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Abstract

A three-dimensional finite element method for the numerical simulations of fluid
flow in domains containing moving rigid objects or boundaries is developed. The method
falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a
fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and
reverts to its original shape once the moving interfaces go past the elements. The moving
interfaces are defined by separate sets of marker points so that the global mesh is
independent of interface movement and the possibility of mesh entanglement is
eliminated. The results is a fully robust formulation capable of calculating on domains of
complex geometry with moving boundaries or devises that can also have a complex
geometry without danger of the mesh becoming unsuitable due to its continuous
deformation thus eliminating the need for repeated re-meshing and interpolation.
Moreover, the boundary conditions on the interfaces are imposed exactly. This work is
intended to support the internal combustion engines simulator KIVA developed at Los
Alamos National Laboratories. The model’s capabilities are illustrated through
application to incompressible flows in different geometrical settings that show the
robustness and flexibility of the technique to perform simulations involving moving
boundaries in a three-dimensional domain.

1. Introduction

The accurate numerical simulation of fluid flow in the presence of moving
structures that modify the fluid domain is of great practical importance in many areas of
engineering and science. These include the automotive, medical, and aeronautics
industries. In the automotive industry design refinements through modeling of the
combustion inside the engines has become economically important and, in general,
internal combustion engines are an important part of our everyday life, being used in a
myriad of tools as well as in trains, ships, aircraft and automobiles. An example of
modeling software as a tool for the design of internal combustion engines is the Los
Alamos National Laboratory engine simulation code "KIVA" [1]. Designs made with
these types of software benefit from increased ability to estimate efficiency, power
output, and other metrics of a prototype before manufacture [2-6].



Fluid flow finite element simulators with moving boundaries capabilities are also
used in the medical field [7-9]. The methods used for medical studies fall under the
category of immersed boundary techniques [10, 11], these have also been used to
investigate the mechanism of insect flight, as small aircraft are pushed to their operational
limits at very low Reynolds numbers [12, 13]. Finite element numerical models for
problems with moving boundaries for the most part are based on Arbitrary Lagrangian
Eulerian (ALE) methods. The earliest ALE applications involved fluid structure
interactions, which has been a crucial driver of these efforts especially in aeronautics,
also of great interest is a large class of free surface flows [14-21].

The ALE process begins at each time step by displacing the boundaries in the
Lagrangian (moving) framework. The second step is to solve the equations in the fluid
domain in the Eulerian (stationary) framework. The classical ALE approach is to use
continuously deforming meshes [22-27]. In these schemes the mesh is attached to the
moving boundary, and continuously deformed or re-generated to adapt to the changing
domain geometry during the simulation. Because of the mesh deformation, it is often the
case that the mesh has been degraded past the point where it can be used in the
calculations. At these times the program operator must stop and re-mesh, or have a
routine handy that automates this process. This and other practical difficulties make
moving mesh schemes undesirable for a variety of practical applications. In this study,
the newly developed ALE method eliminates these handicaps by calculating on a locally
changing mesh adapted only in the immediate vicinity of the moving interface; leaving
the global mesh outside of this area un-deformed.

There are a variety of other techniques such as embedded mesh, fictitious domain,
level set, phase field, etc. that have also been used for many years. However these do not
enjoy the same degree of popularity as ALE methods and will not be addressed here; a
general discussion on numerical techniques for evolving spatial domains is given in [10,
11, 28, 29], where some of the drawbacks of these methods are also discussed.

Because in numerical simulations of fluid flow in domains with moving solid
boundaries based on the finite element method when a moving mesh is used that mesh
must be constantly deformed and periodically regenerated during the simulation. The
motion and continuous deformation of the mesh often leads to the mesh becoming
inadmissible, referred to as mesh entanglement that requires the mesh to be regenerated,
sometimes very often. Additionally interpolation of the variables between meshes is
required, that can lead to instabilities and loss of accuracy [30, 31], and can make the
computations expensive.

The objective of this work is to develop a method to solve moving boundary
problems without the need of re-meshing. This is accomplished using a fixed mesh
numerical scheme that is constantly adapted locally in space and time to the moving
interfaces. A second objective is to validate this local ALE method to ensure that it has
the correct accuracy, flexibility and robustness. For this purpose the scheme is applied to
realistic geometries and a semi-formal local error analysis has been performed, the details
of which are reported in [32], the main results are also mentioned here.



2. Domain and interfaces discretization

A two-dimensional implementation of the ideas presented here has already been
published [33]; the present work concentrates on the three-dimensional methodology and
considers only the case when Dirichlet boundary conditions are imposed on the moving
interfaces.

Denote by () the complete domain occupied by fluid at any time during the

complete simulation, this domain can also be used as the reference domain in the ALE
formulation [31, 34] and is referred to as the base or reference domain. Let the domain
Q, be discretized using a finite element mesh that is deemed as appropriate for all stages

of the simulation (this does not preclude the use of adaptive refinement or higher order
elements during the simulation, but these extensions of the method will not be discussed
here). In this work, the mesh is made out of hexahedral tri-linear isoparametric elements;
it can also be composed of linear pyramidal elements, which makes the implementation
much simpler. The moving interfaces are defined independently using grids of linear
triangular two-dimensional elements that describe the boundaries of the interfaces in
three-dimensional space. The triangular elements that make up the interfaces are called
marker triangles and their nodes marker nodes or marker points. The interfaces so
defined can move (slide) through the base domain according to their velocity, that can be
prescribed by a given function or data set, or can be calculated as part of the solution. In
this work, it is assumed that the interfaces are rigid and the interfaces velocity is
prescribed by a given function. Figure 1 illustrates the ideas in a simple hexahedral
domain intersected by a plane interface. The interface separates the domain into two
parts, one containing the fluid, referred to as the fluid portion and the rest of the domain

denoted as the inactive portion.
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Figure 1: (a) Square cylinder subdivided by a uniform mesh of 5 by 5 by 25 tri-
linear elements and intersected by a plane interface perpendicular to the z-axis slightly
before the midpoint in the z-direction. (b) Interface intersecting the domain in figure 1(a);
defined by marker triangles with vertices that are marker nodes.

At each new time step in the calculation an interface intersects the mesh elements
at a new position, the intersections of the marker triangles with the element edges are
determined and the intersected elements are adapted to fit only that portion of the element
that lies in the fluid assuming that within an element the intersecting surface is either
planar or bilinear. The adapted mesh is used to carry out the flow calculation and once
the velocity and pressure are known the adaptation is discarded, the interface position is
advanced to the next time step and a new adaptation performed. Figure 2 shows the
resulting adapted mesh assuming that the left hand side of the domain contains the fluid.
Once the moving interface goes past an element, the element regains its original form; the
mesh adaptation is performed only in those elements intersected by an interface and is
local both in space and in time. If Dirichlet conditions are imposed at the interface, the
calculation of velocity involves only mesh nodes contained on the fluid side and
interpolation is never required; the pressure needs to be calculated at the interface also.
Note that the mesh in the inactive part does not enter the calculation and therefore it does
not matter how deformed it becomes. This is important in cases involving complex
geometries where the mesh in the inactive side may become inadequate for calculation.
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Figure 2: Schematic of a mesh adapted to the intersection by an interface.

In three-dimensions there are eight possible different situations that can arise
when a hexahedral element is intersected by a plane. These situations are characterized
by the number of nodes that are contained in the fluid part as listed below:

Case 1: Pyramidal intersection with 1 node in the fluid side.

Case 2: Prismatic intersection with 2 nodes in the fluid side.

Case 3: Irregular hexahedral intersection with 3 nodes in the fluid side, the
intersecting plane has five corners and two sides in the fluid part are triangular.
Case 4: Regular hexahedral intersection with 4 nodes in the fluid side.

Case 5: Irregular heptahedral intersection with 4 nodes in the fluid side, the
intersecting plane has six corners, three of the sides on the fluid side have five
corners and the other three sides are triangular.

Case 6: Same as case 3 with the fluid and inactive sides interchanged and 5 nodes
in the fluid side.



Case 7: Same as case 2 with the fluid and inactive sides interchanged, 6 nodes in
the fluid side.
Case 8: Same as case 1 with the fluid and inactive sides interchanged, 7 nodes in
the fluid side.

Figure 3 illustrates the intersections leading to types 1 through 6. If the finite
element mesh is based on tetrahedral pyramids only three different cases arise and the

geometric setting is considerably simpler.

Cases 1 and 8 Cases2and 7

Case 5 Case 6

Figure 3: The eight possible ways a plane may intersect a hexahedron dividing it
into a fluid part where the nodes are shown, and an inactive part. The intersections in
Case 3 and Case 6 are of the same type, but the fluid and inactive parts are switched

around. In the same way Case 8 is obtained from Case 1 and Case 7 from Case 2.

Most important is the fact that these are the only eight situations that may arise,
therefore, once they have been programmed there is never a new different case to be
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accounted for. The above figures show that the interface may intersect as many as six
element edges (case 5), creating fluid parts in the elements with shapes that are not
hexahedral. To address this difficulty two additional elements are allowed at the
interface, the linear tetrahedral pyramids in case 1 and the prismatic pentahedron in case
2. For cases 3 and 5 through 8, nodes in the inactive part of the elements are moved to
create hexahedral element that are a close approximation to the fluid part geometry. The
way this is done is shown in section 4.

The problem of maintaining the mesh quality is thus eliminated and the result is a robust
formulation on arbitrary geometrical configurations. However, elements that are
relatively very small or with very large aspects ratios may be generated; to avoid these
extreme situations the present implementation neglects fluid element intersections with a
volume less than 0.1% of the original volume of the element.

3. Governing equations and finite element approximation

The incompressible Navier-Stokes equations, assuming zero body forces are
written in non-dimensional form as

ouU 1,

—+(U-V)U=-Vp+—V°U 1
5 T(UV) P+ s (1)
V-U=0 )
Where U= (ui+Vj+wk) is the velocity, V:(gi +2j+£k) is the gradient

OX 0z
operator, t is time, p is the pressure and Re=£ is the Reynolds number. U is a
1%

characteristic velocity, L is a characteristic length and v is the kinematic viscosity of the
fluid. Equations (1) and (2) are defined over the domain [0, T]x Q(t) where T is a real

number, and Q(t) is a connected time dependent domain in R*with a sufficiently smooth
boundary T'(t).
At time t, =0, Q(t,) = and the initial condition is U(x,0) = U,

The boundary conditions for each velocity component may be of the Dirichlet or
Neumann type over different portions of the boundary, those portions of the boundary
where Dirichlet boundary conditions are imposed are denoted by T", and those with

Neumann boundary conditions by T" . Note that in any portion of the boundary a

Dirichlet condition may be imposed on one of the velocity components and a Neumann
boundary condition on another, so this notation needs to be interpreted accordingly for
each velocity component. Denote Qt)=Q, at each time t ; define the space LZ(Qt) as

the space of functions defined in (3 that are square integrable in (3 , and the space

H'(Q,) as the space of functions defined in (3 such that the function and its first partial

derivatives are square integrable in () . Finally, let S, (t) = {Xi Jd=1n/x e g_)(t)} be



finite sets points that define K interfaces/boundaries contained in the reference domain
that move within the domain with prescribed velocity V, . Theoretical considerations

related to this algorithm have already been analyzed in detail in [31, 34-36] and are not
repeated here. Notice that in this formulation there is no mesh velocity , only the
interfaces move modifying the mesh in their immediate vicinity.

The ALE formulation combined with the projection method is:

1. Lagrangian step: Update the position of the interfaces S, (t) from time t =1

to time t=t ,, =t + At according to the prescribed velocity v, (t) of
each interface.

2. Eulerian step: Solve the Navier-Stokes equations to find U(X,t.,,) and
p(X,t ). This is done using a first order in time projection method [37],
described below.

Let U"(x)=U(x,t) be known. At time t=t , decompose the velocity as

U™ =U"+ U’ whereU"is an intermediate or viscous velocity that does not satisfy

continuity and U’ is a correction or inviscid velocity that enforces the mass
conservation.

To simplify the explanation, the fractional step formulation is given using only the x-
component of velocity U, the equations for the other two components is similar. The
time derivative is discretized using a first order backward Euler difference, the

intermediate velocity component U’ is obtained solving

j iwuu*+iVWu~Vu* szI —WU(U”-V)u“+iwuun da ©)
Qtn1 (At Re Qt, At

where _denotes weighting functions in HY(Q,) that satisfy homogeneous Dirichlet

boundary conditions in I" .

Because the convective term is kept explicit, the algorithm is subject to the Courant-
Friedrich-Levy (CFL) stability condition C <1, where C is the local Courant number.
Let the subscript e denote an element, dQ), denote the element differential of volume

and N, ,i=18 denote the trilinear shape functions of the element. The full Galerkin

finite element discretization of Eq. (3) using eight-node isoparametric elements results in
the element equations

l e e * € e
(EM +K j(u ) =F; (4)

where
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is the element mass matrix
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is the element stiffness matrix, (u ) =(u1,u2,...,u8) are the U component

degrees of freedom contained in the element and
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Two more sets of element equations, (_MEJFKEJ(V*)GZFE' and
A \
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(i M + Kej(w* )e — gefor the V and W components of velocity in the y- and z-
At "

direction are obtained that differ only by the right hand sides F; and F; which are given
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After the three assembled systems of equations have been solved for the
intermediate velocity components, the pressure is obtained from the solution to the
Pressure Poisson equation (PPE)

respectively.
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with the weighting function w, in Hl(Qt). The pressure is interpolated to the same
order as the velocity and the Galerkin discretization yields the element equations

th+1

B =F° (11)
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) are the pressure degrees of freedom in the element and
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After assembling and solving for the pressure at t =t_ the velocity is obtained
from

Un+1 _ U* —(At)Vpn+1 (14)
Discretized, for each velocity component at the element level Eq.(14) takes the form

MbEu™ = f,, MEv™ = f, Mw"* =f,,, where M " denotes the lumped

mass matrix [38], used to avoid the solution of the extra systems of equations that would
result without this modification. The above matrices are

“=[mf = ijjeNideQ (15)

which is the same for the three components of velocity; u”*l, Vn+1, and W™ contain

the eight degrees of freedom of each component contained in the element and the right
hand sides are
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The systems of linear equations resulting from the assembly of Egs. (4) and (11) can be
solved by any appropriate method, in this work the total number of degrees of freedom
involved in the simulations is rather modest (maximum 12,000 nodes) and a direct

skyline method [39] has been used. Obtaining the corrected velocity at time step t_ .,

from Eq. (14) involves an uncoupled linear system with a diagonal coefficients matrix
that is readily solved.

4. Mesh intersections and adaptation

The reference domain Q, is assumed to be discretized using a mesh of

isoparametric tri-linear hexahedra as shown in Figure 1(a). The domain is intersected by
one or more interfaces discretized using linear two-dimensional marker triangles as

shown in Figure 1(b). A new adapted mesh is needed to advance from time step '[n , When

the velocity and pressure are known, to time step { The procedure to find the new

adapted mesh goes along the following steps:

n+l-

1. Find all the intersections between the marker triangles and the edges of the
FEM mesh elements. The first time step this involves a search over all
elements in the mesh and all marker triangles in the interface. After the first

time step the search is narrowed to only the elements intersected at time tn

and their immediate neighbors.

2. Inall intersected elements find the nodes that are in the fluid part. To do this
the vector normal to the interface pointing to the side occupied by the fluid is
used; this information is part of the input data.

3. Modify the intersected elements to fit the interface position. How this is done
for each of the different eight cases is explained below.

The simplest case is provided by the example in Figure 1 in which only intersections of
the type of Case 4 in Figure 3 occur; in this case the adaptation consists in changing the
location of the nodes in the inactive side of the intersected elements to the position of the
interface as shown in Figure 4 where the repositioning of the nodes is illustrated.

10
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Figure 4: mesh adaptation used to generate the modified mesh in Figure 2.

At the end of these three steps the new adapted mesh has been generated and is used to
calculate velocity and pressure. There is not a unique way to complete step 3 and
different strategies can be used to do it, this is easier to explain with a two dimensional

example as shown in Figure 4; where several possibilities are shown and a preferred
strategy discussed.

Inalcﬁi\are4 8 2 2 o 4 8
l FIUid\K l l \ _________
1 3 1 !
1 4 7 ; 43:‘ .,
(a) (b)

3

)

4 |
(d (e)
Figure 5: Two-dimensional example to illustrate different mesh adaptation strategies. (a)
Four element mesh intersected by an interface; (b) Inactive node moved along a
horizontal mesh line; (c) Inactive node moved along a vertical mesh line; (d) Inactive
node moved to the center of the intersection segment; (e) A combination of the three
previous cases.

A simple rectangular mesh composed of four elements and intersected by an interface is
shown in Figure 5(a), elements 1, 2 and 3 are intersected and element 4 is fully inactive.
Element 1 has become a pentagon, to integrate over it needs to either be decomposed
into a combination of quadrilateral and/or triangular elements, or modified into a single
quadrilateral element. The first alternative introduces additional nodes at the interface and

11



therefore complicates the solution unnecessarily; the second option can be easily
implemented by moving the inactive node number 5 to place it on the interface and
modifying the geometry of the fluid elements that have node 5 in common. Node 5 can
be moved in a number of ways, in Figure 5(b) it has been displaced toward the interface
sliding along the mesh line that contains the intersection at the top of the element, in
Figure 5(c) it has been displaced along the mesh line intersecting the element on the right
hand side, and in Figure 5(d) it has been moved to the midpoint of the interface segment
intersecting element 1. All three of these options are good, and all three produce modified
quadrilateral and triangular elements that can be quite deformed, the effect of these
irregularities in the mesh on the accuracy of the solution is discussed in [32]. In three
dimensions the same kind of geometric scenarios develop, but the effect on the
neighboring elements due to displacing a node in one of them can be very complex and
sometimes not possible to visualize, this motivates the use of a fourth option illustrated in
Figure 5(e) where each of the intersected elements is modified individually, hence, when
processing element 1 it is modified displacing node 5 as in Figure 5(d), in element 2 node
5 is moved as in Figure 5(b), and in element 3 node 5 is moved as in Figure 5(c). This has
the advantage that the shape of the elements remains more uniform, and therefore the
approximation error is reduced [40], on the other hand it has the disadvantage that it
introduces a local inconformity because a small area is not considered in the integrations
these are the shaded areas shown in Figure 5(e); however, this lack of conformity does

not violate the patch test and the error remains of order O(h®)where N is the mesh

parameter [40]. Which of these two errors is larger cannot be accurately assessed:;
however, in three dimensions the last option makes it possible to visualize the deformed
geometries for every situation which has not been possible in the other cases and has the
added advantage that the modified elements do not become excessively deformed.

To explain how the adaptation process described above in two dimensions is
implemented in three dimensions the notation in Figure 6 is used to number the nodes
and edges of a trilinear element.

[N

@ Edge numbers
N Node numbers

6

!

Figure 6: Notation used to describe the element intersections
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For element intersection in Cases 1 or 2 of Figure 3, the fluid part is a pyramid or
prismatic element respectively and is integrated using an isoparametric form. When an
element is of the type of Case 3, it is modified into an isoparametric hexahedron as
shown in Figure 7 in the following way: First the element is rotated to the

Figure 7: (a) Element intersection of the type of Case 3. (b) Displaced position of nodes
3,5, 6, 7 and 8. (c) Final modified geometry.

standard position shown in Figure 7(a), where nodes 1, 2 and 4 are the fluid nodes. Next
the inactive nodes are repositioned as shown in Figure 7(b), so that node 3 is moved to
the midpoint of the intersections in edges 2 and 3; node 5 is moved to the intersection
point in edge 9; node 6 is moved to the intersection point in edge 10; node 7 moves to the
midpoint between the repositioned nodes 3 and 5 and node 8 is moved to the intersection
point in edge 11. The end result is the degenerate hexahedron shown in Figure 7(c), in
which nodes 3, 5, 6, 7 and 8 all lay in the interface. However, the integrations over the
volume, and the volumes that are generated by cases 5 and 6 as well, are automatically
done using the shape functions in conjunction with isoparametric transformations.

Element ntersections of the type of Case 4 result in standard isoparametric hexahedrons
that do not require any special treatment. Intersections of the type of Case 5 follow the
steps shown in Figure 8; the element is rotated to the standard position shown in Figure
8(a) where nodes 1, 2, 4 and 5 are in

Figure 8: (a) Element intersection of the type of Case 5. (b) Displaced position of nodes
3, 6, 7 and 8. (c) Final modified geometry.
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the fluid. In Figure 8(b) the inactive nodes are repositioned, node 3 is moved to the
midpoint between the intersections of edges 2 and 3; node 6 to the midpoint of the
intersections in edges 5 and 10; node 8 is moved to the midpoint of the intersections in
edges 8 and 12 and node 7 is placed at the centroid of nodes 3, 6 and 8. The Nodes 3, 6, 7
and 8 are now all on the interface. The modified element is shown in Figure 8(c)

An element intersection of the type of Case 6 is shown in Figure 9(a). The
element is rotated to a position

Figure 9: (a) Element intersection of the type of Case 6. (b) Displaced position of nodes
6, 7 and 8. (c) Final modified geometry.

where nodes 1, 2, 3, 4 and 5 are in the fluid .In Figure 9(b) the inactive nodes are
repositioned, node 6 is at the midpoint of the intersections of edges 5 and 10; node 7 has
been displaced along edge 11to the intersection point on that edge and node 8was moved
to the midpoint between the intersections of edges 8 and 12. Figure 9(c) shows the final
configuration for the modified element

Figure 10(a) shows an intersection of the type of Case 7 rotated so that nodes 7
and 8 are the

Figure 10: Element intersection of the type of Case 7. (b) Displaced position of nodes 7
and 8. (c) Final modified geometry.

inactive nodes. In Figure 10(b) the displaced position of nodes 7 and 8 to the midpoint
between intersected edges 6 and 11 and between edges 8 and 12 respectively is shown,
and Figure 10(c) has the final modified geometry.

14



Finally an element intersection of the type of Case 8 is shown in Figure 11(a)
rotated so that the

(@) *®

Figure 11: Element intersection of the type of Case 8. (b) Displaced position of nodes 7.
(c) Final modified geometry.

only inactive node is node 7. The modified location of node 7 is shown in Figure 11(b)
and is the centroid of the triangle determined by the intersections on edges 6, 7 and 11.
The final configuration is as in Figure 11(c).

The modification of the intersected elements completes the adaptation process at
the current position of the interface. As was explained at the beginning of the section,
there is not a unique way to do this, because the nodes are typically common to eight
adjacent elements and, as seen in Figure 5(e), depending on the order the element are
processed the nodes will be moved to different new locations, therefore some decisions
have to be made as to how the adaptation will take place. Three different approaches have
been explored in this work, in the first priority is given to sliding the nodes along the
intersected edges rather that moving them to a midpoint between intersections. Therefore,
once a node has been displaced along an edge it is not allowed to be moved again when
considering the other elements that contain it. On the other hand, if the node has been
moved to a midpoint between intersections in an element and later a neighboring element
requires the node to slide along an intersected edge, the first displacement is discarded,
the node is moved according to the current requirement and there it is fixed and not
moved again regardless of repositioning requests coming from other elements later. The
second approach is the opposite of the first; it gives priority to repositioning the nodes at
midpoints over sliding along edges. Both of these approaches result in perfectly
conformal adaptations that cover the entire fluid volume and do not have overlaps;
however, it is not possible to visualize some of these final configurations and some much
distorted elements can be generated. For this reason, in three dimensions the approach
explained in two dimensions through Figure 5(e) has been preferred, in which the
elements are modified independently. The drawback is that as shown in the figures the
final adaptation does not cover the entire fluid domain, small errors in the volume are
introduced and the integrals are not exact, it has been proved [40] in the two-dimensional
case that the additional error due to inaccuracies in the approximation of the boundary
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geometry is O(h*)where h is the mesh parameter, and the approximation error

remains O(h?) ; this is not exactly the same situation, but the analysis must be valid for

this case also. It has also been proved that the constant of proportionality in the error
associated with an isoparametric transformation is directly proportional to the maximum
value of the Jacobian of the transformation and to the product of the norms of the
transformation and its inverse, and inversely proportional to the minimum value of the
Jacobian [40]. As a consequence approximation errors are greatly increased as the
elements become much distorted. Which of the methods is better cannot be assessed at
the moment, but so far there does not appear to be a significant difference. Examples of
simple simulations performed using all three approaches show no significant differences
in the velocity components next to the interface.

5. Model Validation
To obtain a partial idea of the accuracy and general behavior of the simulations in
the present model the unsteady flow of a viscous fluid between two parallel circular

plates that are separating at a prescribed velocity is considered, for which an analytical
solution can be obtained [41]

FLOW

Figure 12: Fluid layer between circular plates separating at a prescribed velocity

If the position and velocity of the upper and lower interfaces are given by
h(t) =+h, (1-at)“and W(t) =Fah, /2(1—at)"? respectively, where h, =h(0) is
the initial position of the interface, a similarity solution exists of the form

ax ,
u(x,y,zt) —mf (n) (15)
yzt)=— X ¢
V(X,Y,z,t) )" (n) (16)
W(xyzt):LhOf() (17)
P ey
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z
h,(1— at)''?
solution to the ordinary differential equation

Where 7= is a stretched vertical coordinate, and f is the

77fm+3f”— ﬁ:mzé fn// , f(0)= fr(l): f”(O)=0, f(1)=1 (18)

where S = ahg /2y and v is the kinematic viscosity of the fluid. For small values of
the parameter S a perturbation solution is given by [41]

f(7) = fo(m) +S £,(7) +S*1,(17) (19)
3 1
f(n)==n-=n° (20)
o(1) ey
1
f.(n) = —%(3777 ~737° +357° + 77’ ) (21)

f,(m)=-

1 ( 2551 34901 , 41 . 51 ,
———n+ -
1848 "11088" 20 280" 72" 880

7 9, 3 u
+—n'+—n +— (22)
140 7 7 7 j

An expression for the pressure solution is also presented in [41]. However, it involves a
time dependent integration function that has not been possible to obtain for the purposes
of comparison with numerical solutions.

The results of a calculation in which & =—1.5,h; =0.425 and the kinematic viscosity

v is chosen so that and S =—0.1 are shown below; the domain has diameter D =4 and
only the upper half 0<z <1 is considered. The mesh of trilinear hexagonal elements
containing 14,763 nodes and 13320 elements with 21 nodes in the vertical z-direction is
shown in Figure 13 (a). The moving top interface is shown in Figure 13 (b), it has 1,920
maker points and 3694 marker triangles. The computational meshes and the
discretizations of moving interfaces have been done using the program CUBIT from
Sandia National Laboratory [42]. The velocity boundary conditions are obtained from the
analytical solution, and the pressure is set equal to zero at the node (2,0,0). The initial
velocity is also taken from the analytical solution.
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Figure 13: Comparison problem, two circular plates moving away at a prescribed
velocity: (a)Computational mesh, (b) Moving top boundary mesh

The velocity obtained from calculations utilizing the mesh of Figure 13 and three
different time steps At =0.02, 0.01 and 0.005 are compared with the analytical solution.
The results of the calculations show the expected radial flows turning upward from
bottom to top, pictures are not informative and are not shown here. To obtain a general
idea of the behavior of the error in the domain as a whole, the average relative error in the
velocity magnitude is calculated at all active nodes contained in the vertical plane defined
by x=-y, x<0, that is, the vertical plane at a 45° angle to the x-axis in the fourth

quadrant of the x-y-plane. The calculations are performed for the period of time 0<t<2

at time t = 2 the interface is at the position z=0.85 . The average error at each time step
t. is defined as

E(t,) =| =—— (17)

i=1

The results are shown in Figure 14. The error is reduced at the expected linear rate as a
function of time step size and a small jump in the error is observed when the interface
crosses a horizontal plane of elements, the magnitude is not significant though and is

most probably due to the fact that all nodes in a horizontal line are crossed at the same
time.
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Figure 14: Average relative error at the plane x =y < 0 for three different time steps as a
function of time.

To examine the behavior of the error further two specific nodes located in the
plane X =—y , x <0 are chosen node 1 at (X, y) = (0.7071,-0.7071,0.3), on the mid

radius R =1 and close to the initial position of the moving interface, and node 2 at
(x,y) =(0.2357,-0.2357,0.2) closer to the center and the bottom of the domain. The

relative error for each of the velocity components is calculated at each time step, Figure
15(a) shows the behavior of the error of the velocity components u- and w- at node 1, the
behavior of the v-component is practically identical to that of the u-component and is not
shown. Figure 15(b) shows the behavior of the error in the calculation with At =0.005
for each of the velocity components at both nodes 1 and 2
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Figure 15: (a) Relative error as a function of time in the u- and w- components
of velocity at the three different time steps. (b) Relative error as a
function of time for each velocity component at nodes 1 and 2 with
time step 0.005.
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The error is large at the beginning of the calculation, which is probably caused by
the initial conditions, but in all cases it goes down and settles with time to close to a
constant value, it exhibits a correct behavior as a function of the time step, the u- and v-
components show practically the exact same behavior, but the w-component behaves
somewhat differently. This is not surprising giving the difference in the mesh in the z-
direction and the fact that that is the direction of interface motion; the u- and v- velocity
components at node 1 exhibit a rather peculiar behavior, the error becoming extremely
small just before t =0.5and then increasing again, when the calculation approaches t =2
the error in the three components approaches a constant value that for the time step of
0.005 is between 4% and 5%. A much more detailed analysis involving meshes of
different size and a full assessment of the analytical solution will give valuable
information about the behavior of the present model, but this is out of the scope of this
paper. However, the calculations presented here show that the model behaves correctly
and exhibits convergence as a function of the time step. In two dimensions spatial
convergence of second order has been demonstrated [32,33].

6. Further examples

To illustrate the capabilities of the model a series of examples are given involving
different types of geometry and requirements.

(a) Moving one slanted interface:

A slanted interface with sinusoidal motion in a hexahedral channel of non-
dimensional length 5 in the z-direction, and a square cross-section of 1 in the x-y plane is
simulated to demonstrate the motion of a moving body. The Reynolds number is 20
based on a characteristic length of 1, a characteristic velocity of 1 m/s and kinematic
viscosity of 0.05 m?/s. The domain is subdivided by a uniform grid of 6 x 6 x 26
elements. The domain boundaries are assumed to be solid walls except for a slit in the x-
z-plane located at 0.0 <x < 1.0,y =1.0and 1.0 <z < 1.8 that allows the incompressible
fluid to enter and leave the domain. Initially the interface intersects the domain at marker
point located at (0.0, 0.0, 2.5), (1.0, 0.0, 2.92262 ), (0.0, 1.0, 3.07735) and (1.0, 1.0, 3.5).
The interface is a plane slanted at an angle of 25 degrees to the z-axis in the x-direction
and 30 degrees in the y-direction. The position of the interface in the z - direction as a

function of time is given by z(t) =0.95sin {%(t +1)} +3.45+ ytan (%j+ xsin(%) , that

is a stroke with an amplitude of 2.497. The time step used in the calculation is
At =0.005.

In this example seven of the eight intersection cases occur; the only one that does
not happen is case 4, which is the most common case in other examples. Therefore here
all the different kinds of intersections are tested.

Figure 16 shows snapshots of the flow and interface position at= 0.1when the
interface is advancing in the positive z — direction, at t = 0.75 when the interface has just
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turned at the end of the stroke and is returning moving towards the right and at t =
1.3when it is very close to the starting point to begin a new cycle.
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Figure 16: Slanted plane interface under oscillatory motion.
(b) Two slanted interfaces oscillating in opposite directions:

The same conditions and uniform 6 x 6 x 26 elements mesh used in example (a)
are used to demonstrate the motion of more than one interface. The boundary conditions
are modified closing the slit in the top wall and making two new square openings
between 0.2 <x, y < 0.8 on the walls at z = 0 and z = 5 to allow incompressible fluid in
and out of the computational regions. Two parallel interfaces slanted at an angle of 30
degrees to the y-axis only intersect the domain. The left interface initially intersects the
domain at (0.0, 0.0, 2.85), (1.0, 0.0, 2.85), (0.0, 1.0, 3.427) and (1.0, 1.0, 3.427). The
right interface initially intersects the domain at (0.0, 0.0, 2.15), (1.0, 0.0, 2.15), (0.0, 1.0,
2.727) and (1.0, 1.0, 2.727). The position of the left interface as a function of time is
given by,

2(t) = O.7755in{3§(t +1)} +3.625+ytan(gj

and that of the right interface by

2(t) = —O.7755in{3?n(t +1)} +1.375+ytan[gj

the stroke amplitude of each of the interfaces is 2.127.
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Figure 17 shows the velocity and interface position at three stages during the first
cycle. Att=0.10 s the interfaces are just beginning to move away from each other; at t =
0.75 s they have turned the direction of motion and begun to move towards each other; at
t = 1.25 s they are about to reach their closest point and start a new cycle.

% 1=0.10

t=0.75

Figure 17: Two slanted interface oscillating in opposite directions
(c) Engine cylinder with bowled piston

The previous examples involved straightforward rectangular geometry and were
designed to illustrate how the basic features of the algorithm are capable of modeling a
moving interface that intersects a mesh in a general way, but did not address the presence
of domain boundaries or interfaces that is introduced in this example. The geometry
consists of a cylindrical domain representing an engine cylinder with two valve openings
for intake and exhaust of gases, and a piston with a bowl. The cylinder has an inner
radius of 5 cm and a height of 10.5 cm; the piston has a planar ledge with an outer radius
of 5 cm and an inner radius of 3.75 cm where a straight cylinder 1.5 cm tall is attached
going downward and capped by a plane at the bottom. The cylinder is discretized with a
mesh of 7,152 nodes and 6,150 trilinear isoparametric elements and the piston is defined
by a grid of linear triangles containing 5,104 markers and 10062 marker triangles. Figure
18 shows the geometry and grid for the piston and Figure 19 that of the cylinder. The
cylinder mesh consists of 15 uniformly spaced rows of elements parallel to the x-y plane;
each plane of nodes contains 410 elements. The mesh, although too coarse to expect
accurate solutions in modeling simulations, is appropriate to show the effectiveness of the
algorithm while keeping the visualization reasonably simple.
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Figure 18: (a) Piston interface defined by a grid of linear triangles.
(b) Dimensions of the piston head.
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Exhaust

Intake

(b)

Figure 19: (a) Two-dimensional horizontal cross-section of the cylinder mesh
Showing the circular intake and exhaust valve openings.
(b) Cylinder — piston configuration showing the outer surfaces of the
cylinder mesh.

The simulation presented here assumes that the fluid is air, but speeds are in the
incompressible range, the reference length and velocity are set to 1.0 and the kinematic

viscosity is v =1.7 x10° which results in a Reynolds number Re =588. The top
surface of the piston is initially at z =3.25cmand it reaches a maximum height of

z =0.11cm, the amplitude of the stroke is 7.75 cm. The piston is driven according to
the function Z,= 0_03875(1+ sin(507t — 7;/2)) where Z, is in meters , so the

maximum velocity of the piston when t =0.01+0.02n, n=0,1,2...is
w, = 6.087 m/s, and a whole cycle requires 0.04 s for completion. Figure 20 shows 4

snapshots during one full cycle of motion.
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Figure 20: (a) Piston position and velocity field at t = 0.005s.
(b) Piston position and velocity field at t = 0.015s.
(c) Piston position and velocity field at t =0.025s.
(d) Piston position and velocity field at t = 0.035s.

At t =0.005 s the has advanced 0.113 cm and the piston velocity at this pointis 4.3m/s,

the exhaust valve is open and fluid leaving the cylinder; at t = 0.015 s it is approaching
the top, the exhaust valve is still open the piston top is at z =9.86cmand its velocity is

4.3m/s; att=0.025 s the piston has turned, its position is back to z =9.86¢cm, and its
velocity is now —4.3m/ss ; finally at t = 0.035 s the piston approaches the bottom of the
cylinder to start a new cycle, its position is back to z=4.38cmand its velocity is

4.26m/s. A uniform time step of 10 s was used in the simulation and a full cycle
required an average 0.48 seconds CPU in a Dell T5600 workstation.

10. CONCLUSION

In this work, a method based on finite element discretizations that includes
moving boundaries or interfaces in CFD calculations has been developed and
implemented in three space dimensions. The method belongs to the general family of
Arbitrary Lagrangian-Eulerian methods. But differs from previously proposed methods
for similar problems in the way the computational mesh is defined and locally adapted as
the geometry changes. The present work concentrates strictly on the development of the
method to discretize and modify the mesh throughout the calculation and has been
applied to the case of laminar incompressible flow at low Reynolds number. The same
methodology is currently being extended to high Reynolds number compressible and
turbulent flows. The method has been fully tested for accuracy in two dimensions and
shown to have second order accuracy in space, in three dimensions a limited number of
calculations presented here show the correct error behavior, but additional work is
required to properly establish the method’s rates of convergence in three dimensions.
Additional examples involving slanted interfaces and a realistic cylinder/piston engine
assembly show that the method is fully robust and very efficient, and it offers distinct
advantages from the point of view of eliminating the use of adaptive mesh generators.
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