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We describe formal work that relates the finite-volume spectrum in a quantum field theory
to scattering and decay amplitudes. This is of particular relevance to numerical calculations
performed using Lattice Quantum Chromodynamics (LQCD). Correlators calculated using
LQCD can only be determined on the Euclidean time axis. For this reason the standard
method of determining scattering amplitudes via the Lehmann-Symanzik-Zimmermann re-
duction formula cannot be employed. By contrast, the finite-volume spectrum is directly
accessible in LQCD calculations. Formalism for relating the spectrum to physical scattering

observables is thus highly desirable.

In this thesis we develop tools for extracting physical information from LQCD for four
types of observables. First we analyze systems with multiple, strongly-coupled two-scalar
channels. Here we accommodate both identical and nonidentical scalars, and in the lat-
ter case allow for degenerate as well as nondegenerate particle masses. Using relativistic
field theory, and summing to all orders in perturbation theory, we derive a result relating
the finite-volume spectrum to the two-to-two scattering amplitudes of the coupled-channel
theory. This generalizes the formalism of Martin Liischer for the case of single-channel
scattering. Second we consider the weak decay of a single particle into multiple, coupled
two-scalar channels. We show how the finite-volume matrix element extracted in LQCD
is related to matrix elements of asymptotic two-particle states, and thus to decay ampli-

tudes. This generalizes work by Laurent Lellouch and Martin Liischer. Third we extend



the method for extracting matrix elements by considering currents which insert energy, mo-
mentum and angular momentum. This allows one to extract transition matrix elements
and form factors from LQCD. Finally we look beyond two-particle systems to those with
three-particles in asymptotic states. Working again to all orders in relativistic field theory,
we derive a relation between the spectrum and an infinite-volume three-to-three scattering
quantity. This final analysis is the most complicated of the four, because the all-orders
summation is more difficult for this system, and also because a number of new technical

issues arise in analyzing the contributing diagrams.
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Chapter 1

INTRODUCTION

In this thesis we present formalism that allows one to extract scattering and decay
amplitudes from numerical calculations of quantum chromodynamics (QCD). QCD is the
accepted underlying theory of the strong interaction and it contains very rich phenomen-
logy but also poses great theoretical challenges. Here we consider the goal of extracting
physical predictions from lattice QCD (LQCD), which is a regularization of the theory that
makes numerical calculation possible. We analyze systems with multiple strongly interact-
ing particles (hadrons) in the initial or final states. In fact, the relations that we present
in this thesis provide the only known method to study such processes quantitatively, with
systematically improvable uncertainties. The formalism thus offers important opportunities
to better understand the predictions of QCD and, by comparing predictions to experimental

results, to investigate new physics models.

To fully explain the applications of this work, we begin by establishing the currently
accepted underlying theory of our universe, the Standard Model (SM). In Section we
summarize the Standard Model by describing the history of its construction. We then
review the history of QCD, our main focus within the SM, in Section [I.2] In Section [I.3] we
give a detailed, quantitative discussion of QCD. Next, to better motivate our interest, in
Section [1.4] we describe a number of specific processes that can be studied using the results
we derive. With these established we turn in Sections and to two technical aspects
of numerical LQCD that are central to the work of this thesis. These are Euclidean time

(1.5) and finite volume (|1.6). We also summarize our main results in Section



1.1 Brief history of the Standard Model'|

In 1897, Sir Joseph John (J.J.) Thomson demonstrated that cathode rays are comprised
of charged particles with mass over one thousand times smaller than that of the hydrogen
atom [2, B]. Twenty years later, Ernest Rutherford found the particle that makes up the
rest of hydrogen’s mass. By examining a nuclear reaction between nitrogen and alpha
particles (helium nuclei), he discovered a postively charged particle with mass very close
to the hydrogen atom, which he named the proton. It was soon clear that the proton and
electron alone could not account for all of the known elements. The next heaviest element,
helium, was found to have a nucleus with twice the proton charge, but roughly four times
the mass. This observation was explained with the discovery of the neutron, a neutral twin
of the proton, by Sir James Chadwick in 1932 [4]. Simultaneous with this work, the particle
nature of light was developed from 1900 to 1924, primarily by Max Planck, Albert Einstein,
and Arthur Compton [5, 6] [7, 8, [9]. Thus, by 1932, a beautifully simple picture of matter
and light had emerged, up to a few exceptions that we now describe.

The first important complication was the prediction of antiparticles by Paul Dirac. These
emerged as solutions to a relativistic wave equation that Dirac had found in 1927 [10]
11]. In 1931 Carl Anderson discovered the anti-electron or positron, confirming the bold
prediction [I12]. This lead to the new understanding that every particle has an antiparticle
with opposite chargeE] In a very short period the number of fundamental building blocks
was nearly doubled and the puzzle of matter/anti-matter asymmetry was born.

Another complication appeared in 1930 with the discovery of the neutrino. Looking
at the beta decay of various nuclei, Wolfgang Pauli and others recognized that the energy
distribution was not consistent with the two visible decay products. Pauli posited that a
third invisible particle must be carrying away the missing energy. A more complete and
predictive theory of beta decay was then provided by Enrico Fermi, who named the missing
particle the neutrino [13, [14].

Within a few years the story broadened yet again with the prediction by Hideki Yukawa

'This account is drawn heavily from Ref. [I]

2Certain particles with zero charge, such as the photon, turn out to be their own antiparticles.



of a new type of particle called a meson. The meson was motivated by the question of
what holds nuclei together. For example, the two positively charged protons in a helium
nucleus would repel in the absence of some short-ranged attractive strong force. That the
electromagnetic force is mediated by the photon was already well established, so it was
natural that Yukawa should look for some strong-force mediating particle. He further found
that the mass of the mediator was dictated by the size of nuclei to be nearly 300 times that
of the electron [15].

In 1937 two separate groups, Anderson and Neddermeyer on the west coast of the United
States and Street and Stevenson on the east, identified Yukawa’s particle in cosmic rays [16),
17,18]. However, these investigations were plagued by some confusion. The problem, as was
finally settled in 1947 by Cecil Powell and collaborators, was the existence of two different
types of particles in cosmic rays [19) 20]. One is the meson predicted by Yukawa, now called
the pi meson or pion, the other is a heavier cousin of the electron, called the muon, which
has no direct relation to the strong force. For a brief period in this year, it was possible to
believe that all fundamental particles had been discovered.

The illusion of completeness did not last long. In December of 1947 Rochester and
Butler published a cloud chamber photograph that showed a heavy neutral particle which
had decayed into two oppositely charged pions [2I]. The new particle was named the K-
meson, later shortened to kaon. This began an explosion of discovery, with dozens of new
particles appearing in the 1950s as collider and detector technology improved. The newfound
abundance completely disrupted the simple organized picture. In 1955, in his Nobel Prize
acceptance speech, Willis Lamb joked that “the finder of a new elementary particle used
to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a
$10,000 fine.” [22] This multitude of particles was explained in the 1960s and 1970s with
the development of the quantum theory of the strong force. We discuss this work in some
detail in the next section and do not pursue it further here.

The theory of the electromagnetic and weak interactions reached its modern form slightly
before that of the strong force. First quantum electrodynamics (QED), the quantum theory
governing the interaction of charged particles via photon exchange, was developed. Its main

architects included Hans Bethe, Freeman Dyson, Sin-Itiro Tomonaga, Julian Schwinger and



Richard Feynman [23], 24] 25| 26, 27, 28, 29, 30l 3T]. The framework, which had remarkable
predictive power and would become the standard for all future quantum field theories, was
largely complete within a few years of the pion and the kaon discoveries, by 1950. Over a
decade later in 1961, Sheldon Glashow combined the then well-established QED with the
weak interaction into a single unified theory [32]. Six years after this, Steven Weinberg and
Abdus Salam incorporated the newly formulated Higgs mechanism into Glashow’s frame-
work, thereby reaching the modern theory of the electroweak interaction [33) 34]. Thus,
already by 1967, the electroweak part of the Standard Model was fully in place. The com-
pletion of the strong interactions were roughly half a decade behind.

The Higgs mechanism within the electroweak sector resolved certain theoretical issues
and in doing so predicted an additional particle, a spin-zero scalar called the Higgs boson [35]
30, [37]. The experimental verifcation of this new particle was a long way off and would be
preceeded by the discovery of three other bosons in the theory, the massive vector particles
that mediated the interaction, called W, W~ and Z. The mass of these vectors gave the
weak interaction a short range, just as with the strong interaction and Yukawa’s meson. In
contrast to the strong interaction however, no weak bound states were available to set the
scale for the exchange particles.

But the theory of Glashow, Weinberg and Salam provided a firm prediction for the weak
vector masses, with the mass landing around 100 times that of the proton. The construction
of a collider to find the weak vector bosons began at CERN in the late 1970s and culminated
in 1983 with the discovery by Carlo Rubbia’s group of both the charged and neutral vec-
tors [38, [39]. At this point the Standard Model was on firm ground, awaiting discoveries of
only three more particles, with the most prominent being the unique fundamental spin-zero
boson called the Higgs.

The saga ends nearly three decades later. At this point all Standard Model particles
had been found except for the immensely important Higgs boson. Searches for the elusive
particle had begun at CERN in the 1990s and had continued at Fermilab through 2011,
when the collider there was shut down. In this period plans were devised and pushed forward
at CERN to build a Large Hadon Collider (LHC), with primary focus being the discovery of

the final missing piece. The gargantuan effort achieved first data collection in March 2010.



The LHC continued to take data over the next two years and finally, on July 4th of 2012,
the ATLAS and CMS collaborations announced in a joint press conference the discovery of
a Higgs-like boson with mass over 130 times that of the proton [40], [41].

With this achievement the Standard Model was completed, some 115 years after the

discovery of its first fundamental building block.

1.2 Brief history of Quantum Chromodynamics

As mentioned above, experiments in the 1950s showed that a large number of new parti-
cles, collectively called hadrons, are produced in proton and electron collisions. Drawing
on earlier work from Fugene Wigner and Werner Heisenberg, Kazuhiko Nishijima, Tadao
Nakano and Murray Gell-Mann discovered how to organize this “particle zoo”, classifying
the new particles according to electric charge and isospin as well as a new property de-
noted strangeness [42] 43], 44], 45, 46]. In 1963, Gell-Mann and George Zweig independently
proposed that the classification could be efficiently explained by introducing smaller consi-
tutients inside the hadrons, spin-1/2 fermions called quarks [47), [48], 49]E| At that time three
different kinds, or flavors, were needed. These were named up, down and strange.

Shortly after Gell-Mann and Zweig’s papers, in a footnote in a 1965 preprint, Boris Stru-
minsky noted that the Q= hyperon must contain three quarks of the same flavor (strange)
and the same spin. However, being identical fermions, quarks are required to be in a state
that is anti-symmetric under particle exchange. Struminsky argued that this anti-symmetry
could only be accomplished by introducing a new quantum number [51].

Similar observations were made in the same year by Moo-Young Han with Yoichiro

Nambu as well as independently by Oscar W. Greenberg [52, 53]. These groups proposed

3Zweig preferred the term “ace” for the particle he proposed, but it was Gell-Mann’s terminology that
became widely accepted. Gell-Mann also said later that he was undecided on the spelling of the new word,

until he found a passage in James Joyce’s Finnegans Wake [50]:

Three quarks for Muster Mark!
Sure he has not got much of a bark

And sure any he has it’s all beside the mark.



that quarks possess an additional degree of freedom, called color, and that each quark flavor
forms a triplet of color. In more technical language, Han and Nambu as well as Greenberg
suggested that quarks transform as the three-dimensional (fundamental) representation of
an SU(3) gauge groupﬁ The mathematical structure of such a theory had already been
developed over a decade earlier by Chen Ning Yang and Robert Mills [54]. In a gauge theory,
additional vector particles called gauge bosons are automatically included. These particles
transform as the adjoint of the gauge group, which is eight-dimensional in the present
case, corresponding to an octet of particles known as gluons. Gluons mediate the quark
interactions and are responsible for holding quarks together inside hadrons. This quantum
theory of quarks and gluons, which is known as Quantum Chromodynamics (QCD), is the

modern accepted theory of the strong interaction.

Although the quantum numbers of the three lightest quarks were understood by 1965,
the physics community was still divided about whether the constituents should be under-
stood as an organizational tool or as fundamental particles. The central concern was that
no experiments had shown quarks in isolation, and these should have been easy to identify
since they were predicted to have fractional electric charge. In 1968 James Bjorken pro-
posed certain relations in deep inelastic scattering of electrons and protons which, if seen
experimentally, would confirm that the protons were composed of pointlike constituents [55].
These were verified by experiments at SLAC in 1969 and provided strong evidence for a

particle interpretation of quarks [56, [57].

Nevertheless, in the years that followed the community was still far from unified about
the nature of the constituents. The absence of isolated quarks in experiment, as well as
the apparently ad hoc implementation of color to avoid the Pauli exclusion principal, left
many particle physicists uneasy. This doubt was largely resolved in what came to be known
as the November Revolution, a new meson discovery that was announced in November of
1974 [58,59]. The new meson had actually already been seen by C. C. Ting and collaborators

in the Summer of 1974. However Ting wanted to check the results before announcing them,

15U (3) is the group formed by matrix multiplication on set of all complex three-by-three matrices U

which satisfy UUT =1 and det U = 1.



and so the discovery was kept quiet until Burton Richter’s group at SLAC also saw the
particle. Ting named the particle J and Richter called it 1, and so the modern designation
contains both these labels. The J/v is a neutral meson, which was heavier than any that
had been seen before. Particularly striking was that the state has a very long lifetime
compared with others of similar mass. These observations were explained by identifying the
J/1 as a bound state of a new quark, called charm, together with a charm anti-quark. The
introduction of the charm quark provided a rich set of predictions that were later confirmed,
and for most, this breakthrough firmly established the existence of quarks. Indeed, two still
heavier quarks have since been discovered: the bottom quark in 1977 and the top quark in

1995, both at Fermilab [60L 61 [62].

The heavier quark discoveries were particularly significant, because the properties of
mesons built from heavier quarks are easier to predict. To explain this fact, we now present
the final crucial step toward the modern understanding of the strong interaction. This is
the discovery of asymptotic freedom by David Gross and Frank Wilczek and independently
by David Politzer, in 1973 [63], 64]. In their Nobel Prize winning works, Gross, Politzer
and Wilczek showed that the coupling constant which governs the strength of the strong
interaction decreases with increasing energy. Indeed, the early 1970s were a crucial time for
developing technical understanding of QCD. In the year before Gerard 't Hooft and Martinus
Veltman proved that QCD was renormalizable, meaning that the theory was calculable to
any fixed order in perturbation theory [65]E| Asymptotic freedom and renormalizability
imply that perturbative analysis is both rigorous and predictive, but only for high energy
observables. For example, heavier-quark mesons are more amenable to perturbative analysis
than those built from up, down and strange. Experiments at PETRA in 1979 found clear
evidence for the validity of this perturbative understanding, and the approach was confirmed

at the few percent level with the LEP experiments at CERN [66], 67].

The flipside of asymptotic freedom is that the strength of the coupling constant increases

with decreasing energy. This makes plausible, but does not prove, that interactions at

SInterestingly Gerardus 't Hooft understood the scaling of QCD a year before the publications of Gross,

Politzer and Wilczek, and apparently deemed it unworthy of publication.



low energies are so strong that the relevant degrees of freedom change. More precisely, if
the interactions are strong enough, then the energy cost to isolate quarks produces new
quark anti-quark pairs out of the vacuum. In this description, the interquark potential
is expected to increase linearly with separation, like the potential of a taut string. It
follows that energy rises indefinitely with separation until the string is broken by a new
particle/antiparticle pair. This idea is called confinement. It explains why quarks are never
seen in isolation, because such a state would cost infinite energy. Although no formal proof

exists, the evidence by now is overwhelming.

1.3 Detailed description of QCHﬂ

We now completely specify the modern theory of the strong force, QCD. We do not directly
use the results of this section anywhere below and only include it for completeness.

We begin by specifying the quark-field-dependent terms of the QCD Lagrangian density
Eq = _@i,x(_iwij + mxél-j)\llj,w , (11)

where 4, j are color indices running from 1 to 3 and z is a flavor index running from 1 to 6.
(In many cases the sum runs only up to 2, 3, or 4, as the heavier quarks can be neglected.
The quark flavors of the standard model are summarized in Table ) Each ¥; , field is a
four-component Dirac spinor, with Dirac indices suppressed.

Here we have also introduced
Dij =" Dyij = 10,015 — ig AT, (1.2)

where v is a Dirac matrix satisfying [y*,v"] = —2¢*" with g"” the mostly-plus Minkowski
metric, pp,g"" = —[pY]2+p?. The second term in Eq. results in a quark-quark-gluon
coupling. It consists of the gluon field A}, the generator matrix 77} and the strong coupling
constant g. Here a runs over the 8 generators of SU(3) and T} is understood to be in the
fundamental representation.

It remains only to specify the pure-glue or Yang-Mills part of the theory

1
Lyn = =7 PP, (1.3)

SConventions in this section are taken from Ref. [68]



up down strange charm bottom top

mass (MeV) | 2.3%07 48703 9545 1275425 4,180 +30 160,000 7000

charge +2/3  -1/3 -1/3 +2/3 ~1/3 +2/3

Table 1.1: Basic properties of the six quarks in the Standard Model. All masses are in MS
renormalization scheme. For the lightest three the renormalization scale is p = 2 GeV and

for the heaviest three the scale is equal to the particle mass [69].

where

FS, = 0,45 — 0,A5 + g f“bCAgA’;. (1.4)

Note that this part of the Lagrangian density gives three and four-gluon vertices. This self
interaction of the exchange particles is the central feature that distinguishes a non-abelian
gauge theory from an abelian gauge theory.

The total Lagrangian density is thus £ = £, + Lym and the action is S = [ d*zL. From

this one can formally determine any correlator using the path-integral relation
(0|70 () - - - O1(x1)|0) = ;/DAD\I/D‘I/ expliS] On(xy) - O1(z1), (1.5)
where T denotes time ordering and
7Z = / DADYDVY expliS]. (1.6)

It is not, however, a priori clear that this path-integral is well-defined. One way to make
sense of the integral is in perturbation theory. As we have already mentioned, it is now
well established that the theory is calculable at any fixed order in perturbation theory. To
perform such calculations one must gauge-fix and then regularize and renormalize ultraviolet
divergences. Certain quantities also suffer from infrared divergences but these cancel in any
physical observable. Perturbative QCD is not relevant to the present work and we therefore

make no further mention of this extensive field.
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Another tool for understanding QCD is to consider a modified theory in which spacetime
is discretized. By this we mean that quark fields are restricted to only take values on a lattice

of points

P(x) — (an), (1.7)

where a is the lattice spacing and n is a four-vector of integers. Additional work is needed
to completely define and make sense of the discretized theory. We do not describe the
steps here but merely assert that it is well understood how to define a discretized path
integral and then how to perform a continuum limit to recover desired physical quantities.
Discretizing QCD is the only known way to regulate ultraviolet divergences without first
performing a perturbative expansion. Since perturbation theory does not describe the low-
energy properties of the theory, the availability of a nonperturbative regulator is crucial.

Although important progress has been made via analytic studies of LQCD, the bulk
of modern focus is on numerical calculations of the theory. This requires restricting the
discretized theory to a finite (usually periodic/antiperiodic) spacetime, so that the path
integral reduces to a finite-dimensional integral. In addition, because the integration space
is so large, numerical work relies on Monte Carlo sampling to approximate the desired result.
This technique only applies when the integrand is positive definite, and thus cannot be used
with the complex oscillatory factor, exp[iS]. For this reason the numerical path-integral
must be performed in Euclidean rather than Minkowski field theory.

In this work we consider the role of Euclidean time and finite volume in extracting
physical observables from LQCD. In particular, we are interested in processes that have

two or more on-shell hadrons in the initial or final stateﬂ Before describing how LQCD

7As we describe in more detail in the finite-volume section below, extracting observables is often easier
when only one (or zero) hadrons appears in the initial or final state. For example, matrix elements of local
operators between single-particle states can be directly extracted by taking an appropriate limit on Euclidean
time coordinates. This approach is already being widely used in precision numerical studies. I am currently
working with Jack Laiho and Ruth S. Van de Water to extract matrix elements relevant for neutral kaon
mixing. These matrix elements predict the rate at which a kaon oscillates into an anti-kaon. Our study
considers operators both within and beyond the Standard Model, and comparison with experiment will thus

provide constraints on new physics models.
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can be used to study such processes we present a series of specific examples to motivate our

interest.

1.4 Multi-hadron physics within and beyond the Standard Model

In this section we discuss various decay and scattering processes that have multiple hadrons
in the initial/final state. The specific cases that we consider highlight the significance of the
work presented in the following chapters. However, it is important to emphasize that the
examples are only illustrative, and that the formalism that we present below is much more
general. In particular, in this thesis we derive formalism to extract the following quantities

from numerical LQCD:

1. two-to-two scattering amplitudes, for scalar particles in systems with any number of

coupled two-particle channels,

2. weak decay matrix elements, with a two-scalar final state that is coupled to other

two-particle channels,

3. one-to-two scalar transition matrix elements, for currents that inject energy, momen-

tum and angular momentum,

4. three-to-three scattering quantities, for identical scalar particles with no other open

scattering channels.

Numerical LQCD is the only known first-principles approach for predicting these quantities
from the underlying theory. Since a method for extracting these observables was unavail-
able before this work, we think the results are an important asset in reaching a detailed,
quantitative understanding of the strong interaction.

The rest of this section is organized as follows. In Subsection [L.4.1] we discuss the
decay K — mmw. The formalism for determining this decay rate from LQCD was devel-
oped by Martin Liischer and Laurent Lellouch in the (very good) approximation that the
lightest two quarks have equal mass [70]. In Subsection We discuss various phenomeno-

logically interesting two-particle resonances including a(980) and f,(980). These can be
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systematically studied with our coupled two-scalar scattering formalism (1 above). Next in
Subsection we consider D — 7, KK, which is accessible via our weak decay relation
(2), in the approximation where coupling to higher particle states is neglected. In Subsec-
tion we discuss various semi-leptonic/photonic processes such as such as 7y — 7.
These are accessible from lattice calculations via our formal developments for transition ma-
trix elements (3). Finally in Subsection we discuss three particle resonances including
N(1440) — N7m and w(782) — mwm. Our three-particle analysis (4) represents progress

towards first principles analysis of these states.

1.4.1 K— 7w

Mesons with the quantum numbers of one strange antiquark and one of the lightest two
quarks are called kaons. These particles have a rich phenomenology and provide important
opportunities for testing and constraining physics that goes beyond the Standard Model
(BSM physics). Because strangeness is conserved in QCD, kaons can only decay through
the weak interactions. Decays can be leptonic as well as semileptonic, involving both leptons
and hadrons, and purely hadronic. The last of these provides an opportunity to explore the
interplay of weak and strong interactions, with incoming and outgoing QCD states coupled
only via charged weak vectors, W*. An old problem in this sector, specifically in K — 77
decays, is the AT = 1/2 rule. This “rule” is the experimental observation, made nearly sixty
years ago, that kaons (which have isospin of one-half) decay to the isospin-zero state with a
much higher rate than to the isospin-two state [71} [72] [73]. The enhancement is measured

to be [74]

Re[AK*)(TMT,IZO)] = 922240.1. (18)

Re[Af — (nm, 1=2)]

Here A is a decay amplitude and so the ratio of rates is larger, equal to the ratio of magni-
tudes squared.

The AI = 1/2 rule predates QCD, and early attempts to understand the observation

were completely unsuccessful. Evaluating matrix elements of

(57" (1 — vs)u] [ty (1 = 5)d], (1.9)
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within the quark-model, one finds that the ratio of amplitudes should be order one, in stark
tension with experiment [74].

Understanding was greatly improved with the advent of QCD and the operator product
expansion. Using these tools, the decay amplitudes can be determined from matrix elements

of a low-energy effective hamiltonian [75}, [76, [77, [78], [79]

8
Mot =" = \G/g > (Vi Vaa)zi() — (VisVia)ys ()] Qi(n) (< me), (1.10)
=1

where Q);(u) are four quark operators and z;(u) and y; (1) are Wilson coefficients. The latter
contain information on scales above the renormalization scale p, and for CP conserving
processes only the z;(p) are numerically relevant. Here we have also introduced the Fermi
decay constant G = 1.16637(1) x 107° GeV 2 as well as certain elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, V, [69].

The Wilson coefficients can be calculated perturbatively for u = 1 GeV. Indeed major
progress in the understanding of the Al = 1/2 rule was made when it was observed that
the quark evolution, represented by the Wilson coefficients, leads to both an enhancement
of the I = 0 and a suppression of the I = 2 final state [75, [76}, 80l 8], 82] 83]. Nevertheless,
perturbative effects are not sufficient to fully explain Eq. and the low energy QCD
matrix elements are needed.

We do not display the explicit forms of the four-quark operators @Q;(u) here, but only
comment that these include that of Eq. , which is due to W7 exchange [see Figure

1.4.1{(a)], as well as penguin operators such as [74]

S50 - 5)d) @0 ), S5 - 5)dl @91 — )], (1.11)

where the sum runs over up, down and strange. These operators arise from so-called penguin
diagrams like that shown in Figure [L.4.1{(b).

To extract K — wm amplitudes, one must determine

(e, 1] Qi) | K°). (112)

These matrix elements must be calculated using non-perturbative techniques, with the only
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Figure 1.1: Feynman diagrams responsible for K — nm: (a) tree-level W-exchange diagram

(b) one-loop penguin diagram.
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known sytematically improvable option being LQCDE A full-error-budget calculation is now
being implemented by the RBC/UKQCD collaboration [88, 89, 90]. The methodology is
fully in place, results for the I = 2 final state with a complete error budget are available [91],
and complete results for the more challenging I = 0 final states should become available in
the next few years. At that stage we will finally learn whether and in what manner QCD

can explain the AT = 1/2 rule and the observed CP—Violationﬂ rate in K — 7m decays.

1.4.2  Two-particle resonances

The rich resonance structure observed in hadronic scattering experiments is expected to
be completely described by QCD. Here we consider the energy regime where only two-
particle channels are open. The scattering amplitudes connecting these channels contain all
information about the two-particle resonances of the theory.

More precisely, the eigenstates of the QCD hamiltonian are asymptotic states built only
from those mesons and baryons that are stable in the absence of the electroweak interaction.
All predictions of the theory are contained within the scattering matrix (S-matrix) which
is the matrix of overlaps between all possible incoming and outgoing asymptotic states. In
the two-particle sector, the S-matrix may be expressed in the space of open two-particle
channels together with angular momentum which, at fixed energy, completely specifies the
states. The simplest case is a single two-particle channel, for which the matrix reduces to a
single phase for each value of angular momentum, S; = exp[2id;]. A resonance is defined
as a sharp increase of the phase-shift d; as a function of the two-particle center of mass
(CM) frame energy. A more rigorous definition is possible if one knows the analytic form
of S in the complex CM-energy plane. Then a resonance is defined as a pole located off the
real axis.

In Chapter 2 we present a method for extracting the S-matrix from LQCD, for a system

with multiple strongly-coupled two-scalar channels. By extracting scattering observables at

80ther options include the vacuum saturation approximation, which fails completely, and the large N.
(number of colors) expansion, which predicts the correct order of magnitude for the decay rates [77, 84} 85,

%6, [87].

9C is charge conjugation symmetry, P is parity.
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many energies and fitting the result to a well-motivated analytic function, one can use this
method to determine S off the real axis. The poles in the result then give the full resonance
structure of the theory.

This method has already been applied in a full LQCD calculation, at unphysically heavy
391 MeV pion mass, to the I = 1/2 7K, nK system [92]@ This study, which considers
JP = 0%,17,2%, demonstrates that the formalism can be applied to physically relevant
systems and that resonance properties can be rigorously extracted. In particular, the authors
find a narrow scalar resonance and a broad tensor resonance resembling the K(1430) and
the K3(1430) respectively. In the J = 17 channel they find a bound state below wK
threshold. This is expected to become the experimentally known narrow resonance at
physical pion masses.

Many other states could be investigated using this approach. For example, QCD phe-
nomenologists are interested in better understanding two scalar resonances with energies
close to the KK threshold, known as the ag(980) (I = 1) and the fo(980) (I = 0). These
are sufficiently narrow that it seems well-motivated to associate them with certain excited
states of the quark model. However they do not fit into the scalar ¢qq nonet, and thus other
solutions are required. Possible alternatives include interpreting the narrow resonances as
tetraquark states or as KK molecules [93] 94, 95 [96], 97, 98]. In general these are model-
dependent descriptions, but in certain contexts a more rigorous definition can be applied. In
this sector much insight could be gained by using LQCD to extract resonance pole positions,

as well as to determine overlaps of various operators with scattering states at the pole.

1.4.8 D — 1, KK

In December of 2011 the LHCDb experiment at CERN reported evidence for CP-violation
in (the difference of) D® — 777~ and DY — K+K~ decays [99]. Although the initially
reported rate was larger than naive expectations from the Standard Model, there was suf-

ficient uncertainty in the Standard Model prediction for it to be consistent with the result

0Note that the 7 is a resonance for physical pion mass but is a stable particle for the pions used in this

calculation.
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(see, e.g. Refs. [100, 101, 102) 103}, 104, 105]). The violation was then reduced in a more
complete analysis from May of 2014 [I06]. Nevertheless, it is interesting to understand
whether a calculation of such decays using lattice methods is feasible.

In the context of LQCD the issue turns out to be a generic field-theoretic question of
whether decays into multiple, strongly-coupled channels can be analyzed. In Chapter 3 we
demonstrate that this is possible and detail the method for decay into coupled two-scalar
channels. This formalism allows one to analyze D — 7w, KK in the approximation where
coupling to higher-particle states is neglected. This can likely only offer a rough guide of the
physical decay rates. A qualitative indication of this (ignoring differences in phase space)
is that the fp(1500) has a 50% branching fraction to w77, while the branches to 7, KK
and nn are ~ 35%, 9% and 5%, respectively [69).

1.4.4 One-to-two transition matriz elements

A LQCD calculation of proton-proton fusion through the weak interaction, pp — de™ v,
would allow for a direct theoretical prediction of this fundamental process which powers
the sun. The MuSun Collaboration will measure a related process, muon capture on deu-
terium [I07]. At low energies, these two processes are described by the same two-nucleon
contact interaction [I08], providing an opportunity to over-constrain these reactions for
which there is currently discrepancy between experimental results [109, [110] and theory
calculations [108, T11].

Another example of particular interest is the heavy meson decay B? — K*/t/~ —
7K/{T¢~ which could be used to probe physics beyond the Standard Model. Also for this
process there is currently tentative tension between experimental results [112] 113, 114 115,
116] and Standard Model predictions [117, 118 [1T9] 120].

In Chapter 4 we demonstrate how to unambiguously study 1 — 2 form factors via lattice
QCD. Specifically our formalism allows one to extract matrix elements of energy/angular-
momentum injecting currents between a one-particle state and a two-particle asymptotic
state. This is a first step towards constructing a formalism for the determination of 2 — 2

form factors, which is directly relevant for pp — de™v,.
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1.4.5 N(1440) - N7m, w(782) — mrm, K;5(1430) — K7

A better understanding of the Roper resonance N(1440) has been an important goal of
QCD phenomenologists for decades. It is unnatural from the perspective of quark models,

since its mass is lower than that of the negative-parity ground state N(1535) [121], 122].

As with the other states discussed, a quantitative prediction of the N(1440) properties
from first principles QCD in only possible via LQCD. Also as above, the formalism to
extract the resonance’s properties from the underlying theory is currently unavailable. In
the present work we take an important step towards this formalism. Specifically, in Chapter
5, we analyze a single scalar particle with no coupling between odd and even particle states.
Within this set-up we derive a relation between the three-particle finite-volume spectrum
and a particular (non-standard) infinite-volume quantity. Our formalism is strictly valid
for three pion states in QCD and could be used to investigate the w(782) resonance, which

decays to three pionsﬂ

Future work will generalize this to accommodate non-identical and non-degenerate scalar
particles and also particles with spin. This will allow one to treat the Roper resonance and
also K;(1430) — Knnm. This is well-motivated by the current status of LQCD calculations.
In particular, the aforementioned LQCD calculation of 7K, mn scattering was limited, in
the J = 2T sector, by the opening of the K* — K threshold [92]. Our formalism for
this system could thus potentially allow lattice practitioners to extract physical information

from existing numerical data.

" For physical pion masses the resonance would also couple to five-pion states, invalidating the analysis
presented here. This issue would potentially be evaded in simulations with unphsyically heavy pions. Here
one must determine what range of pion masses gives a resonant w(782) which only decays to three-pion
states. Practically one would likely proceed to analyze the three-particle spectrum at some pion mass
without knowing the phenomenology. If the extracted resonance sits between three and five particle masses
then the concluded properties are formally rigorous. If the resonance exceeds the five particle threshold,

then the result must be interpreted with a systematic uncertainty due to the neglected on-shell state.
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1.5 FEuclidean time

Having discussed a number of interesting processes with two or more hadrons in the initial
or final states, we now return to the task of understanding how these can be studied using
LQCD. As mentioned above, this thesis emphasizes the role of Euclidean time and finite
volume in extracting multi-hadron observables. In this section we carefully discuss the
former.

We first recall the main motivation: Numerical lattice QCD calculations can only be
performed using Euclidean time. This is because only Euclidean path integrals have a real
positive integrand that can be evaluated using Monte Carlo techniques. For this reason, it is
paramount to understand what information can be extracted from numerically determined
correlators with Euclidean time coordinates. In the following subsection we carefully define
the Euclidean correlator. Then, in Subsection 1.5.2, we discuss the difficulties of extracting

physical scattering information from these objects.

1.5.1 Definition of the Euclidean correlator

We begin with the Minkowski two-point correlator
. . 1 _
(0|Oq(2°,x)O1 (y°, y)[0) = Z/DAD\IID\I/ expliS] Oa(2°,x)01(1°,y), (1.13)

where we have assumed z° > 3°. Restricting attention to the left-hand side, we insert a
complete set of states and use the identity for time translation of quantum operators to

reach
(0/02(2°, x)O1 (5", ¥)|0) =
d*P , o 0 A R
Y| momem—expl—iEnp(z? = y°)] (0[02(0,x)|n, P)(n,P|O1(0,y)[0) . (1.14)
" (27T) 2En,P
Here we label eigenstates of the Hamiltonian by their total momentum P as well as by a
collective label n, which encodes all other properties. We stress that n might also include

continuous degrees of freedom, so that the schematic sum may also contain integrals. We

also assume throughout that the ground state is unique and has zero energy.
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If the integrals in Eq. (1.14) are convergent, then it is clear that extending 2° — ¢ into
the negative complex plane will only improve this convergence. In particular, if we rotate
to pure imaginary values of the same magnitude, denoted —i(x4 — y4), then the relation

becomes
00g 2(24,%)Op 1 (y1,¥)|0) =

3 “ N
> [ G el Bur (i = w)] 00:0.%)n.P) (. PIOW0.Y)I0) . (115)

This is the definition of the Euclidean correlator.

We next claim that this Euclidean correlator, and its generalization to any number of
fields, is defined by a modified path integral. To review the derivation of the path-integral
formula, we do not work within QCD but instead consider a one-dimensional, real scalar field
theory. This captures the basic points of the derivation but avoids a number of complicating
details.

We begin by expressing the time dependence via the time evolution operator, but in
contrast to Eq. , we do so without inserting a complete set of states. Assuming

x4 > Y4, we find

(010p2(24)Op,1(y4)[0) = (0|Op2(0) exp[—H (x4 — y2)]O5,1(0)|0) , (1.16)
1 . ,
7 (T+—>+olc},r%7—>—oo) /d¢/d¢ (1.17)

x <¢/|e*H(T+fx4)@EQ(O)efH(wryéx)@E’l (O)e*H(y‘l*T*) 1P)

where we have introduced

7' = lm / dg / ¢’ (&) exp|—H(T, — T_)]|¢). (1.18)

(T =400, T-——00
Here |¢) is an eigenstate of our one-dimensional field qg(O) with eigenvalue ¢. To see that
Eq. holds, note that the integrals over eigenstates of QAS(O) can be rewritten as linear
combinations of Hamiltonian eigenstates. The exponential factors then remove all excited
states and the 1/Z’ pre-factor cancels the coefficients on the two vacuum states.
The next step is to write each time evolution operator as a product of N > 1 factors

which each evolve by an infinitesimal amount. For example

~ A~

exp[—H (24 — y4)] = exp|—He] exp[—He| x --- x exp|—He], (1.19)



21

where N, factors appear on the right-hand side and € = (x4 — y4)/N;n. We then insert a

complete set of states

1= / a6 |6) (@) (1.20)

between each pair of adjacent infinitesimal time-translators. This gives a large number of

factors with the form

(breale™ )6, (1.21)

where 7 is an integer labeling the various variables of integration.
If we assume the Hamiltonian takes the standard form H = IT2 /2+ V(gZ;) then this factor

can be further simplified

(Grale ™6,) = [ SHGrim@e LoV D) L0, 2)
N2
= Cexp [— ¢ {;W + V(qu)}] +O(&). (1.23)

Absorbing all factors of C into Z = Z’/C and dropping O(¢?) terms, we deduce

(010r2(01) 01 (10)10) = 5 [ Do expl-S£10(z1)Olw). (1.24)
where
Ny
/D(;S = H /dng , (1.25)
T=N_
Ny Ny _ 9
Sp=e€ > Lp(r)=e ) BW+V(¢7) : (1.26)
T=N_ T=N_
O(T) = <¢T+1|@(0)|¢T>7 (127)
and
7= /D¢ expl—Si] . (1.28)

Finally, if we take the limit in which the time slices become arbitrarily close together

(e — 0) then Eq. (|1.26]) becomes

—00 —0o0
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Actually, this limit is highly subtle, since it involves approaching an infinite continuum of
integration variables. We will not pursue this issue further here but merely assert that
practitioners of LQCD are concerned with taking the (closely related) continuum limit in
order to extract physical observables. Although there is no proof that the limit is well-
defined, numerical implementation has been highly successful.

Next observe that the quantity Sg, in Eq. , is a modified form of the action
that defines the real scalar field theory. In particular, it is reached by rotating the time
coordinate from the real to the imaginary axis, and then relabeling. This is also the correct
prescription to identify the Euclidean path-integral of QCD, one rotates from (2°,x) to real

(x4,%), where x4 = ix°

iS =i / dax® / dxL(z°,x) (1.30)
:/Idx4/dx£(—im4,x) (1.31)
— /R daa / dxL(—izy,x) = — / d*zplp(zp) = —SE. (1.32)

To go from Eq. (1.30) to (1.31)), we have simply relabeled 20 = —ixzy. The subscript Z

indicates that integration is along the imaginary =4 and therefore real ¥ axis. Here the
first two lines are trivially equivalent and only involve relabeling. To go from Eq. to
, we rotate the integration contour to the real x4 axis. Thus, in this step the action
changes from a functional of fields on real 2" to a functional of fields on real 4.

Returning to notation that is appropriate for QCD we reach
OITOpn(xEn) - Opa(rEa)]0)
1 _
= E /DAED\I/ED\I/E exp[—SE] OEﬂ(m'E,n) s OEJ(Q?EJ), (1.33)
where T" denotes time ordering and
Z = /DAED\IIED\I'E exp|—SEg]. (1.34)

As already mentioned, the discretized version of this path-integral can be numerically eval-
uated. We now consider how the Euclidean time signature limits the information that one

can extract.
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1.5.2  Extracting Minkowski correlators from infinite-volume Euclidean correlators

Because numerical lattice calculations are performed in a finite volume and with nonzero
lattice spacing, the Euclidean correlators that one extracts will differ from those of the
infinite-volume continuum theory. However, it is at least in principle possible to run cal-
culations with many different lattice and box sizes, and so to systematically reduce these
effects. With this in mind, we now consider what information can be extracted from numer-
ically determined, infinite-volume/continuum correlation functions, evaluated at Euclidean
time. We will find that physical multi-hadron observables cannot be determined in this way,
and this will motivate the remainder of this work, which relies on finite-volume as a tool to
overcome the obstacle.

The first natural question is whether it is possible to convert
OTOpn(rEnR) - Or1(2E1)|0)num — (O]TOn(2x) - - O1(21)]0) num , (1.35)

where the subscript indicates that the functions are known numerically. This represents an
ill-posed problem in most cases of interest [123], and the issue has been quantititatively in-
vestigated in the context of inverse Laplace transforms [124]. To understand the connection,

it is neccesary to first introduce the momentum-space Euclidean correlator

Gelge1,  ,qEn) = /d4$E,1 dirp, expl—i(z1aqia o+ Tnagna)
X eXp[—i(Xl Qo+ Xy qn)] (O\T(’)Em(acﬂn) e OE,1($E71)’O> . (1.36)

Next observe that G can be written as the Laplace transform of the position-space Minkowski
correlator. This is achieved by rotating the x4 integrals from the real to the imaginary axis.
Here one must take care to rotate the contours in the direction that gives damping at in-
finity. For example, considering the case when all g4 < 0, we split all x4 integrals into the
positive and negative halves of the real axis. For the term with all positive ranges we rotate
to the positive imaginary axis to find
29=00
Gelapnoe an) =" [ dloy-ate, espl=atiaal == allani]
X exp[—i(x1-q; + -+ Xp - q,)] (0|TOn(xy) - O1(z1)]|0) + -+, (1.37)
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where - - - indicates a series of similar terms that arrise from integrals over the negative real
axis. We generally expect the Laplace transform to converge, since the Minkowksi correlator
has oscillatory time dependence, so the integrand above decays exponentially with time. We
thus deduce that the problem of analytic continuation may be reexpressed as that of finding

the inverse Laplace transform
GE(qE,h e 7QE,n)num inve;e) LT <0’T0n(xn) e Ol (331)’0>num . (138)

Ref. [124] discusses in great detail why this problem is “severely ill posed”. The authors
first point out that, while the Laplace transform is continuous, its inverse is not. The
argument introduces a sequence of functions f,(2°), with n = 1,2,3,---, together with
their Laplace transforms ¢, (g4). The authors demonstrate that it is possible to construct a

sequence such that as n — oo

/ daslgn(a)? — 0 while / 420 (22 —> o0 (1.39)
0 0

To see the significance of this, we introduce G(q4) as the exact Laplace transform, and
observe that G(g4)num;n = G(q4) + gn(qa) defines a sequence of approximations that im-
prove with increasing n. Specifically, the approximations improve in the sense that the
norm of G(¢4)num,n — G(qa) vanishes with increasing n. (Recall that the norm squared is
defined as the integral of the function’s magnitude squared, as given in Eq. ) Re-
markably, however, the difference between the exact inverse F(2°) and the approximate
inverses F(2°)pumn = F(2°) 4+ f,.(2°) has divergent norm in the limit n — oo.

The situtation is improved if we include the assumption that F'(2°) must be a continuous
function. In this case the approximate inverse Laplace transform will at least formally
approach the exact result. However if the norm of G(q4) — G(¢4)num,» is bounded by some
vanishing €, then the norm of F(2°) — F(2°)yum» will only vanish as [log(e)]~!. Thus, the

errors in the inverse are significantly enhanced.

Abandoning the approach of direct analytic continuation, progress can be made by

recalling that we are often interested in the momentum-space Minkowski correlator. This
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is defined as
Glq1,  ,qn) = /d4x1 dian expli(ai) + -+ 2pan)]
x exp[—i(x1-q; + -+ Xp - q,)] (0|TOn(xy) - O1(21)]0) . (1.40)

We thus consider whether it is justified to rotate the integration and so deduce

~

G(q17 ttt 7qn) = (_Z)n / d4$E71 .. d4xE7n exp[x174q? + e + xn74q2]
X exp[—i(xl q1 + -+ Xy qn)] <0‘T0E,n(xE,n) s OE71(xE71)’0> . (141)

This is closely related to the preceeding analysis. The difference is that we are working
here with the momentum-space Minkowski correlator rather than the momentum-space Eu-
clidean correlator. In Figure[l.2| we summarize the four types of correlators and the relation-
ships between them. Note that the Laplace transform is used to change between position
and momentum space while simultaneously changing between Euclidean and Minkowski
time. It turns out that Laplace transforming the Fuclidean position-space correlator to
extract the Minkowski momentum-space correlator works for certain momenta ranges, but
fails generally.

Consider, for example, the simplest possible case of a two point function in free scalar
field theory. We slightly modify the definition given in Eq. , instead taking

1 1

Gk) = /d4xexp[i(g;0k;0 —x W] OT9@OO0) = g (142

where we have introduced wy, = Vk? + m2, with m the mass of the scalar particle. Here
only one Fourier transform was performed because the second simply generates a momentum
conserving delta-function which plays no role in the present argument.

It is next useful to consider the expression at an intermediate stage when only the spatial

integral has been evaluated

1
G(k) = M /d$0 exp [z’xoko —i(wg — i6)|x0|] . (1.43)

When the Euclidean spatial correlator in Eq. (1.41)) is used to attempt the same result, one

instead arrives at
G(k) = —QZE dxy exp [24h° — wy|zal] . (1.44)
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Figure 1.2: Summary of the various relations between Minkwoski/Euclidean time and posi-
tion/momentum space correlators. The letters between the various correlator pairs indicate
the relation: a.c. for analytic continuation, f.t. for Fourier transform, L.t. for Laplace trans-
form. The question mark on 1.t. emphasizes that the transform does not always correctly

relate the correlators, as we discuss in the text.
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We deduce that Eq. only produces the correct result for [k°]> < w?. Outside of this
region the Euclidean integral is divergent and therefore clearly gives no information about
the true Minkowski propagator. The problem arises because the contour at infinity, which
is implicitly neglected in going from Eq. to Eq. (more generally from
to ), gives an important contribution once the magnitude of k° exceeds wy. (Indeed
the neglected contour gives a divergent contribution which, if correctly accounted for, must
cancel the divergence in Eq. to give the known result.)

In this simplest of cases the convergence issue can be resolved by splitting the range of
integration as was done in Eq. above, and then treating [k']? < w? and [kY]* > w?
separately. In this way one can reproduce the free Minkowski propagator, except for the ie
shift of the single-particle pole. However, this cumbersome approach does not generalize well
to the more-complicated correlators of interacting theories. In particular, no implementation
of Laplace transforms can give the correct result for an interacting theory at energies above
multi-particle thresholds. The reason is that in this case the result is imaginary due to the
integration (with ie prescription) along the multi-particle branchcut. Since Eq. is
pure real, up to an overall phase, the correct result cannot be reproducedE We direct the
reader to Ref. [125] for additional discussion as well as a more physically interesting example
where the Laplace transform is valid.

We conclude this section by offering a final attempt to extract physical information
from numerically determined Euclidean correlation functions. Maiani and Testa studied

infinite-volume Euclidean correlators of the form [126]

Gq(t1,t2) = (mq(t1)m—q(t2)J(0)) , (1.45)

where J(0) is a current with the quantum numbers of two pions. They considered taking
a large t; limit followed by a large to limit. This would naively interpolate a two-pion out
state, but as one might expect from the preceding discussion, a more complicated structure

emerges.

121 ooking to Eq. (1.41)) we see that the integral is real as long as the correlator is invariant under x; — —x;

for all 4. This is satisfied as long as parity is a symmetry of the theory.
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In a careful and thorough analysis, the authors found

t135t>0 Zn
) == o exp[—wq(t1 + t2)]
q

x [(1/2)(<7rq7r_q,outu<0)yo> + (T _q, n]J(0)[0)) + C exp[2(wq — ma)ta] + - ] . (1.46)

Gq(t1,t2

where - - - indicate terms that are suppressed in the large time limit. Observe that the first
term in square brackets involves an average of in- and out-states, rather than the outstate
alone. This is not so surprising since the correlator is known to be real and the average
has this property. The average is not particularly problematic. For example, below the
four-particle threshold the average could be used to determine the two-particle phase shift,
which is the only physically relevant scattering information anyway.

This information is however unavailable, as a result of the second term in square brackets.
Note that this term increases with increasing to and thus dominates the on-shell matrix
elements in the large time limit. The coefficient C' depends on off-shell matrix elements
with no clear physical interpretation. Note that the second term is only growing for nonzero
q and in fact has no ¢t dependence at threshold (q = 0). Indeed, Maiani and Testa also

considered the threshold limit of this result, and found that it does produce a useful result

/A ™
Golt, t) 212570 (] J(O)]m) <1 —a 47:@ +- ) . (1.47)

where a is the S-wave scattering length.

In summary, in this section we have argued that no analytic continuation, in position
or momentum space, is possible above two-particle threshold. We have further shown that
taking asymptotic time limits directly on Euclidean correlators only provides scattering
information at threshold. This would appear severely limiting for LQCD, but fortunately,

as we describe in the next section, the problem can be circumvented.

1.6 Finite volume

Having argued that multi-hadron observables cannot be extracted from numerically deter-
mined, infinite-volume Euclidean correlators, we now consider the effects of finite-volume.
We work throughout the remaining text with a finite periodic spatial-volume of linear ex-

tent L. We continue to treat the time direction as infinite. This is well motivated because
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finite-Euclidean-time (equivalently finite-temperature) effects are smaller in typical numer-
ical calculations and also because the difficulties faced in infinite-volume are most easily
overcome by only compactifying spatial directions.

The finite-volume theory has a discrete energy spectrum which varies with L. The
discrete tower of states may be organized according to all quantum numbers which are
conserved in finite-volume, and it is useful to separately consider the spectrum in each
subspace. For concreteness consider states with the quantum numbers of two pions in a given
isospin channel (I = 0,1,2) and with zero total momentum. We denote the spectrum in
this subspace by Ej(L), Eo(L),---. Two-pion states are disjoint from single and three-pion
states because they have different eigenvalues under G-parity, which we treat as an exact
symmetry here. We stress that quantum numbers are the only tool for classifying states,
because we have no concept of asymptotic states to classify multi-particle configurations.
For example two and four-particle states can only be separated kinematically, and we do so
by restricting attention to 0 < E < 4m,, with m, the physical pion mass. Observe next
that, for any finite n, F, (L) approaches 2m, in the limit L — oo. Thus in this limit the
spectrum contains no information about particle interactions. On the other hand, at finite
L the values of Ey(L), E2(L),--- must differ from those of two-free particles as a result of
particle interactions. It follows that an expression which specifies the values of these finite-
volume energies should contain information about the interactions, and thus information
about scattering ™|

The relation between the finite-volume spectrum and scattering amplitudes was worked
out by Martin Liischer, for the case of a single two-particle channel with zero total momen-
tum [127, 128]. In this seminal work, Liischer derived a relation that allows one to extract
the two-pion elastic scattering phase-shift, 7, and thus also the S-matrix, S; = exp[2id ],
from the finite-volume spectrum.

The derivation proceeds by first providing a relation between low-energy QCD and non-

relativistic quantum mechanics. Specifically one can construct an energy-dependent po-

13Consider also that the spectrum of QCD in finite-volume as well as the scattering properties of its low
lying states are nonperturbative questions. Thus, although neither can be predicted analytically from the

quark-field Lagrangian, it is possible that an analytic relation between them exists.
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tential Ug, such that the Schrodingier equation with Ug gives a wave function with an
asymptotic form dictated by ;. Liischer then provided a thorough analysis of the quantum
mechanical system in finite-volume, to determine how the asymptotic wave-function may
be extracted from the spectrum. The resulting expression gives the physical observables
07(Ey) from the discrete levels E,,(L).

This work was further generalized to states with nonzero total momentum in the finite-
volume frame [129] [130], 131]. Ref. [130] also provided an alternative, purely field theoretic
derivation of Liischer’s quantization condition. To describe this generalization we introduce
P as the total momentum of the system. We further introduce notation for the center of
mass (CM) frame spectrum Ef(L), E5(L),---. This is related to the moving frame spectrum
via

E*=VE?-P2, (1.48)

The kinematic restriction mentioned above is now re-expressed as 0 < E* < 4m,,.

In this thesis we generalize the result further to describe systems with any number of
strongly coupled two-scalar channels. The particles may be identical or non-identical and
degenerate or non-degenerate and may have nonzero total momentum. For example, our
formalism accommodates the coupled 77 and KK system if coupling to four-(and higher)-
particle states is neglected.

Our derivation, presented in Chapter 2 below, follows the field-theoretic approach of
Ref. [I30]. Specifically, we diagrammatically evaluate a finite-volume two-to-two correla-
tor to all orders in perturbation theory. As a result of the finite-volume condition, all
momenta must satisfy p € (2r/L)Z3. In particular, the loop momenta appearing in Feyn-
man diagrams are summed over this discrete space, rather than integrated as in standard
infinite-volume calculations. Since we are after infinite-volume quantities, our goal is to
quantitatively relate the finite-volume sums with infinite-volume integrals. Following [130],
we show in Chapter 2 that, if one neglects terms exponentially suppressed in m, L, then it
is possible to give a compact relation between finite-volume and infinite-volume diagrams.
It is further possible to sum all diagrams to reach a simple expression for the finite-volume

correlator. The poles in this correlator determine the finite-volume spectrum and so the
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analysis described gives a quantization condition for the energies of the compactified theory.
Crucially, this quantization condition depends only on on-shell scattering amplitudes as well
as known kinematic functions.

Preceding this work were a number of papers studying the generalization of the Liischer
quantization condition to multiple two-body channels [132], [133] 134 [135] and assessing its
utility. The work of Ref. [132] uses non-relativistic quantum mechanics, while Ref. [I33] is
based on a non-relativistic effective field theory. References [134] and [I35] are based on
relativistic field theory, and give an explicit result [Eq. (3.5) of Ref. [I34]] for the case of
two s-wave channels in which the total momentum vanishes and in which the contributions
from higher partial waves are assumed negligible. Our result is the first to consider nonzero
total momentum and to accommodate all partial waves.

Going beyond the strong interaction, Liischer’s quantization condition can also be used
to extract weak matrix elements from LQCD. In particular, one can derive a relation be-
tween the matrix element that is available on the lattice, connecting a single-particle state
to a finite-volume two particle state, and the infinite volume matrix element which deter-
mines the decay rate. This result was provided by Lellouch and Liischer in Ref. [70] (and
generalized to a moving frame in Refs. [130] [131]). They showed that the relation between
finite- and infinite-volume matrix elements of Hy emerges if one considers how Liischer’s
result is modified when one perturbatively includes this weak hamiltonian as a shift to the
QCD hamiltonian.

With the coupled channel quantization condition of Chapter 2 in hand, we show in
Chapter 3 how to generalize the Lellouch-Liischer result to extract weak decays into multiple
strongly-coupled two-particle channels. In this case, each two-particle finite-volume state
is associated with all of the infinite-volume two-particle asymptotic states. One thus finds
that the finite-volume matrix element is equal to a linear combination of the infinite-volume
matrix elements of interest.

An important limitation of the Lellouch-Liischer approach is that it only provides matrix
elements for scalar operators which do not inject energy or momentum into the system.
Thus the derivation cannot accommodate processes with two-hadrons in the final state if

these also include a momentum-carrying photon or lepton current. Using non-relativistic
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field theory, the authors of Ref. [I36] provided an alternative approach for deriving matrix
element relations like that of Lellouch and Liischer. In Chapter 4 we present a model-
independent extension of this idea that is based in relativistic field theory. Our result is
a relation of finite- and infinite-volume matrix elements of operators that insert arbitrary
angular momentum as well as linear momentum and energy.

Finally, it is becoming increasingly important to also include three-hadron states in the
extraction of scattering information from the finite-volume spectrum. This is a necessary
step towards relating finite-volume matrix elements with infinite-volume matrix elements
with three-particle states. This issue has been considered in Refs. [137, [138], 139] but a
relativistic and model-independent relation is still unavailable. In Chapter 5 we derive a
relativistic and model-independent relation between the three-particle finite-volume spec-
trum and a non-standard infinite-volume quantity. The derivation in similar in structure
to that of Chapter 3. However the diagrams that appear are more complicated and the

separation of finite-volume and infinite-volume expressions is more difficult.
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Chapter 2

SCATTERING OF MULTIPLE TWO-PARTICLE CHANNELSY

2.1 DMultiple-channel extension of quantization condition

In this section we derive an extension to multiple two-body channels of the Liischer quan-
tization condition, which relates the infinite volume scattering amplitudes to finite volume
energy levels. We assume throughout a cubic spatial volume with extent L and periodic
boundary conditions. The (Minkowski) time direction is taken to be infinite. The total
momentum

2 p

L

P= (ip € 7°) (2.1)

is fixed but arbitrary, i.e. the quantization condition we derive holds for a “moving frame” as
well as a stationary frame. We first consider the case of only two open channels, describing

the extension to an arbitrary number of channels at the end of this section.

We take each channel to contain two massive, spinless particles. The particles of channel
one are labeled pions and are taken to be identical with mass m; = M,. The particles
of channel two, called kaons, are taken non-identical, though still degenerate, with mass
mg = Mpg. What we have in mind is that the first channel corresponds to the I = 0
state, and the second to the I = 0 KK state. Including both identical and non-identical
pairs allows us to display the factors of 1/2 that appear in the former case. We consider
degenerate particles to simplify the presentation, but describe the generalization to non-
degenerate masses at the end of this section.

For concreteness, and to match the physical ordering, we take the pion to be lighter than
the kaon. For our results to hold, we must assume that the thresholds for three or more

particles lie above the two kaon threshold. If we assume a G-parity like symmetry, so that

!This chapter and the following chapter are taken from Ref. [140].
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only even numbers of pions can couple to a two-pion state, then the ordering we need is
2M,; < 2Mg < E* < 4M, , (2.2)

where E* is the center of mass (CM) energy. The only possible scattering events are then

1—-1: 7nnmn—nmw
122 n7n>KK
251: KK—>nnw

252 KK—>KK.

If E* drops below 2Mp, only the wm channel is open and the problem reduces to that
discussed by Liischer [141], 127, 128, 142].

The inequality 2M g < 4 M, does not, of course, hold for physical pions and kaons—the
four and six pion thresholds occur below that for two kaons. Nevertheless, the coupling to
these higher multiplicity channels is weak at low energies, and our results should still hold
approximately as long as we are not too far above the two kaon threshold. Indeed, it may
be that, in the I = 0 case, the nn channel becomes important before that with four or more
pions. If so, our formalism would still apply, generalized to three channels as described
below. The approximation of ignoring channels with more than two particles will become
increasingly poor as the energy increases, and will likely give only a rough guide by the
D mass. A qualitative indication of this (ignoring differences in phase space) is that the
fo(1500) has a 50% branching fraction to 47, while the branches to 7, KK and nn are
~ 35%, 9% and 5%, respectively [69].

The two channel quantization condition is obtained by a straightforward generalization
of the single-channel approach of Ref. [I30]. To make this note somewhat independent
of that reference, we reiterate some of the pertinent details. We begin by introducing a
two body interpolating field o(z) (not necessarily local) which couples to both channels.

Following Ref. [130] we then define

Cu(P) = [ STEED (ol )0 .4)

)
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where P = (E, P) is the total four momentum of the two particle system (in the frame

where the finite volume condition is applied), and

/L;w = /Ld4x (2.5)

is the spacetime integral over finite volume. The relation to the CM energy used above is

—,

E*=\/E2— P2, (2.6)

The poles of C'f, give the energy spectrum of the finite volume theory, and thus the condition
that Cp, diverge is precisely the quantization condition we are after.
To proceed to a more useful form of the condition, we follow Ref. [130] and write C, in

terms of the Bethe-Salpeter kernel, as illustrated in Fig. 2.1j(a):

CL(P) = / Oj,q [22A2]jk,qalz‘,q
Liq
+ /L Tjq [22A2ij,qukl%q7Q’ [22A2] lm’q,ajnyq, +--. (2.7)
a9

The notation here is as follows. Indices j, k, [ and m refer to the channel, and take the

values 1 or 2. The two particle intermediate states are summed /integrated as is appropriate

1 dq®
= — —. 2.8
/L,q L3 ;/ 27 (28)

The summand/integrand includes the product of two fully dressed propagators

to finite volume

[2°A%],. . = i [2:(0) Ail@)] [5(P — 9)Ai(P = g)] (2.9)

where
5@A0) = [ 2 (6;(2)0,0) (2.10)
Aj(g) = — i (2.11)

q* — m? + i€’
Here ¢1 and ¢o are interpolating fields for pions and kaons, respectively, chosen such that
zj = 1 on shell. 1 =1/2 and 2 = 1 account for the symmetry factors of the diagrams. K

is related to the Bethe-Salpeter kernel

iKij;q,q’ = iBSij(Qa P — q, _qla —P+ q/) ) (212)
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Figure 2.1: (a) The initial series of ladder diagrams which builds up Cy, [see Eq. (2.7)]. The
Bethe-Salpeter kernels i K are connected by fully dressed propagators. The dashed rectangle
indicates finite volume momentum sum/integrals. (b) and (c) The series which build up
the matrix element A and the scattering amplitude iM. Note that these series contain
only the momentum integrals appropriate to infinite volume. (d) The resulting series for
the subtracted correlator [see Egs. and (2.26)]. Each dashed vertical line indicates
an insertion of F, which carries the entire volume dependence (neglecting exponentially

suppressed dependence).
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with BS;; the sum of all amputated j — ¢ scattering diagrams which are two-particle-
irreducible in the s-channel (with particles of either type). Finally, o, and O’}q, describe
the coupling of the operators o and o' to the two-particle channel j. Their detailed form is
not relevant; all we need to know is that they are regular functions of q.

We emphasize two important features of Eq. . First, it does not rely on any choice
of interactions between the pions and kaons, such as those predicted by chiral perturbation
theory. All the quantities that enter can be written in terms of non-perturbatively defined
correlation functions. Second, the kernel iK and the propagator dressing function z have
only exponentially suppressed dependence on the volume [127]. Thus, if L is large enough
that such dependence is negligible (as we assume hereafter), we can take iK and z to have
their infinite-volume forms.

The dominant power-law volume dependence enters through the momentum sums in the
two-particle loops. To extract this dependence, we use the identity derived in Ref. [130],
which relates these sums for a moving frame to infinite-volume momentum integrals plus
a residue. Before stating the identity we recall the relevant notation. For any four vector
k* = (k°, k) in the moving frame, k** = (K, k*) is the result of a boost to the CM frame.

In particular, the total four-momentum (E, P) boosts to (E*,0) in the CM frame. We also

¢ = \/(E*)}/4—mZ, (2.13)

which are the momenta of a pion (j = 1) or kaon (j = 2) in the CM frame. The identity

need the quantities

then reads (no sum on ¢ here):

J(R)niAi(k)A(P — k)g(k) =
L;k

’

| A AP =g(b) + [ dan, f1(6) Fal@ i), 29

/oo.k :/(;ljfyl' (2.15)

i

with

We introduce two functions f(k) and g(k) to correspond to the momentum dependence
entering from the left and right of the loop integrals, as well as that from the dressing

functions [see Fig.[2.1a)]. The functions f and g must have ultraviolet behavior that renders
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the integral /sum convergent. In addition, the branch cuts they contain, corresponding to
four or more intermediate particles, must be such that, after the £ contour integration,
they introduce no singularities for real k. This condition holds when 0 < E* < 4M,. The
last line of depends on the values of the functions f and g when the two particles are
on-shell, and thus only on the direction of the CM momentum, ¢*. Specifically, if ¢! is the

moving frame momentum that boosts to the on-shell momentum (E*/2,q;*), then

fi@) = fla), 97(@") = 9(a). (2.16)

Finally the quantity F, which depends on ¢*, L and the particle mass, contains the power-
law finite-volume dependence of the loop sum/ integralﬂ Its form is given below in Egs. -
. Note that it is diagonal in channel space, i.e. it cannot change pions into kaons. It
can, however, insert angular momentum, due to the breaking of rotation symmetry by the
cubic box.

The key point of the identity is that the difference between finite and infinite volume
integrals depends on on-shell values of the integrand, allowing the finite-volume dependence
to be expressed in terms of physical quantities. Applying the identity to each loop integral
in Fig. (a), one then rearranges the series by grouping terms with the same number of
insertions of F. The volume-independent term with no F insertions is of no interest, since

it does not lead to poles. Thus we drop it and consider the difference
Coun(P) = CL(P) — Co(P). (2.17)

In the remaining diagrams with F insertions, all terms to the left of the first F and to the
right of the last are grouped and summed into new endcaps which we label A; and A;- [see

Fig.[2.1(b)]. These quantities equal certain matrix elements of the interpolating field o [130]

Aj(k*) = (K, —k*; j; out]UT(O)|O)|E*‘:q; (2.18)

AL (k) = (0o (0)|k*, —K*; j; in) e .. (2.19)
J |k |*q3‘

2The result (2.14) is equivalent to Eqs. (41-42) of Ref. [I30], although we have done some further

manipulations to the last line of (2.14) to bring it into a matrix form. Also, we have included a factor of n;

in F, rather than keeping it explicitly as in Ref. [130].
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In contrast to [I30] we include no wavefunction renormalization factors, because our single
particle interpolating fields satisfy on-shell renormalization conditions. Having summed up
the ends the next step is to do the same for the series which appears between adjacent F
insertions [Fig. 2.1fc)]. As indicated in the figure, this series generates the infinite volume
scattering amplitude iM,;;. We thus deduce an alternative series for Cy,p, built from A, A’

and iMs, all connected by Fs [Fig. 2.1)(d)].

We stress that the analysis just performed is a straightforward generalization of the
single channel analysis of Ref. [130]. All that has changed is that F and M are now 2 x 2
matrices in channel space, and A and A’ vectors.

To proceed, we decompose A, A’, M and F in spherical harmonics, defining coefficients

via

Ay (k) = VAT Ajin Yo m (k) (2.20)
A5(k*) = Var Al Y (k) (2.21)

Mg (kB = AT Mg, mstomo Yormy (K*)YE g (B7) (2.22)
Figh K%)= = Figtr oo s Yo s (8 Vi (B), (2.23)

where a sum over all £’s and m’s is implicit. The factors of 47 are present so that we match
the conventions of Ref. [130]. They imply, for example, that for a purely s-wave amplitude,
M is the same in the two bases (for the 47 cancels with the two spherical harmonics). The
kinematical factor F' is given in Ref. [130] (aside from the above-noted factor of 7;) and

takes the formP

Fij;£17m1;€27m2 = 5ijFi;€17m1;527m2

Reg; i VAr . . .
5o - i 2 el (®) [ Y VYo - (220

lm

3 An additional difference from Ref. [I30] is the appearance of Req; rather than ¢*. This is discussed in

the next section.
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Here the volume-dependence enters through the sumsﬁ

k*2) ( k*Z)

wy e* /I d3k:*
cfm( = L3 Z b k*z —5 a5k ¢ wm( ) 5£07)/ *2 k*2 ?

2.25
o 72 (2.25)

with wg = \/Ez + mf being the energy of a particle with momentum lz, and wj, the energy
after boosting to the CM frame. The properties of these sums are discussed in Ref. [I30].

We are now in a position to write down the final result. The series indicated in Fig.|2.1|(d)

gives
Con(P) ==Y A'F[-iMF|" A, (2.26)
U S (2.27)
P M '

Here all indices are left implicit and may be restored in the obvious way. For example,

/
AFMFA= Az 01,m1 ZJ 41 7m1,Zz,m2Mjk;ﬁz,mg;437m3Fkl;€3,m3;€47m4Al,€4,m4 . (2-28)

As C has no poles in the region of E* that we consider (below 4M; ), the poles in C';, must
match the poles in Cg,,. The desired quantization condition is then just that the matrix

between A’ and A have a divergent eigenvalue. This may be written as
det (F~' 4+iM) =0, (2.29)

where we recall that the matrices now act in the product of the two-dimensional channel
space and the infinite-dimensional angular-momentum space. More precisely, F' is diagonal
in channel space but has off-diagonal elements between different angular momentum sectors
(as allowed by the symmetries of the cubic box and the momentum ]3), while M is diagonal
in angular momentum but off-diagonal in channel space.

Equation is the main result of this section. It has exactly the same form as that for

the single channel given in Ref. [130] (aside from the change of notation in which symmetry

4We are slightly abusing the notation here for the sake of clarity. ¢l depends not only on ¢*2 but
also on m;, but we keep the latter dependence implicit. The dependence is made explicit at the end of this

section.



41

factors are contained in F' rather than kept explicit). The generalization to more than
two two-particle channels is now immediate. As long as E* is kept below the four particle
threshold of the lightest particle the arguments above go through in the same manner. One
need only extend the values of the channel indices, taking care to include the appropriate
symmetry factor 7; for each channel. The final result then has exactly the form of Eq. .

To make the formal expression useful in practice one assumes that there is some

limax, above which the partial wave amplitudes are negligible
e emax
M7 e =0, (2.30)

One can then show that, although F' couples ¢ < lynax to £ > finax, the projection contained
in M is sufficient to collapse the required determinant to that in the ¢ < ¢, subspace.
The argument for this result is given for one channel in Ref. [I30] and generalizes trivially
to the multiple channel case. Thus one finds that Eq. still holds, but with M and F
now understood to be finite dimensional matrices both in channel space and in the partial
wave basis, with £ running up to £z

To conclude this section we comment briefly on two generalizations of the result. We
first consider the case when not just a single o but rather a set of operators {c®} is of
interest. This is likely to be the case in practice since multiple operators may be needed
to find combinations with good overlaps with the finite-volume eigenstates. If there are n

such operators, then Cf, generalizes to an n X n matrix:
Cpp) = [P 0ot @) 0)0). 231)
L;x

The generalization of Eq. (2.27) is effected by replacing A" with an n x 2 matrix

’1a:1 A/Qazl
(A’l A’2) — | Alp=2 Alp=2 (2.32)
and A with a 2 X n matrix
A Al{:l AZ{ZQ

(2.33)
45 AR AR
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The key point, however, is that the matrix between A’ and A is unchanged, so that the
quantization condition is unaffected. This is as expected, since the operators used to
couple to states cannot affect the eigenstates themselves.

The second generalization is to the case of non-degenerate particles. The expressions
given above remain valid as long as one makes three changes. First, the symmetry factors
n; become unity for all non-degenerate channels. Second, ¢ in Egs. is replaced by

the solution of

E*:\/q;‘2+Mi2a+\/q;‘2+Ml%, (2.34)
which is the CM momentum when the channel contains particles of masses M;, and Mj,.
Third, when evaluating cfm using Eq. , one should use one of the masses M;, or My,
when determining wy, wy, and k*. One can show that both choices lead to the same result.

The third change emphasizes that the kinematic functions cfm depend not only on ¢

but also on the particle masses. This can be made explicit by rewriting them in terms of a

generalization of the zeta-function introduced in Ref. [129]. The result is [143] 144}, 145 [146]

-2
e =-Y5 (B) 2o, 239
7t 7
zf [s;2%) = Z m : (2.36)

it
where v = E//E*, i runs over integer vectors, and 7’'is obtained from 7 by 7| = vt [ —ciip]
and 7| = n |, where parallel and perpendicular are relative to ]3, and 2¢ = (1 + (Mfa -
M?3)/E*?). The sum in Z,, can be regulated by taking s > (3+¢)/2 and then analytically
continuing to s = 1. This shows that mass dependence enters through the diﬂ'erencelﬂ
M2, — M?2. One can derive by generalizing the method used for the degenerate case
in Ref. [130].

5The apparent lack of symmetry under the interchange M;, <+ My, can be understood as follows. One
can show that Zf, — (—)fzﬁn under this interchange (so that for degenerate masses the zeta-functions for
odd £ vanish [129]). This sign flip for odd £ must hold also for the cf.,,, and it does because the interchange
of masses leads to k* — —k* at the pole. The sign flip is canceled in the expression for F, Eq. , since
the product Yz, m, (E*)Y[Z,MQ(E/*) also changes sign. This is because, when £ is odd, the integral over df2
in the definition of F', Eq. , enforces that £1 + £2 is odd. The overall effect is that the quantization

condition is symmetric under mass interchange, as it must be.
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2.2 Multiple-channel quantization condition for s-wave scattering

For the remainder of this article we focus on the simplest case, £,,4, = 0, in which only
s-wave scattering is significant. In this section we determine the explicit form for the finite-
volume quantization condition when there are two channels. We also present compact forms
for the condition when an arbitrary number of two particle channels are open.

With only s-wave scattering, the two channel quantization condition takes the form

[(F7) ! + i M3 [(F5) ™ + iMsy] — [iM5,][iM35,] =0, (2.37)
where
S __ oo, Re qg’k _ i P
B |~ et (239)
clP = cP(qu) = cgz)(qu) , (2.39)

and the superscript on F' and M is a reminder that only ¢ = 0 contributes.

To simplify Eq. , and in particular to re-express it as an equation between real
quantities, it is useful to recall first the single-channel analysis. This has the additional
benefit of showing how the two-channel result collapses to the known single-channel result

in the appropriate kinematic regime, namely
2M, < E* < 2Mk . (2.40)

In this regime ¢; becomes imaginary, and the second channel contributes negligibly be-

cause ¢’ [Eq. (2.25))] becomes exponentially volume-suppressed and Re ¢* in Fy [Eq. (2.24))]

Vanishesﬁ Sending F5 — 0 we find that the quantization condition becomes

g1
8rE* 2E*

M5 ] =y |- Fg?)] (2.41)

Note that the pion momentum ¢ is real for the energy region considered.

SThe appearance of Req* rather than ¢* in F; can be understood by reviewing the derivation of F
in Ref. [130]. The term enters as the difference between principal part and ie prescriptions. When ¢* is

imaginary there is no pole and different ways of regulating give the same result.



44

Naively one might think that Eq. (2.41) gives two conditions, the separate vanishing
of the real and imaginary parts. This is not the case, however, because the vanishing of
the imaginary part is a volume-independent condition which is guaranteed to hold by the

unitarity of the S-matrix. This can be seen by expressing M in terms of the real phase

shift 6(q*),
8r k™
may

L
11 —

2 STE* [cot 6(q7) — 1] . (2.42)

e2i(at) _ 1] B [ me: -1

Here €% is the one dimensional unitary S-matrix in the partial wave basis. Given Eq. ,
it is manifest that the imaginary part of Eq. holds automatically. The real part of
then gives the moving frame generalization of the Liischer result in the familiar partial
wave form [128] 130, [131]

tan §(q;) = — tan o (q1) , (2.43)

where
sk

* q * -1
tan ng(q ) = o [cp(q 2)] . (2.44)
T

We now return to the CM energies for which both channels are open, 2Myg < E* < 4M,,
and generalize Eq. (2.43). The first step is to recall the relationship between the scattering

amplitude and the S-matrix. Unitarity implies that
M — M =i M TPEM? (2.45)

where P? is a diagonal matrix containing the phase-space factors, whose square root is

1 vV 0

P=—— . 2.46
Var E* ( )
0 V1245

We note that, when expressed in terms of ¢*, the form of P is still valid if the two particles
in the channel are non-degenerate. We also note that the form (2.45)) holds for an arbitrary
number of two-particle, s-wave channels, with P generalized in the obvious way.

The solution to the unitarity relation is

iM* =P (85 —1)P! (2.47)
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where S? is a dimensionless, unitary 2 x 2 matrix. To proceed, we need to parametrize S°.
First we note that S° can be taken to be symmetric. This is because of the T-invariance
of the strong interactions, together with the fact that angular momentum eigenstates have
definite T-parity (in our case, positive). Thus in the 2 x 2 case, S* is determined by three

real parameters. We use the “eigenphase convention” of Blatt and Biedenharn [147],

_ 2ib4,
g5 Ce Se e 0 Ce  Se ’ (2.48)

Se  Ce 0 e2i0s —S¢  Ce

where the notation s, = sinx and ¢, = cosx will be used throughout. The three real
parameters d,, 03, and € generalize the single 6 which appears in the one channel case. The
parameter € quantifies the mixing between the mass eigenstates of channels one and two
(the pions and kaons) and the S-matrix eigenstates. The phases 6, and dg are, for arbitrary
€, associated with both channels. Of course, in the limit ¢ — 0 they reduce, respectively, to
the phase shifts of pion and kaon elastic scattering.

Substituting the form of S° into Eq. and then placing this in Eq. and
simplifying, we deduceﬂ

[tan O + tan ng(qik)] [tan 0g + tan ¢P(q;)]

+ sin’e [tan 6, — tan dg] [tan ¢’ (¢f) — tan ¢’ (g3)] = 0. (2.49)

This is the main result of this section. One can use it in one of two ways: to predict the
spectrum given knowledge of the scattering amplitude from experiment or a model, or to
determine the S-matrix parameters from a lattice calculation of the spectrum. In the former

case, we note that all quantities appearing in (2.49), i.e. 4, 03, €, ¢f and ¢*, are functions

"We emphasize that the physical content of Eq. (2.49)), namely that there is a relation between scattering

amplitudes and energy levels, does not depend on the parametrization chosen for the matrix S°. This is
clear either from Eq. or from Eq. below. An advantage of our choice of parametrization is that
it shows that Eq. only implies one real condition (rather than two), an observation which must hold
for any parameterization. We also note that the freedom to independently change the phases of 77 and KK
states, which leads to S° — U'S*U, with U a diagonal unitary matrix, does not change the quantization

condition, as can be seen most easily from Eq. lb below.
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of E*. One can thus search, at given spatial extent L and total momentum 13, for values of

E* which satisfy Eq. (2.49). If the condition holds for a particular Ej, then

Ey(L;ip) = \/ Ef2 + P2 (2.50)

is in the spectrum of the finite-volume moving-frame Hamiltonian. Here we choose to write
E). as a function of 71p rather than ]3, since, in practice, it is the former quantity which is
held fixed as one varies L.

The second use of is the most relevant for the discussion in subsequent sections.
For a given choice of E*, one finds, through a lattice calculation, three pairs {L,7p} for
which there is a spectral line E}, such that E} [defined in Eq. } is equal to E*. One could
use a fixed 7p and consider multiple spectral lines (the simplest choice conceptually), or use
three different choices of 7ip (probably more practical since one would not need to determine
so many excited levels). In either case, one ends up with three versions of Eq. , all
containing the desired quantities d,(E*), dg(E*) and €(E*), but having different values of
the ¢ (qj*) Solving these equations one determines, rather than the angles themselves,
the quantities tand,, tandg, and sin? € at CM energy E*. For our discussion we therefore

restrict

dap € [—7/2,m/2] and €€ [0,7/2]. (2.51)

Having determined the restricted phases over a range of energies, one can afterward relax
the constraints in order to build continuous curves as a function of energy. We direct the
reader to Refs. [134 [135] for discussion of other methods for extracting the three scattering
parameters.

We emphasize that Eq. has a very intuitive form. If 6, = dg or m; = mg or
€ = 0 then the second line vanishes and the result reduces to two copies of the one channel
quantization condition [Eq. ] To see that this makes sense, note that for identical
phase shifts, the ¢ matrix commutes through the phase matrix and we recover two uncoupled
channels. Similarly if the masses are degenerate then the eigenstates of the S-matrix will
also be mass eigenstates leading to the decoupled form. Finally, the decoupling for e = 0 is

an obvious property of the parametrization [Eq. (2.48))].
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An alternative solution to the unitarity relation (2.45) can be given in terms of the
K-matrix used in Ref. [I34]. Specifically, (2.45) is satisfied if

(M3t =M —iP?)2, (2.52)

with M any real symmetric 2 x 2 matrix. If we set

1
K1 2.53
e IVl K~ vl (2.53)

[where double bars denote a diagonal matrix, so that ||n|| = diag(y/m1,/72)], and further
set P = 0, then one can show that the two-channel quantization condition given above can
be manipulated into the form given in Eq. (3.5) of Ref. [I34] in terms of the real, symmetric
matrix K.

We now generalize Eq. to NV s-wave channels. As noted above, the form of the
unitarity relation holds for any N, and the same is true for its solution . In the

latter, the N channel S-matrix can be parametrized ag
S=R"|e*|R, (2.54)
with R an SO(N) matrix, and
||| = diag [e*~, s, ... ] . (2.55)

Together with Eqs. (2.54)) and (2.55)) one needs the N x N generalization of F', which has

been discussed in the previous section. From these definitions one can straightforwardly
work out the quantization condition for N coupled channels.

We conclude this section by describing two additional ways of writing the quantization
condition, both of which make the higher channel generalization especially clear. Observe

first that, for any number of open channels,
Fl=pPl1—-e|P". (2.56)
Combining this with (2.47)), it follows that

F7l 4 iM = P s = e | P2 (2.57)

8The remainder of this paper is limited to the s-wave, so we drop the superscript ° hereafter.



48

Since P~! has no singularities in the kinematic regime we consider, the quantization condi-
tion can be rewritten as

det [$ — [le=2¢|[| 0. (2.58)

This form shows that the symmetry factors cancel from the quantization condition in gen-
eral. Although Eq. (2.58]) looks like it will lead to one complex and thus two real conditions,

it turns out that it leads only to a single real condition. This follows from the identity
1+ itl| x |8 = [[e2||] x [R7[1 = its]| B] = 2[R Jtsl| B+ [lt6]]| . (259)
where t, = tanz. It gives a manifestly real rewriting of the quantization condition,
det [R™ts]| R + [t | = 0. (2.60)

This form leads directly to the result (2.49) in the two channel case, and collapses to
the single-channel result (2.43)) for any channel that decouples from the rest. If any of
the channels contain non-degenerate particles, this enters only through the values of the

kinematic functions ¢4, as discussed in the previous section.
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Chapter 3
WEAK DECAYS INTO MULTIPLE TWO-PARTICLE CHANNELS

3.1 Multiple-channel extension of the Lellouch-Liischer formula

Having found the two channel quantization condition, we are now in a position to work
out the two channel generalization of the LL formula which relates weak matrix elements in
finite and infinite volume. The derivation follows the original work by Lellouch and Liischer,
Ref. [70], which was extended to a moving frame by Refs. [130), [131].

We begin by introducing a third channel which is decoupled from the original two. This

contains a single particle, which we call a D-meson, whose mass satisfies
Mp > 2M,2Mp . (3.1)
We next introduce a weak perturbation to the Hamiltonian density
H(z) = H(z) + \Hw(x), (3.2)

where ) is a parameter which can be varied freely and can, in particular, be taken arbitrarily
small. The perturbation Hyy is defined to couple channels one and two (pions and kaons) to
the third (D-meson) and nothing more. It is convenient to choose it to be invariant under
time reversal (T) symmetry. The generalization to perturbations which are not T invariant
is described at the end of the section.

Consider now the finite volume spectrum, first in the absence of the perturbation. The
spectrum of two-particle states with P = 2nnip/L is determined by Eq. 1' It is L-
dependent and L can therefore be tuned to make one of the levels, call it kp, degenerate

with the energy of a single (moving) D meson

By, = \/ M} + P2 (3.3)

With L fixed in this way, we now turn on the weak interaction. At leading order in degen-
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Figure 3.1: The diagram giving rise to the amplitude perturbation AM [See Eq. (3.9))].

erate perturbation theory this changes the energies to
EW = EO) £ \V | My | (3.4)
where V = L3, EO) = E},,, and the finite-volume matrix element is
My = {(kp|Hw(0)|D)L. (3.5)

The subscripts L on the states indicate that they are normalized to unity, unlike the rel-
ativistically normalized infinite volume states. Superscripts () are used throughout this
section to indicate that the quantity includes both the leading order and the O(\) correc-
tion, while superscripts (9 indicate the unperturbed quantity. The effect of the perturbation

may also be written in terms of the CM energy as

E*Y = Mp + AAE* (3.6)
EOV|M
AE* = A‘;‘DW‘ (3.7)

Of course, in addition to affecting the finite volume energy spectrum, the weak pertur-
bation also changes the infinite volume scattering amplitudes. The leading order effect is

generated by the diagram of Fig. which gives
MO = MO £ (—AAM) (3.8)

with

Sty = R OUDNDIF 01 o5




o1

The indices j and k run over the two two-particle channels. This perturbation may equiva-

lently be represented through shifts in d,, 63 and €

SV (E*) = 6ON(E*) £ AAS,(EY) (3.10)
05 () = 6 (B*) £ AAGH(EY) (3.11)
eD(E*) = €O (E*) £ AAe(EY), (3.12)

The explicit forms of the perturbed phases are given in Eqs. (3.21)-(3.23) below.

The calculation now proceeds as follows. When the quantities

(67

0O(E"), 85 (E*), and € (E¥) (3.13)

are placed in the quantization condition [Eq. (2.49))], the condition is satisfied by construc-

tion at E*(9) = Mp. Alternatively if one places

0(E*), 85 (E*), and €D (E%) (3.14)

«

into the same condition then it must be satisfied when evaluated at the perturbed CM
energy E*(1) but only to linear order in A. The constant order term in the A expansion
is just the unperturbed condition, and so it is the vanishing of the O(\) term that is of
interest. The condition that this term vanish gives the relation between finite and infinite
volume weak matrix elements that we are after.

The only detail left to discuss, before substituting into the quantization condition and
expanding in A, is the explicit forms of the amplitude corrections to d,, dg and e. Before
these are found it is useful to determine the constraints on the infinite volume matrix
elements which arise from Watson’s theorem. As shown in App. A, time reversal invariance

and unitarity constrain the matrix elements to be such that the following two quantities are

real:
v = e Y [\/ M AD7r Ce VB2 ADSKE Se] , (3.15)
vy = "5 [— VEMAD 7 Se /G ADS KK Ce] . (3.16)
Here

Apsrn = (mr[Hw (0)| D) , (3.17)
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and similarly for the KK case, normalized so that the decay rates to each channel are

a5y
87TM%)

1

Ap 2 =
| 4)]| 2MD

Tpoj = P3| Ap;l. (3.18)

This relation holds also if the particles in a channel are non-degenerate (requiring n = 1). All

energy-dependent parameters in (3.15) and (3.16)), i.e. dqa, g, € and g, are to be evaluated
at B* = MD-
The results (3.15) and (3.16]) hold when the phases of the states are chosen so that the

S-matrix is symmetric (as is possible given T invariance). This does not determine the signs
of the two matrix elements, and these signs are unphysical. More precisely, the relative sign
ambiguity is the same as the ambiguity in the sign of €, so once we have fixed the latter to
be positive, the relative sign is physical. The overall sign remains unphysical, and can be

chosen, for example to set v1 > 0,

Inverting the relations (3.15)) and (3.16)) yields
1

AD—>7r7r = Tik m

1
Apskk = —F——
V42712
Inserting these in AM, Eq. (3.9)), and using the relation between M and S, Eq. (2.47)), and
the parametrization of S, Eq. (2.48), we find that perturbations to d., d3 and € are real.

[vlewa Ce —v9€"8 se] (3.19)

[vlei‘s‘” Se +v26'%8 ce] . (3.20)

This is a consistency check on the calculation (or an alternative derivation of the Watson’s

theorem constraint). Specifically, we find

Ay = —Nv? (3.21)
Ads = —Nv3 (3.22)
Ae = ULt (3.23)

Cacg(ta —1tg)

where t, = tand,, etc., and
1

T 167 EOMp V[ My

We now have all the ingredients to substitute into the quantization condition and deter-

(3.24)

mine the LL generalization. We emphasize that, when the expansion in A is performed, d,

d3 and € each contribute both from the amplitude corrections of Egs. (3.21)-(3.23) and from
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the shift in the energy, (3.6). The other contributions arise from the energy dependence of

b = ¢F (gf). Substituting and simplifying, we find the main result of this section

C10} + Cov3 + Cravyvy = Cppz| My |? (3.25)
where
T t1+to+2t+(ta —t1)(1 — 282
C1=16 : (CQ X ) (3.26)
o
Tty +to +2tq +(t1 —t2)(1 — 22
C2:E 1+t2 o ((321 2)( 2) 327
B
T SeCe
Cip = Z(tl - t2)cac5 (3.28)
2 2( (0)\2 T 4/ ,
T MpV4(E t t
CM2 = D 2( ) qi}k (tz‘f‘tﬂ +(ta—t5) Sg) —l—q—i (tl+ta+(tﬁ_ta) Sg)
1 2
4t 4+t
+ar (2t (0 —2) ) + M—g (t1 +to +(ta — t1)s2) (3.29)
4%
+ 7M,€3 (t1 —t2)(ta —tg) ],
and where we use the additional notation
t; = tan ¢’ [¢}] . (3.30)

All quantities are evaluated at the D mass, and we have dropped the superscript (©). The
primes on ¢; indicate derivatives with respect to ¢ while those on d,, g and € indicate
derivatives with respect to E*. In each case, these are the natural variables on which
the quantities depend. We have checked that this formula reduces to (two copies of) the
single-channel LL result if ¢ — 0.

We now describe how the result can be used in practice. A lattice calculation
yields the finite-volume matrix element |Myy|, and the aim is to determine the infinite-
volume matrix elements Ap_,.» and Ap_ k. Using the generalized quantization condition
for three different spectral lines (all chosen to have E* = Mp) one can determine J,,
0p and € as described in the previous section. Repeating the procedure at a slightly different
energy allows a numerical determination of the required derivatives. One now evaluates

|My| at the degenerate point on one of the spectral lines. The knowledge of the S-matrix
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parameters and their derivatives, together with the value of L, allows one to calculate the
values of the four C’s [Eqgs. (3.26)-(3.29)]. Combined with the value of |Myy|, one then finds
from Eq. a quadratic constraint on v; and ve. Repeating the procedure for a second
spectral line gives an independent constraint, which allows for the determination of v; and
v9 up to a two-fold ambiguity corresponding to the unknown relative sign. Finally, repeating

for a third spectral line resolves the sign ambiguity. With v; and vo determined in this way,

one can obtain the infinite-volume matrix elements using Eqs. (3.19)) and (3.20). Although

this procedure is rather elaborate, we note that (for the case of two channels) three spectral
lines are needed both for the determination of the parameters of the S-matrix and of the
LL factors.

We conclude this section by commenting that Eq. factors as

sgn(Cy)(c1v1 + cava)? = Cpp2| My |? (3.31)

where

a1 = /1G] ca = sgn[C1Ci2]V/[Ca| . (3.32)

The only new information encoded in Egs. (3.31]) and (3.32)) relative to Eq. (3.25]) is that

4C1Cy = C%,, (3.33)

which can be shown to hold by applying Eq. (2.49) to Egs. (3.26)-(3.28). Although the
factorized form (3.31)) is simpler, it does not reduce the number of values of L that are

needed because there remains a sign ambiguity (from the square root) at each L. What it
does make clear, however, is that the generalized LL condition will fail when the signs of
Cy and Cj2 are opposite. Presumably this cannot happen for physical values of the phase
shifts. We stress that this issue also arises in the original one-channel set-up, where the LL

formula only makes sense if
d(6 + ¢")
dq*

We return to these sign constraints in the next section.

>0. (3.34)

The form (3.31]) also allows one to write the LL condition as a factored form in terms

of the desired matrix elements,

lcr AD s + ek Ap kK |? = |Coar2| | Mw|?, (3.35)
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where ¢, and cg are complex, and can be determined from the above results. As this
equality holds for any T-invariant form of weak perturbation and for any decay particle, it

must imply a relation between finite and infinite volume states
L{kp| o< cx(mm, out| + cx (KK, out| + ... . (3.36)

Here the ellipsis indicates the 77 and KK states of higher angular momentum which are
needed to satisfy the periodic boundary conditions. Indeed, as noted in the original deriva-
tion of Ref. [70], the use of the D-meson is simply a trick to obtain the normalization factorsm
It follows that Eq. must also hold for perturbations which are not T-invariant.

The appearance of the linear combination in Eq. can be better understood from

an alternative derivation of the LL formula, to which we now turn.
3.2 Alternative derivation of Lellouch-Liischer formula

In this section we present a different derivation of the two channel LL relation which has the
following advantages: (a) it does not require determining the shifts Ad,, Adg and Ae, but
rather works directly with the change in M; (b) it gives one directly a condition with the
factored form, proportional to the left hand side of Eq. ; (c) it allows one to rewrite
the LL condition in a simpler form in which the only inputs required are the derivatives of
the energies with respect to L along the three spectral lines. This form is likely to be more
practical.

We work directly with the condition det(F~! + iM) = 0, and keep results for general

number of channels, IV, as far as possible. We begin by defining

= F'4+iM (3.37)
Yy = S—|e?. (3.38)

In the one-channel case, an alternative line of argument has been developed for obtaining the LL
relation, based on matching the density of two-particle states in finite and infinite volumes [148]. In the
present case, we do not see how to use this approach to determine the relative normalization, cx/cr, of
the two components in the finite volume state. Thus we think that this approach could provide only a

consistency check.
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and recall from Eq. (2.57)) that
X =pPlyp 1. (3.39)

The quantization condition det X = 0 is equivalent to X having an eigenvector with vanish-
ing eigenvalue. We label this eigenvector @X. Note also that the symmetry of X implies
(€X)Tr =€ X is a left eigenvector, also with zero eigenvalue.

Now we can formulate the LL condition in a relatively compact form. As above, let M(©)
be the scattering amplitude at CM energy E* = Mp. Similarly, let F(©) be the finite-volume

factor at this CM energy and for one of the values of box size L for which the quantization

condition holds. Then for

e
<
=

Il

(FO) ™ +im©, (3.40)
we have
eXxOeX —9. (3.41)

Now, while holding L fixed, we change the energy by +AAFE = £AV|My| and change M
to M© £ AAM, and require that the quantization condition still hold. Thus we have, to

linear order in A,

det(X@ + AAX) =0, (3.42)
where
oX .

It follows that there must be a new eigenvector of the form
X L aAeX (3.44)
which is annihilated by the perturbed matrix. From the O()\) term in
(% 4288 Y] [xO 1 2ax] [2X + 247 =0, (3.45)
we deduce
eXAxeX =0. (3.46)
Using the explicit form of AX this becomes

X
AE ?Xa—

X _ X, —X
= A A4
35| © e TiAM €, (3.47)

L




o7

where the derivative is evaluated at E* = Mp.

We can slightly simplify this result by expressing the left hand side in terms of ) rather
than X, and thus removing factors of P~!'. The point is that, when the derivative acts on
the P~! factors in X, the contribution to the left hand side vanishes, since one can still act
(either to the left or the right) on the zero-eigenvector. Thus we can rewrite the condition

in terms of the zero eigenvector of ), which is

Y =pleX. (3.48)
The new form is
AE %Ygif 7Y = eXiamiex. (3.49)
L

We now focus on the 2 x 2 case. To proceed, we need the explicit form for €Y, which

is given, up to an overall normalization factor, by
-y 1
€l = (3.50)

where z is the real quantity
_ sin(ég + ¢1)
Esin(ég + (bz) '

It is clear from the form of Eq. (3.49) and the relation (3.48) that the normalization of ey

(3.51)

is irrelevant and so we have chosen a relatively simple unnormalized form.

We evaluate the right hand side of Eq. using the form of AM, Eq. . It is
immediately apparent that the result factorizes, given that AM is an outer product. This
will hold for all N. In the NV = 2 case we have

—2i¢1 M2
8t MpE© V’Mwy

EriaM]EN = ie (3.52)

where
Mo = 6 \/ Q1771 Ap_snr +Z€ \/@AD—M(K- (3.53)

Here we have used the assumed T-invariance of Hy. We have pulled out the phase e =21 so

that M is real. Its reality is not obvious, but can be established using the results derived
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from Watson’s theorem and given in App. A. In particular, an algebraic exercise shows that

Ce Se
U sin(dq 4 ¢2) + v sin(dg+¢2) |’

Moo = Sin(¢1 - ¢2) (354)

and we recall that the quantities v; and vy [defined above in Egs. (3.15))-(3.16)] are real.

The result makes clear that, for any choice of Hyy, one ends up with the matrix
element to a given (complex) linear combination of (77| and (KK| states, since all the
factors (¢1, ¢z and z) are determined by E® and L. Indeed, what the LL method has
allowed us to do is determine the coefficients of the s-wave (w7| and (K'K| components
within the finite-volume state. As mentioned above, this decomposition has nothing to do
with Hy, and thus we can use the result for any Hyy, including one involving T-violation.
By comparing the result to the general decomposition of the finite-volume state,
Eq. , we can read off the ratio of the coefficients,

CK _ Lild2—¢1) , q%?h . (3.55)
Cr a1

It is interesting that the relative phase between cx and ¢, is determined by the kinematic
phases ¢;. Given the form of AM, and the fact that, in Eq. (3.52)), it is sandwiched between
€ X and €X , it follows that the zero eigenvector itself gives the relative size of the 7 and

KK contributions:

T | . (3.56)

This illustrates in a direct way that the linear combination which appears is completely
independent of the form of Hyy, since the eigenvector of X knows nothing about this per-
turbation.

Having discussed the right hand side of Eq. in some detail we now turn to the left.
Specifically, we show that it is possible to write the left-hand side in terms of the derivative
of the spectral energy with respect to L. To motivate this form, we first recall that the LL
result of the previous section depends on d,, 63 and € and their derivatives, evaluated at
E* = Mp. As described in Sec. the three S-matrix parameters may be determined,
using Eq. (2.49)), by finding three different pairs {L,7ip} for which there is a spectral line
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Ey(L;1ip) satistying Ej(L;nip) = Mp [see Eq. ] Furthermore, by slightly changing
the three L values, one can determine d,, dg and € at slightly different energies and thus
deduce the derivatives at Mp.

The point of reiterating these steps is to note that, since the lattice simulation actually
gives the energy spectrum as a function of L, it would be preferable if the LL result could be
rewritten directly in terms of the properties of the spectrum. In this way the extra step of
separately working out the phase shifts and their derivatives would be avoided. This turns
out to be possible, as we now show.

We use the quantization condition in the form det) = 0. To stay on a spectral line
Ex(L;7ip) as we vary E away from the moving frame D-meson energy F ), we need to vary
L in such a way that this condition remains fulfilled. We note that, while F' depends on
both E* and L, S depends only on E*. Thus we use E* and L as independent variables.

Then the condition to stay on a spectral line becomes

0="¢eY |AE* gg* + AL(;JL} ] CAl (3.57)
L E*
which leads to . oy
dEg| __ ¢ o (3.58)
LN

Here, in the left-hand side, the subscript “line” indicates that the derivative is along a
spectral line with fixed 7ip.

The key features of Eq. are that the denominator on the right-hand side is, up to a
simple overall factor, equal to the quantity appearing on the left hand side of the Eq. ,

while the numerator is a kinematic factor. Specifically, using

0 IO 0
cv 0V oy B ey Yy

oOE* FE OF ’ (3.59)
and .
dE,|  EpdE; P2

aL| T Roan| L (3:60)

(which follows since E2 = (E*)2 4+ (PL)2/L? and because PL is fixed along the spectral

line), we find

) )
vy OV sy . o R+ 2GR
e’ =& = —2ie o= o= (3.61)
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dL |line FEL
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Combining this with (3.49) and (3.52]) we conclude

i 0 0
MpEO V2| My|2 dE p2 ’
16mMp ’ ’ de line ' EO)L

We thus have found an alternative form of the LL relation which is simpler than Eq. ,
and also likely to be more practical.

The single channel version of is instructive. It can be written, using Eq. ,
in terms of the decay rate:

0
2EOV2| My | -5¢

D—nm — MD By, N B2
dL lline EO)

(3.63)

This form holds both for identical and non-identical particles, with the symmetry factor
being contained in I'. It also sheds light on the sign constraints discussed in the previous
section. The right-hand side must be positive. Based on numerical studies, we find that
0¢ /0L is always positive, implying that the denominator, which is proportional to dE},/dL,
must be negative.

The same holds for the two-channel result, Eq. . In order for the right-hand side to
be positive, the denominator must be negative. Since we could do the LL analysis on almost
any spectral line, this appears to imply that dE} /dL < 0 in general. The only exception is
for a state with E; below the two particle threshold. Such a state occurs, for example, as
the lowest energy state for P =0 if there is an attractive interaction. For such a state one
has dE}/dL = dEy/dL > 0, i.e. of the “wrong” sign. But in this case the LL analysis does

not apply, because the particle lies below threshold in infinite volume.
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Chapter 4

ONE-TO-TWO TRANSITION MATRIX ELEMENTS]]

In order to determine transition matrix elements, both two- and three-point correlation
functions are needed. From two-point correlation functions one can most easily extract
the finite-volume spectrum. From appropriate ratios of two- and three-point correlation
functions one may also obtain finite-volume matrix elements of external currents. In Sec-
tion [£.1] we present a derivation of the finite-volume two-point correlation functions for one
and two-particle systemsﬂ In this analysis, we consider an arbitrary number of two-particle
channels which mix with arbitrarily strong couplings. We restrict attention to spin-zero
particles, but do formally accommodate all two-particle angular-momenta states. From the
two-point correlators of such systems one can obtain expressions for the one and two-particle
finite-volume spectrum. The finite-volume corrections to the masses of single particles are
exponentially suppressed in m,L, where L is the spatial extent of the finite volume and
my is the pion mass [I41]. As long as one requires m,LZ 4, then the finite-volume correc-
tions to the masses are percent level. We neglect such exponentially suppressed corrections
throughout.

In contrast to single-particle states, the finite-volume energy spectrum above two-particle
threshold cannot be directly identified with infinite-volume observables. The spectrum does
however encode information about the infinite-volume on-shell scattering amplitude. The
formalism responsible for connecting the finite-volume spectrum with scattering information
is known as the Lischer method [127, [128]. This approach has been investigated and
generalized in various contexts [129, 150} 151, 152] 153, 154, 155, 13T, 130} [156], 157, 143,

!This chapter is taken from Ref. [149]

2 Although it is customary in the literature to label correlation functions by the total number of particles
in the initial and final state, since the number of particles is not a well-defined quantity in finite-volume
we choose to simply refer to correlation functions that have no insertion of external currents as two-point

correlation functions and those that do have an external current insertion as three-point correlation functions.
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145) 158, 159, [160), 161, 162, 163], 132, 140, [146], 164, 165, 134], 166] including most recently
a method for describing all 2 — 2 systems with arbitrary quantum numbers, open channels
and boundary conditions [I67]. There have also been attempts to generalize this formalism
for three-particle systems [137, [138], (139, [168], but a general solution for the three body
system in a finite volume has not been found. Finally, in the energy regime of elastic
scattering, the formalism has been extensively implemented in numerical lattice simulations.
See for example Refs. [169] 170, 171, 172, 173, 174, 175 [176], 177, 178, 179 180, 181 182
183, [184], [185], [1861, 187, [188].

Section [4.1] of this work recovers the well-know quantization condition for a system with
any number of two-scalar channels, with arbitrary angular momentum as well as total linear

momenta. The result is
det[M(B,)] = det [K(E,) + (FV (F) '] =0, (4.1)

and was first obtained in Refs. [140} 146]. Here K is the two-particle K-matrix (defined in
Eq. and related to the scattering amplitude via Eq. and FV is a volume-dependent
kinematic matrix (defined in Eq. . Both of these are matrices over angular momenta
as well as all open two-particle channels, and the determinant is understood to act on this
direct-product space. Until recently, the only numerical implementation of the coupled-
channel formalism was by Guo in an exploratory numerical calculation of a two-channel
system in 1 + 1 dimensional lattice model [I89]. The first application of this formalism
in a lattice QCD calculation was by the Hadron Spectrum collaboration in a benchmark
calculation of the mK-Kn systems [92], which unambiguously demonstrates that coupled-
channel systems can be studied via lattice QCD.

In Section of the paper, we derive a non-perturbative relation for the relativistic
three-point correlation function. We first review how currents can be properly subduced onto
irreps of the finite-volume symmetry groups. Having defined the subduced current, we pro-
ceed to evaluate the three-point function corresponding to a process 1 — {@2¢3, Pa@s, - ..},
where @; label single-scalar states. For systems where the initial and/or final states have
overlap with multi-particle states the relationship between the finite-volume matrix element

of a current and its infinite volume analog is not obvious. This was fist pointed out by Lel-
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louch and Liischer in the context of K — mm weak decays [70]. In their seminal work, they
showed that the absolute value of the transition matrix element in finite-volume is propor-
tional to the physical transition matrix element, with a proportionally factor that depends
on the S-wave phase shift of the final state. This proportionality factor is commonly referred
to as the LL-factor. This formalism has been extended to systems with nonzero total mo-
mentum [130], 131} [190], systems with multiple strongly coupled two-scalar channels [140],
70 — vy [[91], Ny — N7 [1'36]@ as well as 2 — 2 processes that are mediated by the weak
interaction [153], 123, 192, 146]. See Refs. [193], 194, [195| 88| for recent examples of the
implementation of this formalism on LQCD calculations of the K — 77 decay amplitudeﬂ

In this work we generalize the Lellouch-Liischer result by allowing the current to insert
arbitrary momentum and energy to the system. We restrict ourselves to an initial state that
transforms as either a scalar or a pseudoscalar but consider final states in any irrep of the
relevant finite-volume symmetry group. As already mentioned, we also consider multiple
strongly-coupled two-particle states. Within this generic framework, we find a master equa-
tion that relates the finite-volume matrix elements of currents with the physically relevant

infinite-volume counterpart

(Enjan, Py LT 0, P — Py) By, 0P L>(

(4.2)

! i
B \/W\/[AAf’"f;A“ Rapmg Adpngidn]s

where j /[\‘L’P"A”

defined in Section |E, 0P L) and |En, o, Py; L) respectively denote the initial and

(0,Py —P;) is a current whose quantum numbers and labels are thoroughly

3In the production of this manuscript a similar and independent work by A. Agadjanov, et al., appeared
in the literature [I36]. In their work, the authors considered pion-photoproduction off a nucleon, Ny — N
in the non-relativistic limit. The authors demonstrated how to study transitions amplitudes for systems
with nonzero intrinsic spin. In doing so, they restrict the final two-particle state to be at rest and neglect
corrections due to partial wave mixing, but they do allow for the finite volume of the systems to have an
asymmetry along one of the Cartesian axes.

4For historically relevant theoretical and numerical developments regarding nonleptonic weak decay on
the lattice see Refs. [196], 197 [198] [199] 200}, 2011 202} 190}, 203| 204 205], 206, 207, 208, 209] 210, 21T}, 212
213, [214] 215, 216].



64

final finite-volume states; the former has the energy and the quantum numbers of a single
particle while the latter has that of two particles. Our result relates this finite-volume

matrix element to
(a, Py, Jmy; 00| T (0, Q5 00)| P 00) = [Angssm, ], (27)° (P —P;—Q),  (4.3)

were a is a channel index denoting the two particle flavors in the asymptotic state. In
Eq. A is understood as a column vector (and A a row) in the combined angular-
momentum/channel space. Finally Ry sy, defined in Eq. below, is a matrix in the
same space that depends only on the strong-interaction as well as the linear extent of the
finite volume. It is the coupled-channel and arbitrary-angular-momentum generalization of
the LL-factor. On all quantities the subscript Ay indicates that angular-momentum space
has been projected onto a particular finite-volume irrep, and ny is an integer labeling the
finite-volume level considered.

Just like the quantization condition of the two-particle spectrum, the master equation
for finite-volume matrix elements can be significantly simplified by considering specific ex-
amples. In order to illustrate how this is done, in Section[4.2.4] we consider several examples.
First, Section demonstrates that in the limit that the current considered is a pseu-
doscalar that injects zero total momentum, the master equation reproduces the well known
result of K — 7 [70) 130, 131, 190]. In Section we consider the matrix element for
my — mw — p. For this case the two hadrons in the final states are exactly degenerate and
therefore odd and even partial waves do not mix, even when the system is boosted. Par-
ity and angular momentum conservation requires that the final state cannot have overlap
with an S-wave. Therefore the final state is in a P-wave with leading order contamination
from the F-wave. By neglecting this contamination, we obtain an explicit expression for
the P-wave LL-factor for such a system, and find large volume deviation from the well
known S-wave result. For processes where the final states are composed of nondegener-
ate particles, odd and even partial waves will in general mix. Furthermore, in general all
strongly-coupled channels that can go on-shell will be present in the final state. Even in
the example above for sufficiently high energies we must consider 7y — {77, KK,...}.

With these complexities in mind, in Section we discuss the implication of the master
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equation for systems with coupled channels, regardless of whether the mixing in an infi-
nite volume effect (e.g., 7m — K K) or a finite volume artifact (e.g., S and P-wave mixing).
In Section we demonstrate how this result reproduces previously known relation for
D — {nn, KK} [140] ]

Although it is most convenient to perform LQCD calculation using periodic boundary
conditions in a cubic volume, one may also run simulations with twisted boundary conditions
(TBCs) [217,[154] in a volume that is an arbitrary rectangular prism. Ref. [I67] showed how
to compactly incorporate all of these scenarios into a single generic result. For completeness
Appendix C reviews how the results presented here can be implemented for volumes with

generic geometry and twisted boundary conditions.
4.1 Two-point correlation functions

In this section we derive expressions for the one-particle and two-particle two-point cor-
relation functions in a finite volume. To achieve this we must first define appropriate
interpolating operators. These are most conveniently classified according to the irreducible
representations (irreps) of the relevant symmetry group. For a system at rest in a finite
cubic volume, the symmetry group is the octahedral group, Op. In order to accommodate
systems with half-integer spin, one has to consider the double cover of the octahedral group,
denoted by OP [218]. For systems in flight with total momentum P, the symmetry is re-
duced to a subgroup of Oy, or O}? , defined by the subset of octahedral transformations which
leave P invariant. This is referred to as a little group and will be labeled LG(P).

Let pau(zo, P) denote a single particle interpolating operator at Euclidean time xo with
momentum P and in row p of the A irrep of LG(P)H Because Ap are good quantum numbers
in finite volume, the one-particle two-point functions will not mix states in different rows
or irreps

C (@0 — 0. %) = (Olar (20, k) 2k, (w0, —K)10) o 67 A8y (4.4)

5In both the present work and [140] the formalism neglects coupling to states with more than two

particles.

SFor details regarding the construction of these operators from quark and gluonic degrees of freedom we

direct the readers to Refs. [219] 220] 221, 156} 222] 223] 224 [225], 226, [I58] and references therein.
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In this study, we will focus on the scenario where the single-particle states are either
pseudoscalars or scalarsm In such cases there is a single one-dimensional irrep that has
overlap with the particle of interest, and the irrep is exclusively specified by its momentum.
For example, as shown explicitly in Tables 4.1(a) & (b), the pseudoscalar mesons are in the
A7 irrep of Oy when at rest and in the Ay irrep of LG(k) when in flight. Therefore, it is
sufficient to define the single particle interpolating operators in terms of their momenta and

we will drop the Ap subscript. We thus introduce

O (30 — o, k) = (0] (o, K)o (310, —K)[0) = e~ B8 @0=30)| (0] (0, k)| EVk; L)

(1)
+0 (L36—E3,1zh(950—y0)/Eé}t)h> ’ (4.5)

where L is the linear extent of the finite cubic spatial volume and E,(Cl),Eé,lt)h denote the
lowest two eigenvalues of the moving-frame Hamiltonian, in the subspace that has overlap
with (0|¢a,(0,k). We have assumed zo > yo to order the operators before inserting a
complete set of states. As the subscript suggests, in QCD the first excited energy Eé,lt)h

corresponds to a state in the vicinity of the three-particle threshold.

One can also calculate the correlation function’s leading time dependence directly from

the fully dressed single particle propagator (see Fig. [4.1(c)))

dP, 1 ,
Wz — vn. k) = L3/O =) etPo(mo—wo)
CY (w0 — o, k) 27\ 2on(iPy + o) + e
—wk(Zo—yo) )
= L3€ 20)1( +0 <L3 e—Eg,th($0_yO)/E§71t)h) , (46)

where wie = vVm? + k2, with m equal to the physical infinite-volume pole mass. In the first
line, the ellipses denote corrections that are finite at the single particle pole. This includes

terms with poles at higher values of imaginary Py which correspond to higher energy states.

“"For QCD near the physical point there are no stable scalar particles, only pseudoscalar mesons. At
unphysical quark masses, by contrast, one finds stable scalar particles as well. Additionally, although LQCD
is the motivation for this work, this formalism is model independent and is relevant for studying hadronic
physics as well as atomic physics in a finite volume. (See Refs. [227], 228] and references within for examples
of atomic physics calculations performed in a finite volume.) See Ref. [I36] for insight into how to deal with

states with nonzero spin in the non-relativistic limit.
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(a) (b)

Group  |JP| AW | [Cf]un LG(Q)  |IN7] Aw) St
op 0F [AE (1) 1 Dicy 07 [A1(1) 1
QL — (0,0,0) | 1% | T5(1) 51,n QL = (0,0,n)| 0 |A2(1) 1
1% T (2) 8o, 1| EQ1) | (da4 +70s,-)/V2
1% | T (3) S_1a 1| E©2) | (654 —70s,-)/V2
2% Ty (1) 51 2 |Bi(1)| (3ot +710s,-)/V/2
27| Ty (2)| (52,0 — -2,0)/V2 2 |Bo(1)| (60 —106_)/v2
2% | Ty (3) -1,7 Dics 0T |AL(D) 1
2% |E*(1) 90, QL = (n,m,0)| 0~ |A2(1) 1
2% |[E*(2) | (B21 +6-20)/V?2 1 |Bi(1)| (8 s++n5s,)/\/§
1 |Ba(1)| (6, -)/V2
2 [Ai(1) (s++n5 -)/V2
2 A0 (V)| (Bus — 716:2)/V2
Dics 0" [A1(1) 1
QL = (n,n,n)| 0~ |Az(1) 1
L EQL) | (Os,+ +70s,-)/V2
1 | E(2) | (4 +_n55,)/f
2 | EQ1) | (Os4 —70s,-)/V2
2 |EQ@) (5, —i0s,-)/V2

Table 4.1: (a) Shown are the subduction coefficients, [C{],,.x used to project states onto the
irreps of O,? for integer spin particles. (b) Shown are the subduction coefficients determined
in Ref. [226], for |A| < 2, where s = sign(\) and 77 = (—1)'"7 used to project operators onto

the irreps of the Dicy, Dicg, and Dicg groups as shown in Eq.
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We emphasize that, in arriving at this identity, we have used the on-shell renormalization
convention in which the residue of the single particle propagator is set to 1. This convension

is equivalently expressed as
(0]¢(0,0)| EMig; 00) = 1, (4.7)

where ¢(z,x) is the Fourier transform of ¢(z,k) and |EMk;00) is the infinite-volume

one-particle state with relativistic normalization
(EWK; 00| EWk; 00) = 2wy (27)%6° (K’ — k) . (4.8)

By comparing Egs. & M we deduce E,(;) = wy and

(0100, 1) [EW L] = ,/f:k. (4.9)

mL which we

These relations hold up to exponentially suppressed corrections of the form e~
discuss in more detail below. We stress that Eq. is only a statement of renormalization

convention on ¢ together with the normalization convention for finite-volume states
(EWk; LIEWk; L) = 1. (4.10)

As will become evident in Section the choice of residue equal to one does not impact the
final result, Eq.[£.2l Any other choice for the residue would exactly cancel. The motivation
for deriving Eq. in the manner just presented is that it provides a straightforward warm-
up for our analysis of the two-particle two-point correlation function, to which we now turn.

The two-particle correlation function can be determined by considering an alternative
energy range and using two- instead of one-particle interpolating fields. For the sake of
generality, we consider a system with N coupled two-particle channels. We label the masses
in the jth channel m;; and m;j2, with m;1 < m;2. We continue to restrict our attention
to spin zero particles. The particles in the jth channel can go on-shell if the c.m. energy E*
satisfies m;1 +mj2 < E* < E};. Here Ej}; is the energy of the first allowed multi-particle

threshold, boosted to the c.m. frameﬁ In practice we must require £* < E};, because if

8For a system with G-parity, e.g., 7w, this corresponds to the four-particle threshold, for any other

system this corresponds to the three-particle threshold.
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E* is too close to the multi-particle threshold then the neglected exponentially suppressed
corrections become enhanced.

The on-shell c.m. relative momentum for the jth channel satisfies

* 2 2 2 2 \2
2 _ B 2 (mj, +mjy) n (M3, —mjs)
J,on 4 2 4E*2

(4.11)

”

Functions and coordinates evaluated in the c.m. frame will always have a superscript “*”,
and it important to remember that a function f in a moving frame that depends on k
can always be related to the c.m. frame function f* via f*(k*) = f(k). This just defines
a coordinate change and does not imply anything about the Lorentz representation of f.
Coordinates in the moving frame and c.m. frame are related by standard Lorentz transfor-
mations. For example, if we consider a particle with mass m, momenta k and k* in the

moving and c.m. frames, then

Vm? + k2 = (Vm? + K2 = Bky), kT = (k- BVm2 + k), KD =ky, (4.12)

where v = % and 8 = %'.

Two-particle interpolating operators in a given irrep can be written as a linear combina-
tion of products of single particle interpolating operators with appropriate Clebsch-Gordan
coefficients [226], [186], 219] 220, 221], 156, 222, 223, 225]. By first considering an energy range
where only a single channel is present, one can readily write down the relevant two-body

operator

Onu(wo, P[P~k [kl) = > C(PAu; Rk; R(P —k))p(xo, RK)3(z0, R(P — k)), (4.13)
RELG(P)

where in general ¢ and @ may be identical or non-identical operators and R is understood
as an element of the representation of LG(P) defined by action on three-dimensional spatial
vectors. In order to minimize unnecessary notation, we will suppress the dependence of O

on |P — k| and |k| from now onﬂ

9 All throughout this work O will denote an operator that has overlap with a two-particle state and ¢ will
refer to a single particle operator, although in general these two will access all states with the corresponding

quantum numbers of the operator.
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To completely specify the Clebsch-Gordan coefficients, we now introduce {k}p as the
set of all momenta that are reached by applying a rotation in LG(P) to k. We then
denote the irreps of particles one and two by A;({P —k}p) and Ax({k}p) respectively, and
define the Clebsch-Gordan coefficient, C(PAu; Rk; R(P — k)), to project the two particles
in A;({P —k}p) ® Ao({k}p) onto A(P), u. This may also be expressed as an innerproduct

of states
C(PAu; Rk; R(P —k)) = <A(P),,u,|A1({P —k}p), R(P —k); Aa({k}p), Rk> , (4.14)

from which follows

> lC(PAu; Rk R(P —k)))>=1. (4.15)
RELG(P)

The simplest nontrivial example of this operator construction is reached by setting the
total momentum to zero, setting k = QT”IA{ = q(l)l;, and taking the two-particle operator to

be in the Af irrep

O+ (w0,0) = —=[p(0, 4(1)2) P (0, —q(1)2) + (20, —q(1)2) (%0, 4(1)2)

4

+ 30(5607 L_an()@(:ﬂo, 7(](1)&) + @(1'07 *Q(l)f()a(l‘o, Q(l)f() (416)

+ (0, 91)¥) (20, —q(1y¥) + »(z0, —q1)¥) (w0, 41)¥ )]

where o = \/1/72 if ¢ and ¢ are the same operators and o = 1 otherwise. If we give the
system a nonzero boost along z, then the symmetry group is reduced to LG(z). Consider
the scenario where the momentum of the ¢ field has magnitude g(;) and that of ¢ has
magnitude \/iq(l). With these single-particle operators, we can construct a two-particle

operator that transforms in the A; irrep [186]

[(z0, 41y%)@(x0, (1) (2 — X)) + @(x0, q(1)¥) P (20, ¢1) (2 — §))

DO =

O, (20, q1)2) =

+

—

20, —q1)X)2(0, 41) (2 + X)) + ©(x0, —q1)¥)@(x0, q1) (2 + ¥))] . (4.17)

In general, there might be N open channels contributing to a given state. For example,
in the case where isospin is equal to zero or one, an infinite volume 77 state can mix with a

KK state, and both must thus have nonzero overlap with the corresponding finite-volume
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state. It is convenient to introduce an index, e.g. “a”, to the interpolating operator in

Eq. to indicate the infinite-volume channel that it interpolates
OAH($07 P) — OAu,a(an P)- (4.18)

For example, Op,,q could refer to a wr-like or a K K-like operator. With this, we can write
a generic correlation function for a two-particle system that has been projected onto a given

irrep as

CL) (@0 — 10, P) = (0[O a(w0, PO, (50, —P)|0)

= Oan B e Fan@m100(0|0, ), 4(0,P)| By nP; L) (En o P Lyohb(o, —P)|0)
+O (Lﬁe—Eth@o—yo) /th) , (4.19)

where E) , is the nth two-particle eigenenergy of the A-irrep of LG(P). This is the two-
body analog of Eq. In general we expect multiple two-body states below the first
multi-particle threshold, Ey;,, and hence include a sum over n.

The correlation function can also be written in terms of the interactions of the two-
particle system. The leading order (LO) contribution to the correlation function (first
diagram in Fig. is determined by considering the limit in which the interactions

vanish, and as a result the different channels cannot mix. We find

dP, . _ ~
where
CA,u,ab (POvP) = 5ab5 / ﬁ Z
RELG(P)

x C(PAp; Rk; R(P — k))G(k)G(P — k)C*(PAp; Rk; R(P — k)). (4.21)
Here we have introduced the fully dressed propagator
G = [ dtae 0o 0)). (422)

with on-shell renormalization limy, ., (k? + m?)G(k) = 1. We have also introduced the
symmetry factor n which is equal to 1/2 if the particles identical and have momenta that

are related by LG(P) rotations, and equal to 1 otherwise.



72

Observe here that G(k) is the infinite-volume fully dressed propagator. Really
éf\ii?)(Pg, P) should be constructed from the finite-volume analog of G(k). However, as
long as [P[)2+P2] 1/2 has an imaginary part with magnitude below E}; , then using the infinite-
volume propagator only incurs exponentially suppressed corrections of the form e™™~% with
m, the lightest mass in the spectrum. This is discussed in more detail in the context of
the Bethe-Salpeter kernel below. We deduce that our expression for 6/(\3222)(130, P) is only
valid in a strip of the complex Py plane which runs along the real axis and is bounded by
[P+ P =-E;2

(2,L0)

b (20 — Yo, P), by first evaluating ko and Ky,

We now complete the analysis of C

integrals, and then evaluating the integral on Py. Define

Wil = \/mil + (P —-k)?, wjo= Mmi2 + k2. (4.23)

In performing the ko and k{, integrals we encircle the pole at iw;2 and this fixes the “27

particle in the jth channel to be on-shell with free energy w;2. By energy conservation, the
“1” particle will have energy —iFPy — wj 2. Specifically we find

LS [dadp, . |C(PAu; Rk; R(P — k))|?
cELO) P = Sab— / 220 JiPy(zo—yo) ke
Ap,ab (33‘0 Yo, ) b 2 € Z 4 wa,l Wa,2(iP0 + (wa,l + wa,?))

RELG(P)

I (L%‘Ew(m_yo) /th) L (4.24)

Note here that the first term gives a pole in the Py plane that sits in the region where our
expression for 5’&’53)(P0, P) is valid. We do not control the exact form of the second term,
which decays according to some above-threshold energy. The precise form of the above
threshold term is not needed for our final result.

To include higher orders we need only assume that the correlation function, defined in
Eq. is correctly reproduced by the all-orders summation of a skeleton expansion built
from Bethe-Salpeter kernels and fully dressed propagators. In particular we define the NLO
correlator as the contribution built from a single insertion of the Bethe-Salpeter kernel, K.

The kernel is depicted in Fig. [4.1(b) and is defined as the sum of all amputated four-point

diagrams that are two-particle irreducible in the s-channel. We find

dR 1Py (xo— ~
o~ Py =10 [ GRne e O, a2
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Figure 4.1: a) Shown is the definition of the finite volume two-particle correlation function.
The solid lines denote two-particles in the “1” channel, dashed lines denote particle in the
“2” channel. The correlation function is written in terms of the c.m. kernel, K*, and the
fully dressed single particle propagators. b) Shown is K* for the first channel, which is the
sum of all two-particle irreducible s-channel diagrams. Explicitly shown are examples of
diagrams that are included in the kernel: contact interactions, t- and u-channel diagrams.
In general, all diagrams allowed by the underlying theory where the intermediate particles
cannot all simultaneously go on-shell are absorbed into the kernel. As described in the text,
in this study we are restricted to energies where only two-particle states are allowed to go
on-shell. ¢) Shown is the definition of the fully dressed one particle propagator in terms of

the one particle irreducible (1PI) diagrams.
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where
~(2,NLO 1
OO (PP =—— 3 C(PAm Rk R(P—K)
R,R'€eLG(P)
dkro dko / )
G(P — KK (P, k, K'G(k)G(P — k)C*(PAw; Rk; R(P —k)) .

(4.26)

In general, the kernel is a function of volume, but since the c.m. energy is restricted to
satisfy mi1 +my < E* < Ej}; the intermediate particles appearing in the kernel cannot all

simultaneously go on-shell. Therefore, one can show using Poisson’s resummation formula

1 _ _dd_ 4y gilng
[ ngqf]ﬂq)—r% | st e,

that the difference between finite- and infinite-volume kernels is exponentially small in mL.
In writing the Poisson resummation formula the following notation has been introduced
1 1 d
[Lg)%i]E(ng—/(z:)g) (4.27)
Since we neglect these corrections, the result discussed here holds only for m,L > 1. We
will neglect any terms in the correlation function that are exponentially suppressed with the
mass of any particle in any coupled channel since O(e~"iL) < O(e~™=L). These corrections
have been previously determine for 77 [229] and NN systems [230] in an S-wave, as well as
the w7 system in a P-wave in Ref. [231], 232].
Higher order contributions to the correlation function can be readily evaluated by making

the following replacement
— [K(P,k,K))ap — —[TL(Pk,k)ap (4.28)

where

— [TL(P kK )]ap

AR Kot [ G SRR R DG 0G (P DITuPLK s, (420

and the summation over the intermediate channel j is implicit.
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A convenient expression for T, can be found utilizing the machinery developed by Kim,
Sachrajda, and Sharpe [I30]. In order to determine the finite-volume corrections to the
correlation function, it is sufficient to know the difference between finite-volume momentum
sum and infinite-volume momentum integral acting on the two-particle poles. Using a

principal-value prescription to define the integral at the pole, we observe
1
o[y

where the c.m. kernel, K;‘f fons 18 the kernel for a system where the two incoming particles

[K(P>kvl)]a,j[K(P7lvk/)]j,b _
P.V. =
4 wip_y wai(wi,p—1+ w21 — Poum)

- [K;ff,oanK;n,off}ayb + O(e_mWL)v (430)

are evaluated on-shell, while the outgoing particles are left off-shell. Here we have also
introduced the Minkowski energy Py ps = —iFy. Note, if one chooses to use an ie prescription
for the propagator, this would lead to a second contribution to the right-hand side of
Eq. due to the residue of the infinite volume integral on the left hand side. This
choice does not affect our result for the finite-volume correlation function.

In writing the right-hand side of Eq. the kernels and the finite volume function
have been written as matrices over angular momentum. The matrix elements of FV in the

spherical harmonic basis are found to be [130], 140, [146]

FY -l W2 a2 1) [ae vy, v 4.31
[ ] ]lml;l’ml/ - 87TP(>)'<M Z kqfl” Cl" ”( 7,0n? ) l,ml l”,m" l’,ml/ . ( . )
) l”,m” J,on

The function cl is defined as

Var (2m\"* g 2 g (0 [r[1Yi, (r)
YY) 23 (kL2 23 [s;2?] =
’7L3 <L> lm[ 7( J / 71-) ]7 lm[S,ﬂ?] r;; ( 72 9\s x2)57

where v = Py a/ Py, the sum is performed over Pq = {reR?|r=4"'(m-q;d)}, mis

(k3% L) = (4.32)

a triplet integer, d is the normalized boost vectord = PL /27, aj = %[1+(m3«71 - m§72)/P6‘3M]
[143), 144, [145], and 4~ 'x = 'y*le +x, with x(x1) denoting the x component that is par-
allel(perpendicular) to the total momentum, P. In Appendix C we show the generalization
of this for asymmetric volumes with twisted boundary conditions.

We mention a subtlety here with the definition of cﬁn(k;z; L) for k;-‘2 < 0. The definitions

given above continue to hold for subthreshold momenta, but only if the appropriate analytic
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continuation is implemented. To understand this in detail we first observe that the sum
defining Zﬂn diverges for s < 3/2 4 1/2 and in particular diverges for s = 1. The function
24 is thus understood to be defined via analytic continuation from s > 3/2+1/2. To make

this definition more apparent in the present context we give the equivalent form from Kim,

Sachrajda and Sharpd™]

02,0 1) =~ 3 SO~ (i

j,0n)
dk* expla(k? — k*?
+ 80 P.V. / E pla(kj D a3

k*Q _ k?*2 ’

j,0on
where the sum is over all k* € (27/L)Pq and the limit @ — 0T is understood. This
definition makes the ultraviolet regularization, which is implicit in the analytic continuation

in s, more explicit. For continuation to k%2 < 0 it is convenient to rewrite the integral as

3,0on

an e prescription and a remainder

_— / dk* expla(ks, — k)] / di* expla(kio, — k)] ik,
(2m)33 k2 — k2 2m)3 K2 —k*2 4+ e 4r

j,on j,on

(4.34)

The subthreshold continuation of the left hand ride is defined as the following limit of the
right-hand side

*oex k2 k*2 ik
i / dk”_expla(kion = K7)] ik on
(2m)3 kX2 — k*2 4 e 47

e j.on

j,on

(4.35)

_ / dk* exp[—a(k + k)] L

(2m)3 K3 4 k2 4 |’

where r; is the binding momentum of the jth channel.
We next turn to the Bethe-Salpeter kernel which, like FV, can be expressed as a matrix

in angular momentum
K:ff,off(P(;(?k;(’k}) =dm Z leml(kf)yvl;kml/(kz) [Koffoff(PO’kzak])]lml,l’ml/' (436)
Lmg,l!,my

Here we consider a kernel in which both the initial and final states are off-shell. More

precisely, we assume k; g = iwy, and kyo = iwik . but no additional constraints. These

Y0ur definition of ¢, differs from Ref. [130] by an overall sign.
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relations, which arise from contour integration as discussed, do not give on-shell two-particle
states since Py — ko; # iwp—xk, and Py — ko y # iwp_k " Nevertheless, it is still possible to
change to the c.m. frame, expressing the kernel in terms of (F, k;, k}) as indicated above.

Note that the matrix defined in Eq. is diagonal,
[K:ff,off(Péka k?? k;)]lmz,l’ml/ x 5l,l’5ml,m; . (4-37)

This follows from the rotational invariance of the infinite-volume theory, equivalently from
the fact that the only angular dependence in the c.m. frame is 1A<j . l:} Finally, we comment
that the on-shell point is contained within Eq. and is accessed by constraining the three
momenta magnitudes to kf =k} = k,. We return to this discussion in the context of the
quantization condition below.

Directly following Kim, Sachrajda and Sharpe by summing over all possible insertions
of the Bethe-Salpeter kernel, we find

1

Off,oanvKon,off : (4.38)

—Tr =Koprorr —K

Here we have introduced the two-to-two K-matrix, which is defined as the sum of all infinite-

volume, amputated 2 — 2 diagrams with loop integrals defined via principal-value prescrip-

tion ]
K(P,k, k) ap = —[K (P kK)o

+&PV. /(;7:)3 / Z—Q[K(P,k,l)]a,jGj(l)Gj(P—l)[K(P,l,k")]M. (4.39)

This object is explicitly shown in Fig. 4.2(b)| for a single channel scenario. Observe that
in Eq. we have given subscripts on K to indicate whether the incoming and outgoing

states are on or off-shell. K with no subscript is reserved for the on-shell K-matrix.

The use of pole prescription here is somewhat subtle. If we restrict the Euclidean-signature time
component P to be real, then no pole prescription is needed. However if Py is imaginary and thus Po s
is real, then poles appear in the region of integration. Our definition requires always performing time
component integrals with Py as off the real axis, as in the standard ie prescription. This produces integrals
over spatial components of the form of Eq. @ These are always to be evaluated with real Py s and with
the principal value pole prescription. Alternatively one may use the ie prescription for the entirety of each

two-particle loop integral, but then one must take only the real part.
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We contrast the K-matrix to the scattering amplitude, M, which is defined as the sum of
all infinite-volume, amputated 2 — 2 diagrams with integration defined via ie prescription

(as shown in Fig. 4.2(a)| for a single channel)

IM(P, kK] ap = —[K (P kK)o

d*l /
+¢; / Taya Pk D]a Gy (NG5 (P = DIMPL K ]zp - (440)

The on-shell K-matrix can be directly related to the on-shell scattering amplitude by intro-

ducing a kinematic matrix that is diagonal over the N open channels

= diag(\/&14q7, V6145 - - - VENGy)/VATE*.  For a system with angular momentum

J =1=1, the amplitudes M ; and K are related via [140],
MGt =K —iP?/2, (4.41)
and the scattering amplitude and the S-matrix via
iMy=P 1 (S, —T) P L. (4.42)
Substituting Ty, for K in Eq. gives the full correlation function

CR) (w0 — 0, P) =

Lﬁ/dpoeiPo(xoyo) {C/[XQ (?l(b )](PO,P) _ C}CM Y 1

N 4 |
L3 K+ @FV)™!

2T

)
ab

+O (L%*Em(%*yo) /th) . (4.43)
The first term of the integrand is defined as

1
Coot(py, P) = Cﬁl;?(Po,P)Jrﬁ > C(PAw; Rk R'(P —k))

R,R'€LG(P)
/dko / dko ., G(P — k)Kopporf(Pk, k)G (k)G(P — k)

x C*(PAu; Rk; R(P —k)). (4.44)
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R R MR-

(a)

(b)

Figure 4.2: In order to illustrate the differences and similarities between the a) scattering
amplitude, M, and the b) K-matrix, K, we show their diagrammatically representation for
the single-channel case in terms of the kernels (defined in Fig. and infinite volume
loops. The infinite volume loops of the scattering amplitude are evaluated using the ie
prescription, while those of the K-matrix are evaluated using the principal value, as explicitly
shown. For multichannel scenarios one simply upgrades the kernels and two-particle loops
to be matrices in the number of open channels as depicted in Fig. Note that the single
particle propagators are fully dressed as defined in Fig.



80

We have also introduced new notation for the second term

[Caplima =VAz > C(PAw;R(P —K); RK) Yim(Rk ), (4.45)
RELG(P)

dk
[Y(Po, R(P — k), Rk, k)], , = / Q—;G(k{), RK)G(Py — ki, R(P — k) Ko f.on(Pok, K Yap

= 47 Yy (RK ) [Y(Py)] Vi (k7). (4.46)

a,l’;m’;b,l,m

We stress that Y depends on off-shell K-matrices. This dependence is unavoidable in the
two-particle correlation function and will persist in our final result. However, we will see
that the off-shell contributions cancel when we consider the ratio of finite and infinite-volume
matrix elements of external currents.

In order to evaluate the integral over Py we first note that the free poles of the integrand
exactly cancel. This is a nontrivial observation that cannot be reached unless one formally
keeps all partial wave contributions that have overlap with the irrep of interest. In particular,
in Appendix B, along with showing an explicit proof of the cancelation of the free poles,
we show that by truncating the scattering amplitude to be in an S-wave the free poles in
general do not cancel. The cancellation of free poles assures that the only contribution to
Eq. is from integration around poles of the interacting system. To evaluate these, we

introduce

1

M(Pymr) = K(Pom) + (FY (Por)) - (4.47)

Now note that the finite-volume two-particle spectrum is given by energies for which
M(Py ) has a vanishing eigenvalue. This is Liischer’s quantization condition, given in
Eq. above. At this stage we think it useful to discuss the connection of this result to
previous work. We first observe that, although the condition in terms of M(Fp pr) is most

convenient for the bulk of our analysis, here it is useful to reexpress it as
det[(K(Poum)) "t +FY (Pom)] = 0. (4.48)
Substituting Eq. into this form then gives

det[(M(Poar) ™ +FY(Poar)] =0, (4.49)
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where F)/(Py ar) = iP?/2 + FY (Py ). This shows the equivalence of the present result to
those appearing in Refs. [127, 128, 129, 130, 140} 146].

Next we consider Eq. for energies in the vicinity of the lowest two-particle threshold.
In this case we need only consider the S-wave scattering for the lowest two-particle channel.

The quantization condition becomes

£

ST s

[wwwwﬂ—mﬁﬁﬁw)zu (4.50)

We may analytically continue this result below threshold by replacing k* = ilk*| = ik.
In this continuation 471'6((]10(]4}*2; L) = —k plus exponentially suppressed correctionsH We
deduce

E* cot 6 (k™)

+r=0, (4.51)

k*=ik

which is the standard, infinite-volume condition for a bound state.
Returning to the Py integral in Eq. we write the inverse of M(Pp pr) in terms of a

determinant and adjugate,

1 1
M(Po,nr) — det[M(Po,n)]

adj[M(Fo,n)]- (4.52)

This equation defines the adjugate which is also equal to the transpose of the cofactor
matrix. It implies that, as Py ys approaches a two-particle energy, M(FPp, ar) ! will diverge
in proportion to det[M(Py as)]~! such that adj[M(Pp )] remains finite. This separation,
into diverging prefactor times finite matrix, makes Eq. useful for evaluating the residue
of the two-particle poles. Looking at the variation of the quantization condition about the

energy eigenvalues, we find

detM(Porr)]l = det[M(E,)] (15
+(P07M —E,) tr {adj[M(PO,M)]W] . +O((Po — iE’n)Q)
= —i(Py—1iE,) tr |:adj [M(PO’M)]W] L (4.54)

+O((Py — iEy,)?).

12VWe stress that this corrections may be large near threshold so that keeping the exponentially suppressed

terms may be important.
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With this in hand, one can perform the integral in Eq. [£.43] to find

O (w0 =0 P) = L33 e Brolomw) €f [y, Ran Y, | Ch (459)
, _ OM(P, -1
Ran = adjM(Poa)] tr [adJ[M(PO,M)](M] (4.56)
0.M Py vi=Epn

where Yp ,, is the value of Y (defined in Eq. if evaluated at the nth interactive two-
particle pole. Here the sum over n runs over a finite set of energies that lie below the next
multi-particle threshold. We are constrained to this region because our expression for the
integrand of the P, integral was only valid for a range of imaginary P, as already discussed
above.

By comparing this result to Eq. we find that the matrix elements of the interpolating

operators in general satisfy

(0[OAp,a(0,P)|Ep ,,P; LY(Ep ,P; L|Op, 5(0,P)]0) =

* cI, [ Yan Ram Yh, ]ab Ch, (4.57)

and in the case that a = b it implies

(0|0p a0, P)|Er Py L) = L2 \/cgu [\YM Ran YTA,nLaCRw (4.58)

where the repeated indices in the right-hand side are not summed. Equations &
are the main results of this section.
We now turn to applying this result to specific examples. In doing so we find it useful

to introduce

A=CLCh =4 > )

R,R'€LG(P) l,my

X Yim, (R’K ) Y5, (RK) C(PAp; B'(P = K); R'k) C*(PAp; R(P —k); Rk).  (4.59)

For the case where the system is not boosted or when the system is restricted to be in an
S-wave, this reduces to the number of elements in {k}p. Otherwise, this depends on the
number of elements being summed as well as the magnitude of the boost, the masses of the

particles and the energy of the system. In all cases, the quantitiy can be easily evaluated
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numerically once the Clebsch-Gordan coefficients have been determined. For the systems

of interest, these have been previously calculated in Ref. [I86].

4.1.1  Single channel S-wave result

Here we consider the case where the orbital angular momentum is restricted to the S-wave.
For this scenario to formally be applicable, the irrep of interest has to have strong overlap
with the S-wave and all higher contributions must be vanishingly small. This is particularly
relevant for the w7 system near threshold. At rest the LO contamination to the S-wave is
due to I = 4 and in the moving frame the NLO contamination is due to { = 2, both of which
are suppressed at low energies. In this scenario M is a one by one matrix and its adjugate

is one, using Eq. one obtains that the residue at the nth pole is

STEr 1 [6(55+¢00) -1

—1
RSJL = [aM/(?PO,M] |Po,M:EA,n = &g cos2 dg P11 MPO,M:EA,n ) (4'60)
n k]

where we have introduced the pseudophase qﬁfm with (Im) angular momentum in the moving

frame
* d AT g s
qA,n cot (blm - Clm(qA,n; L) (461)
An

As seen in Eq. the overlap of two body interpolating operator also depends on the
off-shell K-matrix, where either the incoming state or outgoing is on-shell while the other
state remains off-shell. In general, in this limit the Ith spherical harmonic decomposition of
the K-matrix can be written as a function of the total energy and momentum of the system
and the magnitude of the off-shell momentum in the c.m. frame, Kl,off,on[(EaP)apif]-
For instance, when the system has zero boost, then p:;ff would corresponding to a free
momentum 27|n|/L, where n is an integer triplet. Similarly, one can define the spherical
harmonic decomposition of the Y Eq. By suppressing the arguments of these quantities
and considering the limit where only the S-wave contributes, we find the following overlap

for the two-body operator with the nth eigenstates of the finite volume Hamiltonian

" " 1/2
£ N} Ys Y§ cos? ds ) (2.62)

0/0a,(0,P)|Ern,P; LY = L3?
|<| A,U( )| A, >‘ (87TE;; [8(65+¢00)/3P0,M]‘P07M=EA,,L
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We note that the off-shell functions, strongly depend on the operator used in the deter-
mination of the correlation function, but as will be shown in Section the exact form
of these functions do not matter. What does matter is that one uses the same two-body
operators for the two-point correlation functions as in the three-point correlation functions.
It is only in this case that the dependence on the off-shell scattering amplitudes cancels.
When restricted to the S-wave channel, N} is just equal to the number of momenta be-
ing summed over. Although it might be naively surprising that the matrix element of the
two-particle operator depends on the off-shell scattering amplitude, this is the mechanism
that is responsible for making an operator with off-shell momenta have overlap with a state
which, by the definition, is on-shell. Lastly, it is worth mentioning that this result clearly
explains why if one constructs an operators with a particular set of discrete momenta the
resulting correlation function will have largest overlap with the nearest eigenstate. This
is because the amplitude of each exponential scales as ~ \/W From the definition of
this, Eq. [£.46] one observes that they divergent in the limit that the free energy given to
the two-particle operator, Efyec, coincides with the on-shell energy, Ej ;. In fact, one can
shown that near this pole, the overlap factor scales as ~ |Ep,, — E free|_1. In Section

we show that this result reproduces the well known LL-factor in a moving frame.

4.1.2 wm in a P-wave

In the case that the two particles of interest are degenerate, parity is still a good quantum
number, even in when the total momentum is nonzero. As a result, odd and even partial
waves in the 7w systems do not mix. Therefore, when interested in studying scattering
in the P-wave 7 channel, the LO partial wave contamination to consider is due to the
F-wave. By neglecting this contribution, M can be written as a one by one matrix, and the

quantization condition can be in general be written as
cotdp + (cot o + ago’A cot ¢, + ozgz,A cot ¢‘§2) = 0. (4.63)

For systems with d = 0 and cubic volumes, the cgm exactly vanish. For systems with
non-zero total momenta or for asymmetric volumes, cg, do not necessarily vanish and the

values of ag(), A and 04327 , for d? < 3 are shown in Table
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d|  (00n) | (nn0) ‘ (nnn)
d 2 d _ 1 d _ . /6| .4 _ - /6
Q20,41 = 5 | X200 = T 5 A2 p) = —Z\/; Qoo Ay — -2 5
d _ 1 d _ 2 d _ - /6
Q20E = ~ 5 Q20.B, = 5 Qoo = 14/ 5
d _ 1 d _ . /6
Q20,8 = ~ 5> Ao By = U4/ 5

Table 4.2: Nonzero values of ag()’ A and a<2:12’ » for d? < 3. For the Ty irrep of OP, the c§,

vanish, therefore there is no need to define agm  for this irrep.

Following the steps that led to Eq. one finds that the overlap of the two-particle
interpolating operator with the nth finite volume eigenstate for a two-particle systems in a

P-wave is equal to

% 1/2
(0]OaL (0, P)|EpnP; L) = L3/2 (%NX Yp Y, cot25p>
’ 8T}
—1/2
b O 0 00 o0 00 ||
X |csc 5P8P07M + csc %Oapo,M + Z Q2 A CSC QSQmaPQM (4.64)

—0,2
m Popvr=FEan

Again, we find that this overlap factor depends on the derivative of the P-wave phase shift
and the pseudo phase (Z)Odo, but also depends nontrivially on the derivative of the pseudo
phases qﬁgo and ¢%,. Note that for a system composed of indistinguishable particles, such as
the 77 system, one must set the symmetry factor £ equal to 1/2. In Section we show

this leads to the needed LL-factor for my — 7w when the final state is in a P-wave.

4.1.8 7K for J <1

As a slightly more complicated example, we consider the 7K operator. For such system
with zero total momentum, parity is a good quantum number and as a result odd and even
partial waves do not mix. If we restrict the angular momentum to satisfy J < 1, the system
could be in a S- or P-wave. The corresponding cubic irreps would be the Af and T7, and the

matrix elements of their respective operators are described by Eqs. & respectively.
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For the wK systems, £ must be set to one. For boosted system, parity is non longer a good
quantum number. As a result odd and even partial waves will mix. By neglecting D-wave
contamination, one can observe that for boosted systems at least one irreps will have large
overlap with P-wave states and no overlap with the S-wave. One can readily identify such
irreps as E for d = (00n), B; and By for d = (nn0), and E for d = (nnn). For these irreps,
the overlap factor is again shown in Eq. The non-vanishing values for 04907 A and 0432’ A
for d? < 3 are given in Table The A; irrep for these boost vectors will be an admixture
of S- and P-wave. As an example, consider the A; in the Dicy group, namely the symmetry
group for d = (00n). This irrep mixes the (I,m) = {(0,0),(1,0),...} partial waves. In this
space one can write down the finite volume function FV" and the on-shell /off-shell K-matrices

for this irrep as

Dicy A : Fy = Ghon | cotdfly cot ¢l (4.65)
: 1 * ’ :
8B, cot ¢y cot g%y + 2/v/5 cot ¢S,
8L cot dg] ! 0

Kon,on;Al = *71%1 [ S] 5 (466)

hson 0 [cot p] !

K : 0

Konorfian = omolfis : (4.67)

0 Kon,off;P
The quantization condition can be written as
. -1
Dics A : det[My,] = det {Konvon;m + (FY)) } —0. (4.68)

In order to evaluate [(0|Oy, 0.p|Ea, nP;L)|, we first need to evaluate the adjugate of My,
) [MAl]QQ - [MA1]12
adj[My,] = , (4.69)
- [MAl]Ql [MAl]ll

and we define the Clebsch-Gordan coeflicients as vectors in the spherical harmonic basis,
Yoo(Rk )
Ca, =ViAr Y C(PAy;R(P —k); Rk) : (4.70)
ReLG(P) HO(RT{*)
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we obtain the overlap factor for the A irrep for the Dicy group as follows,

_ L \1/2
Ea P L)| 1372 (C:‘gl Koffoniar Ya, adj[Ma, | Ykl CAl)
Ar,nES =

[(0]Oa, 0P . (4.71)

. oMy, 11/2
tr [adj [Ma, | BEAT,IJ

Similar expressions can be found for the A; irreps of the Dicy and Dics groups, the only
differences would be the values of the finite volume functions and the K-matrices appearing
in Egs. & and the Clebsch-Gordan coefficients appearing in Eq. For example,
the A; irrep of the Dicy mixes the (I,m) = {(0,0),(1,—-1),(1,1),...} partial waves.

DiC2 Al :
7 cot ¢y i%/2 Re[cot ¢¢,] i'/? Re[cot ¢ ]
\% Aq,
Fa = SWECEL —i'/2 Re[cot ¢fy] ~ cot ¢y — cot ¢5,/V/5 —/6/5 cot ¢, ’
1
—i3/2 Recot ¢4, \/6/5 cot ¢S, cot ¢fjy — cot ¢5y/v/5
grE; | leotds] ™ 0 0
Kon,on;Al = — 0 [COt 5P]_1 0 , (4‘72)
Aq,0on 1
0 0 [cot dp]
Kon.off:s 0 0
Kon,off;Al - 0 Kon,off;P 0
0 0 Kon,of ;P

Similarly, one can write down the Clebsch-Gordan coefficients as a three-dimensional vector

in this space,

Yoo(RK)
Ca, =ViAr ) C(PAy; R(P —k); RK) Vi (RK) |- (4.73)

RELG(P) v (]fﬁ{*)
11
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The final piece needed is the evaluation of the adjugate of a three-dimensional matrix

[MA1]22 [MA1]23 B [MA1]12 [MA1]13 [MA1]12 [MA1]13
[MAl]gz [MA1]33 [MA1]32 [MA1]33 [MA1]22 [MAl]Q?’
adj [MAl] _|_ [MAl]Ql [MA1]23 [MAl]ll [MA1]13 B [MAl]ll [MA1]13 ‘(4'74)
[MA1]31 [MA1]33 [MA1]31 [MA1]33 [MA1]21 [MA1]23
[MAl]Ql [MA1]22 _ [MA1]11 [MA1]12 [MAJH [MA1]12
[MA1]31 [MA1]32 [MA1]31 [MA1]32 [MA1]21 [MA1]22

These two examples explicitly illustrate how partial wave mixing can be appropriately dealt
with in numerical studies of the two-point correlation function. Similarly, one can con-
sider the scenario where the scattering amplitudes couples different on-shell channels, in

Section we discuss how to determine the LL-factor for such systems.

4.2 Three-point correlation functions
and the generalized Lellouch-Liischer formula

Having discussed two-point correlation functions extensively in the previous section, we
now proceed to the main focus of this work, three-point correlation functions. In particular,
we are interested in processes where an external current annihilates a single-particle state
and creates a two-particle state. Such a transition was first considered in this context by
Lellouch and Liischer, who derived a relation between a finite-volume matrix element and
the physical decay rate for K — 7 [70]. The weak Hamiltonian is the external current
in that process, and thus the analysis is restricted to scalar currents which insert zero
momentum. Here we extend the result by allowing the external current to inject arbitrary
four momentum and to be in any irrep of the finite-volume symmetry group. This is
particularly relevant for meson photoproduction processes such as 7y — 7w as well as
meson decays of the form ¢; — ¢o¢p3X, where X denotes an arbitrary leptonic current.

Even the relatively simple example of 7y — 7 illustrates that the finite-volume final state
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mixes different angular momenta, due to the reduction of rotational symmetry, as well as
states with different particle content. For example the 77 state mixes with KK as well as
T, etcH Following the discussion of the previous section, we accommodate any number
of strongly-coupled channels, but restrict attention to energies for which only two-particle

states can go on-shell.

4.2.1 Construction of currents in irreps of LG(Q)

In order to construct the three-point correlation function, we must first define currents in
irreps of the finite-volume symmetry groups. We begin by defining a current of interest
in the infinite-volume theory. As a specific example, consider a four-vector current which
couples an incoming single-particle state, with momentum F;, to an outgoing (asymptotic)
two-particle state, where one particle has momentum k and the other P; — k. Defining
hy(P;, Py — k, k) as the LO transition amplitude for this process, we introduce

_ £ /de,O dPio dko i(p,—p)a
Jv(w) = L9 Z 2t 2w 2w €
P/ kP,

x @' (=Ps+k) 3'(=k) @(P) hy(P;, Py — k, k). (4.75)

Here £ = 1/2 if ¢ = ¢ and otherwise £ = 1. The zero component of this four-vector current
transforms trivially under rotations, also within the finite-volume subgroups. By contrast,
the spatial vector (or pseudovector) is in the J = 1 irrep of SO(3), and thus transforms
under multiple irreps of the finite-volume groups.

In order to discuss the subduction of the vector current onto irreps of the octahedral

group and the little groups, it is convenient to first Fourier transform

T2, Q) = / Pxe= X, (z)

13 dPso dPiodko p. —pr Vwe - _
=75 Z #?%6 (Pio=Proeo gf(p, — k) G(—k) o(P)  (4.76)
P, kP;

X hj(P’Lva - k? k) 6Pf,Q+Pi7

'3Similar to the case of D — {7m, KK} decays studied in Ref. [T40)].
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and also to switch from Cartesian to spherical-harmonic basis

1~ =
:Fﬁ(jx + ij)7 jO — jz . (477)

For non-zero Q, the azimuthal component of the vector current is only a good quantum

jil =

number if the 2 axis and the momentum axis coincide. It is thus convenient to instead use
operators in the helicity basis. These are found by defining R as an active rotation from
(0,0,]Q|) to Q and Df?{l)mz (R) as the mimg component of the corresponding Wigner-D
matrix in the J representation. With this, one can rotate from the spherical-harmonic to

the helicity basis
Hw0,Q) = Y. DIN(R) Tnlyo, Q). (4.78)

m

We are now in position to decompose the current into irreps of the finite-volume sym-
metry groups. First restricting attention to T \(%0,0), we comment that the current can be
subduced onto the A irrep of Oy, using the subduction coefficients, [C{], \ [226]. As can be
seen in Table 4.1(a), for this case the subduction is trivial. The J = 1 irrep becomes the
T irrep of the octahedral group, with each element of the helicity basis equal to one of the
three p values labeling the finite-volume counterpart. For systems in flight one may define

a similar subduction. In this case nontrivial linear combinations arise, given by

TN e, = S ST T 0. Q). (4.79)

A=%|)
where now J and P specify the angular momentum and parity of the system at rest.
Table 4.1(b) shows the values of SZ‘L for systems with integer J < 2 and LQ/2m =
{(0,0,n), (n,n,0), (n,n,n)} and all other possible cubic rotations are determined in Ref. [226].
Having discussed how to subduce the vector current onto a definite irrep of LG(Q), one

can easily generalize this for currents of any rank,

Torprio(@0, Q) — Ty (20, Q). (4.80)

The discussion that follows is relevant for arbitrary rank currents with either positive or

negative parity that have been properly subduced onto the irreps of the corresponding
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symmetry group. The key point is that, by taking appropriate linear combinations, one can
transform an operator in any basis to one that transforms as an irrep of the finite-volume
group. The linear combinations of currents imply linear combinations of the transition
amplitudes so that both J and h may be reexpressed in terms of finite-volume irreps, and

the form of Eq. is preserved in the new basis

~J7P7A 5 dP ’0 dR,O dko i NP T _ ~
TP (5, Q) = £y / L0 C 0 R iPuo—Prom G~y 1 k) (k) o (P)
P; kP,

J,P|A
<h PPN, P~k k) 0p,qep, . (481)
Finally, in order to consider scenarios where there is N > 1 open two-particle channels, one
need only generalize this expression to

N

F1J.PJA &a dProdPiodko ip .—pr Vao - _

T en) = 30 g5 B[ GRG0 Gy G ()
a=1 P; kP,

XhB{LPJAH (Pi, Pf — k, k‘, a) 5Pf7Q+Pi’ (4.82)

where @Z and @L create the two particles in the ath channel and hk]LP"AH(Pi? Py —k,k,a) is

the LO transition amplitude for that channel.

4.2.2  Three-point correlation function

Having properly defined the current of interest, we proceed to evaluate three-point cor-
relation functions. Arriving at the result with an arbitrary number of open two-particle
states is straightforward after one determines the single-channel result. We thus suppress
the channel index for the time being and use Eq. for the current. We begin by writing
down the analogous expression to Eq. when a current with arbitrary momentum is

inserted at time t = yp,
19 ~1J, P\
CI(XfZﬁ)AM(xf,O —yo;¥0 — o) = (0[On;pu, (20, Py) jfgu | H(yo,Q) #'(@io, ~P:)[0)
_ Ze—EAf,nf(If,()_yo)e—EAi,O(yO_l’i,O)<O’OAfo (O,Pf)’EAf,anﬁ L)
ny

N[J7P1|/\|](

<(EA;m P LITN (0, Q) A, oPi; L) (Ep, 0Py; LI (0, ~P:)[0). (4.83)

In the second line we have assumed ;9 < yo < xf.
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Figure 4.3: a) Diagramatic representation for the three-point correlation function for pro-
cesses involving a single incoming particle and outgoing two-particle state. This is written
in terms of the LO transition amplitudes, one of which is explicit shown in (b), and the
Bethe-Salpeter kernel, depicted in Fig. The wiggly line is meant to depict an inte-
ger spin external current that can inject arbitrary four-momenta. Note that disconnected
diagrams appearing in the LO transition amplitudes vanish except in the case where the

current has the same quantum numbers as one of the outgoing external legs.



93

In order to get insight as to how one can interpret (Ep, »,Ps; LTy [JP A (0,Q)|Ep, 0Pi; L),
we also evaluate the correlation function diagrammatically, as deplcted in Fig. First
observe that the transition amplitude, shown in Fig. is defined in analogy to the
Bethe-Salpeter kernel as the sum of all amputated diagrams that are two particle irreducible
in the s-channel. The object differs from the Bethe-Salpeter only in the form of external legs
and in the insertion of a new contact interaction associated with the electroweak process of
interest. To evaluate the three-point correlator we must sum all diagrams that appear when
the external legs of the transition amplitude are contracted with the single incoming particle
and outgoing two-particle state. We perform the calculation of the three-point correlator in
two steps, first considering the contraction of the incoming state with the current

dP' et
D(l)(yo — i) -3 Z/ Sefiom <‘P(R'/)80T($i,0, —Py))
(4.84)

J,P|\
X hk# | ”(-Pz’7pf — kf”kf')5Pf3Q+Pi/

(yo—z4,0)EA, 0
’ v J,P,|\
- <2EA0> Wi (Pr Py — kg k), que,

(4.85)
Lo (e—EB,th(yo_$i’0)/E3,th> )

where P;o =iFE), 0. The remaining contractions, between the current and the final two-

particle operator, give

dPyo dkro i N

D@ (zp0—yo) = Ls > / o f Frvo(Op u, (@p, Py) @'(—Pp + ky) &' (—ky))
Py ky

x MNPy, P — kg k) Op, Qe (4.86)

The LO contribution of this term is found to be

dP;:o
DL 2y —yo) = L° /2f’0 eProtromi) N7 C(PpApus; R(Py —ky); Rky)
T ReLG(Py)
JP,|A
WP P Py — ke k)
4wy w2(in70 + (w1 + OJQ))

5Pf,Q+Pi e (487)

“Note that Fig. shows the expression for the correlation function when arbitrary number of final
two-particle states are present. The single channel scenario is recovered by suppressing the dependence on

the a index and reducing all matrices in the channel space to scalars.
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where the ellipses denote contributions associated with higher energy poles of the free two-

particle propagator. Note that the symmetry factor cancels.

To complete our calculation of C1—2)

, it remains only to include all higher order correc-
tions to D). These arrise from insertions of the Bethe-Salpeter kernel between the current

and the two-body operator. All contributions are included by making the substitution

J,P,|\ J,P,|\
WP (P, Py — ke k) — b PP P — Ky k)
JP|A
¢ TPy kg ky) RPN (P Py — Bpr Byp)

L3 . 4w p,—k, wak, (Wi,p,—k, +wok, +iPfo)

+oo, (4.88)

where the ellipses again denote higher energy poles.

To give the final result we must first define HE{LP’M(PZ-,Pf — k¢, k) as the sum over
all infinite-volume diagrams contributing to the transition amplitude, evaluated using the
principal-value prescription (as depicted in Fig. [4.4(b)| for a single channel). This is also

given by

J,P,|A = plB P
HEX | |](B7Pf_kf7kf):h£\u | H(Pi,Pf_kfakf)

o
J,P|\

cef by Koffors (Prskp kyp) PP, Pp— i kpr)

kf/ . V. 4 LL)LPf—kf/ wQ,kf/ (wl,Pf—kf/ + wQ,kf/ + Y’Pf,o)

oo (4.89)

In addition we define Hyy.p, = [ dQ Yir, (R;) Hk]f’M”(B, P — ky, ky), which is the pro-
jection of this amplitude onto the spherical harmonic basis of the outgoing state. Note that
this requires evaluating the transition amplitude in the frame where the final two-particle

state is at rest.

Putting all the pieces together and performing the integral over Prg, one finds the



95

following expressions for the three-point correlation function

—(Yo—=2i,0)En, 0 dP )
12 € ¢ 7,0 ip _
Chpmyian0 = 0030~ #10) = ( 21,0 > / g ¢ TG, e,

TP\
CPApps: (Pr —kp) kM NP, Pr— Ky k), L w s
4w, Pk w2k, (WP Kk, T w2k, +iPr0) Arir T 4 (FV)~L

e (om0 Fa0 3 —Ep g (Tf,0—Y0) T
N  2Eno L Ze e (CAf/"fYAf’nfRAf’”fHAf’”ﬁAl‘(SPfaQ‘FPi
) ny

e, (4.90)

where the ellipses denote contribution from high energy poles. Note that, just like in the
two-point correlation function, the free-particle poles do not contribute due to the careful
cancelation of the two objects inside the braces.

By comparing Egs. & and multiplying with the complex conjugate expression,

one finds an identity for the finite-volume matrix element

‘ (EngngPr L‘j&P,MH (0,Pf —P;)|Ep, 0P L)

T T T *
B < L3 ) \/(CAfuf YAfﬂlf RAf»nf HAf,nf;Au)(HAf,nf;Au RAf:nf YAf,nf (CAfW)

2E\, 0 (01O (0, Pf)‘EAfv”fPf; L) [{En, 0P LI#t(0, =P ) 0)]
(4.91)
+ *
_ 1 ((szﬂ/f YAf,TLf RAlef HAf,nfyA#)(H£f7nf,Au RAf’nf YAfvnf (CAfp’f)
T t * ’
\/m CAfuf YAf’”f RAﬂ”f YAf»”f(CAf“f
(4.92)

where we have used Egs. & 58 to write the second equality. It is important to emphasize
the dependence that CTY has on the two-body interpolators used, and it is essential to use
the same interpolators in the two-point and three-point functions for the second equality
to follow. Indeed, although we constructed our two-body interpolators from scalar fields
(with residue one at the mass pole), this result holds for any interpolating field with the
desired quantum numbers. Any nontrivial overlap factors cancel between numerator and

denominator.
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e S
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Figure 4.4: In order to illustrate the differences and similarities between the transition
amplitudes a) A and b) H, we show their diagrammatically representation for the single-
channel case in terms of the LO transition amplitudes (defined in Fig. [1.3(D)), kernels
(defined in Fig. and infinite volume loops. The infinite volume loops of A are
evaluated using the e prescription, while those of H are evaluated using the principal value,
as explicitly denoted. For multichannel scenarios one simply upgrades the kernels and
two-particle loops to be matrices in the number of open channels and the LO transition

amplitude becomes a vector in the space as depicted in Fig. Single particle propagators
are fully dressed as defined in Fig.
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For multichannel systems, one needs to evaluate the three-point correlation function
using a current that couples to all open channels, as defined in Eq. In this case one
has the freedom to choose which flavor of two-particle operator is used in evaluating the

correlation function. We define
2 SJ,P|A
Cz(\lfzf,)a;/\u(xf,o — Y05 Yo — Ti0) = <0!OAfuf,a(37f,o, Pf)jjgu | ”(yo, Q)@T(xi,o, —P;)|0)
_ Z o Eping (If,O*yO)efEAZ-,O(yO*IL"z‘,O)<0|OAM’Q(O’Pf)|EAf7anf; L)
ng

X (Ep, ;P LIT (0, Q)| En, oPi; L) (En, 0P LIt (0, —P)|0). (4.93)

This generic representation of the three-point function is diagrammatically depicted in
Fig. 4.3(a)l Following the steps above, it is straightforward to see that Eq. gener-

alizes to

- A
‘(EAfmfPf; |70, Py — Py)| B, oPi; L) =

1 ((szﬂf [YAfﬂnf RAfﬁlf HAf:”fiA“]a)([H£f7nf;AM RAf’”f Y}L\fmf]“ (Cj\fﬂf)
V2Eh 0 CR,uy Wapmg Ragng YA o JaaCh .,
(4.94)

where the repeated channel indices on the right-hand side are not summed.
We now show that this result is equivalent to the main result of this work, Eq. [4.2]above.
To do so we define

(a) — T *
Vb = YAf,nf;a,b(CAfuf ’

(4.95)
where a and b are channel indices. We stress that, for each fixed value of a, Véa) is a column
in angular-momentum /channel space. Suppressing the channel index, b, this notation allows
us to rewrite Eq. [£.94] as
.7 LA
(Engings L’jz[\u | }|EA

357

0'L>‘=

1 [V(G)T RAf,TLf HAf,nf;A,u] [Hff,nf;Au RAf’nf V(a)]

V2E\; 0 [V@t Ry, V(@]

Here we have dropped all momentum and time labels for compactness of notation.

(4.96)
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We next observe that R, n,, which is Hermitian and therefore diagonalizable, has only
one non-zero eigenvalue. To see this, recall that Rj,,, is equal to a scalar prefactor
times adj[M(Po s = Ean)la,. The adjugate here is understood as a matrix in angular-
momentum/channel space, that has been projected onto the A s subspace. We now consider
the adjugate as a function of €, = Py ar — EA », and show that all but one of its eigenvalues

vanishes as €, — 0. Recall the defining relation
adj[M(e,)] = det[M(e,)] [M(e,)] L. (4.97)

Formally diagonalizing both sides, we argue that exactly one of the eigenvalues of [M(e, )] ~*
scales as 1/¢, and the rest are finite.

Note that the divergence of two eigenvalues, which we discount, would imply the exis-
tence two orthogonal states that are exactly degenerate in finite volume. This represents
two possibilities. The first is that distinct energies coincide only at certain values of L.
This would imply a level crossing, which does not occur unless the Hilbert space divides
into distinct, non-interacting subspaces. The second possibility is that the finite volume
spectrum includes states that are degenerate for all values of L. This occurs whenever there
is a symmetry relating the finite-volume states. However, in the present context the matrix
has been projected to a particular irrep and row. It follows that, within the subspace that
we consider, exactly one of the eigenvalues of [M(e,)] ! scales as 1/e,. This in turn implies
that the determinant of Ml(e, ) vanishes as €, or faster, and thus all but one of the adjugate’s
eigenvalues vanishes.

We denote the nonzero eigenvalue of Ry, ,, by A and the corresponding eigenvector,
E. We also introduce Eq,Eo,--- as the remaining orthonormal set that is annihilated by

Rp;n,- These eigenvectors span the space, so we may substitute V@ = ¢E + > ¢E; and

deduce
% T
<E 'L|j[J’P’|/\H‘E L>‘ _ 1 \/[C AET HAf,nf;A/J][HAf,nf;AM C)‘E] (4 98)
Apmgs Ap A;,05 \/m )\C*ET Ec 5 .
1

_ m\/ﬂ NEF By inBE 0 B, (4.99)
_ 1 T by T
- = Tr {HAfﬁnf;A# EE HAf,nf;AM} . (4.100)
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where in the first line we acted Rp sy O each eigenvector, in the second line we canceled
common factors and inserted a redundant trace, and in the third we used the cyclic property

of the trace. Observing finally that
Rp,n; = AEET, (4.101)

we conclude

Z[J.PAl]

<EAf’anf;L|‘7/[\u (O’Pf - Pl)|EAz,0P1aL>‘ =

(4.102)

1
T
\/W\/[HAﬁnf?AN RAfvnf HAf,'rlf;A/.Li| .
4.2.3  Relation of H to infinite-volume matrixz elements

In this section we relate Ha, npapim, = HapapIm, (E;'{fmf) to infinite-volume matrix
elements. Here we have given the full set of indices including Jm; = Im, which was
suppressed in the steps above. We have also emphasized that the label ny only refers to
the particular two-particle pole at which the transition amplitude is evaluated. Finally, we
stress that the subscript Ay on H indicates that the angular momentum space has been
projected onto a finite-volume irrep. For example in the case of Ay = Af the transition
amplitude will include J = 0, J = 4 and certain higher waves, but not J = 2,J = 3.
However by considering different irreps one can in principal sample all partial waves, and
so construct an unprojected vector H . jm ;-

To give the relation to physical matrix elements, we first connect this transition ampli-
tude, defined using principal-value prescription, to the amplitude defined via ¢e prescription.
We label the latter A, sm,. Both amplitudes are explicitly shown in Fig. and the rela-
tionship between the two is found by noting that the difference in each two-particle loop is
a simple kinematic factor, determined by the residue of the propagators at the poles. This

is very similar to the relation between K and M discussed above. We find

A = HEK (P2 H+K (B/2) K (F/2) B+ = | g |
- [Kl—l(z'IP?/QJ K'H=MK"H. (4.103)
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For systems where there is only a single channel present these are just scalars, otherwise
these are matrices in the space of open channels. Note that H is pure real and thus the
phases of A are determined entirely by the strong interaction, as encoded in K~* M. In the
single channel case we see that the phase of A is equal to the elastic scattering phase of the
two-particle channel considered. Thus Eq. is simply the generalization of Watson’s

theorem for multichannel systems. This relation motivates the definition
Rajmy =M T KRK M a0, (4.104)

which allows us to compactly display our main result in terms of A, as in Eq. above.

Apnp;Jm, is trivially related to the infinite-volume matrix element of the current. To see

this, we first rewrite the current J /{{;P,w] (20, Q), Eq.4.82} in infinite volume and set zy = 0,

~ al d'P; d*P; d*k _
jj&{;P")\”(O,Q,OO) = Z ga/ (27_[_)]; (271')4 (271')4 @Z(_Pf + k) Wl(_k) @(Pl)

a

J,P|A]]

< B PPy, Pr— K k) (27)28% (P — P; — Q). (4.105)

Note that we still label the current by Au. The linear combinations that relate this basis to
more standard infinite-volume bases are discussed above and are perfectly well defined, even
though the finite-volume symmetry group does not play a role at this stage. Requiring only
that states are normalized according to the standard infinite-volume relativistic convention

(Eq. [4.8) and also that the single-particle operators have propagators with unit residue

(Eq. one arrives at Eq.

4.2.4  Ezamples of applications of Eq.[{.4
K — nr decay amplitude

First, we demonstrate that this formalism properly recovers the well known result for K —
nw weak decay. In this case, the initial state is a single kaon and the external current
is a pseudoscalar. The current cannot inject any momentum, so we set Py = P;. By
conservation of angular momentum, the infinite-volume current can only create a two-pion
state in an S-wave. For a finite-volume system we restrict ourselves to irreps that have

strong overlap with S-wave and we neglect higher partial wave contributions. Within this
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approximation, our master equation gives the following relationship between the infinite-
volume transition amplitude and the finite-volume matrix element

|Asin, |2 _ 167E; B, 0(6s + o) (4.106)
(77, B, P, Appg; LT 1(0,0)| K, Ex P L)2 a;,€ OPor g, =,

For the problem at hand F; is equal to the energy of the incoming kaon and the symmetry
factor £ is equal to 1/2. If one wishes, it is straight forward to replace the derivative with
respect to total energy with a derivative with respect to relative momentum. Doing so, one
finds agreement with Refs. [70, 130, 131, 190] in the limit that the initial and final state
are exactly degenerate. Note that, since the current is evaluated at a specific time slice, the
current need not conserve energy and this result reflects that fact. For processes such as
K — 77 this is an artifact, and one would want to assure to extract a mm energy level that

is in the vicinity of the kaon energy.

my — 7w form factor

Unlike the previous example, for a process such as 7y — 77 the external current can inject
arbitrary momentum. For such a process, the lowest energy configuration of the final state
is a P-wave. Therefore, it is expected that the Lellouch-Liischer factor gets modified. Since
the two particles in the final state are degenerate, odd and even partial waves cannot mix.
By ignoring contamination from the F-wave and using the results of Section one finds
the generalization of the previous result for two particles in a P-wave,

|"4Afﬂf7nf§A/l§J=1 |2

~TL—1,] = 167E; *nf sin? op
(o, En Py Appug; LTy 70 (0, Py — Po)|m, EiPy; L)|? n
d5p d¢d g5,
x| csc? 5pm + csc? ¢, 3P001(34 + Z Qom, A, csc? ¢S 8P027]7\1/[ (4.107)
’ m=0,2 ’
Povr=En,;

where Qo = 0 and the values of aopm A P for other relevant irreps are given in Table @
The J = 1 superscript on the transition amplitude means that we have integrated it against
one of the [ = 1 spherical harmonics. As discussed above, this projection is performed in
the two-particle center of mass frame. Again one may set & = 1/2 for this case, since the
two outgoing particles are identical. Observe that the right-hand side does not depend on

the representation of the current or the single-particle state.



102

The right-hand side effectively corrects for the large finite-volume artifacts associated
with the two-particle state. This gives a one-to-one mapping between the finite-volume and
infinite-volume form factors for this process. The result thus allows one to determine, using
LQCD, the same quantity that is extracted from experiments. If one wants to evaluate this
form factor at the p pole, in order to study processes such as 7y — p, then it is necessary to
analytically continue into the complex plane [192]. This requires parameterizing the form
factor as function of the exchange momentum as well as the relative momentum between
the two pions in the P-wave. By fitting this function to the LQCD results, one can study
the behavior of the form factor as a function of the exchange momentum at the resonance

pole.

Two-dimensional case

As we have already stressed before, partial wave mixing is inevitable when performing
calculations in a finite volume, and Eq. reflects this reduction of rotational symmetry.
In addition, the final two-particle state may in general have overlap with more than one
infinite-volume state. This leads us to consider a generic scenario where the matrix R in
Eq. is two dimensional. In order to avoid introducing additional notation we consider the
form of the main result using infinite-volume quantities that are defined via principal-value
prescription, namely Eq.

In Section we discussed one explicit example for a 7K boosted state, where we
neglected contributions from J > 2 partial waves. We could also consider a system with
two open channels where we ignore partial wave mixing, e.g., 7w — KK. In the first case,
the finite volume matrix FXf will have off-diagonal terms but the K-matrix will be diagonal.
In the second case this is reversed; the K-matrix has non-zero off diagonal terms while FXf
is diagonal. In order to accommodate these two scenarios simultaneously, we allow the K-
matrix and the IFXf matrix to have off diagonal terms. The spectrum of this system must

Requiring the determinant of My, to vanish, implies that we can generically write its
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adjugate in the following form,

- {MAf}m —'™ \/ [MAf}QQ [MAf]ll

adj MAf
! | —e= \/[MAf}QQ [MAf]ll [MAf}n

|P0,M:EAf ,ng

(4.109)
where 6, is an unknown real phase.

Inserting the above expression into Eq. one finds

F1J,P,| A 2 1
‘(EAf,anf;L|jj[\M | ”(O’Pf_Pl)|EA“OP“L>‘ - 2F\. o
[ M ), + BB (M, — 20 By [, ], (M, ], coslon,)
X ¢ |:d[M ]6MAf}
r|adjMa |55
f10Py, m Po,M=En;ng
(4.110)

where the subscripts of Hp ,, n A, have been suppressed in the last line for compactness.

This nontrivial result illustrates the power of Eq.

D — {7r7T,Kf(} decays

Assuming sufficiently heavy pion masses where the multi-particle threshold lies above the
energy of the D mesons, Eq. allows for the studies of D — {7r7r, KK } decays. To find
the equivalence between the result presented in the previous section and the result presented
in Ref. [I40], we rederive the result of Ref. [I40] using notation presented here. This allows
for a more compact representation of the result. In Ref. [I40], the authors followed the trick
first utilized by Lellouch and Liischer in the studies of K — 7w decays. We present this
method in the context of the two-channel system.

The argument proceeds by modifying the mm — KK correlation function, by including
a contribution to the Hamiltonian density due to the weak interaction. We denote this
perturbative shift by AHp (z), where A is a free parameter that allows us to organize an
expansion. The modified Hamiltonian density allows for 7m — K K states and the D meson
state to mix, both in a finite and infinite volume. Considering first the finite-volume theory,

we tune the box size L such that the D state and some 77 — K K finite-volume state are
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exactly degenerate (for a given total momentum). The presence of the weak interaction will

break the degeneracy and result in two nearly degenerate states with energies
EW = Ep + AL? |(EpP; L|Hw (0)| D, EpP; L), (4.111)

where we have only kept the leading order contribution in A and where Ep = \/M% +P?
with Mp the D meson mass. Turning to the infinite-volume theory, the weak perturbation
has the effect of modifying the scattering amplitude. This modification is due to the addi-
tional interaction that couples the D to the two-particle states. The shift in the scattering
amplitude contains two insertions of the weak Hamiltonian, one for transitioning from two
particles to the D and one for transitioning back to two particles. Thus the shift is gener-
ically O(A\?), but in the present case we are evaluating the amplitude at an energy which
is shifted by O(\) from Ep. This enhances the change of the scattering amplitude to be
O(A). Putting these two pieces together one finds [140]

MO = MO F A M (4.112)

where

1 |~’4D—>7r7r|2 AD—)T(WATD_)KR

A =
M = 3B L (EpP; L#Hw (0)]D, BoP; 1))

ATD*HHTAD—)KK |~AD—>Kf( ‘ 2
(4.113)

We next find it convenient to rewrite this perturbation to the scattering amplitude as a
perturbation to the K-matrix. To do this, we follow the reasoning of Eq. and observe
that the only difference between the transition amplitude and the scattering amplitude is
that for the latter we need to include the imaginary part of the diagrams associated with

both incoming as well as outgoing two particle states. This leads to the following relation

between AM and AK,
AK =K M~ AM M7 K. (4.114)

At this point we can combine the shift in the finite-volume spectrum with the shift in

the infinite-volume K-matrix to determine the leading order modification to M, defined in
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Eq. [4:47 We find that the matrix is shifted by an amount

oM

AAM = M\AFE
OFo.m Po,m=Ep

T AAK. (4.115)

where AE = L3|(EpP; L|Hw (0)|D, EpP; L)|. Of course, the quantization must also be
valid for the perturbed theory. We thus deduce that the linear shift to the determinant of
M should vanish

det[M(N)]] = det[M(0)] + Ar [adj[M(0)] AM] = X tr[adj[M] AM]|p, | =0, (4.116)

where we have used the fact that M(0) also has vanishing determinant, since this defines
the quantization condition of the unperturbed theory.
Showing that this result is equivalent to Eq. 4.110|require some algebra. First we rewrite

the relation as

tr [adj[M] AK]

tr [adj[M 2L

AFE =

} Po,m=ED

1 111 /M, — [H]> /M, |° (4.117)

2D \ tr [adj{M] ;22| L3 |(EpP; LiHw (0)|D, EpP; L) ’

Po,m=Ep
where we have used Eq. [£.103], [£.109] & [£.114] in finding the second equality above. Finally,
using Eq. one obtains

L°(EpP; LIHw (0)|D, EpP; L) |?

1 (| /M, — [H /M, | . (4.118)

— |
2Ep tr [adj[M] 524

OFo,m Po,m=Ep

This is equivalent to Eq. for the special case where the initial and final states are
exactly degenerate, have the same total momentum and 65, = 0. Note that the left hand
side of the above equation contains an extra factor of LS, this is because the current in
Eq. 110 is in momentum-space.

In deriving this result following Lellouch and Liischer trick one is forced to consider a

scenario where the final two-particle state is degenerate with the heavy single particle state.
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For D — {7T7r,K K } decays, this would make the w7 highly relativistic with an overall
energy that is above the four-particle threshold, unless one considers very heavy pion masses
or unphysically light charm quarks. In deriving Eq. we made no assumptions of the
sort and as a result the initial and final states can have arbitrarily different energies. This
of course would mean that D — {7T7T,K K } one would necessarily evaluate form factors
with large exchanged energies, but ultimately one would need to extrapolate to the zero

exchanged momenta limit to recover the physical process of interest.

B — wK form factors

One example where partial wave mixing may in general not be small is in the studies of
B — 7K form factors. This is due to the fact that for boosted systems the final state will
be an admixture of even and odd partial waves. In particular, if interested in case where
the infinite volume final state has overlap with the K*(892) resonance, we must consider
irreps that have strong overlap with the 7/ P-wave. If the final state is at rest or if it
is in the E irrep for d = (00n), B; and Bs for d = (nn0), or E for d = (nnn), and if we
neglect the contribution from the D and higher partial waves by following the discussion of
Section [.1.3] one finds that the ratio of the infinite and finite volume form factors for vector
or pseudo vector currents satisfies Eq. where the symmetry factor £ must be set equal

to 1.

For the A; irrep of the Dicy group, one simply needs to insert the expressions for the
on-shell K-matrix in Eq. along with Fy, in Eq. onto Eq. to find the relation
between the finite volume and infinite volume form factors. Because of the symmetries of
the infinite volume only one of the transition amplitudes is non vanishing. For example, if
we consider the case where the current is a current subdued from J = 1 with odd parity,

then Hg, ,;a, must exactly vanish. Therefore for vector currents Eq. simplifies down
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to

|AP0,nf;Au|2 B
~ _ A —
(K, En, Py, Agpg; LT (0, Q)|BY, EgoPy L) 2

. OMp
tr [adj [MAf]iapoJﬂ

2Fn, 0 cos? §p [MA ]
11

(4.119)
Povi=Ep;n;
where Apon,;a, denotes the P-wave transition amplitude with zero helicity. This follows
from the helicity decomposition of the A; irrep of the Dicy group as shown in Table 4.1(b).
For a pseudo vector current or for rank two tensor currents neither Hg Ay 1OT Hpmn Fil
need vanish. Therefore one necessarily must use Eq. For the A irreps of the Dico
group one must input the finite volume function and scattering matrices defined in Sec-
tion [£.1.3 onto the general result for the matrix element of the currents, Eq.

As discussed in the previous section, this result does not require that the initial and
final state are exactly degenerate. For studies of B meson decays on the lattice, allowing
the initial and final states to be non-degenerate is a necessity, since our formalism does not
support multi (more than two) particle states. This result is thus of significance for studies
of B meson decays with large energy exchange, such that the final state is below all multi
particle thresholds.

Finally, it is important to remember that if interested in studying form factors involving
the isospin-1/2 K in the final state, one necessarily must consider the admixture of this
with Kn. Although the inelasticity is seen to be small at physical values, this will depend
on the quark masses used to perform the calculation. Furthermore, for unphysically large
quark masses, such as those in used in Refs. [233] 234], the K7 threshold is significantly
closer to the Km threshold than it is in nature. In order to include this mixing between the
channels one will have to use Eq. when there are two open channels with negligible

partial wave mixing or in general Eq.
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Chapter 5
THREE-PARTICLE SCATTERING

In the last few years, lattice QCD calculations of the properties of resonances have be-
come WidespreadE] Most use a method first proposed by Liischer in Refs. [127, 128 [142],
in which the finite-volume spectrum (obtained using lattice simulations) can be related to
infinite-volume scattering amplitudes. This method initially applied to two-particle sys-
tems below the inelastic threshold, but has since been extended to systems with multiple
two-particle channels [133, 134} [135] 140l 146]. A striking example of the practical imple-
mentation of this multi-channel formalism is the recent lattice study of the properties of
kaon resonances [92].

Lattice calculations can now routinely determine many spectral levels for a given set
of total quantum numbers, and can do so for quark masses approaching physical values.
This means that channels involving three or more particles are opening up and must be
incorporated into the formalism. Examples include w — 37, K* — Knw, and N* — Nr.
Indeed, the study of Ref. [92], although using an unphysically heavy pion mass of 390 MeV,
was limited by the opening of the Knm channel. Thus there is strong motivation to extend
the finite-volume formalism to include three (or more) particles.

First steps in this direction have been taken in Refs. [138] and [139]. The former work
considers the problem in a non-relativistic context, and shows that the finite-volume spec-
trum is determined (via integral equations) by infinite-volume scattering amplitudes. The
latter work reaches the same conclusion in the case in which pairs of particles interact only
in the s-wave. Related problems have also been considered in Refs. [238] and [239]. We
attempt here to go beyond these works by considering a relativistic theory in which we
make no approximation concerning the nature of the two-particle interactions.

Our approach is a generalization of the diagrammatic, field-theoretic approach intro-

'For recent reviews see Refs. [235] 236} 237].
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duced for two particles in Ref. [I30]. The finite-volume spectrum is determined by the poles
in an appropriate finite-volume correlation function. The method consists of rewriting this
correlation function, diagram by diagram, in terms of infinite-volume contributions and
kinematic functions which depend on the volume. Summing all diagrams then leads to the
desired quantization condition. This approach is straightforward in the two-particle case,
but several complications arise with three particles. In the end, however, we are able to
obtain a simple-looking quantization condition [Eq. ], which succeeds in separating
finite-volume dependence into kinematical functions.

As in the two-particle quantization conditions, our result is formal in that it involves
a determinant over a infinite-dimensional space. Practical applications require truncation
of this space. It turns out that such a truncation can be justified for three particles by a
simple extension of the arguments used for two particles.

The main drawback of our result is that it depends on a non-standard infinite-volume
three-to-three scattering quantity, a modified three-particle K-matrix. The relation of this
quantity to physical scattering amplitudes is as yet unclear, but it is under active investi-
gation. Nevertheless, given the results of Refs. [138] [139] in the non-relativistic context, we
think it very likely that such a relation exists. In light of this, and given the complicated
and lengthy nature of the derivation of our result, we think it appropriate to present this
derivation in a separate article. The remainder of this article is organized as follows. We
begin, in Sec. by presenting our main result. This in itself requires a fairly lengthy
introduction and explanation of notation. We next, in Sec. describe briefly how the
result might be used in practice. The core of the paper is Sec. in which we derive our
main result. We conclude and discuss the future outlook in Sec. (.4l

We include three appendices for technical details. Appendix derives the key sum-
integral difference identity used throughout the derivation Appendix [E] describes the prop-
erties of the modified principal-value pole prescription that we use. Finally, Appendix [F]
discusses in detail an example of using our quantization condition in the isotropic approxi-
mation.

A sketch of the result has been given previously in Ref. [I68], although some of the

technical remarks in that work are incorrect and have been corrected here.
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5.1 Quantization Condition

In this section we present the three-particle quantization condition. To explain the
result requires some preliminary discussion, particularly about the three-particle scattering
amplitude. It also requires the introduction of some rather involved notation. We have
attempted to make this section self-contained so that the reader can skip the subsequent
lengthy derivation if desired.

Lattice calculations can determine the spectrum of QCD in finite spatial volumes. We
assume here a cubic spatial volume of extent L with fields satisfying periodic boundary
conditions. We take L large enough to allow neglect of exponentially suppressed corrections

mL - where m is the particle mass. We assume that discretization errors are

of the form e~
small and can be ignored, and so work throughout with continuum field theory (zero lattice
spacing).

We work in general in a “moving frame”. That is, we consider states with non-zero
total three-momentum P. This three momentum is constrained by the boundary conditions
to satisfy P = 2riip /L, with 7ip a vector of integers. The total moving-frame energy is
denoted E, while E* is the energy in the center of mass (CM) frame: E*2 = E2 — P2, (The
superscript * is used throughout this work to indicate a quantity boosted to an appropriate
CM frame.) The goal of this section is, at fixed fixed {L, P}, to determine the spectrum of
the finite-volume system in terms of infinite-volume scattering amplitudes.

We choose a simple theory for this study: a single real scalar field ¢ describing particles
of physical mass m. Thus all results in this work hold for identical particles. For simplicity,
we assume the Lagrangian has a Z, symmetry that prevents vertices having an odd number
of particles. (For pions in QCD this is G-parity.) We otherwise include all vertices, with
any even number of fields, and make no assumptions about relative coupling strengths.

Given the Zo symmetry, the Hilbert space splits into even- and odd-particle states. We
are interested here in the latter, which are those created from the vacuum by the field ¢
(or by ¢3, #°, etc.). The spectrum in this sector consists of an isolated single-particle state
with E* = m, followed by a tower of states that lie close (for large L) to the energies of

three free particles in the finite volume. Such states begin at E* ~ 3m, and it is these
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that we focus on. Their energies typically are shifted from those of three free particles
by a difference AE which scales as an inverse power of L. Once E* reaches 5m, one also
has states which lie close to the energies of five free finite-volume particles. Our derivation
breaks down at this point. Thus we focus on the range m < E* < 5m, within which it turns
out that the only infinite-volume observables that enter are quantities related to two-to-two
and three-to-three scatteringﬂ

An additional technical requirement is that the two-particle K-matrix remain finite in
the kinematical range of interest. This range runs from 0 < E3 < 4m, where EJ is the
two-particle CM energy. Thus this region extends well below the threshold at E5 = 2m,
requiring appropriate analytic continuation of the K-matrix. This requirement means that
|| < /2 for all angular momenta below the four-particle threshold—the interactions can

be neither attractive enough to produce a resonance nor overly repulsive.

We next establish our notation for three-particle kinematics, considering first the case
where all particles are on shell. If the momenta of two of these particles are k and a,
then that of the third is fixed to be gka =P-k-a by momentum conservation. The

corresponding energies are denoted

we = \VE24+m2, we=Va+m?, and wp, = \/(]3 — k—@)%+m2, respectively. (5.1)

The momenta k and @ cannot be chosen freely: on-shell and total energy constraints require
E = wi + wq + Wi - (5.2)

It is convenient to separate the three particles into a “spectator”, which we take to be
that with momentum E, and the remaining two-particle pair, with four-momentum P, =
(E — wy, P — k). The energy of this pair in its CM-frame (which we stress is different, in

general, from the CM-frame of all three particles) is labeled E;k, where

B3 = (P)? = (E—w)’ = (P—k)*. (5.3)

ZWere we to remove the Z; symmetry, we would also need to include two-to-three amplitudes, as has

been done in Ref. [138].
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For Eq. 1} to hold, we must have that E}, > 2m. For fixed total energy-momentum,
this condition holds only for a finite regions of k.

We now boost to the two-particle CM frame, which requires a boost velocity of

B = S (5.4)

_E—wk'

=
*

We denote by (wj,a*) and (wj,,by,) the four vectors reached by boosting (w,,d) and

(Wka, Eka), respectively. If Eq. 1) holds, then we have

*
2,k , I
Wy = Wh, = 5 and a* = —br,, (5.5)

while the magnitudes of the momenta in the two-particle CM frame satisfy

a* = by, =gy = \/E35,/4 —m?. (5.6)

Thus, once (FE, ]3) and k are fixed, the remaining degrees of freedom for three on-shell
particles can be labeled by a single unit vector, a*. This is simply the direction of motion
for one of the two non-spectator particles in their two-particle CM frame. We will often
parametrize the dependence on this direction in terms of spherical harmonics.

We can also interchange the roles of k and d, treating the latter as the spectator. In this

case the CM energy of the non-spectator pair is E3 , where
E3% = (E —w,)?— (P -a)?, (5.7)

while the required boost has velocity

—

> P—a
/Ba—_E_Wa-

(5.8)

This boost leads to (wy, k) — (wfs k*), and the on-shell condition implies

K =qy =/E5% /A —m2, (5.9)

so that the three on-shell particles [with fixed (E,ﬁ)] are parametrized by @, k*. This
discussion exemplifies the notation that we will use repeatedly below, wherein the subscripts
denote which momentum is that of the spectator, and it is clear from the context in which

two-particle CM frame starred quantities are defined.
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Also relevant are situations in which two of the particles, say those with momenta k and
d, are on shell, while the third is not. The energy-momentum of the third particle is then
(E — wk — Wa, Eka) As long as E;Qk > 0, we can still boost to the two-particle CM-frame
(with boost velocity Ek), leading to

(wa, @) — (Wi, @), and (B — wy — wa, bpa) —> (B3 g — W, —a"). (5.10)

In this case, however, a* # gj, so the degrees of freedom are now parametrized by k and
the vector @*. As in the on-shell case, also here we can exchange the roles of k and @. As

long as E;QQ > 0, we can boost (w, E) by B, to define (Wi, E*), with &* now unconstrained.

We use these coordinates to express the momentum dependence of the on-shell quan-
tities appearing in the final result. We start with two-to-two scattering, which occurs as
a subprocess within the larger three-to-three interactions. We denote the two-to-two scat-
tering amplitude by Mgy and the corresponding K—matrixﬂ by Ko. Assuming the particle
with momentum & is the unscattered spectator, an appropriate functional dependence is
MQ(E, a™,a*) and ’CQ(E, a™,a*). In each, the role of the first argument is kinematic. Know-
ing the spectator momentum, as well as the total energy-momentum, one can determine
the lab-frame total momentum of the scattering pair [(E — wy, P — k)] as well as the boost
velocity Ek: needed to move to the scattering CM-frame. In the latter frame, a* and a’* are,
respectively, the initial and final directions of one of the scattered particles. Decomposing

the dependence on these directions into spherical harmonics, we writeﬁ
Ko(k,a™*,a") = 47} 1 (@) Ko s (k) Youm (6*) (5.11)

and similarly for My. Here and in the following there is an implicit sum over repeated in-
dices. The factor of 47 is conventional [I30]. Rotational invariance implies that KCo.¢r . g7m(E) x
0 40 m, and that for each ¢ there is only one independent physical quantity, the scattering

phase-shift in the given partial wave.

30ur K-matrix Ky is standard above threshold, while below threshold it is defined by analytic continu-

ation. This is discussed further below [see Egs. (I5.32|)7 (I5.101|) and q5.102|)}.

4This is the only exception to our notation involving superscript *. The % on Y7, indicates complex

conjugation.
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Now we turn to three-to-three scattering. Although our final quantization condition
contains a three-particle K-matrix, we first discuss the standard three-to-three scattering
amplitude, M3. This allows us to describe a new issue that arises with three particles in a
more familiar context. As usual, M3 is the sum of all connected six-point diagrams with ex-
ternal legs amputated and on shell. We write its functional dependence as Mg(E’ ,a’™*, E, a*),
where now the “spectator” momentum changes from the initial (k) to the final (k') state.
The two direction vectors a* and a™* are defined in the corresponding two-particle CM
frames, which are different for the initial and final states. We stress that M3 is symmetric
under particle interchange separately in the initial and final states, so that the choice of
spectator is arbitrary. We use asymmetric coordinates because of the presence of two-to-two
scatterings.

We would like to decompose M3 into spherical harmonics, as in Eq. . Although
we can do this formally, we do not expect the sum over angular momenta to converge
uniformly. This is because of a complication not present in the two-to-two case: the three-
to-three scattering amplitude has physical singularities above thresholdﬂ These singularities
have nothing to do with bound states, but are instead due to the possibility of two particles
scattering and then traveling arbitrarily far before one of them scatters off the third particle
(see Fig. [5.1)). The three-particle interaction can thus become arbitrarily non-local. This
means that, even at low energies, a truncation of the angular momentum sum is not justified,
since a truncated expansion will give a function that is everywhere finite. Because truncation
is crucial for practical applications of the quantization condition, we must find a way around
this problem.

Our solution is to introduce an intermediate quantity that has the same singularities as
the three-to-three scattering amplitude but depends only on the on-shell two-to-two ampli-
tude My. This is possible because divergences in the three-to-three scattering amplitude are

always due to diagrams with only pairwise scatterings, with all intermediate states on Shellﬁ

5The properties and physical consequences of these singularities are discussed, for example, in Refs. [2401

941 242, [243].

5Indeed, a diagram with n two-to-two scatterings is divergent if and only if it is kinematically possible

to have n classical pairwise scatterings (not counting events with zero momentum transfer). For degenerate



115

Figure 5.1: Example of singular contribution to the on-shell three-to-three scattering am-
plitude. Dashed lines are on-shell, amputated, external propagators, while the solid line is
a fully dressed propagator, which can in general be off-shell. Filled circles represent two-
to-two scattering amplitudes. The internal (solid) line can become on shell for physical

external momenta, corresponding to two isolated two-to-two scattering events.

Labeling this intermediate quantity Mging 3, we define the “divergence-free” amplitude by

Maes(K',a™ k,a*) = Ma(K,a™ k,0*) — Mangs(K,a™*, k,a*) . (5.12)

This is shown diagrammatically in Fig. [5.2} By construction, Mgt 3 is a smooth function,

and therefore has a uniformly convergent partial-wave expansion:

Mags(K 0™k, a*) = 4n Y5 0 (6" ) Mat g mrem (K £) Yo (67) - (5.13)
The singular part, Mging 3, must be included without partial-wave decomposition. A dia-
grammatic definition of Mg, 3 in sketched in Fig. [5.2} it can be defined formally as the
solution to an integral equation. Since we do not need this quantity in this work we do not
go into the details here.

As already noted above, our quantization condition depends not on Mg 3 but rather
on a closely related K-matrix-like quantity g 3. Roughly speaking, this is built up of the
same Feynman diagrams as Mgr 3, and has the above-threshold divergence removed in a
similar way. However, to define 4¢3 a modified principal-value (PV) pole prescription is

used instead of the ie prescription, and there are some additional subtleties. Thus we delay

particles only three scatterings are possible so there are two divergent diagrams. For non-degenerate particles
further scatterings are possible. This is explained in Ref. [240]. As we will find, our derivation requires that
we subtract all the diagrams that are needed to render the non-degenerate Mag¢, s finite, even though all but

two of these are finite for the degenerate case we study.
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+ o]

Figure 5.2: Diagrammatic definition of the divergence-free three-to-three amplitude, Mg¢ 3.
In the subtracted term, filled circles represent on-shell two-to-two scattering amplitudes M.
Dashed cuts stand for simple kinematic factors that appear between adjacent Msy. These
factors have the requisite poles so that the subtracted terms cancel the singularities in Msj.

The S outside the square brackets indicates that the subtracted terms are symmetrized.

a full definition until we present the derivation of the quantization condition. What matters
here is that Kg¢ 3 is a non-singular, infinite-volume quantity, closely related to the scattering
amplitude. It is also separately symmetric under initial and final particle interchange. Its

functional dependence and harmonic decomposition is as for Mg 3:
ICdf73(k3/, a™*, k, a*) = 47TYZ/:m/(d/*)lcdf,g;@/’m/;gym(k,, k‘)Yg7m(fl*) . (5.14)

We stress that deyg;gr,m/;&m(l;’ , /2) is not diagonal in ¢ or m, since two-particle angular mo-
mentum is not a good quantum number in three-to-three scattering. It is also noteworthy
that our derivation of the quantization condition automatically leads to removal of the
divergent part from Kgqr3. Thus not only is the subtraction reasonable from the perspec-
tive of defining useful infinite-volume observables (i.e. allowing a convergent partial-wave

expansion) it also arises naturally in our investigation of the finite-volume theory.

We are now in a position to present the quantization condition: a relation between
K2, Kaf 3 and the finite-volume spectrum. This relation involves three-particle phase space

restricted by the constraint of finite-volume. In particular, we need Ko s.r.m (k) and

de,3;@/’m/;gym(l_€” k) only for k, k' € (27/L)Z3. We therefore define the finite-volume restric-



117

tions of these amplitudes

Ko 0 sttam = O jKayormrsem (B) - for k€ (2 /L)Z2, (5.15)

de,g;k/j/’m/;k’g’m = K:df’g;g/’m/;g’m(lg,, E) for E’, E S (27T/L)Z3 . (5.16)

The left-hand sides of these equations are to be viewed as matrices in an extended space

with indiced’]
[finite volume momentum k € (27/L)Z%] x [two particle angular momentum].  (5.17)

All other quantities entering our final result will also be matrices acting on this space.

The finite-volume spectrum is determined by
det[1+ F3Kqe3] =0, (5.18)

where the determinant is over the direct product space just introduced. The matrix Fj is

B=_1 -2y ! (5.19)
ST owld | 3 141+ KaG K F | ‘
where
1 1
—_— = (s / 5/ (5 / S — 520
|:2OJL3:|k,€/ . k' KO0 L m,m2ka3a ( )
o _ (k)z AmYor e (B) H (5 H (K) Y, (5°) <p*>f 1 5.21)
o m!k L, = —_— % o . 120 .
L q; 2wip(E — w — wp — Wip) a) 2wpL?
Eyr otk tom = 5k’,kFZ’,m’;Z,m(E) ; (5.22)
FE’,m’;E,m(E) = FZ’Gm"Z m(];) + pZ’,m’;f,m(E) ) (523)
Fi L (F) = AT Yo g (@%)Y7, (@) H(R)H (@) H (bga) [0\
m!iL, m L3 Z / 2wa2wka(E W — Wgq — Wka + ’LE) ﬁ ’
(5.24)

"Our notation for the momentum indices, k and k', is somewhat imprecise. These each are stand-ins
for three-dimensional integer vectors labeling the allowed finite-volume momenta. In other words, when-
ever a spectator momentum occurs as an index, it indicates implicitly that the corresponding three-vector

momentum is one of those allowed in finite volume.
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where [ = [ d®a/(2m)? and the sum over @ in F runs over all finite-volume momenta. Here

p is a phase-space factor defined by
Pt st (R) = 00160 i H (F)P(P2) (5.25)

1 . —iy/P§/4—m? (2m)* < B35,
2
Womv B\ /PE/A—m?|  0< B2 < (2m)?,

where we recall that P, is the four-momentum of the non-spectator pair. Finally, H is a

p(Pz)

(5.26)

smooth cut-off function to be defined shortly.

The quantization condition Eq. is our main result, and will be derived in Sec.
Here we work our way through the definitions, explaining the origin and meaning of each
contribution. As noted above, Kg¢ 3 is closely related to the divergence-free part of the full
three-to-three scattering amplitude. The singular parts of this amplitude end up in the
quantity F3, where they lead to chains of the form ...KoGK2GKs ... which are obtained
by expanding out [1 + K2G]~1K3. These chains arise from subtraction terms like those in
Fig. with the filled circles now representing on-shell K-matrices ICo (rather than Ms).
The singular “cuts” between K-matrices give rise to the kinematical factors G.

In the definition of G, Eq. , we are using the notation described in Egs. —,
with p in place of @. Observe in particular that G makes use of the off-shell phase-space
described in the paragraph containing Eq. . Since both k and p can equal any finite-
volume three momentum, (£ — wy, — wp, 5pk) will generally not be on shell. For this reason
the magnitude of k* (defined via a boost with velocity Ep) and that of p* (boost velocity Ek)
are unconstrained. These magnitudes appear in the factors (k*/ q;;)el and (p*/q;)*, which
remove singularities due to the spherical harmonics and so ensure that G is non-singular for
k* or §* equal to zero. (A similar factor (a*/ ;) appears in F for the same reason.)

The final ingredient in G is the function H (which appears also in F'). The role of H
is to provide a smooth ultraviolet cut-off on the sum over spectator momentum. There are
two cut-off functions, H(p) and H (k), because G has different spectator momenta in its left-
and right-handed indices (p’ and k, respectively). To understand the need for the cut-off we

note that, for fixed (E, 13), as the spectator momentum (say E) increases in magnitude, the

energy-momentum of the other two particles falls below threshold, EJ, < 2m. Now, in the
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quantization condition , the determinant runs over all values of spectator momentum,
which leads to values of E;Qk arbitrarily far below threshold. Once E;zk < 0, however, the
boost needed to define p* becomes unphysical (|8x| > 1). The cut-off function H (k) resolves
this issue. It has the properties
. 0, B33 <0;
H(k) = ’ (5.27)
1, (2m)* < E35.

where the first condition removes unphysical boosts and the second ensures that the cut-off
does not change the contributions from on-shell intermediate states. In the intermediate
region, 0 < E§2k < (2m)?2, H(k) interpolates between 0 and 1. For reasons that will become

clear in the derivation below, this interpolation must be smooth. An example of a function

which does the job is

H(k) = J(E33,/[4m%) (5.28)
with
0, z<0;
J(z) = { exp <—%exp [—ﬁD , 0<z<1; (5.29)
1, 1<z

This function is plotted in Fig.
It would also be consistent with the requirements stated so far to have H remain smooth
but transition more rapidly from 0 to 1. In that case, however, the difference between a

sum and an integral over H will be enhanced
1 - _
[L?’ Z — /k] H(k)=0(e 2y, (5.30)
E

with A the width of the drop-off region. Since these corrections are neglected, an en-
hancement from using too small a width would invalidate our final result. We must thus

additionally require
1 7 —m
[HZ—/E]H(k) =0(e ™). (5.31)
E

In other words we must ensure that m is the smallest energy scale in the problem, and thus

take A =~ m. The form sketched in Fig. [5.3] satisfies this requirement.
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Figure 5.3: Plot of the smooth cutoff function H (k) = J (E;Qk /[4m?]). The function varies
from 0 to 1 as E32 = (E —wy)? — (P — k)? varies from 0 to 4m?. Using this range ensures

that the function has width A ~ m in the space of spectator momentum k.
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The appearance of sub-threshold momenta is a general feature of the three-particle
quantization condition, as first pointed out in Ref. [I38]. Indeed, for spectator momenta such
that 0 < E;Qk < (2m)?, the two-particle K-matrices in F3 are evaluated below threshold.
Our modified PV prescription [denoted PV and defined in Eqgs. and below]
ensures that this is achieved by analytic continuationﬁ The cut-off functions in G (and in
F') ensure that these sub-threshold contributions are absent for Ey; < 0. The three-particle
amplitude 4¢3 must also be evaluated for sub-threshold momenta, which is achieved by
analytic continuation.

The final matrix that enters the quantization condition is F'. This is the kinematic
factor that brings in finite-volume effects. Its definition uses the notation introduced in
Eqgs. —. As shown in Eq. , it is diagonal in spectator momentum, and is
thus a essentially a two-particle quantity. Indeed, the matrix F’ “(E) defined in Eq. is
essentially the same as the kinematic quantity of the same name introduced in Ref. [130] in
the formulation of the two-particle quantization condition in a moving frame. The precise
relation, given in Eq. in Appendix @ allows I to be written in terms of general-
izations of the zeta-functions introduced in Refs. [127, 128]. The only difference between
our F and that of Ref. [I30] is that we use a different ultraviolet cut-off—our cut-off is
provided by the product of three H functions. This change in cut-off leads, however, to
differences which are exponentially suppressed as L — oc.

The kinematic factor which enters the quantization condition is F' rather than F*. The
difference between these two quantities, given by Eq. , is the phase space factor p, a
quantity that appears repeatedly in the derivation of Sec. [5.3 and which is diagonal in an-

gular momentum. For example, the relation between the two-particle scattering amplitude

and K-matrix is [see Eq. (5.102)]

M=K +p, (5.32)

8This is in distinction to the standard PV prescription, which leads to a cusp in K2 at threshold. Our

definition is the same as that used in studies of bound-state energies using Liischer’s two-particle quantization

2041

condition (see, e.g., Refs. [244] [143]). In particular, the quantity (a*) cot d¢(a™) has a Taylor expansion

in (a*)? that can be analytically continued to (a*)? < 0.
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The p term in F' arises because of our use of a modified PV pole prescription. As can be
seen from Eq. , Fi€ is the difference between a sum and integral of three-particle cut,
with the integral defined using the ie prescription. The p term in Eq. is exactly what
is needed so that F' itself is the sum-integral difference with the integral defined by the
PV prescription. The latter is the quantity that appears naturally in our derivation. This
means that F' is real. In addition, as we move below threshold [E33 < (2m)?], while F'¢
drops to zero rapidly, since the summand/integrand is no longer singular, p (and thus F)
grows since |gj| is increasing. Eventually, however, as E§2k approaches zero, this growth is

overcome by the decrease in the cut-off function H, such that p vanishes for E§2k <0.

The quantization condition is similar in form to that for two particles [see Eq.
below, as well as Refs. [129] 130}, 140} [146]]. In principle, they are both to be used in the
same way: if one knows the scattering amplitudes K2 and Kgr 3 then, for a given choice of
{L,n 3}, the quantization conditions predict the finite-volume energy levels. Of course, what
we are really interested in is inverting this prediction, i.e. using numerically determined en-
ergy levels to extract information about infinite-volume scattering amplitudes. This more

challenging task is discussed in the following section.
5.2 Truncating the quantization condition

In this section we discuss how one might use the three-particle quantization condition,
Eq. , in practice. Specifically, we assume that, using lattice simulations, one has
determined some number of three-particle energy levels for a set of choices of {L, ]3} From
this information, we want to learn as much as possible about gt 3.

The first step is to assume that, using Liischer’s two-particle quantization condition and
its generalizations, the two-particle K-matrix ’Cg;g/7m/;g7m(g) has been determined. To do so
in practice one must assume that Cs is negligible for large enough angular momenta, which
is a good approximation for a given two-particle energy. Specifically, we assume Ko = 0 for
£ > lmax2. In this case the two-particle quantization condition is truncated to a solvable

finite matrix condition. In addition, since lattice results inevitably determine the Ko (or,

equivalently, the phase shifts) only for a discrete set of kinematical points, we assume that
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these have been suitably interpolated and/or extrapolated to obtain continuous functions.

In the three-particle case, we are dealing with a larger index space, containing the
additional sum over finite-volume spectator momenta. However, the regulator function H
provides an automatic truncation of this sum. This occurs because, for fixed (E, ]3), there
are a finite number of values of k for which H (E) is non-vanishing. We call this number
of values N. This automatically truncates G and F (which contain H(k)) to be N x N
matrices in spectator-momentum space, with all other entries vanishing. Since Ko always
sits between factors of F' and G [as can be seen by expanding out the nested geometric
series in Eq. (5.19)], KCz is also effectively truncated (in the sense that the terms in Iy lying
outside the N x N block do not contribute). Since F3 always has an F' at both ends (again
after expanding out), it also is truncated. Finally, expanding out the determinant (e.g.
using det Z = exp Tr In Z) one sees that Kg4¢ 3 always has an F3 on both sides and so it also
is effectively truncated[’]

Next we consider the spherical harmonic indices. As already noted, we assume Ko
is truncated in these indices at /max2. To reduce the determinant condition to a finite-
dimensional space, we must further assume that Kg4¢ 3 is truncated, in both ¢ and ¢, at
lmax,3- This is reasonable because Kgr 3 is a smooth function, as is made clear in the coarse
of defining it, in Sec. below. Defining (nmax as the larger of fiax 2 and fpax,3, we find
that all factors of F' and G appearing in the quantization-condition are projected onto a
(20max + 1) X (20max + 1) subspace of the angular-momentum space. This follows from the
argument already given above: expanding in F' and G, one finds that every factor of these
two kinematic matrices sits between (and is thus truncated by) factors of either g or Kgt 3.
The net result is that the quantization condition collapses to that for truncated matrices
of size (2lmax + 1)N X (20max + 1)N. In this way the formal result has been turned into

something more practicalm

9The fact that the sum over & is truncated makes sense in the limit of weak interactions. If all interactions
vanish, then, for given ]37 there will only be a finite number of free three-particle states with energies below,
or in the vicinity of, any given choice for E. It is primarily these states which are mixed by interactions to

form the finite-volume eigenstates with F; < E.

10We suspect that it is inconsistent to choose fmax,3 < fmax,2, because three-particle scattering involves



124

The final step is to assume a parametrization of the K and k dependence of the non-zero
angular-momentum components of Kqr 3. We stress again that Kgr 3 is not diagonal in its
angular-momentum indices (unlike KC2) so that there will be quite a number of components
to parametrize. Nevertheless, given a finite number of parameters, and knowledge of Ko
(including analytic continuation below threshold), each of the measured energy levels gives,
when inserted into the quantization condition, a relation between the parameters. Nonethe-
less, given knowledge of Ko (including analytic continuation below threshold), each of the
measured three-particle energy levels gives a relation between the parameters characteriz-
ing Kgr3. Thus, given enough energy levels one can solve for any finite set of parameters.
Although this sounds complicated, we note that the recent kaon resonance study of Ref. [92]
was able to deal with multiple (two-particle) channels using a suitable parametrization and
many energy levels.

We close this section by working out the simplest possible case of the above-described
program. We assume that both Ko and gy 3 are s-wave dominated (i.e. fmax,2 = fmax,3 = 0),
and that g 3 is a function only of the total three-particle CM energy. These assumptions

are summarized by
Ko(k,a™,a*) = K5(E3,) and Kaeg(k',a"*, k,a%) = K5y (E") . (5.33)

All matrices entering the quantization condition thus collapse to N x N matrices in spectator-

momentum space, and have the explicit forms

K = 0 e K3(Ea ) (5.34)

Kt g = = K& 3(E7), (5.35)
H(p)H(k 1

Gpr = B)H(E) (5.36)

2wip(E — wp — wp — wip) 2wi L3

Fiig, = o ko 1 L3 Z /] 2wa2wkaj({E(k )I(:JI]E _)wjbkag}ka + i€) - 6kl7kH(E)ﬁ(P2) '
(5.37)

two-to-two subprocesses. Indeed the latter are the leading cause of complications in the derivation presented
below. The most natural choice appears to us to be fmax,3 = fmax,2, although we do not know how to

demonstrate that this is a rigorous requirement.
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Since E* is fixed, all N2 entries of the matrix K3t 3.5 1, have the same value. It therefore
has only one non-zero eigenvalue, NKX5°,(E*). If we work in the basis in which K3, 5 is
diagonal, then, irrespective of the form of Fj, the quantization condition (5.18]) reduces to

the single equation:

1+ Fy°Ki(E*) = 0. (5.38)
Here
: 1 2 1
Fio=N"_—— _|ps(-2 5.39
3 2 2wy L3 [ ( 3t is [ +K§Gs]—1/chs>Lp (5-39)

k,p

is (up to a factor of 1/N)) the projection of F3 into the subspace spanned by the eigenvector
of K¢ 3 with non-zero eigenvalue. We stress that the sums over k and P are both truncated
to N contributions by the factors of H contained in F SH

The result is strikingly simple. If we know K3 for two-particle CM energies in
the range 0 < Ej; < E* —m, then we can evaluate Fj3, a real function depending only
on F and L. Evaluating this function at a value of L; for which E; is known to be in the
finite-volume spectrum, then gives, using Eq. , ésfoij)(El*) = —1/Fi°(E;, L;). This
is conceptually very similar to the application of the two-particle quantization condition,
which, in the single-channel limit, can be written as 1 + F/Cy = 0 [see Eq. in the
following section]. The difference is that the quantity F3 contains information about two-
particle scattering, while F' is simply a kinematic function. This difference reflects the fact
that, in the three-particle case, particles can interact pairwise as well as all together.

One concern one might have about the isotropic approximation and the result is
that one apparently only obtains a single energy level whereas N free three-particle levels
enter the analysis. It thus seems that some finite-volume states have been lost. In fact, all

but one of the free states are present once one takes into account that the equality of all N2

"The truncations that enter through the H functions can also be relaxed in the isotropic limit if desired.
Recall that H(IZ) was required to vanish for E;zk < 0, see Eq. . This is necessary because otherwise
the various starred quantities that enter F' and G become ill-defined. However, as is clear from Eqgs.
and , all of these starred quantities are absent in the isotropic limit. Thus H(I;) may have support
for B33 < 0, as long as K3(E3 ;) is a well-defined smooth function which is known over the energy range
included. This extension of H is required to show that our quantization condition reproduces the threshold

expansion of Refs. [245] [246]. This check is presented in a separate note, to appear.
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elements of the truncated Kq¢ 3 will not be exact. This is shown in a particular example in

Appendix

5.3 Derivation

In this section we present a derivation of the quantization condition described in the
previous section. Following Ref. [130], we obtain the spectrum from the poles in the finite-
volume Minkowski-space correlator”]

Co(B, ) = /L e B =P (01T (2)0 (0)0) (5.40)
Here T indicates time-ordering and o(x) is an interpolating field coupling to states with an
odd number of particles. The Fourier transform, implemented via an integral over the finite
spatial volume, restricts the states to have total energy E and momentum P = 2niip /L.

The simplest choice for o(x) is a one-particle interpolating field, ¢(x), since in the inter-
acting theory this will couple to states with any odd number of particles. In a simulation,
however, it is advantageous to use a choice with larger overlap to the three-particle states

of interest. An example is

o(z) = /L dhyd =y, 2)6(@)d(x + y)dlx + ), (5.41)

with f a smooth function with period L in all directions.
At fixed {L,ﬁp}ﬂ the spectrum of our theory is the set of CM frame energies E7,
j=1,2,--- for which C’L(Ej,ﬁ) has a pole, with E; = (E]*2 + f’2)1/2. Our goal is thus to

12A similar issue arises with the two-particle quantization condition when one truncates the angular
momentum expansion. The “lost” states involving higher angular momenta are recovered if one reintroduces
the higher partial wave amplitudes but with infinitessimal strength. The quantization condition then has
solutions corresponding to free two-particle states projected onto states in appropriate irreps of the finite-
volume symmetry group.

3Minkowski time turns out to be convenient for our analysis, even though numerical lattice determinations
of the spectrum work in Euclidean time. The point is that the finite-volume spectrum is the same, however

it is determined.

1t is more natural to think in terms of {L,7p} rather than {L, P}, since fip is quantized whereas P

varies with L.
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include all contributions to C, which fall at most like a power of 1/L, and determine the
pole structure. In the previous section we summarized the main result of this work, but
made no reference to the correlator in doing so. The connection is given by the following

identity, the demonstration of which is the task of this section:

- _ 1
CL(E,P) = Cy(B,P) +iA ———F3A. 5.42
(B, B) = Ose(B,P) iAo B (5.42)

This result is valid up to terms exponentially suppressed in the volume, terms which we will
discard implicitly throughout this section. The quantities A’ = A;c’,f’,m’ and A = Ay ¢ are,
respectively, row and column vectors in [finite-volume momentum]|x [two-particle angular
momentum| space. Since A and A’ do not enter the quantization condition, we have not
given their definitions above. Indeed, we think it most useful to introduce their definitions as
they emerge in our all orders summation. We have also introduced Cs,, which is an infinite-
volume correlator whose definition we will also build up over the following subsections.

A key technical issue in the derivation is the need to use a non-standard pole prescription
when definining momentum integrals in infinite-volume Feynman diagrams. This is at the
root of the complications in definining A, A and Cs. Despite these complications, it
is possible to show that these quantities have the key property of having no poles, but
only branch cutsE It follows that, at fixed {L,7p}, Cr, diverges at all energies for which
the matrix between A and A’ has a divergent eigenvalue. In addition, as long as Kqf3 is
nonzero, diverging eigenvalues of F3 leave the finite-volume correlator finite. The spectrum
is therefore given by energies for which [1 + F3/Cqs 3] has a vanishing eigenvalue, which is
the quantization condition quoted above.

The demonstration of Eq. proceeds by an all-orders analysis of the Feynman
diagrams building up the correlator. As we accommodate any scalar field theory (assuming
only a Zy symmetry), Feynman diagrams consist of any number of even-legged vertices,

as well as one each of the interpolating fields ¢ and of, connected by propagators. The

15More precisely, we show that all diagrams which contribute to A’, A and Cs have no poles. In certain
cases, however, poles can arise from the all orders summation. Such poles always appear in A, A, Coo
and KCqr,3 in such away as to cancel each other, so that C remains finite. We explain this in detail after

completing the derivation, at the very end of this section.



128

finite-volume condition enters here only through the prescription of summing (rather than
integrating) the spatial components of all loop momenta
S > / dg’ over all 7 € Z*. (5.43)
L3 L 2
We now introduce the crucial observation that makes our derivation possible: Power-law
finite-volume effects only enter through on-shell intermediate states. This motivates a reor-
ganization of the sum of diagrams into a skeleton expansion that keeps all on-shell intermedi-
ate states explicit, while grouping off-shell states into Bethe-Salpeter kernels. Heuristically,
the importance of on-shell intermediate states can be understood by noting that on-shell
particles can travel arbitrarily far, and are thus maximally affected by the periodic bound-
ary conditions. By contrast, off-shell states are localized so that the effect of finite-volume
is smaller (and, indeed, exponentially suppressed in general).
The technical justification for this description begins by noting that the difference be-
tween a sum and an integral acting on a smooth (i.e. infinitely differentiable) function f(q’)
falls off faster than any power of 1/L [128HE| As noted above, we treat terms with this

highly suppressed scaling in L as negligible, and thus set
1 .
ﬁZ— | (@) =o0. (5.44)
= q
q

By contrast, if a function d(¢’) is not continuous but instead diverges for some real ¢, or if

some derivative diverges, then the sum-integral difference receives power-law corrections
1 o _
52 [ | =owm. (.55
q

for some positive integer n. We keep all such contributions.

A convenient tool to determine when the summands of Feynman diagrams are singular is
time-ordered perturbation theory (TOPT)B In this method one first does all k¥ integrals,
leaving only the sums over spatial components of loop momenta. (In a continuum application

these would, of course, be replaced by integrals.) Each Feynman diagram then becomes a

16This is what we refer to as exponentially suppressed, although strictly it is not equivalent.

"For a clear discussion of this method see Chapter 13 of Ref. [247].
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sum of terms corresponding to the different time-orderings of the vertices. Within a given

time ordering, each pair of neighboring vertices leads to an energy denominator,

1

Eeut — ZyEcut Wy

(5.46)

Here E.yt is total energy flowing through the propagators in the “cut”, which is the vertical
line between adjacent vertices. The propagators have momenta pj and on-shell energies
wy. For our correlator K, can be E, 0 or —E, depending on the time ordering. All other
factors in the summand are non-singular: they arise from momentum dependence in the
vertices or from 1/w factors.

Given the assumed Z5 symmetry and our choices of o and o', the cuts in the diagrams
contributing to C can only involve an odd number of particles. Furthermore, given the
restriction m < E* < 5m, the only energy denominators which can vanish must involve

three particles in the cut, i.e.
1

E_Wk_wa_wka.

(5.47)

Thus it is only when a three-particle state goes on shell that replacing the sum over spatial
momenta with an integral can lead to power-law corrections.

The only subtlety in the application of this result to our analysis is that m (which
appears in w,% = k2 + m? and in the condition on E*) should be the physical and not the
bare mass. Technically this arises because the usual geometric sum of irreducible two-point
correlation functions shifts the pole position in the dressed propagator to the physical mass.
This sum should be done before applying the TOPT analysism

We can now describe the skeleton expansion we use for Cp,, which is displayed in Fig.[5.4

Since only three-particle intermediate states can go on-shell, we display them explicitly, and

8Doing things in this order makes the application of TOPT more complicated, because the dressed
propagator itself now has multiple-particle poles. This subtlety does not affect our analysis because all we
are taking from TOPT is the conclusion that divergences occur when a time integral extends, undamped,
over an infinite range. Thus it is the long-time dependence of the dressed propagator that matters, and
this has the same form as that that of a free propagator but with the physical mass. We stress that we use
TOPT only to identify diagrams that can lead to power-law corrections. We do not use TOPT to do the

calculation, but rather use the standard relativistic Feynman rules.
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use a notation indicating that their momenta are summed. Intermediate states with five or
more particles cannot go on shell for our range of £*, and so sums over the momenta of such
intermediate states can be replaced by integrals@ These contributions can be grouped into
infinite-volume Bethe-Salpeter kernels, which are defined below.

Each diagram in the expansion contains “endcaps” o' and & on the far left and far
right, respectively. These are each functions of the off-shell momenta of three attached
propagators, subject to the constraint that they total (FE, ]3) Thus they can be written
o =0o(q,p) and &' = &'(q,p). For the example of the o operator given in Eq. ,

olg,p) = fle,p)+fp, P—p—q)+f(P—p—q. )+ f(p, )+ f(P—p—q,p)+ f(¢. P—p—q),
(5.48)

where

fla,p) = /L d*z d'y eP"TY f(z,y) . (5.49)

Note here that we use the mostly-minus metric, pzr = p®2° — §'- Z. The exact forms of &
and ¢’ not important to the final answer. We only require that they are analytic in the
complex ¢ and p° planes and fall off fast enough at infinity to justify the contour integrals
we perform below.

Between the endcaps, each diagram contains some number of two-to-two and three-to-
three Bethe-Salpeter kernels. The two-to-two Bethe-Salpeter kernel i By was introduced in
Ref. [128]. It is the sum of all four-point diagrams (with external propagators amputated)
that are two-particle irreducible in the s-channel, see Fig. [5.5h. Thus this kernel is the sum
of all diagrams which have no on-shell intermediate states when the total CM energy being
fed into the kernel is below 4m. Because iBs contains no on-shell intermediate states, the
summands of all contributing terms are smooth functions of summed momenta. It follows
that finite-volume corrections are exponentially suppressed and for our purposes negligible.
We thus work from now on with the infinite-volume version of the kernel.

Similarly, iB3 contains no diagram in which three propagators carry the total energy

YHere we are using the language of TOPT although we are calculating using relativistic propagators
in which multiple time-orderings are contained within a single diagram. If we focus on a particular cut,

however, then there is only one time ordering in which all particles can go on-shell.
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Figure 5.4: Skeleton expansion defining the finite-volume correlator. The rightmost blob in
all diagrams represents a function of momentum &, whose specific form is determined by
the interpolating fields defining the correlator. The leftmost blob represents an analogous
function, . Any insertion between these with four legs represents a two-to-two Bethe-
Salpeter kernel i By. Any insertion with six legs represents an analogous three-to-three kernel
1B3. All lines connecting kernels and o-functions represent fully-dressed propagators. The
dashed rectangles indicate that all loop momenta are summed rather than integrated, due to
the finite-volume condition. The regions bounded by these rectangles also emphasize chains
of loops that have common coordinates which prevent the diagram from factorizing. This
is one of the central complications faced in this work. (For example the top line, with only
three-to-three insertions, does factorize and is therefore a straightforward generalization of

the two particle case.)
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Figure 5.5: Examples of Feynmann diagrams contributing to (a) iBs, the two-to-two Bethe-

Salpeter kernel and (b) B3, the analogous three-to-three kernel.

and momentum (F, 15) Diagrams with one propagator carrying the total energy and mo-
mentum as well as any odd number greater than three are allowed, see Figure [5.5p. The
technical definition of this quantity is slightly more complicated because of the possibil-
ity of having single-particle intermediate states. To give the definition, we first introduce
three intermediate quantities i§3_>3, Z'El_)g, i§3_>1. In each case ién_m is the sum of
all amputated diagrams, with n incoming and m outgoing external lines, which are three-
particle irreducible in the s-channel. Next we introduce a modified, fully-dressed propagator
ﬁ(q) This differs from the standard propagator, defined in Eq. below, only in that
its self-energy graphs are three-particle irreducible (as opposed to the usual one-particle

irreducible). In terms of these ingredients, our three-to-three kernel is
iBs = iBs_,3 + iBs_1NiB1_3 . (5.50)

In direct analogy to the two-to-two case, iBs is the sum of all diagrams with no on-shell
intermediate states when the CM energy is between m and 5m. Again we drop exponentially
suppressed corrections and work with the infinite-volume version of the kernel.

We stress that the need for two kinds of kernels follows directly from requiring that both
1B9 and ¢Bs contain only connected diagrams. For example, one might think that only the
top line of Fig. is needed, as long as one chooses an alternative i B3 which accomodates
pairwise scatterings. This is attractive since the top line closely resembles the two-particle

skeleton expansion of Ref. [130], in which the correlator is written as a ladder series of two-
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particle loops. However, in the three-particle sector this approach results in i B3 containing
Dirac delta functions, which is a problem because we rely on smoothness of the kernel in
our derivation. For this reason the three-particle case is fundamentally different. After
much investigation, we found it most convenient to require that B3 only contain connected
diagrams and thus display all pairwise scatterings explicitly.

Finally, in our skeleton expansion all kernels and interpolating functions are connected

by fully-dressed propagators,

Alg) = / dh €17 (0] T(x)6(0)]0) (5.51)
Here ¢(z) is a one particle interpolating field defined with on-shell renormalization
lim A(q)[(¢* —m?)/i] =1. (5.52)
gV —wq

Since we are working with fully dressed propagators, we do not include self-energy contribu-
tions explicitly in our skeleton expansion. We use infinite-volume fully-dressed propagators
throughout, which is justified because the self-energy graphs do not contain on-shell inter-
mediate states.

In summary, the skeleton expansion of Fig. displays explicitly all the intermediate
states that can go on shell and give rise to power-law corrections. All intermediate states
which cannot go on-shell are included in the infinite-volume two-to-two and three-to-three
Bethe-Salpeter kernels.

In the remaining subsections, we work through the different classes of diagrams appearing

in this expansion. First, in Sec. we sum diagrams containing only iBs kernels on the

same pair of propagators (second line of Figure [5.4). Then, in Secs. [5.3.2| and [5.3.3] we

sum diagrams with, respectively, one or two changes in the pair that is being scattered
(third and fourth lines of Figure . At this stage, we can extend the pattern and sum
all diagrams built from 7By kernels with any number of changes in the scattered pair. This
is done in Sec. Incorporating three-to-three insertions at this point is relatively easy,
and is done in Sec. leading to the final result for Cf, given in Eq. .

As we proceed we identify the diagrams contributing to ICo and Kgr 3, as well as A, A’
and Cs,. The precise definitions of these infinite-volume quantities will thus emerge step

by step.
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Figure 5.6: Finite-volume correlator diagram with no kernel insertions.

Figure 5.7: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions, with no change in the scattered pair.

5.3.1 Two-to-two insertions: no switches

In this section we sum the diagrams of Figs. and Each diagram contains only Bs
insertions, all of which scatter the same pair of propagators. We separate the diagram with
no By insertions, labeled Céo) [Fig. , from the sum of diagrams with one or more insertion,
denoted C’g) [Fig. . We refer to these diagrams as having “no switches”, meaning that
the pair that is scattered does not change. This designation anticipates subsequent sections

in which we sum diagrams with one or more switches in the scattered pair.

An important check on the calculation of this subsection is obtained by noting that
the no-switch diagrams are the complete set appearing in a theory of two different particle
types, with one of the types non-interacting. This is the case provided that the correlator
is constructed with fields that interpolate one free particle and two interacting particles.
Thus the result for C’éo) + C'g) must be that for the full finite-volume correlator in the

two-plus-spectator theory. This check is discussed below.

We begin our detailed calculation by determining the finite-volume residue of the no-
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insertion diagram of Fig.[5.6| This diagram represents the express1on|§|

0
el = éLi Z/ /dka (k, ) AR A(QA(P — & — a)ot (k, a) | (5.53)

where the 1/6 is the symmetry factor. We stress that the A’s are fully dressed propagators,
with the normalization given in Eq. .

We first evaluate the a” and k° integrals using contour integration, wrapping both con-
tours in the lower half of the respective complex planes. Each contour encircles a one-particle
pole [a’ = w, —ie and k° = wy, —ie] as well as three-particle (and higher) poles from excited-

state contributions to the propagators. The result of integration may thus be written

11 o([wp, K, [wa, @) A(P — k — a)ot ([w, k], [wa, @) .

C(O) _ - s ]y ) s vy ) R(k 5.54

L 6 L6 Z 2012w, + R(k,a)|, ( )
ka

where R(E, @) is the contribution from excited-state poles. Here k and a appearing in

A(P — k —a) are now understood as on-shell four-vectors, a fact that we have made explicit

in the arguments of o and of. We next note that A(P—k—a) can be split into its one-particle

pole plus a remainder:

7

A(P—k—a) = +r(k,a@). (5.55)

2wpa (B — Wi, — Wa — Wka)
Substituting Eq. (5.55)) into Eq. (5.54)) gives
0 _11 [ o ([wr, k), [wa, @)o ([wr, k], [wa, )

C
L 6 L6 & 2wk 2wWa 2wWka (B — w — Wy — Wka)

,a

+R(k,@)| , (5.56)

where R’ is the sum of R and the term containing . This grouping is convenient because
R (E, @) is a smooth function of k and @ for our range of F, since we have explicitly pulled out
the three-particle singularity. Indeed, we are free to further adjust the separation between
first and second terms, as long as the latter remains smooth. For the following development
we need to include the damping function H (E) in the singular term. We recall that H (E),
defined in Egs. (5.27) and (5.28), is a smooth function which equals unity when the other

2In the remainder of this article we drop tilde’s on the Fourier-transformed interpolating operators,

&(k,a) and &' (k, a), since we no longer use the position-space forms.
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two particles (those with momenta a and P—k —a) are kinematically allowed to be on
shell (for the given values of E and /_5) In particular, if we multiply the singular term by
1=H(k)+ 11— H(E)], then the 1 — H(k) term cancels the singularity, leading to a smooth

function that can be added to R’ to obtain a new residue R":

o = S [t s rEa). e
Ed

At this stage we want to rewrite Céo) as an infinite-volume (L-independent) quantity

plus a remainder. Infinite-volume quantities differ only in that loop-momenta are integrated

rather than summed. We can thus pull out the infinite-volume object by replacing each sum

with an integral plus a sum-integral difference. We stress that integrals, unlike sums, require

a pole-prescription. We are free to use any prescription we like, and it turns out to be most

convenient to make a non-standard choice which we call the “modified principle-value” or

PV prescription. This is defined in the present context as follow

1~/w Wi, K], [was @) ot ([wr, K, [wa, @) H (k)
2wa2wka(E W — Wqg — wka)

=5/ ([Q‘LZIZ],J(’{E i (.1 eSS o Bipeon (Rl ). (559
where

Pt stm (K) = 007 48,0 H (K)5(P2) (5.60)

1 —i/Pi/A—m?2 (2m)? < P}, (5.61)

P(Py) = —— x
Wmv B | |/PEA—m?| P} < (2m)?

was introduced in Eq. (5.25) above. Here Py = (E—wy, P—F) is the four-momentum flowing
through the upper two particles. Recall also that E2 %= = PZ, and q. =/ P7/4 —m2.

21In the definition of PV we are using o and ¢! which are continuous functions of @ and k. Since these
were originally defined only for discrete finite-volume momenta, this requires a continuation of the original

functions. We require only that the continuation is smooth and slowly varying. More precisely we demand

|22 [ |t o = 0. (5.58)
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To complete the definition we need to explain the meanings of the on-shell quantities
UZ,7m/(E) and O';[;,L(E). Similar quantities will appear many times below so we give here a
detailed description. First recall that (w},@*) is the four-vector obtained by boosting (wq, @)
with velocity By = —(P — k)/(E — wy,). This boost is only physical if EJ ) >0, a constraint
which is guaranteed to be satisfied by the presence of H (E) in Eq. . We now change

variables from @ to @* and define

o*(k

Q)
*
N~—
Il
Q
—
&
T
=
T
e
=
SN—

(5.62)

and similarly for of. The left-hand side exemplifies our general notation that, if the mo-
mentum argument is a three-vector, e.g. 1_5, then the momentum is on-shell, e.g. k® = wy,. If
the argument is a four-momentum, e.g. k, then it is, in general, off shell. Here we include a
superscript * on ¢ to indicate that it is strictly a different function from that appearing in
say Eq. , since it depends on different coordinates (in particular on momenta defined

in different frames). Next we decompose o* and o'* into spherical harmonics in the CM

frame
o*(k, @) = VAT (@) o}, (K, a*) (5.63)
ot (k@) = VanYy,,(a")o)", (k.a”), (5.64)

where there is an implicit sum over £ and m. Our convention, used throughout, is that the
quantities to the left of the three particle “cut” are decomposed using Y7 ,,’s while those to
the right use the complex conjugate harmonics. Finally, with the “starred” quantities in
hand we can define on-shell restrictions. As explained in the introduction, P—k—a is only

on shell if a* = ¢;;, so we define

—

opm(E) = 07 (kqr), ol (k)=o) (k.q;). (5.65)

These are the quantities appearing in the “p” term in Eq. . If E;k < 2m, then the
a, gka pair are below threshold, and O‘Zm and O'Z:n must be obtained by analytic continuation
from above threshold.

The reason for using this rather elaborate pole prescription is that we want the integral

over @ to produce a smooth function of k. This allows the sum over k to be replaced by



138

an integral. If we were to instead use the ie prescription, then the resulting function of k
would have a unitary cusp at E’Q“k = 2m. This observation leads us to consider a principal-
value pole prescription instead. Recall that p is defined so that, for E;k > 2m, Eq.
simply gives the standard principal-value prescription. It turns out that this choice does
give a smooth function of E, provided that one uses analytic continuation to extend from
E3 > 2m to E5, < 2m. This is accomplished by our subthreshold definition of p, which
is then smoothly turned off by the function H (E) A derivation of the smoothness property
is given in Appendix [E| We stress that the PV prescription is always defined relative to a
spectator momentum, here k.

A slightly more general form of the PV prescription is instructive and will be useful

below. For any two-particle four-momentum P, for which the only kinematically allowed

cut involves two particles, we can write
ﬁ{f/A(PQ,a)B(PZ,a)A(a)A(PZ —a) = /A(Pg,a)B(Pg,a)A(a)A(Pg —a)

~—%JU%/MmﬂﬂﬂRﬁ{/*AWF%JﬂBﬂfaﬁﬁ] (5.66)

a*=y/P}/4—m?

Here A and B are smooth, non-singular functions of their arguments. The quantities A*
and B* are defined in a similar way to o* above, e.g. A*(P,,a@*) = A(P, [wq, d]), where the
boost to the two-particle CM has velocity -P /PY. The function J, defined in Eq. ,
ensures that this boost is well deﬁned@ Finally, the angular integral is normalized such
that f&* 1 = 1. The form makes clear that the prescription can be defined for four-
momentum integrals (and not just three-momentum integrals) and that its dependence on
external momenta enters entirely through P». We have also used the angular independence
of p to rewrite the subtraction term as an angular average in the CM frame. The two
functions A and B could be combined into one, but are left separate since in our applications
we always have separate functions to the left and right of the cut.

Returning to the main argument, we now substitute
Y =PV [+ | (5.67)
L3 &~ i LL3& il ‘
a a

22Here J is playing the role of H(k) = J(P2/[4m?]) in Eq. (5.59).
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into Eq. (5.57) to reach

o0 =1Ly 5y [iadwk,l%’],[wa,a])ﬂ([wk,k] , (wa @) H (F) LR

6 L3 20k 2wWa 2wk (B — wi, — wg — W)

a

!

[w , [wa, d))ot w,q Wa, d k
+6£§:Lﬁz:PV/] ol o )0 (o Bl o DHE)

2wk2wa2wka(E Wk — Wa — Wka)

Note that the sum-integral-difference operator annihilates R” (E, @) up to exponentially sup-
pressed terms. As already noted, we can replace the sum over k with an integral in the first

term, resulting in the infinite-volume quantity

= [wi, K], [wa, @) ot (Jwi, K], [wa, @) H (k) -
C - /PV/|: 2wk2wa2wka(E Wk — Wq — wka) tR (k’a) : (569)

Note that no pole prescription is required for the k integral.

The second term in Eq. is then the finite-volume residue. First we note that we
can multiply the summand /integrand by H(@)H (by,), since the remainder cancels the pole
and thus has vanishing sum-integral difference. Next we use the identity for sum-integral
differences presented in Eq. of Appendix This is based on an extension of the work
of Ref. [I30] to include the effects of subthreshold momenta and the PV prescription. The
essence of the identity is that the sum-integral difference picks out the on-shell residue of the

singularity multiplied by a kinematic function. In more detail the identity makes use of the

analytic properties of azm(E, a*) and J;f*m(l;:', a*), the functions defined in Eqs. (5.62H{5.64

above. The result is that

1 1

c¥=c® 4 2 0 o (KViF g (K)o, () | (5.70)
k
« L x
= Cég) + O'k'yf’,m/WZFklyé',m’;k,Z:maz,l,m y (571)

where the finite-volume kinematical function is

FMMMBEWWM®+WWM@% (5.72)
L1 AT Yy g (%)Y, (6% H (k) H (@) H (bra) [0\
Fgl’m/;&m k = — 73 E / - —~ s (573)
2 L 2wa2wka (E — wi — wq — Wkq + 1€) @
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NP AP

on-shell

Figure 5.8: Diagrammatic representation of Eq. (5.75)). This important identity is used

throughout the derivation.

and

Fk’,ﬂ’,m’;k‘,ﬁ,m = 6k’,kF€’7m’;Z,m(E) 5 UZ,Z,m = O'Zm(E) y
and o, = ol" (k) for k € (2r/L)Z° (5.74)

are the restrictions of the on-shell functions to finite-volume momenta. These definitions are
first given in Egs. above. All indices in Eq. are understood to be summed,
including k£ and k' which are summed over the allowed values of finite-volume momenta.
This index structure appears repeatedly in our derivation, and from now on we leave indices
implicit. Indeed, using the matrix notation introduced in Section we can write the final

result compactly as

P
cf) =c® + o GZ}L?)

This is the main result of this subsection.

ol*. (5.75)

Our treatment of the 3-particle cut will be recyled repeatedly in the following, except that
o and of will be replaced by other smooth functions of the momenta. Since no properties
of o and o! other than smoothness were used in the derivation of Eq. , the result
generalizes immediately. It is useful to have a diagrammatic version, and this is given in
Fig. The key feature of the result is that the finite-volume residue depends only on on-
shell restrictions of the quantities appearing on either side of the cut (analytically continued

below threshold as needed).

Before considering diagrams containing two-to-two insertions, we take stock of the im-

pact of using the non-standard PV pole prescription. First we relate CSO]) [defined in
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Eq. (5.69)] to the conventional infinite-volume form which uses the ie prescription. The

latter is
o _ 1 [ Tio(jwk, K, [wa, @)t (i, k), [wa, @) H(F) L
(0),5e — * , .
=" =5 /,;@ [ 2003, 2wa2wha (B — W — Wa — Wha + i€) + R (k, )|, (5.76)
B é‘/ o(k,a)A(k)A(a)A(P—k—a)o' (k,a), (5.77)
k,a

where fk = d*k/(2m)*, etc., indicate integrals over four-momenta. To obtain the second
line, which is the standard expression for the Feynman diagram, we have reversed the steps

leading from Eq. 1) to 1) It then follows from the definition of the PV prescription,
Eq. (5:59). that

oW = e [ B ER o). (5.79)
k

This relation is similar in form to Eq. , with the “F-cut” being replaced by a “p-cut”.
The key point for present purposes is that the p-cut term in Eq. does not introduce
poles as a function of E. This follows from noting that p is a finite function of (E, P) and
E, which has a finite range of support in the latter.

We can also determine the form of the finite-volume correction if we use the ie prescrip-
tion throughout, including in F' [see Eq. above|. This connects our result to earlier

work on two-particle quantization conditions, e.g. Ref. [130], where F'¢ was used. Defining

Flif,ﬁ’,m’;k,ﬁ,m = 6k',kFZ’6,m’;é,m(k) ’ (579)
it follows from Eq. (5.73]) that
Fklze/’m/;kverm = F’;L;/Eyélym/;kyzvm + 5k/’k pel7m/;£7m(];) : (5'80)
Combining the results above we then find
O _ pic . F o T[] e #R) g
Cp =CQ* +o—m0'+ |5 Z |° (k) o (k). (5.81)
E

Thus we see that, were we to use quantities defined using the ie prescription, we would need
to account for the additional finite-volume correction coming from the last term, which

arises due to the cusp at threshold@ This extra term greatly complicates the all-orders

23This term is absent in the two-particle analysis, where there is only a single value of k (the total

momentum flowing through the two-particle system).
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summation of diagrams. We have found it is more convenient to approach the analysis of
finite-volume diagrams in two steps: first relate finite-volume quantities to ﬁ/—quantities
(for example relating Cg)) to Cég)), and then relate ﬁ/—quantities to those defined with the

standard ie prescription (C’ég) to C’ég)’ie). We concentrate on the first step in this article.

We now turn to diagrams of Fig. We recall that only three-particle on-shell inter-
mediate states lead to power-law finite-volume dependence. To isolate such terms we first
do the k¥ integral and keep only the pole at k% = wy. Other poles will be collected into
infinite-volume quantities, as for C’j(:o). This means that we can replace A(k) with 1/(2wy)

and set k¥ = wy, in all finite-volume terms. Furthermore we can pull out the sum
1 1
— — 5.82
L3 Z 2wy, (5.82)
E

and consider the summand at fixed values of k. The result of these steps is shown in
Fig. [5.9h.

At each fixed value, we are left precisely with all scattering diagrams for two particles
with energy-momentum (E — wy, P— E) We can thus follow the approach of Ref. [130] to
obtain the answer for this set of diagrams. In particular, we can repeatedly use the sum-
integral difference identity of Eq. and Fig. to replace sums over the two-particle
loop momenta with integrals plus factors of F'. As already noted, the identity holds if either
o or ot (or both) are replaced by Bs. This substitution is also indicated in Fig. .

Our next step is to sum all diagrams into a convenient form by regrouping terms accord-
ing to the number of F insertions. This is depicted in Fig. [5.9b. We first consider terms
with no F' insertions. These are conveniently combined with the smooth terms arising when

the k¥ contour encircles higher-particle poles, yielding

cV) :/Eﬁ\’//aﬁv/w/‘éfa(k,a)A(a)A(P—k—a)A(k)

X iKaot(a, P—k—a,—a')A(d)A(P—k—d)ol(k,d'). (5.83)



143

Figure 5.9: (a) Diagrams contributing power-law finite-volume contributions to Cg). The
dashed line for the bottom propagator indicates that the k" integration has been done and
only the one particle pole kept, giving rise to the factor of 1/2wy. The inset shows the effect
of substituting the identity of Fig. (b) Result for Cg) after grouping terms according to
the number of F' insertions. Diagrams with no insertions combine with the terms neglected
in (a) to give c). I diagrams with at least one insertion of F' the factors to the left
and right are o* + A/ and o™ + A% respectively. The factors between F-insertions
(denoted by black circles) are two-to-two K-matrices. The final term in the curly braces
must be subtracted since it is included in the first term but is not part of the definition of
C’]gl) . (c) Definition of A’"*). The superscript u indicates that the unscattered particle is
also the particle whose momentum is singled out by the coordinate system. Dashed lines

for external momenta indicate both that they are on shell and that they are amputated.
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Here we are using the definition of PV given in Eq. 1} while the off-shell K-matrix is

1 —
iKo:0 (@, b, —a') =iBy(a,b,—a’) + 2PV/ iBo(a,b, —a1)A(a1)A(by)iBa(ay, by, —a’)

al

N\? ~ [ ~
+(2> PV / PV / iBs(a, b, —a1)A(a1)A (b )i Ba(ay, by, —az)A(a) A (ba)i Ba(as, bs, —a)
as al

+..., (5.84)

or equivalently

iKo.om(a, b, —a’) = iBs(a,b, —a’)

1 ~
+ §PV iBg(a, b, —al)A(al)A(bl)ing;oﬁ(al, b1, —a/) . (5.85)

ai

For both Ko..g and By we display only three of the (inflowing) momentum arguments, the
fourth being given by momentum conservation: a + b = a1 + by = as + bo. If all external
momenta are on-shell, Ko, becomes the usual physical two-particle K-matrix Kz, which
is real and smooth (in our kinematic range) because the PV prescription is identical to the
PV prescription in this regime. Within C&), the K-matrix is needed also below threshold,
and our use of the PV prescription ensures that Koo is smooth (cusp-free) in this regime
as well. These results allow the overall sum over k to be replaced with an integral (for which
no pole prescription is needed).

We stress that in Eq. the integral over k° must be done before the other loop
integrals. This either puts the lower line on shell (leading to the cuts which are dealt with
by the PV prescription) or leads to intermediate states without a singularity (for which
no pole prescription is needed). The need to keep track of the ordering of integrals is an
unpleasant feature of the PV prescription.

We next sum all terms with exactly one F' insertion, obtaining

i

(1) % (17“) /(lvu) i Ik /(lvu)ii (l’u)
Crip=o0 5 L3A +A 5oL5° +A 2wL3A , (5.86)
N wy U . u L B

Here o* and A'0%) (¢ and A1) are understood as row (column) vectors in the k, £, m

space introduced above. The vectors o* and o'* have been defined in Eq. (5.74), while
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A and A0 are new. To define these, we begin with the functions

A (F g) = %ﬁ\’f / o (', k) A A(P—k—a)iKaon (d, P—k—d',—a),  (5.88)
. 1~
AT (E a) = 2Pv/ iKa.ot(a, P—k—a, —a")A(d)A(P—k—ad)o' (d', k), (5.89)

in which k = [wg, k] is on shell while a is not. The superscripts u indicate that the first
momentum argument (here E) is also the momentum of the particle that is unscattered
by the two-to-two K-matrix. We next set the momenta k and a on shell, convert to CM

coordinates for the scattered particles, and decompose in spherical harmonics@

AR (K, a*)WaAT Y g (@) = AVO(E, [wa, @) (5.90)
VATY (@) ALY (5, ) = A, [wg, ) (5.91)

Finally we project on-shell and restrict to finite-volume momenta

A = A (K, qp) and AL = AU (K, qf), with B E e 2n/D)Z%.  (5.92)

o/
This gives the vector forms appearing in Eq. . The diagrammatic definition of A’(1®)
is given in Fig. [5.9c.

To see that Eq. is valid, first observe that terms with a single F insertion fall into
three classes: (1) those with no Ba kernels to the left of the F' insertion but one or more to
the right; (2) those with no kernels to the right but one or more to the left; (3) those with
one or more By kernels on both sides of the single F' insertion. These give rise, respectively,
to the three terms in Eq. , after performing the sums over insertions of Bs to obtain
the factors of KCo.op contained in A’ (1) and A% Finally, observe that coordinates that
are commom with the single F-insertion are projected onto the on-shell, finite-volume phase
space, leading to the now-familiar matrix structure.

At this stage we can easily generalize to terms with (n > 1) F insertions between By

kernels. We find

 F
CﬁLF _ (J* +A,(1’u))2ZIUT[“C2iF]n_1(UT*+A(1’u))- (5'93)

24Note that here we do not add a superscript * to A and A’ when one of the momenta is in the CM
frame. This would make the notation too heavy. The presence of the harmonic subscripts £, m serves as an

alternative indicator that we are using a CM momentum.
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Here we are using the matrix definition of Ky given in Eq. (5.11)). In words, this says that,
between insertions of F', one can have any number of Bs’s connected by PV integrals, and
these sum to give KCo. Summing over n, including the n = 0 result Cé})), we obtain
iF
ol
2wL3

Cp) = CQ + (0" + A0 [A] (o7 + A0) — o (5.94)

where
I F 1 1 i F

A= o1 T KoF 1+ FKy2wl? '

(5.95)

Combining with our earlier expression li for C’éo) gives the main result of this subsection

i
Qw3

O 1o = O 4+ ) + (0% + AN [A] (0T + ALY = (2/3)0" ——at* . (5.96)

We have succeeded in separating the correlator into factors of F, which depend on the
volume, and infinite-volume quantities.

The calculation just described follows very closely the derivation of the two-particle
quantization condition in a moving frame given in Ref. [I30]. This is because, for the dia-
grams of Fig. the third particle is a spectator whose main impact is to take momentum
away from the other two particles. One difference in the present calculation, however, is
that the 1/6 symmetry factor for the no-insertion diagram, Fig. is such that it does not
match with those in the geometric sum leading to the factor of [A] in the second term in
Eq. . This is the reason for the appearance of the last term in our result.

We can make the connection to the result of Ref. [I30] more precise by considering
instead the theory in which the spectator is of a different type from the other two particles
and does not interact. For such a theory the symmetry factor for Fig. is 1/2, and the
last term in Eq. is absent. Indeed, for this theory we have already calculated all

possible diagrams, with the final result
Oi—i—spec . Cgo+spec _ (0_* + A/(l,u)) [.A] (O‘T* + A(l,u)) ) (597)

The spectrum is given by the poles of Cr. Since infinite-volume quantities do not lead to
poles, Cp, diverges if and only if [A] has a divergent eigenvalue. This gives the quantization
condition

det [K;' + F] =0, (5.98)



147

where the determinant is over our [finite-volume momentum]|x [angular momentum]| space.
Because both iKo.k ¢ mrike,m and ©Fy g ek o are diagonal in k, k' space, this condition
may be rewritten as

[[o) =o, (5.99)
P

where

D(k)= det [Ko(k)™t+ F(k)]. (5.100)

ang mom
The quantities appearing in this equation are defined in Eqgs. (5.11]) and (5.74)), and have
only angular-momentum indices, since k is fixed.

This result is exactly what we expect given given the two-particle quantization condition

of Ref. [130]. To see this, we note that, using Eqs. d5.59|) and (I5.60|) to convert the PV into

—

the e prescription, M2;417m/;g7m(E) is related to Koy mrie.m(k) by

1

Mo = io + Ko (ip)ilklo + - - = iKoy . 5.101
iMao = ilCo + ilo(ip)ilCe t 21+p/€2 ( )

Here all arguments and indices are implicit. It follows that
M (k) = K5 (k) = p(k) = F(k) — F*(k), (5.102)

where the last equality follows from Eq. (5.72). Thus we can rewrite the quantity appearing
in the “2+spec” quantization condition as

D(k)= det [Ma(k)™t + Fe(k)] . (5.103)

ang mom

If this vanishes for one of the finite-volume choices of E, then there is a finite-volume state
in the “2+spec” theory.

The connection to the result of Ref. [130] can now be made. If the spectator, which
is necessarily on-shell since it is non-interacting, has momentum [wk,E], then the total
momentum of the other two particles is P, = [E—wy, P - E] For the full “2+spec” theory
to have a finite-volume state, the two interacting particles with momentum P, must have a

finite-volume state. The condition for this, as given in Ref. [130], is exactly D(k) = 0. This

agreement provides a useful check on our formalism@

?*Note that F* (and not F) is the kinematic factor derived in Ref. [I30]. Also, the ultra-violet cut-off
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Figure 5.10: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions, with one switch in the scattered pair.

5.3.2 Two-to-two insertions: one switch

In this section we sum the diagrams of Fig. [5.10] Each diagram has at least one Bs
insertion on exactly two different pairs of particles. In other words, the diagrams have
one switch in the pair that is scattered. We denote the sum of all such diagrams by C’f).
Throughout this section we call the momentum of the incoming spectator particle k and
that of the outgoing spectator p, as shown in the figure. We refer to the three propagators
which appear at the location where the scattered pair changes as the “switch state”. The
presence of a switch leads to the first appearance of a three-particle scattering quantity in
our analysis.

To determine the volume-dependent contribution of these diagrams we first evaluate the

p° and k¥ integrals. Since we know from earlier considerations that intermediate states with

used in the definition of F** in Ref. [I30] differs from that we use, but this leads only to a difference that is
exponentially suppressed in L. Finally, we take this opportunity to comment on potential confusion regarding
the definitions in earlier papers of F** below two-particle threshold. In particular in Ref. [T40], for example
in Eqs. (24) and (25), the above-threshold definition of F' is split into real and imaginary parts, with the
principal-value pole prescription used to define the latter. In contrast to the PV prescription of the present
article, the principal-value in [140] is replaced with a simple prescription-free integral below threshold. In
addition, the imaginary part of F*, the term that we call p here, is set to zero below threshold in Ref. [140].
The upshot is that the difference between PV used here and principal-value in [I40] exactly cancels the
difference between p defined here and the analog in [T40], so that the definition of F* is consistent in the
two papers. A useful pneumonic to keep track of this issue generally is as follows: When the quantization
condition is written in terms of M3, then the finite-volume quantity added to the inverted scattering-
amplitude should become exponentially suppressed below two-particle threshold. This ensures that one

recovers the correct finite-volume bound state condition.
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three on-shell particles are needed to obtain power-law volume dependence, at least one of
the two poles at p¥ = wp and k° = w;, must be encircled. For concreteness we enumerate
the four types of terms: (a) each contour encircles its one-particle pole; (b) the p° contour
encircles its pole but the k% contour encircles all other contributions; (c) as in (b) but with
k% and pY exchanged; and (d) both contours encircle everything but the one-particle poles.
We now consider the loop sums/integrals that remain when holding p'and k fixed; these are
all two-particle loops involving either the upper two particles (to the left of the switch state)
or the lower two (to the right). For type (d) terms the summands have no singularities and
thus all sums can be replaced with integrals. Similarly, in type (b) and (c) terms, the two-
particle loops on one side of the switch state cannot go on-shell and may thus be replaced
by integrals. For all remaining two-particle loops in terms of types (a), (b) and (c), the
summand is singular. Here we substitute the identity of Eq. , thereby separating each
loop into an infinite-volume contribution and an F-factor residue.

There are thus two disjoint regions where insertions of F' appear: to the left of the switch
state and to the right. It is useful to break our analysis into four classes, defined by whether

or not each side of the switch state has at least one insertion. We label these as
(1) F,F, (2) —,F, (3) F,—, (4) —,—, (5.104)

so that class (1) contains all terms with at least one F' insertion both to the left and right
of the switch state, class (2) contains terms with no such insertions to the left but at least
one to the right, etc. Observe that type (a) terms appear in all four classes, while types (b)
and (c) only appear in classes (2+4) and (3+4) respectively.

We now analyze the four classes in turn, starting with (1). Because all terms in this class
have both k% and p° one-particle poles, the chains of s, By’s and ﬁ/—integrated loops to
the left and right of the switch state can each be independently summed exactly as in the

previous subsection. This leads to

(O'* + A/(l,u))[A] ilcz(f,u,u) [A] (O’T* + A(l,u)) ) (5.105)

(2,u,u) — K(Z,u,u)

The new feature here is the quantity g Sopo bk 0 which arises from the switch

state, and is a contribution to the three-to-three scattering amplitude. It is shown diagram-



150

matically in Fig. [5.1Th, to which we refer for the notation for momenta. To define it we

proceed in the by-now familiar steps, beginning with the partially off-shell quantity
i (5,a, K, @) = iKao(a, P—p—a, —k) A(P—p—k)iKagos (P—p—k, p, —d') . (5.106)

At this stage p, k, a and d/ are on shell, while P—p—k, P—p—a and P—k—a’ are not.
We have parametrized ilCéQ’u’u) with incoming and outgoing spectator momenta, k and D,
as well as incoming and outgoing momenta of one of the scatterers, @ and @. In the second

step we change the frame used to define the scatterer momenta and then we decompose in

spherical harmonics

K§27U7u) (ﬁv C_’:a Ea C_i/) = 47TYZm(d*)’C(2’u7U) /(ﬁ7 CL*, E’ a,*)nym (&/*) ’ (5107)

3;0,m;l" ;m

where @* is defined by boosting (wq, @) — (w},d*) with velocity Ep, and @'* is defined by
boosting the corresponding primed vector with Ek Next we recall that all incoming and
outgoing particles are on-shell if and only if ¢ = ¢} and a* = ¢p- Thus we define the

on-shell version of IC:())Q’U’U) as

2’ ) S N 27 ) - % 70 *
K5 t) s B, F) = K5, 0 (B 3, K ) (5.108)

The final step is to restrict to finite-volume momenta

(2,’LL,’U,) — (2,u,u)
3;p7€7m;k7£/7m/ - 3;E,m;€’,m/

(B.k) for k,pe (2r/L)Z°. (5.109)

This gives the matrix contained in the result Eq. .

Several further explanations are in order. First, IC:(f’u’u) in Eq. is on-shell on
both “sides” because it is sandwiched between factors of F'. This is because [A], defined
in Eq. , has an F on both ends. Second, the boosts to CM momenta @* and a™*
are always well defined because F contains factors of H(p) (on the left) and H (k) (on the
right). Third, sub-threshold momenta occur in both left and right CM frames as p’ and k

are varied, requiring analytic continuation of the IC:())Q’U’U). Fourth, all factors from external

propagators are contained in the [A]’s, so IC:(f’u’“) is a contribution to the amputated three-to-
three scattering amplitude. Fifth, the superscript “(2, u,u)” indicates that this contribution

involves two factors of Koo, and that, on both sides, the particles singled out by the label
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(b)

Figure 5.11: Diagrammatic definitions of (a) ilC:(f’u’u), (b) A'L(Q’u) and (c) Cl(-fg)F. In (b) and
(c) the dotted box encloses momenta that are summed rather than integrated. The solid

circle represents the two-particle K-matrix. Other notation as above.

(7 on the left, k on the right) are unscattered. And, finally, although the result (5.105) has
a symmetric form, it is important to note that K§2’u’u) switches the spectator momentum

index from p to k.

We now turn our attention to class (2) contributions, i.e. those with no F' insertions to
the left of the switch state but at least one such insertion on the right. As noted above,
these contributions come from terms of types (a) and (b). In the former, the p° and k°
integrals both encircle one-particle poles, but all two-particle loops with p as the spectator
are integrated using the PV prescription. In the latter, only the &° integral encircles the
one-particle pole, so all two-particle loop sums to the left of the switch state can be replaced

by integrals. Combining these contributions, we find

AP A] (ot 4+ AT, (5.110)
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where the new quantity A’]EQ’U) is shown diagrammatically in Fig. . It is a contribution

to the left end-cap involving one switch. It is given by

A = A (K, qp) [with k € (2m/L)Z7), (5.111)
where

AT (R, " )WATYy g (0%) = AP (F, [war, @) (5.112)
and

2u) 7 o L 5\ o
A (k,a)_2L32PV/Q/poa(p,a)A(a)A(P p—a)
p
X ilCo0ff (@, P—p—a, —k)A(p) A(P—p—k)iKa.on (p, P—p—k, —a') (5.113)

[with fpo = [dp"/(2m)] is the end-cap amplitude with k on shell but a not. The subscript L
is a reminder that this quantity contains important finite-volume effects. These arise from
the sum over p' with a singular summand (from the switch state). The superscript (2, u)
refers to the presence of two factors of Ko, and the fact that the particle carrying the
momentum that is singled out by the coordinate system (here E) is unscattered.

Class (3) contributions mirror those from class (2), with the roles of the parts of the

diagrams to the left and right of the switch state interchanged. The total result is

(0" + A [A] AP (5.114)
where
A(2,u) _ 2u) /> ith on /L Z3 5115
Lipftm — L;E,m(pv Qp) [WI pE ( 7I'/ ) ]v ( . )
with
AP (B, @ WA Yy g (@*) = AP (5, [wa, @) (5.116)
and

), o 11 — .
APY(5.a) = QBZPV// /ko Koot (a, P—p—a, —k)A(k)A(P—p—k)

X igof(p, P—p—k, —a')A(a)A(P—k—ad)o' (k,a’). (5.117)



153

Finally, we turn to class (4) contributions, which have no F' insertions on either side of

the switch state. Combining contributions from types (a-d), we find [see Fig. |5.11k]

OBr =320 ZPV L [t o @AP - a@)iKso, Pp-a, k)
X A(P—p—k)ing;off(P—p—k:,p, —d)A(d)A(P—k—d)A(k)ol (k,a’). (5.118)
Adding this to the results from the other classes, we obtain

O = (0" + A AP [A] (o7 + ALY + AT [A] (o1 + A0

+ (0" + AN A AP + Ry (5.119)

At this stage we have achieved only a partial separation of finite-volume effects, because
Al(g’u) A(2’u) and Cg()) 7 still contain momentum sums that cannot be replaced by integrals.
In addition, IC( ) suffers from the problem, discussed in the introduction, of diverging for
certain physical momenta. In the remainder of this section we derive identities for these four
quantities that allow a complete separation of finite-volume effects and avoid divergences in
the 3 — 3 scattering amplitude.

We begin with ICéZ’u’u)

, and separate it into two terms, one which is singular but only
depends on the on-shell Ko, and another which is regular. We do this separation in a way
that allows generalization to diagrams with more switches. In particular, we will analyze
the partially off-shell quantity IC( uu)( k: ,d'), defined in Eq. , although for this
subsection we only need the on-shell version of this quantity [as in Eq. ] In fact, we
keep the four momentum arguments completely general so that the boosts to the CM-frames
for a and a’ need not be defined.
Our first step is to write the intermediate propagator as

iH (p)H (k)
2wip(E — wp — w — Wkp)

A(P—p—Fk) = + RY(F, k). (5.120)

The first term contains the on-shell singularity, while the second is smooth. We focus for

now on the singular term in (5.120) and substitute this into ICéz’u’u), Eq. (5.106)). The

presence of the H factors means that we can boost to the CM frames for the {k, P—p—k}
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and the {P —p—k,p} pairs, and decompose the dependence on k* and p* into spherical

harmonics. The result is that the singular contribution becomes
o (2u) = T o . . . N - .
i (5, d, k@) o iKojoft|oft tm (D A" )iGY egr s (D K )i g oft oot (K5 p7[lE) 5 (5.121)

where R N
q 14ATY 0 (K ) H (P)H (K)Y 7 0 (P
iG o (P ) = —— &) B Y o ), (5.122)

and

VAT K oftoft m (55 @||K*) Youm (k) = Koot (a, P—p—a, —k) (5.123)
VATY G s (5 )yjoft ot (B 7 1|@) = Koot (P—p—Fk,p, —d') . (5.124)

In the latter two definitions, the two subscripts “off” are a reminder that both incoming
and outgoing scattering pairs, have one particle off-shell. If the “off” is followed by angu-
lar momentum indices, this indicates that the scattered pair has been boosted to its CM
frame and the angular dependence decomposed into spherical harmonics. The arguments
of Ko.oft:of list respectively the spectator momentum, the momentum of one of the incom-
ing scattered pair, and the momentum of one of the outgoing pair. If a CM-frame boost
has been done, the argument is the magnitude of the CM-frame momentum. This hybrid
notation is needed to maintain generality.

The next step is to write the singular part of in terms of on-shell K-matrices. This
is straightforward as we can expand the boosted momenta k* and p* about their on-shell
values, g, and g, respectively. At the same time, we want the remaining non-singular term
to be a smooth function of p and IZ, since this is required below. The spherical harmonics
ng(/%*) and Y,; ,(p*) are not, however, smooth at k* = 0 (for £ > 0) and p* = 0 (for
¢" > 0), respectively. To resolve this problem, and pull out an appropriate singular term,
we introduce the finite difference operator §. This can act to the right or left on Ko, with

its action being

—

8 Kajjon trme ot (B3 @) = Kajjoft erm ot (3 27118 — (0% /4)" Kafjon ermr o (k@) . (5.125)

Kajoft|jon tm (5: @) 6 = Kajjot|joft em (5: @llK*) — Kajottjon em (7 @) (K* /45)" (5.126)
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Here we have defined the “on-off” and “off-on” K-matrices as
Kojon erm ot (k3 @) = Kajjost rm ot (K3 @] @)
and (5.127)
Kajjoftfjon m (95 @) = Kojjoft|joft em (P @llay) -

Note that if a scattering pair is on shell then it does not have a corresponding momentum
argument (since the latter is fixed by kinematics).

Inserting Eqs. ((5.125) and ([5.126]) into Eq. (5.121]) we obtain

K (5@, kdl) o

K ofton tm (7 8) [1GY tr s () + R g (5, B) | i6Con ot (5 @) (5.128)

with

<m>€Mwnme?H@WﬂEﬂ?MAﬁ)<¢)”7 (5.129)

2wpi(E — wp — wy — wpk) ﬁ

RZ m'Z’,m’(_; k) =9 iG?,m;E’,m’ (ﬁ? k’)(P*/QZ)Z

+ (K /@) 4G sy (B ) 8+ 8 G g (B ) 6. (5.130)

The result has achieved our goals. Only the G? term is singular, because the factors
of 6 in R® [which act on the K-matrices appearing in Eq. ] give differences which
vanish when P —p—k goes on shell and thus cancel the singularity in G*. More precisely
the analyticity of Ko near the on-shell point is required to demonstrate the cancellation.
For example, the difference defined in Eq. scales as p* — ¢, the same scaling as the
denominator of G, so that the product is a finite smooth function. This is discussed in
detail in Appendix@ Furthermore, the extra powers of k* and p* ensure that G? is smooth
when &* or §* vanish. Finally, the G® term multiplies K-matrices in which k* (to the left)
and p* (to the right) are on shell.

The end result of this analysis is that

-

K (5., K@) = DO (5.d, @) + K (5.d,F, @) (5.131)
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(2,u,u) ( RN

Figure 5.12: Diagrammatic version of the decomposition of K3 7, d, E, d') given in
Eq. . External dashed lines indicate on-shell momenta, whereas momenta flowing
along the solid external lines are, in general, off shell. All external propagators are ampu-
tated. The first term on the right-hand side is the singular term D2%%) with the double

dashed lines representing G°. The two Ky are evaluated on-shell for all momenta that

flow along dashed propagators. The second term represents the divergence-free amplitude

(27u7u)
de,:’) :

where the singular part is

D (5,a, k@) = io)jofton tm (55 @)iGY pstr st (B &) om ot (K, @) (5.132)

and the divergence-free part of the amplitude is

iKG " (5.d, K, @) = iKaon(a, P—p—a, —k)YR(F, K)ilaon (P—p—k,p, —d)

+ Koot on tm (B @) RY etr st (B )il afjon ot (K, @) . (5.133)

The relation (5.131]) is shown diagrammatically in Fig. |5.12| The key property of Ké?’g’u)

is that it is a smooth, non-singular function of its arguments. It is smooth when k* or p*

vanish because K§2’u’u) is smooth at these values and, as just discussed, this is also true of

the G® term.
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The quantity G? is closely related to the matrix G introduced in Eq. (5.21)). In particular,
Gz,m;i’,m’ (P, /2) = Gp747m3k17517m1 [2WL3]k1751,M1;k75’,m’ for p, k € (27T/L)Z3 ) (5'134)

where
[20L%ky 01 ma skt = Oy 00y 0 Oy s 200 L2 (5.135)
Finally, with this groundwork laid, we can return to the quantity relevant for the one-
switch analysis, namely K§2’“’u) with external momenta on shell and taking finite-volume

values. In this case we can decompose the external CM-frame momenta in spherical har-

monics, and connect back to our matrix notation:

K 7 i — ATY (67 Ko 1 o 5.136
2Hoff||on€m(p a) a*=q3.7€(2n/L)Z3 TYpr (a ) 2;p, 0 \m/;p,l,m ( )

7. =l _ / A~ 1%
K2\|0n5m|\oﬁ(kv a) W =gt €(2n/L)Z? = Koo t;mik, 0/ VATY 1 s (67) - (5.137)

This allows us to write the decomposition into singular and smooth parts in matrix form

-~ (2,u, . . 37 1~ (2,u,
) o = IK2iGIRWEiCy + KT, (5.138)

where, as usual,

N 2,u, R 2,u, IR
47TYZm(a*)Kt(if,g;;,)f,m;k,é’,m’n/:m/ (a/*) = IC((lf g Y (p7 ; k7 CL,)

)

a*=g3,a"*=q; {pk}e(2n/L)Z3
(5.139)

We next derive an identity for A'L(Q’u), which is defined in Egs. . The basic
approach is our standard move of replacing the sum over § with a PV integral and a sum-
integral difference, the latter giving rise to a factor of F'. However, the presence of the switch
state introduces new features compared to previous applications, so we work through the
steps in some detail.

We first introduce the fully-integrated counterpart to Aéz’u), which we call 4’2 Tt is

defined exactly as for Af’u) [Egs. (5.11115.113|) and Fig. ] except that the sum over p

is replaced by a ﬁ/—integral. This is the first example of an infinite-volume quantity with

multiple PV -integrals. As we have already mentioned, a consequence of our nonstandard

regulator is that the order of integration is important. In the definition of Af’u), the integral
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over k is done last. The difference between the two quantities can be written as

5 XV [ TR i e pp-ba) - (5110)
p P

=,

where k = [wy, k]. To obtain this form we have used the fact that A’ (5, k) [defined
in Eq. ] is a smooth function of p, so that the only singularity in p comes from the
switch state. Also, we have done the p° integral and kept only the particle pole, since other
poles give non-singular contributions which have vanishing sum-integral differences. Finally,

we have added in the cut-off function H(k), which is allowed since it does not change the

singularity.

To use the sum-integral identity, we need to expand A’ (5, k) in spherical harmonics
with respect to p*, i.e. treat k as the spectator and boost to the CM frame of the other two
particles [with boost velocity —(P — k) /(E —wy,)]. This is different from the expansion used
earlier, in Eq. , where p was treated as the spectator. Thus we define [see Fig. [5.13p]

A, p WARY () = A0 (5, g, F]) (5.141)

where the superscript “s” indicates that the particle carrying the momentum singled out by

(Lu)

the coordinate system, here E, is one of those scattered by the Ko inside A"H%). We stress

that Ag:}’f) and A/é?l?;u) are different expansions of the same underlying function—we are just

using different coordinate systems. We also note that the boost defining p* is well defined

because of the presence of H (k).

As a final step, we must also decompose the off-shell two-particle K-matrix into spherical

harmonics:

47TYZm(]5*)IC2;0H;Z,m;€/,m’ (E7 p*, a,*)}/@/,m’ (d/*) = K?;oﬁ([“}hﬁ]a P_p_ka _[wa’) 6/]) ) (5142)
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This allows us to write

(2,u) "(2u) _
AL;k,K’,m’ - Ak,@’,m/ -

{ Z Pv/] A (R, p") Aoy, () H )Y 1, () ik (k,p", ;)
7 ;off 0, mosl! m/\ vy P 5 5
L3 Zl’ml 2wp2wp,p,k(E — W — Wp — wpk) 2ol iba,ma;tm k

(5.143)

where we have explicitly pulled out the particle pole in the P —p—k propagator, since
the remainder is non-singular. This has the form for which we can apply the sum integral

identity, from which we deduce
A = @) g9 ANS)i ik, (5.144)
where the on-shell matrix form of A’(1:9) is

A = AR5, qr) with Fe (2m/L)Z°. (5.145)

p,lm

The factor of two in appears because F' contains a symmetry factor of 1/2 which is
absent in the switch-state contribution.

The new quantity 2A4’(:) will later be combined with A’0®) in order to form an object
which, aside from one subtlety, is symmetric under particle interchange. To understand this
point, first observe that there are three independent ways that the external momenta can
be assigned to the diagram: (i) p'is the spectator with k one of the scattered pair (giving
A') (i) 7 is one of the scattered pair with k the spectator (giving A’(19), and (iii)
P and k form the scattered pair. This is illustrated in Fig. |5.13b. For the symmetry to
hold we must sum these three with equal weights: (i)+(ii)+(iii)@ This differs from the
combination that arises naturally in our derivation, (i)+2(ii). It turns out, however, that
we can replace 2 (ii) with (ii)+(iii), and thus obtain a truely symmetric combination. We

do this repeatedly below, and thus explain here the justification for this change.

Momentum assignment (iii) leads to a quantity we call A(L3) that is related to A/(L:s)
as follows:
1,5 (1,
A = (=1 AL (5.146)

26We stress that here we are discussing on-shell quantities; the symmetry cannot hold if one of the particles

is off shell.



160

This is because the assignments (iii) and (ii) differ simply by the interchange of the two
particles that have been boosted to their CM frame. (These are the particles with momenta

k and P — p — k.) This interchange is the same as a parity tranform in the CM frame,

leading to the result (5.146). We also note that Aﬁ’:z is only non-vanishing for even ¢ given

the symmetry of Ky. Thus the desired combination

/(1) /(1,u) /(1,9) 1(1,3)
Apim = Apim T Apim + Apim (5.147)
satisfies
AL g g/(Ls) { even,
Ay = ptan = ton (5.148)
0 ¢ odd.

This means that we can make the replacements

24— Y L AU and A o) s A (5.149)

D,lm plm p,lm

as long as only even values of ¢ contribute.

To see that only even values of £ contribute, first recall from Eq. that A’(19) ig
connected by an F' to a factor of Ks. Next, note that the symmetry of Ko implies that
only even angular momenta appear in its expansion. Finally, use the result Eq. [D.11] in
Appendix @ that F}, ¢ ke m vanishes if £+ ¢’ is odd. Together these imply that, since ¢’ is
even, £ is also.

It turns out that, throughout the derivation, “(s)” quantities always appear opposite
those with a “(u)” superscript. The latter always have the requisite symmetry so that only
even angular momenta contribute. Consequently, by the argument just given, we can always
replace 2(s) with (s) + (). For the sake of brevity, we do not do this explicitly, but keep in
mind that this replacement is allowed. At the end of the derivation, once we have summed

contributiions from any number of switches, we make the replacement explicit so as to allow

symmetrization.
The identity for A(L2’u) is derived in exactly the same way as that for A} ") and we
simply state the result:
AP =A@ 4Ky F2A0). (5.150)

Here A}%@W and A®) are the left-right “reflections” of the corresponding A’ quantities.
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Figure 5.13: (a) Definition of A’(1:®) in which the momentum singled out by the coordinate
system (here E) is that of a particle that scatters. (b) Definition of the symmetrized quantity
A/(l).

Finally we consider ng)ﬁv defined in Eq. (5.118) and Fig. [5.11c. Our aim is to deter-

mine the finite-volume residue that results when we convert the two momentum sums into
integrals. The two-particle loops are both rendered non-singular by the PV integrals over a
and a’, so the only singularity is that in A(P—p—k). To isolate this, both p” and k¥ integrals
must circle the particle poles. (If other poles are encircled in either integral, the remaining
summand is non-singular and both sums can be immediately changed to integrals.) We
then have to choose which sum to evaluate first. Our convention, here and below, is to work
from left to right. Thus we first convert the sum over  into an integral plus an F' term. The

1(2,u)

detailed steps are exactly as for A;™", except that here we have AL

on the right rather
than K. For the contribution in which p'is integrated, there are no more singularities, so
the sum over k can be converted directly into an integral. For the F-term, however, the
sum over k must remain. The result of this analysis is that

iF

O = CD 4 24'0) oAt (5.151)
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2)

where C(go is the infinite-volume version of the single-switch correlator:

c? = PV/PV/PV/ / /ko (p,a A(P—p—a)A(p)iKa.on(a, P—p—a, —k)

X A(P—p—k)iKaog(P—p—k,p,—a)A(a)A(P—k—ad)A(k)ot(k,a’). (5.152)

The factor of 1/(2wL?) in the last term in Eq. arises because F is defined to contain
the contributions from only two of the three propagators in the switch state. The overall
factor of 2 in this term arises because F' contains a symmetry factor of 1/2 that is absent in
the switch state. We stress here, for the final time, that the order of ﬁ/—integration matters
in the definition of this infinite-volume quantity.

Our “left to right convention” has given an asymmetric result, with A’(:9) to the left of
ALY and no “uF's” term. This lack of symmetry can, however, be corrected a posteriori,
as will be explained when we consider the result from any number of switches.

Inserting the identities (5.138)), (5.144), (5.150) and into Eq. we find the

final result of this section

P — @ = (0" + A1) [A] [i;cziazwm/@ n ucdf,gﬂ’"’“)] [A] (ot + A0w)
+ AW [A] (o + ALW) 4 (0 4+ A TW)[A]ACY
+ A FikCy [A] (o7 + ABW) 4 (0* + AT [A] ik F[2A0)]

iF

2A/(175)
+ 2wl3

A (5.153)

This is the main result of this subsection. The right-hand side is the finite-volume residue

of all one-switch diagrams.

5.3.83 Two-to-two insertions: two switches

In this section we sum the diagrams of Fig. [5.14 These are all diagrams that have
two switches in the pair that is scattered. We denote the sum of all such diagrams by
Cj(:g). Throughout this section we refer to leftmost (rightmost) triplet of propagators, at the
point where the scattering pair changes, as the left (right) switch state. We label the three

different spectator momenta p, r and k, as shown in the figure.
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Figure 5.14: Subset of finite-volume correlator diagrams containing only two-to-two inser-

tions and with two switches in the scattered pair.

We provide a detailed analysis of two-switch diagrams before analyzing diagrams with
any number of switches for two reasons. First, a new type of intermediate quantity with
finite-volume dependence arises at this order. This is IC:(,)?’I’:“’U), a contribution to three-
to-three scattering. Second, a number of new complications enter at this stage with the
derivation of identities relating the intermediate quantities (with L subscripts) to infinite-
volume quantities. We think it clearer to analyze these in isolation before generalizing to

all orders.

As in the previous sections we evaluate p°, 7 and k integrals and then substitute the
identity of Eq. for all two-particle loops for which the spectator is on shell. There
are three locations where insertions of F' can appear: to the left of the left switch state,
between switch states, and to the right of the right switch state. We define eight different
classes of terms, based on whether or not at least one F' insertion appears in each of the

three locations:

(1) F,F\FF (2) —,F,F, (3) —,—, F, (4) F,F,—,

(5) F,—,— (6) = F,—, (7)) F,—F (8 —,—,—. (5.154)

For example in class (2) there is at least one insertion to the right of the right switch and

between the switches, but no insertion to the left of the left switch.

Using the methods of the previous subsections, it is straightforward to obtain the results
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from these classes. We find
) = (0% + A [AJiK™ ) [AJiKE " [A] (o1 4 AT
+ AP AL [A] (o 4+ AGW) 4 AT [ 4] (o 4 A0 5.155)
(0" + AT AR [A] AT + (0" 4+ A [A] AP
+ AP [A AP + (0% + AT )P [A] (o1 + A0 4 0P

Here the eight terms are the results, in turn, from the eight classes of contribution identified

above. The four new quantities appearing in Eq. (5.155)) are A’L(g’u), A(Lg’u), CS%F and

IC:())?’]’:“’”). These are defined as (see also Fig. [5.15

A =AY (g with e (2m/L)Z°, (5.156)
where
A, WARY g g (07) =
2L62PV/// (k,d)A(d)A(P—k—d")iKaon(a', P—k—d', =) A(k) A(P—r—F)
ko J1r0
X i (k, P—k—1,—D)A(r)A(P—p—1)iloog(r, P—p—1,—a), (5.157)

with A(LS_’,?)Z ., defined analogously,

@ 11
CLOF_4LQZPV/ Pv//ko/o/ro

7pr
X o(k,a)A(d)A(P—k—a)iKoon(a', P—k—ad', —r)A(k) A(P—k—r)iKao (k, P—r—k, —p)

X A(r)A(P—p—1)iKa.on (k, P—p—r, —a)A(p) A(P—p—a)A(a)o'(p,a), (5.158)

and finally
37 ’ j— 3 o k= * : .
K it = Kt o (K, G B q) with 7K € (2m/L)Z? (5.159)
with
47_‘_}/;7 /( ,*)ZIC;(,)gLug/J) /gm(kaa/*’ﬁv )}/Zm L3Z/ llCQOff (L P k—d —'r')

X A(P—k—1)A(r)iKoog(k, P—k—1,—p)A(P—p—1)iKoog (r, P—p—r,—a). (5.160)
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(@ i = AT @ L @

3,L K- gy -p

. .. 1(3,u
Figure 5.15: (a) Definition of AL( )

. The dotted rectangle contains momenta which are
summed; thus only the leftmost two-particle loop is integrated. (b) Definition of C’(L3())F,
which has two integrated and three summed loop momenta. (c¢) Definition of IC?’L“’U), which

has a single summed momentum.
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To obtain these results we have summed Bj kernels into two-particle K-matrices, and used
the fact that [A] amputates and puts on-shell both factors adjacent to it.

We now derive identities relating the quantities A/I(l3’u), A(L?”u), C'g())F and IC:())?’LU’H) to
infinite-volume observables. We begin with Ag:s,u) (see Fig. )7 and work from left to
right converting sums into integrals. The k sum leaves a finite-volume residue because of
the singular propagator A(P—k—r), while the 77 sum leaves a residue because of A(P—p—r).
The infinite-volume quantity that results, which we call A/G%) is thus given by the same

expressions as Eqs. (5.156)) and (5.157)) except that ZEﬁ is replaced by PV fgﬁ/ fﬁ in

Eq. (5.157)). The finite-volume residues can be obtained using the same argumentation as

for AgQ’u) in the previous subsection. The result is

1(Bu) _ 4/(3u /(1,8 o (2,u,u) (2,8 B
AP = A 2 AL =il 4+ 24P NG (5.161)

Note the superscripts “s” on the Ar’s and the factors of 2 due to the missing symmetry
factor at the switch states. The new quantity A'29) g simply A2 expressed in the
alternative coordinate system, just as in the definition of A’1), Eq. || We can now
use the result from the previous subsection for K§2’u’u), Eq. , to obtain the desired
identity

iF

2w’ iKCai G2 LPiky + 2A"0) zIC((ff’,:s’ .

/(3,u) 3,u A 2,8 1) -+ 2 Ls
A[ = A/( ) +2 ( )Z 2K2 A/( ) 2wL3
(5.162)

This derivation naturally lends itself to a recursive extension to higher order, one that we

will explain in the next subsection.
The result for Af”u) is given simply by reversing the order of factors in each term:

iF
2wL3

AP — ABW LKy FRAPS) 4 iKgiGilCai F2AMS) i) 2 204(9) - (5.163)

We next consider C’f’% - Working from left to right we obtain the infinite-volume quan-
tity plus one finite-volume residue from the k sum and another from the 7 sum. Following

our by now standard manipulations, this leads to

O = €O 4 o400 42 4oy

(1u)
o3 AL oAt (5.164)
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Here C’g) is defined as in Eq. (5.158)) except that the momentum sums are replaced by the
ordered integrals PV fﬁﬁ/ fff’\\// Jz- Note that A(L2’u) still contains a momentum sum, but
we can obtain a complete decomposition using Eq. (5.150f) from the previous subsection.
This leads to

P
Py — CQ = 2409 —2;L3ilC2iF2A(1’S)

o0

F 1F
ARw) L9 A(28) 7
2wl3 + 2wl

We are thus left with Ké?,],:u,u) [Egs. (5.15915.160|) and Fig.|5.15¢]. As always, our method

+ 2A/(1,S)

AW (5.165)

is to replace sums with integrals while keeping track of finite-volume remainders. The
analysis is shown diagrammatically in Fig. [5.16 The first step is to do the ¥ integral.
Singular terms occur only if the contour circles the r’ = w, pole; for the remainder we
can replace the sum over 7 with an integral (giving the last term on the right-hand side
in Fig. |5.16p). Thus to study the singular terms we can replace A(r) with 1/(2w,) and
set r = [wy, 7] (indicated by the dashed top line in the figure). The sum over 7 runs over
two potential singularities, one in A(P—k—r) and the other in A(P—p—r). To use the
sum-minus-integral identity, we must pull out the double singularity (the first term on the
right-hand side in Fig. ), leaving a remainder with at most single singularities. To do so
we follow the analysis of the previous subsection [see Egs. ], applied separately
to the two propagators, both of which are sandwiched between factors of K. This analysis
can be applied independently to the contributions associated with each propagator, with
each separated into into an on-shell singular part and a divergence-free quantity. This leads

to the decomposition
aA(Buu) e oy 3. sy (2,u,u)
Ky = iK2iGikoiG 2w L?]ike + zIngGlede
+ikSs 1) (wLP)]iG2wL?] + R, (5.166)

where the first three terms correspond to the first three terms on the right-hand side of

Fig. |5.165 E while R is the sum of the last two diagrams in the figure. The only properties

*"The appearance of [2wL?] and its inverse in the third but not the second term is due to the facts that
[1/(2wL?)] appears on the right in the definition of G, Eq. (5.21)), and that [2wL®] does not commute with
G.
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Figure 5.16: Decomposition of IC:(,)?’L“’“). See Fig.|5.15(c) for momentum labels. Double solid

lines indicate non-singular terms. On the top line these come from the r° contour circling
poles other than the single-particle pole, while for the diagonal lines in the switch state the
notation is as in Fig. Double dashed lines represent the singular quantity G° sand-
wiched between on-shell amplitudes, as in Fig. The single dashed line within the loop
(top propagator) indicates the on-shell propagator factor 1/(2w,). (a) Initial decomposition.
Loop momenta inside dotted boxes are summed, while those not in a box are integrated.
(b) and (c): Use of the sum-minus-integral identity, as indicated by the vertical bars and
factors of F, leaving a remainder which is integrated. The vertical bar crosses the two
propagators whose momenta are projected on-shell by F', so that the uncrossed propagator
is the spectator. Ké?;:g’u) is given by the sum of the four terms containing loop integrals

(two in (a) and one each in (b) and (c).
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of R that we will need are that it is an infinite-volume quantity (since the sum over 7
which it contains can be replaced by an integral) and that it is a smooth function of its
arguments. An explict form for R is not needed—Eq. serves as sufficient definition
since all terms other than R are known.

As noted above, we can use the sum-minus-integral identity on the two terms in Eq.
containing a single factor of G. Unpacking our abbreviated notation, the first such term

can be written

iy (2
[lengleéf’g’“)} =
’ p,Lmik, 0 m/
f’\\// 1 7e b - .]C(Q,mu) -k E *
) v Z;Z,m;€1,m1(ﬁ)z Zl,muég,mg(par)?’ df73;£27m2;g/m/(raqra 7Qk)
T T

+

B [ |t () e RPN 1) (7
L - - ,mily,m

% 2wy 2wpr (B — wp — wr — Wpy) qT’f

y (27u:u)
x ZlCdfy?);T,bmu;k,Z’m’ . (5.167)

The integral (the last term in Fig.[5.16p) is combined with the corresponding integral from

the third term in Eq. (5.166)) (the last term in Fig. |5.16c), and with R, to define IC&;’;’U).

This is the two-switch contribution to the continuum divergence-free amplitude. The sum-
integral difference requires some adjustments to allow the use of our identity. First we make

the substitution

A V4 2) )
VATY 0y (007 1) 2K sttt =
A 27 ) — 7
VATY, 1 5V 0 K i 05 B )

/ A 27 ) hond 7 — 27 ) - o7
— 471—)/@2,7)12 (p*)lc((jfg;z2)7m2;£/7m/ (T,p*, k? q;;) - ,C((if,g;%)f’,m’ <T7p, k, q;::) . (5168)

In words we are changing g; — p*, which is allowed because the difference between the old
and new forms is proportional to p*? — q;Q, which cancels the singularity. We explain in
Appendix [D| why the difference has this particular scaling. In fact, we have already made
implicit use of the scaling in our on-shell identity for the sum-integral-difference, Eq. .
After this change, the sum over ¢ and mso can be done, leading to a version of Kézfzg’u) which

is off shell on the leftﬁ At this stage we can drop the H(7) factor from the summand of

280ur notation for this quantity, ICng’gz’u_i,, ot (P2 1, k,q;) indicates through the absence of a subscript
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the sum-minus-integral term in Eq. (5.167)), since it is not needed to define the boosts, and
the difference 1 — H(7) cancels the singularity. These manipulations bring the sum-minus-

integral into a form where we can apply our standard identity. In this way we find that the

sum-minus-integral in Eq. ((5.167]) can be written
i . ~(2,8,u)
Kot F2IK 575 (5.169)

,u) (2,u,u)

2 : . : . L, ..
where K((ifjg is defined by re-expanding K df,g in spherical harmonics in 7. This is shown

by the first diagram on the right-hand side in Fig. [5.16b. Specifically, the off-shell form of

2 ) ] .
K C(if’g’u) is expanded in harmonics

/ - 27 ) ong 7 j— 25 ) > =7
47TYZ: , M1 (T*)]C((if,;;zl),ml;ﬁ’7m’ (p7 7’*, k7 qlt) - K:((jfg;u;)g/,m/(rv ) k7 QZ) ) (5170)
and then put on shell and restricted to finite-volume momenta,
(2w = K@sw 5.qk k.qt) 5,k € (2r/L)Z? 5.171
dt3ipnmask tmt = Kt 3ty s o (0 Gpo Ky 0) - D)k € (2m/L)Z7] (5.171)

The superscript “s” once again indicates that the momentum singled-out by the coordinate

system on the left, here p, is one of the scattered outgoing particles.

We stress that the validity of Eq. ((5.169)) requires two properties of lC((ff’g’u). First, it must

be a smooth function of its arguments, for otherwise there would be additional contributions
to the sum-integral difference. As discussed in the previous subsection, smoothness requires
that G be defined including the factors of (p*)z1+e2. Second, it must be divergence-free, and
thus local in position-space, so that the expansion in spherical harmonics of 7* is convergent.
This is one of the ways that our analysis forces us to use divergence-free quantities, as
announced in the introduction.

The other term in Eq. containing a single factor of G can be analyzed in a

similar fashion, leading to an integral plus the finite-volume residue 2iIC((j2f’§’S)iF ilCo. This

(2,s,u)

is shown in Fig. |5.16c. Here Kj; is defined in an analogous way to Ky, but with

(2,’“4,8)
3

the re-expansion in new coordinates occuring for the incoming momenta. As already noted,

the integral is part of the non-singular remainder which builds up IC((E’;’“). Combining all

between the two semi-colons that no angular decomposition of the outgoing coordinates is being done.
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elements, we finally reach

iKY = iy GikCyiGRw LKy + iy P2y + 20K Gy ViFiks +iK(Ey™ . (5.172)

This has the desired form in which each term is a product of on-shell, infinite-volume
quantities and kinematic factors.

The result and the similar decompositions in Egs. , and
can now be substituted in Eq. to obtain our final result for the two-switch correlator
01(23). The result is lengthy and, at this stage, unilluminating. We hold off on making such
substitutions until we are working to all orders, in the next subsection, for then the result

simplifies.

5.83.4  Two-to-two insertions: any number of switches

In this section we sum all remaining contributions to the finite-volume correlator con-
taining only Bs kernels, allowing any number of switches in scattered pair.

The first step, as before, is to replace sums on two-particle loops with integrals plus
factors of F'. This leads to the appearance of Cg’% o Agn’u), A(Ln’u) and IC:(,:LL’u’u), with n > 3,
which are generalizations of the quantities found earlier. Their definitions, sketched in

Fig. are

ctie= | 1L | v (7 [ |11 [ |roswair-n-

X ilo o (@, P—q1—a, —q2) A(q1) A(P—q1 — q2)iKo o (q1, P—q1—q2, —q3) X -+ X

X A(Gn—1)A(P—¢n—qn-1)iK2 0t (Gn—1, P—Gn—qn—1, —a") A(gn) A(P—gn—a’) A(a ) o' (g, a')
(5.173)

A

) (Rl W ARYin (i) = HL?’Z Ayl _l/qm]

o(q1,a)A(a) A(P—q1—a)iKs ot (a, P—q1—a, —q2) A(q1) A(P—q1—¢2)iK2 o (q1, P—q1—G2, —q3)

X A(q@2) A(P—q3—¢q2) x -+ - X iKo o (gn—2, P—Gn—2—qn—1,—D)

S A(Qn—l)A(P_P_Qn—l)iKQ,off(Qn—l, P_p_qn—17 —CL/) ; (5174)
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() Z'/C:():LI’JU’U)

1(n,u)

Figure 5.17: Diagrammatic definitions of (a) A}, (b) C} (g, and (c) Ky}
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with AS{L’“) defined analogously by reflection, and

n—2 n—2
% n,u,u NES 1
ATYyr (@ )ZICi(’)LE’) 1o (P07, Fya*)Yym (@) = H ﬁz [H /0]

m=1 (j’m m=1 9m
X iKgoff(a, P—p—a, —q1) A(P—p—q1)iKo ot (p, P—p—q1, —q2)

X A(@)A(P—q1—q2) X -+ X A(gn—2)A(P—k—qn—2)iKa2 ot (¢n—2, P—p—gn—2, —a’)
(5.175)

The above definitions give partially off shell versions of A’L(n’u) and IanL’u’u). The on-shell

versions are defined as usual by

AIL%UZW = AIL(;TZ’,U) (k q;) and ]anLupz? kb = IC(nLu;) 0.m (P Q> k . q5)
with 7, k € (2r/L)Z? (5.176)

(n)

with an analogous definition for A,

It is simpler to write down the all-orders form of
oo
P =3 "o, (5.177)

(n)

than it is to write down C} " itself. The superscript “[Bs|” here is a reminder that no Bs

kernels have yet been included. We find

B] 1F %
? ZCLOF (2/3)0" 550!

> i,u > . u,u > k,u
Soa {Z (z/cg,L ) [A]) } S a9l (5.178)
1=0 n=0 k=0
Here we have made the definitions
AS—?’U) =", Ag’u) = A0, A/I(lo’u) =o", A}El’u) = 40w (5.179)

in which infinite-volume quantities are relabeled as though they have volume dependence,

in order to simplify the form of the result. We have also introduced

ZIC”““). (5.181)
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The way in which arises should be clear by generalizing the discussion leading to the
results for CIEO) +Cg) [Eq. ], C’f) [Eq. ] and CIEB) [Eq. ] above. In words,
one has endcaps, involving any number of switches, connected to any number of finite-
volume three-particle scattering amplitudes with intemediate factors of [A] Recall that
[A], defined in Eq. , is closely related to the two-particle finite-volume propagator.

To bring Eq. into a useful form we need identities relating all quantities with L
subscripts to infinite-volume quantities and finite-volume remainders.

We first consider A/L(n’u), and for now seek only to rewrite this in terms of IC:(S]LUU) as well
as infinite-volume quantities. Our basic strategy is to move from left to right, replacing sums
with integrals plus sum-integral differences. The reason for moving from left to right is that
each sum then has a summand with only one singular factor, which we know how to handle.
All double singularities are removed, because each sum is adjacent to an integral which
removes the singularities in one of the two switch-states containing the summed coordinate.

We describe in some detail how the process works for ¢; and then state the final result.
The sum over ¢ has a potentially singular summand in the propagator A(P—q; —g2) (the
singularity in A(P—q; —a) being removed by the the PV integral). For this singularity to
be present, both ¢ and g2 must be on shell, so we must first do the ¢¥ and ¢J integrals
and pick out the particle poles. In this singular term we can replace the sum over ¢ with
an integral plus the sum-integral difference. Generalizing the analysis given earlier, we find

that the sum-integral difference gives

F
ot (5.182)

(1,
24109 I3 3L

What remains are terms involving the PV integral over ¢i, and these can be repackaged
into a quantity with exactly the form of A/]En’u) [Eq. (5.174)] except that the sum-integral
/L3y @ PV fql is replaced by the four-momentum integral PV fq1' In this way the finite-
volume residue from the sum over ¢; has been determined.

We now repeat this analysis for ¢o, finding that the F' term is

.F n—z,u,u
2.4/(2:5) 2; Lgmgl 2u) (5.183)

while the remainder has the form of A,L(n’u

)

with sum-integrals over both ¢; and g2 replaced



175

by integrals. Continuing this pattern, we deduce
Z 9 A/(0-5) ucg"L ) 9 An=Le)ipifcy + A/ (5.184)

This result holds for n > 2, and agrees with Eq.(5.161|) for n = 3. The infinite-volume
quantity A% is given by the same expression as A,L(n’u) [Eq. (5.174)] except that all sums

are replaced with PV integrals, with the order being
PV [ -..PV 13\7/. (5.185)
qn q1

The quantities A'(™*%) are defined in terms of A% by changing variables exactly as for

A1) [see Eq. (5.141)].

(n,u)

The analysis for A} /(n,u)

is the mirror image of that for A}, so that the sums are now

dealt with moving from right to left. The result is

Z IC?’L zuu

(05) 1 ijCoi F2AM=18) 1 g(nu) (5.186)

We treat Cén()) r in a similar fashion. Here we can choose to work from left to right or vice

versa—mboth choices lead to single singularities for each loop sum. As above, our convention

1(n,u)

is to work from left to right. Since the analysis follows that for A} very closely, we

simply quote the result,

n—2 .
n i,8) n—iu n—1,s iF u n
cg’gF:ZQA'@ o L3A< ) o4/ VoAt O, (5.187)
n—1
=249 2ZF Al 4 o) (5.188)
=1

To obtain the second form we have used A(Ll’“) = AW The quantity C’ég) takes the same

form as Cén()) 7 [Eq. (5.173)] except that all sums are replaced by integrals, ordered as

v [ ...V ﬁ//ﬁ//. (5.189)
q1 a a’

qn

The result (5.188)) is valid for n > 1, and agrees with Eqgs. ((5.151f) and (5.164) for n = 2

and 3, respectively.



176

The next step towards simplifying the result for C[LB2], Eq. (5.178), is to perform the
sums over the number of switches. In particular, from Eq. (5.184)) we find

Al = ZA mu) = AW 4 9 4/(6) [ze/CQ b ;cgu;ﬂ , (5.190)

I F
w3
where

AW = ZA’”“ and A'¥) ZA’“ . (5.191)

n=1

Similar definitions will be used for A® and A®), and also for the amplitudes corresponding
to the third choice of momentum assignments, A’®) and A®). The latter were introduced

in Eq. (5.146)).

An analogous result to Eq. (5.190) holds for the other endcap

=5 AP = AW 4 [z/CQZF +iKy )2 3240 (5.192)

while for the correlator sum we obtain

Z Clop = O 4 2419 - L3A(“) , (5.193)
where
clBl=%"cl, (5.194)

Substituting Eq. (5.192)) into the result (5.193)) allows us to rewrite the latter in terms of a
)

single finite-volume quantity, ngui“ .

By .

We can now express C[L

This requires substituting Eqgs. ((5.190) , and ( into Eq. (5.178) and using the

following identities

in terms of infinite-volume quantities together with IC(U w,

> . u,u n > . u,u n F
<zeIC2 > [A] nz:;) (”C:(%,i )[,A]) = [A] nz:% (leé,i ) [A]) - 2;? , (5.195)
= [A] > (ks [4))" (iICziF + ik 2“;) . (5.196)
n=0

After some algebra, we obtain a relatively simple form

o0

2 iF ) \"
3305 T A (iK' 14])

n=0

C[B2] clbl 4 solPel 4 AP AlB2] (5.197)
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where
AlB2l — g A/ g/s) o A1) AlBel — ot A g () 4 4() (5.198)
and
5C1B) — ?/[Bﬂ%w) _AG) 4 §<Af<u> A 2523 ot (5.199)

Several comments are in order. First, we observe that summing over all switches has
led to a dramatic simplification in the expression for the correlator. This can be seen, for
example, by comparing even the one-switch expression to Eq. . Second, to
obtain Eq. we have made use of the fact, explained after Eq. , that, within our
derivation thus far, superscripts (s) and () are interchangeable. This allows us to write the
result in terms of endcaps, A'P2) and AlP2)| which are symmetric under particle interchange.
We stress that this symmetrization occurs only when working to all orders in the number
of switches, since it requires combining terms with different numbers of switches. Our third
comment also concerns symmetrization, or rather the its absence in Eq. . Recall that
particle-interchange symmetry was violated when we chose to analyze the loops in Cg?g P
moving from left to right, since this led to (s) quantities always being to the left of those with
superscripts (u). Forcing the endcaps into symmetric form leads to the remainder (50([5 2],
Note that in the terms involving a (u) — (s) difference, we can freely interchange (s) and (s),
and we have used this freedom to choose both terms to involve (s). Although §C appears
to be a finite-volume term (since it contains factors of F'), in fact, as we show below, it can
be rewritten as an infinite-volume quantity. This means that 50!5 2] can be absorbed into
an alternative infinite-volume quantity, used in place of Cc[f 2 Since other contributions of
this type arise in the analysis that follows, we delay our definition of the replacement until
Eq. below. We note that our job is not done, because the result still contains

(u,u)

the asymmetric three-particle finite-volume scattering amplitude £C3;. We return shortly

to the task of rewriting this in terms of infinite-volume quantities.

First, however, we rewrite 56’(&52] in a manifestly infinite-volume form. We show how

this works for the first term in ((5.199)) from which the generalization to the second term is
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immediate. The steps are as follows:

2 i iF o g 11 1 —
A (A A = 253 | B3 PY |
k a
. H(R)H(@)H (b) . .
A'lB2] L AW _Alw) 9
AR ) T s (A (R, )~ A @ ) (5.200)
Y (5o [ gBn - iH (k)H (@) H (bya) W7 = AW (= T
- /k PV / AR 7) s LT (A0(R.3) - A @) (5.20)
= ip(k) - - ip
= [ a8 (5 PR ) By — 4O ()] = AB P[4 4 202
A EEL A ()~ A By = AL . (5.202)

where in an abuse of notation, in the last line we have introduced the shorthand that
integration over k is implicit for a product involving p.

In the first step, we use the sum-minus-integral identity in reverse, as well as the def-
inition of A®) [see Eq. } The momenta k and @ are on shell, but, in general, the
third four-momentum, by, = P — k — a, is now off shell, Thus amplitudes are not invariant
under the full particle-interchange symmetry. Nevertheless, A/52] (E, @) remains symmetric
under the interchange k @, while the A® — A®) becomes a term which is manifestly
antisymmetric under this interchange. Since the remaining terms are symmetric, the entire
summand /integrand is antisymmetric. This observation allows us to drop the double sum,
since a symmetric sum over an antisymmetric summand clearly vanishes. The sum over k
can now be replaced by an integral, since the PV integral over @ leads to a smooth function
of k. At this stage we obtain the second form of the right-hand side. The final step is to
notice that, if an ¢e pole prescription were used, then the double integration would also
vanish by symmetry. Thus it is only the p term in the definition of PV integration that
survives, and its form is obtained using Eqs. and .

Applying a similar analysis to second term in Eq. , we find, in total,

SCIB2) — A1B2) 1P [0 _ ()] 4 A0 _ )] 3P 2
Cid 2 ]+ Iz (5.203)

where, as above, integration over k is implicit.
This is a manifestly infinite-volume quantity depending only on on-shell (but not sym-

metric) amplitudes.
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Figure 5.18: Decomposition of Ky ;"". All external propagators are dropped, and the nota-

tion of Figs.

5.12

and

.16

is used. (a) ICg}’Lu’u) itself [see Eq.

5.175

J; (b) the most singular

term (with three singular propagators); (c) and (d): terms with two singular propagators

and their decompositions; (e), (f) and (g): terms with one singular propagator and their de-

compositions; (h), (i) and (j): non-singular terms. Terms in the decompositions are always

ordered from most to least singular. The treatment of loop momenta is indicated explicitly:

they are either summed (dashed box), integrated (integral sign) or the sum-minus-integral

identity is used (factor of F'). Where the order of integrals matters it is shown explicitly.
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The final identity we require is that for IC;”L’U’U). The identities for n = 2 and 3 are given,

respectively, by Egs. (5.138) and (5.172)). To understand how the pattern generalizes to

arbitrary n it is useful to first work out explicitly the result for n = 4, since new effects occur

at this order. The decomposition of ICéil’L“’u) is shown diagrammatically in Fig. [5.18] Here

we are using a stripped-down diagrammatic notation in which external lines and momentum
labels are implicit. The basic method, however, is exactly as used earlier for n = 2 and
3: (i) do the time-component integrals over the loop momenta, and separate the result
into on-shell particle contributions and the remainders; (ii) separate each of the remaining
“diagonal” propagators and their attached factors of Iy into a singular part (containing
G®) and the non-singular remainder; (iii) pull out the most singular term; (iv) analyze the
remainder by converting sums into integrals where possible, which in some cases leads to
residues containing factors of . The key point is that after the most singular term has
been subtracted, there is always at least one choice of ordering of momentum sums in which
allows the use of the sum-minus-integral identity at each stage. For most terms in the
decomposition there is either a single such choice or the order is unimportant. However, at
n = 4 we first encounter a case where there is a significant choice of ordering to be made.
As n increases there are more such cases and we need a convention for how to deal with
them.

We now work through the different contributions to ICgil’Lu’u) in some detail, starting from
the most singular and working to the least. We recall the notation [from Eq. and
Fig. ] that ¢ is the leftmost loop momentum and g2 the rightmost. The most singular

term is that shown in Fig. |5.18b, and gives the contribution
(b) = iK2iGiKeiGiKeiG[2wL]ikCs . (5.204)

This term must be left as a sum (which is implicit in our matrix notation).

Contributions with two singular propagators are those of Fig. [5.18¢, its “reflection” (not
shown) in which the rightmost diagonal propagator is non-singular, and Fig. |5.18d. The
decomposition of the first of these is also shown in Fig. [5.18c. We must begin with ¢
since the ¢o sum runs over two singular propagators. We first convert the ¢; sum into an

F-insertion plus an integral. For the F-term this is as far as we can go, since the ¢ sum
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runs over singularities in both F' and the propagator. For the integral over ¢; we can repeat
the F' plus integral decomposition for gs. Note that in the resulting double integral the
order of integration is important. The net result is that there are three terms, each with

different levels of singularity. The doubly-singular term gives

(c) [doubly singular] = 2ik{y™ 21123 iKaiGRwLPiks (5.205)
while the term with one singularity is a contribution to
(c) [singly singular] C 2iky ™ iFikC, | (5.206)
and the non-singular term contributes to
(¢) [non-singular] C iICéA;:g’u) , (5.207)

The reflected contribution is decomposed similarly.

The decomposition of the remaining term with two singular propagators is shown in
Fig. 5.18d. Here, since the singular propagators are separated, the sum-integral identity
can be applied to each independently. Thus there are four terms in the decomposition. The

doubly-singular one is
(d) [doubly singular] = iKyi FAIKSy Y iFilCs . (5.208)

Note that here both (u)’s have been switched to (s)’s. Each switch comes with a factor of

2, leading to the overall factor of 4. The singly-singular terms contribute to 2il€é§’§7s)iF ilCo

and Kot I QiKé‘ig’u), while the non-singular terms contribute to ing;:g’u).

There are three diagrams containing one singular propagator: Fig. [5.18g, its reflection,
and Fig. 5.18f. In the first, the sum over ¢2 can be immediately converted to an integral,
since the summand is non-singular. For ¢q; we obtain the usual F-term plus integral. The

former gives rise to another contribution to ¢/Coi F' 2ilC$’§’u), while the latter contributes to

ilCéA;’g’u). Analogous results hold for the reflecton of Fig. [5.18e.

The diagram of Fig. [5.18ff leads to a new effect. Here we can use the sum-integral identity
either on ¢ or ¢». Our convention (as above) is to work from left to right when there is

such a choice. This gives the singly-singular term

u,s F . u,u
(£) [singly singular] = 2iK7s )ﬁzlcfff;g’ ), (5.200)
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where our convention has led to the (s) being on the left side of the F', rather than on
the right. The non-singular term contributes to zICc(ﬁigu). Here our convention leads to a
definite (left to right) ordering of the PV integrals.

Another new feature of the n = 4 analysis is the appearance of singular contributions in
which one of the q;-) integrals does not circle the particle pole. The corresponding diagrams
are Fig. and its reflection. The decomposition exactly follows that of Fig. [5.18k.

Finally, we reach the completely non-singular contributions, where sums can be im-

mediately converted to integrals. There are four such diagrams, Fig. [5.18h, its reflection,

Fig. |5.181 and Fig. |5.18}j. These all contribute to ZIC((;;;“).

Adding all contributions we find the total result

Zlci():li%u) 1KotGiKo1GiKo [’LGQOJL ]ZICQ + z}C2ZG[2wL ]ZK2 2 KéQf;u)

+ 2¢/C§ff;§"5) 55 K G2w LKy + iRy FAIK (S )iFi/CQ + 20K iRk

P
+ Ky P2k + 22‘/6((1?;"5)22 T3k ik (5.210)

where we have ordered terms in decreasing strength of divergence. The only aspect of this
result not explained above is that contributions combine properly to give the quantities
ICg}’g’s) and Ké%:;’“) in the fifth and sixth terms, respectively. For example, the Ké?}gs)
term receives the required four contributions (see Fig. [5.16) from diagrams (c), (d) and the
reflections of (e) and (g). One can demonstrate that the correct contributions occur in all
cases by observing that (i) the result (5.210) provides a complete classification of possible
divergence structures and (ii) that expanding out each term in leads to a unique

set of contributions each of which is necessarily present in the decomposition of IC(4uu)

IC((;% g ), is simply defined as the

Finally, we note that the non-singular term in Eq. ((5.210)),

sum of contributions from all the diagrams in Fig. (plus appropriate reflections) that
contain only loop integrals.

(

We are now ready to explain the result for general zIC n “%)  What arises are sequences

alternating between one of the K’s,

iKo, iy, 20y 20kl and 4Ky (5.211)
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and one of
1 F
Qw3

and iG . (5.212)
All possible combinations should be included, subject to the following rules

e The number of switches must add up to n. This number is given by the total number

of F’s and G’s plus the number of switches in the Kqf 3’s.
e There must be a Kz or g3 on both ends.

e Fach K43 must have F' on both sides unless external. This is because the loop
momenta next to a Kgr 3 have only one singular propagator in their summands and so
the sum-integral identity can be used. This implies, given the rules above, that each

G must have a IOy (and not a ICqr 3) on both sides.

e [’s must have a Kgr3 on at least one side, or, equivalently, F’s always appear on
one side or other of a Kq¢ 3. This is because one cannot use the sum-integral identity
in the middle of a sequence of singular propagators, since each loop sum runs over
two singularities. The identity can only be used at the end of the sequence, and only
then if it terminates with the non-singular part of a propagator. An example of this
rule is that Fig. cannot be decomposed using the sum-integral identity, whereas
Fig. can at the left-hand end. A consequence of this rule is that the only long
subsequences involving K9 have the form . ..iK2iGiK2iGiKs . ... These correspond to

diagrams with sequences of singular propagators.

e In a sequence of the form ...iKoiGiKoiGiko . .. the rightmost G is multiplied on the
right by [2wL?]. This arises from keeping track of on-shell propagators.

e The right-hand superscript of each KCq 3 is (s) unless it is external, when it is a (u).

Examples are the third, fifth and seventh terms in the expression (5.210)) for IC:(f’Lu’u).

e The middle superscript of each Cqs 3 is (s) unless it is either external or it appears

to the right of another Kg¢ 3, separated by a single F', in which cases it is a (u). The
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difference from the previous rule arises due to our “left-to-right” convention of dealing

with loop momenta. An example of the new exception is given by the penultimate

term in Eq. (5.210).

A simple consequence of these rules is that the most divergent contribution to leénLu ) g

iKo (iGika)™ 2 iG[2wL3]iky (5.213)

Similarly, sequences having this form (but with smaller values of n) can appear both con-
necting the ends to factors of Kyt 3, or between such factors.

It is simpler to display the full result for the summed quantity IC3 L =3, IC " uu)
than for IC("UU). This removes the constraint of the first rule, so that the sequences are

now composed of the quantities

(uu) n,u,u) n,u,s) n,s,u) 5,8 n,,s)

Kat’s —Z/Cdfg ) dfg—ZiCdfg : dfg—Z’Cdfg d/Cdfg—Zdeg :
n=2

(5.214)

In addition, the sequences of divergent terms of the form ([5.213)) can be summed, leading

to
> ik (iGiKa)" ™ iG2wLPikCy = iTiG[2wLP)iK, = iKaiGiT[2wL?] (5.215)
n=2
where
'Tzé‘lc =K b (5.216)
CETikyG " T M T TGk, '

We have used here the result that Ko commutes with [2wL3], since both are diagonal.

To show the result in a compact form we collect the Kgf 3 into a two-by-two matrix.
Now is a good point to recall that, using the arguments following Eq. , we can freely
interchange in our formulae the superscripts (s) and (). This is allowed because the rules
always lead to quantities with (s) superscripts being adjacent to those with (u) superscripts
(with an intervening factor of F'). This allows us, for example, to replace 2/Césf’7§) with
Késf”g) + IC(S u). The point of such changes is to move towards a physical quantity which

contains the symmetric combination (u) + (s) + () for all superscripts. With this in mind,
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we introduce the matrix of matrices

| iKGis G+ iKars
Z’Cdﬂg = . (5217)
G IS K G G K

The quantity symmetric under particle exchange is then

1
ik = ( 11 > (ilCdf,3> : (5.218)

1
Using this matrix notation, and implementing the rules described above, we find

ucgfg“) = iTiG[2wL3ikCs + ( 1 iTiF ) (i/cdf;)))

J

2 01 ir 1
% o3 \ 1 iTiF | | Kars . (5.219)

=1 S iT2wL?

We have succeeded in pulling out explicit finite-volume factors, with the infinite-volume
quantities being ICo and the two-by-two matrix, (K4¢3). The latter, however, does not
appear in the symmetric form ([5.218)). In particular, our left-to-right convention leads to

the presence of an assymetric matrix between factors of (KCqr3).

The final step is to insert the result (5.219)) into our expression for C’[LBQ}, Eq. (5.197),

and simplify. We begin by keeping only the first term in (5.219)), i.e. that which arises from
(

summing the most divergent contributions to Kgui“). We find

o0

[B2] _ (Ba] _ 5clBa] _ gr1Ba) |_2_F T A1\" | 4B
ol _ clBal _ 5clB) = 4 32wL3+[A]7;)<Z,C37L A])" | A (5.220)
= ABlip AlB] 4 O(Kye3) (5.221)

where the first line is a restatement of Eq. (5.197)), and the second contains the new quantity

iF [ 2 1
By= |2 | 222
8T 903 [ 37 1—¢T¢F} (5:222)
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To obtain this form for F3 we have used

4] (TiCR LK [A])"

n=0

iR 1
I3 1 —iTiF"

(5.223)

Here the two sides are different ways of writing the sum of sequences in which F’s or G’s
alternate with /Co’s in all possible orders, with the constraint that sequences must have F’s
at both ends. On the left one sums first over the number of intermediate F’s and then sums
over G’s, while on the right the roles of F' and G are interchanged. In the following we will
also need two further ways of writing this quantity

iF & - o - 1 P
Wl—iTU?_{Z([A]ZTZG[QWL JiKcz) }[A} = [T W 2

n=0 T 2wLd

Next we consider terms proportional to Kqr3. These are obtained by replacing one of

the factors of Kéui“) in the sum over n in Eq. (5.220) with the term linear in Kg¢ 3 from

Eq. (5.219)), with all other Kéuiu)’s replaced by the most divergent term from Eq. (5.219).

This leads to the contribution

clBl _ Bl _ 5clBe) 5

' 1
B 1 1 .
AT 2wL31 —iTiF < 1 iTiF ) (ledf,;»,)
iF

stz iT2wL?

1 iF
x T AlB2] - (5.225)

1— 525iT2w 3] 2wl?
We next use the identities
iF 1 ) iF
5wIP 1 —iTiF ( L iTiF ) = iFs ( 11 > M ( i -3 ) (5.226)
1 1 iF 1 2/3 | ip

iF5+ (5.227)

1— ST 2wL3] 2wL3 23

L iT2wL? 1 ~1/3
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to rewrite the right-hand side of Eq. (5.225)) as

A'lB2] {ZFg ( 1 1 > + ST ( % _% >} <1de’3>

1 2/3 .
i
% W Qw3

1 ~1/3

APl (5.228)

Here we have separated out the symmetric part of (Kg¢ 3), which is multiplied on both sides
by F3, from the asymmetric parts. The latter can be analyzed in the same way as 5C£§ 2]
[see Eq. and subsequent text]. This is because the vector (2, —1) projects, both
from the left and right, onto a (u) — (s) combination (if we use the freedom to interchange
(3) and (s) when separated from symmetric quantity such as A’152 by an F). For example,

using this freedom one finds

. 1
iF .
A'B2] WL ( 2 1 ) <’LICdf,3> =

1
By M2 () e(sa) | ae(ws)  ge(ss) | e(wd)  (s3)
AP 2wL3§{Zde,3 — ik + ik — ikars +ikars _Z’Cdf,:’,} - (5:229)

This means that, just as in Eq. (5.202)), F/L? can be replaced by p with the (implicit) sum
over the spectator momentum replaced by an integral. The same holds for the F' on the

right of (Kg¢3). We can therefore rewrite Eq. (5.228) as

. 1 2/3 .
. 2 . . 1
A'lB2] {ZF3 ( 1 1 ) + ﬁ < _% )} (ZICdf’?,) 1F3 + ﬁ A[BQ},

1 -1/3
again using the notation with implicit integration for p factors that was introduced in

Eq. (5.202). The contribution linear in ICq¢ 3 can thus be broken up into four parts: (i) a

Wl

(5.230)

finite-volume term involving symmetric quantities

A/[BQ}Z'F3Z'IC££23]Z'F3A[B2] ; (5.231)
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(ii) a partially asymmetric term with p on the left

. 1
B2l g, WP ; o, AlBe]
ATHiFy o - ( 2 1 ) (zlcdf73> iy AP (5.232)
1

which can be interpreted as §(A'1P2))iF3 AlP2] where 6(A'1P2]) absorbs the infinite-volume

integral involving p; (iii) the reflection of (ii) which gives rise to A'1F2i F35(AlP2)); and (iv)

2/3 | .
> (i/cdfg,) %A[Bﬂ , (5.233)
~1/3

the infinite-volume quantity

A/[B2]ii ( 2

2w 3

ol

which is absorbed by replacing clBl

in Eq. (5.243]), below.

To see the general pattern we next consider terms contributing to C’][;Bz] that are quadratic

with the alternative infinite-volume quantity defined

in Kq¢ 3. These arise from either a single Ké“iu) term having two factors of Kgr 3 or two Ké"iu)

terms each containing one such factor. Adding these, using the identities (5.22615.227|), and

replacing F' with p where allowed, we find

1
i
X{ZF3<1 1>+2':<§ _§>}<’6de,3>
1 2/3 | .
X iFs + 0% AlB) | (5.234)
2w
1 ~1/3

Extending this analysis, we find that terms of higher order in Kg¢ 3 are obtained by inserting

additional factors of the matrix

1 .
{iFg, ( 1 1 ) + % ( % _% >} (Z']Cdﬂg) (5.235)
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after the final (Kqr3) in Eq. (5.234).

Our final task is to reorganize the series one last time into infinite-volume kernels sep-

arated by finite-volume quantities. This is done by generalizing the analysis described

following Eq. (5.228)).

The following asymmetric quantities are needed

1
Ktz = ( 2 1 > (i’Cdf,s) : (5.236)

1
2/3
Z'Kzﬁ?) =1 1 iKar 3 , (5.237)
-1/3
2/3
iKify = 2 —1 ) Kas . (5.238)
-1/3
We find a simple geometric series
clPl — clBar 4 ZA’ B2l [ i) " ips alBe (5.239)
n=0
where the redefined infinite-volume quantities are
Bopl _ N .o o(Ba) [P "
’C<[1f23p] = ZZ’Cgffg} [ K 3] : (5.240)
n=0
A'Bzpl = ZA’ [B2] [ K 3] : (5.241)
A= {%; vkl wcﬁzg} AP, (5.242)
CBrl = ol 4 sC1Bs) 4 A/[B%p} chy P lBa) (5.243)

£:3 9w
Our notation here is rather compact, with implicit integrals wherever there is a factor of
p, but we stress that it is straightforward to rewrite these definitions as integral equations.

BQ”D ] A'B20] and A2 are all symmetric under external particle

We also note that zIC[
interchange. This is because they have the vector (1,1), or its transpose, at all ends involving

external particles.
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We can bring the result of Eq. (5.239) into familiar form by summing the geometric

series, leading to

1

1 — Bkl

C«[LB2] - ngz,p] + A/[B2.r] i Fy AlB2:#] (5.244)

This completes the most complicated part of the analysis.

5.8.5 Including three-to-three insertions

In this section we add in all diagrams containing three-to-three (B3) kernels, and so
complete the derivation. The new diagrams we are considering are those exemplified by the
first and last lines of Fig. If there were only Bs kernels, with no Bs’s, the analysis would
be a simple generalization of that for two particles. The complications come from the need
to add all possible By kernels between two Bs’s (or between o and a Bs, or a Bs and of). A
key point here is that the properties of Bs are the same as those of ¢ and o, namely that
it is symmetric in external momenta (separately on both sides) and is a smooth function of
these momenta (within the range of E that we are considering). This means that we can
piggyback on the previous analysis in which we added all possible By’s between o and of.

In particular, a formula analogous to Eq. holds for each segment of a diagram
between two Bs’s (and for that between o and a Bs, and that between a Bs and o). In
words, Eq. tells us that the finite-volume correlator can be written as the sum of
an infinite-volume part and a part containing the finite-volume function F3. The infinite-
volume part is obtained in two stages: first, for each diagram replace all loop sums with PV
integrals ordered in an appropriate way; second, add in additional terms involving p, namely
those of Egs. and . In the second term in Eq. , the endcaps A'B2:#]
and AP2#] are built up by decorating o and o, respectively, with all possible By insertions,
converting sums to PV integrals, and then adding in the “p terms” of Egs. and
(-212).

Exactly the same analysis holds for segments of diagrams in which Bs’s are playing the

role of endcaps. The Bj’s are decorated on both sides with By’s, and can connect to an
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adjacent Bs (or o /o) either through infinite-volume loops or through a factor of

1
2= iFy, (5.245)
1 — Bk

following decoration analogous to that in A’'152#l and AlB2#l,
To present the result, we first introduce “decoration operators” Dg? 2P ], DE?”J | and

D[fQ’p ]7 given by
b2l = UD[CI?Q”’]UJr . AllB2rl = UDI[f,Q’p] , and AlB2rl = D[f%p]af ) (5.246)

These are infinite-volume integral operators defined implicitly by the work of previous sub-

sections. This allows us to write Eq. [5.244] as
i = o { D"+ DIz} o (5.247)

The reason for using this notation is that it works also for segments of diagrams involving
Bs’s at the ends. Thus, for example, a segment of the finite-volume correlator between two

Bs’s can be written
By {4 DAzl (5.248)

The key point is that the same decoration operators appear as in ((5.247)).

We can now write down the result for the full finite-volume correlator
CL S {D[C?%P] + DA[ABi%P]ZDQB%P} } O'T
1o {D[CB%P] + D1[£27p]ZDE4BZ7p]} ZB3 {D[CB%P] + D[g%P]ZDI[qBQaP]} O'T
. {D[C?%P] + DA[ABi%p]ZDEf%p} } ZBg {D[CI?%P} + DI[LEZ:F’]ZDLFZ,P}} 7JB3
x { D+ D zD L ot 4 (5.249)

As in the previous subsection, this can be reorganized into the form

CL=Cux+ Y A[ZiB*M" 24 (5.250)
n=0
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where

iBlP2el = 3™ ploes] [ing[C’??"’]r iBs DB (5.251)

n=0
00

A =3 o DBy D, (5.252)

n=0

A=Y plfer) [z'ng[g?“’]r ot (5.253)
n=0

Coo = 3 oD [iB D)o (5.254)

n=0
The latter three equations give the final forms of the endcaps and the infinite-volume cor-
relator, now including all factors of Bs.
We can now sum the geometric series in Eq. (5.250) and perform some simple algebraic

manipulations to bring the result to its final form

1
Cr=C A———iF3A 5.255
L e T A i ik, (5.255)
where
chf,g = K:g?’zgﬂ + Bi[))B%P] 7 (5256)

is the full divergence-free three-to-three amplitude.

We close our derivation by returning to an issue raised in the introduction to this section,
namely the possibility of poles in A, A’ and C,. We argue that, while such poles can be
present, they cannot contribute to the finite-volume spectrum, i.e. they do not lead to poles
in Cp. Only solutions to the quantization condition lead to poles in C7.

The intuitive argument for this result is that A, A’ and C, are infinite volume quantities.
While they are non-standard, being defined with the PV prescription and involving the
decoration described above, they have no dependence on L. Thus, if they did lead to poles in
Cr, this would imply states in the finite-volume spectrum whose energies were independent
of L (up to corrections of the form exp(—mL)). The only plausible state with this property is
a single particle, but this is excluded by our choice of energy range (m < E* < 5m). Three-
particle bound states will have finite-volume corrections that are exponentially suppressed

by exp(—vL), with v < m the binding momentum, but these should be captured by our
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analysis, just as is the case for two-particle bound states [I5I]. Finally, above-threshold
“scattering” states should have energies with power-law dependence on L. This is true
in the two-particle case, and we expect it to continue to hold for three particles. This is
confirmed, for example, by the analysis of three (and more) particles using non-relativistic
quantum mechanics [245] 246].

For the two-particle analysis this argument can be made more rigorous, and it is infor-
mative to see how this works. We have recalled the two-particle quantization condition in

Sec. and give here the form of the corresponding two-particle finite-volume correlator:

CLa = Coo2 + 145 FAy, (5.257)

1
1+ FKy
The subscripts on A, A’ and C indicate that these are the two-particle endcaps and correla-
tor, while I is defined in Egs. — (although here we drop the spectator momentum
index).

What we now show is that there are poles in Ag, A and Cs 2, but these cancel in C7, 5.
To see this we use the freedom to arbitrarily choose the interpolating functions ¢ and of
without affecting the position of poles in Cf . Specifically, we set both o and ot equal
to the two-particle Bethe-Salpeter kernel iBs, which, we recall, is a smooth non-singular

function. One then finds that
Coo’g = i/CQ — iBQ and AQ = A/2 = ’CQ . (5.258)
Inserting these results into Eq. (257) we find that

1 1
Cro=—iB IC Ko——————iFiKo = —iBy + ———— .
L2 1By + 1Ko +1 21—iFiIC21 1Ko ? 2+/C2_1+F

(5.259)
From this we draw two conclusions. First, As, A} and Cs 2 have poles whenever Ko diverges.
Such poles occur, for a given angular momentum, when d; = 7/2 mod 7. Thus, using the
PV prescription, there are, in general, poles in Ag, A} and Ci 2. Second, these poles cancel
in C7, 2, as shown by the second form in Eq. , which is clearly finite when ICo diverges.

We suspect that a similar result holds for the three-particle analysis, but have not yet

been able to demonstrate this. Thus, in the three-particle case we must rely for now on the

intuitive argument given above.



194

5.4 Conclusion of three-particle analysis

In this chapter we have presented and derived a quantization condition that relates the finite-
volume spectrum to two-to-two and three-to-three infinite-volume scattering quantities. In
Section [5.1] we have explained this relation in detail, so that one may use this section alone to
understand our result. Also in this section, we have explained that on-shell divergences in the
three-to-three scattering amplitude make it an unsuitable quantity to directly extract from
the finite-volume spectrum. This observation, together with other technical complications
explained in the derivation, led us to a result which depends on a non-standard, infinite-
volume three-to-three K-matrix, denoted Kgr 3.

This three-particle K-matrix is a smooth-function of three-particle phase space, and thus
has a uniformly convergent partial wave expansion. In Section [5.2] we have explained how
approximating Ky 3 (as well as the two-particle K-matrix) with a truncated partial-wave
expansion leads to a quantization condition with a finite number of free parameters. This
shows that our quantization condition, like Liischer’s well known two-particle condition,
may be practically useful in extracting scattering information.

The bulk of this work is the derivation, presented in Section In this section we
have introduced a skeleton expansion which describes an arbitrary relativistic field theory
with a single scalar particle that interacts according to any even-legged vertices. We have
then analyzed all diagrams in the expansion in finite-volume, dividing the derivation into
subsections according to the types of diagrams considered. We have shown how summing
all diagrams gives our main result.

In future work we plan to demonstrate the utility of our result in various applications.
First, in a forthcoming note, we present a perturbative expansion of our quantization condi-
tion in powers of 1/L. This expansion agrees with existing expansions that were calculated
in Refs. [245] 246] using non-relativistic quantum mechanics, and provides a nontrivial check
on our relation. Next we aim to relate our three-particle infinite-volume quantity Kgr 3 to
more standard scattering observables. This will require converting the non-standard pole-
prescription used in all Feynman diagrams, to the standard ie prescription. The analysis is

expected to be similar to the derivation presented here, but a careful study is required.
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Chapter 6
CONCLUSION

In this thesis we have shown how one may relate the finite-volume spectrum and finite-
volume matrix elements to various multi-hadron infinite-volume observables. These relations
are of importance to LQCD because only finite-volume quantities are accessible in numerical
LQCD calculations. Indeed, the formalism presented here provides the only known method
to systemically determine multi-hadron observables from the underlying theory.

The ultimate test of these ideas is to apply them to finite-volume data. For the formal-
ism presented in Chapter 2, this has already been achieved with a benchmark calculation
of the TK-nK system by Ref. [92]. For the formalism of Chapters 3-5 this remains to be
completed. This will be a particular challenge for the formalism of Chapter 5. Because
three-particle phase space is more complicated than that for two-particles, extracting scat-
tering information from the spectrum in this sector is more challenging. However, the work
presented above shows that this is possible in principle, and given the success in the compli-
cated mTK-nK system, we are encouraged that, also for three particles, LQCD can contribute

physical information.
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Appendix A
TWO-CHANNEL WATSON’S THEOREM

In this appendix we work out the consequences of Watson’s theorem for the phases of
the matrix elements of interest, (mm|Hw (0)|D) and (KK |Hw (0)|D). We assume at first
that Hy, is T invariant, and describe the generalization to non-invariant Hamiltonians at
the end. We closely follow the textbook presentation given in Ref. [24§].

We consider the 3 x 3 S-matrix with the three states being the hypothetical D meson
(at rest) and the s-wave 77 and KK states. We assume that we are in the kinematic regime
described in the main text, so that the 3 x 3 S-matrix is unitary. Although we introduce a
weak coupling between the D and the two particle states, so that the D is a resonance, its
width is of second-order in the weak interaction and thus can be ignored at the linear order
to which we work. Thus it is valid to treat it as an asymptotic state.

Watson’s theorem follows by breaking the S-matrix into a strong part S and a weak
part S". The strong part is T invariant, and, since we use states which have definite
(positive) T-parity, can be taken to be symmetric. This fixes the phases of the w7 and
KK states, though not their overall signs. Extending the dimensionless, strong-coupling

S-matrix of Eq. (2.47) to include the D gives

SO = , (A1)

0 5°

where 1 is the 1 x 1 identity and S* is the 2 x 2 s-wave S-matrix given in (2.47). The

weak part only contains couplings between the D and the two-particle states, and in 3 x 3
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notation is

0 Slvg,ﬂwr SIV[)/,KK
w
ST=1sw, o 0o |- (A-2)
S}@’K, 0 0

The assumed T invariance implies that it, too, is symmetric. The non-zero elements of S

are proportional to the desired matrix elements

S = Pyl [—iHw (0)]| D), (A.3)

where j = 1,2 runs over the 77 and KK channels, P is the square root of the phase space
factor defined in Eq. (2.46)), and ¢ is a known real constant whose value will not be needed.
Unitarity of the complete S-matrix implies that the terms linear in the weak interaction

satisfy
i = 5O (i5W) 5O (A.4)
This implies that
iSi'h = 5. (iSp k)" = 95, (i5¢p)" (A.5)
where in the last step we have used the symmetry of S". Using the explicit form for the

two-channel S-matrix{]

62i51 0
S*=R1! R, (A.6)
0 621'52
with
Ce  Se
R= , (A7)
—Se  Ce
we find
iRk Sy p = € (iR, 51 p) " (A.8)

1For simplicity of presentation, we are here using §; = d, and d2 = Ig.
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It follows that the phase of iRij,ZVD is €% . This is the desired generalization of Watson’s

theorem to two channels. Thus the quantities
s 1
vj = e Wi Z\/Ar E* iRESI (A.9)
C b

are real. Using (A.3]) we can rewrite the v; as in Eqgs. (3.15]) and (3.16]).

If the weak interaction is not T invariant, then SjWD will contain some number of T-
violating phases. Since we are working to linear order in the weak interaction, we can break
up Hw into parts each with a single T-violating phase and treat each separately. Each such

part has an overall phase €/7, and the symmetry of the S-matrix is replaced by
Spr(ér) = SPp(—or) . (A.10)

However, if we first pull out the overall phase by hand, then the symmetry of AS is restored,

and Watson’s theorem applies to the residue.
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Appendix B
CANCELATION OF FREE POLES

At arriving at the final expression for the two-point correlation, Eq. we argued
that the free particle poles of the integrand of Eq. do not contribute, and here we give
a proof of this statement. In Sections & we constructed operators that are in the
irrep of the symmetry group of the system, but the cancelation of free poles cannot depend
on this fact. It must only depend on the fact that the particles interactions are not exactly
zero. If one would choose to not properly define an operator with good quantum numbers,
then Eq. would acquire an additional sum over all possible irreps that have overlap
with the operator of interest. This in turn would lead to a far less reliable extraction of the
spectrum since multiple irreps could in principle have nearly degenerate eigenstates. With
this caveat in mind, we decide to illustrate the cancelation of free particle poles using a set

of generic operators with no particular set of quantum numbers
A(z0,P) =Y a(k)p(z0, P — k) G0, k), (B.1)
k
B(xo, P) =Y _b(k)g! (w0, ~P + k) &' (w0, ~k) (B.2)
Kk

where a(k) and b(k) are some generic function of k. Note that we have not specified
wether the sum is over all possible values of k or one specific shell; this distinction does not
matter. Additionally, we restrict the discussion to where there is only one channel open,
since this observation is independent of the number of open channels. Using this notation,

it is straightforward to write down the two-point correlation function in the vicinity of the
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free poles

5 —iL? a(k)b(k)

4wy p_kwa k Po —i(w1 p_k + wa k)

(0A(zo, P)B(yo, P)|0) = L* / 9 irs (o)
Vs

k

oy a(k)b(K') T (P, k, k)

4wy poxw2 k[Po — i(w1,p—k + wo k) 4wy p_wwa [P0 — i(wy p_i + Wo )]

kK’
(B.3)

where the ellipses denote finite contributions to the correlation function near the free poles.
The correlation function is illustrated in Fig.[B] In writing the correlation function we have
introduce a function Ty (P, k, k"), which is related to the K-matrix via Eq. Near the

free particle poles this can be written as

K(P, k,)TL(P,1, k)
T P7k,k/ K.Pkk +Z|: /:| »Yy 3 B4
L( )= ( 3 Z 4wy p_iwa 1()[Po — (w1, p—1 + wa21)] (B4

where we have neglected contributions suppressed at the free two-particle poles. The free
particle poles satisfy Py = i(w; p—k + w2 k) and in order to obtain the contribution of these,

we investigate the leading e behavior, where € is defined via
Py = i(wl,P—k + w27k) +e€. (B.5)

To do so, we again upgrade these functions to be matrices in momentum space. It is
important to observe that in general, there will be multiple values of k and P — k that will
satisfy the free energy condition, these are of course the {k}¥ and {P — k}¥. By defining
wy and wo as the free energies that satisfy Py = i(w; + we), at leading order in €, Eq.

simplifies to

I I I
—iL? b— T b. B.
e [4w1w26} “ [4w1w26] L [4w1w26] (B-6)

Here a is understood as a row and b as a column vector, [1/(4wiwee)]* is a diagonal matrix
that is zero if the value of the momenta are not in {k}¥ and {P—k}¥ and equal to 1/(4w;woe)
otherwise, while Ty, is a matrix with off-diagonal entries. By restricting ourselves to the set

of momenta that satisfy the free energy conditions, the T-matrix, Eq. satisfies

1 1 1"
TL:—K—}-ngK[ :| Ty . (B7)

4wiweoe
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At this stage we observe that, since K = O(1), one can shown that

-1
] + O(?). (B.8)

Substituting this into Eq. gives perfect cancellation of the O(1/¢) terms independent of
the values of @ and b. This justifies the cancellation of free particle poles in Eq. [£.43] which
is recovered by setting a and b equal to the Clebsch-Gordan coefficients.

However, it is common practice to restrict the scattering amplitude to a particular
partial wave when obtaining the finite volume spectrum. Here we demonstrate how this
approximation can lead to spurious free poles in the correlation function. Let Kg(n, Py)
and Tg(n, Py) be the S-wave K-matrix and T functions at the nth free particle pole which
has a degeneracy of N. From Eq.[B.4] we see that these satisfy

. N KS(ny P(])TS(TL, PO)

Tg(n,Py) = —-Kg(n,P, — 2 B.
S(na 0) S(n7 0) + ZL3 Aoy woe + O(E ) ) ( 9)
4 L3
= Tg(n, By) = —i%e +O(&). (B.10)

Substituting Eq. into the s-wave reduction of Eq. we deduce that free particle

poles only cancel when

(1/N) > a(BkbRK)= > a(Rk)b(RK). (B.11)

R,R'€LG(P) RELG(P)
If one chooses a and b to be Kronecker deltas in momentum, as is done in Ref. [192], the
cancellation in Eq. is lost, unless NV = 1. But this is a contradiction to the statement
above, that free particle poles should not appear regardless of the values of a and b for any
momentum. The apparent contradiction here is resolved by noting that the matrix K is
only invertible if each row is linearly independent. However, in the case of s-wave amplitude
the matrix is proportional to a matrix which has 1 in every single entry. Thus the matrix
argument fails and the alternative argument shows that cancellation does not occur for all
a and b. Furthermore, we argue that imposing a scattering amplitude to exactly vanish
for all but one partial waves at all values of momentum is unnatural. The only way to
achieve this is to require all shape parameters of the partial waves not included to be equal

to zero. Restricting the final results of quantization condition, the matrix elements of the
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(01 A0, P)B(yo, P)I0) = ET. 3 8 +3 ( (X3 o) %

~T;

Figure B.1: Shown is the diagrammatic representation of the correlation function defined
in Eq. in terms of the kernels (defined in Fig. , the fully dressed single particle
propagators (defined in Fig. and the finite volume loops. The “F. T.” label around
the braces reminds the reader that one must Fourier transform the energy-momentum cor-
relation function to obtain the correct exponential dependence in time. The T function,

which is explicitly labeled, is defined in Eq. [£.38

two-particle interpolating operator and the matrix elements of the currents, Egs.
.58 [4.92] & [.102] to a single partial wave can be done if the contribution from higher

partial waves is seen to be significantly suppressed at low energies. This is to say that the
order of operations in studying finite volume physics is relevant and can lead to significantly
different results.

From this discussion it is clear that if one is solely interested in obtaining the spectrum
and is not in arriving at a nonperturbative expression for the correlation functions, it suffices
to look at the poles of Ty. As is evident from Fig. the free particle poles correspond
to zeros of Ty, and consequently one does not need to worry about any spurious poles.
Furthermore, the subtlety regarding the order of operations does not play a role when
studying the pole structure of Ty. Therefore, as was done in Ref. [I51], one may first
proceed to set the angular momentum to any partial wave desired and then obtain the

quantization condition from the pole structure of Ty,.
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Appendix C

GENERALIZATION FOR TWISTED BOUNDARY CONDITIONS IN
ASYMMETRIC VOLUMES

In the derivation of the master equations of this work, namely Egs.
& periodic boundary condition on the spatial extent of the cubic volume have
been assumed. The periodicity constraint is encoded in the expression for the Z functions
shown in Eq. and this is generally true for arbitrary boundary conditions, and Ref. [167]
demonstrated how to compactly write the Z functions in such a way that they accommodate
the different geometries and boundary conditions. For relevant work that lead to this result,
see Refs. [152], 153, [155], [154], 249, [134], 135 [183], 163, 250]. TBCs require that fields in general
satisfy

(x +nL) = 0™ (x), (C.1)

where 0 is a three-dimensional real angle. Therefore, the free momentum of the ith in the

. 271'111'

jth channel will be equal to pj; ="t + %

For asymmetric volumes, let L to be the spatial extent of the z-axis and 7; be defined
such that L, = n,L and L, = n,L. Using the notation X = (Xz/Mz, Xy/My, X=), OLE can
readily find the most general form of the ¢, and Z functions with arbitrary twist and

asymmetric volumes

A= -2
I, L my) = <%> X 2R L (K L/ 2m) % e, my), (C.2)

m NenyyL3 \ L i
l
Ay, x| Y m(r)
Zlmfﬁy,l Pj,2 [S;w2;77x777y] - Z ﬁ7 (C.3)
r677¢1’¢2;
d;naz,ny

where Pf,i?f)f?y = {r eR?}|r=4"1(m— aja + AQ—:))}, where m is a triplet integer, A =

—(aj— %)((5]1 —i—(ng) + %((5]-71 — [ﬁfjg) and d = PL/27. Additionally, one obtained an overall
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factor of ,/m7, in Egs. @ & i.e. one must make the following replacements

(1) N2y L3
[(0[(0, k)| B 7)] — RO (C4)

[(0|OApa(0,P)|Eapn) — A/memyL? \/(C?;M [YA,n Ran Y}Ln aaCj‘\M. (C.5)
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Appendix D
SUM-MINUS-INTEGRAL IDENTITY

In this appendix we derive the sum-minus-integral identity which plays a central role in
the main text. This identity is closely related to that given in Ref. [130] in the context of
the two particle quantization condition.

The identity is

LBZ PV/

which holds up to (implicit) exponentially-suppressed finite-volume corrections. The matrix

h(k a)H (k)

2wa2wka E Wk — Wq — Wkq)

= 9t () For st (K 1 (), (D.1)

F(E) is given in the main text but repeated here for convenience
Fpr st an(B) = Fif g (6) + o0 o () (D.2)
AmYy o (0°)Y,,(6°)H (F)H (G)H (bya) (a*\ "
5y (Y s

2wWa 2w (E — wg — wg — Wkq + 1€) @
The phase-space quantity p and the cutoff function H are defined, respectively, in Egs. ([5.25)
and (5.28). The kinematic notation is that described in Sec. the spectator has fixed

—»

Fﬁ’m Emk

1
2

four-momentum (wk,g), the particle whose momentum is summed/integrated has four-
momentum (wg, @), while the third particle is in general off shell, with four-momentum
(Ey — wa,bka). The four-momentum of the non-spectator pair is P, = (EQ,PQ) =
(B — wk,ﬁ — E), and by, = P> — @ If the third particle were on shell, it would have
energy wy, [defined in Eq. (5.1)], so the on-shell condition is Fy = wq + wye. This is where
the denominator in Eq. vanishes. The boost to the CM-frame of the non-spectator
pair sends P to (£, 0) and (wq, @) to (w’,a@*). If all three particles are on shell, then the
magnitude of @* satisfies a* = ¢; [with ¢} given by Eq. ]

The two functions in the identity , g and h, contain the momentum dependence
arising from quantities respectively on the left and right of the three-particle “cut”. They

could be combined into a single function, but for our formalism it is advantageous to keep
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them separate. We assume that g and h are smooth (infinitely differentiable) functions of
the components of @ and that they fall off at large |@| such that the sum and integral are
convergent. Note that, since £ and a are on-shell, and the total momentum is fixed, the
independent quantities are k and d, which are thus given as the arguments of g and h. In
general, the third momentum is off shell, so these functions involve off-shell amplitudes.
What appears on the right-hand side of the identity, however, are on-shell projections of
these amplitudes after decomposition into the angular-momentum basis in the CM-frame
of the non-spectator pair. This projection is explained around Eq. for the case where
g =0 and h = of, but applies equally well to any functions.

One difference between our identity and that of Ref. [I30] is that, in the three-particle
context, the two-particle sub-system can be arbitrarily far below threshold. The dominant
sub-threshold contribution to F' comes from the factor of p in Eq. , which in turn arises
from the difference between PV and ie pole prescriptions [see Eq. (5.59)]. This factor is
needed so that the dependence on k is smooth, but is not important for the derivation of
the sum-integral identity. Indeed, we can rewrite the identity using the ie-prescription and
cancel factors of p:

[Ld Z /] 2wa2wka h(k a) (k) - f’ (E)Fg’im’,é,m(E)hz,m(E)v (D4)

E2 — Wy — Wha +ze)

This is now very similar to the identity of Ref. [I30], and we focus on this form henceforth.
To demonstrate (D.4) we need simply to subtract the two sides and show that it is

exponentially suppressed. The difference is proportional to

—» —

E [ Z /] _'7 ) (3:) - 9Z17m/(E)4Fn/7m/(&*)(a*/qz)zlﬁ-ZYZm (&*)hzm(ﬁ)ﬂ(d’)ﬂ(bka)
L3

2wo2wWka (B2 — wa — Wkq + 7€) ’
(D.5)

where we have assumed that the sums over angular-momentum indices can be interchanged

with the @ integral. The overall factor of H (E) serves only to ensure that the boosts to

the two-particle CM frame are well-defined. We note that the sums and integrals are

convergent in the ultraviolet because of the assumed properties of g and h (in the first term

in the numerator) and the presence of the cutoffs H (in the second term). The difference

(D.5)) will vanish, up to exponentially suppressed corrections, if the integrand /summand is
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non-singular and smooth as a function of @. This in turn holds if (i) all functions appearing
in the expression have a smooth dependence on @, and (ii) the difference in the numerator
cancels that in the denominator in such a way that the the ratio is smooth. We address
these conditions in turn.

The only non-smooth functions appearing in are the spherical harmonics, which
are ill-defined at @* = 0 for £ > 0. Smoothness is ensured, however, by the factors of (a*)”“,
which turn the spherical harmonics into polynomials in the components of @. Thus the first
condition is satisfied. For subsequent work, it is useful to understand the a* dependence
of the coefficients in the angular-momentum expansion of g and h. Recall that one first

changes to @* as the independent variable, e.g. ¢*(k,a*) = g(k: d), and then expands in

harmonics:

9 m /(k a*)

§"(R,@") = gy (R, 0")Yir e (@) VAT = Yo (@)aVix. (D)

For a* — 0, the last form is simply a rewriting of the Taylor expansion in the spherical
basis, since Ygl7m/(d*)a*z is a homogeneous polynomial of order ¢ in the components of a*.
This implies that gz,’m,(E, a*)/a* has a finite limit as a* — 0. Furthermore, since g*(k, @*)
is, by assumption, smooth at a* = 0, gZ',m'(];a a*)/a** must be a smooth function of a*? and

not a*. Thus, for small a*,

X E7 a* oo
G (K 07) S sala™)", (D.7)

with s, the Taylor coefficients. An analogous result holds for h.
We turn now to the second condition, that zeroes in the numerator and denominator
should cancel. To satisfy this we first need the numerator of (D.5|) to vanish on shell. This

is true because, when Ey = w, + wg,, we have H(d) = H(gka) =1, a" = ¢}, and
Gir gt )Y (@ WAT = g (R, @) Yor o (6%)VAT = g7 (R, gfa") = g(k, @) (D-8)

(and similarly for h). In addition, the numerator must vanish fast enough to cancel the
denominator. To see that this is also true it is convenient to re-express the denominator in
terms of CM variables. Following the arguments of Ref. [130], we can make the replacement

1 wr
— — —, D.9
202w (Eo — wg — Wi + 1€) 2wa B3 1 (qf, + a*) (g — a* + ie) (D-9)
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since the difference is non-singular. This shows us that the singularity lies in the radial
integral over a*. Now consider the ratio at fixed angle a*, so that the spherical
harmonics are fixed. Then, from the discussion above, we know that both terms in the
numerator are smooth functions of a*, which thus have Taylor expansions about a* = ¢;.
In the difference, the constant term in these Taylor expansions cancels, and so the ratio
with 1/(q} — ax) is a smooth function of a*. In particular we have demonstrated that the
numerator does not have a non-analytic form such as /gj — a*, which would fail to cancel
the singularity.

A special case occurs if ¢ — 0, for then there is a double pole in a*. In addition, one
might be concerned about the factor of 1/(gq )EI‘M These features do not, however, lead to
problems. We know from Egs. and that gz,,m,(lz) o q,’gé, and similarly for h,
so the 1/¢} factors are cancelled. Furthermore, because of Eq. , the difference in the

numerator of (D.5)) is proportional to a*2, and thus fully cancels the double pole.

This completes the demonstration of the key identity. We close this section by presenting
some further results for the kinematic functions F and F. First, we give the relation to the
kinematic functions ¢ introduced in Ref. [I30]. These replace the product gxh with a single
function, which is then expanded in a single-set of spherical harmonics. Because of this, the

relation involves Clebsch-Gordon coeficients. Specifically we find (see also Ref. [140]){]]

= (ar)
7 Zq * A~k * Ak
F/m em(k) 16 Ek'* 5@ [5m m + Z 4E* *) /an*Y ( )}/glym/(a )Y&m(a )

L
(D.10)

Because Ref. [I30] uses an exponential cut-off while we use H(@)H (bg,), this result holds

only up to exponentially suppressed finite-volume correctionsﬂ

!One subtlety in the derivation of Eq. (D.10) is that the powers of a*/gj; do not always match. This is

because we use a double expansion in spherical harmonics while Ref. [I30] use a single expansion. One can

show, however, that the differences always lead to exponentially suppressed contributions.

20ne might wonder why we use the H functions to provide the cut-off, since, as far as sum-integral
identity is concerned, we could use any reasonable cut-off. The reason we use H is that some of the factors
of F arise from insertions of the quantity G [Eq. (5.21)]. But G contains, as part of its essential definition,

two factors of H, one of which becomes H (@) when we convert the G to an F. Thus an H cut-off is forced
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Finally, we derive a result needed in the main text, namely

For o (k) = Fi (k) =0 if ¢ +¢=o0dd, (D.11)

/.
T 7€7m

up to exponentially suppressed corrections. It is sufficient to show this result for one of F' and
F'_ since it holds trivially for their difference, p, which is diagonal in angular momentum.
We demonstrate (D.11]) for F.

The result follows by averaging the original expression with that obtained by
changing variables d — P—G= Eka. In this way, the numerator of F’ is replaced, up to

an overall constant, with

-

YZ’,m/ (d*)YZm<d*)(a*)zl+z + Yé’,m’ (BZa)YZm (BZa)(bZa)y—M} H(a)H(bka) . (D'12)

—

If all particles are on shell, then from Eq. , we have that @* = —bj , so the two terms
exactly cancel when the parities of the spherical harmonics are opposite, i.e. if £+ /' is oddE|
As we move away from the on-shell condition, the cancellation will be inexact. However,
as we now demonstrate, the residue is proportional to Fo — wg — wg,, Which is enough to
cancel the pole in F’, so that the sum-integral difference of the residue is exponentially
suppressed. We recall that the boost to the two-particle CM frame transforms four-vectors
as

(B — wa, bra) — (B3 — wi, —a@") and (Wras bra) — (w5, D) - (D.13)

But since

-,

(Wha» bra) = (B2 — wa, bra) — (B2 — Wa — Wia, 0) (D.14)

we see from the linearity of boosts that

by = —@* + O(Ey — wa — Wa) - (D.15)

o=

This completes the demonstration.

upon us for such F’s, and we wish to use a uniform definition. It is then convenient to enforce a <> by,
symmetry by adding in H(Z;;m).

31t is possible for @ = 13/2 = l_)',m, and if so the two terms in the sum are one and the same. The
derivation remains valid, however, since then @* = 0, implying that the only non-vanishing contributions are

from ¢ = ¢ = 0.
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We note that a similar argument leads to the conclusion that cf ., vanishes for odd /¢, as

first noted in Ref. [129].
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Appendix E

SMOOTHNESS OF PV POLE PRESCRIPTION

In this appendix we explain why the PV pole prescription, defined in Eq. 1} leads
to results that are smooth functions of the spectator momentum. The general integral that

appears has the form

f(];) - ﬁv/{i 2wa2wka(g]_(@k’—aozfikgda — Wha) )

The notation is the same as in Eq. , except that here we have combined the two
functions g and h in the numerator of into the single function g. The issue is whether
f(E) is a smooth function of k. All quantities appearing in the integrand are smooth
functions: wy, and wy, manifestly, H (E) by construction, and g(E, d) by assumption We
also assume that the behavior of g at large |@| is such that the integral remains convergent
however many derivatives of the integrand with respect to the components of k we take.
Then the only source for a lack of smoothness is the pole in the integrand.

It is useful to change variables to @*, the momentum in the two-particle CM frame. This

gives
= H)~ [ da* Gk a)
B =385,"V | o P — ) 52
- o (F—wp —wg+ wie) (S, + 2w
5 F.a) = o, a) D ko) B+ 22). (E.3)

SWkaWy

!The initial application of the result of this appendix, in the discussion following Eq. (5.65) in the main

text, has ¢ composed of the product oo', which is smooth by construction. Subsequently, one or both of
these factors are replaced by Bethe-Salpeter kernels, which are also smooth because singularities are far
from threshold. The nearest singularity is the left-hand cut which occurs when EJ ; = 0 (corresponding to
s=u =0, t=4m? in Mandlestam variables), but we are protected from this cut by the cut-off function
H (E) Finally, the factors are replaced by two particle K-matrices, or decorated end-cap functions. Here the

necessary smoothness is established by the argument of this appendix. Thus we are using the result of this

appendix iteratively.
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The expression multiplying g on the right-hand side of (E.3|) equals unity on shell. Expand-

ing g* in spherical harmonics,
7 (k@) = gy (k. a") Y (a*)Vir, (E.4)

we observe that only the £ = 0 component contributes to the integral:

£0) = H(k) Pv/oooda*a*(zgao(k,a*z) _H(E) ﬁ//o da *Q)Mgoo(k

a*
g —a?)  8TEj, (g2 — a*?)

) .

(E.5)
Here we have made explicit that gj, is a function of a*?, as follows from the result ll

In this form, the PV prescription of Eq. 1) becomes

L HE) [, . [Var gk, a?
B = g [ )| T
8T2E3 1 Jo (qi° — a*? + ie)
iqpH (k)G 0(k, 4;2) )i (ai* > 0), E6)
873 ) ) :
2.k —lqj| (qu <0).

If qZQ > 0, so the non-spectator pair is above threshold, the PV and PV prescriptions are
the same, and Eq. gives the standard relationship between PV and e prescriptions.
In particular, the second term cancels the imaginary part of the ie-regulated integral. The
new feature of the prescription occurs below threshold, i.e. for QZQ < 0. Here there is no
pole to regulate, so the ie prescription is superfluous, and the integral is real. Nevertheless,
the prescription adds the second term, also real, which is needed to avoid a cusp in f (E)
at threshold. We stress that in the second term g* is evaluated on shell, with a*? = qZQ.
If q;;2 < 0, then g* must be evaluated below threshold. As discussed in the previous
appendix, the assumed smoothness of g implies that gj, is a function of q,’f, and thus can
be straightforwardly evaluated for g% < 0.

To show that f(k) is smooth, we now extract the essential features of Eq. and

consider the integral
> Vwg(w,2)
w :

0 zZ—Ww

fz) = (E.7)

Here w and z are playing the roles of a*? and q;f, respectively, and g, a smooth function of

its arguments, ensures convergence (and includes H (/2)) The only difference from Eq. 1)
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is that the dependence on all components of kin H and g* has been simplified to dependence
on qzz alone. This simplification is justified because it is the dependence of the pole term
on k that can lead to a lack of smoothness, and this dependence is correctly incorporated
in Eq. .

We treat z as complex, and assume that g(w, z) can be analytically continued to complex
arguments without encountering singularities. Then f(z) is well-defined and analytic in the
entire complex plane except along the positive real axis. As z approaches the positive real

axis from above or below one obtains the tie-regulated integrals:

flaxio= | dwm. (E.8)

These are both complex, with the same real parts but differing imaginary parts,
tmiy/xg(z,x). f(2) thus has a cut on the positive real axis.

The integral of interest, f (E) of Eq. 1' becomes, in our stripped-down version, and
for positive qZQ,

fio () = % [z +ie) + fx —ie)] . (E.9)

Here z is real and positive, and we have used the result that the PV prescription (which is
the same as the PV prescription for = > 0) can be written as the average of the integral
with the contour running above and below the pole (see Fig. [E.1a). Our aim is to extend
Jpy to a function of z, and study its analyticity properties.

If z is moved off the positive real axis then, to avoid non-analytic dependence, the
integration contours must be deformed as shown in Fig and Fig. Thus fﬁ(z)
differs from f(z) (the integral along the real axis) by pole terms:

fov(2) = f(2) —sign(Imz)iny/z g(2,2) = f(2) + 7V -2 g(2,2) . (E.10)

The sign of Im(z) enters because the direction of the contour around the pole depends on this
sign. As shown in the second expression, however, the two possibilites can be combined into
a single expression using the properties of the square root (assuming that the branch cut for
\/—z is placed along the positive real axis). We now observe that there is no discontinuity for
negative real z, since both f(z) and /—z are analytic there. Furthermore, by construction

the discontinuities of f(z) and the pole term cancel exactly along the positive real axis [as
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they must to yield a real f5y(z)]. Thus we find the key result: fg;(2) is analytic throughout
the complex plane, i.e. is entire. Since an entire function is infinitely differentiable, it follows
that fs(7) is smooth along the entire real axis.

We now apply this result to our integral of interest, Eq. (E.5). The rule is to write
the difference between the results of the PV and ie prescriptions, which is standard above

threshold, as an analytic function of ¢}?, and then continue to ¢f < 0. Noting that

iqr, = —\/—q;° for ¢ =x+ie, (E.11)
we obtain the result quoted in for the below threshold case

— —qzz — —|gq| for q}';2 = —x. (E.12)

Thus our PV prescription indeed yields a smooth function of k.

We have checked this result on an extensive set of examples, e.g. for g(w,z) =
w" exp(—w) with n > 0 an integer, where the integrals can be done analytically, and for
g(w, z) = exp(—w?), where numerical integration is required. As an illustration, we show
the results for g(w, z) = exp(z — w) in Fig.

Finally, we stress that the factor of \/w in the integrand of f(z) is crucial for the
smoothness of the PV prescription. This factor is present in the original integral, Eq. ,
because of three-dimensional phase space. Without this factor, the above- and below-axis
pole terms would not be equal along the negative real axis. For example, if \/w is replaced
by an analytic function, say x, then one can easily show, using the arguments above, that

fﬁ/(z) result has a complex discontinuity along the negative real axis.
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(a) Imw (b) Imw (c) i Imw

Rew Rew Rew

I
ol =

Figure E.1: Contours in w complex plane contributing to fg(2). (a) z real and positive;
(b) z above the positive real axis; (c) z below the positive real axis. In each case the cross
indicates the location of the z = w pole, and the numbers indicate the weights associated

with each contour.

Figure E.2: fg;(x) for g(w,2) = exp(z — w) compared to the result of using the PV
prescription, fpy(x). The former is smooth, while the latter has a cusp at z = 0. For z < 0,

the difference between the two functions is the pole term, the second term in Eq. (E.10).
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Appendix F
DETAILED STUDY OF THE ISOTROPIC APPROXIMATION

In this appendix we study the approach to the isotropic limit described in Sec. in the
context of a specific choice of parameters. Our aims are to show how “lost” states are recov-
ered, and also to gain more intuition for the workings of the quantization condition and, in
particular, the impact of the violation of particle-interchange symmetry by our coordinates
and truncation. Although our considerations are specific to the chosen parameters, much
of the discussion holds for a general choice of parameters.

We work in the static frame, P =0. To simplify numerical values we choose a volume
such that the particle mass satisfies m = 2x/L. While this is artificial, we stress that
none of the general conclusions depend on this choice. The single-particle momenta are
(L/27r)E =0, (1,0,0), (1,1,0), (1,1,1), etc., together with permutations. We refer to these,
respectively, as the n = 0, 1, 2, 3 shells, etc. Given our choice of m, the corresponding
single-particle energies are w, = v/n + 1 x m.

We are interested in values of E for which there are more than one free three-particle
energy levels, so that we can see what happens when one of these is replaced by the solution
to Eq. . The minimal case is to have two free levels. These levels occur at £ = 3m
(all particles at rest), E = (1 + 2v/2)m ~ 3.83m (one particle at rest and two with opposite
momenta from the n = 1 shell), F = 4.46m, etc. Thus the range of E should extend above
3.83m. We also want to minimize N, the size of the matrices appearing in the quantization
condition. The critical energies above which the cut-off function H(k) is non-vanishing
are, for the n = 1 — 4 shells, (1 +v2)m, (V2 + V3)m ~ 3.15m, (2 + V/3) ~ 3.73m and
(2 4+ V/5)m ~ 4.24m, respectively. Thus we are forced to include the n = 3 shell (in order
to attain £ > 3.83m) but if we restrict E' < 4.24m we do not need the n = 4 shell.

Thus we end up with the energy range of interest being 3m < E < 4.24m and N =
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1464+ 12+ 8 =27. Our aim is to find all solutions to the quantization condition,
det(1+ F5K3¢5) =0, (F.1)

within this range. Here Kj; 5 is defined in Eq. , while F3 is simply F3 [Eq. ]
after truncation to £pax = 0. (An explicit expression is given below.) As already noted, the
free states lie at £ = 3m and 3.83m. There are four such states: one at 3m and three at
3.83m. One might have expected six states at E = 3.83m, since two of the particles have
momenta in the n = 1 shell, but only three are distinct for indentical particles. It is useful
to classify the states according to their transformation properties under the octahedral
symmetry group. The E = 3m state lies in the trivial A; irrep (irreducible representation),
while the three £ = 3.83m states decompose as A1+ E, where E is the doublet. Here we are
using standard notation for irreps of the cubic group, see, e.g., Ref. [25I]. Interactions can
lead to mixing between the two A; states, but not with the doublet. What we thus expect
is that one of the two A; states is replaced by the solution to the isotropic quantization
condition, Eq. , while the other remains at its free energy, and that the doublet also
remain at their free energies.
As a first step in the analysis, it is useful to rewrite F3 asﬂ

1 (1Fs F51F 1 Fs 1
Fy= - ———— H 4 —G® F.2
3 L3{32w QwHQw}’ o T (F.2)

where K5, G® and F* are defined, respectively, in Eqgs. (5.34)), (5.36]) and (5.37)). Recall that

all these quantities, as well as F3, are matrices in spectator-momentum space alone, with
size N x N. The form follows by straightforward algebraic manipulations from the
definition of Eq. . One advantage of the new form is that it manifests the symmetry
of Fy, since G = iGs is symmetric, and all other matrices are diagonal. Another is that
it shows how F'® appears on both “ends” of F3.

The matrices entering the quantization condition have transformation properties under
the symmetries of the finite box that greatly simplify their forms. Beginning with F, =
F,/(2w), it is clear from its definition, Eq. (5.37), that it is invariant under cubic rotations

and parity. Thus its entries, which are all diagonal, depend only on the class n of the

'We stress that the matrix H used here has nothing to do with the smooth cutoff function H (k).
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spectator momentum k. For example, all 6 entries for the n = 1 class are equal. Thus there

are only 4 independent entries in FS. The same holds for the other diagonal matrix, K5.
The situation with G* is more complicated—all entries are non-vanishing. To simplify

G* we must decompose the N spectator-momentum indices into irreps of the finite-box sym-

metry group, namely the direct product of the cubic group and parity. The decomposition

is

n=0-— A, (F.3)
n=1— Al +E" +17, (F.4)
n=2-— A +E"+T, + T, + Ty, (F.5)
n=3— Al +T7 + T, + A5, (F.6)

where the superscript is parity. Ao is a non-trivial singlet, while 77 and T5 are three-
dimensional irreps. Off-diagonal elements of Gs connecting different irreps, or different
elements of the same irrep, vanish. Thus és is block-diagonal, with a four-dimensional Af'
block, a 2 x 2-dimensional E* block, etc.

The same block structure holds for lelm, but here additional simplification occurs be-
cause of the isotropic approximation, Eq. . In this approximation, all entries of ICfm3
are equal. Since the Af irreps are obtained by averaging over their respective momentum
shells, while all other irreps involve differences, only the AI“ block of ICfif,3 is non-vanishing.
Furthermore, since IC;"’iﬂ3 has only a single non-zero eigenvalue, whose eigenvector we call
|1x), all entries of the Af block are related. Here we will slightly relax the approximation,
so that all entries which are allowed by symmetries have magnitudes of order ¢ < 1. Thus

we can write

Kies = [1x) NKEs(E) (1x| + [O(e)] (F.7)

where the second term indicates an IV x N matrix with form consistent with the symmetries
whose non-zero entries are of O(e) (though unrelated). If we choose the indices so that the
Af block is placed first, ordered according to the class n, the dominant eigenvector is easily
found to be

(1g| = \/1N(1,\/6, V12,v/8,0,...). (F.8)
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We now return to the quantization condition . Since all matrices which enter are
diagonal or block-diagonal, the condition can be studied block by block. We begin with the
Af block, which is the most interesting as it contains the dominant eigenvector of Kﬁfﬁ'
Since F* and K5 were diagonal in the original basis, with no cross terms between different
classes n, they remain diagonal in the irrep basis. In general, there are no relations between
the four diagonal elements of the Af blocks. As we approach the free-spectrum energies,
however, Fs does gain further structure. This is because it contains poles at these energies

[from the sum contained in F*, Eq. (5.37))]. Specifically, one finds that
~ 1
Fy = diag (2B0 + 3B4, By, 0, 0> + diag (O(1)) , (F.9)

where the pole terms are

11 1

B — F.1

0T I3@m)B3E—-3m’ (F.10)
11 1

By (F.11)

- L32m(2w))2 E —m — 2wy
The factor of 3 multiplying Bj in the first entry on the right-hand side of Eq. (F.9)) arises

from the fact that six terms in the sum over @ in F*® contribute B;j/2. The second term in

F* is the non-pole part, arising from the rest of the sum over @ and from the integral.

Pole terms also appear in Ge. Using Eq. 1) we find the AT block to be

By V6B 0O(1) 0(1)

G* = . (F.12)

Apart from the fact that the matrix is symmetric, there is no relation between the O(1)
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terms. The combination whose inverse appears in F3 [Eq. (F.2)] is thus

3By+3B; V6B1 0 0

H= +F G = +[o1)], (F.13)

2wk

where the O(1) symmetric matrix now contains entries in all positions.

Our task is to combine these forms and insert them in the quantization condition. Since
Bg and B; become large for different regions of F, we treat these cases one at at time. The
simpler is when E = 3m, such that |By| > 1, while B; ~ O(1). Using Raliegh-Schrédinger

perturbation theory, one finds that the inverse of H becomes

-1 35, +O(1/B3) O(1/By)
= : (F.14)

O(1/Bo) o(1)

Here we are using a block notation in which the first block has dimension one (the n = 0 Af
subspace) while the second block has dimension three (containing the n = 1 —3 Aj states).
This result exemplifies two general features of H~' when a one-dimensional subspace of H
becomes large. First, the projection of H~! onto this subspace is, up to small corrections,
simply the inverse of the projection of H onto the subspace. Thus it is proportional to
1/By. Second, the off-diagonal elements of the inverse (those connecting the 1-d subspace

to the remainder of the space) are of O(1/By). We use these results again below.
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Combining the results above, we find that, when |By| > 1,

L3R = % _RHE, (F.15)
Bopo1) 0
_ (F.16)
0 o)
Biyo1) 0 gt + O(1/B3) O(1/By) | | 2 +01) 0
B (F.17)
0 o(1) O(1/By) o(1) 0 o(1)
_00). (F.18)

using the same 1 + 3 block notation as in Eq. (F.14). The key result is that all terms
proportional to positive powers of By cancel. When we combine ([F.18|) with the result (F.7))

for Iij3 and evaluate the determinant, the quantization condition becomes
det(1+ F5K3) = 1+ NK§3(E)(1k|F5|1k) + O(e) = 0. (F.19)

We see that there is only a single solution in the Af channel, that given essentially by the
“isotropic solution” of Eq. , aside from small corrections from the O(e) terms. There
is no possibility of a solution that is O(e) from E = 3m, because there are no terms of the
form €By or eB2, which could have led to O(1) contributions to the quantization condition.
Such terms are required to cancel the 1 in Eq. , in order to get solutions that are

infinitesimally displaced from the the free solution.

The analysis near E = m + 2w;, when |B;j| > 1, is more involved, for in this case the

free poles do not cancel. Using Eq. (F.13]), H is now given by
H = |B1)5B1 (Bi1] + O(1), (F.20)

where the one-dimensional subspace in which H is large is spanned by

1

<B1‘ = \/5

(\f3, V32,0, o) . (F.21)
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Using the results quoted above, we have

4 4
H = 1) [+ O/BD| 11+ 3 00/ Ba) (BBl + 1B B )+ YOI 5
" " (F.22)
where the |B;), j = 2 — 4, are any choice of basis vectors orthogonal to |By).
To display Fj it is better to switch from the ordering of Af elements according to their

momentum class to the “K-basis”. In this new basis, the vectors are (1x| together with

1

<2K’ = \F <_\/67 17 07 0) ) (F23)
1

(3l == (—\/20/7, — /12077, /84/20, \/56/20> , (F.24)
1

(el = 7 (0,0,—\/§, \/12) . (F.25)

This basis makes maximal use of the form of IC5; 5 [Eq. 1) as well as the fact that the
dominant terms in F* lie in the first two entries on the diagonal. In addition, we note that
(1k| and (3g|, when contracted with F's. have large components only in the subspace in

which H~1 is small:

(1k|F* = ﬁ31<31\ +0(1), (F.26)
(3x|F* = \/?BﬂBl\ +0(1). (F.27)

Also important is that no large terms appear when we contract (4x| with Fs:
(4g|F* = O(1). (F.28)

The net effect of these results is that the largest contributions occur when F3 is con-

tracted with (2x|. Specifically, we find

o) OB 0o@1) o)

Fs : (F.29)
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where the subscript on the matrix indicates that this result is in the K-basis. We see
that F3 does contain single and double B; pole terms (unlike for By, where they cancel).
There is one cancellation, however, which leads to the absence of pole terms in the |1x) (1|
element. This is important, since we know from Eq. that the only large entry in K§f73

is in exactly this element:

Kies = : (F.30)

K

The final step of the B; analysis is to insert these results into the quantization condition
and evaluate the determinant. We are looking for solutions which occur when Bj is
large, so that they are almost at the free-particle energy. By explicit evaluation, we find
that the dominant contributions to the determinant involving Bj are of O(eB?). Thus the
appropropriate scaling of By relative to e is such that eB? = O(1). Using this scaling, it
turns out that only the upper-left 2 x 2 blocks in the K-basis are relevant for solutions to
the quantization condition. Other blocks lead to contributions proportional to eBi, which
remains small. Thus, for the purpose of finding solutions to the quantization condition we

can make the replacements

Oo1) OB 00 N ldsfo3(E) O(e) 0 0
O(B1) OB%) 0 0 O(e) O(e) 0 0
F; — and Kgg g —
0 0 0 0 0 0 00
0 0 0 0 0 0 00

(F.31)

This shows that, in the Af block, the quantization condition involves only two states, and
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not four:

1+ NKiPs(B)(1k|F*|1k) + O(eB1)  O(eBy)
det =0 (F.32)

O(By) 1+ O(eB?)
When F is far from m + 2wy, so that By = O(1), the B; terms are small, and one finds only
the isotropic solution, Eq. . But now, when eBf = O(1), there is the possibility of a
second solution. To demonstrate the existence and to find position of this solution, however,
appears to require knowledge of the subdominant parts of F**, K5 and ICfif73. Nevertheless,
what is clear is that any solution will lie very close to the free-particle energy, since it will

require |By| > 1.

We now turn to blocks of the matrices in other irreps. These can only lead to solutions
close to free-particle energies since Kj; 5 is of O(e€) throughout these blocks. Such solutions
require factors of By to counterbalance those of . By appears in Fsin all diagonal elements
with spectator momentum of class n = 1, and thus [see Eq. ] appears in both ET and
T, blocks. The same can be seen to hold for Ge.

We consider first the ET block. This has dimension four, since there are E* irreps in
both n = 1 and n = 2 classes, while the E irrep itself is a doublet. The structure within
each ET irrep is, however, always proportional to the identity matrix. Thus we display the
blocks as 2 x 2 matrices, each element of which is implicitly proportional to the identity

matrix. The matrices have the form

N Bi+0(1) 0 2B, +0(1) O(1) 0@ O(e)
e = , H= ’ K(flf,f& = )
0o o0 o1 ox) 0(e) O(e)
(F.33)

from which it follows that

~BLo1) on) 1+ 0(eBy) O(eBy)

F§ = , L+ F5Kg3 = . (F.34)
O(1) O(1) O(e) 14 O(e)

Thus the determinant is 1 + O(eBj), and can vanish if eB; = O(1). In this case we know

that such a solution will exist, irrespective of the overall sign of the eB; term, since By can
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take either sign, depending on whether F is above or below m + 2w;. Thus we conclude
that the ET irrep yields a solution with E ~ m + 2w;. Recalling the implicit 2 x 2 identity

matrix in each entry, this will be a degenerate doublet.

At this stage we have all uncovered all the solutions we want—four in all (assuming that
the A quantization condition does have an almost-free solution). But there remains the
T, block in which both Fs and G* have entries of By. If these end up multiplying factors
of €, as in the E™ block, then there is potential for unwanted solutions to the quantization
condition, corresponding to states which violate particle-interchange symmetry. The way
in which the formalism avoids this is through the particle-interchange symmetry that has
been carefully maintained in Kg4¢ 3. The issue is subtle, however, because our coordinates,
and, in particular, the truncation we are using, is not particle-interchange symmetric.

The T} block has contributions from classes n = 1, 2 and 3, each of which is three-
dimensional, so the overall block dimension is nine. Entries within each 3 x 3 sub-block are,
however, proportional to the identity matrix, so we leave this implicit and display only the

3 x 3 matrix indexed by momentum class. We find

B+0(1) 0 0 “B,+0(1) 0(1) 0()
F* = 0o on o |, &= o1) oa) oq) |, (F35)
0 0 00) o1) o1 oQ)

where the minus sign on Bj in G* arises from the negative parity of the 7| irrep and the
fact that the non-zero elements of G* in the original basis are those connecting an n = 1
momentum to its parity conjugate. It follows from (F.35]) that B; cancels from H, so that

H~!is a general symmetric O(1) matrix with no small elements. We then find

O(B) O(B1) O(By)

=1 omb) oa oq |- (F.36)

o(B1) o) 0(1)
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so that, as in the E* block, F5 contains single and double poles.

If K§¢3 was simply a symmetric matrix containing terms of O(e), then an analysis
similar to that for the ET block would imply the presence of almost-free solutions to the
quantization condition in the 77" block. These would be unexpected, and indicate that
our formalism was violating particle-interchange symmetry in a fundamental way. We are
saved from this conclusion by the presence of additional structure in K 5, following, not
surprisingly, from particle-interchange symmetry. We recall that, before truncation, Kgr 3
is, by construction, exactly symmetric under particle interchange. We argue below that a
consequence of this symmetry is that, if F = m + 2w; (so that the free three-particle state

is exactly on shell), then

[Icfif,3] (1,0,0);k/ = [K:Slfﬁ] (—1,0,0):k" ° (F37)

(and similarly for the permutations of the left-hand momentum index). Here the right-hand
index indicates an arbitrary momentum. The key feature of this result is that only the first
index is parity-inverted—the second is unchanged. This implies that the projection on the
left-hand index onto the irrep 77, which involves taking the difference between the two sides
of Eq. , vanishes identically. As we move away from E = m + 2wy, the two sides start
to differ, but we expect this difference to grow at least linearly in E — (m + 2w;) < 1/Bj.

The upshot is that particle-interchange symmetry leads to the following form for K3; ,:

O(e/B}) O(¢/B1) O(e/By)

Kis=| 0@/B1) 0() 06 |- (F.38)

O(e/By) O(e) O(e)

The top-left element is doubly suppressed because it involves a cancellation of the type just

described for both left and right-hand indices. Combined with the result for F3, Eq. (F.36]),
this implies that det(1+F3§/KC3; 5) = 14+O(e). Thus there are no solutions to the quantization

condition, and no unwanted states]

2There is another source of suppression arising from particle-interchange symmetry, arising from the
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We now demonstrate Eq. . On the left-hand side the spectator momentum is
k= (1,0,0), so the total momentum of the other two particles is —k. By assumption (given
our truncation) the amplitude in the CM frame of the other two particles is independent
of angle. For one choice of angle the other two momenta are 0 and —k (since this gives
the correct energy E). Thus the amplitude on the left-hand side of is equal to the
original Kg¢ 3 (with no superscript s) when the three incoming momenta are E, 0 and —k. By
exactly the same argument, the amplitude on the right-hand side equals Kq¢ 3 for incoming
momenta —E, 0 and k. But since Kaf 3 is symmetric under incoming particle exchange, the

amplitudes on the two sides are equal.

endcaps A and A’ [see Eq. (5.244))]. These have vanishing coupling to the symmetry-violating states when
E = m + 2w;. However, this alone would not be enough to remove these states from the spectrum if their

energies were shifted slightly from the free-particle value.
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