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Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion
capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to
the ICF program since its inception. To achieve thermonuclear ignition at Megajoule
class laser systems such as the NIF, targets must be designed for high implosion
velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell
stability’. Controlling capsule perturbations is thus of the utmost importance. Recent
simulations have shown that features on the outer surface of an ICF capsule as small as
10 microns wide and 100’s of nanometers tall such as bumps, divots, or even dust
particles can profoundly impact capsule performance by leading to material jetting or mix
into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such
mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to
disagreement between equation of state (EOS) models. In light of this, we have begun a
campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative
Richtmyer-Meshkov” in CH capsules to validate these models.

The platform that has been developed uses halfraums with radiation temperatures
near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory
for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into
a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are
deposited onto the ablation side of the target. On-axis radiography with a saran (CI He,, -
2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock
speed measurements will also be made with Omega’s active shock breakout (ASBO) and
streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray
photodiode arrays (DANTE) to determine drive conditions in the target. These data will
be used to discriminate between EOS models so that one may be selected to design the
shape and intensity of the foot in an ignition-level drive pulse so that bump amplitude is
minimized by the time the shell begins to accelerate.

*This work conducted under the auspices of US DOE campaign 10 (Inertial Confinement
Fusion, Steve Batha program manager) and the National Ignition Campaign.

' C.D. Zhou and R. Betti, “Hydrodynamic relations for direct-drive fast-ignition and conventional inertial
confinement fusion implosions”, Phys. Plasmas 14, 072703 (2007).
*V.N. Goncharov, “Theory of the ablative Richtmyer-Meshkov instability”, PRL 82, 2091-2094 (1999).
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Existing bumps on NIF ablators expected to
cause mixing in the hot spot NIC

The National Ignition Campaign
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Experimental Motivation and Objectives NIC

ional Ignition Campaign

* Bumps, divots (formed during fabrication), and even dust
particles on the outer surface of plastic ICF capsules are
predicted to negatively impact capsule performance during
an ignition-scale implosion due to mix caused by
hydrodynamic instability growth

* The shape of a NIF foot pulse can be tailored to minimize

the amplitude of these features at shock break-out

— EOS models disagree for growth rate of bumps in the ablative Richtmyer-
Meshkov regime

* Experiments are thus need to be performed to support
these predictions
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Description of the ablative R|chtmyer-Meshkm c
in il

The National Ignition Campaign

From the full theory:

shock nxe T COS('\/ szaVbl t) + Noore

Where shock-induced vorticity
dominates at late time.

* Single mode, direct drive experiments (short density scale length)
have observed these mass oscillations out to ~1 oscillation period
(reflected rarefaction then broke out and accelerated ablation
surface)?

* Growth behavior is expected to differ for indirect drive

: 1) V.N. Goncharov, PRL 82 (10): 1999.
Los Alamos 2) Y. Aglitskiy et al. PRL 87 (26): 2001.
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Bumps on ICF capsules contain broadband
spatial fr nci NIC
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isol bum

EOS models predict different growth rates oNI C

Laser drive pulse shapes used
to simulate bump evolution
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Comparison between EOS models for
high and low laser power bump evolution
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CHaRM platform measures bump evolution \Nl't

face-on radiography at 60-beam Ome

The National Ignition Campaign
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e Single and multi-strip x-ray framing cameras used to
image bumps '

* Multiple imaging techniques available




Pinhole-apertured point projection backlight'mc

(PAPBL)

Experimental Config #1

Point
Omega “NIC Scale 0.9” halfraum  Projection
CHablator Backlighter

samples with
isolated bumps

P7
TIM6

Laser configuration:

Beams # CPPs | CPP size | Pulse Special
10C3+5C2 | 20 SG4 & $g2006 -2.5ns

+5C1P7 IDI 300

10 assorted, 10 IDI 300 s$g2006 +4.5ns
45 deg P6

*BL measurement when drive beams turn off
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The National Ignition Campaign

Pros
* Large magnifications

*»  High source brightness/resolution
element

*  Minimal degradation in image
quality from plasma spatial structure

Cons
*  High alignment sensitivity

* Resolution due to pinhole closure
changes with time

*  Greater risk of hot electron
generation

*  Greater risk of damage to recording
instruments

A.B. Bullock, O.L. Landen et al., RSI 72 (1): 2001.
J. Workman et al., RSI 75 (10): 2004.
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Area backlighting at 21.5x magnification

NIC

Experimental Config #2

target

Laser configuration:

Omega “NIC Scale 0.9” halfraum
CH bumped

Beams # CPPs | CPPsize | Pulse Special
10C3+5C2 15 SG4 s$g2007 | -2.6 ns

P7

C1,C2,C3P6 20 SG8/SG4 | sg2007 | +4.6 ns
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The National Ignition Campaign

Pros

Easy to align
Low damage risk
Constant resolution element size

Capable of taking multiple images
on single shot

Cons

Difficult to obtain high magnification
Greater laser power requirements

Spatial structure in emitting plasma
may be present

Field of view limited by source size




Simulated radiographs are used to predict
observable bump heights NIC

The National Ignition Campaign

noise

Signal (10 um resolution at target) SNR=2.43 SNR=1.35
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Drive conditions based on halfraum radiatioN
temperature not al gys rgllab o |C
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‘Measuring shock speed from break-out time NIC

Experimental Config #2

Omega “NIC Scale 0.9” halfraum

CH stepped
target

H14
TIM5

H7

ASBO Probe beam

Laser configuration:

The National Ignition Campaign

Possible step target geometry

A
TBD (>100 um) «—Quartz window
~10 um
__________________ b
| ~120 um
~10 um
v Side view

Beams # CPPs | CPPsize | Pulse Special
9C3+6C2(H7) | 15 SG4 $g2007 | -2.5ns top view
\

*Self-emission (SOP) should disappear upon

shock breakout

*CH and quartz window anticipated to “blank”

until M-band drops to low level
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PAPBL metrology NIC
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Summary from February shots
NIC

The National Ignition Campaign

Less than desired success...

* Had to use 4 shots to assess damage in on-axis PAPBL configuration
— Used too long of snout
— Had to use 15 mils Be blast shield

* ASBO/SOP mirror (apparently) did not survive radiation environment

* No bump contrast, but did image square plastic filter at MCP

— Measured optical depth suggested 8-10 keV x-rays in system, probably due
to overdriving saran BL producing hot electrons

* Some BL timing issues encountered. Jitter caused the MCP strips to fire ahead

of BL pulse |
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System spectral response using PET NIC

The National Ignition Campaign

50 um PET
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; E = 2.8 keV E = equal initial intensities,
t=1.1 first 5 Cl lines
4 t=0.73

16 mils Be, 1 mil saran
2.8 keV
S/N = 2.05
N = 4500, AN = 270

* Tau of PET should have been 1.1 for 2.8 keV only

* Measured tau 7
— Shot 57068 (20 drive beams): 0.47 e = eXp(=T) = N1,
— Shot 57070 (BL only): 0.1 0 v
— Shot 57073 (15 drive beams to image plate): 0.026

;LOSZ'A|&Q§§LWd to produce these values
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