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1 Introduction

Beam Dynamics in modern particle accelerators is a rich source of deep and interesting problems in Applied
Mathematics (AMa). The purview of AMa includes, but is not limited to, ordinary and partial differential
equations and dynamical systems, numerical analysis and scientific computing, perturbation theory, prob-
ability and stochastic processes, mathematical statistics, and modern geometry. At one level AMa exists
as a discipline which is the result of a cross fertilization between scientific fields. My own view of AMa is
that of digging deeply into an area of science and then bringing the best mathematics to bear on significant
problems.

In this final report we summarize our AMa work in Beam Dynamics since May 15, 2011. Our main em-
phasis has been three-fold, (1) Maxwell and Vlasov-Maxwell (VM) systems important in modern accelerators,
(2) polarization physics and spin dynamics of relevance for HEP projects, and (3) mathematical problems
for free electron lasers. These are discussed in Sections 2-4. In Section 5 we discuss our electron storage ring
work, our work on quasiperiodic averaging and mention our small effort related to an experiment at FACET
at SLAC. In addition to summarizing the work on this cycle we will point out things we will continue in the
foreseeable future. Most written works from this last cycle are listed here as [GW1]-[GW12]. These, as well
as drafts and notes mentioned here, can be accessed at http://math.unm.edu/~ellison/doe_works.html.
This also contains DOE works from previous cycles.

The main players, Ellison, Heinemann, Lau and Bizzozero are listed above. Lau is an expert in Numerical
Analysis and Scientific Computing which is invaluable to our work. He led the effort on the rapid integration
over history, with very sophisticated tools, and was central to our introduction of the discontinuous Galerkin
(DG) methods to the beam dynamics community. Heinemann has contributed to all aspects of the work,
he is an expert in several areas of mathematics important to our research, e.g., abstract dynamical systems,



modern geometry, mathematical statistics and distribution theory, and led our polarization effort. Ellison
is an expert in many fields of AMa and has contributed to all aspects of the work. David Bizzozero joined
us in the summer of 2012 and will complete his dissertation in the next few months. He is leading our DG
effort and his DG simulations have made a significant contribution to understanding an experiment at the
Canadian Light Source (CLS). Lau was supported for one month in each of the summers of 2011,12 and
13, Heinemann was supported full time, Ellison put in a full time effort without salary and Bizzozero was
supported full time starting in summer 2012. Heinemann received his DOE funded Ph.D. with distinction
in May 2010 and with DOE support. He received the 2012 departmental nomination for the UNM Popejoy
Dissertation Prize for the best dissertation in Science and Mathematics over the 3 year period 2009-11, see
http://grad.unm.edu/funding/awards.html, and was nominated for the beam physics dissertation award.

This work could not have evolved to its current stage without collaborators. D. Barber (DESY) brought
his many years of experience in polarization physics, M. Vogt brought expertise in both polarization physics
as well FEL physics in his senior position at the X-ray Free-Electron Laser FLASH at DESY. G. Bassi
continued to collaborate with us on the VM work from his position at BNL where he has become an
important contributor to the NSLS-II effort. Vogt and Bassi were postdocs under my prior DOE grants.
Barber and Vogt are senior scientists at DESY. H.S. Dumas, a mathematician and dynamical systems expert
at the University of Cincinnati, is working with us on two projects including a new approach to quasiperiodic
averaging. Warnock (SLAC) led our CLS work and his CSR knowledge has been invaluable.

2 Maxwell and Vlasov-Maxwell

Most of our recent work has been on computational approaches to Maxwell equations including the impor-
tance of realistic boundary conditions. The underlying mathematical framework for our study is the coupled
system consisting of the relativistic 6D Vlasov and 3D Maxwell equations, governing a relativistic particle
bunch moving in a vacuum chamber and its associated electromagnetic self-field. We are interested in “small
dense bunches” and realistic vacuum chamber (VC) boundary conditions for the Maxwell system such as
found in HEP high luminosity machines. These problems are at the frontier of computational accelerator
physics, so approximations must be made. We have focused on single pass systems with a planar design
trajectory. While the design trajectory can be quite general, an important special case is that of arbitrary
straights and bends, as in e.g. bunch compressors. Numerical integration is computationally intensive neces-
sitating a combination of high-level analytical and computational work. Our goal is to develop algorithms
and codes for efficient and accurate numerical integration of this VM system that can be used by the commu-
nity for important applications. In a previous cycle we developed our 2D CSR, VM Monte-Carlo algorithm
and VM3@A code for bunches moving along arbitrary planar orbits between perfectly conducting parallel
plates where each electromagnetic field component is represented by an integral over history (IOH), the most
expensive part of our code.

In the present cycle our main work was two-fold. (1) We have worked on methods to speed up the IOH in
the VM3@A algorithm, see §2.1. We have a detailed paper ready for submission [GW1]; preliminary results
were presented [GW11]. (2) We have developed a new time-stepping approach, see §2.2. In addition, we
sought improved techniques for solving and analyzing solutions of the Vlasov equation. Mainly, we have
continued to develop a new density estimation procedure based on kernel smoothing which gives better
control and studied a random number generator for pseudo-random numbers to speed up the Monte-Carlo
aspect. While these Vlasov considerations have not been formalized, some initial studies were reported in
[GW12] and ICAP and preliminary studies in VM3@A have been performed by Heinemann. We aim to
prepare a documented and robust VM3QA code for use by the community.

2.1 VM3@A and Rapid Integration over History

We have developed two strategies for simplifying the IOH and have tested these in a simple model [GW1].
We will implement and test them in VM3@A, and Bassi has done some preliminary studies. A preliminary
version of the first strategy was presented in [GW11] including its context within VM3@A. The first strategy,
due to Lau, uses a representation of the Bessel function Jy in terms of exponentials. The second relies
on local sequences (developed recently by Hagstrom, Warburton, and Givoli, [1]) for radiation boundary



conditions. Although motivated by practicality, both strategies involve interesting and rather deep analysis
and approximation theory. To elaborate, the retarded-time integral is of the form
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where the second expression for F' is the singularity-free form used in VM3@A. It’s the ¢ in the integrand
which slows down the code, as it requires the integral to be redone at every time step. In the first approach
we take the spatial Fourier transform of (1) which yields a temporal convolution involving the Bessel func-
tion Jo(t). We then approximate Jy(t) by a sum of exponentials using the Alpert-Greengard-Hagstrom-Jiang
algorithm with refinements due to Lau. This effectively localizes the convolution in time, thereby circum-
venting the issue. The second approach relates the two-dimensional integral (1) to a solution of the ordinary
3 + 1 (three-space plus time) wave equation with a sheet source. We then evolve the wave equation in a
neighborhood of the sheet z = 0, with artificial planar boundaries above and below z = 0. Placement of
these boundaries at large distances from the sheet (such that they are causally disconnected from the sheet)
would prove prohibitively costly. Therefore, we adopt radiation boundary conditions [1].

Lau led this effort, and the mathematical details for both approaches and simple model calculations
appear in [GW1]. The details include Lau’s Jy approximation and the algorithm for the radiation boundary
conditions. We also present new results on the spacetime form of the radiation boundary conditions.

2.2 Time-Stepping approach

As an alternative to VM3QA, we have a project to solve Maxwell’s equations by time-stepping methods.
We looked into several approaches (Finite difference (FD) and FD-Yee) and have decided to implement the
Discontinuous Galerkin Finite Element Method (see e.g. [2]). DG is a generalization of the Finite Element
and Finite Volume Methods. It is spectrally convergent for smooth problems unlike the commonly used
Finite Difference methods, and can handle complicated vacuum chamber geometries. We experimented with
the HEDGE software http://mathema.tician.de/software/hedge for DG, but we feel that our algorithms
are easier to implement and run in standard programming languages such as MATLAB or FORTRAN. Our
papers here are [GW4], [GWS] and a paper to be submitted to PRL. This work is also central to Bizzozero’s
dissertation.

Our DG approach may prove more efficient for the electromagnetic field calculation in VM3@A, but more
importantly it is more flexible from the standpoint of geometry, coordinate systems, and the assumed spatial
dimension and can handle more realistic boundary condition as we discuss below. The basic idea is to rely
on a standard time-stepping of the discretized PDE (method of lines approach). However, to achieve high
accuracy, we incorporate modern spectral approximations for the relevant spatial operators. Moreover, we
envision some form of domain reduction, achieved via enforcement of radiation boundary conditions (see, for
example, [GW1] which uses [1]). The idea here is to shrink the spatial domain around the sources, thereby
minimizing the number of nodes or cells at which the fields must be maintained and evolved. Over the last
decade, such domain reduction techniques have seen rapid development. We are content, for the moment,
with our approach to integrating the Vlasov equation that we use in VM3@QA | however in the future we may
pursue the method of local characteristics that we used in previous work.

Bizzozero has spent considerable effort gaining experience with the DG method, and we have relied
heavily on the computational and DG expertise of our co-PI Stephen Lau. We have applied the DG method,
for 1, 2 and 3D elements, in four contexts which we now discuss.

1. In [GWS] we continued our study [3, GW11] of CSR from a bunch moving on an arbitrary curved
trajectory. In [3] we developed an accurate 2D CSR VM code (VM3@A) and applied it to a four dipole
chicane bunch compressor. Our starting here is the well-established paraxial approximation pioneered
by Agoh, Yokoya, Stupakov and Zhou, with boundary conditions for a perfectly conducting vacuum
chamber with uniform cross-section. This is considerably different from our VM3@A approach, using
the IOH parallel plate boundary conditions. We use the DG method for the paraxial approximation
equations. These are Schrodinger type equations with one “time” and two “spatial” dimensions and



thus require 2D triangular elements. Our basic tool is a MATLAB DG code on a GPU using MATLAB’s
gpulArray; the code was developed by Bizzozero. We discussed our results in the context of previous
work and outlined future applications for DG. We used a fixed source appropriate for impedance
studies. David’s work attracted the attention of accomplished accelerator physicists who encouraged
him to prepare a user friendly version of his DG and FD codes. Zhou referenced David’s work in a
recent seminar on SuperKEKB which he gave at SLAC.

2. Warnock suggested that we might obtain a faster algorithm if we used a Fourier series in y thus reducing
the two spatial variable Schrodinger equation above to the one variable case. Of course one then needs
to sum over Fourier modes, but nonetheless this is still a 3D Maxwell approach, albeit in the paraxial
approximation. We pursued this idea and our work was presented in [GW4]. In summary, we continued
our study in [3, GW8, GW11], but the vacuum chamber has rectangular cross section with possibly
a mildly-varying horizontal width. We make a Fourier transform in s — ¢t and use the slowly varying
amplitude approximation. We invoke a Fourier series in the vertical coordinate y, which meet the
boundary conditions on the top and bottom plates and makes contact with the Bessel equation of the
frequency domain treatment. The fields are defined by a PDE in s and x, first order in s, which is
discretized in « by finite differences (FD) or the DG. We compared results of FD and DG, and also
compared the computation speeds to our earlier calculations in [GWS]. This approach provides more
transparency in the physical description, and when only a few y-modes are needed, provides a large
reduction in computation time.

In the above two approaches we used a leap-frog scheme in FD and RK4 in DG for the s time step
integration and have numerical evidence that this scheme is stable over the time intervals of interest. A
von Neumann stability analysis shows there is a weak instability for leap-frog which affects the solution
at large times. We will use RK4, which is von Neumann stable, instead if necessary.

3. For more general geometries, such as in flared vacuum chambers with varying horizontal width, we
found that a paraxial approximation is not valid. We adopted a time-domain approach for the full
Maxwell equations retaining the Fourier series expansion in y. This was incorporated in the simulation
of an experiment at the Canadian Light Source (CLS). We initially began with a FDTD-Yee scheme
but quickly encountered difficulties due to complicated geometries and discontinuous source terms.
Bizzozero then created a code using DG, in collaboration with Warnock, which is more naturally
suited for handling general geometry and discontinuities. Bizzozero has done an outstanding job here
and this approach will comprise a key portion of his thesis. A paper entitled “Observation of wakefields
and resonances in coherent synchrotron radiation” comparing the simulations and experiment is ready
for submission to PRL, see GWDraftl at http://math.unm.edu/~ellison/doe_works.html.

4. Another approach was investigated for the full 3D Maxwell system using DG. Here, the approach does
not use a Fourier series in y but instead reduces the longitudinal size of the domain by means of a
Galilean transformation in Frenet-Serret coordinates. This allows the computational mesh to follow
the source and ignore fields which propagate too far from the source. A complicated aspect of this
approach was the construction of the 3D tetrahedral elements; however, this has been accomplished.
Bizzozero presented preliminary results at the 2014 International Conference On Spectral And High
Order Methods in Salt Lake City, UT, attended by prominent PDE researchers in the field and results
will appear in his dissertation. In this context, we are investigating the use of the radiation boundary
conditions (RBCs) proposed in [GW1] to further reduce the size of the computational domain. We
have done a careful study of RBCs in the context of our parallel-plate model and have prepared a
detailed note.

2.3 Other features of the VM system

We have also looked into the relevance of our polarization work (see §3 below) for the VM system. In fact a
basic feature of the former is that the particle motion affects the spin motion but, by neglecting the Stern-
Gerlach force, the spin motion does not affect the particle motion. This gives the particle-spin dynamics a
so-called skew-product structure where some degrees of freedom are spectators and in fact this skew product
structure underlies the fibre bundle approach mentioned in §3. In constrast, in the VM system the beam acts



on the self field via Maxwell’s equation and the self field acts on the beam via Vlasov’s equation. However
since these two interaction effects happen in different equations, one can conveniently obtain a skew-product
structure via recursion as follows. In the first recursion step the beam is only affected by the external field
and the self field is zero. In the second step, the beam is as in the first step but it produces a nonzero self
field via Maxwell’s equation (this second step is also a mode of operation of VM3@A). In the third step the
self field is as in the second step while the beam is affected via Vlasov’s equation by the self field from the
second step. It is clear how the recursion goes on. This recursion renders the nonlinear VM system of seven
equations into a countable infinite set of linear equations and it allows one [4] to use some of the techniques
mentioned in §3. Clearly it can be applied to the VM system in general as well to the sheet source model.
In the latter case one use further techniques we developed over the years for the sheet source.

3 Polarization Physics and Spin Dynamics

We promised a paper related to the polarization part of the Heinemann dissertation [GW12], which was
funded by HEP-DOE on a previous cycle. Before discussing the status of this work, [GW2], we want to
point out there is much current and proposed activity using accelerators in polarization physics. Several
rings for which spin polarization is crucial are either running, being built or having their feasibility seriously
studied. These include LHeC (CERN), CEPC (China), FCC as well as RHIC, eRHIC (BNL), JPARC
(Tokai), COSY (Juelich), the HESR (FAIR at Darmstadt), the updated muon g-2 ring (FNAL), MEIC
(JLab), the rings for measuring the electric dipole moment (EDM) of the proton and deuteron (BNL (or
FNAL) and Juelich), and damping rings for the ILC. Our colleague, Desmond Barber, who has worked on
polarization in rings for many years, is a major inspiration for our mathematical work on polarization. His
work (and work inspired by him) has contributed greatly over the last three decades to the clarification
of tricky aspects of spin motion, and other practitioners continue to seek his advice (e.g., researchers at
COSY, JLab, THEP(Beijing), KEK, and the Tech-X Corporation). In addition to his impressive body of
work (see his web site: www.desy.de/~mpybar), he introduced Heinemann to mathematical problems in spin
dynamics, supervised the very nice thesis of M. Vogt, who was mentioned in the Introduction, and inspired
G. Hoffstaetter, now at Cornell, to become involved in spin dynamics. Central to the contributions are
the ISF (invariant spin field) and the ADST (amplitude dependent spin tune). The ISF and ADST were
introduced in substance, but not in name, by Derbenev and Kondratenko in the 1970’s. The ADST allows
a proper definition of spin-orbit resonance (SOR) and needs special reference frames called invariant frame
fields (IFF). In the meantime Barber has shown how ISF’s can be applied to the so-called invariant tensor
fields (ITF) (the latter being introduced for efficient handling of the spin motion of spin-1 particles, e.g.,
deuterons). We believe that it will be advantageous to the polarization physics community if the theory
and phenomenology of spin dynamics, and of the ISF, ITF, IFF, and ADST in particular, continues to be
developed, clarified and explained.

Barber cites several instances where theoretical issues have been or are important: (1) plans for polar-
ization at RHIC; (2) calculation of corrections to the spin precession rate in the earlier g-2 experiments;
(3) the EDM rings might run in an exotic mode in which the ISF will only be unique away from the closed
orbit; (4) at the high electron/positron energies of the CEPC and FCC the Derbenev-Kondratenko picture of
depolarization might be too pessimistic. Nevertheless it is recognized in the community that a special effort
will be needed for getting good radiative polarization at those high energies and that in any case it would
be good to have a new faster algorithm for finding the ISF; (5) a detailed understanding of spin motion in
the COSY ring has been essential for interpreting some measurements; (6) tracking simulations and analysis
for spin motion in damping rings have exposed fallacies resulting from superficial understanding.

Beyond these six items there are still questions about the existence of the ISF, especially in the presence
of strong sextupoles so we will give a few more details. Polarization in storage rings is best systematized in
terms of the ISF. It is essential for estimating the maximum proton polarization and the electron equilibrium
polarization due to synchrotron radiation. For example, analytical estimates of equilibrium electron polariza-
tion rely on the “Derbenev-Kondratenko” formula which needs the ISF (we plan to deepen the understanding
of this formula using our averaging expertise).

The detailed paper [GW2], which deals with the ISF and ADST, has been submitted to PRST-AB and is
now on the arXiv. We were invited to submit this as a long version of our IPAC14 paper [GW5] for a special



IPAC14 Edition of PRST-AB. The paper [GW3] is a revision of [GW5] and Barber presented an informal
summary at Spin2014: The 21st International Symposium on Spin Physics, Beijing, China, October 2014.
The summary will appear in the International Journal of Modern Physics, Conference Series.

The paper [GW2] has been a major effort over the last three years. It beginnings were in [GW12] which
evolved into an abstract version using the theory of principal bundles, ala Husemoller’s book on fibre bundles.
Because of the product structure of the underlying principal bundle we found a simpler approach, but the
mathematics we learned on the way was important. Our mathematical framework had its origin in the work
of R. Zimmer, who is now president of the University of Chicago and chairman of the board for FNAL and
ANL. This may be the first connection between his mathematics and accelerators. The abstract follows.

We return to our study [5] of invariant spin fields and spin tunes for polarized beams in storage rings
but in contrast to the continuous-time treatment in [5], we now employ a discrete-time formalism, beginning
with the Poincaré maps of the continuous time formalism. We then substantially extend our toolset and
generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and
prove several theorems believed to be new. In particular we study two transformation rules, one of them
known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then
apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions,
describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector
dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying
aspect of our approach relates the examples elegantly and uncovers relations between the various underlying
dynamical systems in a transparent way. As in [5], the particle motion is integrable but we now allow for
nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we
also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant
spin field, spin tune and invariant frame field. Thus the group theoretical notions hidden in [5] and the
earlier work of Ya.S. Derbenev, A.M. Kondratenko and K.Yokoya will be exhibited. Since we neglect, as is
usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present
the theory in a fashion which does not use bundle theory at all. Nevertheless we occasionally mention the
bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach
to Yang-Mills Theory.

4 FEL

4.1 Noncollective: Averaging and the FEL Pendulum

Our paper [GW6], which was a major effort during the recent cycle, is published. Our effort here will be
quite useful for our collective work and the abstract which follows gives a good overview.

We present a mathematical analysis of planar motion of energetic electrons moving through a planar
dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime.
Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical
system as the wave length A of the traveling wave varies. By scalings and transformations the 6D system
is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the
Method of Averaging, a long time perturbation theory. The two dependent variables are a scaled energy
deviation and a generalization of the so-called ponderomotive phase. As A varies the system passes through
resonant and NonResonant (NonR) intervals and we develop NonR and Near-to-resonant (NearR) Method of
Averaging normal form approximations to the exact equations. The NearR normal forms contain a parameter
which measures the distance from a resonance. For the planar motion, with the special initial condition that
matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well
known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems
which give explicit error bounds for the normal form approximations. We prove the theorems in great detail,
giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where
the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation
and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging
where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem
has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system
been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of



our NearR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in
the framework of dynamical systems theory sets the stage for our mathematical investigation of the collective
high gain regime.

4.2 Collective: A Klimontovich-Maxwell Approach

The 1D wave equation, uy — c?u,, = f, with a Klimontovich source is often the starting point for the 1D
FEL high gain theory [6]. We made progress on two fronts from this starting point.

First, we have a new representation of solutions of this 1D wave equation [7], which we have not seen
in the FEL literature (although it’s in many elementary PDE texts, see also Appendix G of [GW6]). We
have been studying the consequences of this representation and it leads to a new derivation of the paraxial
approximation. We show that the solution can be written as a sum of backward and forward moving waves.
The evolution of each of these is governed by a 1D advection equation, v; & cv, = g. The forward moving
wave is larger than the backward one by a factor of O(7?) and the 1D advection equation for the forward
moving wave is the paraxial approximation. Our next step is to couple this 1D advection equation with the
the Lorentz equations of motion, which evolve the Klimontovich source, to see what new insights we find.
For example, our solution form yields a new way to view the so-called slice average used in 1D high gain
theories.

Second, we have interacted with Bob Warnock on his approach to the 1D theory based in Fourier space
as presented in [8]. He makes an argument that the 1D theory can be done with a mean field Vlasov, rather
than the Klimontovich form, and we're eager to see if this is the case. He integrates the Vlasov equation
using a method of local characteristics, he and Ellison developed years ago, to which he has added some
important fine points, and he already has some nice results. In addition he has developed a “wiggle average”
approximation to the FEL Vlasov to make the size of the time step computationally feasible. We have done
a detailed study of the wiggle average, but as yet have not been able to assess its accuracy. We are applying
our many years of experience with the Method of Averaging (See §4.1 above and §5.2 below).

In the noncollective work of §4.1 above, we discovered that if we excite the bunch with a traveling wave
with a continuous set of frequencies near a resonance, the effect of the resonance appears to be washed out
in first order averaging. This is briefly discussed in Section 5 of [GW6] in the context of Eq. 5.1 and 5.2
therein and we will study this issue in the collective regime.

A future aim is a study of the FEL high gain regime, including a start up from shot noise. We will
use our noncollective work as a basis. We will start with the full microscopic Maxwell equations with the
Klimontovich source evolved by the Lorentz equations of motion. From there, we will study the approxima-
tions leading to the standard formulation in terms the 1D wave equation and the issues raised above. In the
big picture we will follow the plan laid out in Section 4 of the proposal. One aspect we wish to mention here,
which was discussed in the proposal, is an approximation central to Warnock’s approach. Namely the ap-
proximation going from the microscopic Klimontovich-Maxwell system to the macroscopic VM system. We
presented our work in a talk entitled: “From Microscopic Klimontovich-Maxwell (KM) to Macroscopic VM:
Relativistic N-particle electron bunches in modern particle accelerator systems, for large N”, the abstract
follows.

We consider an N-particle electron bunch moving, at nearly the speed of light, through a particle accel-
erator system inside a vacuum chamber. Typically, N is of an order greater than 10° and the bunch is small
relative to the vacuum chamber cross-section. We model the evolution of the bunch by a random initial
boundary value problem with random, independent identically distributed (IID) initial conditions with a
given density* and where the electron evolution is given in terms of the Lorentz force and the associated
microscopic Maxwell fields. The electron phase space density is Klimontovich, i.e., a sum of delta functions.
Taking expected value of the associated Klimontovich evolution equation (with respect to the random initial
conditions) and making reasonable assumptions, we obtain the Vlasov equation with a correction term, for the
expected value of the Klimontovich density, coupled to the macroscopic Maxwell equations. With this frame-
work we then pose the important mathematical issues: (1) How well does the Vlasov density approximate a
coarse-grained Klimontovich density when N is large? We imagine that the vast literature on probabilistic
limit theorems will be relevant here, e.g. the Strong-Law of-Large-Numbers (SLLN). (2) The Vlasov equation
without correction terms is the starting point for many beam dynamics calculations so it is important to
estimate the size of the correction term (surely related to the correction term in the BBGKY hierarchy). In



addition the correction term may shed light on FEL dynamics. These mathematical issues are likely difficult
analysis issues. We begin the talk with the much simpler noncollective case, assuming the electrons do not
radiate and thus ignoring the Maxwell self-fields, in order to set the stage for the more complex KM to VM
case. The slides for the talk are in GWDraft2 at http://math.unm.edu/~ellison/doe_works.html.

*In a physical context the N initial conditions are impossible to know. One view is to think of them as
a set of scattered data from which a density can be constructed using e.g., a density estimation procedure
from Mathematical Statistics. The IID random initial conditions are then given in terms of such a density.
In our work here we simply consider the initial density as given.

5 Smaller Projects on this cycle

5.1 Electron Storage Rings and Handbook article

Ellison and H. Mais completed an extensive revision of our article “Orbital Eigen-Analysis for Electron
Storage Rings” in the first edition of Handbook of Accelerator Physics and Engineering edited by A.W.
Chao and M. Tigner. It has been published in the second edition edited by K.H.Mess and F. Zimmermann
in addition to Chao and Tigner. In this article a general 6D formalism is presented for the calculation
of the bunch parameters for electron storage rings including radiation damping and quantum excitation.
This builds on the early DESY work of Mais and Ripken. Basic to our approach is the orbital eigen-
analysis first introduced by Chao which gives a framework more general than that of Courant-Synder. New
aspects include: (1) a new improved notation; (2) a more precise discussion of linear Hamiltonian systems
with periodic coefficients; (3) a formulation of an integral equation for the closed orbit; (4) a derivation of a
differential equation for the moments from a linearized stochastic differential equation; and (5) an application
of the averaging formalism to obtain an approximation to the beam moments. The article is terse so we
have begun a long version giving details the five items mentioned above. In addition we are giving detailed
discussions of the following: derivation of the equations of motion; the random bunch density’s convergence
to the single particle probability density using tools related to the central limit theorem and strong law of
large numbers; linear Hamiltonian systems with periodic coefficients including stability and normal forms;
a proof of existence and uniqueness of the closed orbit in item 3 above; stochastic differential equations,
associated long time perturbation results (see [9]) and a comparison with item 4 above; a proof of the
averaging theorem mentioned in item 4 above. Here we have dealt with the non-resonant case. Because
of the progress in our averaging work discussed in §5.2 below, we are studying the resonant case and are
comparing our rigorous results with the work in [10].

5.2 Quasiperiodic Averaging: A new approach and applications

We have been working on new results for quasiperiodic (QP) flows of importance in beam dynamics. We
have a draft of our results in a very advanced form [11] which we plan to submit for publication. We could
submit to PRSTAB, however in the spirit of spreading interest in beam dynamics outside our community
we are considering a Dynamical Systems journal, e.g., the STAM Journal of Applied Dynamical systems, a
journal we have used before.

To be more specific, an important class of perturbation problems for ODEs can be reduced to

¥ =eg(z,wt), reR? weR™, teR. (2)

Here € is a small parameter, w is called the frequency vector of the QP flow, and the function g(x,wt) is
called a QP function of ¢t where g = g(z, ) is 2m-periodic in each component of § € R™. For example, many
beam dynamics problems for rings are given in the form of the perturbed linear system v’ = A(s)u+ eh(u, )
as in the handbook work, mentioned above in Section 5.1, but without the stochastic term. This can be put
into the form of (2) if the solutions for € = 0 are quasiperiodic and if h(u,-) is also quasiperiodic (i.e., let
u = U(s)x, where ¥ is a fundamental solution matrix for A, then x satisfies an equation of the form (2) with
the arc length s replaced by t).

It is well known that solutions of (2) depend sensitively on w and the goal of long time perturbation
theory is to find “normal form” approximations

y = egnr(y,wt), y(0) =&, suchthat |x(t) —y(t)| < (e)K(T), for 0<t<T/e, (3)



where d(€) goes to zero as € goes to zero. Standard results, which do not take into account the important
quasiperiodic structure, give a crude error bound d(€) = /€ and lead to normal form approximations which
are not very useful. However, one can do much better in this QP case under a non-resonance condition and
obtain the error in (3) with d(e) = €, see e.g. [12]. However the w in [12] are restricted to a Cantor type set
which is unsatisfactory for applications. In our approach we eliminate this unphysical condition and allow w
to be far from low order resonance defined by a “cut-off Diophantine condition”. More significantly, we extend
Séaenz’ results by exploring neighborhoods of low-order resonances which were originally excluded. Overall,
we believe our methods provide significant advantages over previous methods, especially in applications.
Furthermore it fills a significant gap in the mathematical averaging/long-time-pertubation literature.

Our FEL averaging paper is an elementary application of the above. In addition we now have a collection
of problems in beam dynamics which can be treated using the results of the above paper. This includes
the following: (1) problems discussed in [12]; (2) the resonant and nonresonant cases in §5.1 above; (3)
problems from spin dynamics including a rigorous derivation derivation of the single resonance model which
was introduced in the early work of Courant and Ruth (but still plays a significant role today) and a
perturbation theory for the ISF and ADST (see §3 above). We will prepare a paper on these examples and
submit to PRSTAB.

5.3 Theory for Experiment at SLAC’s FACET facility

Ellison is participating in a project to study radiation from GeV electrons and positrons in crystals at
FACET at SLAC. The ultimate goal of the project is to produce a gamma ray laser, using the channeling
effect in a so-called crystalline undulator. Ellison was involved in particle channeling in crystals, including
channeling radiation, for many years before becoming involved in beam dynamics at the SSC. He helped
write a proposal for beam time at FACET and the proposal entitled “Radiation from GeV electrons in
diamond-with intensities approaching the amplified radiation regime” was approved and a very short test
(3 times 8-10 hours) was completed in November; the data is being analyzed. Ellison’s previous channeling
radiation work [13] is relevant. He discovered a special effect and developed much of the theory. There is an
overlap with our DOE FEL work.
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