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Magnifying Lenses with Weak Achromatic Bends
for High-Energy Electron Radiography

P. L. Walstrom
February 23, 2015

1 Abstract

This memo briefly describes bremsstrahlung background effects in GeV-range
electron radiography systems and the use of weak bending magnets to deflect the
image to the side of the forward bremsstrahlung spot to reduce background. The
image deflection introduces first-order chromatic image blur due to dispersion.
Two approaches to eliminating the dispersion effect to first order by use of
magnifying lens with achromatic bends are described. Also, higher-order image
blur terms caused by weak bends are also discussed, and shown to be negligibly
small in most cases of interest.

2 Motivation

In GeV-range electron radiography (eRAD), bremsstrahlung from the test ob-
ject, collimators, and any other solid objects struck by the beam contributes
a significant unwanted background component to detected images, since most
detectors being considered for electron radiography, although selected for sensi-
tivity to high-energy electrons in the primary beam, are also sensitive to high-
energy bremsstrahlung photons. This includes scintillators, which presently the
detector type used in proton radiography and for electron radiography exper-
iments planned for the Stanford Linear Accelerator (SLAC) ESTB facility in
2015. The bremsstrahlung photons from a thin object (i.e. an object with
thickness much less than a radiation length), regardless of energy, are mostly
contained in a cone of angular radius 1/ around the primary electron direction
at the point of bremsstrahlung production. For 10 GeV electrons, the character-
istic bremsstrahlung cone angle is 5 x 107° radians. The actual radiation cone
angle is larger than this because of multiple Coulomb scattering of the primary
electrons in the object before they emit bremsstrahlung (angular spread due
to beam emittance should be much smaller than the MCS spread in a properly
designed electron radiography setup). Since in a typical electron radiography ex-
periment the rms MCS angle will be on the order of a few times 10~ radians, the



MCS angle will in most cases be larger than the intrinsic bremsstrahlung pho-
ton angular distribution width. Finally, the incident beam’s chromatic matching
angles can be still larger than the MCS angles; for example, with a matching
correlation k, of 1 m~!, the matching angle for a point in the object a distance
of 1 mm from the beam/lens axis is 1 milliradian. If there is no collimation of
the bremsstralung photons downstream of the object, the bremsstralung beam
spot width at 25 m from the test object (a typical object-detector distance
in 10 GeV eRAD) for this matching angle will be roughly 5 cm for a 2 mm
wide test object. However, the angle-cut collimator, designed to stop 10 GeV
primary beam electrons, also is an effective collimator for bremsstrahlung pho-
tons, although it generates additional bremsstrahlung photons from electrons
that graze the collimator’s inside surfaces. The size of the aperture that is used
in the angle-cut collimator depends on the beam energy of the experiment, the
lens layout, and the object thickness in radiation lengths, but a typical aperture
in 10 GeV eRAD is less than a millimeter in width. The z position (z is the
beam axis) of the collimator the so-called Fourier point, which depends upon
lens layout and matching conditions. In the initial version of the ESTB experi-
ment, a slightly diverging chromatically unmatched beam, for which the Fourier
point is downstream of the last of four lens quadrupoles, will be used. For this
configuration, the bremsstrahlung beam spot at the object after collimation by
the angle-cut collimator is typically a few millimeters wide. Recent Geant4 runs
by Dan Poulson and Joseph Fabritius of P-25, which modeled electron images
with bremsstrahlung background effects in the planned eRAD experiments in
ESTB, gave results consistent with the above picture.

In any case, whether the beam illuminating the test object is matched or
unmatched, one way to reduce bremsstrahlung background in the image is to
deflect the image electrons to the side of the forward bremsstrahlung spot with
a weak bending magnet, which ideally would be placed downstream of the col-
limator. If the bending magnet is placed before some of the lens quadrupoles,
those quadrupoles should be centered on the angled beam axis coming out of
the dipole to avoid beam steering by the quadrupoles.

Addition of a bending magnet to a magnetic lens introduces image blur-
effects that do not occur in straight-axis lenses. The largest such effect is first-
order dispersion. In addition to dispersion, a bend introduces second-order
geometric aberrations that do not occur in straight-axis lenses. In straight-axis
quadrupole lenses, the only geometric aberrations are of third order (providing
the quadrupoles do not have sextupole field errors or skew field components due
to roll-type misalignments). However, the second-order geometric aberrations
in lenses with bends are small for small bend angles.

In this memo, two approaches to design of quadrupole magnetic lenses with
bends that are achromatic, i.e. for which first-order dispersion blur in the image
is zero, are described. Also, the second-order geometric aberrations caused by
the bends and their scaling with bend angle are described.



3 Dispersion effects

In general, the vector of final six phase-space variables zf in a lens system
can be expressed as a Taylor series in the initial six phase space variables,
denoted by the 6-vector z'. The transfer map code Marylie uses the canonical
deviation variables z1 = x, 20 = Py = py/po, 23 = ¥y, 24 = Py = py/po,
z5 =7 =c(t —tg), and z6 = 6 = (Ey — E)/poc, where pg is the magnitude of
the reference three-momentum and Ej the reference kinetic energy. The map
code COSY Infinity also uses canonical deviation variables, with the same 2z;
through z4, but different z5 and zg. In systems with bends, the transverse
coordinates x and y refer to a system with axes rotated and translated such
that the reference trajectory has ¢ = 0, P70, y = 0, and P, = 0. Normally,
the reference particle has phase-space coordinates somewhere near the middle
of the phase-space volume to be tracked.

Note that the commonly used angle variables ' and 3’ (in TRACE-3D, etc.)
are non-canonical. That is, z,2’ and y,y’ are not canonically conjugate pairs,
but z,p, and y,p, are. When p, and p, are divided by the constant pg, the
resultant zo and z4 remain canonically conjugate to x and y, respectively. In the
small-angle approximation, which is very good here, 2’ = p,/p and v’ = p,/p.
Therefore zo = (p/po)x’ and z4 = (p/po)y’. It is important to convert =’ and
y’ to their canonical counterparts when evaluating the transfer map beyond the
first order. In COSY, z6 = (E — Ey)/Ey. Note the difference in sign between
the Marylie and COSY zg. At GeV electron energies the Marylie and COSY
z5 and zg are about the same, except for sign. Through third order, we can
write for the transfer map that relates final to initial phase-space coordinates
of a particle that has passed through a magnetic lens,

6 6 6 6 6
SED RS ) SLIEX TS 35 3) SN N S I

=1 j=1k=1 j=1k=11=1

We see from Eq. 1 that to lowest order, the final 6-D phase-space coordinates are
linear and homogeneous in the initial coordinates (there are no constant terms
in the map, since we use deviation coordinates). The second-order transfer-map
terms are represented by the double summation and the third-order terms by
the triple summation in Eq. 1. In this memo, the canonical coordinates of the
charged-particle beam-transport code Marylie are used. The linear part of Eq.
1 can be written in matrix form, i.e.,

iI?f‘ Ry Rip2 Riz3 Ry Ris Rig 20

P/ Ry1 Rpa Ra3 Rasy Ras Rag P

y' | | Rs1 Rs2 Rss Rsa Rss Rag y° ()
PJ | Ran Rsa2 Rus Rya Rus Rag Pgo

7t Rs1 Rso Rss Rsa Rss Rsg T

P/ Re1 Reo Resz Rea Res Reg P

The matrix of Eq. 2 is commonly called the R matrix. In a magnetostatic
system with no skew field components in the quadrupoles (e.g., components



introduced by quadrupole roll, or rotation around the magnet axis), and with
bends in the = plane only, many of the elements in Eq. 2 are zero, some are
one, and the R matrix has the form

a:f R1’1 RLQ 0 0 0 R1,6 $O
P/ Roy Res O 0 0 Rag PO
y' | _ 0 0 Rz Rza 0 O y° (3)
P/ | 0 0 Ry3 Rggy 0 O PO
Tf R5,1 R572 0 0 1 R576 7'g
Pf 0 0 0 0 0 1 PO

R16 and Rag are called the dispersion matrix elements, since final x and P,
depend on energy deviation if these elements are non-zero. If the R matrix
is for the entire lens from the object plane to the image plane, we want R; ¢
to be zero to avoid first-order image blur due to energy spread; Ra¢ can be
non-zero since it affects only the image-plane = angle, not the electron’s final
z. I call a magnetic transport system with R; ¢ = 0 but R3¢ non-zero a partial
first-order achromat. The achromats discussed in this paper are all so-called
partial achromats. For a straight-axis magnetostatic system with no skew field
components in the quadrupoles, the R matrix is still simpler:

{Ef Rl,l RLQ 0 0 0 0 .TO
P/ Roy Rpo O 0 0 0 PY
v | | 0 0 Rss Ry 0 0 y" ()
Pl 0 0 Ry3 Rsgy 0 O PO
7t 0 0 0 0 1 Rsg 7
24 0 0 0 0 0 1 P?

Note that not only are the dispersion elements R; g and Ry ¢ zero in the straight
(no-bend) system, but the time-of-flight matrix elements R5; and Rjs 2 are also
zero. Rsg remains non-zero in the straight system since the time of flight
depends on the velocity, which varies with energy. As we shall see R is
usually zero in achromatic lenses with bends. Although Rj; is not zero in our
achromats, the time spread 7 = ct due to R5 12 in a lens system with a weak
bend typically is on the order of microns and negligible from the point of view
of motion blur in the image. Finally, even if R, is made to be zero in a lens
with a bend, its energy derivative T} ¢ ¢ is not in general zero, but in most cases
of interest to eRAD this particular second-order aberration is negligibly small.

4 Analytic approach to finding achromatic lenses
with bends

In order to have a focused lens, we require R; 2 and R34 to both be zero in the
transfer map from the object plane to the image plane. Typically, we also want
to have equal or nearly equal magnification M in both = and y, i.e. Ry 1 = My,
Rs s = M,, where |M,| ~ |M,| (it is OK for the signs of M, and M, to be



different, but we usually we want their magnitude to be the same). Finally, for
high-quality images in lens systems with bends, we want Ry = 0 in order to
eliminate first-order dispersion. This is a total of five conditions. One approach
to solving this problem might be to simply use the fitting loop in a transfer-
map code like Marylie to find a set of quadrupole-magnet gradients, lengths, and
spacings that give an R matrix that satisfies the 5 conditions. In practice, this
purely empirical approach usually fails, unless one can find a set of initial values
for the quadrupole strengths and spacings that are close to the final values.
We therefore hope to find guidance in solving the problem from the theory of
differential equations.

We start by noting that in a system with bends in the x plane, in the
linear approximation, we can describe the particle’s z-plane deviation from the
z-plane reference orbit as the linear combination of three basis rays: the so-
called cosine-like, sine-like, and dispersion rays. For the y coordinate, the linear
optics is the same as in a system with no bends and the y dispersion ray is
identically zero. In straight systems, the basis rays are parameterized by the
longitudinal coordinate z; in systems with bends, the parameter is arc length
s along the reference trajectory. Also, in systems with bends, the transverse
deviation coordinates x and y are in a reference frame that rotates such that
the local x — y plane is perpendicular to the reference trajectory. If we consider
the R matrix elements to be functions of s, the cosine-like ray is Ry 1(s), the
sinelike ray Ry 2(s), and the dispersion ray Rj¢(s). In terms of these rays, an
arbitrary ray in the x plane is z(s) = Ry 1(s)z° + Ry 2(s)P? + Rig(s)d, where
2% and P? are the respective values of these quantities for s = 0. We note that
there is no superscript on the energy deviation ¢ since particle energies do not
change as they pass through magnetostatic systems. The R matrix at s = 0 is
the identity matrix. Also, dRy 1(s)/ds = Ra1(s), dR12(s)/ds = Ra2(s), and
dR16(s)/ds = Ra6(s). Since at s = 0 the R matrix is the identity matrix, we
have R11(0) = 1, dRy,1/ds(0) = 0, R12(0) = 0, and dR;y2/ds(0) = 1. Also,
RLG(O) =0 and R276(0) =0.

The theory of differential equations [1] tells us how to find the dispersion
ray, if we know the sinelike and cosinelike rays. Eq. 5.25 in Ref. [1], which is
the Green’s function solution to the dispersion ray, reads

dx(t) = s:(t) /0/ e (T)h(T)dT — cm(t)/o Sz (T)h(T)dT (5)

The function h(7) is the inverse of the radius of curvature, so h(7) = ¢By(7)/p° =
B, (7)/Bp (everywhere in this memo Bp refers to the so-called magnetic rigidity
of the reference particle, not the rigidity of an arbitrary particle). We now note
that Carey in Ref. [1] uses dp/po for his energy deviation variable, but Marylie
uses —0F /poc. Therefore, in order to put Eq. 5 into Marylie units we need an
overall factor of —1/3. Also, to avoid confusing arc length with time we use s
instead of ¢ and s’ instead of 7. Then, using R 1(s) for c,(¢), etc. , we get,



instead of Eq. 5,

-1

Bisl) = 55,

[Rm(s) / R (5)By (5)ds' — Ry (s) / S R1,2<s'>By<s’>ds’}
(©)

If we need the s derivative of the dispersion (i.e. Ry ), the appropriate expres-
sion is

Raals) = 55 [Reao) [ a3 () = Rx(o) [ Raats) 3y (50|

(7)
Finally, if the system is focused at arc length s, Ry 2(s) = 0, and

Rug(s) = BLB[)RH(S) /O " Rua(s') By (')’ (8)

Inspection of Eq. 8 now tells us how to design magnifying lenses that are
"partially” achromatic (i.e. Ry = 0 but R is not necessarily zero), which is
what we want for electron radiography systems with weak bends to deflect the
image away from the bremsstrahlung spot. That is, we just have to somehow
make the integral in Eq. 8 zero. The easiest way to do this is to center the
bending magnet at an x focus location.

5 First approach: single-stage achromatic mag-
nifier with an intermediate » focus between
the third and fourth quadrupoles

This achromatic weak-bend magnifier has five quadrupoles (quadrupole doublet-
drift-quadrupole triplet) followed by a long drift to the image plane. Therefore
it will be called the ”doublet-triplet achromat” in this memo. It has a magnifi-
cation of +10 in x and —10 in y. We put an intermediate x focus between the
second and third quadrupoles and place the center of the weak bending dipole
at the intermediate x focus. This makes the integral of Eq. 8 zero.

This solution to the problem was found by breaking the problem into two
steps. The first step was to set the doublet to give an intermediate x focus after
the second quadrupole. The quadrupole doublet was chosen to have equal-
length quadrupoles with equal but opposite-sign gradients. In order to get
the intermediate x focus after the second quadrupole, the gradient of the first
quadrupole has to be negative (i.e. the first quadrupole defocuses in x and
the second quadrupole focuses in x). For this part of the problem there was
one fitting aim, R; 2 = 0, so only one parameter had to adjusted by Marylie.
The parameter adjusted was the drift length from the second quadrupole to the
intermediate x focus.

There was one slight complication to the procedure. Unfortunately, Marylie
does not allow the user to specify the dipole length; instead bend angle and
field strength are specified. Therefore, when setting the drift length for the



intermediate = focus, it was necessary to split the bending dipole into two equal
halves and place the first half after the drift following the second quadupole and
use the Marylie fitting loop to set the Ri2 = 0 at the end of the half-length
dipole. The second half-dipole was placed at the start of the second part of
the overall lens. This guaranteed that entire dipole (both halves combined) was
exactly centered on the intermediate x focus. The next step was to find triplet
quadrupole settings and final drift length to the image plane that satisfied the
four conditions Ri 2 =0, R34 =0, Ri1 = M, and R3 3 = M, with M, = 10,
M, = —10 (as it turned out, this combination of signs for the magnifications was
the ”natural” choice for this configuration). The four parameters adjusted in
the Marylie fitting loop were the three gradients of the quadrupoles of the triplet
and the final drift length. As expected, when the four conditions were satisfied,
the achromatic condition Rijg = 0 was also satisfied (to machine precision), as
predicted by Eq. 8. This is shown by the object-plane-to-image-plane R matrix
computed by Marylie after the fit loop converged:

1.00000E+01 -3.99680E-15 0.00000E+00 0.00000E+00 0.00000E+00 -1.74166E-15
5.26184E-01 1.00000E-01 0.00000E+00 0.00000E+00 0.00000E+00 2.60834E-04
0.00000E+00 0.00000E+00 -1.00000E+01 2.48690E-14 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 -2.66336E-01 -1.00000E-01 0.00000E+00 0.00000E+00
-2.60834E-03 -1.73764E-16 0.00000E+00 0.00000E+00 1.00000E+00 1.39694E-08
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

It is interesting that, as a sort of by-product, the R matrix element Rss is
also zero, although Rs; is not. We recall that for straight-axis systems both
R51 and Rpyy are automatically zero, but in general, for systems with bends,
Rs51 and Rso are both non-zero. Fig. 1 shows four rays for the doublet-triplet
achromatic lens: the x and y-plane chromatically matched rays [2], and the x
and y-plane sinelike rays ( which have been multiplied by a small initial angle to
make them fit in the figure). Quadrupole pole pieces are indicated by the black
rectangles. The dipole is not shown, but it is centered at the point where the
purple curve crosses the axis. For future reference, the beamline parameters for
this example are listed in the table below. The total bend angle is 0.2 degrees,
or about 3.5 milliradians. This gives an image displacement of about 9 cm. The
dipole field is unrealistically high; this was done to keep the dipole short for ray
plotting purposes. The beam energy was 13.65 GeV. The design is by no means
optimized, but is a proof of the concept.

Although the doublet-triplet achromat is a first-order (partial) achromat, it
still has the second-order chromatic aberrations of straight-axis magnifiers. It is
of interest to compare the size of the four second-order coefficients 11 1 6, 11 2,6,
13,36, and T7 2 6. For the straight-axis system, we take the 13.65 GeV ”Russian”
quadruplet x10 magnifier for the SLAC ESTB eRAD proof-of-principle exper-
iment. The second order chromatic coefficients for the double-triplet achromat
and the Russian quadruplet are given in Table II below. Since both lenses have
a magnification of 10, it is not necessary to divide them by the magnification in
the comparison. With matching, the second-order chromatic blur is dominated
by T1,2,6 and T3 46. We see that T} 5 ¢ is larger for the achromat than the Rus-
sian quadruplet by a factor of 2.5, and T34 larger by a factor of 2.7. It may
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Figure 1: Ray plot for the doublet-triplet achromatic-bend magnifier. Red
curve: z-plane matched ray; green curve: y-plane matched ray; purple curve:
x-plane sinelike ray; blue curve: y-plane sinelike ray.

Table I: Beamline for an achromatic lens with an intermediate x focus

Element name element type length (m) bending field (T) gradient (T/m)
f1 drift 0.6 — —

ql quadrupole 0.5 — -110
qlg2spac drift 0.6 — —

q2 quadrupole 0.5 — 110
q2bspace drift 2.09778 — —
bend dipole 0.016 10.0 —
dab drift 0.2 — —

q3 quadrupole 0.5 — -63.2583
d34 drift 0.7 — —

q4 quadrupole 1.0 — 36.3882
d45 drift 0.7 — —

b quadrupole 0.5 — -13.33417
dfinal drift 25.0883 — —

Table II: Comparison of second-order chromatic aberration coefficients

coefficient Russian quadruplet value achromat value
Ti16 -14.7 140.4
Ty 26 -55.1 139.0
T33.6 -15.9 64.2
T34¢ -31.2 -84.3



be possible to reduce these ratios somewhat by optimizing the achromat design,
but the achromat will be worse in any case because of the greater length of the
part of the lens from the start of q1 to the end of 5. For a particular achromat,
the four chromatic aberration coefficients 11 16, T5,2,6, 13,3,6 and T3 4 ¢ are very
nearly independent of bend angle (for weak bends with negligible edge focusing)
and are essentially the same as those of the equivalent straight lenses where the
bends are replaced by drifts of the same length.

As mentioned previously, adding the bend dipole to the lens introduces
second-order geometric aberrations that are not present in straight lenses. The
second-order geometric aberrations affecting final = are 77111, T1.1,2, 11,33,
T1,3.4, and 11 44. The second-order geometric aberrations affecting final y are
fewer: T3 13, 1314, 1523, and T3 24. The aberrations affecting x are plotted
against bending angle in Fig. 2 and the aberrations affecting y in Fig. 3. It can
be seen that they all have a linear dependence on bend angle. To get a rough
idea of their effect on a typical image, we can take T3 3 and T3 24. T5.1,3 is the
largest coeflicient multiplying two initial lengths and 7% 2 4 the largest multiply-
ing an angle and a length. If we take g =1 mm and also yg =1 mm, we get from
the 7531 3 term dy = 0.5 micron for the largest bend angle of 0.2 degrees. But
we must divide this by the magnification of 10, so the y displacement referred
to the object due to this term is about 0.05 microns. However, since this term
involves two initial lengths, it does not blur the image; it just distorts it slightly.
Terms like 752 3 involving an initial angle, however, do blur the image, since
there is multiple Coulomb scattering (matching angles combined with T3 2 5 do
not blur the image- they just distort it, since the matching angles are a linear
function of the initial transverse position in the object). For an MCS rms x
angle of 1 milliradian and an initial y of 1 mm, we again get a y spread of about
0.05 microns, but this is a real blur. However, this is a small effect that probably
can be neglected in almost all practical cases.

There is one more second-order aberration coefficient in lenses with bends
that is zero in straight lenses: 7166 = O0R1,6/0d. In the present double-triplet
example with a bend angle of 0.2 degrees, T 66 = 0.13 m. With an energy
spread 0 of 0.1%, this gives an image-plane 2 spread of 1.3 x 107 m, which
when divided by the magnification is 1.3 x 108 m, a negligible blur term. This
aberration coeflicient has a linear dependence on bend angle.

6 Second approach: achromatic two-stage lens

With this approach, existing two-stage straight-lens quadrupole lengths and
gradients, and drift lengths can be used essentially with no modification, except
that the last part of the final drift of the first stage and the first part of the
initial drift of the second stage are replaced by equal-length, equal strength
half-dipoles. This centers the whole dipole at the image plane of the first stage,
where both Ry 2 =0 and R34 = 0. Therefore Eq. 8 and its analog for bends in
the y plane are both satisfied, and we can can have achromatic image steering
in both the x and y planes, if desired. Since beamline data on compound lenses
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R matrix for compound lens with bend

5.00000E+01 -5.32907E-15 0.00000E+00 0.00000E+00 0.00000E+00 -9.28077E-17
2.64868E+00 2.00000E-02 0.00000E+00 0.00000E+00 0.00000E+00 3.49066E-04
0.00000E+00 0.00000E+00 5.00000E+01 9.49796E-14 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 2.65280E+00 2.00000E-02 0.00000E+00 0.00000E+00
-1.74533E-02 5.55521E-19 0.00000E+00 0.00000E+00 1.00000E+00 8.63989E-08
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

have been previous reported [3], a beamline table will not be given here. The
R matrix computed by Marylie for an achromatic compound magnifier with a
first-stage magnification of -10 and a second-stage magnification of -5, with the
bending dipole centered at the Stage 1 image plane, is given below. As in the
doublet-triplet achromatic lens, the second-order geometric aberrations increase
linearly with the bend angle, but the second-order chromatic aberrations (except
for T} ¢,6) change very little with bend angle and are essentially the same as those
in the equivalent no-bend lens. When they are divided by the magnification,
they are only a little larger than those of the first stage of the lens, when it
is used without a second stage (this is shown in Ref. [4]) . Since the second-
stage length is about the same as the first-stage length and the magnification
is larger, the required bend angle is larger than for the doublet-triplet lens for
the same field-of-view in the object. However, when aberrations are divided
by the magnification, the actual geometric aberration blur with the scaled-up
bend angle about the same as that for the doublet-triplet lens, and should be
negligible in most cases of interest. In summary, the compound (two-stage)
achromatic weak-bend lens looks like a very promising approach for dealing
with bremsstrahlung background.
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