
LA-UR-15-21424
Approved for public release; distribution is unlimited.

Title: Four-Dimensional Golden Search

Author(s): Fenimore, Edward E.

Intended for: Report

Issued: 2015-02-25

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Four-Dimensional Golden Search

Ed Fenimore

National Security Education Center

LA-UR 15-xxxxx

Abstract

 The Golden search technique is a method to search a multiple-dimension space to find the
minimum. It basically subdivides the possible ranges of parameters until it brackets, to within
an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be
minimized can be non-linear, (2) it does not require derivatives of the function, (3) the
convergence criterion does not depend on the magnitude of the function. Thus, if the function
is a goodness of fit parameter such as chi-square, the convergence does not depend on the
noise being correctly estimated or the function correctly following the chi-square statistic. And,
(4) the convergence criterion does not depend on the shape of the function. Thus, long shallow
surfaces can be searched without the problem of premature convergence. As with many
methods, the Golden search technique can be confused by surfaces with multiple minima.

 The Golden Search package uses a nested set of routines, one to do each parameter, up to four
dimensions. It is based on a 1-Dimensional Golden Search described in Numerical Recipes (Press
1986). The technique takes a range (say, a to c) and picks a point between them (say, b). Under
the assumption that the minimum is between a and c, the function evaluated at b (i. e., f(b))
will be less than f(a) and f(c). Thus, a and c brackets the minimum. The point b is selected to
split the a to c range into two segments that have relative lengths of 0.618 and 0.382 (the
Golden Ratio). A new point (d) is selected (also following the Golden Ratio) within the range a
to b (if f(a) > f(c)) or b to c (if f(a) < f(c)). The three points with the smallest function evaluations
become the new a, b, and c and the process is repeated until the distance between a and c is
less than a specified convergence value.

Using the Golden Ratio is somewhat more efficient than a bisection method that splits each
range into half, then quarters, the eights, etc.

Assume that the function to minimize is similar to chi-square. That is, we seek to minimize

1 Eq),...,,,((
2

2
3212 ∑ −

=
N i

mi PPPPiMO
σ

χ

where there are N observations (Oi) with uncertainties of σi. They are fit with a model (M) that
is defined by m parameters.

There are three types of parameters: (1) parameters whose values are known, (2) parameters
whose values are not known but linearly scale the model, and (3) parameters whose values are

not known and their range must be searched to find the value that gives the lowest chi-square.
For example, the model might have the form

2 Eq),,,,(),,,,(),...,,,(874326543211321 PPPPiMPPPPPiMPPPPPiM m +=

There are 8 parameters. Parameters P1 and P6 linearly scale the model. Assume parameters P2
and P3 have values which are set and known while the parameters P4, P5, P7, and P8 need to be
searched to find the values that minimize chi-square.

When finding the best fit parameters, it is crucial that one solves analytically for any parameter
that linearly scales the model. This reduces the dimensionality of the search which can
drastically reduce computational time. However, the more important reason to solve
analytically for linear parameters is that chi-square is extremely sensitive to linear parameters.
Linear parameters balance the fit so that there are some points above the fit function and some
points below the fit function. That must be true when chi-square is at a minimum. Attempting
to search for the best value of a linear parameter (rather than solving for it analytically) can be
unstable because chi-square changes very rapidly for linear parameters. Methods that depend
on gradients (such as Levenberg-Marquardt) have a hard time correctly estimating the
gradients because the function is so strong.

Thus, the best strategy for finding the minimum of Equation 1 is to identify the parameters that
are linear scaling factors and those that are not. In the example of equation 2, P1 and P6 are
linear scaling factors. The chi-square minimum is where

3 Eq0
1

2

=
∂
∂

P
χ

and

4 Eq0
2

2

=
∂
∂

P
χ

.

From equation 3 and 4, one can make two equations with two unknowns for P1 and P6:

5 Eq2
21

62

2
1

12
1 ∑∑∑ +=

iii

i MMPMPMO
σσσ

6 Eq2

2
2

62
21

12
2 ∑∑∑ +=

iii

i MPMMPMO
σσσ

In the example of equation 2, the values of parameters P2 and P3 are known. Thus, the chi-
square minimization needs to search the four-dimensional space of P4, P5, P7, and P8. For each
point evaluated in the four-dimensional space, equations 5 and 6 are first solved to find P1 and
P6 and then equation 2 is used in equation 1.

The Golden Search package consists of four routines (golden1d_ds, golden2d_ds, golden3d_ds,
and golden4d_ds). The “1d”, “2d”, “3d”, and “4d” indicates what dimension it does. So, if the
problem involves three searchable parameters, the user would call golden3d_ds. Golden3d_ds
will call golden2d_ds which will call golden1d_ds which will call fun_to_min. The user needs to
only add the routine fun_to_min which calculates chi-square.

All of the golden*d_ds routines have the same interface (case insensitive):

Variable Type Size I//O Description
Fun_to_min Subroutine for chi-square, should be in an

external statement. The spelling of the
name of the routine does not have to be
fun_to_min. Use the appropriate spelling
when calling the Golden*d_ds routine.

chisq Real*8 1 output The best fit chi-square
Max_golden_parameter
= M

int 1 input Dimension of arrays, must be as least as
large as the number of parameters

Golden_para Real*8 M Input
and
output

The set of parameters that give the best
chi-square. Some are set by the code that
calls golden*d_ds, some could be linear
scale factors found by fun_to_min, some
are set by the nested golden*d_ds
routines

Golden_para_min Real*8 M input The start of the search range. Only those
elements that occur in ivar_place_golden
are used.

Golden_para_max Real*8 M input The end of the search range. Only those
elements that occur in ivar_place_golden
are used.

Data_structure Input
and
ouput

A data structure that will be sent to the
fun_to_min routine. The first element of
the data structure should be an integer.

Golden_chisq Real*8 M A scratch area used to communicate best
chi-square between search dimensions

Hit_boundary int M output Is 0 if the golden_para is not at either
golden_para_min or golden_para_min. It
is 1 if the golden_para is near
golden_para_min and it is equal to 2 if
golden_para is near golden_para_max.
Only those elements that occur in
ivar_place_golden are used.

Ivar_place_golden int 4 input For an N dimensional search, the first N
elements define which parameter is
searched. See below.

Max_golden_iterations int M input The maximum number of steps a search
can take for a parameter before an error
is declared. Only those elements that
occur in ivar_place_golden are used.

Num_total_evaluation int 4 output For an N dimensional search, the first N
elements give how many calls to the next
lower level were made.

Golden_tol Real*8 M input The accuracy to determine a searched
parameter. Only those elements that
occur in ivar_place_golden are used.

Where M is max_golden_parameter. Note ivar_place_golden and num_total_evaluation need
only to be dimensioned 4 because the largest dimension the package can search is 4. We often
dimension it with max_golden_parameter.

The interface to fun_to_min must be:

Variable Type Size I//O Description
chisq Real*8 1 output The chi-square for the specified

parameters
Max_golden_parameter
= M

int 1 input Dimension of arrays, must be as least as
large as the number of parameters

Golden_para Real*8 M Input
and
output

The set of parameters to calculate chi-
square at. Some could be linear scale
factors found by fun_to_min.

Data_structure Input
and
ouput

A data structure that contain information
to calculate chi-square. The first element
of the data structure should be an
integer.

First we will describe how to set up the call to the Golden Search package and then describe the
output.

To set up the case in equation 2, one calls golden4d_ds with:

(a) Max_golden_parameter needs to be set to at least 8 since we have 8 parameters in
equation 2

(b) According to the description of equation 2, golden_para(2) and golden_para(3) must be
set by the routine that calls the top level golden*d_ds routine.

(c) Ivar_place_golden tells which parameter will be searched at which dimension. In this
case, we will do a 4 dimensional search. Ivar_place_golden(1) gives what parameter will
be searched by the inner most search, that is, golden1d_ds. Ivar_place_golden(2) gives
what parameter will be searched by golden2d_ds. Ivar_place_golden(3) gives what
parameter will be searched by golden3d_ds and ivar_place_golden(4) gives what
parameter will be searched by golden4d_ds. If we want the inner most search to be
parameter 7, the next search to be parameter 5, the next search to be parameter 8, and
the outermost search to be parameter 4, we set ivar_place_golden(1) to (4) to be 7, 5, 8,
and 4. The innermost search will call fun_to_min.

(d) Parameters 4, 5, 7, and 8 will be searched. Thus we must set the 4th, 5th, 7th, and 8th
elements of golden_para_min and golden_para_max. For each, golden_para_min and
golden_para_max is the range that will be searched and should be made large enough
to include the suspected answer.

(e) The data_structure is a method to transmit to fun_to_min all the information needed to
calculate χ2. This includes, for example, N, Oi and σi.

(f) Max_golden_iterations is a safety feature to prevent infinite loops. Since the search
scales roughly as 2n where n is the number of iterations, setting max_golden_iterations
to, say, 50 is very safe. Max_golden_iterations needs to be set for those elements
which are being searched, that is, the 4th, 5th, 7th, and 8th elements.

(g) Golden_tol is how accurately we want to know each of the search parameters. For
example, parameter 4 might be a time that we want to determine to within 0.001
seconds so we set golden_tol(4)=0.0001. Parameter 5 might be the water vapor that we
want to determine to within 0.01, so golden_tol(5) = 0.01. And so on for golden_tol(7)
and golden_tol(8).

Fun_to_min needs to:

(a) Solve equations 5 and 6 to set golden_para(1) and golden_para(6).
(b) Use golden_para(1) to golden_para(8) with equation 1 and 2 to set chisq.
(c) If useful, set diagnostic information in data_structure.

After golden4d_ds finishes:

(a) One should check if an error condition happened by checking if error_exist is true.

(b) Chisq will be the chi-square at the best fit set of parameters.
(c) Golden_para will be the best fit set of parameters
(d) Hit_boundary should be checked to see if the best fit parameters were near either

golden_para_min or golden_para_max. Only elements 4, 5, 7, and 8 are valid. For
example, if hit_boundary(7) is not equal to 0, then golden_para_min(7) should be made
smaller (if hit_boundary(7) is 1) or golden_para_max(7) should be made larger (if
hit_boundary(7) is 2). This should be repeated until all valid elements of hit_boundary
are zero.

(e) Num_total_evaluations(1) tells how many times fun_to_min was called.
Num_total_evaluations(2) tells how many times golden1d_ds was called.
Num_total_evaluations(3) tells how many times golden2d_ds was called.
Num_total_evaluations(4) tells how many times golden3d_ds was called. This
information can be used to optimize ivar_place_golden.

At the end of the process, the true minimum is located within +/- golden_tol(k) of
golden_para(k) for k = 4, 5, 7, and 8.

