume dependence arises at this order. This is K(3,u,u)
3,L , a contribution to three-

to-three scattering. Second, a number of new complications enter at this stage with the

derivation of identities relating the intermediate quantities (with L subscripts) to infinite-

volume quantities. We think it clearer to analyze these in isolation before generalizing to

all orders.

As in the previous sections we evaluate p0, r0 and k0 integrals and then substitute the

identity of Eq. (5.75) for all two-particle loops for which the spectator is on shell. There

are three locations where insertions of F can appear: to the left of the left switch state,

between switch states, and to the right of the right switch state. We define eight different

classes of terms, based on whether or not at least one F insertion appears in each of the

three locations:

(1) F, F, F (2) −, F, F, (3) −,−, F, (4) F, F,−,

(5) F,−,− (6) −, F,−, (7) F,−, F (8) −,−,− . (5.154)

For example in class (2) there is at least one insertion to the right of the right switch and

between the switches, but no insertion to the left of the left switch.

Using the methods of the previous subsections, it is straightforward to obtain the results
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from these classes. We find

C
(3)
L = (σ∗ +A′(1,u))

[
A
]
iK(2,u,u)

3

[
A
]
iK(2,u,u)

3

[
A
]
(σ†∗ +A(1,u))

+A
′(2,u)
L

[
A
]
iK(2,u,u)

3

[
A
]
(σ†∗ +A(1,u)) +A

′(3,u)
L

[
A
]
(σ†∗ +A(1,u))

+ (σ∗ +A′(1,u))
[
A
]
iK(2,u,u)

3

[
A
]
A

(2,u)
L + (σ∗ +A′(1,u))

[
A
]
A

(3,u)
L

+A
′(2,u)
L

[
A
]
A

(2,u)
L + (σ∗ +A′(1,u))

[
A
]
iK(3,u,u)

3,L

[
A
]
(σ†∗ +A(1,u)) + C

(3)
L,0F .

(5.155)

Here the eight terms are the results, in turn, from the eight classes of contribution identified

above. The four new quantities appearing in Eq. (5.155) are A
′(3,u)
L , A

(3,u)
L , C

(3)
L,0F and

K(3,u,u)
3,L . These are defined as (see also Fig. 5.15)

A
′(3,u)
L;p,`′,m′ ≡ A

′(3,u)
L;`′,m′(~p, q

∗
p) with ~p ∈ (2π/L)Z3 , (5.156)

where

A
′(3,u)
L;`′,m′(~p, a

∗)
√

4πY`′,m′(â
∗) ≡

1

2

1

L6

∑

~k,~p

P̃V

∫

a′

∫

k0

∫

r0

σ(k, a′)∆(a′)∆(P−k−a′)iK2;off(a′, P−k−a′,−r)∆(k)∆(P−r−k)

× iK2;off(k, P−k−r,−p)∆(r)∆(P−p−r)iK2;off(r, P−p−r,−a) , (5.157)

with A
(3,u)
L;k,`,m defined analogously,

C
(3)
L,0F ≡

1

4

1

L9

∑

~k,~p,~r

P̃V

∫

a′
P̃V

∫

a

∫

k0

∫

p0

∫

r0

× σ(k, a′)∆(a′)∆(P−k−a′)iK2;off(a′, P−k−a′,−r)∆(k)∆(P−k−r)iK2;off(k, P−r−k,−p)

×∆(r)∆(P−p−r)iK2;off(k, P−p−r,−a)∆(p)∆(P−p−a)∆(a)σ†(p, a) , (5.158)

and finally

K(3,u,u)
3,L;k,`′,m′;p,`,m ≡ K

(3,u,u)
3,L;`′,m′;`,m(~k, q∗k, ~p, q

∗
p) with ~p,~k ∈ (2π/L)Z3 , (5.159)

with

4πY ∗`′,m′(â
′∗)iK(3,u,u)

3,L;`′,m′;`,m(~k, a′∗, ~p, a∗)Y`,m(â∗) ≡ 1

L3

∑

~r

∫

r0

iK2;off(a′, P−k−a′,−r)

×∆(P−k−r)∆(r)iK2;off(k, P−k−r,−p)∆(P−p−r)iK2;off(r, P−p−r,−a) . (5.160)
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Figure 5.15: (a) Definition of A
′(3,u)
L . The dotted rectangle contains momenta which are

summed; thus only the leftmost two-particle loop is integrated. (b) Definition of C
(3)
L,0F ,

which has two integrated and three summed loop momenta. (c) Definition of K(3,u,u)
3,L , which

has a single summed momentum.
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To obtain these results we have summed B2 kernels into two-particle K-matrices, and used

the fact that
[
A] amputates and puts on-shell both factors adjacent to it.

We now derive identities relating the quantities A
′(3,u)
L , A

(3,u)
L , C

(3)
L,0F and K(3,u,u)

3,L to

infinite-volume observables. We begin with A
′(3,u)
L (see Fig. 5.15a), and work from left to

right converting sums into integrals. The ~k sum leaves a finite-volume residue because of

the singular propagator ∆(P−k−r), while the ~r sum leaves a residue because of ∆(P−p−r).
The infinite-volume quantity that results, which we call A′(3,u), is thus given by the same

expressions as Eqs. (5.156) and (5.157) except that
∑

~k,~p
is replaced by P̃V

∫
~k

P̃V
∫
~p in

Eq. (5.157). The finite-volume residues can be obtained using the same argumentation as

for A
′(2,u)
L in the previous subsection. The result is

A
′(3,u)
L = A′(3,u) + 2A′(1,s)

iF

2ωL3
iK(2,u,u)

3 + 2A′(2,s)
iF

2ωL3
iK2 . (5.161)

Note the superscripts “s” on the AL’s and the factors of 2 due to the missing symmetry

factor at the switch states. The new quantity A′(2,s) is simply A′(2,u) expressed in the

alternative coordinate system, just as in the definition of A′(1,s), Eq. (5.174). We can now

use the result from the previous subsection for K(2,u,u)
3 , Eq. (5.138), to obtain the desired

identity

A
′(3,u)
L = A′(3,u) + 2A′(2,s)iF iK2 + 2A′(1,s)

iF

2ωL3
iK2iG2ωL3iK2 + 2A′(1,s)

iF

2ωL3
iK(2,u,u)

df,3 .

(5.162)

This derivation naturally lends itself to a recursive extension to higher order, one that we

will explain in the next subsection.

The result for A
(3,u)
L is given simply by reversing the order of factors in each term:

A
(3,u)
L = A(3,u) + iK2iF2A(2,s) + iK2iGiK2iF2A(1,s) + iK(2,u,u)

df,3

iF

2ωL3
2A(1,s) . (5.163)

We next consider C
(3)
L,0F . Working from left to right we obtain the infinite-volume quan-

tity plus one finite-volume residue from the ~k sum and another from the ~r sum. Following

our by now standard manipulations, this leads to

C
(3)
L,0F = C(3)

∞ + 2A′(1,s)
iF

2ωL3
A

(2,u)
L + 2A′(2,s)

iF

2ωL3
A(1,u) . (5.164)
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Here C
(3)
∞ is defined as in Eq. (5.158) except that the momentum sums are replaced by the

ordered integrals P̃V
∫
~p P̃V

∫
~r P̃V

∫
~k
. Note that A

(2,u)
L still contains a momentum sum, but

we can obtain a complete decomposition using Eq. (5.150) from the previous subsection.

This leads to

C
(3)
L,0F − C(3)

∞ = 2A′(1,s)
iF

2ωL3
iK2iF2A(1,s)

+ 2A′(1,s)
iF

2ωL3
A(2,u) + 2A′(2,s)

iF

2ωL3
A(1,u) . (5.165)

We are thus left with K(3,u,u)
3,L [Eqs. (5.159,5.160) and Fig. 5.15c]. As always, our method

is to replace sums with integrals while keeping track of finite-volume remainders. The

analysis is shown diagrammatically in Fig. 5.16. The first step is to do the r0 integral.

Singular terms occur only if the contour circles the r0 = ωr pole; for the remainder we

can replace the sum over ~r with an integral (giving the last term on the right-hand side

in Fig. 5.16a). Thus to study the singular terms we can replace ∆(r) with 1/(2ωr) and

set r = [ωr, ~r ] (indicated by the dashed top line in the figure). The sum over ~r runs over

two potential singularities, one in ∆(P −k−r) and the other in ∆(P −p−r). To use the

sum-minus-integral identity, we must pull out the double singularity (the first term on the

right-hand side in Fig. 5.16a), leaving a remainder with at most single singularities. To do so

we follow the analysis of the previous subsection [see Eqs. (5.120-5.138)], applied separately

to the two propagators, both of which are sandwiched between factors of K2. This analysis

can be applied independently to the contributions associated with each propagator, with

each separated into into an on-shell singular part and a divergence-free quantity. This leads

to the decomposition

iK(3,u,u)
3,L = iK2iGiK2iG[2ωL3]iK2 + iK2iGiK(2,u,u)

df,3

+ iK(2,u,u)
df,3 [1/(2ωL3)]iG[2ωL3] +R , (5.166)

where the first three terms correspond to the first three terms on the right-hand side of

Fig. 5.16a,27 while R is the sum of the last two diagrams in the figure. The only properties

27The appearance of [2ωL3] and its inverse in the third but not the second term is due to the facts that

[1/(2ωL3)] appears on the right in the definition of G, Eq. (5.21), and that [2ωL3] does not commute with

G.



168

(a) = + +

+ +

(b)

(c)

F

+

F

=

=

+

Figure 5.16: Decomposition of K(3,u,u)
3,L . See Fig. 5.15(c) for momentum labels. Double solid

lines indicate non-singular terms. On the top line these come from the r0 contour circling

poles other than the single-particle pole, while for the diagonal lines in the switch state the

notation is as in Fig. 5.12. Double dashed lines represent the singular quantity Gb sand-

wiched between on-shell amplitudes, as in Fig. 5.12. The single dashed line within the loop

(top propagator) indicates the on-shell propagator factor 1/(2ωr). (a) Initial decomposition.

Loop momenta inside dotted boxes are summed, while those not in a box are integrated.

(b) and (c): Use of the sum-minus-integral identity, as indicated by the vertical bars and

factors of F , leaving a remainder which is integrated. The vertical bar crosses the two

propagators whose momenta are projected on-shell by F , so that the uncrossed propagator

is the spectator. K(3,u,u)
df,3 is given by the sum of the four terms containing loop integrals

(two in (a) and one each in (b) and (c).
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of R that we will need are that it is an infinite-volume quantity (since the sum over ~r

which it contains can be replaced by an integral) and that it is a smooth function of its

arguments. An explict form for R is not needed—Eq. (5.166) serves as sufficient definition

since all terms other than R are known.

As noted above, we can use the sum-minus-integral identity on the two terms in Eq. (5.166)

containing a single factor of G. Unpacking our abbreviated notation, the first such term

can be written

[
iK2iGiK(2,u,u)

df,3

]
p,`,m;k,`′,m′

=

P̃V

∫

~r

1

2ωr
iK2;`,m;`1,m1(~p)iGb`1,m1;`2,m2

(~p, ~r)iK(2,u,u)
df,3;`2,m2;`′m′(~r, q

∗
r ,
~k, q∗k)

+

[
1

L3

∑

~r

−P̃V

∫

~r

]
iK2;`,m;`1,m1(~p)

(
r∗

q∗p

)`1 i4πY`1,m1(r̂∗)H(~p)H(~r)Y ∗`2,m2
(p̂∗)

2ωr2ωpr(E − ωp − ωr − ωpr)

(
p∗

q∗r

)`2

× iK(2,u,u)
df,3;r,`2,m2;k,`′m′ . (5.167)

The integral (the last term in Fig. 5.16b) is combined with the corresponding integral from

the third term in Eq. (5.166) (the last term in Fig. 5.16c), and with R, to define K(3,u,u)
df,3 .

This is the two-switch contribution to the continuum divergence-free amplitude. The sum-

integral difference requires some adjustments to allow the use of our identity. First we make

the substitution

√
4πY ∗`2,m2

(p̂∗)(p∗/q∗r )
`2K(2,u,u)

df,3;r,`2,m2;k,`′,m′ =

√
4πY ∗`2,m2

(p̂∗)(p∗/q∗r )
`2K(2,u,u)

df,3;`2,m2;`′,m′(~r, q
∗
r ,
~k, q∗k)

−→
√

4πY ∗`2,m2
(p̂∗)K(2,u,u)

df,3;`2,m2;`′,m′(~r, p
∗,~k, q∗k) ≡ K

(2,u,u)
df,3; ;`′,m′(~r, ~p,

~k, q∗k) . (5.168)

In words we are changing q∗k → p∗, which is allowed because the difference between the old

and new forms is proportional to p∗2 − q∗2p , which cancels the singularity. We explain in

Appendix D why the difference has this particular scaling. In fact, we have already made

implicit use of the scaling in our on-shell identity for the sum-integral-difference, Eq. (5.70).

After this change, the sum over `2 and m2 can be done, leading to a version of K(2,u,u)
df,3 which

is off shell on the left.28 At this stage we can drop the H(~r) factor from the summand of

28Our notation for this quantity, K(2,u,u)

df,3; ;`′,m′(~r, ~p,~k, q
∗
k) indicates through the absence of a subscript
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the sum-minus-integral term in Eq. (5.167), since it is not needed to define the boosts, and

the difference 1−H(~r) cancels the singularity. These manipulations bring the sum-minus-

integral into a form where we can apply our standard identity. In this way we find that the

sum-minus-integral in Eq. (5.167) can be written

iK2iF2iK(2,s,u)
df,3 , (5.169)

where K
(2,s,u)
df,3 is defined by re-expanding K

(2,u,u)
df,3 in spherical harmonics in ~r. This is shown

by the first diagram on the right-hand side in Fig. 5.16b. Specifically, the off-shell form of

K
(2,u,u)
df,3 is expanded in harmonics

√
4πY ∗`1,m1

(r̂∗)K(2,s,u)
df,3;`1,m1;`′,m′(~p, r

∗,~k, q∗k) ≡ K
(2,u,u)
df,3; ;`′,m′(~r, ~p,

~k, q∗k) , (5.170)

and then put on shell and restricted to finite-volume momenta,

K(2,s,u)
df,3;p,`1,m1;k,`′,m′ ≡ K

(2,s,u)
df,3;`1,m1;`′,m′(~p, q

∗
p,
~k, q∗k) [~p,~k ∈ (2π/L)Z3] . (5.171)

The superscript “s” once again indicates that the momentum singled-out by the coordinate

system on the left, here ~p, is one of the scattered outgoing particles.

We stress that the validity of Eq. (5.169) requires two properties of K(2,u,u)
df,3 . First, it must

be a smooth function of its arguments, for otherwise there would be additional contributions

to the sum-integral difference. As discussed in the previous subsection, smoothness requires

that G be defined including the factors of (p∗)`1+`2 . Second, it must be divergence-free, and

thus local in position-space, so that the expansion in spherical harmonics of r̂∗ is convergent.

This is one of the ways that our analysis forces us to use divergence-free quantities, as

announced in the introduction.

The other term in Eq. (5.166) containing a single factor of G can be analyzed in a

similar fashion, leading to an integral plus the finite-volume residue 2iK(2,u,s)
df,3 iF iK2. This

is shown in Fig. 5.16c. Here K(2,u,s)
df,3 is defined in an analogous way to K(2,s,u)

df,3 , but with

the re-expansion in new coordinates occuring for the incoming momenta. As already noted,

the integral is part of the non-singular remainder which builds up K(3,u,u)
df,3 . Combining all

between the two semi-colons that no angular decomposition of the outgoing coordinates is being done.



171

elements, we finally reach

iK(3,u,u)
3,L = iK2iGiK2iG[2ωL3]iK2 + iK2iF2iK(2,s,u)

df,3 + 2iK(2,u,s)
df,3 iF iK2 + iK(3,u,u)

df,3 . (5.172)

This has the desired form in which each term is a product of on-shell, infinite-volume

quantities and kinematic factors.

The result (5.172) and the similar decompositions in Eqs. (5.162), (5.163) and (5.165)

can now be substituted in Eq. (5.155) to obtain our final result for the two-switch correlator

C
(3)
L . The result is lengthy and, at this stage, unilluminating. We hold off on making such

substitutions until we are working to all orders, in the next subsection, for then the result

simplifies.

5.3.4 Two-to-two insertions: any number of switches

In this section we sum all remaining contributions to the finite-volume correlator con-

taining only B2 kernels, allowing any number of switches in scattered pair.

The first step, as before, is to replace sums on two-particle loops with integrals plus

factors of F . This leads to the appearance of C
(n)
L,0F , A

′(n,u)
L , A

(n,u)
L and K(n,u,u)

3,L , with n ≥ 3,

which are generalizations of the quantities found earlier. Their definitions, sketched in

Fig. 5.17, are

C
(n)
L,0F ≡

1

4




n∏

m=1

1

L3

∑

~qm


 P̃V

∫

a
P̃V

∫

a′

[
n∏

m=1

∫

q0
m

]
σ(q1, a)∆(a)∆(P−q1−a)

× iK2,off(a, P−q1−a,−q2)∆(q1)∆(P−q1 − q2)iK2,off(q1, P−q1−q2,−q3)× · · ·×

×∆(qn−1)∆(P−qn−qn−1)iK2,off(qn−1, P−qn−qn−1,−a′)∆(qn)∆(P−qn−a′)∆(a′)σ†(qn, a
′) ,

(5.173)

A
′(n,u)
L;`′,m′(

~k, a′∗)
√

4πY`′,m′(â
′∗) ≡ 1

2



n−1∏

m=1

1

L3

∑

~qm


 P̃V

∫

a

[
n−1∏

m=1

∫

q0
m

]

×σ(q1, a)∆(a)∆(P−q1−a)iK2,off(a, P−q1−a,−q2)∆(q1)∆(P−q1−q2)iK2,off(q1, P−q1−q2,−q3)

×∆(q2)∆(P−q3−q2)× · · · × iK2,off(qn−2, P−qn−2−qn−1,−p)

×∆(qn−1)∆(P−p−qn−1)iK2,off(qn−1, P−p−qn−1,−a′) , (5.174)
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Figure 5.17: Diagrammatic definitions of (a) A
′(n,u)
L , (b) C

(n)
L,0F , and (c) K(n,u,u)

3,L .
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with A
(n,u)
L defined analogously by reflection, and

4πY ∗`′,m′(â
∗)iK(n,u,u)

3,L;`′,m′;`,m(~p, a∗,~k, a′∗)Y`,m(â′∗) ≡



n−2∏

m=1

1

L3

∑

~qm



[
n−2∏

m=1

∫

q0
m

]

× iK2,off(a, P−p−a,−q1)∆(P−p−q1)iK2,off(p, P−p−q1,−q2)

×∆(q2)∆(P−q1−q2)× · · · ×∆(qn−2)∆(P−k−qn−2)iK2,off(qn−2, P−p−qn−2,−a′) ,
(5.175)

The above definitions give partially off shell versions of A
′(n,u)
L and K(n,u,u)

3,L . The on-shell

versions are defined as usual by

A
′(n,u)
L;k,`′,m′ ≡ A

′(n,u)
L;`′,m′(

~k, q∗k) and K(n,u,u)
3,L;p,`′,m′;k,`,m ≡ K

(n,u,u)
3,L;`′,m′;`,m(~p, q∗p,

~k, q∗k)

with ~p,~k ∈ (2π/L)Z3 , (5.176)

with an analogous definition for A
(n,u)
L .

It is simpler to write down the all-orders form of

C
[B2]
L =

∞∑

n=0

C
(n)
L , (5.177)

than it is to write down C
(n)
L itself. The superscript “[B2]” here is a reminder that no B3

kernels have yet been included. We find

C
[B2]
L =

∞∑

n=0

C
(n)
L,0F − (2/3)σ∗

iF

2ωL3
σ†∗

+

[ ∞∑

i=0

A
′(i,u)
L

]
[
A
]
{ ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n
}[ ∞∑

k=0

A
(k,u)
L

]
. (5.178)

Here we have made the definitions

A
(0,u)
L ≡ σ∗†, A

(1,u)
L ≡ A(1,u), A

′(0,u)
L ≡ σ∗, A

′(1,u)
L ≡ A′(1,u), (5.179)

iK(2,u,u)
3,L ≡ iK(2,u,u)

3 , C
(0)
L,0F ≡ C(0)

∞ , C
(1)
L,0F ≡ C(1)

∞ , (5.180)

in which infinite-volume quantities are relabeled as though they have volume dependence,

in order to simplify the form of the result. We have also introduced

K(u,u)
3,L ≡

∞∑

n=2

K(n,u,u)
3,L . (5.181)
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The way in which (5.178) arises should be clear by generalizing the discussion leading to the

results for C
(0)
L +C

(1)
L [Eq. (5.96)], C

(2)
L [Eq. (5.119)] and C

(3)
L [Eq. (5.155)] above. In words,

one has endcaps, involving any number of switches, connected to any number of finite-

volume three-particle scattering amplitudes with intemediate factors of
[
A
]
. Recall that

[
A
]
, defined in Eq. (5.95), is closely related to the two-particle finite-volume propagator.

To bring Eq. (5.178) into a useful form we need identities relating all quantities with L

subscripts to infinite-volume quantities and finite-volume remainders.

We first consider A
′(n,u)
L , and for now seek only to rewrite this in terms of K(j,u,u)

3,L as well

as infinite-volume quantities. Our basic strategy is to move from left to right, replacing sums

with integrals plus sum-integral differences. The reason for moving from left to right is that

each sum then has a summand with only one singular factor, which we know how to handle.

All double singularities are removed, because each sum is adjacent to an integral which

removes the singularities in one of the two switch-states containing the summed coordinate.

We describe in some detail how the process works for q1 and then state the final result.

The sum over ~q1 has a potentially singular summand in the propagator ∆(P−q1−q2) (the

singularity in ∆(P−q1−a) being removed by the the P̃V integral). For this singularity to

be present, both q1 and q2 must be on shell, so we must first do the q0
1 and q0

2 integrals

and pick out the particle poles. In this singular term we can replace the sum over ~q1 with

an integral plus the sum-integral difference. Generalizing the analysis given earlier, we find

that the sum-integral difference gives

2A′(1,s)
iF

2ωL3
iK(n−1,u,u)

3,L . (5.182)

What remains are terms involving the P̃V integral over ~q1, and these can be repackaged

into a quantity with exactly the form of A
′(n,u)
L [Eq. (5.174)] except that the sum-integral

1/L3
∑

~q1
P̃V

∫
q1

is replaced by the four-momentum integral P̃V
∫
q1

. In this way the finite-

volume residue from the sum over ~q1 has been determined.

We now repeat this analysis for q2, finding that the F term is

2A′(2,s)
iF

2ωL3
iK(n−2,u,u)

3,L , (5.183)

while the remainder has the form of A
′(n,u)
L with sum-integrals over both q1 and q2 replaced
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by integrals. Continuing this pattern, we deduce

A
′(n,u)
L =

n−2∑

i=1

2A′(i,s)
iF

2ωL3
iK(n−i,u,u)

3,L + 2A′(n−1,s)iF iK2 +A′(n,u) . (5.184)

This result holds for n > 2, and agrees with Eq.(5.161) for n = 3. The infinite-volume

quantity A′(n,u) is given by the same expression as A
′(n,u)
L [Eq. (5.174)] except that all sums

are replaced with P̃V integrals, with the order being

P̃V

∫

qn

· · · P̃V

∫

q1

P̃V

∫

a
. (5.185)

The quantities A′(n,s) are defined in terms of A′(n,u) by changing variables exactly as for

A′(1,s) [see Eq. (5.141)].

The analysis for A
(n,u)
L is the mirror image of that for A

′(n,u)
L , so that the sums are now

dealt with moving from right to left. The result is

A
(n,u)
L =

n−2∑

i=1

iK(n−i,u,u)
3,L

iF

2ωL3
2A(i,s) + iK2iF2A(n−1,s) +A(n,u) . (5.186)

We treat C
(n)
L,0F in a similar fashion. Here we can choose to work from left to right or vice

versa—both choices lead to single singularities for each loop sum. As above, our convention

is to work from left to right. Since the analysis follows that for A
′(n,u)
L very closely, we

simply quote the result,

C
(n)
L,0F =

n−2∑

i=1

2A′(i,s)
iF

2ωL3
A

(n−i,u)
L + 2A′(n−1,s) iF

2ωL3
A(1,u) + C(n)

∞ , (5.187)

=

n−1∑

i=1

2A′(i,s)
iF

2ωL3
A

(n−i,u)
L + C(n)

∞ . (5.188)

To obtain the second form we have used A
(1,u)
L ≡ A(1,u). The quantity C

(n)
∞ takes the same

form as C
(n)
L,0F [Eq. (5.173)] except that all sums are replaced by integrals, ordered as

P̃V

∫

qn

· · · P̃V

∫

q1

P̃V

∫

a
P̃V

∫

a′
. (5.189)

The result (5.188) is valid for n > 1, and agrees with Eqs. (5.151) and (5.164) for n = 2

and 3, respectively.
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The next step towards simplifying the result for C
[B2]
L , Eq. (5.178), is to perform the

sums over the number of switches. In particular, from Eq. (5.184) we find

A
′(u)
L ≡

∞∑

n=1

A
′(n,u)
L = A′(u) + 2A′(s)

[
iF iK2 +

iF

2ωL3
iK(u,u)

3,L

]
, (5.190)

where

A′(u) ≡
∞∑

n=1

A′(n,u) and A′(s) ≡
∞∑

n=1

A′(n,s) . (5.191)

Similar definitions will be used for A(u) and A(s), and also for the amplitudes corresponding

to the third choice of momentum assignments, A′(s̃) and A(s̃). The latter were introduced

in Eq. (5.146).

An analogous result to Eq. (5.190) holds for the other endcap

A
(u)
L ≡

∞∑

n=1

A
(n,u)
L = A(u) +

[
iK2iF + iK(u,u)

3,L

iF

2ωL3
2A(s)

]
, (5.192)

while for the correlator sum we obtain

∞∑

n=0

C
(n)
L,0F = C [B2]

∞ + 2A′(s)
iF

2ωL3
A

(u)
L , (5.193)

where

C [B2]
∞ =

∞∑

n=0

C(n)
∞ , (5.194)

Substituting Eq. (5.192) into the result (5.193) allows us to rewrite the latter in terms of a

single finite-volume quantity, K(u,u)
3,L .

We can now express C
[B2]
L in terms of infinite-volume quantities together with K(u,u)

3,L .

This requires substituting Eqs. (5.190), (5.192) and (5.193) into Eq. (5.178) and using the

following identities

(
iF iK2 +

iF

2ωL3
iK(u,u)

3,L

)[
A
] ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n

=
[
A
] ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n
− iF

2ωL3
, (5.195)

=
[
A
] ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n(

iK2iF + iK(u,u)
3,L

iF

2ωL3

)
. (5.196)

After some algebra, we obtain a relatively simple form

C
[B2]
L = C [B2]

∞ + δC [B2]
∞ +A′[B2]

[
−2

3

iF

2ωL3
+
[
A
] ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n
]
A[B2] , (5.197)
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where

A′[B2] = σ∗ +A′(u) +A′(s) +A′(s̃) , A′[B2] = σ†∗ +A(u) +A(s) +A(s̃) , (5.198)

and

δC [B2]
∞ =

2

3
A′[B2] iF

2ωL3
(A(u) −A(s)) +

2

3
(A′(u) −A′(s)) iF

2ωL3
σ†∗ . (5.199)

Several comments are in order. First, we observe that summing over all switches has

led to a dramatic simplification in the expression for the correlator. This can be seen, for

example, by comparing even the one-switch expression (5.153) to Eq. (5.197). Second, to

obtain Eq. (5.197) we have made use of the fact, explained after Eq. (5.149), that, within our

derivation thus far, superscripts (s) and (s̃) are interchangeable. This allows us to write the

result in terms of endcaps, A′[B2] and A[B2], which are symmetric under particle interchange.

We stress that this symmetrization occurs only when working to all orders in the number

of switches, since it requires combining terms with different numbers of switches. Our third

comment also concerns symmetrization, or rather the its absence in Eq. (5.199). Recall that

particle-interchange symmetry was violated when we chose to analyze the loops in C
(n)
L,0F

moving from left to right, since this led to (s) quantities always being to the left of those with

superscripts (u). Forcing the endcaps into symmetric form leads to the remainder δC
[B2]
∞ .

Note that in the terms involving a (u)−(s) difference, we can freely interchange (s) and (s̃),

and we have used this freedom to choose both terms to involve (s). Although δC∞ appears

to be a finite-volume term (since it contains factors of F ), in fact, as we show below, it can

be rewritten as an infinite-volume quantity. This means that δC
[B2]
∞ can be absorbed into

an alternative infinite-volume quantity, used in place of C
[B2]
∞ . Since other contributions of

this type arise in the analysis that follows, we delay our definition of the replacement until

Eq. (5.243) below. We note that our job is not done, because the result (5.197) still contains

the asymmetric three-particle finite-volume scattering amplitude K(u,u)
3,L . We return shortly

to the task of rewriting this in terms of infinite-volume quantities.

First, however, we rewrite δC
[B2]
∞ in a manifestly infinite-volume form. We show how

this works for the first term in (5.199) from which the generalization to the second term is
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immediate. The steps are as follows:

2

3
A′[B2] iF

2ωL3
(A(u)−A(s)) =

1

3

1

L3

∑

~k

[
1

L3

∑

~a

−P̃V

∫

~a

]

×A′[B2](~k,~a)
iH(~k)H(~a)H(~bka)

2ωk2ωa2ωka(E−ωk−ωa−ωka)
[A(u)(~k,~a)−A(u)(~a,~k)] (5.200)

= −1

3

∫

~k
P̃V

∫

~a
A′[B2](~k,~a)

iH(~k)H(~a)H(~bka)

2ωk2ωa2ωka(E−ωk−ωa−ωka)
[A(u)(~k,~a)−A(u)(~a,~k)] (5.201)

=

∫

~k
A′[B2](~k)

iρ(~k)

3ωk
[A(u)(~k)−A(s)(~k)] = A′[B2] iρ

3ω
[A(u)−A(s)] , (5.202)

where in an abuse of notation, in the last line we have introduced the shorthand that

integration over ~k is implicit for a product involving ρ.

In the first step, we use the sum-minus-integral identity in reverse, as well as the def-

inition of A(s) [see Eq. (5.141)]. The momenta ~k and ~a are on shell, but, in general, the

third four-momentum, bka = P − k − a, is now off shell, Thus amplitudes are not invariant

under the full particle-interchange symmetry. Nevertheless, A′[B2](~k,~a) remains symmetric

under the interchange ~k ↔ ~a, while the A(u) − A(s) becomes a term which is manifestly

antisymmetric under this interchange. Since the remaining terms are symmetric, the entire

summand/integrand is antisymmetric. This observation allows us to drop the double sum,

since a symmetric sum over an antisymmetric summand clearly vanishes. The sum over ~k

can now be replaced by an integral, since the P̃V integral over ~a leads to a smooth function

of ~k. At this stage we obtain the second form of the right-hand side. The final step is to

notice that, if an iε pole prescription were used, then the double integration would also

vanish by symmetry. Thus it is only the ρ term in the definition of P̃V integration that

survives, and its form is obtained using Eqs. (5.59) and (5.60).

Applying a similar analysis to second term in Eq. (5.199), we find, in total,

δC [B2]
∞ = A′[B2] iρ

3ω
[A(u)−A(s)] + [A′(u)−A′(s)] iρ

3ω
σ†∗ , (5.203)

where, as above, integration over ~k is implicit.

This is a manifestly infinite-volume quantity depending only on on-shell (but not sym-

metric) amplitudes.
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Figure 5.18: Decomposition of K(4,u,u)
3,L . All external propagators are dropped, and the nota-

tion of Figs. 5.12 and 5.16 is used. (a) K(4,u,u)
3,L itself [see Eq. (5.175)]; (b) the most singular

term (with three singular propagators); (c) and (d): terms with two singular propagators

and their decompositions; (e), (f) and (g): terms with one singular propagator and their de-

compositions; (h), (i) and (j): non-singular terms. Terms in the decompositions are always

ordered from most to least singular. The treatment of loop momenta is indicated explicitly:

they are either summed (dashed box), integrated (integral sign) or the sum-minus-integral

identity is used (factor of F ). Where the order of integrals matters it is shown explicitly.
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The final identity we require is that for K(n,u,u)
3,L . The identities for n = 2 and 3 are given,

respectively, by Eqs. (5.138) and (5.172). To understand how the pattern generalizes to

arbitrary n it is useful to first work out explicitly the result for n = 4, since new effects occur

at this order. The decomposition of K(4,u,u)
3,L is shown diagrammatically in Fig. 5.18. Here

we are using a stripped-down diagrammatic notation in which external lines and momentum

labels are implicit. The basic method, however, is exactly as used earlier for n = 2 and

3: (i) do the time-component integrals over the loop momenta, and separate the result

into on-shell particle contributions and the remainders; (ii) separate each of the remaining

“diagonal” propagators and their attached factors of K2 into a singular part (containing

Gb) and the non-singular remainder; (iii) pull out the most singular term; (iv) analyze the

remainder by converting sums into integrals where possible, which in some cases leads to

residues containing factors of F . The key point is that after the most singular term has

been subtracted, there is always at least one choice of ordering of momentum sums in which

allows the use of the sum-minus-integral identity at each stage. For most terms in the

decomposition there is either a single such choice or the order is unimportant. However, at

n = 4 we first encounter a case where there is a significant choice of ordering to be made.

As n increases there are more such cases and we need a convention for how to deal with

them.

We now work through the different contributions to K(4,u,u)
3,L in some detail, starting from

the most singular and working to the least. We recall the notation [from Eq. (5.175) and

Fig. 5.17c] that q1 is the leftmost loop momentum and q2 the rightmost. The most singular

term is that shown in Fig. 5.18b, and gives the contribution

(b) = iK2iGiK2iGiK2iG[2ωL3]iK2 . (5.204)

This term must be left as a sum (which is implicit in our matrix notation).

Contributions with two singular propagators are those of Fig. 5.18c, its “reflection” (not

shown) in which the rightmost diagonal propagator is non-singular, and Fig. 5.18d. The

decomposition of the first of these is also shown in Fig. 5.18c. We must begin with q1

since the q2 sum runs over two singular propagators. We first convert the q1 sum into an

F -insertion plus an integral. For the F -term this is as far as we can go, since the q2 sum
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runs over singularities in both F and the propagator. For the integral over q1 we can repeat

the F plus integral decomposition for q2. Note that in the resulting double integral the

order of integration is important. The net result is that there are three terms, each with

different levels of singularity. The doubly-singular term gives

(c) [doubly singular] = 2iK(2,u,s)
df,3

iF

2ωL3
iK2iG[2ωL3]iK2 , (5.205)

while the term with one singularity is a contribution to

(c) [singly singular] ⊂ 2iK(3,u,s)
df,3 iF iK2 , (5.206)

and the non-singular term contributes to

(c) [non-singular] ⊂ iK(4,u,u)
df,3 , (5.207)

The reflected contribution is decomposed similarly.

The decomposition of the remaining term with two singular propagators is shown in

Fig. 5.18d. Here, since the singular propagators are separated, the sum-integral identity

can be applied to each independently. Thus there are four terms in the decomposition. The

doubly-singular one is

(d) [doubly singular] = iK2iF4iK(2,s,s)
df,3 iF iK2 . (5.208)

Note that here both (u)’s have been switched to (s)’s. Each switch comes with a factor of

2, leading to the overall factor of 4. The singly-singular terms contribute to 2iK(3,u,s)
df,3 iF iK2

and iK2iF2iK(3,s,u)
df,3 , while the non-singular terms contribute to iK(4,u,u)

df,3 .

There are three diagrams containing one singular propagator: Fig. 5.18e, its reflection,

and Fig. 5.18f. In the first, the sum over q2 can be immediately converted to an integral,

since the summand is non-singular. For q1 we obtain the usual F -term plus integral. The

former gives rise to another contribution to iK2iF2iK(3,s,u)
df,3 , while the latter contributes to

iK(4,u,u)
df,3 . Analogous results hold for the reflecton of Fig. 5.18e.

The diagram of Fig. 5.18f leads to a new effect. Here we can use the sum-integral identity

either on ~q1 or ~q2. Our convention (as above) is to work from left to right when there is

such a choice. This gives the singly-singular term

(f) [singly singular] = 2iK(2,u,s)
df,3

iF

2ωL3
iK(2,u,u)

df,3 , (5.209)
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where our convention has led to the (s) being on the left side of the F , rather than on

the right. The non-singular term contributes to iK(4,u,u)
df,3 . Here our convention leads to a

definite (left to right) ordering of the P̃V integrals.

Another new feature of the n = 4 analysis is the appearance of singular contributions in

which one of the q0
j integrals does not circle the particle pole. The corresponding diagrams

are Fig. 5.18g and its reflection. The decomposition exactly follows that of Fig. 5.18e.

Finally, we reach the completely non-singular contributions, where sums can be im-

mediately converted to integrals. There are four such diagrams, Fig. 5.18h, its reflection,

Fig. 5.18i and Fig. 5.18j. These all contribute to iK(4,u,u)
df,3 .

Adding all contributions we find the total result

iK(4,u,u)
3,L = iK2iGiK2iGiK2[iG2ωL3]iK2 + iK2iG[2ωL3]iK2

iF

2ωL3
2iK(2,s,u)

df,3

+ 2iK(2,u,s)
df,3

iF

2ωL3
iK2iG[2ωL3]iK2 + iK2iF4iK(2,s,s)

df,3 iF iK2 + 2iK(3,u,s)
df,3 iF iK2

+ iK2iF2iK(3,s,u)
df,3 + 2iK(2,u,s)

df,3

iF

2ωL3
iK(2,u,u)

df,3 + iK(4,u,u)
df,3 , (5.210)

where we have ordered terms in decreasing strength of divergence. The only aspect of this

result not explained above is that contributions combine properly to give the quantities

K(3,u,s)
df,3 and K(3,s,u)

df,3 in the fifth and sixth terms, respectively. For example, the K(3,u,s)
df,3

term receives the required four contributions (see Fig. 5.16) from diagrams (c), (d) and the

reflections of (e) and (g). One can demonstrate that the correct contributions occur in all

cases by observing that (i) the result (5.210) provides a complete classification of possible

divergence structures and (ii) that expanding out each term in (5.210) leads to a unique

set of contributions each of which is necessarily present in the decomposition of K(4,u,u)
3,L .

Finally, we note that the non-singular term in Eq. (5.210), K(4,u,u)
df,3 , is simply defined as the

sum of contributions from all the diagrams in Fig. 5.18 (plus appropriate reflections) that

contain only loop integrals.

We are now ready to explain the result for general iK(n,u,u)
3,L . What arises are sequences

alternating between one of the K’s,

iK2, iK(j,u,u)
df,3 , 2iK(j,s,u)

df,3 , 2iK(j,u,s)
df,3 and 4iK(j,s,s)

df,3 , (5.211)
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and one of

iF

2ωL3
and iG . (5.212)

All possible combinations should be included, subject to the following rules

• The number of switches must add up to n. This number is given by the total number

of F ’s and G’s plus the number of switches in the Kdf,3’s.

• There must be a K2 or Kdf,3 on both ends.

• Each Kdf,3 must have F on both sides unless external. This is because the loop

momenta next to a Kdf,3 have only one singular propagator in their summands and so

the sum-integral identity can be used. This implies, given the rules above, that each

G must have a K2 (and not a Kdf,3) on both sides.

• F ’s must have a Kdf,3 on at least one side, or, equivalently, F ’s always appear on

one side or other of a Kdf,3. This is because one cannot use the sum-integral identity

in the middle of a sequence of singular propagators, since each loop sum runs over

two singularities. The identity can only be used at the end of the sequence, and only

then if it terminates with the non-singular part of a propagator. An example of this

rule is that Fig. 5.18b cannot be decomposed using the sum-integral identity, whereas

Fig. 5.18c can at the left-hand end. A consequence of this rule is that the only long

subsequences involving K2 have the form . . . iK2iGiK2iGiK2 . . . . These correspond to

diagrams with sequences of singular propagators.

• In a sequence of the form . . . iK2iGiK2iGiK2 . . . the rightmost G is multiplied on the

right by [2ωL3]. This arises from keeping track of on-shell propagators.

• The right-hand superscript of each Kdf,3 is (s) unless it is external, when it is a (u).

Examples are the third, fifth and seventh terms in the expression (5.210) for K(4,u,u)
3,L .

• The middle superscript of each Kdf,3 is (s) unless it is either external or it appears

to the right of another Kdf,3, separated by a single F , in which cases it is a (u). The
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difference from the previous rule arises due to our “left-to-right” convention of dealing

with loop momenta. An example of the new exception is given by the penultimate

term in Eq. (5.210).

A simple consequence of these rules is that the most divergent contribution to iK(n,u,u)
3,L is

iK2 (iGiK2)n−2 iG[2ωL3]iK2 , (5.213)

Similarly, sequences having this form (but with smaller values of n) can appear both con-

necting the ends to factors of Kdf,3, or between such factors.

It is simpler to display the full result for the summed quantity K(u,u)
3,L =

∑∞
n=2K

(n,u,u)
3,L

than for K(n,u,u)
3,L . This removes the constraint of the first rule, so that the sequences are

now composed of the quantities

K(u,u)
df,3 ≡

∞∑

n=2

K(n,u,u)
df,3 , K(u,s)

df,3 ≡
∞∑

n=2

K(n,u,s)
df,3 , K(s,u)

df,3 ≡
∞∑

n=2

K(n,s,u)
df,3 and K(s,s)

df,3 ≡
∞∑

n=2

K(n,s,s)
df,3 .

(5.214)

In addition, the sequences of divergent terms of the form (5.213) can be summed, leading

to
∞∑

n=2

iK2 (iGiK2)n−2 iG[2ωL3]iK2 = iT iG[2ωL3]iK2 = iK2iGiT [2ωL3] , (5.215)

where

iT ≡ 1

1− iK2iG
iK2 = iK2

1

1− iGiK2
. (5.216)

We have used here the result that K2 commutes with [2ωL3], since both are diagonal.

To show the result in a compact form we collect the Kdf,3 into a two-by-two matrix.

Now is a good point to recall that, using the arguments following Eq. (5.149), we can freely

interchange in our formulae the superscripts (s) and (s̃). This is allowed because the rules

always lead to quantities with (s) superscripts being adjacent to those with (u) superscripts

(with an intervening factor of F ). This allows us, for example, to replace 2K(s,u)
df,3 with

K(s,u)
df,3 + K(s̃,u)

df,3 . The point of such changes is to move towards a physical quantity which

contains the symmetric combination (u) + (s) + (s̃) for all superscripts. With this in mind,
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we introduce the matrix of matrices

(
iKdf,3

)
≡




iK(u,u)
df,3 iK(u,s)

df,3 + iK(u,s̃)
df,3

iK(s,u)
df,3 + iK(s̃,u)

df,3 iK(s,s)
df,3 + iK(s,s̃)

df,3 + iK(s̃,s)
df,3 + iK(s̃,s̃)

df,3


 . (5.217)

The quantity symmetric under particle exchange is then

iK[B2]
df,3 ≡

(

1 1

)(
iKdf,3

)



1

1


 . (5.218)

Using this matrix notation, and implementing the rules described above, we find

iK(u,u)
3,L = iT iG[2ωL3]iK2 +

(

1 iT iF

)(
iKdf,3

)

×
∞∑

j=0








0

1




iF

2ωL3

(

1 iT iF

)(
iKdf,3

)




j


1

iF
2ωL3 iT2ωL3


 . (5.219)

We have succeeded in pulling out explicit finite-volume factors, with the infinite-volume

quantities being K2 and the two-by-two matrix, (Kdf,3). The latter, however, does not

appear in the symmetric form (5.218). In particular, our left-to-right convention leads to

the presence of an assymetric matrix between factors of (Kdf,3).

The final step is to insert the result (5.219) into our expression for C
[B2]
L , Eq. (5.197),

and simplify. We begin by keeping only the first term in (5.219), i.e. that which arises from

summing the most divergent contributions to K(u,u)
3,L . We find

C
[B2]
L − C [B2]

∞ − δC [B2]
∞ = A′[B2]

[
−2

3

iF

2ωL3
+
[
A
] ∞∑

n=0

(
iK(u,u)

3,L

[
A
])n
]
A[B2] (5.220)

= A′[B2]iF3A
[B2] +O(Kdf,3) , (5.221)

where the first line is a restatement of Eq. (5.197), and the second contains the new quantity

iF3 =
iF

2ωL3

[
−2

3
+

1

1− iT iF

]
. (5.222)
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To obtain this form for F3 we have used

[
A
] ∞∑

n=0

(
iT iG[2ωL3]iK2

[
A
])n

=
iF

2ωL3

1

1− iT iF . (5.223)

Here the two sides are different ways of writing the sum of sequences in which F ’s or G’s

alternate with K2’s in all possible orders, with the constraint that sequences must have F ’s

at both ends. On the left one sums first over the number of intermediate F ’s and then sums

over G’s, while on the right the roles of F and G are interchanged. In the following we will

also need two further ways of writing this quantity

iF

2ωL3

1

1− iT iF =

{ ∞∑

n=0

([
A
]
iT iG[2ωL3]iK2

)n
}
[
A
]

=
1

1− iF
2ωL3 iT [2ωL3]

iF

2ωL3
. (5.224)

Next we consider terms proportional to Kdf,3. These are obtained by replacing one of

the factors of K(u,u)
3,L in the sum over n in Eq. (5.220) with the term linear in Kdf,3 from

Eq. (5.219), with all other K(u,u)
3,L ’s replaced by the most divergent term from Eq. (5.219).

This leads to the contribution

C
[B2]
L − C [B2]

∞ − δC [B2]
∞ ⊃

A′[B2] iF

2ωL3

1

1− iT iF

(

1 iT iF

)(
iKdf,3

)



1

iF
2ωL3 iT2ωL3




× 1

1− iF
2ωL3 iT [2ωL3]

iF

2ωL3
A[B2] . (5.225)

We next use the identities

iF

2ωL3

1

1− iT iF

(

1 iT iF

)
= iF3

(

1 1

)
+

iF

2ωL3

(
2
3 −1

3

)
(5.226)




1

iF
2ωL3 iT2ωL3




1

1− iF
2ωL3 iT [2ωL3]

iF

2ωL3
=




1

1


 iF3 +




2/3

−1/3




iF

2ωL3
(5.227)
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to rewrite the right-hand side of Eq. (5.225) as

A′[B2]

{
iF3

(

1 1

)
+

iF

2ωL3

(
2
3 −1

3

)}(
iKdf,3

)

×








1

1


 iF3 +




2/3

−1/3




iF

2ωL3




A[B2] . (5.228)

Here we have separated out the symmetric part of (Kdf,3), which is multiplied on both sides

by F3, from the asymmetric parts. The latter can be analyzed in the same way as δC
[B2]
∞

[see Eq. (5.202) and subsequent text]. This is because the vector (2, −1) projects, both

from the left and right, onto a (u)− (s) combination (if we use the freedom to interchange

(s̃) and (s) when separated from symmetric quantity such as A′[B2] by an F ). For example,

using this freedom one finds

A′[B2] iF

2ωL3

(
2
3 −1

3

)(
iKdf,3

)



1

1


 =

A′[B2] iF

2ωL3

2

3

{
iK(u,u)

df,3 − iK
(s,u)
df,3 + iK(u,s)

df,3 − iK
(s,s)
df,3 + iK(u,s̃)

df,3 − iK
(s,s̃)
df,3

}
. (5.229)

This means that, just as in Eq. (5.202), F/L3 can be replaced by ρ with the (implicit) sum

over the spectator momentum replaced by an integral. The same holds for the F on the

right of (Kdf,3). We can therefore rewrite Eq. (5.228) as

A′[B2]

{
iF3

(

1 1

)
+
iρ

2ω

(
2
3 −1

3

)}(
iKdf,3

)







1

1


 iF3 +




2/3

−1/3



iρ

2ω




A[B2] ,

(5.230)

again using the notation with implicit integration for ρ factors that was introduced in

Eq. (5.202). The contribution linear in Kdf,3 can thus be broken up into four parts: (i) a

finite-volume term involving symmetric quantities

A′[B2]iF3iK[B2]
df,3 iF3A

[B2] ; (5.231)
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(ii) a partially asymmetric term with ρ on the left

A′[B2]iF3
iρ

2ω

(
2
3 −1

3

)(
iKdf,3

)



1

1


 iF3A

[B2] , (5.232)

which can be interpreted as δ(A′[B2])iF3A
[B2], where δ(A′[B2]) absorbs the infinite-volume

integral involving ρ; (iii) the reflection of (ii) which gives rise to A′[B2]iF3δ(A
[B2]); and (iv)

the infinite-volume quantity

A′[B2] iρ

2ω

(
2
3 −1

3

)(
iKdf,3

)



2/3

−1/3



iρ

2ω
A[B2] , (5.233)

which is absorbed by replacing C
[B2]
∞ with the alternative infinite-volume quantity defined

in Eq. (5.243), below.

To see the general pattern we next consider terms contributing to C
[B2]
L that are quadratic

in Kdf,3. These arise from either a single K(u,u)
3,L term having two factors of Kdf,3 or two K(u,u)

3,L

terms each containing one such factor. Adding these, using the identities (5.226-5.227), and

replacing F with ρ where allowed, we find

A′[B2]

{
iF3

(

1 1

)
+
iρ

2ω

(
2
3 −1

3

)}(
iKdf,3

)



1

1




×
{
iF3

(

1 1

)
+
iρ

2ω

(
2
3 −1

3

)}(
iKdf,3

)

×








1

1


 iF3 +




2/3

−1/3



iρ

2ω




A[B2] . (5.234)

Extending this analysis, we find that terms of higher order in Kdf,3 are obtained by inserting

additional factors of the matrix


1

1




{
iF3

(

1 1

)
+
iρ

2ω

(
2
3 −1

3

)}(
iKdf,3

)
(5.235)
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after the final (Kdf,3) in Eq. (5.234).

Our final task is to reorganize the series one last time into infinite-volume kernels sep-

arated by finite-volume quantities. This is done by generalizing the analysis described

following Eq. (5.228).

The following asymmetric quantities are needed

iKxdf,3 =

(
2
3 −1

3

)(
iKdf,3

)



1

1


 , (5.236)

iKydf,3 =

(

1 1

)(
iKdf,3

)



2/3

−1/3


 , (5.237)

iKxydf,3 =

(
2
3 −1

3

)(
iKdf,3

)



2/3

−1/3


 . (5.238)

We find a simple geometric series

C
[B2]
L = C [B2,ρ]

∞ +
∞∑

n=0

A′[B2,ρ]
[
iF3iK[B2,ρ]

df,3

]n
iF3A

[B2,ρ] , (5.239)

where the redefined infinite-volume quantities are

iK[B2,ρ]
df,3 ≡

∞∑

n=0

iK[B2]
df,3

[
iρ

2ω
iKxdf,3

]n
, (5.240)

A′[B2,ρ] ≡
∞∑

n=0

A′[B2]

[
iρ

2ω
iKxdf,3

]n
, (5.241)

A[B2,ρ] ≡
{
iKydf,3

iρ

2ω
+ iK[B2,ρ]

df,3

iρ

2ω
iKxydf,3

}
A[B2] , (5.242)

C [B2,ρ]
∞ ≡ C [B2]

∞ + δC [B2]
∞ +A′[B2,ρ] iρ

2ω
iKxydf,3

iρ

2ω
A[B2] . (5.243)

Our notation here is rather compact, with implicit integrals wherever there is a factor of

ρ, but we stress that it is straightforward to rewrite these definitions as integral equations.

We also note that iK[B2,ρ]
df,3 , A′[B2,ρ] and A[B2,ρ] are all symmetric under external particle

interchange. This is because they have the vector (1, 1), or its transpose, at all ends involving

external particles.
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We can bring the result of Eq. (5.239) into familiar form by summing the geometric

series, leading to

C
[B2]
L = C [B2,ρ]

∞ +A′[B2,ρ] 1

1− iF3iK[B2,ρ]
df,3

iF3A
[B2,ρ] . (5.244)

This completes the most complicated part of the analysis.

5.3.5 Including three-to-three insertions

In this section we add in all diagrams containing three-to-three (B3) kernels, and so

complete the derivation. The new diagrams we are considering are those exemplified by the

first and last lines of Fig. 5.4. If there were only B3 kernels, with no B2’s, the analysis would

be a simple generalization of that for two particles. The complications come from the need

to add all possible B2 kernels between two B3’s (or between σ and a B3, or a B3 and σ†). A

key point here is that the properties of B3 are the same as those of σ and σ†, namely that

it is symmetric in external momenta (separately on both sides) and is a smooth function of

these momenta (within the range of E that we are considering). This means that we can

piggyback on the previous analysis in which we added all possible B2’s between σ and σ†.

In particular, a formula analogous to Eq. (5.244) holds for each segment of a diagram

between two B3’s (and for that between σ and a B3, and that between a B3 and σ†). In

words, Eq. (5.244) tells us that the finite-volume correlator can be written as the sum of

an infinite-volume part and a part containing the finite-volume function F3. The infinite-

volume part is obtained in two stages: first, for each diagram replace all loop sums with P̃V

integrals ordered in an appropriate way; second, add in additional terms involving ρ, namely

those of Eqs. (5.199) and (5.243). In the second term in Eq. (5.244), the endcaps A′[B2,ρ]

and A[B2,ρ] are built up by decorating σ and σ†, respectively, with all possible B2 insertions,

converting sums to P̃V integrals, and then adding in the “ρ terms” of Eqs. (5.241) and

(5.242).

Exactly the same analysis holds for segments of diagrams in which B3’s are playing the

role of endcaps. The B3’s are decorated on both sides with B2’s, and can connect to an
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adjacent B3 (or σ/σ†) either through infinite-volume loops or through a factor of

Z =
1

1− iF3iK[B2,ρ]
df,3

iF3 , (5.245)

following decoration analogous to that in A′[B2,ρ] and A[B2,ρ].

To present the result, we first introduce “decoration operators” D
[B2,ρ]
C , D

[B2,ρ]
A′ and

D
[B2,ρ]
A , given by

C [B2]
∞ ≡ σD[B2,ρ]

C σ† , A′[B2,ρ] ≡ σD[B2,ρ]
A′ , and A[B2,ρ] ≡ D[B2,ρ]

A σ† . (5.246)

These are infinite-volume integral operators defined implicitly by the work of previous sub-

sections. This allows us to write Eq. 5.244 as

C
[B2]
L = σ

{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
σ† . (5.247)

The reason for using this notation is that it works also for segments of diagrams involving

B3’s at the ends. Thus, for example, a segment of the finite-volume correlator between two

B3’s can be written

. . . B3

{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
B3 · · · . (5.248)

The key point is that the same decoration operators appear as in (5.247).

We can now write down the result for the full finite-volume correlator

CL = σ
{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
σ†

+ σ
{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
iB3

{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
σ†

+ σ
{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
iB3

{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
iB3

×
{
D

[B2,ρ]
C +D

[B2,ρ]
A′ ZD[B2,ρ]

A

}
σ† + . . . (5.249)

As in the previous subsection, this can be reorganized into the form

CL = C∞ +
∞∑

n=0

A′
[
ZiB[B2,ρ]

3

]nZA (5.250)
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where

iB
[B2,ρ]
3 =

∞∑

n=0

D
[B2,ρ]
A

[
iB3D

[B2,ρ]
C

]n
iB3D

[B2,ρ]
A′ , (5.251)

A′ =

∞∑

n=0

σ
[
D

[B2,ρ]
C iB3

]n
D

[B2,ρ]
A′ , (5.252)

A =
∞∑

n=0

D
[B2,ρ]
A

[
iB3D

[B2,ρ]
C

]n
σ† , (5.253)

C∞ =

∞∑

n=0

σD
[B2,ρ]
C

[
iB3D

[B2,ρ]
C

]n
σ† . (5.254)

The latter three equations give the final forms of the endcaps and the infinite-volume cor-

relator, now including all factors of B3.

We can now sum the geometric series in Eq. (5.250) and perform some simple algebraic

manipulations to bring the result to its final form

CL = C∞ +A′
1

1− iF3iKdf,3
iF3A , (5.255)

where

Kdf,3 ≡ K[B2,ρ]
df,3 +B

[B2,ρ]
3 , (5.256)

is the full divergence-free three-to-three amplitude.

We close our derivation by returning to an issue raised in the introduction to this section,

namely the possibility of poles in A, A′ and C∞. We argue that, while such poles can be

present, they cannot contribute to the finite-volume spectrum, i.e. they do not lead to poles

in CL. Only solutions to the quantization condition (5.18) lead to poles in CL.

The intuitive argument for this result is that A, A′ and C∞ are infinite volume quantities.

While they are non-standard, being defined with the P̃V prescription and involving the

decoration described above, they have no dependence on L. Thus, if they did lead to poles in

CL, this would imply states in the finite-volume spectrum whose energies were independent

of L (up to corrections of the form exp(−mL)). The only plausible state with this property is

a single particle, but this is excluded by our choice of energy range (m < E∗ < 5m). Three-

particle bound states will have finite-volume corrections that are exponentially suppressed

by exp(−γL), with γ � m the binding momentum, but these should be captured by our
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analysis, just as is the case for two-particle bound states [151]. Finally, above-threshold

“scattering” states should have energies with power-law dependence on L. This is true

in the two-particle case, and we expect it to continue to hold for three particles. This is

confirmed, for example, by the analysis of three (and more) particles using non-relativistic

quantum mechanics [245, 246].

For the two-particle analysis this argument can be made more rigorous, and it is infor-

mative to see how this works. We have recalled the two-particle quantization condition in

Sec. 5.3.1, and give here the form of the corresponding two-particle finite-volume correlator:

CL,2 = C∞,2 + iA′2
1

1 + FK2
FA2 , (5.257)

The subscripts on A, A′ and C indicate that these are the two-particle endcaps and correla-

tor, while F is defined in Eqs. (5.24)-(5.24) (although here we drop the spectator momentum

index).

What we now show is that there are poles in A2, A′2 and C∞,2, but these cancel in CL,2.

To see this we use the freedom to arbitrarily choose the interpolating functions σ and σ†

without affecting the position of poles in CL,2. Specifically, we set both σ and σ† equal

to the two-particle Bethe-Salpeter kernel iB2, which, we recall, is a smooth non-singular

function. One then finds that

C∞,2 = iK2 − iB2 and A2 = A′2 = K2 . (5.258)

Inserting these results into Eq. (257) we find that

CL,2 = −iB2 + iK2 + iK2
1

1− iF iK2
iF iK2 = −iB2 +

i

K−1
2 + F

. (5.259)

From this we draw two conclusions. First, A2, A′2 and C∞,2 have poles whenever K2 diverges.

Such poles occur, for a given angular momentum, when δ` = π/2 modπ. Thus, using the

P̃V prescription, there are, in general, poles in A2, A′2 and C∞,2. Second, these poles cancel

in CL,2, as shown by the second form in Eq. (5.259), which is clearly finite when K2 diverges.

We suspect that a similar result holds for the three-particle analysis, but have not yet

been able to demonstrate this. Thus, in the three-particle case we must rely for now on the

intuitive argument given above.
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5.4 Conclusion of three-particle analysis

In this chapter we have presented and derived a quantization condition that relates the finite-

volume spectrum to two-to-two and three-to-three infinite-volume scattering quantities. In

Section 5.1 we have explained this relation in detail, so that one may use this section alone to

understand our result. Also in this section, we have explained that on-shell divergences in the

three-to-three scattering amplitude make it an unsuitable quantity to directly extract from

the finite-volume spectrum. This observation, together with other technical complications

explained in the derivation, led us to a result which depends on a non-standard, infinite-

volume three-to-three K-matrix, denoted Kdf,3.

This three-particle K-matrix is a smooth-function of three-particle phase space, and thus

has a uniformly convergent partial wave expansion. In Section 5.2 we have explained how

approximating Kdf,3 (as well as the two-particle K-matrix) with a truncated partial-wave

expansion leads to a quantization condition with a finite number of free parameters. This

shows that our quantization condition, like Lüscher’s well known two-particle condition,

may be practically useful in extracting scattering information.

The bulk of this work is the derivation, presented in Section 5.3. In this section we

have introduced a skeleton expansion which describes an arbitrary relativistic field theory

with a single scalar particle that interacts according to any even-legged vertices. We have

then analyzed all diagrams in the expansion in finite-volume, dividing the derivation into

subsections according to the types of diagrams considered. We have shown how summing

all diagrams gives our main result.

In future work we plan to demonstrate the utility of our result in various applications.

First, in a forthcoming note, we present a perturbative expansion of our quantization condi-

tion in powers of 1/L. This expansion agrees with existing expansions that were calculated

in Refs. [245, 246] using non-relativistic quantum mechanics, and provides a nontrivial check

on our relation. Next we aim to relate our three-particle infinite-volume quantity Kdf,3 to

more standard scattering observables. This will require converting the non-standard pole-

prescription used in all Feynman diagrams, to the standard iε prescription. The analysis is

expected to be similar to the derivation presented here, but a careful study is required.
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Chapter 6

CONCLUSION

In this thesis we have shown how one may relate the finite-volume spectrum and finite-

volume matrix elements to various multi-hadron infinite-volume observables. These relations

are of importance to LQCD because only finite-volume quantities are accessible in numerical

LQCD calculations. Indeed, the formalism presented here provides the only known method

to systemically determine multi-hadron observables from the underlying theory.

The ultimate test of these ideas is to apply them to finite-volume data. For the formal-

ism presented in Chapter 2, this has already been achieved with a benchmark calculation

of the πK-ηK system by Ref. [92]. For the formalism of Chapters 3-5 this remains to be

completed. This will be a particular challenge for the formalism of Chapter 5. Because

three-particle phase space is more complicated than that for two-particles, extracting scat-

tering information from the spectrum in this sector is more challenging. However, the work

presented above shows that this is possible in principle, and given the success in the compli-

cated πK-ηK system, we are encouraged that, also for three particles, LQCD can contribute

physical information.
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Baryon-Baryon Scattering, arXiv:1401.5569.

[167] R. A. Briceno, Two-particle multichannel systems in a finite volume with arbitrary
spin, arXiv:1401.3312.

http://xxx.lanl.gov/abs/nucl-th/0402051
http://xxx.lanl.gov/abs/hep-lat/0404001
http://xxx.lanl.gov/abs/0806.4495
http://xxx.lanl.gov/abs/1107.1272
http://xxx.lanl.gov/abs/1206.4141
http://xxx.lanl.gov/abs/0910.2772
http://xxx.lanl.gov/abs/1311.6032
http://xxx.lanl.gov/abs/1305.4903
http://xxx.lanl.gov/abs/1309.3556
http://xxx.lanl.gov/abs/1311.7686
http://xxx.lanl.gov/abs/1209.2201
http://xxx.lanl.gov/abs/1211.0929
http://xxx.lanl.gov/abs/1401.5569
http://xxx.lanl.gov/abs/1401.3312


208

[168] M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle
quantization condition, arXiv:1311.4848.

[169] CLQCD Collaboration Collaboration, X. Li et al., Anisotropic lattice calculation
of pion scattering using an asymmetric box, JHEP 0706 (2007) 053,
[hep-lat/0703015].

[170] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, et al., Ab-Initio
Determination of Light Hadron Masses, Science 322 (2008) 1224–1227,
[arXiv:0906.3599].

[171] NPLQCD Collaboration Collaboration, S. R. Beane et al., Evidence for a Bound
H-dibaryon from Lattice QCD, Phys.Rev.Lett. 106 (2011) 162001,
[arXiv:1012.3812].

[172] S. R. Beane, E. Chang, W. Detmold, B. Joo, H. Lin, et al., Present Constraints on
the H-dibaryon at the Physical Point from Lattice QCD, Mod.Phys.Lett. A26 (2011)
2587–2595, [arXiv:1103.2821].

[173] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. Lin, et al., Light Nuclei and
Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor
Symmetry, Phys.Rev. D87 (2013) 034506, [arXiv:1206.5219].

[174] S. Beane, E. Chang, S. Cohen, W. Detmold, H.-W. Lin, et al., Hyperon-Nucleon
Interactions and the Composition of Dense Nuclear Matter from Quantum
Chromodynamics, Phys.Rev.Lett. 109 (2012) 172001, [arXiv:1204.3606].

[175] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa, Helium nuclei, deuteron
and dineutron in 2+1 flavor lattice QCD, Phys.Rev. D86 (2012) 074514,
[arXiv:1207.4277].

[176] NPLQCD Collaboration Collaboration, S. R. Beane et al., The Deuteron and
Exotic Two-Body Bound States from Lattice QCD, Phys.Rev. D85 (2012) 054511,
[arXiv:1109.2889].

[177] S. Beane, E. Chang, S. Cohen, W. Detmold, P. Junnarkar, et al., Nucleon-Nucleon
Scattering Parameters in the Limit of SU(3) Flavor Symmetry, Phys.Rev. C88
(2013) 024003, [arXiv:1301.5790].

[178] NPLQCD Collaboration Collaboration, S. R. Beane et al., The I=2 pipi S-wave
Scattering Phase Shift from Lattice QCD, Phys.Rev. D85 (2012) 034505,
[arXiv:1107.5023].

[179] C. S. Pelissier, A. Alexandru, and F. X. Lee, ρ meson decay on asymmetrical
lattices, PoS LATTICE2011 (2011) 134, [arXiv:1111.2314].

http://xxx.lanl.gov/abs/1311.4848
http://xxx.lanl.gov/abs/hep-lat/0703015
http://xxx.lanl.gov/abs/0906.3599
http://xxx.lanl.gov/abs/1012.3812
http://xxx.lanl.gov/abs/1103.2821
http://xxx.lanl.gov/abs/1206.5219
http://xxx.lanl.gov/abs/1204.3606
http://xxx.lanl.gov/abs/1207.4277
http://xxx.lanl.gov/abs/1109.2889
http://xxx.lanl.gov/abs/1301.5790
http://xxx.lanl.gov/abs/1107.5023
http://xxx.lanl.gov/abs/1111.2314


209

[180] CP-PACS Collaboration Collaboration, S. Aoki et al., Lattice QCD Calculation
of the rho Meson Decay Width, Phys.Rev. D76 (2007) 094506, [arXiv:0708.3705].

[181] C. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, Coupled channel analysis of the
rho meson decay in lattice QCD, Phys.Rev. D84 (2011) 054503, [arXiv:1105.5636].

[182] C. Pelissier and A. Alexandru, Resonance parameters of the rho-meson from
asymmetrical lattices, Phys.Rev. D87 (2013) 014503, [arXiv:1211.0092].
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Appendix A

TWO-CHANNEL WATSON’S THEOREM

In this appendix we work out the consequences of Watson’s theorem for the phases of

the matrix elements of interest, 〈ππ|HW (0)|D〉 and 〈KK|HW (0)|D〉. We assume at first

that HW is T invariant, and describe the generalization to non-invariant Hamiltonians at

the end. We closely follow the textbook presentation given in Ref. [248].

We consider the 3 × 3 S-matrix with the three states being the hypothetical D meson

(at rest) and the s-wave ππ and KK states. We assume that we are in the kinematic regime

described in the main text, so that the 3× 3 S-matrix is unitary. Although we introduce a

weak coupling between the D and the two particle states, so that the D is a resonance, its

width is of second-order in the weak interaction and thus can be ignored at the linear order

to which we work. Thus it is valid to treat it as an asymptotic state.

Watson’s theorem follows by breaking the S-matrix into a strong part S(0) and a weak

part SW . The strong part is T invariant, and, since we use states which have definite

(positive) T-parity, can be taken to be symmetric. This fixes the phases of the ππ and

KK states, though not their overall signs. Extending the dimensionless, strong-coupling

S-matrix of Eq. (2.47) to include the D gives

S(0) =




1 0

0 Ss


 , (A.1)

where 1 is the 1 × 1 identity and Ss is the 2 × 2 s-wave S-matrix given in (2.47). The

weak part only contains couplings between the D and the two-particle states, and in 3× 3
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notation is

SW =




0 SWD,ππ SWD,KK

SWππ,D 0 0

SWKK,D 0 0




. (A.2)

The assumed T invariance implies that it, too, is symmetric. The non-zero elements of SW

are proportional to the desired matrix elements

SWj,D = cPjj〈j|[−iHW (0)]|D〉 , (A.3)

where j = 1, 2 runs over the ππ and KK channels, P is the square root of the phase space

factor defined in Eq. (2.46), and c is a known real constant whose value will not be needed.

Unitarity of the complete S-matrix implies that the terms linear in the weak interaction

satisfy

iSW = S(0)
(
iSW

)†
S(0) . (A.4)

This implies that

iSWj,D = Ssjk
(
iSWD,k

)∗
= Ssjk

(
iSWk,D

)∗
, (A.5)

where in the last step we have used the symmetry of SW . Using the explicit form for the

two-channel S-matrix1

Ss = R−1



e2iδ1 0

0 e2iδ2


R , (A.6)

with

R =




cε sε

− sε cε


 , (A.7)

we find

iRjkS
W
k,D = e2iδj

(
iRjkS

W
k,D

)∗
. (A.8)

1For simplicity of presentation, we are here using δ1 = δα and δ2 = δβ .
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It follows that the phase of iRjkS
W
k,D is eiδj . This is the desired generalization of Watson’s

theorem to two channels. Thus the quantities

vj = e−iδj
1

c

√
4πE∗ iRjkS

W
k,D (A.9)

are real. Using (A.3) we can rewrite the vj as in Eqs. (3.15) and (3.16).

If the weak interaction is not T invariant, then SWj,D will contain some number of T-

violating phases. Since we are working to linear order in the weak interaction, we can break

up HW into parts each with a single T-violating phase and treat each separately. Each such

part has an overall phase eiφT , and the symmetry of the S-matrix is replaced by

SWD,k(φT ) = SWk,D(−φT ) . (A.10)

However, if we first pull out the overall phase by hand, then the symmetry of ∆S is restored,

and Watson’s theorem applies to the residue.
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Appendix B

CANCELATION OF FREE POLES

At arriving at the final expression for the two-point correlation, Eq. 4.55, we argued

that the free particle poles of the integrand of Eq. 4.43 do not contribute, and here we give

a proof of this statement. In Sections 4.1 & 4.2, we constructed operators that are in the

irrep of the symmetry group of the system, but the cancelation of free poles cannot depend

on this fact. It must only depend on the fact that the particles interactions are not exactly

zero. If one would choose to not properly define an operator with good quantum numbers,

then Eq. 4.19 would acquire an additional sum over all possible irreps that have overlap

with the operator of interest. This in turn would lead to a far less reliable extraction of the

spectrum since multiple irreps could in principle have nearly degenerate eigenstates. With

this caveat in mind, we decide to illustrate the cancelation of free particle poles using a set

of generic operators with no particular set of quantum numbers

A(x0,P) =
∑

k

a(k)ϕ(x0,P− k) ϕ̃(x0,k) , (B.1)

B(x0,P) =
∑

k

b(k)ϕ†(x0,−P + k) ϕ̃†(x0,−k) , (B.2)

where a(k) and b(k) are some generic function of k. Note that we have not specified

wether the sum is over all possible values of k or one specific shell; this distinction does not

matter. Additionally, we restrict the discussion to where there is only one channel open,

since this observation is independent of the number of open channels. Using this notation,

it is straightforward to write down the two-point correlation function in the vicinity of the
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free poles

〈0|A(x0,P)B(y0,P)|0〉 = L3

∫
dP0

2π
eiP0(x0−y0)

[∑

k

−iL3

4ω1,P−kω2,k

a(k)b(k)

P0 − i(ω1,P−k + ω2,k)

−
∑

k,k′

a(k)b(k′) TL(P, k, k′)

4ω1,P−kω2,k[P0 − i(ω1,P−k + ω2,k)]4ω1,P−k′ω2,k′ [P0 − i(ω1,P−k′ + ω2,k′)]
+ · · ·

]
,

(B.3)

where the ellipses denote finite contributions to the correlation function near the free poles.

The correlation function is illustrated in Fig. B. In writing the correlation function we have

introduce a function TL(P, k, k′), which is related to the K-matrix via Eq. 4.38. Near the

free particle poles this can be written as

TL(P, k, k′) = −K(P, k, k′) + i

[
1

L3

∑

l

−
∫

l

]
K(P, k, l)TL(P, l, k′)

4ω1,P−lω2,l(l)[P0 − i(ω1,P−l + ω2,l)]
, (B.4)

where we have neglected contributions suppressed at the free two-particle poles. The free

particle poles satisfy P0 = i(ω1,P−k +ω2,k) and in order to obtain the contribution of these,

we investigate the leading ε behavior, where ε is defined via

P0 = i(ω1,P−k + ω2,k) + ε . (B.5)

To do so, we again upgrade these functions to be matrices in momentum space. It is

important to observe that in general, there will be multiple values of k and P− k that will

satisfy the free energy condition, these are of course the {k}P and {P − k}P. By defining

ω1 and ω2 as the free energies that satisfy P0 = i(ω1 + ω2), at leading order in ε, Eq. B.3

simplifies to

− iL3a

[
1

4ω1ω2ε

]?
b− a

[
1

4ω1ω2ε

]?
TL
[

1

4ω1ω2ε

]?
b . (B.6)

Here a is understood as a row and b as a column vector, [1/(4ω1ω2ε)]
? is a diagonal matrix

that is zero if the value of the momenta are not in {k}P and {P−k}P and equal to 1/(4ω1ω2ε)

otherwise, while TL is a matrix with off-diagonal entries. By restricting ourselves to the set

of momenta that satisfy the free energy conditions, the T -matrix, Eq. B.4, satisfies

TL = −K + i
1

L3
K
[

1

4ω1ω2ε

]?
TL . (B.7)
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At this stage we observe that, since K = O(1), one can shown that

TL = −iL3

[
1

4ω1ω2ε

]−1

+O(ε2) . (B.8)

Substituting this into Eq. B.6 gives perfect cancellation of the O(1/ε) terms independent of

the values of a and b. This justifies the cancellation of free particle poles in Eq. 4.43, which

is recovered by setting a and b equal to the Clebsch-Gordan coefficients.

However, it is common practice to restrict the scattering amplitude to a particular

partial wave when obtaining the finite volume spectrum. Here we demonstrate how this

approximation can lead to spurious free poles in the correlation function. Let KS(n, P0)

and TS(n, P0) be the S-wave K-matrix and T functions at the nth free particle pole which

has a degeneracy of N . From Eq. B.4, we see that these satisfy

TS(n, P0) = −KS(n, P0) + i
N

L3

KS(n, P0)TS(n, P0)

4ω1ω2ε
+O(ε2) , (B.9)

⇒ TS(n, P0) = −i4ω1ω2L
3

N
ε+O(ε2) . (B.10)

Substituting Eq. B.10 into the s-wave reduction of Eq. B.3, we deduce that free particle

poles only cancel when

(1/N)
∑

R,R′∈LG(P)

a(Rk)b(Rk′) =
∑

R∈LG(P)

a(Rk)b(Rk) . (B.11)

If one chooses a and b to be Kronecker deltas in momentum, as is done in Ref. [192], the

cancellation in Eq. B.3 is lost, unless N = 1. But this is a contradiction to the statement

above, that free particle poles should not appear regardless of the values of a and b for any

momentum. The apparent contradiction here is resolved by noting that the matrix K is

only invertible if each row is linearly independent. However, in the case of s-wave amplitude

the matrix is proportional to a matrix which has 1 in every single entry. Thus the matrix

argument fails and the alternative argument shows that cancellation does not occur for all

a and b. Furthermore, we argue that imposing a scattering amplitude to exactly vanish

for all but one partial waves at all values of momentum is unnatural. The only way to

achieve this is to require all shape parameters of the partial waves not included to be equal

to zero. Restricting the final results of quantization condition, the matrix elements of the
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= + ( V+ V+ V +... (}
�TL

F.T. { }h0|A(x0,P)B(y0,P)|0i

Figure B.1: Shown is the diagrammatic representation of the correlation function defined

in Eq. B.3 in terms of the kernels (defined in Fig. 4.1(b)), the fully dressed single particle

propagators (defined in Fig. 4.1(c)) and the finite volume loops. The “F. T.” label around

the braces reminds the reader that one must Fourier transform the energy-momentum cor-

relation function to obtain the correct exponential dependence in time. The T function,

which is explicitly labeled, is defined in Eq. 4.38.

two-particle interpolating operator and the matrix elements of the currents, Eqs. 4.1, 4.57,

4.58, 4.92 & 4.102, to a single partial wave can be done if the contribution from higher

partial waves is seen to be significantly suppressed at low energies. This is to say that the

order of operations in studying finite volume physics is relevant and can lead to significantly

different results.

From this discussion it is clear that if one is solely interested in obtaining the spectrum

and is not in arriving at a nonperturbative expression for the correlation functions, it suffices

to look at the poles of TL. As is evident from Fig. B, the free particle poles correspond

to zeros of TL, and consequently one does not need to worry about any spurious poles.

Furthermore, the subtlety regarding the order of operations does not play a role when

studying the pole structure of TL. Therefore, as was done in Ref. [151], one may first

proceed to set the angular momentum to any partial wave desired and then obtain the

quantization condition from the pole structure of TL.
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Appendix C

GENERALIZATION FOR TWISTED BOUNDARY CONDITIONS IN
ASYMMETRIC VOLUMES

In the derivation of the master equations of this work, namely Eqs. 4.1, 4.57, 4.58,

4.92 & 4.102, periodic boundary condition on the spatial extent of the cubic volume have

been assumed. The periodicity constraint is encoded in the expression for the Z functions

shown in Eq. 4.32, and this is generally true for arbitrary boundary conditions, and Ref. [167]

demonstrated how to compactly write the Z functions in such a way that they accommodate

the different geometries and boundary conditions. For relevant work that lead to this result,

see Refs. [152, 153, 155, 154, 249, 134, 135, 183, 163, 250]. TBCs require that fields in general

satisfy

ψ(x + nL) = eiθ·nψ(x), (C.1)

where θ is a three-dimensional real angle. Therefore, the free momentum of the ith in the

jth channel will be equal to pj,i = 2πni
L +

φj,i
L .

For asymmetric volumes, let L to be the spatial extent of the z-axis and ηi be defined

such that Lx = ηxL and Ly = ηyL. Using the notation χ̃ = (χx/ηx, χy/ηy, χz), one can

readily find the most general form of the clm and Z functions with arbitrary twist and

asymmetric volumes

c
d,φj,1,φj,2
lm (k∗2;L; ηx, ηy) =

√
4π

ηxηyγL3

(
2π

L

)l−2

×Zd,φj,1,φj,2
lm [1; (k∗L/2π)2; ηx, ηy], (C.2)

Zd,φj,1,φj,2
lm [s;x2; ηx, ηy] =

∑

r∈Pφ1,φ2;
d;ηx,ηy

|r|l Yl,m(r)

(r2 − x2)s
, (C.3)

where Pφ1,φ2

d;ηx,ηy
=
{

r ∈ R3 | r = γ̂−1(m̃− αjd̃ + ∆̃(j)

2π )
}

, where m is a triplet integer, ∆̃(j) =

−(αj− 1
2)(φ̃j,1 +φ̃j,2)+ 1

2(φ̃j,1−φ̃j,2) and d̃ = PL/2π. Additionally, one obtained an overall
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factor of
√
ηxηy in Eqs. 4.9, 4.57 & 4.58, i.e. one must make the following replacements

|〈0|ϕ(0,k)|E(1)
k 〉| −→

√
ηxηyL3

2ωk
. (C.4)

|〈0|OΛµ,a(0,P)|EΛ,n〉| −→
√
ηxηyL3

√
CTΛµ

[
YΛ,n RΛ,n Y†Λ,n

]
aa

C∗Λµ. (C.5)
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Appendix D

SUM-MINUS-INTEGRAL IDENTITY

In this appendix we derive the sum-minus-integral identity which plays a central role in

the main text. This identity is closely related to that given in Ref. [130] in the context of

the two particle quantization condition.

The identity is

1

2

[
1

L3

∑

~a

−P̃V

∫

~a

]
g(~k,~a)h(~k,~a)H(~k)

2ωa2ωka(E − ωk − ωa − ωka)
= g∗`′,m′(

~k)F`′,m′;`,m(~k)h∗`,m(~k) , (D.1)

which holds up to (implicit) exponentially-suppressed finite-volume corrections. The matrix

F (~k) is given in the main text but repeated here for convenience

F`′,m′;`,m(~k) ≡ F iε`′,m′;`,m(~k) + ρ`′,m′;`,m(~k) , (D.2)

F iε`′,m′;`,m(~k) ≡ 1

2

[
1

L3

∑

~a

−
∫

~a

]
4πY`′,m′(â

∗)Y ∗`,m(â∗)H(~k)H(~a)H(~bka)

2ωa2ωka(E − ωk − ωa − ωka + iε)

(
a∗

q∗k

)`+`′
. (D.3)

The phase-space quantity ρ and the cutoff function H are defined, respectively, in Eqs. (5.25)

and (5.28). The kinematic notation is that described in Sec. 5.1: the spectator has fixed

four-momentum (ωk,~k), the particle whose momentum is summed/integrated has four-

momentum (ωa,~a), while the third particle is in general off shell, with four-momentum

(E2 − ωa,~bka). The four-momentum of the non-spectator pair is P2 = (E2, ~P2) =

(E − ωk, ~P − ~k), and ~bka = ~P2 − ~a. If the third particle were on shell, it would have

energy ωka [defined in Eq. (5.1)], so the on-shell condition is E2 = ωa + ωka. This is where

the denominator in Eq. (D.3) vanishes. The boost to the CM-frame of the non-spectator

pair sends P2 to (E∗2,k,
~0) and (ωa,~a) to (ω∗a,~a

∗). If all three particles are on shell, then the

magnitude of ~a∗ satisfies a∗ = q∗k [with q∗k given by Eq. (5.6)].

The two functions in the identity (D.1), g and h, contain the momentum dependence

arising from quantities respectively on the left and right of the three-particle “cut”. They

could be combined into a single function, but for our formalism it is advantageous to keep
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them separate. We assume that g and h are smooth (infinitely differentiable) functions of

the components of ~a and that they fall off at large |~a| such that the sum and integral are

convergent. Note that, since k and a are on-shell, and the total momentum is fixed, the

independent quantities are ~k and ~a, which are thus given as the arguments of g and h. In

general, the third momentum is off shell, so these functions involve off-shell amplitudes.

What appears on the right-hand side of the identity, however, are on-shell projections of

these amplitudes after decomposition into the angular-momentum basis in the CM-frame

of the non-spectator pair. This projection is explained around Eq. (5.65) for the case where

g = σ and h = σ†, but applies equally well to any functions.

One difference between our identity and that of Ref. [130] is that, in the three-particle

context, the two-particle sub-system can be arbitrarily far below threshold. The dominant

sub-threshold contribution to F comes from the factor of ρ in Eq. (D.2), which in turn arises

from the difference between P̃V and iε pole prescriptions [see Eq. (5.59)]. This factor is

needed so that the dependence on ~k is smooth, but is not important for the derivation of

the sum-integral identity. Indeed, we can rewrite the identity using the iε-prescription and

cancel factors of ρ:

1

2

[
1

L3

∑

~a

−
∫

~a

]
g(~k,~a)h(~k,~a)H(~k)

2ωa2ωka(E2 − ωa − ωka + iε)
= g∗`′,m′(

~k)F iε`′,m′;`,m(~k)h∗`,m(~k) , (D.4)

This is now very similar to the identity of Ref. [130], and we focus on this form henceforth.

To demonstrate (D.4) we need simply to subtract the two sides and show that it is

exponentially suppressed. The difference is proportional to

H(~k)

[
1

L3

∑

~a

−
∫

~a

]
g(~k,~a)h(~k,~a)− g∗`′,m′(~k)4πY`′,m′(â

∗)(a∗/q∗k)
`′+`Y ∗`,m(â∗)h∗`,m(~k)H(~a)H(~bka)

2ωa2ωka(E2 − ωa − ωka + iε)
,

(D.5)

where we have assumed that the sums over angular-momentum indices can be interchanged

with the ~a integral. The overall factor of H(~k) serves only to ensure that the boosts to

the two-particle CM frame are well-defined. We note that the sums and integrals are

convergent in the ultraviolet because of the assumed properties of g and h (in the first term

in the numerator) and the presence of the cutoffs H (in the second term). The difference

(D.5) will vanish, up to exponentially suppressed corrections, if the integrand/summand is
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non-singular and smooth as a function of ~a. This in turn holds if (i) all functions appearing

in the expression have a smooth dependence on ~a, and (ii) the difference in the numerator

cancels that in the denominator in such a way that the the ratio is smooth. We address

these conditions in turn.

The only non-smooth functions appearing in (D.5) are the spherical harmonics, which

are ill-defined at ~a∗ = 0 for ` > 0. Smoothness is ensured, however, by the factors of (a∗)`
′+`,

which turn the spherical harmonics into polynomials in the components of ~a. Thus the first

condition is satisfied. For subsequent work, it is useful to understand the a∗ dependence

of the coefficients in the angular-momentum expansion of g and h. Recall that one first

changes to ~a∗ as the independent variable, e.g. g∗(~k,~a∗) ≡ g(~k,~a), and then expands in

harmonics:

g∗(~k,~a∗) = g∗`′,m′(
~k, a∗)Y`′,m′(â

∗)
√

4π =
g∗`′,m′(

~k, a∗)

a∗`
Y`′,m′(â

∗)a∗`
√

4π . (D.6)

For a∗ → 0, the last form is simply a rewriting of the Taylor expansion in the spherical

basis, since Y`′,m′(â
∗)a∗` is a homogeneous polynomial of order ` in the components of ~a∗.

This implies that g∗`′,m′(
~k, a∗)/a∗` has a finite limit as a∗ → 0. Furthermore, since g∗(~k,~a∗)

is, by assumption, smooth at a∗ = 0, g∗`′,m′(
~k, a∗)/a∗` must be a smooth function of a∗2 and

not a∗. Thus, for small a∗,

g∗`′,m′(
~k, a∗)

a∗`
=

∞∑

n=0

sn(a∗2)n , (D.7)

with sn the Taylor coefficients. An analogous result holds for h.

We turn now to the second condition, that zeroes in the numerator and denominator

should cancel. To satisfy this we first need the numerator of (D.5) to vanish on shell. This

is true because, when E2 = ωa + ωka, we have H(~a) = H(~bka) = 1, a∗ = q∗k, and

g∗`′,m′(
~k)Y`′,m′(â

∗)
√

4π = g∗`′,m′(
~k, q∗k)Y`′,m′(â

∗)
√

4π = g∗(~k, q∗kâ
∗) = g(~k,~a) (D.8)

(and similarly for h). In addition, the numerator must vanish fast enough to cancel the

denominator. To see that this is also true it is convenient to re-express the denominator in

terms of CM variables. Following the arguments of Ref. [130], we can make the replacement

1

2ωa2ωka(E2 − ωa − ωka + iε)
−→ ω∗a

2ωaE∗2,k(q
∗
k + a∗)(q∗k − a∗ + iε)

, (D.9)
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since the difference is non-singular. This shows us that the singularity lies in the radial

integral over a∗. Now consider the ratio (D.5) at fixed angle â∗, so that the spherical

harmonics are fixed. Then, from the discussion above, we know that both terms in the

numerator are smooth functions of a∗, which thus have Taylor expansions about a∗ = q∗k.

In the difference, the constant term in these Taylor expansions cancels, and so the ratio

with 1/(q∗k − a∗) is a smooth function of a∗. In particular we have demonstrated that the

numerator does not have a non-analytic form such as
√
q∗k − a∗, which would fail to cancel

the singularity.

A special case occurs if q∗k → 0, for then there is a double pole in a∗. In addition, one

might be concerned about the factor of 1/(q∗k)
`′+`. These features do not, however, lead to

problems. We know from Eqs. (D.7) and (D.8) that g∗`′,m′(
~k) ∝ q∗`k , and similarly for h,

so the 1/q∗k factors are cancelled. Furthermore, because of Eq. (D.7), the difference in the

numerator of (D.5) is proportional to a∗2, and thus fully cancels the double pole.

This completes the demonstration of the key identity. We close this section by presenting

some further results for the kinematic functions F and F iε. First, we give the relation to the

kinematic functions cP introduced in Ref. [130]. These replace the product g×h with a single

function, which is then expanded in a single-set of spherical harmonics. Because of this, the

relation involves Clebsch-Gordon coefficients. Specifically we find (see also Ref. [140]):1

F iε`′,m′;`,m(~k) =
iq∗k

16πE∗2,k
δ`′,`δm′,m +

∑

˜̀,m̃
√

4πcP˜̀,m̃(q∗k)

4E∗2,k(q
∗
k)

˜̀
∫
dΩa∗Y

∗˜̀,m̃(â∗)Y`′,m′(â
∗)Y ∗`,m(â∗) .

(D.10)

Because Ref. [130] uses an exponential cut-off while we use H(~a)H(~bka), this result holds

only up to exponentially suppressed finite-volume corrections.2

1One subtlety in the derivation of Eq. (D.10) is that the powers of a∗/q∗k do not always match. This is

because we use a double expansion in spherical harmonics while Ref. [130] use a single expansion. One can

show, however, that the differences always lead to exponentially suppressed contributions.

2One might wonder why we use the H functions to provide the cut-off, since, as far as sum-integral

identity is concerned, we could use any reasonable cut-off. The reason we use H is that some of the factors

of F arise from insertions of the quantity G [Eq. (5.21)]. But G contains, as part of its essential definition,

two factors of H, one of which becomes H(~a) when we convert the G to an F . Thus an H cut-off is forced
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Finally, we derive a result needed in the main text, namely

F`′,m′;`,m(~k) = F iε`′,m′;`,m(~k) = 0 if `′ + ` = odd , (D.11)

up to exponentially suppressed corrections. It is sufficient to show this result for one of F and

F iε, since it holds trivially for their difference, ρ, which is diagonal in angular momentum.

We demonstrate (D.11) for F iε.

The result follows by averaging the original expression (D.3) with that obtained by

changing variables ~a → ~P − ~a = ~bka. In this way, the numerator of F iε is replaced, up to

an overall constant, with

[
Y`′,m′(â

∗)Y ∗`,m(â∗)(a∗)`
′+` + Y`′,m′(b̂

∗
ka)Y

∗
`,m(b̂∗ka)(b

∗
ka)

`′+`
]
H(~a)H(~bka) . (D.12)

If all particles are on shell, then from Eq. (5.5), we have that ~a∗ = −~b∗ka, so the two terms

exactly cancel when the parities of the spherical harmonics are opposite, i.e. if `+`′ is odd.3

As we move away from the on-shell condition, the cancellation will be inexact. However,

as we now demonstrate, the residue is proportional to E2 − ωa − ωka, which is enough to

cancel the pole in F iε, so that the sum-integral difference of the residue is exponentially

suppressed. We recall that the boost to the two-particle CM frame transforms four-vectors

as

(E2 − ωa,~bka) −→ (E∗2,k − ω∗a,−~a∗) and (ωka,~bka) −→ (ω∗b ,
~b∗ka) . (D.13)

But since

(ωka,~bka) = (E2 − ωa,~bka)− (E2 − ωa − ωka,~0) , (D.14)

we see from the linearity of boosts that

~b∗ka = −~a∗ +O(E2 − ωa − ωka) . (D.15)

This completes the demonstration.

upon us for such F ’s, and we wish to use a uniform definition. It is then convenient to enforce a ↔ bka

symmetry by adding in H(~bka).

3It is possible for ~a = ~P/2 = ~bka, and if so the two terms in the sum are one and the same. The

derivation remains valid, however, since then ~a∗ = 0, implying that the only non-vanishing contributions are

from ` = `′ = 0.
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We note that a similar argument leads to the conclusion that cP`,m vanishes for odd `, as

first noted in Ref. [129].
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Appendix E

SMOOTHNESS OF P̃V POLE PRESCRIPTION

In this appendix we explain why the P̃V pole prescription, defined in Eq. (5.59), leads

to results that are smooth functions of the spectator momentum. The general integral that

appears has the form

f(~k) = P̃V

∫

~a

g(~k,~a)H(~k)

2ωa2ωka(E − ωk − ωa − ωka)
(E.1)

The notation is the same as in Eq. (D.1), except that here we have combined the two

functions g and h in the numerator of (D.1) into the single function g. The issue is whether

f(~k) is a smooth function of ~k. All quantities appearing in the integrand are smooth

functions: ωk and ωka manifestly, H(~k) by construction, and g(~k,~a) by assumption.1 We

also assume that the behavior of g at large |~a| is such that the integral remains convergent

however many derivatives of the integrand with respect to the components of ~k we take.

Then the only source for a lack of smoothness is the pole in the integrand.

It is useful to change variables to ~a∗, the momentum in the two-particle CM frame. This

gives

f(~k) =
H(~k)

2E∗2,k
P̃V

∫
d3a∗

(2π)3

g̃∗(~k,~a∗)

(q∗2k − a∗2)
, (E.2)

g̃∗(~k,~a∗) = g(~k,~a)
(E − ωk − ωa + ωka)(E

∗
2,k + 2ω∗a)

8ωkaω∗a
. (E.3)

1The initial application of the result of this appendix, in the discussion following Eq. (5.65) in the main

text, has g composed of the product σσ†, which is smooth by construction. Subsequently, one or both of

these factors are replaced by Bethe-Salpeter kernels, which are also smooth because singularities are far

from threshold. The nearest singularity is the left-hand cut which occurs when E∗2,k = 0 (corresponding to

s = u = 0, t = 4m2 in Mandlestam variables), but we are protected from this cut by the cut-off function

H(~k). Finally, the factors are replaced by two particle K-matrices, or decorated end-cap functions. Here the

necessary smoothness is established by the argument of this appendix. Thus we are using the result of this

appendix iteratively.
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The expression multiplying g on the right-hand side of (E.3) equals unity on shell. Expand-

ing g̃∗ in spherical harmonics,

g̃∗(~k,~a∗) = g̃∗`,m(~k, a∗)Y`,m(â∗)
√

4π , (E.4)

we observe that only the ` = 0 component contributes to the integral:

f(~k) =
H(~k)

4π2E∗2,k
P̃V

∫ ∞

0
da∗

a∗2g̃∗0,0(~k, a∗2)

(q∗2k − a∗2)
=

H(~k)

8π2E∗2,k
P̃V

∫ ∞

0
d(a∗2)

√
a∗2 g̃∗0,0(~k, a∗2)

(q∗2k − a∗2)
.

(E.5)

Here we have made explicit that g̃∗0,0 is a function of a∗2, as follows from the result (D.7).

In this form, the P̃V prescription of Eq. (5.59) becomes

f(~k) =
H(~k)

8π2E∗2,k

∫ ∞

0
d(a∗2)

[√
a∗2 g̃∗0,0(~k, a∗2)

(q∗2k − a∗2 + iε)

]

+
iq∗kH(~k)g̃∗0,0(~k, q∗2k )

8πE∗2,k
×




iq∗k (q∗2k > 0) ,

−|q∗k| (q∗2k < 0) .

(E.6)

If q∗2k > 0, so the non-spectator pair is above threshold, the P̃V and PV prescriptions are

the same, and Eq. (E.6) gives the standard relationship between PV and iε prescriptions.

In particular, the second term cancels the imaginary part of the iε-regulated integral. The

new feature of the prescription occurs below threshold, i.e. for q∗2k < 0. Here there is no

pole to regulate, so the iε prescription is superfluous, and the integral is real. Nevertheless,

the prescription adds the second term, also real, which is needed to avoid a cusp in f(~k)

at threshold. We stress that in the second term g̃∗ is evaluated on shell, with a∗2 = q∗2k .

If q∗2k < 0, then g̃∗ must be evaluated below threshold. As discussed in the previous

appendix, the assumed smoothness of g implies that g̃∗0,0 is a function of q∗2k , and thus can

be straightforwardly evaluated for q∗2k < 0.

To show that f(~k) is smooth, we now extract the essential features of Eq. (E.6) and

consider the integral

f(z) =

∫ ∞

0
dw

√
w g(w, z)

z − w . (E.7)

Here w and z are playing the roles of a∗2 and q∗2k , respectively, and g, a smooth function of

its arguments, ensures convergence (and includes H(~k)). The only difference from Eq. (E.6)
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is that the dependence on all components of ~k in H and g̃∗ has been simplified to dependence

on q∗2k alone. This simplification is justified because it is the dependence of the pole term

on ~k that can lead to a lack of smoothness, and this dependence is correctly incorporated

in Eq. (E.7).

We treat z as complex, and assume that g(w, z) can be analytically continued to complex

arguments without encountering singularities. Then f(z) is well-defined and analytic in the

entire complex plane except along the positive real axis. As z approaches the positive real

axis from above or below one obtains the ±iε-regulated integrals:

f(x± iε) =

∫ ∞

0
dw

√
w g(w, x)

x− w ± iε . (E.8)

These are both complex, with the same real parts but differing imaginary parts,

±πi√xg(x, x). f(z) thus has a cut on the positive real axis.

The integral of interest, f(~k) of Eq. (E.5), becomes, in our stripped-down version, and

for positive q∗2k ,

f
P̃V

(x) =
1

2
[f(x+ iε) + f(x− iε)] . (E.9)

Here x is real and positive, and we have used the result that the PV prescription (which is

the same as the P̃V prescription for x > 0) can be written as the average of the integral

with the contour running above and below the pole (see Fig. E.1a). Our aim is to extend

f
P̃V

to a function of z, and study its analyticity properties.

If z is moved off the positive real axis then, to avoid non-analytic dependence, the

integration contours must be deformed as shown in Fig.E.1b and Fig.E.1c. Thus f
P̃V

(z)

differs from f(z) (the integral along the real axis) by pole terms:

f
P̃V

(z) = f(z)− sign(Imz)iπ
√
z g(z, z) = f(z) + π

√
−z g(z, z) . (E.10)

The sign of Im(z) enters because the direction of the contour around the pole depends on this

sign. As shown in the second expression, however, the two possibilites can be combined into

a single expression using the properties of the square root (assuming that the branch cut for
√−z is placed along the positive real axis). We now observe that there is no discontinuity for

negative real z, since both f(z) and
√−z are analytic there. Furthermore, by construction

the discontinuities of f(z) and the pole term cancel exactly along the positive real axis [as
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they must to yield a real f
P̃V

(x)]. Thus we find the key result: f
P̃V

(z) is analytic throughout

the complex plane, i.e. is entire. Since an entire function is infinitely differentiable, it follows

that f
P̃V

(x) is smooth along the entire real axis.

We now apply this result to our integral of interest, Eq. (E.5). The rule is to write

the difference between the results of the P̃V and iε prescriptions, which is standard above

threshold, as an analytic function of q∗2k , and then continue to q∗2k < 0. Noting that

iq∗k = −
√
−q∗2k for q∗2k = x+ iε , (E.11)

we obtain the result quoted in (E.5) for the below threshold case

−
√
−q∗2k −→ −|q∗k| for q∗2k = −x . (E.12)

Thus our P̃V prescription indeed yields a smooth function of ~k.

We have checked this result on an extensive set of examples, e.g. for g(w, z) =

wn exp(−w) with n ≥ 0 an integer, where the integrals can be done analytically, and for

g(w, z) = exp(−w2), where numerical integration is required. As an illustration, we show

the results for g(w, z) = exp(z − w) in Fig. E.2.

Finally, we stress that the factor of
√
w in the integrand of f(z) is crucial for the

smoothness of the P̃V prescription. This factor is present in the original integral, Eq. (E.5),

because of three-dimensional phase space. Without this factor, the above- and below-axis

pole terms would not be equal along the negative real axis. For example, if
√
w is replaced

by an analytic function, say x, then one can easily show, using the arguments above, that

f
P̃V

(z) result has a complex discontinuity along the negative real axis.
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Figure E.1: Contours in w complex plane contributing to f
P̃V

(z). (a) z real and positive;

(b) z above the positive real axis; (c) z below the positive real axis. In each case the cross

indicates the location of the z = w pole, and the numbers indicate the weights associated

with each contour.

Figure E.2: f
P̃V

(x) for g(w, z) = exp(z − w) compared to the result of using the PV

prescription, fPV(x). The former is smooth, while the latter has a cusp at x = 0. For x < 0,

the difference between the two functions is the pole term, the second term in Eq. (E.10).
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Appendix F

DETAILED STUDY OF THE ISOTROPIC APPROXIMATION

In this appendix we study the approach to the isotropic limit described in Sec. 5.2 in the

context of a specific choice of parameters. Our aims are to show how “lost” states are recov-

ered, and also to gain more intuition for the workings of the quantization condition and, in

particular, the impact of the violation of particle-interchange symmetry by our coordinates

and truncation. Although our considerations are specific to the chosen parameters, much

of the discussion holds for a general choice of parameters.

We work in the static frame, ~P = 0. To simplify numerical values we choose a volume

such that the particle mass satisfies m = 2π/L. While this is artificial, we stress that

none of the general conclusions depend on this choice. The single-particle momenta are

(L/2π)~k = ~0, (1, 0, 0), (1, 1, 0), (1, 1, 1), etc., together with permutations. We refer to these,

respectively, as the n = 0, 1, 2, 3 shells, etc. Given our choice of m, the corresponding

single-particle energies are ωn =
√
n+ 1×m.

We are interested in values of E for which there are more than one free three-particle

energy levels, so that we can see what happens when one of these is replaced by the solution

to Eq. (5.38). The minimal case is to have two free levels. These levels occur at E = 3m

(all particles at rest), E = (1 + 2
√

2)m ≈ 3.83m (one particle at rest and two with opposite

momenta from the n = 1 shell), E = 4.46m, etc. Thus the range of E should extend above

3.83m. We also want to minimize N , the size of the matrices appearing in the quantization

condition. The critical energies above which the cut-off function H(~k) is non-vanishing

are, for the n = 1 − 4 shells, (1 +
√

2)m, (
√

2 +
√

3)m ≈ 3.15m, (2 +
√

3) ≈ 3.73m and

(2 +
√

5)m ≈ 4.24m, respectively. Thus we are forced to include the n = 3 shell (in order

to attain E > 3.83m) but if we restrict E < 4.24m we do not need the n = 4 shell.

Thus we end up with the energy range of interest being 3m < E < 4.24m and N =
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1 + 6 + 12 + 8 = 27. Our aim is to find all solutions to the quantization condition,

det(1 + F s3Ksdf,3) = 0 , (F.1)

within this range. Here Ksdf,3 is defined in Eq. (5.14), while F s3 is simply F3 [Eq. (5.19)]

after truncation to `max = 0. (An explicit expression is given below.) As already noted, the

free states lie at E = 3m and 3.83m. There are four such states: one at 3m and three at

3.83m. One might have expected six states at E = 3.83m, since two of the particles have

momenta in the n = 1 shell, but only three are distinct for indentical particles. It is useful

to classify the states according to their transformation properties under the octahedral

symmetry group. The E = 3m state lies in the trivial A1 irrep (irreducible representation),

while the three E = 3.83m states decompose as A1 +E, where E is the doublet. Here we are

using standard notation for irreps of the cubic group, see, e.g., Ref. [251]. Interactions can

lead to mixing between the two A1 states, but not with the doublet. What we thus expect

is that one of the two A1 states is replaced by the solution to the isotropic quantization

condition, Eq. (5.38), while the other remains at its free energy, and that the doublet also

remain at their free energies.

As a first step in the analysis, it is useful to rewrite F s3 as1

F s3 =
1

L3

{
1

3

F s

2ω
− F s

2ω

1

H

F s

2ω

}
, H =

1

2ωKs2
+
F s

2ω
+

1

2ω
Gs , (F.2)

where Ks2, Gs and F s are defined, respectively, in Eqs. (5.34), (5.36) and (5.37). Recall that

all these quantities, as well as F s3 , are matrices in spectator-momentum space alone, with

size N × N . The form (F.2) follows by straightforward algebraic manipulations from the

definition of Eq. (5.19). One advantage of the new form is that it manifests the symmetry

of F s3 , since G̃s = 1
2ωG

s is symmetric, and all other matrices are diagonal. Another is that

it shows how F s appears on both “ends” of F s3 .

The matrices entering the quantization condition have transformation properties under

the symmetries of the finite box that greatly simplify their forms. Beginning with F̃s ≡
Fs/(2ω), it is clear from its definition, Eq. (5.37), that it is invariant under cubic rotations

and parity. Thus its entries, which are all diagonal, depend only on the class n of the

1We stress that the matrix H used here has nothing to do with the smooth cutoff function H(~k).
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spectator momentum ~k. For example, all 6 entries for the n = 1 class are equal. Thus there

are only 4 independent entries in F̃ s. The same holds for the other diagonal matrix, Ks2.

The situation with G̃s is more complicated—all entries are non-vanishing. To simplify

G̃s we must decompose the N spectator-momentum indices into irreps of the finite-box sym-

metry group, namely the direct product of the cubic group and parity. The decomposition

is

n = 0 −→ A+
1 , (F.3)

n = 1 −→ A+
1 + E+ + T−1 , (F.4)

n = 2 −→ A+
1 + E+ + T−1 + T+

2 + T−2 , (F.5)

n = 3 −→ A+
1 + T−1 + T+

2 +A−2 , (F.6)

where the superscript is parity. A2 is a non-trivial singlet, while T1 and T2 are three-

dimensional irreps. Off-diagonal elements of G̃s connecting different irreps, or different

elements of the same irrep, vanish. Thus G̃s is block-diagonal, with a four-dimensional A+
1

block, a 2× 2-dimensional E+ block, etc.

The same block structure holds for Ksdf,3, but here additional simplification occurs be-

cause of the isotropic approximation, Eq. (5.33). In this approximation, all entries of Ksdf,3

are equal. Since the A+
1 irreps are obtained by averaging over their respective momentum

shells, while all other irreps involve differences, only the A+
1 block of Ksdf,3 is non-vanishing.

Furthermore, since Ksdf,3 has only a single non-zero eigenvalue, whose eigenvector we call

|1K〉, all entries of the A+
1 block are related. Here we will slightly relax the approximation,

so that all entries which are allowed by symmetries have magnitudes of order ε� 1. Thus

we can write

Ksdf,3 = |1K〉NKiso
df,3(E) 〈1K |+ [O(ε)] , (F.7)

where the second term indicates an N×N matrix with form consistent with the symmetries

whose non-zero entries are of O(ε) (though unrelated). If we choose the indices so that the

A+
1 block is placed first, ordered according to the class n, the dominant eigenvector is easily

found to be

〈1K | =
1√
N

(1,
√

6,
√

12,
√

8, 0, . . . ) . (F.8)
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We now return to the quantization condition (F.1). Since all matrices which enter are

diagonal or block-diagonal, the condition can be studied block by block. We begin with the

A+
1 block, which is the most interesting as it contains the dominant eigenvector of Ksdf,3.

Since F̃ s and Ks2 were diagonal in the original basis, with no cross terms between different

classes n, they remain diagonal in the irrep basis. In general, there are no relations between

the four diagonal elements of the A+
1 blocks. As we approach the free-spectrum energies,

however, F̃ s does gain further structure. This is because it contains poles at these energies

[from the sum contained in F s, Eq. (5.37)]. Specifically, one finds that

F̃s = diag

(
1

2
B0 + 3B1, B1, 0, 0

)
+ diag (O(1)) , (F.9)

where the pole terms are

B0 =
1

L3

1

(2m)3

1

E − 3m
, (F.10)

B1 =
1

L3

1

2m(2ω1)2

1

E −m− 2ω1
. (F.11)

The factor of 3 multiplying B1 in the first entry on the right-hand side of Eq. (F.9) arises

from the fact that six terms in the sum over ~a in F s contribute B1/2. The second term in

F̃ s is the non-pole part, arising from the rest of the sum over ~a and from the integral.

Pole terms also appear in G̃s. Using Eq. (5.21) we find the A+
1 block to be

G̃s =




B0

√
6B1 O(1) O(1)

√
6B1 B1 O(1) O(1)

O(1) O(1) O(1) O(1)

O(1) O(1) O(1) O(1)




. (F.12)

Apart from the fact that the matrix is symmetric, there is no relation between the O(1)
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terms. The combination whose inverse appears in F s3 [Eq. (F.2)] is thus

H ≡ 1

2ωKs2
+ F̃ s + G̃s =




3
2B0 + 3B1

√
6B1 0 0

√
6B1 2B1 0 0

0 0 0 0

0 0 0 0




+ [O(1)] , (F.13)

where the O(1) symmetric matrix now contains entries in all positions.

Our task is to combine these forms and insert them in the quantization condition. Since

B0 and B1 become large for different regions of E, we treat these cases one at at time. The

simpler is when E ≈ 3m, such that |B0| � 1, while B1 ∼ O(1). Using Raliegh-Schrödinger

perturbation theory, one finds that the inverse of H becomes

H−1 =




2
3B0

+O(1/B2
0) O(1/B0)

O(1/B0) O(1)


 . (F.14)

Here we are using a block notation in which the first block has dimension one (the n = 0 A+
1

subspace) while the second block has dimension three (containing the n = 1− 3 A+
1 states).

This result exemplifies two general features of H−1 when a one-dimensional subspace of H

becomes large. First, the projection of H−1 onto this subspace is, up to small corrections,

simply the inverse of the projection of H onto the subspace. Thus it is proportional to

1/B0. Second, the off-diagonal elements of the inverse (those connecting the 1-d subspace

to the remainder of the space) are of O(1/B0). We use these results again below.
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Combining the results above, we find that, when |B0| � 1,

L3F s3 =
F̃ s

3
− F̃sH−1F̃s (F.15)

=




B0
6 +O(1) 0

0 O(1)


 (F.16)

−




B0
2 +O(1) 0

0 O(1)







2
3B0

+O(1/B2
0) O(1/B0)

O(1/B0) O(1)







B0
2 +O(1) 0

0 O(1)


 (F.17)

= [O(1)] , (F.18)

using the same 1 + 3 block notation as in Eq. (F.14). The key result is that all terms

proportional to positive powers of B0 cancel. When we combine (F.18) with the result (F.7)

for Ksdf,3 and evaluate the determinant, the quantization condition becomes

det(1 + F s3Ksdf,3) = 1 +NKisodf,3(E)〈1K |F s3 |1K〉+O(ε) = 0 . (F.19)

We see that there is only a single solution in the A+
1 channel, that given essentially by the

“isotropic solution” of Eq. (5.38), aside from small corrections from the O(ε) terms. There

is no possibility of a solution that is O(ε) from E = 3m, because there are no terms of the

form εB0 or εB2
0 , which could have led to O(1) contributions to the quantization condition.

Such terms are required to cancel the 1 in Eq. (F.19), in order to get solutions that are

infinitesimally displaced from the the free solution.

The analysis near E = m + 2ω1, when |B1| � 1, is more involved, for in this case the

free poles do not cancel. Using Eq. (F.13), H is now given by

H = |B1〉 5B1 〈B1|+O(1) , (F.20)

where the one-dimensional subspace in which H is large is spanned by

〈B1| =
1√
5

(√
3,
√

2, 0, 0
)
. (F.21)
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Using the results quoted above, we have

H−1 = |B1〉
[

1

5B1
+O(1/B2

1)

]
〈B1|+

4∑

j=2

O(1/B1) (|Bj〉〈B1|+ |B1〉〈Bj |)+
4∑

j=2

O(1)|Bj〉〈Bj | ,

(F.22)

where the |Bj〉, j = 2− 4, are any choice of basis vectors orthogonal to |B1〉.
To display F s3 it is better to switch from the ordering of A+

1 elements according to their

momentum class to the “K-basis”. In this new basis, the vectors are 〈1K | together with

〈2K | =
1√
7

(
−
√

6, 1, 0, 0
)
, (F.23)

〈3K | =
1√
N

(
−
√

20/7,−
√

120/7,
√

84/20,
√

56/20
)
, (F.24)

〈4K | =
1√
20

(
0, 0,−

√
8,
√

12
)
. (F.25)

This basis makes maximal use of the form of Ksdf,3 [Eq. (F.7)] as well as the fact that the

dominant terms in F̃ s lie in the first two entries on the diagonal. In addition, we note that

〈1K | and 〈3K |, when contracted with F̃ s, have large components only in the subspace in

which H−1 is small:

〈1K |F̃ s =

√
15

7
B1〈B1|+O(1) , (F.26)

〈3K |F̃ s =

√
15

7
B1〈B1|+O(1) . (F.27)

Also important is that no large terms appear when we contract 〈4K | with F̃ s:

〈4K |F̃ s = O(1) . (F.28)

The net effect of these results is that the largest contributions occur when F s3 is con-

tracted with 〈2K |. Specifically, we find

F s3 =




O(1) O(B1) O(1) O(1)

O(B1) O(B2
1) O(B1) O(B1)

O(1) O(B1) O(1) O(1)

O(1) O(B1) O(1) O(1)




K

, (F.29)
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where the subscript on the matrix indicates that this result is in the K-basis. We see

that F s3 does contain single and double B1 pole terms (unlike for B0, where they cancel).

There is one cancellation, however, which leads to the absence of pole terms in the |1K〉〈1K |
element. This is important, since we know from Eq. (F.7) that the only large entry in Ksdf,3

is in exactly this element:

Ksdf,3 =




NKiso
df,3(E) O(ε) O(ε) O(ε)

O(ε) O(ε) O(ε) O(ε)

O(ε) O(ε) O(ε) O(ε)

O(ε) O(ε) O(ε) O(ε)




K

. (F.30)

The final step of the B1 analysis is to insert these results into the quantization condition

(F.1) and evaluate the determinant. We are looking for solutions which occur when B1 is

large, so that they are almost at the free-particle energy. By explicit evaluation, we find

that the dominant contributions to the determinant involving B1 are of O(εB2
1). Thus the

appropropriate scaling of B1 relative to ε is such that εB2
1 = O(1). Using this scaling, it

turns out that only the upper-left 2 × 2 blocks in the K-basis are relevant for solutions to

the quantization condition. Other blocks lead to contributions proportional to εB1, which

remains small. Thus, for the purpose of finding solutions to the quantization condition we

can make the replacements

F s3 −→




O(1) O(B1) 0 0

O(B1) O(B2
1) 0 0

0 0 0 0

0 0 0 0




and Ksdf,3 −→




NKiso
df,3(E) O(ε) 0 0

O(ε) O(ε) 0 0

0 0 0 0

0 0 0 0




.

(F.31)

This shows that, in the A+
1 block, the quantization condition involves only two states, and
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not four:

det




1 +NKiso
df,3(E)〈1K |F s|1K〉+O(εB1) O(εB1)

O(B1) 1 +O(εB2
1)


 = 0 (F.32)

When E is far from m+ 2ω1, so that B1 = O(1), the B1 terms are small, and one finds only

the isotropic solution, Eq. (5.38). But now, when εB2
1 = O(1), there is the possibility of a

second solution. To demonstrate the existence and to find position of this solution, however,

appears to require knowledge of the subdominant parts of F s, Ks2 and Ksdf,3. Nevertheless,

what is clear is that any solution will lie very close to the free-particle energy, since it will

require |B1| � 1.

We now turn to blocks of the matrices in other irreps. These can only lead to solutions

close to free-particle energies since Ksdf,3 is of O(ε) throughout these blocks. Such solutions

require factors of B1 to counterbalance those of ε. B1 appears in F̃ s in all diagonal elements

with spectator momentum of class n = 1, and thus [see Eq. (F.4)] appears in both E+ and

T−1 blocks. The same can be seen to hold for G̃s.

We consider first the E+ block. This has dimension four, since there are E+ irreps in

both n = 1 and n = 2 classes, while the E+ irrep itself is a doublet. The structure within

each E+ irrep is, however, always proportional to the identity matrix. Thus we display the

blocks as 2 × 2 matrices, each element of which is implicitly proportional to the identity

matrix. The matrices have the form

F̃ s =




B1 +O(1) 0

0 O(1)


 , H =




2B1 +O(1) O(1)

O(1) O(1)


 , Ksdf,3 =



O(ε) O(ε)

O(ε) O(ε)


 ,

(F.33)

from which it follows that

F s3 =



−B1

6 +O(1) O(1)

O(1) O(1)


 , 1 + F s3Ksdf,3 =




1 +O(εB1) O(εB1)

O(ε) 1 +O(ε)


 . (F.34)

Thus the determinant is 1 + O(εB1), and can vanish if εB1 = O(1). In this case we know

that such a solution will exist, irrespective of the overall sign of the εB1 term, since B1 can
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take either sign, depending on whether E is above or below m + 2ω1. Thus we conclude

that the E+ irrep yields a solution with E ≈ m+ 2ω1. Recalling the implicit 2× 2 identity

matrix in each entry, this will be a degenerate doublet.

At this stage we have all uncovered all the solutions we want—four in all (assuming that

the A+
1 quantization condition does have an almost-free solution). But there remains the

T−1 block in which both F̃ s and G̃s have entries of B1. If these end up multiplying factors

of ε, as in the E+ block, then there is potential for unwanted solutions to the quantization

condition, corresponding to states which violate particle-interchange symmetry. The way

in which the formalism avoids this is through the particle-interchange symmetry that has

been carefully maintained in Kdf,3. The issue is subtle, however, because our coordinates,

and, in particular, the truncation we are using, is not particle-interchange symmetric.

The T−1 block has contributions from classes n = 1, 2 and 3, each of which is three-

dimensional, so the overall block dimension is nine. Entries within each 3×3 sub-block are,

however, proportional to the identity matrix, so we leave this implicit and display only the

3× 3 matrix indexed by momentum class. We find

F̃ s =




B1 +O(1) 0 0

0 O(1) 0

0 0 O(1)




, G̃s =




−B1 +O(1) O(1) O(1)

O(1) O(1) O(1)

O(1) O(1) O(1)




, (F.35)

where the minus sign on B1 in G̃s arises from the negative parity of the T−1 irrep and the

fact that the non-zero elements of G̃s in the original basis are those connecting an n = 1

momentum to its parity conjugate. It follows from (F.35) that B1 cancels from H, so that

H−1 is a general symmetric O(1) matrix with no small elements. We then find

F s3 =




O(B2
1) O(B1) O(B1)

O(B1) O(1) O(1)

O(B1) O(1) O(1)




, (F.36)



245

so that, as in the E+ block, F s3 contains single and double poles.

If Ksdf,3 was simply a symmetric matrix containing terms of O(ε), then an analysis

similar to that for the E+ block would imply the presence of almost-free solutions to the

quantization condition in the T−1 block. These would be unexpected, and indicate that

our formalism was violating particle-interchange symmetry in a fundamental way. We are

saved from this conclusion by the presence of additional structure in Ksdf,3, following, not

surprisingly, from particle-interchange symmetry. We recall that, before truncation, Kdf,3

is, by construction, exactly symmetric under particle interchange. We argue below that a

consequence of this symmetry is that, if E = m+ 2ω1 (so that the free three-particle state

is exactly on shell), then

[
Ksdf,3

]
(1,0,0);k′

=
[
Ksdf,3

]
(−1,0,0);k′

, (F.37)

(and similarly for the permutations of the left-hand momentum index). Here the right-hand

index indicates an arbitrary momentum. The key feature of this result is that only the first

index is parity-inverted—the second is unchanged. This implies that the projection on the

left-hand index onto the irrep T−1 , which involves taking the difference between the two sides

of Eq. (F.37), vanishes identically. As we move away from E = m+ 2ω1, the two sides start

to differ, but we expect this difference to grow at least linearly in E − (m+ 2ω1) ∝ 1/B1.

The upshot is that particle-interchange symmetry leads to the following form for Ksdf,3:

Ksdf,3 =




O(ε/B2
1) O(ε/B1) O(ε/B1)

O(ε/B1) O(ε) O(ε)

O(ε/B1) O(ε) O(ε)




. (F.38)

The top-left element is doubly suppressed because it involves a cancellation of the type just

described for both left and right-hand indices. Combined with the result for F s3 , Eq. (F.36),

this implies that det(1+F s3Ksdf,3) = 1+O(ε). Thus there are no solutions to the quantization

condition, and no unwanted states.2

2There is another source of suppression arising from particle-interchange symmetry, arising from the
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We now demonstrate Eq. (F.37). On the left-hand side the spectator momentum is

~k = (1, 0, 0), so the total momentum of the other two particles is −~k. By assumption (given

our truncation) the amplitude in the CM frame of the other two particles is independent

of angle. For one choice of angle the other two momenta are ~0 and −~k (since this gives

the correct energy E). Thus the amplitude on the left-hand side of (F.37) is equal to the

original Kdf,3 (with no superscript s) when the three incoming momenta are ~k, ~0 and −~k. By

exactly the same argument, the amplitude on the right-hand side equals Kdf,3 for incoming

momenta −~k, ~0 and ~k. But since Kdf,3 is symmetric under incoming particle exchange, the

amplitudes on the two sides are equal.

endcaps A and A′ [see Eq. (5.244)]. These have vanishing coupling to the symmetry-violating states when

E = m + 2ω1. However, this alone would not be enough to remove these states from the spectrum if their

energies were shifted slightly from the free-particle value.
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