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Abstract 

 

A three-dimensional finite element method for the numerical simulations of fluid 

flow in domains containing moving rigid objects or boundaries is developed. The method 

falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a 

fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and 

reverts to its original shape once the moving interfaces go past the elements. The moving 

interfaces are defined by separate sets of marker points so that the global mesh is 

independent of interface movement and the possibility of mesh entanglement is 

eliminated. The results is a fully robust formulation capable of calculating on domains of 

complex geometry with moving boundaries or devises that can also have a complex 

geometry without danger of the mesh becoming unsuitable due to its continuous 

deformation thus eliminating the need for repeated re-meshing and interpolation. 

Moreover, the boundary conditions on the interfaces are imposed exactly. This work is 

intended to support the internal combustion engines simulator KIVA developed at Los 

Alamos National Laboratories. The model’s capabilities are illustrated through 

application to incompressible flows in different geometrical settings that show the 

robustness and flexibility of the technique to perform simulations involving moving 

boundaries in a three-dimensional domain. 

 

1. Introduction 

 

The accurate numerical simulation of fluid flow in the presence of moving 

structures that modify the fluid domain is of great practical importance in many areas of 

engineering and science. These include the automotive, medical, and aeronautics 

industries. In the automotive industry design refinements through modeling of the 

combustion inside the engines has become economically important and, in general, 

internal combustion engines are an important part of our everyday life, being used in a 

myriad of tools as well as in trains, ships, aircraft and automobiles. An example of 

modeling software as a tool for the design of internal combustion engines is the Los 

Alamos National Laboratory engine simulation code "KIVA" [1]. Designs made with 

these types of software benefit from increased ability to estimate efficiency, power 

output, and other metrics of a prototype before manufacture [2-6].  
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Fluid flow finite element simulators with moving boundaries capabilities are also 

used in the medical field [7-9]. The methods used for medical studies fall under the 

category of immersed boundary techniques [10, 11], these have also been used to 

investigate the mechanism of insect flight, as small aircraft are pushed to their operational 

limits at very low Reynolds numbers [12, 13]. Finite element numerical models for 

problems with moving boundaries for the most part are based on Arbitrary Lagrangian 

Eulerian (ALE) methods. The earliest ALE applications involved fluid structure 

interactions, which has been a crucial driver of these efforts especially in aeronautics, 

also of great interest is a large class of free surface flows [14-21]. 

 

The ALE process begins at each time step by displacing the boundaries in the 

Lagrangian (moving)  framework. The second step is to solve the equations in the fluid 

domain in the Eulerian (stationary) framework. The classical ALE approach is to use 

continuously deforming meshes [22-27]. In these schemes the mesh is attached to the 

moving boundary, and continuously deformed or re-generated to adapt to the changing 

domain geometry during the simulation. Because of the mesh deformation, it is often the 

case that the mesh has been degraded past the point where it can be used in the 

calculations. At these times the program operator must stop and re-mesh, or have a 

routine handy that automates this process. This and other practical difficulties make 

moving mesh schemes undesirable for a variety of practical applications. In this study, 

the newly developed ALE method eliminates these handicaps by calculating on a locally 

changing mesh adapted only in the immediate vicinity of the moving interface; leaving 

the global mesh outside of this area un-deformed. 

 

There are a variety of other techniques such as embedded mesh, fictitious domain, 

level set, phase field, etc. that have also been used for many years. However these do not 

enjoy the same degree of popularity as ALE methods and will not be addressed here; a 

general discussion on numerical techniques for evolving spatial domains is given in [10, 

11, 28, 29], where some of the drawbacks of these methods are also discussed. 

 

Because in numerical simulations of fluid flow in domains with moving solid 

boundaries based on the finite element method when a moving mesh is used that mesh 

must be constantly deformed and periodically regenerated during the simulation. The 

motion and continuous deformation of the mesh often leads to the mesh becoming 

inadmissible, referred to as mesh entanglement that requires the mesh to be regenerated, 

sometimes very often. Additionally interpolation of the variables between meshes is 

required, that can lead to instabilities and loss of accuracy [30, 31], and can make the 

computations expensive. 

 

The objective of this work is to develop a method to solve moving boundary 

problems without the need of re-meshing. This is accomplished using a fixed mesh 

numerical scheme that is constantly adapted locally in space and time to the moving 

interfaces. A second objective is to validate this local ALE method to ensure that it has 

the correct accuracy, flexibility and robustness. For this purpose the scheme is applied to 

realistic geometries and a semi-formal local error analysis has been performed, the details 

of which are reported in [32], the main results are also mentioned here.  
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2. Domain and interfaces discretization 

 

A two-dimensional implementation of the ideas presented here has already been 

published [33]; the present work concentrates on the three-dimensional methodology and 

considers only the case when Dirichlet boundary conditions are imposed on the moving 

interfaces. 

Denote by 
0  the complete domain occupied by fluid at any time during the 

complete simulation, this domain can also be used as the reference domain in the ALE 

formulation [31, 34] and is referred to as the base or reference domain. Let the domain 

0  be discretized using a finite element mesh that is deemed as appropriate for all stages 

of the simulation (this does not preclude the use of adaptive refinement or higher order 

elements during the simulation, but these extensions of the method will not be discussed 

here). In this work, the mesh is made out of hexahedral tri-linear isoparametric elements; 

it can also be composed of linear pyramidal elements, which makes the implementation 

much simpler. The moving interfaces are defined independently using grids of linear 

triangular two-dimensional elements that describe the boundaries of the interfaces in 

three-dimensional space. The triangular elements that make up the interfaces are called 

marker triangles and their nodes marker nodes or marker points. The interfaces so 

defined can move (slide) through the base domain according to their velocity, that can be 

prescribed by a given function or data set, or can be calculated as part of the solution. In 

this work, it is assumed that the interfaces are rigid and the interfaces velocity is 

prescribed by a given function. Figure 1 illustrates the ideas in a simple hexahedral 

domain intersected by a plane interface. The interface separates the domain into two 

parts, one containing the fluid, referred to as the fluid  portion and the rest of the domain 

denoted as the inactive  portion. 

                 
 

 

Fluid side Inactive side  
         (a) 

 

                                              
 

 
 

          (b) 
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 Figure 1: (a) Square cylinder subdivided by a uniform mesh of 5 by 5 by 25 tri- 

linear elements and intersected by a plane interface perpendicular to the z-axis slightly 

before the midpoint in the z-direction. (b) Interface intersecting the domain in figure 1(a); 

defined by marker triangles with vertices that are marker nodes. 

 

At each new time step in the calculation an interface intersects the mesh elements 

at a new position, the intersections of the marker triangles with the element edges are 

determined and the intersected elements are adapted to fit only that portion of the element 

that lies in the fluid assuming that within an element the intersecting surface is either 

planar or bilinear. The adapted mesh is used to carry out the flow calculation and once 

the velocity and pressure are known the adaptation is discarded, the interface position is 

advanced to the next time step and a new adaptation performed. Figure 2 shows the 

resulting adapted mesh assuming that the left hand side of the domain contains the fluid. 

Once the moving interface goes past an element, the element regains its original form; the 

mesh adaptation is performed only in those elements intersected by an interface and is 

local both in space and in time. If Dirichlet conditions are imposed at the interface, the 

calculation of velocity involves only mesh nodes contained on the fluid side and 

interpolation is never required; the pressure needs to be calculated at the interface also. 

Note that the mesh in the inactive part does not enter the calculation and therefore it does 

not matter how deformed it becomes. This is important in cases involving complex 

geometries where the mesh in the inactive side may become inadequate for calculation. 

 

        

 

Interface 
Fluid Inactive 

 
 

Figure 2: Schematic of a mesh adapted to the intersection by an interface. 

 

In three-dimensions there are eight possible different situations that can arise 

when a hexahedral element is intersected by a plane. These situations are characterized 

by the number of nodes that are contained in the fluid part as listed below: 

 

Case 1: Pyramidal intersection with 1 node in the fluid side. 

Case 2: Prismatic intersection with 2 nodes in the fluid side. 

Case 3: Irregular hexahedral intersection with 3 nodes in the fluid side, the 

intersecting plane has five corners and two sides in the fluid part are triangular. 

Case 4: Regular hexahedral intersection with 4 nodes in the fluid side. 

Case 5: Irregular heptahedral intersection with 4 nodes in the fluid side, the 

intersecting plane has six corners, three of the sides on the fluid side have five 

corners and the other three sides are triangular. 

Case 6: Same as case 3 with the fluid and inactive sides interchanged and 5 nodes 

in the fluid side. 
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Case 7: Same as case 2 with the fluid and inactive sides interchanged, 6 nodes in 

the fluid side. 

Case 8: Same as case 1 with the fluid and inactive sides interchanged, 7 nodes in 

the fluid side. 

 

Figure 3 illustrates the intersections leading to types 1 through 6. If the finite 

element mesh is based on tetrahedral pyramids only three different cases arise and the 

geometric setting is considerably simpler. 

 

            

 

Cases 1 and 8 Cases 2 and 7 

Case 3 Case 4 

Case 5 Case 6  
 

Figure 3: The eight possible ways a plane may intersect a hexahedron dividing it 

into a fluid part where the nodes are shown, and an inactive part. The intersections in 

Case 3 and Case 6 are of the same type, but the fluid and inactive parts are switched 

around. In the same way Case 8 is obtained from Case 1 and Case 7 from Case 2. 

 

 Most important is the fact that these are the only eight situations that may arise, 

therefore, once they have been programmed there is never a new different case to be 
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accounted for. The above figures show that the interface may intersect as many as six 

element edges (case 5), creating fluid parts in the elements with shapes that are not 

hexahedral. To address this difficulty two additional elements are allowed at the 

interface, the linear tetrahedral pyramids in case 1 and the prismatic pentahedron in case 

2.  For cases 3 and 5 through 8, nodes in the inactive part of the elements are moved to 

create hexahedral element that are a close approximation to the fluid part geometry. The 

way this is done is shown in section 4.  

 

The problem of maintaining the mesh quality is thus eliminated and the result is a robust 

formulation on arbitrary geometrical configurations. However, elements that are 

relatively very small or with very large aspects ratios may be generated; to avoid these 

extreme situations the present implementation neglects fluid element intersections with a 

volume less than 0.1% of the original volume of the element. 

 

3. Governing equations and finite element approximation 

 

The incompressible Navier-Stokes equations, assuming zero body forces are 

written in non-dimensional form as 

 

  21

Re
p

t


     



U
U U U  (1) 

0 U  (2) 

Where ( )u v w  U i j k  is the velocity; ( )
x y z

  
   

  
i j k  is the gradient 

operator, t  is time, p  is the pressure and Re
UL


  is the Reynolds number. U  is a 

characteristic velocity, L  is a characteristic length and  is the kinematic viscosity of the 

fluid. Equations (1) and (2) are defined over the domain [0, ] ( )T t where T  is a real 

number, and ( )t is a connected time dependent domain in 3with a sufficiently smooth 

boundary ( )t . 

At time 
0 0t   , 

0 0( )t  and the initial condition is 
0( ,0) U x U . 

The boundary conditions for each velocity component may be of the Dirichlet or 

Neumann type over different portions of the boundary, those portions of the boundary 

where Dirichlet boundary conditions are imposed are denoted by 
D  and those with 

Neumann boundary conditions by 
N . Note that in any portion of the boundary a 

Dirichlet condition may be imposed on one of the velocity components and a Neumann 

boundary condition on another, so this notation needs to be interpreted accordingly for 

each velocity component. Denote ( ) tt   at each time t  ; define the space 2 ( )tL   as 

the space of functions defined in 
t  that are square integrable in 

t , and the space 

1( )tH   as the space of functions defined in 
t  such that the function and its first partial 

derivatives are square integrable in 
t . Finally, let  ( ) , 1, / ( )k i k iS t i n t  x x  be 
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finite sets points that define k  interfaces/boundaries contained in the reference domain 

that move within the domain with prescribed velocity
kv . Theoretical considerations 

related to this algorithm have already been analyzed in detail in [31, 34-36] and are not 

repeated here. Notice that in this formulation there is no mesh velocity , only the 

interfaces move modifying the mesh in their immediate vicinity. 

 

The ALE formulation combined with the projection method is: 

 

1. Lagrangian step: Update the position of the interfaces ( )kS t  from time 
nt t  

to time 
1n nt t t t     according to the prescribed velocity ( )k tv  of 

each interface. 

2. Eulerian step: Solve the Navier-Stokes equations to find 
1( , )nt U x  and 

1( , )np t x . This is done using a first order in time projection method [37], 

described below. 

Let ( ) ( , )n

ntU x U x  be known. At time 
1nt t   decompose the velocity as 

1n   U U U  where 
U is an intermediate or viscous velocity that does not satisfy 

continuity and U  is a correction or inviscid velocity that enforces the mass 

conservation.  

To simplify the explanation, the fractional step formulation is given using only the x-

component of velocity u , the equations for the other two components is similar. The 

time derivative is discretized using a first order backward Euler difference, the 

intermediate velocity component u
is obtained solving 

1

1 1 1
( )

Re

n n n
u u u u

t tn n

w u w u d w u w u d
t t

 

 


   
           

    
  U  (3) 

where 
uw  denotes weighting functions in 1( )tH   that satisfy homogeneous Dirichlet 

boundary conditions in 
D . 

Because the convective term is kept explicit, the algorithm is subject to the Courant-

Friedrich-Levy (CFL) stability condition 1c  , where c  is the local Courant number. 

Let the subscript e  denote an element, 
ed  denote the element differential of volume 

and , 1,8iN i   denote the trilinear shape functions of the element. The full Galerkin 

finite element discretization of Eq. (3) using eight-node isoparametric elements results in 

the element equations 

 

 
1 e

e e e

u
t

 
  

 
M K u F         (4) 

 

where 
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e e

ij i j e
e

m N N d     M        (5) 

 

is the element mass matrix 

 

1

Re

j j je e i i i
ij e

e

N N NN N N
k d

x x y y z z

     
              

K   (6) 

is the element stiffness matrix,    *

1 2 8, ,...,
e T

u u u  u are the u
component 

degrees of freedom contained in the element and  

 
8 8 8 8

1 1 1 1

8 8 8

1 1 1

1

j je e n n n n

u u i k k j k k ji e
k j k j

jn n n

k k j j j e

k j j

N N
f N N u u N v u

x y

N
N w u N u d

z t

   

  

                              

    
     

      

   

  

F

(7) 

Two more sets of element equations,  
1 e

e e e

v
t

 
  

 
M K v F  and 

 
1 e

e e e

w
t

 
  

 
M K w F for the v  and w  components of velocity in the y- and z-

direction are obtained that differ only by the right hand sides e

vF  and e

wF  which are given 

by 

 
8 8 8 8

1 1 1 1

8 8 8

1 1 1

1

j je e n n n n

v v i k k j k k ji e
k j k j

jn n n

k k j j j e

k j j

N N
f N N u v N v v

x y

N
N w v N v d

z t

   

  

                              

    
     

      

   

  

F

(8) 

and 

 
8 8 8 8

1 1 1 1

8 8 8

1 1 1

1

j je e n n n n

w w i k k j k k ji e
k j k j

jn n n

k k j j j e

k j j

N N
f N N u w N v w

x y

N
N w w N w d

z t

   

  

                              

    
     

      

   

  

F

(9) 

respectively.  

 

 After the three assembled systems of equations have been solved for the 

intermediate velocity components, the pressure is obtained from the solution to the 

Pressure Poisson equation (PPE) 
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1

1 1

1n
p p

t tn n

w p d w d
t

 

 
 

      
  U    (10) 

 

with the weighting function pw  in  1H t . The pressure is interpolated to the same 

order as the velocity and the Galerkin discretization yields the element equations 

 
e e e

pB p F           (11) 

 

j j je e i i i
ij e

e

N N NN N N
b d

x x y y z z

     
              

B    (12) 

 

 

 1 1 1

1 2 8, ,...,
T

e n n np p p  p  are the pressure degrees of freedom in the element and 

 

8 8 8

1 1 1

1 j j je e

p i i j j j e
e

j j j

N N N
f N u v w d

t x y z

  

  

   
             

  F  (13) 

 

 After assembling and solving for the pressure at 
1nt t   the velocity is obtained 

from 

 

 1 1n * nt p    U U        (14) 

 

Discretized, for each velocity component at the element level Eq.(14)  takes the form 

 
1 1 1,L n L n L n

u v w

    M u f M v f M w f , where 
L

M denotes the lumped 

mass matrix [38], used to avoid the solution of the extra systems of equations that would 

result without this modification. The above matrices are 

 

8

1

L L

i i j e
e

j

m N N d


 
     

 
M       (15) 

which is the same for the three components of velocity; 
1n

u , 
1n

v , and 
1n

w  contain 

the eight degrees of freedom of each component contained in the element and the right 

hand sides are 
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 

 

 

18 3

1 1

18 3

1 1

18 3

1 1

f

f

f

n

jn

u u i j j e ii e e
j j

n

jn

v v i j j e ii e e
j j

n

jn

w w i j j e ii e e
j j

p
N N u d t N

x

p
N N v d t N

y

p
N N w d t N

z



 



 



 

  
              

  
              

  
              

  

  

  

f

f

f

 (16) 

 

The systems of linear equations resulting from the assembly of Eqs. (4) and (11) can be 

solved by any appropriate method, in this work the total number of degrees of freedom 

involved in the simulations is rather modest (maximum 12,000 nodes) and a direct 

skyline method [39] has been used. Obtaining the corrected velocity at time step 1nt   

from Eq. (14) involves an uncoupled linear system with a diagonal coefficients matrix 

that is readily solved. 

 

 

4. Mesh intersections and adaptation 

 

The reference domain 
0  is assumed to be discretized using a mesh of 

isoparametric tri-linear hexahedra as shown in Figure 1(a). The domain is intersected by 

one or more interfaces discretized using linear two-dimensional marker triangles as 

shown in Figure 1(b). A new adapted mesh is needed to advance from time step nt , when 

the velocity and pressure are known, to time step 1nt  . The procedure to find the new 

adapted mesh goes along the following steps: 

 

1. Find all the intersections between the marker triangles and the edges of the 

FEM mesh elements. The first time step this involves a search over all 

elements in the mesh and all marker triangles in the interface. After the first 

time step the search is narrowed to only the elements intersected at time nt  

and their immediate neighbors. 

2. In all intersected elements find the nodes that are in the fluid part. To do this 

the vector normal to the interface pointing to the side occupied by the fluid is 

used; this information is part of the input data. 

3. Modify the intersected elements to fit the interface position. How this is done 

for each of the different eight cases is explained below. 

 

The simplest case is provided by the example in Figure 1 in which only intersections of 

the type of Case 4 in Figure 3 occur; in this case the adaptation consists in changing the 

location of the nodes in the inactive side of the intersected elements to the position of the 

interface as shown in Figure 4 where the repositioning of the nodes is illustrated. 
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Figure 4: mesh adaptation used to generate the modified mesh in Figure 2. 

 

At the end of these three steps the new adapted mesh has been generated and is used to 

calculate velocity and pressure. There is not a unique way to complete step 3 and 

different strategies can be used to do it, this is easier to explain with a two dimensional 

example as shown in Figure 4; where several possibilities are shown and a preferred 

strategy discussed. 

 

 
 

Figure 5: Two-dimensional example to illustrate different mesh adaptation strategies. (a) 

Four element mesh intersected by an interface; (b) Inactive node moved along a 

horizontal mesh line; (c) Inactive node moved along a vertical mesh line; (d) Inactive 

node moved to the center of the intersection segment; (e) A combination of the three 

previous cases. 

 

A simple rectangular mesh composed of four elements and intersected by an interface is 

shown in Figure 5(a), elements 1, 2 and 3 are intersected and element 4 is fully inactive. 

Element 1 has become a pentagon, to integrate over it needs to either  be decomposed 

into a combination of quadrilateral and/or triangular elements, or modified into a single 

quadrilateral element. The first alternative introduces additional nodes at the interface and 
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therefore complicates the solution unnecessarily; the second option can be easily 

implemented by moving the inactive node number 5 to place it on the interface and 

modifying the geometry of the fluid elements that have node 5 in common. Node 5 can 

be moved in a number of ways, in Figure 5(b) it has been displaced toward the interface 

sliding along the mesh line that contains the intersection at the top of the element, in 

Figure 5(c) it has been displaced along the mesh line intersecting the element on the right 

hand side, and in Figure 5(d) it has been moved to the midpoint of the interface segment 

intersecting element 1. All three of these options are good, and all three produce modified 

quadrilateral and triangular elements that can be quite deformed, the effect of these 

irregularities in the mesh on the accuracy of the solution is discussed in [32]. In three 

dimensions the same kind of geometric scenarios develop, but the effect on the 

neighboring elements due to displacing a node in one of them can be very complex and 

sometimes not possible to visualize, this motivates the use of a fourth option illustrated in 

Figure 5(e) where each of the intersected elements is modified individually, hence, when 

processing element 1 it is modified displacing node 5 as in Figure 5(d), in element 2 node 

5 is moved as in Figure 5(b), and in element 3 node 5 is moved as in Figure 5(c). This has 

the advantage that the shape of the elements remains more uniform, and therefore the 

approximation error is reduced [40], on the other hand it has the disadvantage that it 

introduces a local inconformity because a small area is not considered in the integrations 

these are the shaded areas shown in Figure 5(e); however, this lack of conformity does 

not violate the patch test and the error remains of order 
2( )O h where h  is the mesh 

parameter [40]. Which of these two errors is larger cannot be accurately assessed; 

however, in three dimensions the last option makes it possible to visualize the deformed 

geometries for every situation which has not been possible in the other cases and has the 

added advantage that the modified elements do not become excessively deformed. 

 

 To explain how the adaptation process described above in two dimensions is 

implemented in three dimensions the notation in Figure 6 is used to number the nodes 

and edges of a trilinear element. 

 

                         
 

Figure 6: Notation used to describe the element intersections 
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 For element intersection in Cases 1 or 2 of Figure 3, the fluid part is a pyramid or 

prismatic element respectively and is integrated using an isoparametric form. When an 

element is of the type of Case 3, it is modified into an isoparametric hexahedron as 

shown in Figure 7 in the following way: First the element is rotated to the  

 
 

Figure 7: (a) Element intersection of the type of Case 3. (b) Displaced position of nodes 

3, 5, 6, 7 and 8. (c) Final modified geometry. 

 

standard position shown in Figure 7(a), where nodes 1, 2 and 4 are the fluid nodes. Next 

the inactive nodes are repositioned as shown in Figure 7(b), so that node 3 is moved to 

the midpoint of the intersections in edges 2 and 3; node 5 is moved to the intersection 

point in edge 9; node 6 is moved to the intersection point in edge 10; node 7 moves to the 

midpoint between the repositioned nodes 3 and 5 and node 8 is moved to the intersection 

point in edge 11. The end result is the degenerate hexahedron shown in Figure 7(c), in 

which nodes 3, 5, 6, 7 and 8 all lay in the interface. However, the integrations over the 

volume, and the volumes that are generated  by cases 5 and 6 as well, are automatically 

done using the shape functions in conjunction with isoparametric transformations. 

 

Element ntersections of the type of Case 4 result in standard isoparametric hexahedrons 

that do not require any special treatment. Intersections of the type of Case 5 follow the 

steps shown in Figure 8; the element is rotated to the standard position shown in Figure 

8(a) where nodes 1, 2, 4 and 5 are in  

 

 
 

Figure 8: (a) Element intersection of the type of Case 5. (b) Displaced position of nodes 

3, 6, 7 and 8. (c) Final modified geometry. 
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the fluid. In Figure 8(b) the inactive nodes are repositioned, node 3 is moved to the 

midpoint between the intersections of edges 2 and 3; node 6 to the midpoint of the 

intersections in edges 5 and 10; node 8 is moved to the midpoint of the intersections in 

edges 8 and 12 and node 7 is placed at the centroid of nodes 3, 6 and 8. The Nodes 3, 6, 7 

and 8 are now all on the interface. The modified element is shown in Figure 8(c) 

 

 An element intersection of the type of Case 6 is shown in Figure 9(a). The 

element is rotated to a position 

 

 
Figure 9: (a) Element intersection of the type of Case 6. (b) Displaced position of nodes 

6, 7 and 8. (c) Final modified geometry. 

 

 where nodes 1, 2, 3, 4 and 5 are in the fluid .In Figure 9(b) the inactive nodes are 

repositioned, node 6 is at the midpoint of the intersections of edges 5 and 10; node 7 has 

been displaced along edge 11to the intersection point on that edge and node 8was moved 

to the midpoint between the intersections of edges 8 and 12. Figure 9(c) shows the final 

configuration for the modified element 

 

 Figure 10(a) shows an intersection of the type of Case 7 rotated so that nodes 7 

and 8 are the  

 
Figure 10: Element intersection of the type of Case 7. (b) Displaced position of nodes 7 

and 8. (c) Final modified geometry. 

 

inactive nodes. In Figure 10(b) the displaced position of nodes 7 and 8 to the midpoint 

between intersected edges 6 and 11 and between edges 8 and 12 respectively is shown, 

and Figure 10(c) has the final modified geometry. 
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 Finally an element intersection of the type of Case 8 is shown in Figure 11(a) 

rotated so that the  

 
Figure 11: Element intersection of the type of Case 8. (b) Displaced position of nodes 7. 

(c) Final modified geometry. 

 

 

only inactive node is node 7. The modified location of node 7 is shown in Figure 11(b) 

and is the centroid of the triangle determined by the intersections on edges 6, 7 and 11. 

The final configuration is as in Figure 11(c). 

 

 The modification of the intersected elements completes the adaptation process at 

the current position of the interface. As was explained at the beginning of the section, 

there is not a unique way to do this, because the nodes are typically common to eight 

adjacent elements and, as seen in Figure 5(e), depending on the order the element are 

processed the nodes will be moved to different new locations, therefore some decisions 

have to be made as to how the adaptation will take place. Three different approaches have 

been explored in this work, in the first priority is given to sliding the nodes along the 

intersected edges rather that moving them to a midpoint between intersections. Therefore, 

once a node has been displaced along an edge it is not allowed to be moved again when 

considering the other elements that contain it. On the other hand, if the node has been 

moved to a midpoint between intersections in an element and later a neighboring element 

requires the node to slide along an intersected edge, the first displacement is discarded, 

the node is moved according to the current requirement and there it is fixed and not 

moved again regardless of repositioning requests coming from other elements later. The 

second approach is the opposite of the first; it gives priority to repositioning the nodes at 

midpoints over sliding along edges. Both of these approaches result in perfectly 

conformal adaptations that cover the entire fluid volume and do not have overlaps; 

however, it is not possible to visualize some of these final configurations and some much 

distorted elements can be generated. For this reason, in three dimensions the approach 

explained in two dimensions through Figure 5(e) has been preferred, in which the 

elements are modified independently. The drawback is that as shown in the figures the 

final adaptation does not cover the entire fluid domain, small errors in the volume are 

introduced and the integrals are not exact,  it has been proved [40] in the two-dimensional 

case that the additional error due to inaccuracies in the approximation of the boundary 
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geometry is 
3( )O h where h  is the mesh parameter, and the approximation error 

remains
2( )O h  ; this is not exactly the same situation, but the analysis must be valid for 

this case also. It has also been proved that the constant of proportionality in the error 

associated with an isoparametric transformation is directly proportional to the maximum 

value of the Jacobian of the transformation and to the product of the norms of the 

transformation and its inverse, and inversely proportional to the minimum value of the 

Jacobian [40]. As a consequence approximation errors are greatly increased as the 

elements become much distorted. Which of the methods is better cannot be assessed at 

the moment, but so far there does not appear to be a significant difference. Examples of 

simple simulations performed using all three approaches show no significant differences 

in the velocity components next to the interface. 

 

5. Model Validation 

 

To obtain a partial idea of the accuracy and general behavior of the simulations in 

the present model the unsteady flow of a viscous fluid between two parallel circular 

plates that are separating at a prescribed velocity is considered, for which an analytical 

solution can be obtained [41] 

 

 
 

Figure 12: Fluid layer between circular plates separating at a prescribed velocity 

 

If the position and velocity of the upper and lower interfaces are given by 

 
1/ 2

0( ) 1h t h t   and  
1/ 2

0w( ) / 2 1t h t    respectively, where 
0 (0)h h  is 

the initial position of the interface, a similarity solution exists of the form 
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x
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  (15) 
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Where 1/ 2

0 (1 )

z
η

h t



  is a stretched vertical coordinate, and f  is the 

solution to the ordinary differential equation 

 

1
3 , (0) (1) (0) 0, (1) 1f f ff f f f f f

S
                      (18) 

where 2

0 / 2S h   and   is the kinematic viscosity of the fluid. For small values of 

the parameter S  a perturbation solution is given by [41] 

 
2

0 1 2( ) ( ) ( ) ( )f f S f S f                 (19) 
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2 2
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f       

 
        

 
       (22) 

 

An expression for the pressure solution is also presented in [41]. However, it involves a 

time dependent integration function that has not been possible to obtain for the purposes 

of comparison with numerical solutions. 

 

The results of a calculation in which 1.5   ,
0 0.425h   and the kinematic viscosity 

  is chosen so that and 0.1S    are shown below; the domain has diameter 4D   and 

only the upper half  0 1z   is considered. The mesh of trilinear hexagonal elements 

containing 14,763 nodes and 13320 elements with 21 nodes in the vertical z-direction is 

shown in Figure 13 (a). The moving top interface is shown in Figure 13 (b), it has 1,920 

maker points and 3694 marker triangles. The computational meshes and the 

discretizations of moving interfaces have been done using the program CUBIT from 

Sandia National Laboratory [42]. The velocity boundary conditions are obtained from the 

analytical solution, and the pressure is set equal to zero at the node (2,0,0). The initial 

velocity is also taken from the analytical solution. 
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(a)                                                                      (b) 

Figure 13: Comparison problem, two circular plates moving away at a prescribed 

velocity: (a)Computational mesh, (b) Moving top boundary mesh 

 

  

 The velocity obtained from calculations utilizing the mesh of Figure 13 and three 

different time steps 0.02t  , 0.01 and 0.005 are compared with the analytical solution. 

The results of the calculations show the expected radial flows turning upward from 

bottom to top, pictures are not informative and are not shown here. To obtain a general 

idea of the behavior of the error in the domain as a whole, the average relative error in the 

velocity magnitude is calculated at all active nodes contained in the vertical plane defined 

by , 0x y x   , that is, the vertical plane at a 45° angle to the x-axis in the fourth 

quadrant of the x-y-plane. The calculations are performed for the period of time 0 2t   

at time 2t   the interface is at the position 0.85z   . The average error at each time step 

nt  is defined as 
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


 (17) 

The results are shown in Figure 14. The error is reduced at the expected linear rate as a 

function of time step size and a small jump in the error is observed when the interface 

crosses a horizontal plane of elements, the magnitude is not significant though and is 

most probably due to the fact that all nodes in a horizontal line are crossed at the same 

time. 
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Figure 14: Average relative error at the plane x = y ≤ 0 for three different time steps as a 

function of time. 
 

To examine the behavior of the error further two specific nodes located in the 

plane , 0x y x    are chosen node 1 at ( , ) (0.7071, 0.7071,0.3)x y   , on the mid 

radius 1R   and close to the initial position of the moving interface, and node 2 at 

( , ) (0.2357, 0.2357,0.2)x y    closer to the center and the bottom of the domain. The 

relative error for each of the velocity components is calculated at each time step, Figure 

15(a) shows the behavior of the error of the velocity components u- and w- at node 1, the 

behavior of the v-component is practically identical to that of the u-component and is not 

shown. Figure 15(b) shows the behavior of the error in the calculation with 0.005t   

for each of the velocity components at both nodes 1 and 2  

           
             (a) 

           
            (b) 

Figure 15: (a) Relative error as a function of time in the u- and w- components 

of velocity at the three different time steps. (b) Relative error as a 

function of time for each velocity component at nodes 1 and 2 with 

time step 0.005. 
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 The error is large at the beginning of the calculation, which is probably caused by 

the initial conditions, but in all cases it goes down and settles with time to close to a 

constant value, it exhibits a correct behavior as a function of the time step, the u- and v- 

components show practically the exact same behavior, but the w-component behaves 

somewhat differently. This is not surprising giving the difference in the mesh in the z-

direction and the fact that that is the direction of interface motion; the u- and v- velocity 

components at node 1 exhibit a rather peculiar behavior, the error becoming extremely 

small just before 0.5t  and then increasing again, when the calculation approaches 2t   

the error in the three components approaches a constant value that for the time step of 

0.005 is between 4% and 5%. A much more detailed analysis involving meshes of 

different size and a full assessment of the analytical solution will give valuable 

information about the behavior of the present model, but this is out of the scope of this 

paper. However, the calculations presented here show that the model behaves correctly 

and exhibits convergence as a function of the time step. In two dimensions spatial 

convergence of second order has been demonstrated [32,33]. 

 

6. Further examples 

 

 To illustrate the capabilities of the model a series of examples are given involving 

different types of geometry and requirements. 

 

(a) Moving one slanted interface: 

 

A slanted interface with sinusoidal motion in a hexahedral channel of non-

dimensional length 5 in the z-direction, and a square cross-section of 1 in the x-y plane is 

simulated to demonstrate the motion of a moving body. The Reynolds number is 20 

based on a characteristic length of 1, a characteristic velocity of 1 m/s and kinematic 

viscosity of 0.05 m
2
/s. The domain is subdivided by a uniform grid of 6 x 6 x 26 

elements. The domain boundaries are assumed to be solid walls except for a slit in the x-

z-plane located at 0.0 ≤ x ≤ 1.0 , y = 1.0 and 1.0 ≤ z ≤ 1.8 that allows the incompressible 

fluid to enter and leave the domain. Initially the interface intersects the domain at marker 

point located at (0.0, 0.0, 2.5), (1.0, 0.0, 2.92262 ), (0.0, 1.0, 3.07735) and (1.0, 1.0, 3.5). 

The interface is a plane slanted at an angle of 25 degrees to the z-axis in the x-direction 

and 30 degrees in the y-direction. The position of the interface in the z - direction as a 

function of time is given by  
3

z( ) 0.95sin 1 3.45 tan sin( )
2 6 7.2

t t y x
     

      
   

, that 

is a stroke with an amplitude of 2.497. The time step used in the calculation is 

0.005t  . 

 

In this example seven of the eight intersection cases occur; the only one that does 

not happen is case 4, which is the most common case in other examples. Therefore here 

all the different kinds of intersections are tested. 

 

Figure 16 shows snapshots of the flow and interface position at= 0.1when the 

interface is advancing in the positive z – direction, at t = 0.75 when the interface has just 
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turned at the end of the stroke and is returning moving towards the right and at t = 

1.3when it is very close to the starting point to begin a new cycle.  

 

 
 

t = 0.10  

t = 0.75  

t = 1.30  

 

 
 

Figure 16: Slanted plane interface under oscillatory motion. 

 

(b) Two slanted interfaces oscillating in opposite directions: 

 

The same conditions and uniform 6 x 6 x 26 elements mesh used in example (a) 

are used to demonstrate the motion of more than one interface. The boundary conditions 

are modified closing the slit in the top wall and making two new square openings 

between 0.2 ≤x, y ≤ 0.8  on the walls at z = 0 and z = 5 to allow incompressible fluid in 

and out of the computational regions. Two parallel interfaces slanted at an angle of 30 

degrees to the y-axis only intersect the domain. The left interface initially intersects the 

domain at (0.0, 0.0, 2.85), (1.0, 0.0, 2.85), (0.0, 1.0, 3.427) and (1.0, 1.0, 3.427).  The 

right interface initially intersects the domain at (0.0, 0.0, 2.15), (1.0, 0.0, 2.15), (0.0, 1.0, 

2.727) and (1.0, 1.0, 2.727). The position of the left interface as a function of time is 

given by, 

  






 












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6
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2

3
0.775sin)z( ytt  

and that of the right interface by  
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2

3
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the stroke amplitude of each of the interfaces is 2.127. 
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Figure 17 shows the velocity and interface position at three stages during the first 

cycle. At t = 0.10 s the interfaces are just beginning to move away from each other; at t = 

0.75 s they have turned the direction of motion and begun to move towards each other; at 

t = 1.25 s they are about to reach their closest point and start a new cycle. 

 
 

t = 0.10  

t = 0.75  

t = 1.25  

 
 

Figure 17: Two slanted interface oscillating in opposite directions 

 

(c) Engine cylinder with bowled piston 

 

The previous examples involved straightforward rectangular geometry and were 

designed to illustrate how the basic features of the algorithm are capable of modeling a 

moving interface that intersects a mesh in a general way, but did not address the presence 

of domain boundaries or interfaces that is introduced in this example. The geometry 

consists of a cylindrical domain representing an engine cylinder with two valve openings 

for intake and exhaust of gases, and a piston with a bowl. The cylinder has an inner 

radius of 5 cm and a height of 10.5 cm; the piston has a planar ledge with an outer radius 

of 5 cm and an inner radius of 3.75 cm where a straight cylinder 1.5 cm tall is attached 

going downward and capped by a plane at the bottom. The cylinder is discretized with a 

mesh of 7,152 nodes and 6,150 trilinear isoparametric elements and the piston is defined 

by a grid of linear triangles containing 5,104 markers and 10062 marker triangles. Figure 

18 shows the geometry and grid for the piston and Figure 19 that of the cylinder. The 

cylinder mesh consists of 15 uniformly spaced rows of elements parallel to the x-y plane; 

each plane of nodes contains 410 elements. The mesh, although too coarse to expect 

accurate solutions in modeling simulations, is appropriate to show the effectiveness of the 

algorithm while keeping the visualization reasonably simple. 
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             (a) 

 
              (b) 

 

Figure 18: (a) Piston interface defined by a grid of linear triangles. 

(b) Dimensions of the piston head. 

 

 
                  (a) 
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          (b) 

 

Figure 19: (a) Two-dimensional horizontal cross-section of the cylinder mesh 

Showing the circular intake and exhaust valve openings. 

(b) Cylinder – piston configuration showing the outer surfaces of the 

cylinder mesh. 

 

The simulation presented here assumes that the fluid is air, but speeds are in the 

incompressible range, the reference length and velocity are set to 1.0 and the kinematic 

viscosity is 
31.7 10    which results in a Reynolds number Re 588 . The top 

surface of the piston is initially at 3.25z cm and it reaches a maximum height of 

0.11z cm , the amplitude of the stroke is 7.75 cm. The piston is driven according to 

the function   pz 0.03875 1 sin(50 2)t     where 
pz is in meters , so the 

maximum velocity of the piston when 0.01 0.02 , 0,1,2...t n n   is 

6.087 /pw m s , and a whole cycle requires 0.04 s for completion. Figure 20 shows 4 

snapshots during one full cycle of motion. 
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t = 0.005 s 
 

 

  (a) 

 

 
t = 0.015 s 

 
 

     (b) 
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t = 0.025 s 

 
   

   (c) 

 

 

 

t = 0.035 s 
 

 

        (d) 
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Figure 20: (a) Piston position and velocity field at 0.005t s . 

(b) Piston position and velocity field at 0.015t s . 

(c) Piston position and velocity field at 0.025t s . 

(d) Piston position and velocity field at 0.035t s . 

 

At t = 0.005 s the has advanced 0.113 cm and the piston velocity at this point is 4.3 /m s , 

the exhaust valve is open and fluid leaving the cylinder; at t = 0.015 s it is approaching 

the top, the exhaust valve is still open the piston top is at 9.86z cm and its velocity is 

4.3 /m s ; at t = 0.025 s the piston has turned, its position is back to 9.86z cm , and its 

velocity is now 4.3 /m s  ; finally at t = 0.035 s the piston approaches the bottom of the 

cylinder to start a new cycle, its position is back to 4.38z cm and its velocity is 

4.26 /m s . A uniform time step of 510 s  was used in the simulation and a full cycle 

required an average 0.48 seconds CPU in a Dell T5600 workstation. 

 

10. CONCLUSION 

 

In this work, a method  based on finite element discretizations that includes 

moving boundaries or interfaces in CFD calculations has been developed and 

implemented in three space dimensions. The method belongs to the general family of 

Arbitrary Lagrangian-Eulerian methods. But differs from previously proposed methods 

for similar problems in the way the computational mesh is defined and locally adapted as 

the geometry changes. The present work concentrates strictly on the development of the 

method to discretize and modify the mesh throughout the calculation and has been 

applied to the case of laminar incompressible flow at low Reynolds number. The same 

methodology is currently being extended to high Reynolds number compressible and 

turbulent flows. The method has been fully tested for accuracy in two dimensions and 

shown to have second order accuracy in space, in three dimensions a limited number of 

calculations presented here show the correct error behavior, but additional work is 

required to  properly establish the method’s rates of convergence in three dimensions. 

Additional examples involving slanted interfaces and a realistic cylinder/piston engine 

assembly show that the method is fully robust and very efficient, and it offers distinct 

advantages from the point of view of eliminating the use of adaptive mesh generators. 
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