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An Exact, Compressible One-Dimensional Riemann
Solver for General, Convex Equations of State

James R. Kamm
Abstract

This note describes an algorithm with which to compute numerical solutions to the one-
dimensional, Cartesian Riemann problem for compressible flow with general, convex
equations of state. While high-level descriptions of this approach are to be found in the
literature, this note contains most of the necessary details required to write software
for this problem. This explanation corresponds to the approach used in the source code
that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation
of state in the ExactPack package [16, 29]. Numerical examples are given with the
proposed computational approach for a polytropic equation of state and for the JWL
equation of state.

1. Governing Equations for Compressible Flow

The Euler equations describing the conservation of mass, momentum, and energy for a
compressible fluid can be written in conservation form as [6, 31]:

dp | 9(pu) _
pn + o =0, (D

Apu) I(pu®+p)
ot + ox =0, )

(pE) | Olu(pw® +p)]
ot + Ox =0 )

Cartesian geometry is assumed with spatial coordinate x, p is the mass density, u is
the velocity, p is the pressure, and F¥ = e + %uQ is the specific total energy with e
the specific internal energy (SIE). The working fluid is an inviscid, non-heat conduct-
ing, non-radiating, non-reactive gas, for which the mass density, pressure, and SIE are
related through an (incomplete) equation of state (EOS), expressed as

p="P(p,e) or e=E(p,p). “4)

The further assumption is made that the EOS describing the fluid is convex, i.e., that the
fundamental derivative G is strictly positive! [25, 31, 32]; this assumption is appropriate
for many gases. From the EOS, the square of the corresponding sound speed, a2, is
related to the variations of pressure, density, and SIE as
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where s is the entropy. For later use, the functional dependence of the sound speed on
the density and pressure is denoted as:

a=Ap.p) - N

The conservation laws in Egs. (1-3) can be rewritten in characteristic form [5, 19]

as:

dp

du—p—:O along de — (u—a)dt =0, (8)
a
dp

dp—— =0 along dr —udt =0, ©)]
a
dp

du+—=0 along dr — (u+a)dt =0, (10)
pa

This form of the equations illuminates the structure of the solution to the 1D Riemann
problem (defined below), is useful for describing simple waves, and is particularly
helpful for understanding wave structure in the (p, u)-plane.?

2. The 1D Riemann Problem for Compressible Flow

The 1D Riemann problem for compressible flow describes the time-dependent evolu-
tion of an initial discontinuity between two semi-infinite, uniform states. The literature
on this subject is vast, and the interested reader is directed to the following general
references for additional details: [6, 23, 24, 25, 31, 33, 34]. The compressible media
on the two sides of the initial discontinuity may be described by the same EOS or by
different EOSs. Under these assumptions, a self-similar flow evolves, i.e., assuming
(without loss of generality) that the initial discontinuity is at the origin, the solution is
solely a function of z/t. Additionally, the assumption of convex EOSs excludes the
possibility of non-standard flow structures (i.e., rarefaction shock fronts and isentropic
compression waves).® With these assumptions, it can be shown that the time-dependent
solution to the Riemann problem must consist of a contact discontinuity and a combi-
nation of (expansive) rarefaction waves and (compressive) shock fronts. [6, 21, 25, 33]

The Riemann problem initial conditions include a discontinuity, which is mani-
fested as the contact discontinuity in the evolving flow. The contact has several fea-
tures that distinguish it from either a shock front or a rarefaction wave. Physically, the
contact is the sole wave across which there is no mass flux, i.e., no flow of material.
Like a shock front, the states on either side of the contact discontinuity are uniform;
this spatial uniformity holds until the next wave is reached. Unlike a shock, however,
across the contact both pressure and velocity do not change; this is not true of other
flow quantities, such as density and SIE. It is this equality of the pressure and velocity
across the contact that provides the key to the overall numerical solution.

The other two families of possible waves also have properties that guide the corre-
sponding numerical solutions. Shock fronts correspond to compressions and are flow
discontinuities across which there is a non-zero mass flux, unlike a contact; there is also
a jump in entropy across a shock wave, in distinction to a rarefaction.* The Rankine-
Hugoniot (RH) equations [18, 19, 33, 41] codify the conditions that ensure the con-
servation of mass flux, momentum flux, and energy flux in the direction normal to a



discontinuity surface in the material. The RH equations across a shock front can be
expressed in the following form in a frame in which the initial states and the shock
each may have non-zero velocity:

P (Us —u®) = p® (Us —u®), (11)
p? (Us —u®)? +p® = p® (Us —u®)* +p, (12)
¢+ (0% /%) + 5 (Us —u®) = ¢+ (0°/p°) + 5 (Us —u®)?, (13)

where Us is the shock speed, “®” denotes the pre-shock state (i.e., ahead of the shock),
and “®” denotes the post-shock state (i.e., behind the shock).> These equations can be
written compactly as the jump conditions

[p(ts—u)] =0, (14)
[p(Us —u)*+p] =0, (15)
[[e—l—(p/p)—l—%(u‘s—u)gﬂ =0, (16)

where the bracket represents the jump in the enclosed quantity, i.e., [© ] == 6% — 0.
If there is a shock front in the evolving flow, the RH conditions provide the basis for
the numerical evaluation of the post-shock state.

Unlike shock fronts, rarefaction waves correspond to expansions, have finite spatial
extent, and are isentropic, with pressure that is monotone and continuous through the
wave. One implication of these conditions is that the characteristic equations can be
reduced to the following ODEs through the rarefaction:

@ — a2 = A2 n dﬂ -+ @ 1

i A*(p,p(p))  and i p (17
In these equations, the reduction of the sound speed to a function of density only is a
result of the isentropic condition. In the second equation, the sign depends on whether
the rarefaction is left-facing (—) or right-facing (4+).° The ODE:s in Eq. (17) provide
the basis for evaluating the numerical solution for the entire flow state at all locations
through the rarefaction wave.

If one excludes the possibility of vacuum initial conditions, then the five possible

wave combinations of the evolving self-similar flow (named according to the waves
present, from left to right) are [14]:

1. Shock-Contact-Shock (SCS)

2. Shock-Contact-Rarefaction (SCR)

3. Rarefaction-Contact-Rarefaction (RCR)
4. Rarefaction-Contact-Shock (RCS)

5. Rarefaction-Contact-Vacuum-Contact-Rarefaction (RCVCR)
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Figure 1: Snapshots of density versus position for examples of four of the five pos-
sible wave combinations of the 1D Riemann problem solution for the gas dynamics
equations with a general, convex EOS. Clockwise from the upper left: Shock-Contact-
Shock (SCS); Shock-Contact-Rarefaction (SCR); Rarefaction-Contact-Shock (RCS);
and Rarefaction-Contact-Rarefaction (RCR).

For given EOSs, the initial conditions determine which one of these flow structures
develops. The numerical scheme described in the following computes solutions for the
first four. Snapshots of the density fields for these four cases are plotted in Fig. 1; for
snapshots of the other flow fields in the RCS case, see Fig. 2.

3. Overview of the Solution Approach to the 1D Riemann Problem

As previously mentioned, specifics of the wave structure suggest how the numerical
solution can be calculated. In the case of polytropic gases, many of the associated
relations can be evaluated in closed form, as described, e.g., in [14, 33]; in the general
EOS case, several of these relations must be solved numerically. The polytropic gas
case, however, still requires the numerical solution of a single nonlinear equation.’

To obtain the numerical solution for the case of general convex EOSs, further com-
putational complexity is unavoidable. Different approaches been proposed by different
authors, several of which are mentioned by Gottlieb and Groth [14]. The work of



Colella and Glaz [5] is a key reference, describing previous work and providing a com-
plete solution procedure. Other researchers, e.g., [2, 10, 20, 22, 27], either based their
Riemann solvers on this solution strategy or took slightly different approaches.®

The key property exploited in the overall numerical solution is the equality of the
pressure and velocity across the contact discontinuity. Immediately adjacent to the
contact wave is the “star-state” region, throughout which the pressure and velocity are
equal and uniform. It is referred to as the star-state for the superscript that is commonly
used to identify these pressure p* and velocity u* values. The flow states in this region
are related to the initial uniform states to the left (L) and to the right (R) through
waves that must be either shocks or rarefactions. A synopsis of the iterative procedure
with which to evaluate the entire solution is given as: estimate the star-state pressure;
determine the corresponding complete left and right star-states; use the mismatch in
the computed left and right star-state velocities to update the estimate of the star-state
pressure; iterate this loop to a predetermined tolerance in the discrepancy between left
and right star-state velocities; and, upon convergence, compute the full solution from
the converged star-state pressure and velocity.

Many details are required to turn this high-level description into an algorithm that
can be instantiated in software. A preliminary refinement of this approach into the
following pseudocode hints at the additional complexity:

1. Select the overall iteration scheme to be used to calculate the solution.

a. The equality of the pressure and velocity across the contact discontinuity
must be fashioned into nonlinear equations to be solved numerically.

II. Provide initial estimates of star-state pressure, p*(o), and velocity u*(0),

a. These values are typically estimated using the acoustic approximation, i.e.,
employing the sound speeds of the initial uniform left and right states.

b. Depending upon the overall iteration scheme used, an additional initial es-
timate of the star-state quantities may be required.

III. Using the approximate star-state pressure, determine whether the wave connect-
ing the uniform state (for both the left and right states) and the corresponding
star-state is a shock or a rarefaction; for ¢ = L, R:

a. p*®) > p, = shock: use the RH conditions of Egs. (11-13) to determine
the complete, post-shock star-state corresponding to p*(*); for a general
EOS, this involves finding the zero of a single nonlinear equation, which
involves several EOS calls.

b. p**) < p, = rarefaction: use the adiabatic conditions of Eq. (17) to deter-
mine the complete, post-rarefaction star-state corresponding to p*(¥); for a
general EOS, this involves (i) finding the zero of a single nonlinear equa-
tion and (ii) numerically integrating the ODEs for the solution through the
rarefaction, each of which involve many EOS calls.

c. Depending upon the overall iterative solution scheme used, this procedure
may be used to provide an additional initial iterate, i.e., p*(") and u*(V).



IV. At the kth iteration, evaluate the discrepancy between the computed left and

*(k) *(k)
L

right star-state velocities, u and up"’ and possibly evaluate the next star-

state estimate.

a. If this value is less than the allowed error tolerance, then evaluate the com-
plete left and right star-state solutions and proceed to step V.

b. Else use the velocity mismatch to obtain the next iterative estimate of the
star-state pressure p*(#+1) « p*(¥) and return to step III.

V. When a sufficiently accurate estimate of the star-state solution is calculated (i.e.,
case I'Va obtains), then values of the complete Riemann problem solution at any
point in the domain can be evaluated; this process may involve interpolation to
specified spatial positions of the iteratively-determined solution (specifically in
the rarefaction(s), if present).

There are several numerical procedures that must be implemented in this approach.

e Finding reasonable initial estimates of the star-state pressure and velocity: to
start the overall iterative solution loop, values for these quantities are required,
and the simple acoustic approximation, alone, may not provide adequate esti-
mates for highly nonlinear EOSs.

e Finding the zero of a single nonlinear equation: this is most effectively accom-
plished when the root can be bracketed (i.e., when one has two abscissa that give
function values of opposite sign), which, given the complexity of these equations
and nonlinear EOSs, may not be immediately obvious. The root-finding routing
used was the well-known scalar root finding routine ZEROIN of Forsythe, Mal-
colm, and Moler [9].°

e Numerical integrating an ODE: for the (generally) smooth functions considered,
this should not present problems; however, it is conceivable that the computa-
tional evaluation for a complex analytic EOS could pass through “forbidden”
areas of the EOS, where, e.g., the SIE or the square of the sound speed is neg-
ative. The numerical integration scheme used was a fourth-order Runge Kutta
routine, as suggested by Banks [2] and described in §1II(b).

e Interpolating solution values at specified positions: this would be necessary
through any rarefaction, which, being smooth, should not present problems for
even simple interpolation routines. This was accomplished with the cubic spline
routines SPLINE and SEVAL of Forsythe, Malcolm, and Moler [9].

Since finding the zeroes of the nonlinear equations and numerically solving ODEs
each involve an appreciable number of EOS calls (say, hundreds or thousands), this ap-
proach, while accurate, is prohibitively inefficient as the Riemann solver for a general
compressible flow algorithm; even the algorithmically much less complex polytropic
gas Riemann solver is impractical for general compressible flow codes. When an ex-
act solution is to be used for code verification, however, this concern is essentially



irrelevant, as the hydrocode calculations being assessed typically require significantly
greater resources than the exact Riemann problem solution evaluation.

4. Details of the Solution Approach to the 1D Riemann Problem

In this section we describe in detail the solution scheme. Recall that the 1D Riemann
problem describes the evolution of either the same material or two different materi-
als separated by a massless discontinuity, i.e., the EOSs on the two sides of the initial
discontinuity can be different. The solution scheme described in the following is appro-
priate for this general case. The approach presented combines elements of the methods
outlined in [2, 5, 10, 22, 27].

1. The Overall Iteration Scheme

The overall iteration scheme is the secant method for determining the zero of a scalar
function, as advocated by Colella & Glaz [5].'° This method requires two initial esti-
mates of the root, which, together with the function values at those points, determine
the secant line. The subsequent estimates of the root follow from the function eval-
uations based on the zeroes of the secant line; see [39]. The convergence of the se-
cant method is greater than linear, but not quadratic like Newton’s method; unlike that
method, however, the secant method requires only function values and no derivatives.

For the case at hand, the argument of the function f whose root will be found is the
star-state pressure, p*, which is equal on both sides of the contact discontinuity. The
function f is assigned to be the difference between the corresponding values of the
velocity to the left and to the right of the contact, u} and u},, at the specified pressure,
ie.,

1) = i (0°) — wi(p). (18)

The iterative update of the pressure according to the secant method is:

p*(k) _ p*(k—l)
) = f(pr D)

As is clear from this relation, the secant method requires two initial estimates of the
star-state pressure and star-state velocity difference. Note also that the secant method
is not guaranteed to converge.

p*(k+1) _ p*(k) _ f(p*(k))

19)

II. The Initial Estimate of the Star-State

Perhaps the simplest estimate of p* is from the acoustic approximation. Following the
development given by Toro (Eq. (9.28) in [33]), this estimate is given as:

P =[Crpr+CrLpr+ CLCr (ur —ugr)] /(CL+Cr) (20)

where the subscripts L and R refer to the left and right initial conditions, and C' is
the mass flux or Lagrangian wavespeed, given as C' := pa, where a is the sound
speed (i.e., acoustic velocity), associated with the respective initial conditions. This
expression can be derived by integrating Eqs. (8) and (10) for p through the right and
left waves, respectively, assuming that the Lagrangian wavespeed (i.e., pa in the ODE



dp/du = +pa through the right (+) and left (—) waves) is constant throughout the
wave, with value equal to that in the corresponding uniform initial state.

Given the estimate of star-state pressure in Eq. (20) and the known initial condi-
tion pressures, the nature of the waves connecting the approximate star state to the left
and right states is determined. The solution method for the other star-state quantities
(including the velocity) depends on whether that wave is a shock or a rarefaction. Nu-
merical schemes by which to calculate those solutions are explained in the next section.
Using these procedures, one calculates the zeroth-iterate estimates of the velocity to the
left of the contact, u*L(O), and to the right of the contact, u},(o), and, thus, of f (p*(o))
from Eq. (18). With these estimates, one has values for all of the lowest-indexed quan-
tities in the secant update, i.e., the values with superscript (k — 1) for &k = 1 in Eq. (19).

One way to obtain the second estimate required for the secant method (i.e., the
values with superscript (k) for £ = 1 in Eq. (19)) is to use the same acoustic approxi-
mation, but with improved estimates of the Lagrangian wave speed based on the zeroth
iterate values, as suggested by Fryxell et al. [10] More precisely, instead of using a
value of Lagrangian wavespeed implied by the initial conditions, following Colella &
Glaz [5] one defines a mean Lagrangian wavespeed C through these waves'! that ac-
counts for the wave structure. For the zeroth iterate and wave ¢ = L, R, the mean
Lagrangian wave speed is defined as:

a0 _ | p*©@ — py |/| u}f(o) —ug| if u;(o) # ug , ’1
£ _ . *(0) @D
Cg = pPrayp if Uy = Uy .

Using this value, a second, updated estimate for the star-state pressure can be obtained:
p*(l) = [éRpL +6Lp3+€L€R (UL_UR)]/(éL +€R) , (22)

With this value of p*(!) one calculates, following the procedure described above for
the zeroth iterate, the corresponding estimates of the velocity to the left of the contact,
uz(l), and to the right of the contact, u}“). These values are used to evaluate f (p*(k))

with £ = 1 in Eq. (19). Thus, one has all values needed to begin the secant iteration.

III. Shock or Rarefaction Calculation

The relation between (i) the estimated star-state pressure at the kth iteration and (ii) the
pressure in each of the uniform left (L) and right (R) initial states determines whether
a shock front or a rarefaction wave connects those two states. These two cases require
different approaches by which to calculate numerical solutions of the related equations.

III(a). Shock Front Evaluation

Consider first the case where p*(k) > pg, £ = L, R. This situation implies there is
a shock front between the star-state and the initial uniform state. The RH equations
specify the relation between the states ahead of and behind the shock. The lone post-
shock value known, however, is p*(k); consequently, one must evaluate the post-shock
state through that material’s EOS using p*(*) and, say, some estimate of pz(k). One
can transform Egs. (11-13) into the following scalar functions, each having abscissa of



the post-shock density, that must vanish identically across left-facing and right-facing
shock fronts (see Banks [2], Eq. (3.2)).

Left shock jump relation:

1 p* *(k) _ *(k) 1 *(k) _
pL+pr*pL(ez+p +prpL>7
pL  2pL  PL —PL

Sp(pr) =0=rer +
i) i 20 p e

(23)
where e} = £ (p},p**)) from the EOS for the left material.

Right shock jump relation:

on “(h)
Sr(pp)=0=ep+—+-—*=
wlPi) "Tor " 2pr ph—rr

L e I (e* ™ 1 ppR)
Uk 20k Ph—em )
(24)
where e, = Er(pk,p*®)) from the EOS for the right material.

These nonlinear scalar equations must be solved numerically for p} or p%, as required.
This numerical solution procedure likely entails several EOS calls. With the star-state
density and pressure, the SIE and sound speed can be evaluated through the EOS.

After one solves for post-shock densities satisfying these equations to some speci-
fied tolerance, the associated shock speeds can be evaluated according to the following
relations (see Toro [33], §3.1.3):

* * 1/2
Left shock speed: Us 1, = ur, — [(p,;) <p*pL>} ) (25)
PL Pr, — PL
* * 1/2
Right shock speed: Us r = ugr + KPR) (p*pR)] ) (26)
PR PR — PR

where uy, and up are the particle velocities of the initial left and right states. These

shock speeds are used to compute the corresponding post-shock particle velocities (also
in Toro [33], §3.1.3):

x _ 1/2
Left star velocity: u}, = Us 1 + [(%) <p*pL>} , 27
PrL PrL —PL
* _ 1/2
Right star velocity: up =Us r — {(pf’) (p*pR)] . (28)
PR PR — PR

The relations given in Eqgs. (25-28) are valid for any convex EOS. It is the star-state
velocity of Eq. (27) or (28) (together with star-state velocity on the other side of the
contact) that is used to determine whether the overall iteration loop for the Riemann
problem has converged according to the criterion discussed in §IV, and, if not, with
which to update the pressure per Egs. (18) and (19).

Once the final shock solution is computed, the shock front’s speed is used to com-
pute its position at time ¢ as:

Shock position: x5 = T + Us,e - t, (29)



0

where ¢ = L for a left shock front or R for a right shock front, and Ty 18 the initial

location of the interface between the original left and right states.

III(b). Rarefaction Wave Evaluation

Consider now the case where p*(*) < p,. This condition implies that there is a rarefac-
tion wave. The head of the rarefaction is adjacent to the initial uniform state, and the
tail adjoins the star-state.!> The ODE for the characteristic through a rarefaction wave
for a general convex EOS is:

dp _ 2
dp =a (pap)a (30)

where a is the sound speed. At the kth iterate of the overall solution loop, the initial
and final conditions for this ODE are the states at the head and tail of the rarefaction:

Initial state:  p(pe) = pe Final state: p(p}) = p*® . 31

One must numerically integrate Eq. (30) from the initial state with known pressure p,
and known density py, to the final state with specified pressure p*(*) but unknown den-
sity p;. To be clear, in Egs. (30-31) the quantities p¢, p,, and p**) are known, but
p; is unknown (just as in the case of a shock front). A solution to these equations is
required, however, that integrates to the specified value p*(*) within some specified tol-
erance. One way to address this problem computationally is to integrate Eq. (30) with
a quadrature scheme using a constant density increment, Ap. This density increment
modifies the independent variable (i.e., density) uniformly as one proceeds through the
rarefaction in M steps in density:

pgo) = pe, (32)
AP = e B, m= 1 M @)
oM = =MV + A (34

Here, the bar in p; indicates that this is a provisional value: recall that one does not
know a priori the true value of pj that integrates to the desired star-state pressure, p*(F).
Consequently, one does not know the correct value of Ap; therefore, one must solve
for Ap so that the desired star-state pressure is achieved.'> Numerically integrating
Eq. (30) in this fashion, a value for the pressure at p; is computed; this pressure will
likely not equal the desired value, p*(*). This computed pressure value can be used,
together with the desired star-state pressure, to define a scalar function of the indepen-
dent variable Ap that equals the discrepancy between desired and computed star-state

pressures:
RE(Ap) =0 =p*®) — T(Ap; pe,pe) (35)

where Z(Ap; pe, pe) denotes the value obtained by numerically integrating Eq. (30) to
the final state, given the argument Ap. Solving the scalar nonlinear equation Eq. (35)
to some specified accuracy determines the value of Ap such that the characteristic
equation integrates to the prescribed the kth-step star-state pressure.

10



At the mth step in density through the rarefaction, Eq. (30) can be integrated for-

mally as
p™

p(py™) , )
/ dp = /( L @ (pp(p)) dp, (36)
P P

(™)

where ¢ = L, R. The basic fourth-order Runge-Kutta scheme for this mth integration
step can be written:

HU = pm=1) a® = Ay (p" Y, ). @7
p@ = pm=1 4 % Ap(@™)?, a® = A (" + % Ap, p®), (38)
5O = 4 S ap (@) 0 = A" L A 5Y), G9)
PV =pr D 4 Ap(a®)’, a® = A+ Ap, V), (40)
= 0 ="V 4L Ap | (aM)” +2(a)* +2(a®)’ + (@), @D

where Ay(p, p) is the sound speed as a function of density and pressure for the (th
EOS. The velocity is integrated from the appropriate second ODE in Eq. (17) as:

1 m— m— 1
w™ =1 G Ar [(a(”/pE D) +2(a@)(pm N ¢ 5 80))
m— 1 m—
+2(a® /(o™ + 5 8p) + (D /(oY + ap)|. @2

where the sign depends on the direction of the rarefaction. The corresponding spatial
location for the mth integration step values is given by:

x&m) = 2o + (W™ Fa™) ¢, “43)

where a(™ = Ag(p(m),p(m)) is the local sound speed, and, in the F term , “—" is
used for left rarefactions (¢ = L), and “+” is used for right rarefactions (¢{ = R).

From Eq. (34), the Mth (i.e., final) step of this integration corresponds to the star-
state density, so that the Mth value of p from Eq. (41), the Mth value of v from
Eq. (42), and the Mth value of = from Eq. (43) correspond to the associated star-state
pressure, star-state velocity, and rarefaction tail position.

To summarize, the initial step of the rarefaction solution consists of using a nonlin-
ear root solve to obtain the value of Ap so that the ODE governing the flow state
through the rarefaction (i.e., Eq. (30)) integrates to the proper pressure value (i.e.,
p*(K)). Once this value of Ap is obtained, the star-state density and pressure for the kth
iterate are known, and the remaining elements of the complete uniform star-state can
be evaluated through the EOS. This star-state velocity is used, together the star-state
velocity calculated for the other side of the contact, to determine if the overall iteration
loop for the Riemann problem has converged and, if not, to update the pressure with
Eq. (19).

After the final rarefaction solution is computed, the speeds of the rarefaction wave
boundaries can be determined.'* The velocity of the rarefaction head (adjacent to the

11



initial constant states) is:

Left rarefaction head speed: Uz, = ug, —ay,, (44)
Right rarefaction head speed: Uy r = ur + ar, 45)

where uy, and up are the particle velocities of the initial left and right states, and ar,
and ap, are the sound speeds in those initial states. The velocity of the rarefaction tail
(bordering the respective uniform star-state) is:

Left rarefaction tail speed: U7 = u* —a7y, (46)
Right rarefaction tail speed: U7y r = u* + af, (47)

where u* is the star-state velocity, and a7, and a}; are the sound speeds in the left and
right uniform star-states, where “left” and “right” are relative to the contact disconti-
nuity. Using these values, the positions of the rarefaction head and tail at time ¢ are
computed as:

Rarefaction head/tail position: zp, = xi?ﬁfc + Upye-t, (48)

where B = H for the head or 7 for the tail, and ¢ = L for the left side or R for the
right side.

IV. Update of the Star-State Estimates

Subsequent star-state pressure iterates are obtained from Eq. (19), and the correspond-
ing velocity values are obtained in exactly the same manner as described in §III above.
The convergence criterion for the secant iteration is that the sum of the pressure change
and velocity difference is sufficiently small. Specifically, the convergence tolerance is
specified for the sum of (i) the absolute difference in the estimated star-state pressure
between the current and previous iterates, and (ii) the absolute difference between the
left and right star-state velocities. One avoids an additional star-state evaluation step by
using velocity values that are out of phase by one iteration, according to the following
convergence criterion:

|p*(k+1) 7p*(k) | + |U2(k) _ u;{(k) <e, (49)

where € is a specified tolerance, set equal to 10712 in the calculations. Although the
inequality in Eq. (49) is not dimensionally consistent, it nonetheless has proven ade-
quate for the test problems considered, where unit sets are chosen so that all final flow
state quantities are nearly the same order of magnitude; it would be straightforward to
consistently nondimensionalize this convergence criterion.

Once convergence is attained, the final star-state velocity is assigned as the arith-
metic average of the two (nearly equal) computed values, i.e.,

1
u* = 3 (uz(k) + u}(k)) . (50)
This value determines the location of the contact discontinuity at time ¢ as:

Contact position: ¢ = Tjh + u* - . (51

12



Additionally, if the solution contains rarefactions, u* is used in evaluating the rarefac-
tion tail speeds of Egs. (46) and (47).

V. Evaluation of the Complete Riemann Problem Solution

The procedure described in the previous sections allows one to calculate the star-state
for a given Riemann problem with a general convex EOS. The final positions of key
flow features are given by Egs. (29), (48), and (51).

If there are no rarefactions in the solution, then the initial discontinuity evolves into
two shock fronts, with four distinct uniform flow states, so that one can immediately
assign the solution state at any position.

If there are rarefactions in the solution, then additional calculations are required
to determine the solution state at specified positions in the rarefaction. This follows
from the fact that the procedure of §1II(b) determines the rarefaction solution at points
equally spaced in density between the head and tail of the rarefaction; however, this ap-
proach affords no control of the corresponding physical locations (given in Eq. (43)).
The full solution state at a specified position x in the rarefaction is evaluated numeri-
cally by interpolating to the computed state vs. z data. In the numerical examples of
this report, the cubic spline routine SPLINE and association evaluation routine SEVAL
of Forsythe, Malcolm, and Moler [9] is used. The last four points at either end of the
rarefaction are used to fit a local cubic for the domain delimited by those points; those
cubic functions are used to provide derivative information necessary for the spline in-
terpolation in the interior of the rarefaction.

5. Examples of Solutions to the 1D Riemann Problem

In this section, we provide sample 1D Riemann problem solutions. We first consider
the gamma-law gas case, the solution to which can be compared to the exact procedure
for that case given by Gottlieb & Groth [14]. We then consider the highly nonlinear
JWL EOS, and compare plots of computed results with those given by Shyue [28] and
Lee et al. [22].1°

5(a). Polytropic Gas Examples

We examine three polytropic gas 1D Riemann problems, the solutions to both of which
are well established in the literature. The incomplete polytropic EOS used in the ex-
amples has the pressure as a function of density and SIE given as:

p="P(p,e)=(y—1)pe, (52)

where v > 1 is the adiabatic index. For this EOS, the sound speed is given as:

a=Alp,p) = Vvp/p - (53)

These are the only problem-dependent functional relationships required to complete
the numerical approach outlined in the previous sections.

13



5(a)i. Sod Shock Tube

The Sod shock tube problem [30] is the de facto minimal acceptance test for any com-
pressible flow solver. It consists of the initial conditions given Table 1, run on the
domain 0 < x < 1, and leads to the canonical Rarefaction-Contact-Shock structure.
Figure 2 displays two columns of plots for this problem, each calculated with 100 equal
intervals between = 0 cm and z = 1 cm: the left column shows results computed by
a dedicated gamma-law gas Riemann solver code [17] based on the method described
by Gottlieb & Groth [14], and the right column contains the same plots but with results
computed by the general EOS method described in this note. The dedicated gamma-
law result uses 100 steps in x through the rarefaction, while the general EOS method
uses 100 steps in p for the integration through the rarefaction; in both cases, the rar-
efaction results are interpolated with a standard cubic spline routine to the appropriate
subset of the cell-centered positions of the 100 spatial intervals between x = 0 and
x = 1. These results are visually indistinguishable, offering compelling qualitative
evidence that the general EOS code is consistent with the dedicated gamma-law gas
solver.

The first column of Fig. 3 provides quantitative comparisons of these calculations
with plots of the pointwise difference of the two solutions (gamma-law results minus
general EOS method results). The O(10~%) discrepancy of this difference is certainly
plausible: although the secant iteration is converged to 10~12 in the sum of the differ-
ence between the two star-state pressures and the difference in subsequent iterates of
the star-state velocity, one should not infer that the accuracy of the overall solution is
of that order. This point is further illustrated in the second column in Fig. 3, which
contains plots of the difference of the same dedicated gamma-law solver but with the
general EOS exact solver when 1000 steps in density are used in the integration of rar-
efaction. All other parameters in both calculations are identical, e.g., values are plotted
at the cell centers of the 100 zones between z = 0 and x = 1. The approximately
factor-of-10 difference between the results in the right and left columns correlates well
with the increased resolution in the rarefaction integration. It is unclear what may be
the cause of the sawtooth-pattern discrepancy most evident in the pressure difference
plot (third from the top, right column). From this figure, it is plausible to conclude
that a more accurate solution obtains with the general EOS method solver when the
integration through the rarefaction is well resolved.

0

Tingie | Uin | YL | PL PL urL | YR | PR PR UR
cm s - | g/em® | dyn/cm? | cm/s | — | g/cm3 | dyn/cm? | cm/s
05 025|141 1.0 1.0 0 1.4 | 0.125 0.1 0

Table 1: Initial conditions for the Sod shock tube problem.
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Pressure [dyn/ch] Velocity [em/s] Density [g/ cmz]

SIE [erg/g]

Figure 2: Results for the Sod problem [30] as specified in Table 1 for, from top to
bottom, density, velocity, pressure, and SIE. The left column shows the results with a
dedicated gamma-law-gas Riemann solver [17], and the right column shows the results
with the general EOS exact solution code described in this report. Values are plotted
at the cell centers of the 100 zones between z = 0 and = = 1. The results of the two
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Figure 3: Plots of the pointwise differences between results of a dedicated gamma-
law-gas Riemann solver [17] and the general EOS exact solution code described in this
report for the Sod problem [30]. The left column shows the difference when 100 steps
in density are used in the integration of the general EOS exact solver (i.e., using the
data plotted in Fig. 2), and the right column shows the difference when 1000 steps in
density are used in the same integration. All other parameters in both calculations are
identical, e.g., results are plotted at the cell centers of the 100 zones between x = 0
and z = 1. The approximately factor-of-10 difference in discrepancies correlates very
well with the increased resolution in the rarefaction integration.
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5(a)ii. Reversed Sod Shock Tube

The reversed Sod shock tube problem is based on the Sod problem, but with the left
and right initial states interchanged, thereby leading to a Shock-Contact-Rarefaction
solution. This problem tests the ability of the general EOS code to resolve shocks and
rarefactions of opposite orientation to those of the Sod problem. The initial conditions
given Table 2. Graphical results are presented in Fig. 4, the two leftmost columns
of which contain the plots equivalent to those for the Sod problem in Fig. 2, while
the rightmost column contains the difference between the values plotted in the same
row (i.e., results analogous to the left column of Fig. 3). These plots suggest that
the general EOS code resolves left-facing shocks and right-facing rarefactions with
accuracy comparable to that of the right-facing shock and left-facing rarefaction of

§5(a)i.

e | tin | 7L PL pL urL | YR PR PR UR
cm s - | g/em® | dyn/cm? | em/s | — | g/em? | dyn/cm? | cm/s
05 1025 |14 | 0.125 0.1 0 14| 1.0 1.0 0

Table 2: Initial conditions for the reversed Sod shock tube problem.

5(a)iii. Modified Sod Shock Tube

The modified Sod shock tube problem [40] is based on the Sod problem, but with the
material to the left of the initial discontinuity being a polytropic gas having a different
adiabatic exponent and different initial conditions. This problem, which has an ex-
act solution with the standard gamma-law gas Riemann solver, tests the ability of the
general EOS code to work with two EOSs. The initial conditions are given Table 3.
Graphical results are presented in Fig. 5, the two leftmost columns of which contain
the plots equivalent to those for the Sod problem in Fig. 2, while the rightmost column
contains the difference between the values plotted in the same row (i.e., results analo-
gous to the left column of Fig. 3). These plots suggest that the general EOS code solves
this multi-material, polytropic gas Rarefaction-Contact-Shock problem with accuracy
comparable to that of the Sod and reversed Sod problems of the previous sections.

e | tin | 7z PL DL uL | YR PR PR UR
ecm | s | — | g/lem?® | dyn/cm? | cm/s | — | g/em® | dyn/cm? | cm/s
05 (02201 1.0 2.0 0 1.4 | 0.125 0.1 0

Table 3: Initial conditions for the modified Sod shock tube problem.
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Figure 4: Results for the reversed Sod problem as specified in Table 2 for, from top to
bottom, density, velocity, pressure, and SIE. The left column shows the results with a
dedicated gamma-law-gas Riemann solver [17]; the middle column shows the results
with the general EOS exact solution code described in this report; and the right column
contains the pointwise difference of the data in the previous two columns, plotted at
the cell centers of the 100 zones between x = 0 and = = 1.
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dedicated gamma-law-gas Riemann solver [17]; the middle column shows the results
with the general EOS exact solution code described in this report; and the right column
contains the pointwise difference of the data in the previous two columns, plotted at

0.8

0.6

0.4

0.2

0.0

1.4

0.2

04 06 08
X [cm]

12

1.0

0.8

0.6

0.4

0.2

0.0

N
n

02 04 06 08

X [em]

g
=

n

o

o
3

0.2

0.4 0.6 0.8
X [cm]

0.2

04 06 08
X [em]

Density [g/cm 3]

Velocity [em/s]

SIE [erg/g]

Pressure [dyn/cm2]

0.8

0.6

04

0.2

0.0

1.4

0.2

0.4 0.6
X [em]

0.8

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

2.5

0.2

04 06
X [em]

0.8

0.5

0.0

35

0.2

04 0.6
X [em]

0.8

3.0

25¢1

2.0

0.2

04 06
x [em]

0.8

ADensity [g/om’]

0.2

0.4 0.6
X [em]

0.8

o
@
IS

AVelocity [em/s]
[SEES
& &
IS

o

-2¢-4
0

)
@
IS

0.2

0.4 0.6
x [em]

0.8

n
@
IS

@
IS

o
e
n

=

APressure [dyn/cm 2]

&
e
&

?
IS

2e-3

0.2

04 06
X [em]

0.8

le-3 |

ASIE [erg/g]

N

-le-3

the cell centers of the 100 zones between z = 0 and x = 1.

19

0.2

04 0.6
X [cm]

0.8




5(b). JWL EOS Examples

We examine two JWL EOS 1D Riemann problems, graphical results for which are
available in the literature. According to Dobratz [8], “The Jones-Wilkins-Lee (JWL)
equation of state has been used to describe accurately the pressure-volume-energy be-
havior of the detonation products of explosives in applications of metal acceleration.”
There are countless references for this EOS; a particularly concise and useful account
is given by Weseloh [37]. Following Lee et al. [22], the JWL EOS is commonly written
in the form

r
p="P(p,e)=Tpe+ A (1 — p) exp(—R1 po)
R po P

+B (1 - F”) exp (—Rz po) : (54)
Ry po p

where the constants (and their dimensions in HE units'®) associated with a particular
material are: (i) reference mass density po (g cm™3); (ii) low-pressure Griineisen co-
efficient I" > 0 (dimensionless); (iii) high-pressure coefficients A (Mbar) and R; (di-
mensionless); and (iv) intermediate-pressure coefficients B (Mbar) and Ry (dimen-
sionless). In this description, the terms low-, intermediate-, and high-pressure refer to
approximate domains where the corresponding terms dominate the JWL pressure.

As discussed by Lee et al. [22], the relation in Eq. (54) can be written in the general
Mie-Griineisen form

p="P(p,e) =Tp(e—ewilp))+ preilp), (55)

where ere(p) and pret(p) are a reference state curve, which, when chosen as an isen-
trope, reduces the above expression to the sum of the usual ideal gas EOS and an
additional term:

p="P(p,e)=Tpe+ f(p) where (56)

—al1i-Lr _Rp P e _Rp, P
f(p) '—A(l 7 p0>eXP< Ry p>+B(1 R2p0>exp( Ry p>' (57)

This representation leads to a compact expression for the square of the sound speed
(see Eq. (5)) as

a’> = A(p,p) = (C+Dp/p—flp)/p—f'(p)]p”, (58)

where the first term on the RHS is identical to the square of the polytropic gas sound
speed of Eq. (53).

5(b)i. Shyue Shock Tube

This problem, used by Shyue [28] as a test problem in algorithm development, uses
the same JWL EOS on either side of a massless discontinuity. The JWL parameters,
listed in Table 4, are an approximation for the EOS of TNT. This problem is run on the
interval 0 < x < 100 cm, with the initial conditions given in Table 5. Although no
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exact solution is reported in [28], graphical results of the compressible flow simulation
of this problem are provided.

Results for this problem are given in Fig. 6, which contains snapshot plots of the
density, velocity, pressure, and SIE. The left column contains results from the general
EOS exact solution code described in this report, and the right column plots are from
Shyue [28]; the plots from [28] do not include an exact solution evaluation but include,
instead, a highly resolved calculation, plotted as a solid line (Shyue does not provide
SIE results). Based on these graphical results, the exact solution code appears to be
consistent with the published results. Quantitative confirmation of the exact solution
code correctness would be desirable, but is not available from this comparison.

JWL HE £o €0 FO A B R1 R2
EOS g/cm® | Mbar-cm®/g | — | Mbar | Mbar | — -
#1 TNT 1.84 0.0 025 | 8545 | 0205 | 46 | 1.35

Table 4: JWL parameters for TNT used in the Shyue shock tube problem.

JWL | 2l | tin | pL PL ur, PR PR UR
EOS | cm | us | g/em® | Mbar | cm/us | g/lem® | Mbar | cm/us
#1 50 12 1.7 10.0 0.0 1.0 0.5 0.0

Table 5: Initial conditions for the Shyue shock tube problem, using the JWL EOS
parameters given in Table 4.

5(b)ii. Lee Shock Tube

Lee et al. [22] consider another JWL 1D Riemann problem and do provide graphical
exact solution results. As in the previous problem, the same JWL EOS is used on
either side of the initial discontinuity. The JWL parameters, listed in Table 6, are an
approximation for the EOS of LX-17. Like the previous example, this problem is also
run on the interval 0 < x < 100 cm, but with the different initial conditions, as given
in Table 7. This configuration is a slight modification of a problem run by Banks [2].

Results for this problem are given in Fig. 7, which contains snapshot plots of the
density, velocity, pressure, and SIE. The plots in the left column are from the general
EOS exact solution code described in this report, while the plots in the right column are
from Lee et al. [22], which includes an exact solution evaluation (in red) together with
compressible flow simulation results using different methods (Lee et al. do not provide
SIE results). Based on these graphical results, it appears that the exact solution code
results are completely consistent with those of Lee et al. Again, quantitative confirma-
tion of the exact solution code correctness would be desirable, but is not available from
this comparison.
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Figure 6: Results for the problem of Shyue [28] as specified in Table 5 for, from top to
bottom, density, velocity, pressure, and SIE. The left column shows the results with the
general EOS exact solution code described in this report, and the right column contains
the published results from [28] (Shyue does not provide SIE results) in which the solid
line denotes a highly refined computed (not exact) result.

6. Summary

This report contains a description of an algorithm with which to compute the complete
numerical solution of the one-dimensional, Cartesian Riemann problem for compress-
ible flow with general, convex equations of state. Based on several published works,
this note motivates and documents the approach used in the source code that evaluates
solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the
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JWL HE Lo €0 FO A B Rl R2
EOS g/cm® | Mbar-cm®/g Mbar | Mbar - -

#2 | LX-17 | 1.905 0.0 0.8938 | 632.1 | -0.04472 | 11.3 | 1.13

Table 6: JWL parameters for TNT used in the Lee shock tube problem.

JWL | 2l | thin PL pL ur PR PR uR
EOS | cm | ps | g/lem® | Mbar | cm/us | g/cm® | Mbar | cm/us
#2 50 20 | 0.9525 1.0 0.0 3.810 2.0 0.0

Table 7: Initial conditions for the Lee shock tube problem, using the JWL EOS param-
eters given in Table 6.

ExactPack package [16, 29]. The numerical results given for problems with either a
polytropic gas EOS or the JWL EOS provide, respectively, quantitative and qualitative
evidence that the method and associated software generate accurate solutions for the
problems considered.
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Figure 7: Results for the problem of Lee et al. [22] as specified in Table 7 for, from
top to bottom, density, velocity, pressure, and SIE. The left column shows the results
with the general EOS exact solution code described in this report, and the right column
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NOTES NOTES

Notes

Iper [25], the fundamental derivative is defined as
G = —(1/2)V [(8°p/0V?)s/(Op/OV)s]

where V' := 1/p is the specific volume and s is the entropy. The fundamental derivative
“measures the convexity of the isentropes in the p—V plane [31].”

2Understanding the characteristic form of the Euler equations—or, more generally,
of hyperbolic conservation laws—is indispensable for comprehending the structure of
the solution to the 1D Riemann problem. This important topic is beyond the scope
of the present report. Among the manuscripts that cover this topic are: for the Euler
equations of gas dynamics the book by Courant and Friedrichs [6] is the definitive
reference, with the masterful monograph of Whitham [38] (in particular, Chapters 5
and 6) running a close second, while the more modern, numerically-oriented texts of
Laney [19], LeVeque [23], and Trangenstein [34] offer less comprehensive treatments
of this particular aspect; for general systems of hyperbolic conservation laws, the tour
de force of Lax [21] is required reading, while the article by Bressan [4] provides an
approachable introduction.

3The topic of non-convex EOSs is discussed, e.g., by Bethe [3], Wendroff [35, 36],
Dahmen et al. [7], and Miiller and Vof3 [26]. An analytic, non-convex EOS for the
fictitious material ‘“Bizarrium” is described by Heuzé et al. [15], who examine a 1D
Riemann problem for that material.

“There likely is an initial discontinuity in entropy across the contact that persists
through the solution. According to LeVeque [23], “The contact discontinuity is also
sometimes called the entropy wave, since it carries a jump in entropy.” Since there is
no mass flux through the contact wave, however, that entropy discontinuity is not the
result of any process through the wave.

>“The side of the shock front through which the gas enters the shock front was
called the front side or the side ahead of the shock front. The other side was called the
back side. In other words, the particles cross the shock front from the front toward the
back side. . . It should be clearly understood that the direction in which the shock front
moves, given the sign of [the shock velocity] U, has nothing to do with the direction
toward which it faces, i.e., with the distinction between the front and back side of the
shock which depends only on the relative velocity v. Whether the front advances, is
stationary, or recedes, depends on the absolute velocity.” [6], §57.

OTf a rarefaction exists to the left of the contact discontinuity for ¢ > 0, it is called
a left-facing rarefaction. Similarly, a rarefaction to the right of the contact for ¢ > 0, it
is called a right-facing rarefaction.

It was perhaps Godunov [12, 13] who published the first iterative scheme with
which to solve the 1D Riemann problem for a polytropic gas.

8Banks [2] provides a description (lacking a few details needed for implementation)
of a Riemann solver for the JWL EOS. Fryxell et al. [10] describe the Colella and Glaz
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procedure as applied to polytropic gases. Larini et al. [20] focus on EOSs of the form
p = p(p,T) and apply their method to a fifth-order virial EOS. Arienti et al. [1] give
a limited description of a solution procedure for the Mie-Griineisen EOS tailored to
their specific problems. Lee et al. [22] use a JWL EOS in Mie-Griineisen form and
develop their approach accordingly. Quartapelle et al. [27] develop a derivative-based
Newton-method based approach and apply it to more complicated polytropic and non-
polytropic van der Waals EOSs.

9The ZEROIN routine of Forsythe, Malcolm, and Moler [9] was chosen because
(1) it only uses function calls (i.e., no derivative information is needed), and (ii) it is
both robust and efficient (by using the original Brent’s method, which combines the
bisection with the secant method and inverse quadratic interpolation). For input, how-
ever, this routine requires two absciss@ that bracket the root, i.e., give function values
of opposite sign. In principle, this should be straightforward, but, given the nonlin-
earity of the functions to which it is applied and the nonlinearity of the EOSs used,
this initially proved problematic. A simple method was devised that, in conjunction
with ZEROIN, was used to determine initial abscissae that bracketed the root. The key
idea is that, if two initial values were of the same sign, then those values were used to
estimate an abscissa value at which the linear extrapolation of the function would be
zero. (Given the intrinsic nonlinearities, in practice this was never the case.) The pair
of abscissae for the next iterate were taken to be (1) the abscissa (of the previous two)
that had the smallest absolute function value, and (2) the extrapolated abscissa value.
For the problems considered in this report, this simple algorithm was able to bracket
the root for all ZEROIN calls in less than six iterations.

10The secant method differs from the Newton-method based approach of Quartapelle
et al. [27], who formulate a pair of equations in two unknowns taken to be the specific
volumes (i.e., inverse density) in the two star-states to the left and right of the contact
discontinuity. The use by Quartapelle et al. of Newton’s method requires the evaluation
of derivatives, which those authors evaluate analytically for the van der Waals gas EOSs
that they consider. The closed-form expressions for those derivative terms are quite
complicated.

Colella & Glaz [5] denote the mean Lagrangian wave speed W, as in their Eq. (16).

12More precisely, “An expansion wave is composed of characteristics; in particular,
the boundaries by () and by(t) are characteristics. The boundary on the high-pressure
side is called the head of the expansion. Similiarly, the boundary on the low-pressure
side is called the tail of the expansion.” [19]

3For the EOSs considered, this density increment is negative, i.e., Ap < 0, since the
integration proceeds from the high-pressure, high-density uniform state to the lower-
pressure, lower-density, post-rarefaction star-state.

4“The [rarefaction] wave has a fan-type shape and is enclosed by two bounding
characteristics corresponding to the Head and the Tail of the wave.” [33], §3.1.3. For
the left- and right-facing rarefactions waves discussed in the text, those bounding char-
acteristics propagate at the velocities indicated in Eqgs. (44—47). In the case of a y-law
gas, §4.2.2 and §4.2.4 of [33] contain derivations of the complete solution through,
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respectively, left and right rarefactions.

SColella and Glaz [5] provide results for an interesting 1D Riemann test problem
involving air and a JWL EOS; unfortunately, these authors do not provide all of the
information required to replicate their calculations. Additionally, the EOS of air used
in this problem is that of Gilmore, the cited report of whom [11] is a detailed study
of different representations for the EOS for air. It is unclear from this report and from
the Colella and Glaz paper exactly what representation for the air EOS was used in [5],
rendering comparison with those results problematic.

IHE units are a consistent set of units well suited to HE phenomena and consist of
the following: mass in g, length in cm, time in us, and pressure in Mbar (1 Mbar =
100 GPa), so that mass density is in g cm~3, velocity is in cm ps ™!, and SIE is in Mbar

3 g1
cm”® g .
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