

LA-UR-14-24320

Approved for public release; distribution is unlimited.

Title: Control Systems - Software/Firmware Security

Author(s): Frost, Sandra L.

Intended for: DOE Control System Security, 2014-06-12 (Los Alamos, New Mexico,
United States)

Issued: 2015-02-25 (rev.1)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Control Systems - Software/Firmware Security

Sandy Frost/LANL

Outline

- Motivation
- Standards
- Vendors
- LANL
- Next Steps

ICS-CERT 2013 Vulnerabilities

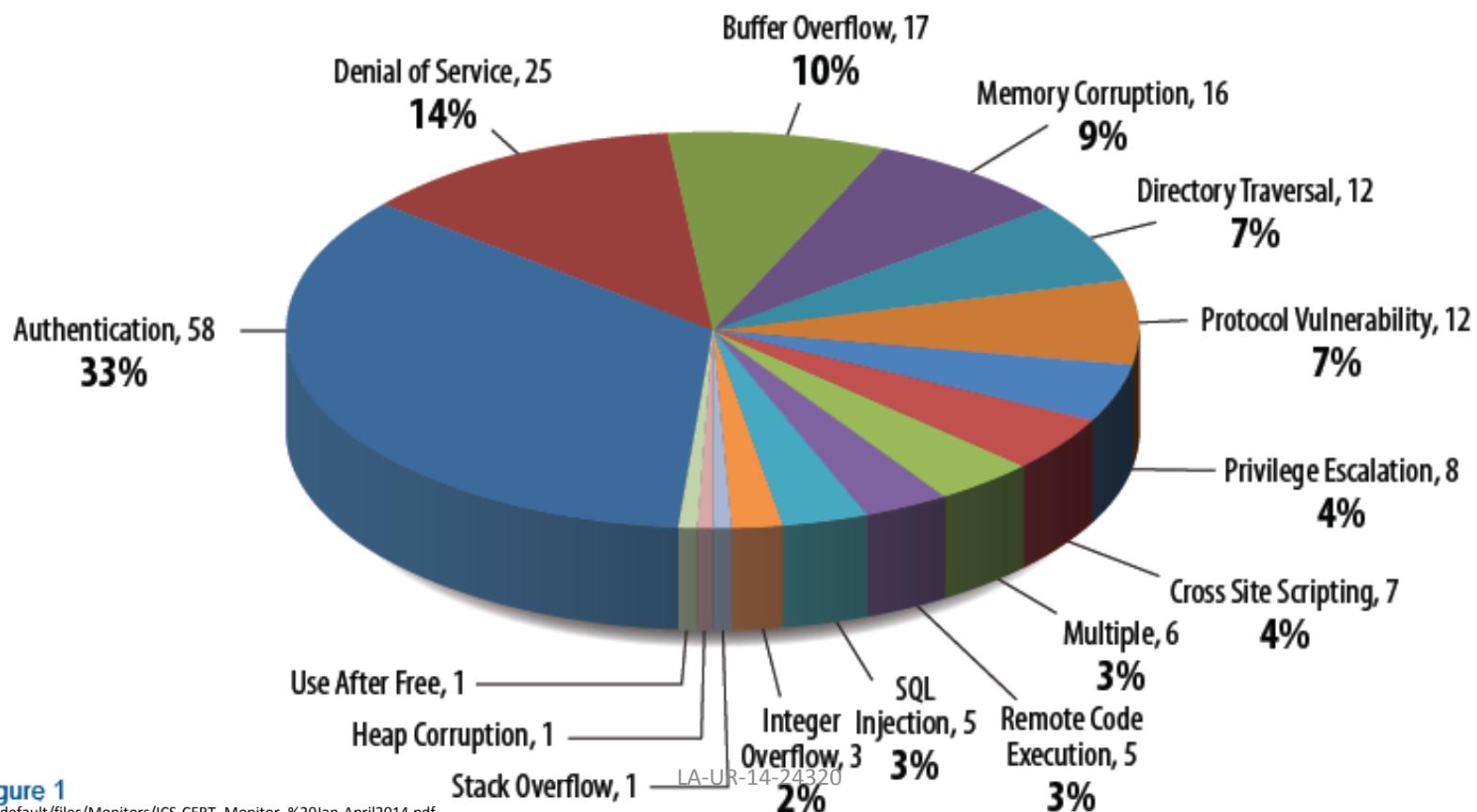
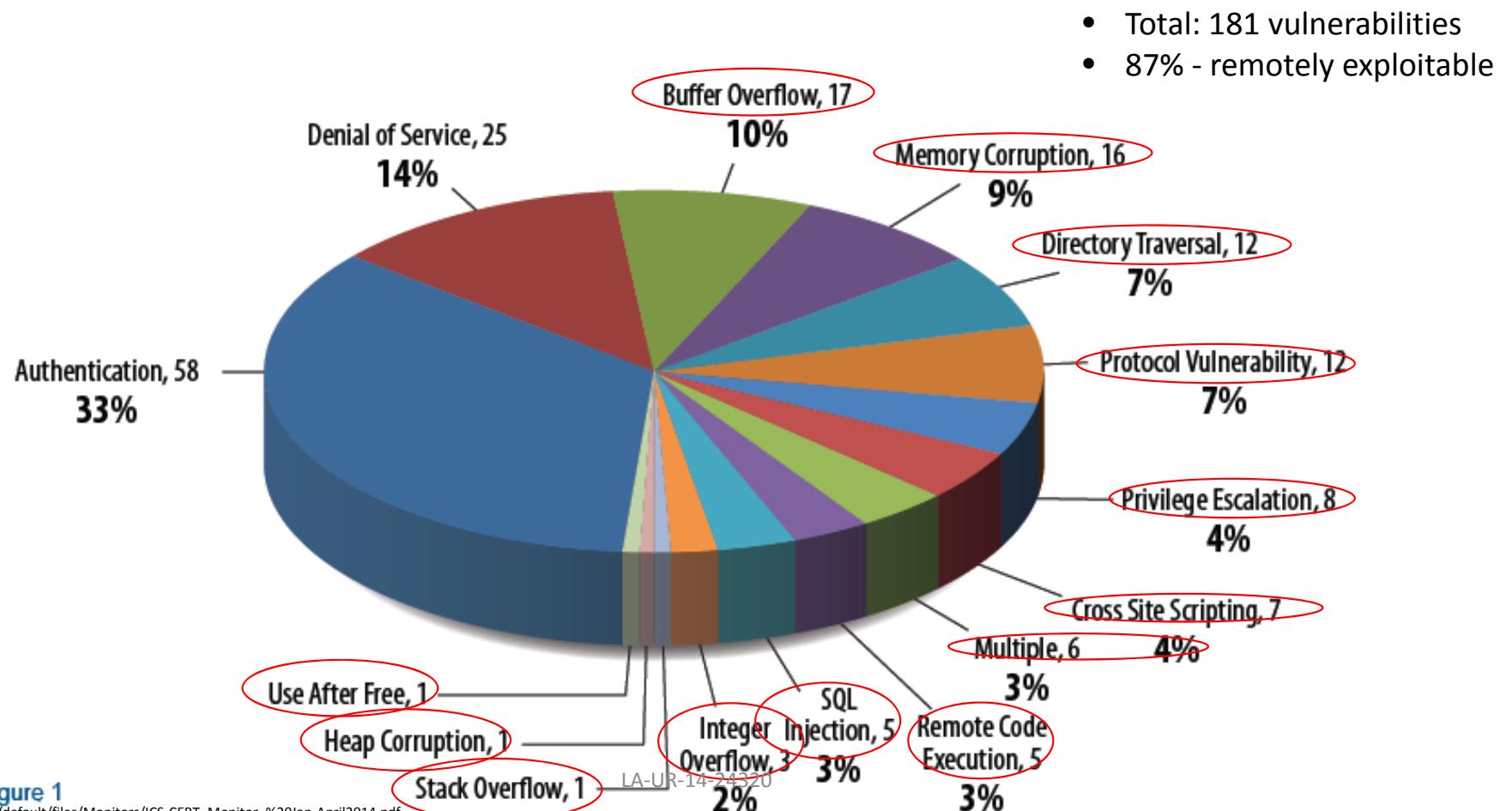
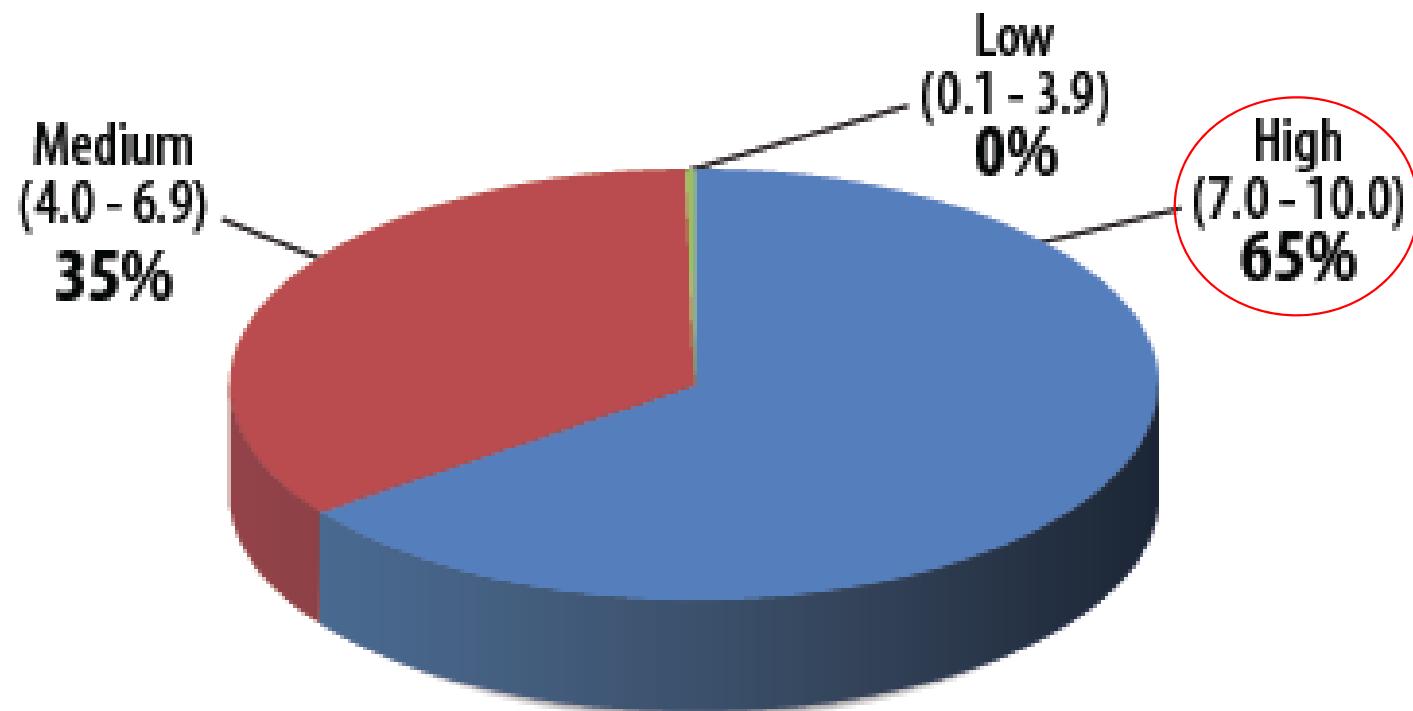


Figure 1

ICS-CERT 2013 Vulnerabilities




Figure 1

RECAP OF VUNERABILITIES IN 2013

As previously reported in the [2013 Year in Review](#), ICS-CERT received 181 vulnerability reports from researchers and ICS vendors throughout the year. Of those, 177 were determined to be true vulnerabilities that involved coordination, testing, and analysis across 52 vendors. The majority of these or 87 percent were exploitable remotely while the other 13 percent required local access to exploit the vulnerabilities. A fundamental recommendation for mitigating remotely exploitable vulnerabilities is to minimize network exposure and configure ICSs behind firewalls so they aren't directly accessible and exploitable from the Internet. Equally important is patching and updating ICS devices as soon as practically possible, understanding that patches and upgrades must be properly tested by each asset owner/operator before being implemented in operational environments. The following chart depicts the different types of vulnerabilities reported and coordinated in 2013.

LA-UR-14-24320

CVSS Severity Ranges

LA-UR-14-24320

http://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_%20Jan-April2014.pdf

What is CVSS (Common Vulnerability Scoring System) ?

- Vulnerability scoring system to rate IT vulnerabilities

▼ Base Score Metrics

Exploitability Metrics

Access Vector (AV)*

Local (AV:L) Adjacent Network (AV:A) Network (AV:N)

Access Complexity (AC)*

High (AC:H) Medium (AC:M) Low (AC:L)

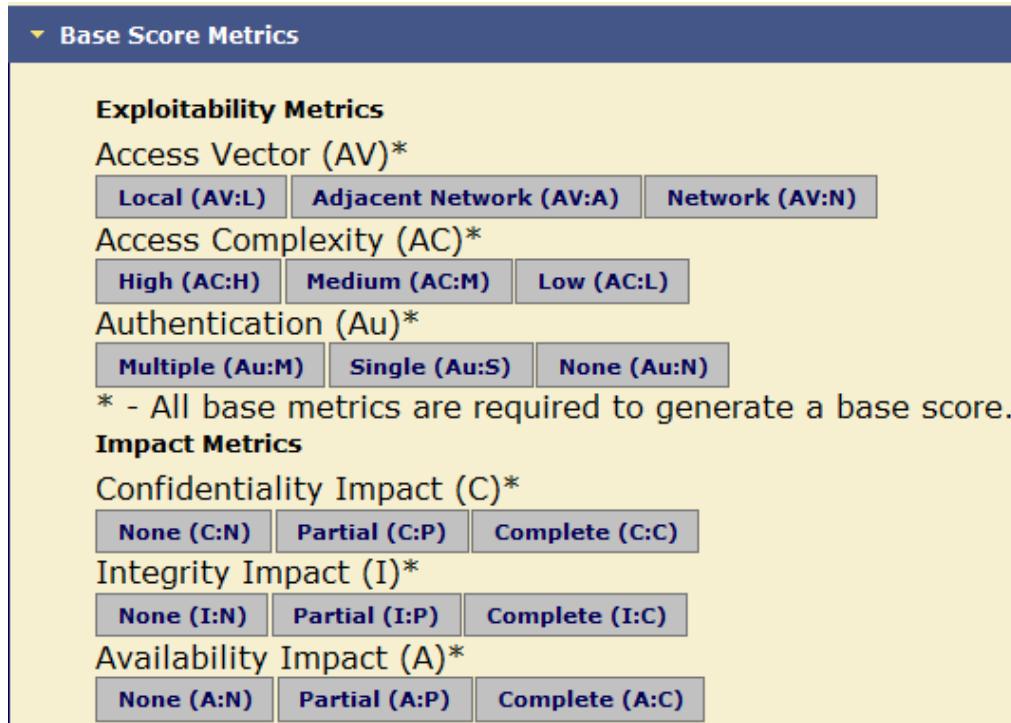
Authentication (Au)*

Multiple (Au:M) Single (Au:S) None (Au:N)

* - All base metrics are required to generate a base score.

Impact Metrics

Confidentiality Impact (C)*


None (C:N) Partial (C:P) Complete (C:C)

Integrity Impact (I)*

None (I:N) Partial (I:P) Complete (I:C)

Availability Impact (A)*

None (A:N) Partial (A:P) Complete (A:C)

Example:

CVSS base score of 10.0:
AV:N/AC:L/Au:N/C:C/I:C/A:C

AV:N

- Access Vector = Network
- AC:L
- Access Complexity = Low
- Au:N
- Authentication = None
- C:C
- Confidentiality Impact = Complete
- I:C
- Integrity Impact = Complete
- A:C
- Availability Impact = Complete

ICS-CERT

INDUSTRIAL CONTROL SYSTEMS CYBER EMERGENCY RESPONSE TEAM

[HOME](#)[ABOUT](#)[IC SJWG](#)[INFORMATION PRODUCTS](#)[TRAINING](#)[FAQ](#)

Control Systems

[Home](#)[Calendar](#)[IC SJWG](#)[Information Products](#)[Training](#)[Recommended Practices](#)[Assessments](#)[Standards & References](#)[Related Sites](#)[FAQ](#)

ICS-CERT Alerts

An ICS-CERT Alert is intended to provide timely notification to critical infrastructure owners and operators threats or activity with the potential to impact critical infrastructure computing networks.

[\[change view\]: Alerts by Vendor](#)

- ICS-ALERT-14-155-01A : Daktronics Vanguard Default Credentials (Update A)
- ICS-ALERT-14-099-01E : Situational Awareness Alert for OpenSSL Vulnerability (Update E)
- ICS-ALERT-14-015-01 : Ecava IntegraXor Buffer Overflow Vulnerability
- ICS-ALERT-13-304-01 : Nordex NC2 – Cross-Site Scripting Vulnerability
- ICS-ALERT-13-259-01 : Mitsubishi Electric Automation MC-WorX Suite Unsecure ActiveX Control
- ICS-ALERT-13-256-01 : WellinTech KingView ActiveX Vulnerabilities
- ICS-ALERT-13-164-01 : Medical Devices Hard-Coded Passwords
- ICS-ALERT-13-091-01 : Mitsubishi Electric Automation MX Buffer Overflow Vulnerability
- ICS-ALERT-13-091-02 : Clorius Controls ICS SCADA Information Disclosure
- ICS-ALERT-13-016-01A : Schneider Electric Product Vulnerabilities (Update A)

LA-UR-14-24320

ICS-CERT

INDUSTRIAL CONTROL SYSTEMS CYBER EMERGENCY RESPONSE TEAM

[HOME](#)[ABOUT](#)[IC SJWG](#)[INFORMATION PRODUCTS](#)[TRAINING](#)[FAQ](#)

Control Systems

[Home](#)[Calendar](#)[IC SJWG](#)[Information Products](#)[Training](#)[Recommended Practices](#)[Assessments](#)[Standards & References](#)[Related Sites](#)[FAQ](#)

ICS-CERT Alerts

An ICS-CERT Alert is intended to provide timely notification to critical infrastructure owners and operators of threats or activity with the potential to impact critical infrastructure computing networks.

[\[change view\]: Alerts by Vendor](#)

- ICS-ALERT-14-155-01A : Daktronics Vanguard Default Credentials (Update A)
- ICS-ALERT-14-099-01E : Situational Awareness Alert for OpenSSL Vulnerability (Update E)
- ICS-ALERT-14-015-01 : Ecava IntegraXor Buffer Overflow Vulnerability
- ICS-ALERT-13-304-01 : Nordex NC2 – Cross-Site Scripting Vulnerability
- ICS-ALERT-13-259-01 : Mitsubishi Electric Automation MC-WorX Suite Unsecure ActiveX Control
- ICS-ALERT-13-256-01 : WellinTech KingView ActiveX Vulnerabilities
- ICS-ALERT-13-164-01 : Medical Devices Hard-Coded Passwords
- ICS-ALERT-13-091-01 : Mitsubishi Electric Automation MX Buffer Overflow Vulnerability
- ICS-ALERT-13-091-02 : Clorius Controls ICS SCADA Information Disclosure
- ICS-ALERT-13-016-01A : Schneider Electric Product Vulnerabilities (Update A)

LA-UR-14-24320

ICS-CERT Alerts - 2014

ICS- ALERT/ <Follow up>	CVSS v2 Base Score	CVE	Name	Vulnerability Type	Remotely Exploitable	Impact
14-155-01A			Daktronics Vanguard Default Credentials (Update A)	Default credentials	Yes	Modification of sign text
14-99-01E	6.4	AV:N/AC:L/Au:N/ C:P/I:P/A:N	Situational Awareness Alert for OpenSSL Vulnerability (Update E)	Heartbleed SSL key exposure Input data not properly validated	Yes	Private/encrypted information exposure
14-015-01 14-016-01	7.8	AV:N/AC:L/Au:N/ C:N/I:N/A:C	Ecava IntegraXor Buffer Overflow Vulnerability	Buffer Overflow	Yes	DoS

ICS-CERT

INDUSTRIAL CONTROL SYSTEMS CYBER EMERGENCY RESPONSE TEAM

[HOME](#)[ABOUT](#)[IC SJWG](#)[INFORMATION PRODUCTS](#)[TRAINING](#)[FAQ](#)

Control Systems

[Home](#)[Calendar](#)[IC SJWG](#)[Information Products](#)[Training](#)[Recommended Practices](#)[Assessments](#)[Standards & References](#)[Related Sites](#)[FAQ](#)

ICS-CERT Alerts

An ICS-CERT Alert is intended to provide timely notification to critical infrastructure owners and operators threats or activity with the potential to impact critical infrastructure computing networks.

[\[change view\]: Alerts by Vendor](#)

- ICS-ALERT-14-155-01A : Daktronics Vanguard Default Credentials (Update A)
- ICS-ALERT-14-099-01E : Situational Awareness Alert for OpenSSL Vulnerability (Update E)
- ICS-ALERT-14-015-01 : Ecava IntegraXor Buffer Overflow Vulnerability
- ICS-ALERT-13-304-01 : Nordex NC2 – Cross-Site Scripting Vulnerability
- ICS-ALERT-13-259-01 : Mitsubishi Electric Automation MC-WorX Suite Unsecure ActiveX Control
- ICS-ALERT-13-256-01 : WellinTech KingView ActiveX Vulnerabilities
- ICS-ALERT-13-164-01 : Medical Devices Hard-Coded Passwords
- ICS-ALERT-13-091-01 : Mitsubishi Electric Automation MX Buffer Overflow Vulnerability
- ICS-ALERT-13-091-02 : Clorius Controls ICS SCADA Information Disclosure
- ICS-ALERT-13-016-01A : Schneider Electric Product Vulnerabilities (Update A)

...

LA-UR-14-24320

ICS-CERT Alerts - 2013

ICS- ALERT/ <Follow up>	CVSS v2 Base Score	CVE	Name/ <Product>	Vulnerability Type	Remotely Exploitable	Impact
13-304-01			Nordex NC2 – Cross-Site Scripting Vulnerability	XSS	Yes	Possible Remote Code Execution
13-259-01 14-051-02	9.3	AV:N/AC:M/Au:N/C:C/I:C/A:C	Mitsubishi Electric Automation MC-WorX Suite Unsecure ActiveX Control	Insecure ActiveX control	Yes	Possible Remote Code Execution
13-256-01 ICSA-13-295-01	5.8	AV:N/AC:M/Au:N/C:N/I:P/A:P	WellinTech KingView ActiveX Vulnerabilities	ActiveX, KChartX Traverse outside of restricted path	Yes	Overwrite arbitrary files
				ActiveX, SuperGrid	Yes	Overwrite arbitrary files, establish persistence on computer
13-164-01			Medical Devices Hard-Coded Passwords	Hard-coded password	Yes, device dependent	Critical settings/device firmware modification
13-091-01 ICSA-13-140-01	9.3	AV:n/AC:M/Au:N/C:C/I:C/A:C	Mitsubishi Electric Automation MX Buffer Overflow Vulnerability	Buffer Overflow	Yes	Possible Remote Code Execution
13-091-02			Clorius Controls ICS SCADA Information Disclosure	Information Disclosure	Yes	Loss of Confidentiality
13-016-01A ICSA-13-077-01B	10.0	AV:N/AC:L/Au:N/C:C/I:C/A:C	Schneider Electric Product Vulnerabilities (Update A)/ BMX NOE 0110	Unauthenticated SOAP/HTTP interface	Yes	Remote code execution
			Modicon M340	TCP connection resource exhaustion	Yes	DoS
			Magelis XBT	HMI 6001/TCP hard coded credentials	Yes	Loss of integrity
	8.5	AV:N/AC:M/Au:S/C:C/I:C/A:C	Modicon M340	XSF	Yes	Unauthorized access
13-016-02			Offline Brute-Force Password Tool Targeting Siemens S7	Exploit Tool: Credentials Brute Force Credentials Brute Force		Possible capture of current credentials for device
13-009-01 ICSA-13-225-01	6.3	AV:N/AC:M/Au:S/C:N/I:C/A:N	Advantech WebAccess Cross-Site Scripting	XSS	Yes	Execute unauthorized code; bypass protection mechanisms; read application data
13-004-01/ICSA-13-067-01	7.8	AV:N/AC:L/Au:N/C:C/I:N/A:N	Advantech Studio Directory Traversal	Directory Traversal	Yes	Data Leakage

Metasploit for HMI – SCADA Modules

Metasploit Exploit Module Released For PLC SCADA Devices

Digital Bond and Rapid7 partner to move additional Project Basecamp PLC exploits to the Metasploit Framework

Metasploit for PLC — Privately Developed

- General Electric D20
 - D20tftpbd – D20ME asynchronous command line
 - **No authentication**
 - D20pass – D20ME credential recovery
 - **No authentication**, retrieves/displays account usernames/passwords from device configuration
 - D20_tftp_overflow – D20ME TFTP server buffer overflow DoS
 - **Buffer overflow** causes DoS
- Koyo/DirectLOGIC ECOM
 - Koyo_login- PLC password brute force
 - **Reconnaissance, modify ladder logic** to affect process integrity/availability
- Rockwell Automation ControlLogix
 - Multi_cip_command – EtherNet/IP CIP commands
 - **No authentication**
 - **Insecure protocol** allows “stop CPU” command, reboot controller, crash PLC CPU/Ethernet Controller etc. affect process integrity/availability
- Schneider Electric Modicon Quantum
 - Modicon_command – remote start/stop command
 - **No authentication**
 - Modicon_password_recovery – password recovery
 - **Hard coded backdoor** account allows retrieval of account information
 - Modicon_stux_transfer

LA-JR-14-24320

<http://www.digitalbond.com/tools/basecamp/metasploit-modules/> • **No authentication**, send/receive PLC ladder logic

<http://www.darkreading.com/metasploit-exploit-module-released-for-plc-scada-devices/8/d/d/1136949?>

Common Cybersecurity Vulnerabilities in Industrial Control Systems

May 2011

**Homeland
Security**

Control Systems Security Program
National Cyber Security Division
LA-UR-14-24320

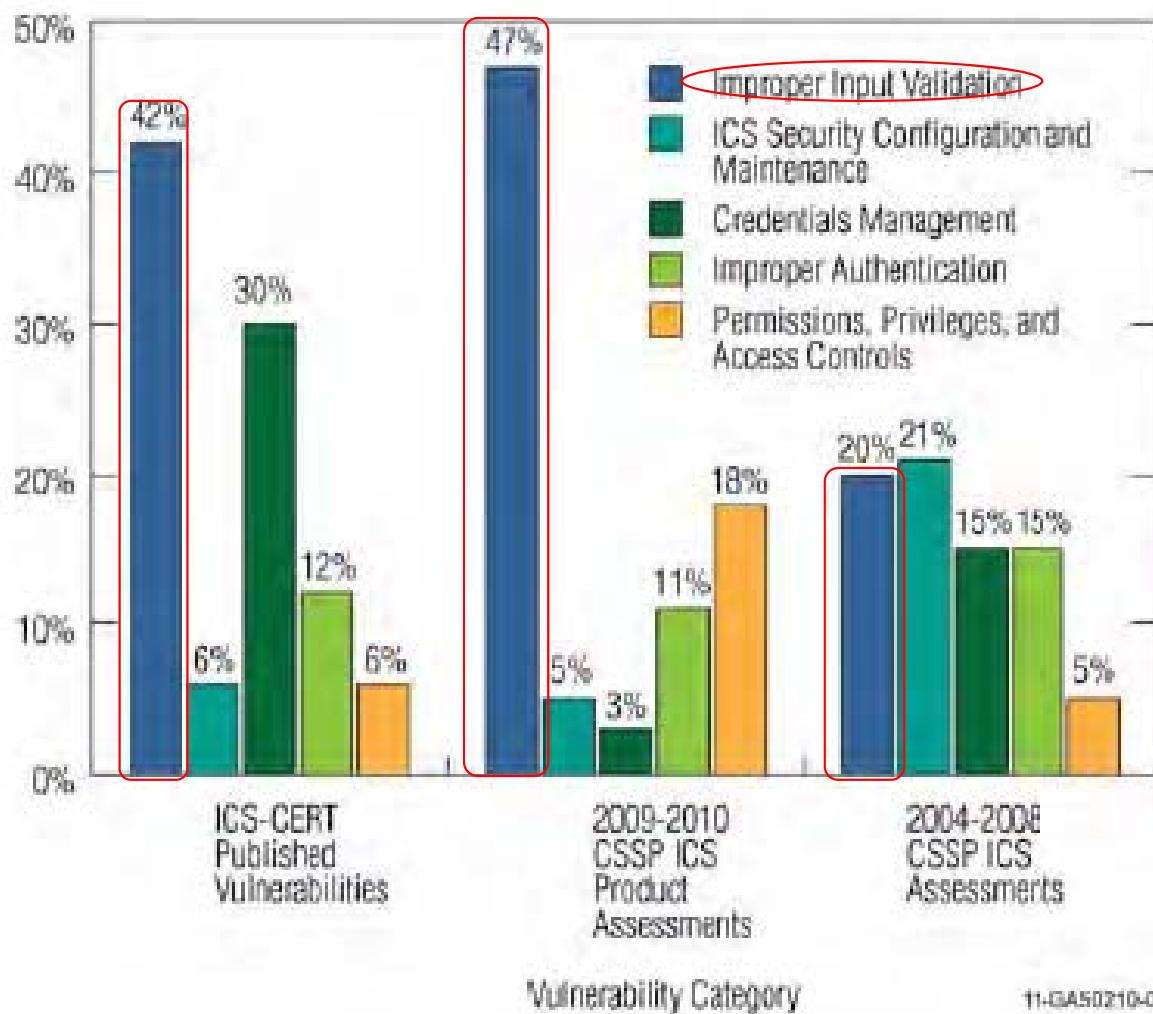
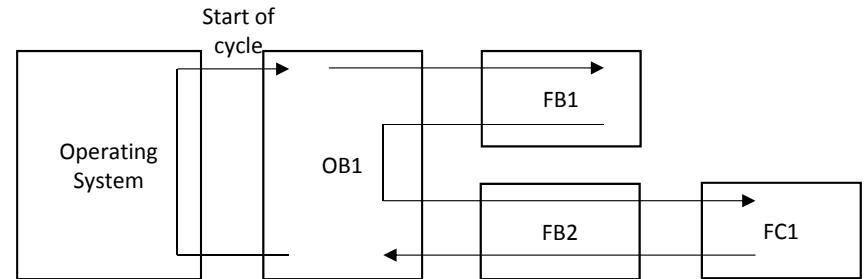
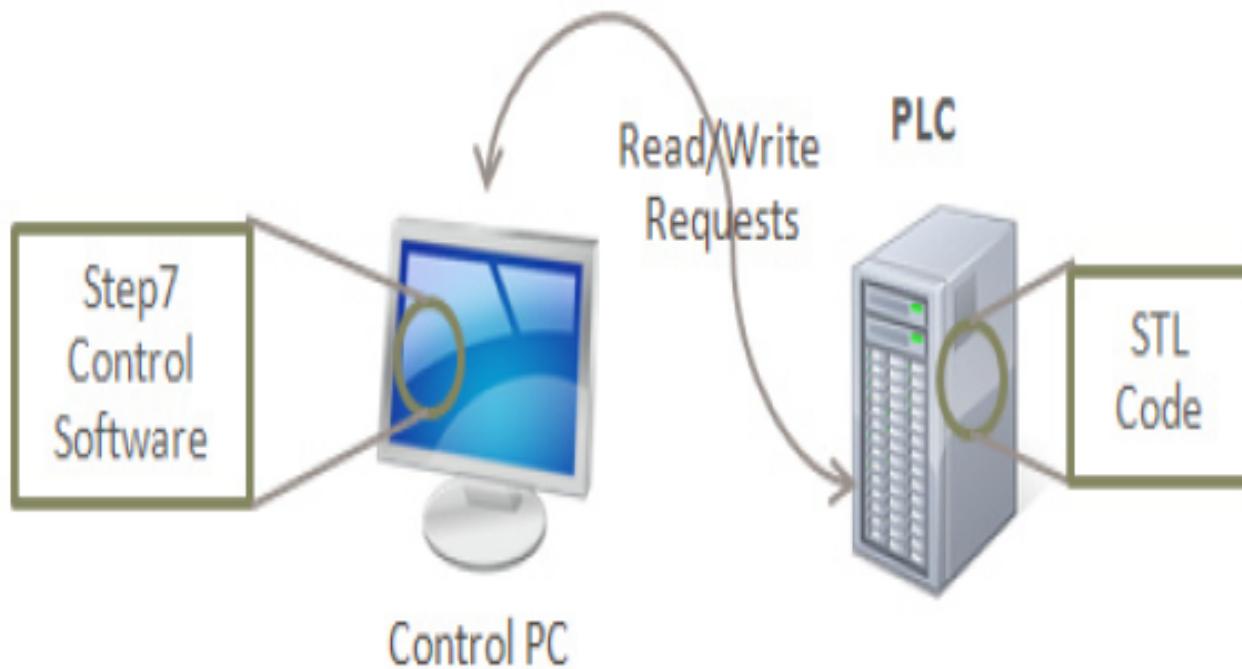



Figure EX-1. Comparison of ICS software security weaknesses.
LA-UR-14-24320

Stuxnet – PLC Data Types

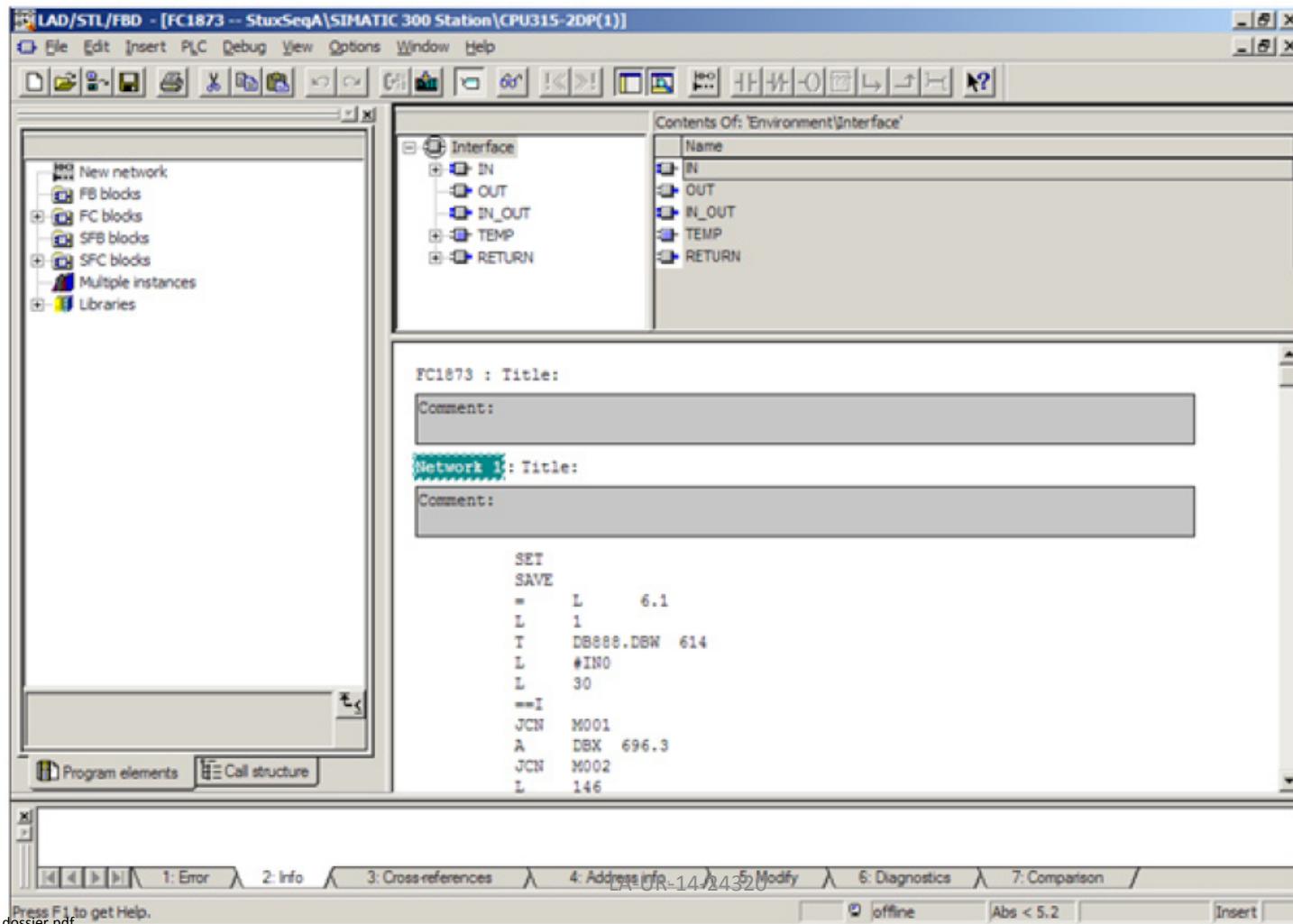

- Data Blocks (DB)
 - Contain program-specific data (e.g. numbers, structures)
- System Data Blocks (SDB)
 - PLC configuration information
 - Created depending on the number/type of hardware modules connected to the PLCs
- Organization Blocks (OB)
 - A type of program block in a Siemens PLC that interfaces the PLC operating system to the user program. Stuxnet examples:
 - OB1 – entry-point of the PLC program. It's executed cyclically without specific time requirements
 - OB35 – standard watchdog OB, executed every 100ms
- Function Blocks (FB)
 - Standard code blocks
 - Contain code that is executed by the PLC
- Functions (FC)
 - Contain program routines for frequently used functions


```
FUNCTION_BLOCK FB20
VAR_INPUT
ENDVAL: INT;
END_VAR
VAR_IN_OUT
INDEX: INT;
END_VAR

BEGIN
CONTROL:=FALSE;
FOR INDEX:= 1 TO ENDVALUE DO
    IQ1:= IQ1 * 2;
    IF IQ1 >10000 THEN
        CONTROL = TRUE
    END_IF
END_FOR;
END_FUNCTION_BLOCK
```

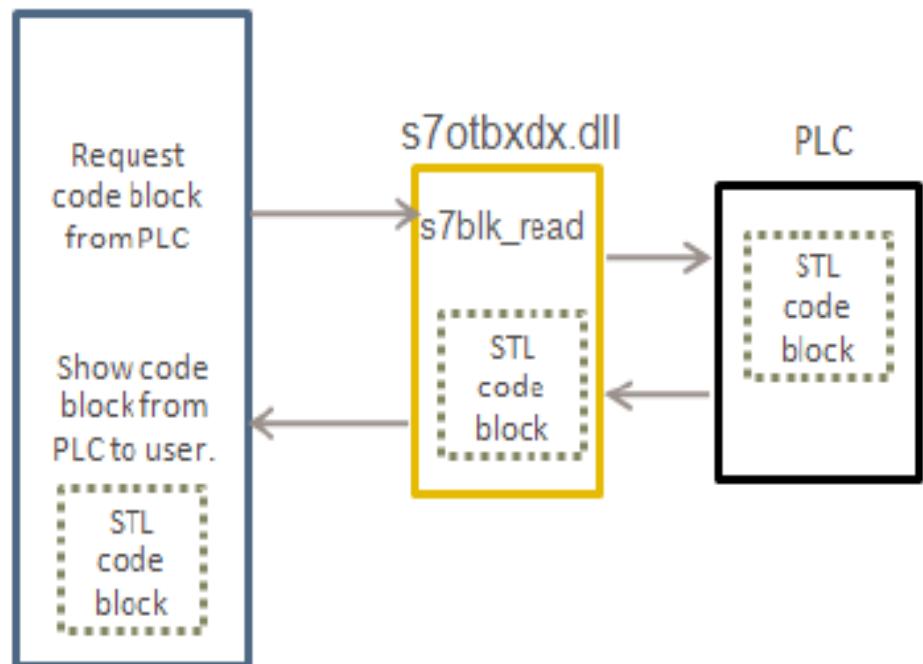
PLC and Step7

LA-UR-14-24320


www.symantec.com/.../w32_stuxnet_dossier.pdf

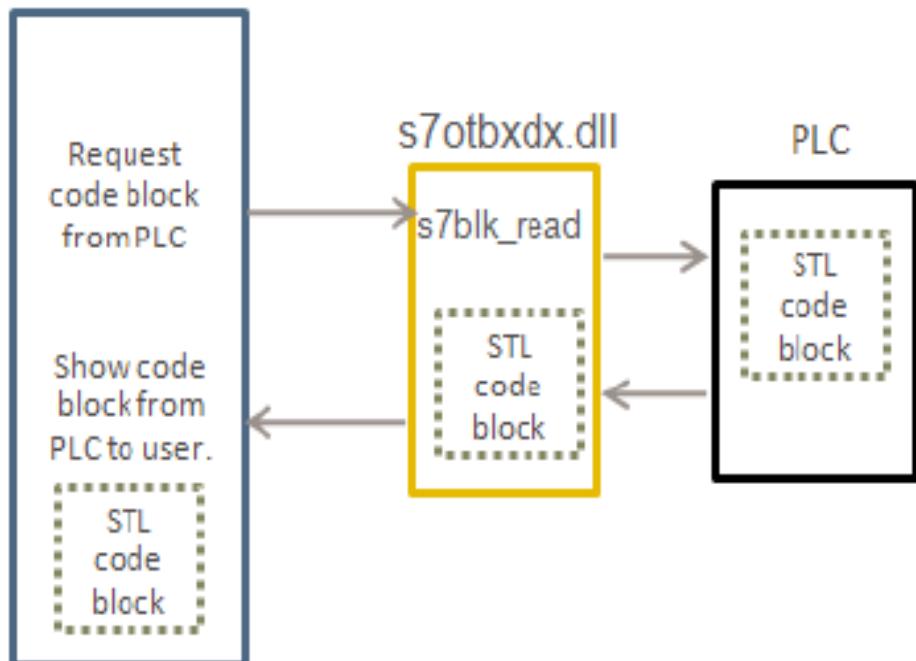
STL = Statement List, ~assembly; SCL = Structured Control Language – high-level textual programming language, ~Pascal

Figure 21 shows a portion of Stuxnet's malicious code in the Step7 STL editor. The beginning of the MC7 code for one of Stuxnet's Function Code (FC) blocks is visible. The code shown is from the disassembled block FC1873.

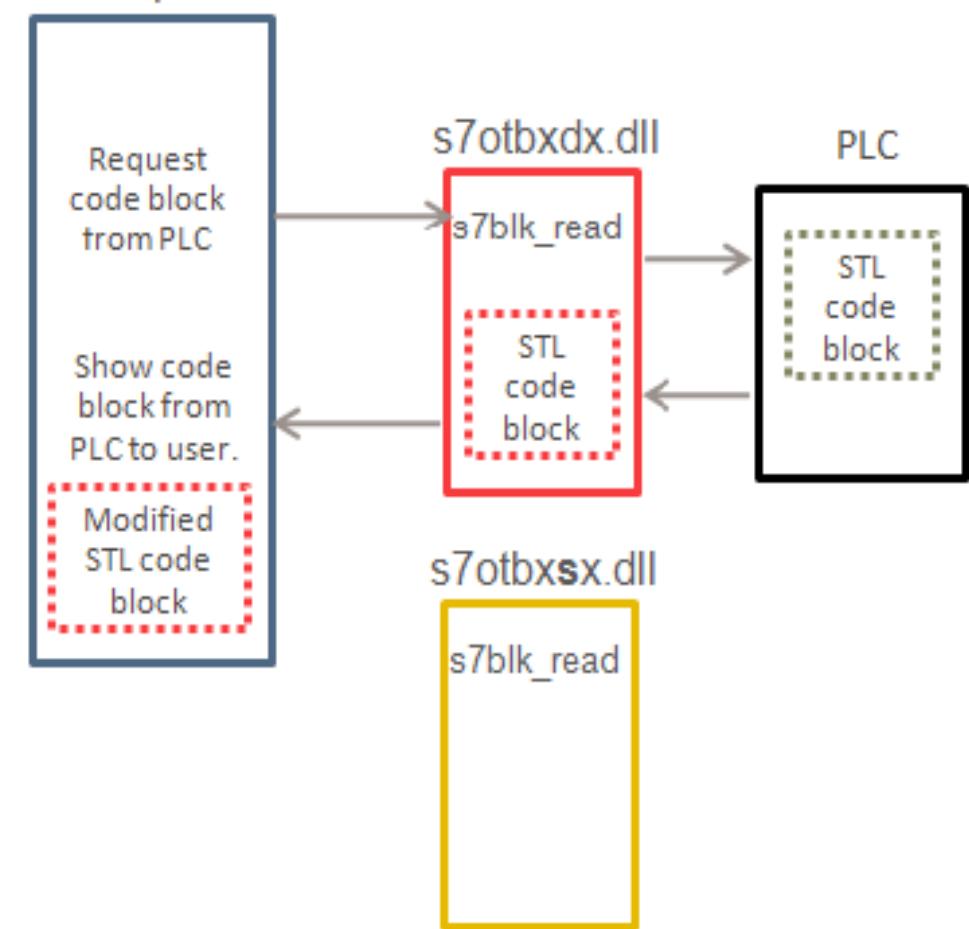

Figure 21

Stuxnet code in the Step7 STL editor

Step7 and PCL communicating via s7otbwdx.dll


Step7

LA-UR-14-24320

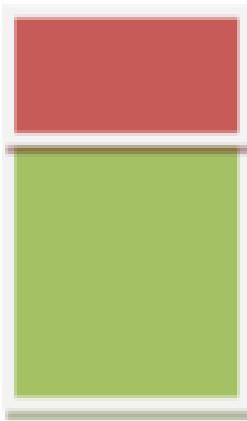
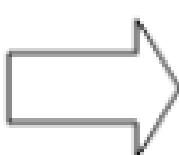

Step7 and PCL communicating via s7otbwdx.dll

Step7

Communication with malicious version of s7otbwdx.dll

Step7

LA-UR-14-24320



Figure 24

OB1 before and after infection

Clean OB1

Infected OB1

OB1/OB35 infection

Stuxnet uses a simple code-prepending infection technique to infect Organization Blocks. For example, the following sequence of actions is performed when OB1 is infected:

- Increase the size of the original block.
- Write malicious code to the beginning of the block.
- Insert the original OB1 code after the malicious code.

Figure 24 illustrates OB1 before and after infection.

Langner explains what the rogue DLL does by referencing its decompiled code. Basically, the code ensures that it is running on a valid PLC target (making various probes of specific words in memory, checking CPU type and Control Process type, and *identifying individual targeted controllers*). If it has acquired a target, it injects code directly into the PLC's Ladder Logic (LL). This is the code that directly impacts a physical process.

Outline

- Motivation
- Standards
- Vendors
- LANL
- Next Steps

NIST 800-53 Revision 4: Gap Areas Addressed

- Application security
- Supply chain risk
- Security assurance and trustworthy systems
- Insider threat
- Mobile and cloud computing technologies
- Advanced persistent threat
- Tailoring guidance and overlays
- Privacy

Significant Updates to Security Controls

- Development processes, standards, and tools.
- Developer security architecture and design.
- Developer configuration management.
- Developer security testing.
- Developer-provided training.
- Supply chain protection.

LA-UR-14-24320

http://nova.issa.org/wp-content/uploads/2013/06/Ron_Ross_ISSA-NOVA-06-20-2013.pdf

Assurance Related Controls for Different Baselines

TABLE E-1: ASSURANCE-RELATED CONTROLS FOR LOW-IMPACT SYSTEMS⁹⁹

ID	CONTROLS	ID	CONTROLS
AC	AC-1	MP	MP-1
AT	AT-1, AT-2, AT-3, AT-4	PE	PE-1, PE-6, PE-8
AU	AU-1, AU-6	PL	PL-1, PL-2, PL-4
CA	CA-1, CA-2, CA-3, CA-5, CA-6, CA-7, CA-9	PS	PS-1, PS-6, PS-7
CM	CM-1, CM-2, CM-4, CM-8	RA	RA-1, RA-3, RA-5
CP	CP-1, CP-3, CP-4	SA	SA-1, SA-2, SA-3, SA-4, SA-4 (10), SA-5, SA-9
IA	IA-1	SC	SC-1, SC-39
IR	IR-1, IR-2, IR-5	SI	SI-1, SI-4, SI-5
MA	MA-1		

TABLE E-2: ASSURANCE-RELATED CONTROLS FOR MODERATE-IMPACT SYSTEMS

ID	CONTROLS	ID	CONTROLS
AC	AC-1	MP	MP-1
AT	AT-1, AT-2, AT-2 (2), AT-3, AT-4	PE	PE-1, PE-6, PE-6 (1), PE-8
AU	AU-1, AU-6, AU-6 (1), AU-6 (3), AU-7, AU-7 (1)	PL	PL-1, PL-2, PL-2 (3), PL-4, PL-4 (1), PL-8
CA	CA-1, CA-2, CA-2 (1), CA-3, CA-5, CA-6, CA-7, CA-7 (1), CA-9	PS	PS-1, PS-6, PS-7
CM	CM-1, CM-2, CM-2 (1), CM-2 (3), CM-2 (7), CM-3, CM-3 (2), CM-4, CM-8, CM-8 (1), CM-8 (3), CM-8 (5)	RA	RA-1, RA-3, RA-5, RA-5 (1), RA-5 (2), RA-5 (5)
CP	CP-1, CP-3, CP-4, CP-4 (1)	SA	SA-1, SA-2, SA-3, SA-4, SA-4 (1), SA-4 (2), SA-4 (9), SA-4 (10), SA-5, SA-8, SA-9, SA-9 (2), SA-10, SA-11, SA-12, SA-15, SA-16, SA-17
IA	IA-1	SC	SC-1, SC-2, SC-3, SC-7 (18), SC-7 (21), SC-24, SC-39
IR	IR-1, IR-2, IR-2 (1), IR-2 (2), IR-3, IR-3 (2), IR-5, IR-5 (1)	SI	SI-1, SI-4, SI-4 (2), SI-4 (4), SI-4 (5), SI-5, SI-5 (1), SI-6, SI-7, SI-7 (1), SI-7 (2), SI-7 (5), SI-7 (7), SI-7 (14), SI-10, SI-16
MA	MA-1		

TABLE E-3: ASSURANCE-RELATED CONTROLS FOR HIGH-IMPACT SYSTEMS¹⁰³

ID	CONTROLS	ID	CONTROLS
AC	AC-1	MP	MP-1
AT	AT-1, AT-2, AT-2 (2), AT-3, AT-4	PE	PE-1, PE-6, PE-6 (1), PE-6 (4), PE-8
AU	AU-1, AU-6, AU-6 (1), AU-6 (3), AU-6 (5), AU-6 (6), AU-7, AU-7 (1), AU-10	PL	PL-1, PL-2, PL-2 (3), PL-4, PL-4 (1), PL-8
CA	CA-1, CA-2, CA-2 (1), CA-2 (2), CA-3, CA-5, CA-6, CA-7, CA-7 (1), CA-8, CA-9	PS	PS-1, PS-6, PS-7
CM	CM-1, CM-2, CM-2 (1), CM-2 (2), CM-2 (3), CM-2 (7), CM-3, CM-3 (1), CM-3 (2), CM-4, CM-4 (1), CM-8, CM-8 (1), CM-8 (2), CM-8 (3), CM-8 (4), CM-8 (5)	RA	RA-1, RA-3, RA-5, RA-5 (1), RA-5 (2), RA-5 (4), RA-5 (5)
CP	CP-1, CP-3, CP-3 (1), CP-4, CP-4 (1), CP-4 (2)	SA	SA-1, SA-2, SA-3, SA-4, SA-4 (1), SA-4 (2), SA-4 (9), SA-4 (10), SA-5, SA-8, SA-9, SA-9 (2), SA-10, SA-11, SA-12, SA-15, SA-16, SA-17
IA	IA-1	SC	SC-1, SC-2, SC-3, SC-7 (18), SC-7 (21), SC-24, SC-39
IR	IR-1, IR-2, IR-2 (1), IR-2 (2), IR-3, IR-3 (2), IR-5, IR-5 (1)	SI	SI-1, SI-4, SI-4 (2), SI-4 (4), SI-4 (5), SI-5, SI-5 (1), SI-6, SI-7, SI-7 (1), SI-7 (2), SI-7 (5), SI-7 (7), SI-7 (14), SI-10, SI-16
MA	MA-1		

LA-UR-14-24320

NIST 800-160

- Describe best practices for security engineering.
- Show how security engineering can be integrated into the traditional systems engineering process.
- Demonstrate linkage from system and security engineering processes to information security and risk management processes.

LA-UR-14-24320

Security

A condition that results from the establishment and maintenance of protective measures that enable an enterprise to perform its mission or critical functions despite risks posed by threats to its use of information systems. Protection measures may involve a combination of deterrence, avoidance, prevention, detection, recovery, and correction that should form part of the enterprise's risk management approach [CNSSI 4009].

Note 1: The CNSSI 4009 definition focuses on security as an organizational enterprise objective.

Note 2: The engineering perspective views security as a complex quality factor that is composed of multiple quality sub-factors. The most prevalent sub-factors are confidentiality, integrity, and availability. Additionally, the integrity sub-factor can be further divided into hardware, software, data, and communications integrity. Other security-relevant quality sub-factors include, but are not limited to, privacy and non-repudiation. There are also quality sub-factors that generally have been considered only by the system safety engineering, such as continuity, resiliency, and fault-tolerance, that are now being assessed in terms of susceptibility to malicious intent and the resultant impact on the mission/business; all motivated by mission assurance concerns that span the entire spectrum of incidental and accidental misuse through to attack by an advanced persistent threat.

The systems security engineering perspective ensures that all security-relevant quality sub-factors are satisfied by the engineered system and that the system achieves mission/business security objectives such as that defined by CNSSI 4009.

LA-UR-14-24320

DOE G 414.1-4 Revision

- **Include**

- Digital instrumentation, Control and Automation System software
 - E.g. Controllers (e.g. PLC), smart transmitters
 - Firmware and embedded systems
- Security controls
- Software security assurance
- Non-safety software

SAFETY SOFTWARE GUIDE for USE with **10 CFR 830 Subpart A, *Quality Assurance Requirements*, and DOE O 414.1C, *Quality Assurance***

[This Guide describes suggested nonmandatory approaches for meeting requirements. Guides are not requirements documents and are not construed as requirements in any audit or appraisal for compliance with the parent Policy, Order, Notice, or Manual.]

U.S. DEPARTMENT OF ENERGY
Washington, D.C.

DISTRIBUTION:
<http://www.directives.doe.gov>

INITIATED BY:
Office of Environment, Safety and Health

LA-UR-14-24320

Safety Software

Enter term or ADAMS

 REPORT
A SAFETY CONCERN

NUCLEAR
REACTORS

NUCLEAR
MATERIALS

RADIOACTIVE
WASTE

NUCLEAR
SECURITY

PUBLIC MEETINGS
& INVOLVEMENT

NRC
LIBRARY

ABOUT
NRC

PRINT

DIGITAL I&C KEY ISSUES

Diversity & Defense in Depth

Control Room Communication Systems

Control Room Human Factors

Cyber Security

Risk-Informed Regulation

Home > About NRC > How We Regulate > Research Activities > Digital I&C > Key Issues > Cyber Security

Cyber Security in Digital Instrumentation and Controls

On this page

- Background
- 10 CFR 73.54, "Protection of Digital Computer and Communication Systems and Networks"
- Regulatory Guide 5.71, "Cyber Security Programs for Nuclear Facilities"
- Regulatory Guide 1.152, Rev. 3, "Criteria for Use of Computers in Safety Systems of Nuclear Power Plants"
- Cooperative Agreements and Research

LA-UR-14-24320

U.S. NUCLEAR REGULATORY COMMISSION

January 2010

REGULATORY GUIDE

OFFICE OF NUCLEAR REGULATORY RESEARCH

REGULATORY GUIDE 5.71

(New Regulatory Guide)

CYBER SECURITY PROGRAMS FOR NUCLEAR FACILITIES

U.S. NUCLEAR REGULATORY COMMISSION

July 2011
Revision 3

REGULATORY GUIDE

OFFICE OF NUCLEAR REGULATORY RESEARCH

REGULATORY GUIDE 1.152

(Draft was issued as DG-1249, dated June 2010)

CRITERIA FOR USE OF COMPUTERS IN SAFETY SYSTEMS OF NUCLEAR POWER PLANTS

LA-UR-14-24320

<http://www.nrc.gov/reading-rm/doc-collections/reg-guides/>
<http://pbadupws.nrc.gov/docs/ML0706/ML070670183.pdf>
<http://pbadupws.nrc.gov/docs/ML0729/ML072980159.pdf>

U.S. NUCLEAR REGULATORY COMMISSION
STANDARD REVIEW PLAN

BRANCH TECHNICAL POSITION 7-14

GUIDANCE ON SOFTWARE REVIEWS FOR DIGITAL COMPUTER-BASED
INSTRUMENTATION AND CONTROL SYSTEMS

DIGITAL INSTRUMENTATION AND CONTROLS

DI&C-ISG-01

Task Working Group #1:
Cyber Security

Interim Staff Guidance

Outline

- Motivation
- Standards
- Vendors
- LANL
- Next Steps

ICS Vendor Security Strategies – Security Development Lifecycle

(Dale Peterson/Digital Bond)

A major difference in ICS vendor's security strategies is how much effort they are putting on security throughout the product lifecycle, or their Security Development Lifecycle (SDL). Put another way, how secure is their own code from common programming mistakes that lead to exploitable vulnerabilities.

Microsoft popularized the SDL after having security issues with worms early in the previous decade. Some vendors have highly leveraged Microsoft and others experience to integrate threat modeling, security requirements, fuzz testing, third party assessments and a variety of other security development procedures into the product development process.

Others have done very little to add security into the development process.

...

So you should be asking your vendors about their development process. What are the elements in their security development lifecycle? Can you see their threat models? Fuzz testing and other security QA testing results? How security is integrated into the requirements? What are there secure coding standards? How are there engineers trained on those standards and how to they insure those standards are met?

You do not need to be a security expert or even review these documents in great detail. A couple of hours of interview and inspection is plenty. It often is as simple as can the vendor show you the SDL and its results from a project? It is an easy answer and item to provide if there was an SDL and it was followed. If it is not there is a lot of hemming and hawing and struggle to create documentation after the fact.

LA-UR-14-24320

Vendor Questions

- What **standard(s)/guidelines** are you using?
- Do you have a **secure software/firmware development life cycle** (concept to delivery), where there is a security requirement that is defined and analyzed for each phase?
- How do you secure **firmware** in comparison with your **software** (e.g. Engineering Workstation verification tool prior to Controller download, access control for firmware update, downloads only to a specific Controller serial number, digital signature)?
- How are you securing your **databases**?
- How are you promoting a **culture** of security in their organization (e.g. training)?
- How do you monitor the **threat landscape** (e.g. OWASP Top Ten, CWE/SANS Top 25 Most Dangerous Software Errors, CVE/CWE, WASC Threat Classification v2.0)?
- How do you **notify customers of security vulnerabilities**?
- What type of patch/upgrade **testing** do you do?

1150 Roberts Boulevard
 Kennesaw, Georgia 30144
 770/429-3000
 Fax 770/429-3001
 www.automatedlogic.com

Memorandum: **WebCTRL® Security**

Date: June 3, 2013

The WebCTRL Server application provides a very high level of security, making unauthorized access extremely unlikely. This memorandum briefly outlines design, security, configuration, and implementation aspects of your WebCTRL Building Automation System Server application.

- WebCTRL web server engine:
 - The WebCTRL Server application uses its own built-in web server engine based on a locked-down version of Apache Tomcat. This greatly reduces the chance of an undiscovered Apache Tomcat vulnerability.
 - The WebCTRL Server application does NOT use Microsoft's IIS web server.
 - The web server renders only WebCTRL pages. It cannot be used as a general-purpose web server to render pages from other systems on the building network.
 - All database queries use a single internal interface that protects against common SQL injection attacks. As of v6.0, this includes Write to Database alarm actions. [3, 4]
 - As of v6.0, the WebCTRL Server application no longer uses Java Applets or Java Web Start which have been the source of Java vulnerabilities to desktop computers. While we no longer use Java, we do recommend that customers keep their Java Runtime Environment up to date at all times. [2]
 - Any add-on application not provided by Automated Logic should be carefully reviewed for source and content before using with the WebCTRL Server application.
- WebCTRL communications:
 - The WebCTRL Server application uses the ports and protocols listed in the following table. In the Use column, Client/Server is communication between the end user's computer and the

Section	Security Control - Automated Logic	NIST 800-53r4 Control	NIST 800-53r4 Control Name
Web Server Engine	<p>The WebCTRL Server application uses its own built-in web server engine based on a locked down version of Apache Tomcat. This greatly reduces the chance of an undiscovered Apache Tomcat vulnerability. [1]</p> <p>The WebCTRL Server application does NOT use Microsoft's IIS web server. [2]</p> <p>...</p> <p>purpose web server to render pages from other systems on the building network.</p> <p>All database queries use a single internal interface that protects against common SQL injection attacks. As of v6.0, this includes Write to Database alarm actions. [3, 4]</p> <p>As of v6.0, the WebCTRL Server application no longer uses Java Applets or Java Web Start which have been the source of Java vulnerabilities to desktop computers. While we no longer use Java, we do recommend that customers keep their Java Runtime Environment up to date at all times. [2]</p> <p>Any add-on application not provided by Automated Logic should be carefully reviewed for source and content before using with the WebCTRL Server application.</p>	<p>AC-4</p> <p>CM-2</p> <p>CM-6</p> <p>SA-4</p> <p>SA-20</p> <p>SI-4</p> <p>SA-8</p> <p>SA-13</p> <p>SA-17</p> <p>SI-10</p> <p>SI-10</p> <p>SI-15</p> <p>SC-5</p> <p>SA-8</p> <p>SA-13</p> <p>SA-17</p> <p>SA-8</p> <p>SA-13</p> <p>SA-17</p> <p>SA-8</p> <p>SA-13</p> <p>SA-17</p>	<p>Information Flow Enforcement</p> <p>Baseline Configuration</p> <p>Configuration Settings</p> <p>Acquisition Process</p> <p>Customized Development of Critical Components</p> <p>Information System Monitoring</p> <p>Security Engineering Principles</p> <p>Trustworthiness</p> <p>Developer Security Architecture and Design</p> <p>Information Input Validation</p> <p>Information Input Validation</p> <p>Information Output Filtering</p> <p>DoS Protection</p> <p>Security Engineering Principles</p> <p>Trustworthiness</p> <p>Developer Security Architecture and Design</p> <p>Security Engineering Principles</p> <p>Trustworthiness</p> <p>Developer Security Architecture and Design</p>
Communications	<p>Windows file sharing, or other applications that can increase the vulnerability of the system. The Diagnostic Telnet port listed above is a password-protected text-only UI that is limited to WebCTRL Server application functions. This is ONLY used for Tech Support purposes and should be firewalled.</p>	AC-2	Account Management

A-UR-14-2432

NIST 800-53r4 Control	NIST 800-53r4 Name	#
CM-7	Least Functionality	6
AC-2	Account Management	4
AC-3	Access Enforcement	4
AC-6	Least Privilege	4
IA-5	Authenticator Management	4
SA-8	Security Engineering Principles	4
SA-13	Trustworthiness	4
SA-17	Developer Security Architecture and Design	4
SC-8	Transmission Confidentiality and Integrity	4
SC-12	Cryptographic Key Establishment and Management	4
SC-13	Cryptographic Protection	4
IA-2	Identification and Authentication (Organizational Users)	3
SC-7	Boundary Protection	3
SC-23	Session Authenticity	3
AC-4	Information Flow Enforcement	2
AU-3	Content of Audit Records	2
CM-6	Configuration Settings	2
SI-10	Information Input Validation	2
AC-17	Remote Access	1
CM-2	Baseline Configuration	1
CP-11	Alternate Communications Protocols	1
RA-5	Vulnerability Scanning	1
SA-4	Acquisition Process	1
SA-20	Customized Development of Critical Components	1
SC-5	Denial of Service Protection	1
SC-32	Information System Partitioning	1
SI-4	Information System Monitoring	1
SI-15	Information Output Filtering	1

NIST 800-53r4 Family	NIST 800-53r4 Name	#
SC	System and Communications Protection	20
AC	Access Control	15
SA	Security Assessment and Authorization	14
CM	Configuration Management	9
IA	Identification and Authentication	7
SI	System and Information Integrity	4
AU	Audit and Accountability	2
CP	Contingency Planning	1
RA	Risk Assessment	1

OWASP

The Open Web Application Security Project

OWASP Top 10 - 2013

The Ten Most Critical Web Application Security Risks

release

Creative Commons (CC) Attribution Share-Alike
Free version at <https://www.owasp.org>

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10_2013-Top_10

A1-Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as part of a command or query. The attacker's hostile data can trick the interpreter into executing unintended commands or accessing data without proper authorization.

A2-Broken Authentication and Session Management

Application functions related to authentication and session management are often not implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws to assume other users' identities.

A3-Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser without proper validation or escaping. XSS allows attackers to execute scripts in the victim's browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A4-Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal implementation object, such as a file, directory, or database key. Without an access control check or other protection, attackers can manipulate these references to access unauthorized data.

A5-Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the application, frameworks, application server, web server, database server, and platform. Secure settings should be defined, implemented, and maintained, as defaults are often insecure. Additionally, software should be kept up to date.

LA-UR-14-24320

...

OWASP	OWASP Top 10 - 2013	NIST 800-53r4 Control	NIST 800-53r4 Name
A1	Injection	SI-10	Information Input Validation
	Broken Authentication and Session Management	SC-23	Session Authenticity
A2	Cross-Site Scripting (XSS)	SI-10	Information Input Validation
		SC-18	Mobile Code
A3		AC-3	Access Enforcement
A4	Insecure Direct Object References	SI-10	Information Input Validation
		AC-3	Access Enforcement
A5	Security Misconfiguration	AC-4	Information Flow Enforcement
		SI-10	Information Input Validation
		SI-11	Error Handling
		SC-8	Transmission Confidentiality and Integrity
		SC-18	Mobile Code
A6	Sensitive Data Exposure	AC-4	Information Flow Enforcement
		SC-4	Information in Shared Resources
		SC-8	Transmission Confidentiality and Integrity
			Cryptographic Key Establishment and Management
		SC-12	
		SC-13	Cryptographic Protection
		SC-23	Session Authenticity
		SC-28	Protection of Information at Rest
A7	Missing Function Level Access Control	AC-3	Access Enforcement
A8	Cross-Site Request Forgery (CSRF)	SC-23	Session Authenticity
A9	Using Known Vulnerable Components	SC-5	DoS Protection
A10	Unvalidated Redirects and Forwards	SI-10	Information Input Validation

OWASP	OWASP Top 10 - 2013	NIST 800-53r4 Control	NIST 800-53r4 Name
A1	Injection	SI-10	Information Input Validation
	Broken Authentication and Session Management		
A2	Management	SC-23	Session Authenticity
A3	Cross-Site Scripting (XSS)	SI-10	Information Input Validation
		SC-18	Mobile Code
A4	Insecure Direct Object References	AC-3	Access Enforcement
		SI-10	Information Input Validation
A5	Security Misconfiguration	AC-3	Access Enforcement
		AC-4	Information Flow Enforcement
		SI-10	Information Input Validation
		SI-11	Error Handling
		SC-8	Transmission Confidentiality and Integrity
		SC-18	Mobile Code
A6	Sensitive Data Exposure	AC-4	Information Flow Enforcement
		SC-4	Information in Shared Resources
		SC-8	Transmission Confidentiality and Integrity
			Cryptographic Key Establishment and Management
		SC-12	Management
		SC-13	Cryptographic Protection
		SC-23	Session Authenticity
		SC-28	Protection of Information at Rest
A7	Missing Function Level Access Control	AC-3	Access Enforcement
A8	Cross-Site Request Forgery (CSRF)	SC-23	Session Authenticity
A9	Using Known Vulnerable Components	SC-5	DoS Protection
A10	Unvalidated Redirects and Forwards	SI-10	Information Input Validation

NIST 800-53r4 Control	NIST 800-53r4 Name	#
SI-10	Information Input Validation	5
AC-3	Access Enforcement	3
SC-23	Session Authenticity	3
AC-4	Information Flow Enforcement	2
SC-18	Mobile Code	2
SC-8	Transmission Confidentiality and Integrity	2
SC-12	Cryptographic Key Establishment and Management	1
SC-13	Cryptographic Protection	1
SC-28	Protection of Information at Rest	1
SC-4	Information in Shared Resources	1
SC-5	Denial of Service Protection	1
SI-11	Error Handling	1

NIST 800-53r4 Control	NIST 800-53r4 Name	#
SC	System and Communications Protection	12
SI	System and Information Integrity	6
AC	Access Control	5

COMPARE: HMI vs. IT Web App

WebCTRL				OWASP Top 10			
NIST 800-53r4 Control	NIST 800-53r4 Name	#	NIST 800-53r4 Control	NIST 800-53r4 Name	#		
CM-7	Least Functionality	6	SI-10	Information Input Validation	5		
AC-2	Account Management	4	AC-3	Access Enforcement	3		
AC-3	Access Enforcement	4	SC-23	Session Authenticity	3		
AC-6	Least Privilege	4					
IA-5	Authenticator Management	4					
SA-8	Security Engineering Principles	4					
SA-13	Trustworthiness	4					
SA-17	Developer Security Architecture and Design	4					
SC-8	Transmission Confidentiality and Integrity	4					
SC-12	Cryptographic Key Establishment and Management	4					
SC-13	Cryptographic Protection	4					

NIST 800-53r4 Family	NIST 800-53r4 Name	#	NIST 800-53r4 Family	NIST 800-53r4 Name	#
SC	System and Communications Protection	20	SC	System and Communications Protection	12
AC	Access Control	15	SI	System and Information Integrity	6
SA	Security Assessment and Authorization	14	AC	Access Control	5

SANS “Critical Security Controls v5”

Critical Security Controls - Version 5

- [1: Inventory of Authorized and Unauthorized Devices](#)
- [2: Inventory of Authorized and Unauthorized Software](#)
- [3: Secure Configurations for Hardware and Software on Mobile Devices, Laptops, Workstations, and Servers](#)
- [4: Continuous Vulnerability Assessment and Remediation](#)
- [5: Malware Defenses](#)
- [6: Application Software Security](#)
- [7: Wireless Access Control](#)
- [8: Data Recovery Capability](#)
- [9: Security Skills Assessment and Appropriate Training to Fill Gaps](#)
- [10: Secure Configurations for Network Devices such as Firewalls, Routers, and Switches](#)
- [11: Limitation and Control of Network Ports, Protocols, and Services](#)
- [12: Controlled Use of Administrative Privileges](#)
- [13: Boundary Defense](#)
- [14: Maintenance, Monitoring, and Analysis of Audit Logs](#)
- [15: Controlled Access Based on the Need to Know](#)
- [16: Account Monitoring and Control](#)
- [17: Data Protection](#)
- [18: Incident Response and Management](#)
- [19: Secure Network Engineering](#)
- [20: Penetration Tests and Red Team Exercises](#)

Critical Security Control: 6

[Critical Control 5](#) [Critical Control 7](#)

Application Software Security

Manage the security lifecycle of all in-house developed and acquired software in order to prevent, detect, and correct security weaknesses.

Why Is This Control Critical?

Attacks often take advantage of vulnerabilities found in web-based and other application software. Vulnerabilities can be present for many reasons, including coding mistakes, logic errors, incomplete requirements, and failure to test for unusual or unexpected conditions. Examples of specific errors include: the failure to check the size of user input; failure to filter out unneeded but potentially malicious character sequences from input streams; failure to initialize and clear variables; and poor memory management allowing flaws in one part of the software to affect unrelated (and more security critical) portions. There is a flood of public and private information about such vulnerabilities available to

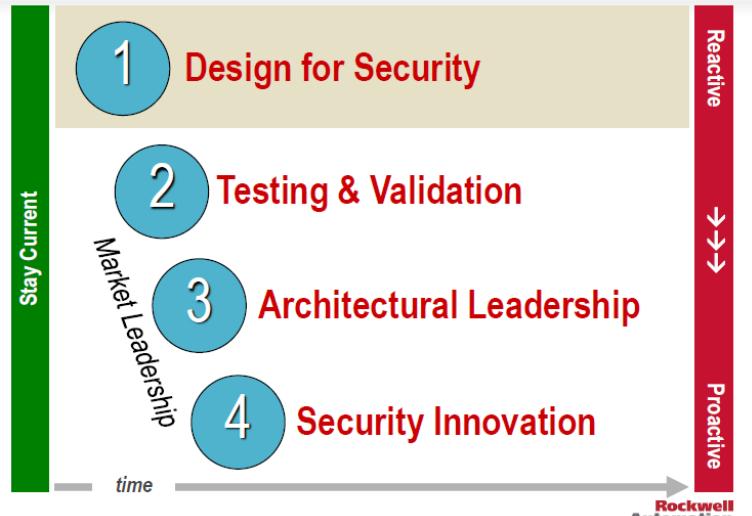
NERC CIP Standard Mapping to the Critical Security Controls - Draft

For any feedback or suggestions on this poster, please contact :

CIP@securingthehuman.org
www.securingthehuman.org/utility

NERC CIP Version 3	NERC CIP Version 4	NERC CIP Version 5	Critical Security Controls
CIP-002-3 Critical Cyber Asset Identification	CIP-002-4 Critical Cyber Asset Identification	CIP-002-5 BES Cyber System Categorization	Control 1: Inventory of Authorized and Unauthorized Device
• Risk-Based Assessment Methodology (RBAM) to id Critical Assets (CA)	Attachment 1: Critical Asset Criteria added to determine criticality. No more RBAM. Sub-requirements R1.1 and R1.2 now N/A	R1: Attachment 1 CIP-002-5 incorporates the "Bright Line Criteria" to classify BES Assets as Low, Medium, or High. Called BES Cyber Systems consolidating CAs and CCAs	Control 2: Inventory of Authorized and Unauthorized Software
• Apply RBAM to ID Critical Assets	N/A	R2: BES Cyber System Lists must be reviewed and approved every 15 calendar months	Control 4: Continuous Vulnerability Assessment and Remediation
• Identify Critical Cyber Assets (CCA)	Now R2		

ID #	Description	Category
CSC 6-1	For all acquired application software, check that the version you are using is still supported by the vendor. If not, update to the most current version and install all relevant patches and vendor security recommendations.	Quick Win


<http://www.sans.org/critical-security-controls/>

<https://www.sans.org/media/critical-security-controls/nerc-cip-mapping-sans20-csc.pdf>

“Yes, we have one!”

Security Development Lifecycle (Design for Security Process)

Rockwell
Automation

DfS 2.0 Requirements (1 of 2)

Rockwell
Automation

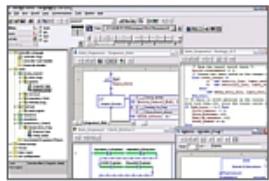
All products are consistently developed enhanced and delivered following the CPD Security Requirements so they can be applied in a system that helps protect people, property and information.

Policy → Guidelines → Procedure

DfS 2.0 is...

- Extension to DfS 1.0 requirements
- Defines product-level security requirements
- Defines Policy → Guidelines → Procedure
- Spans hardware, firmware and software
- Defines structure, procedure & personnel activities
- Defines Developer Training requirements
- Defines secure coding practices

“Design for Security”


<https://www.rockwellautomation.com/resources/downloads/rockwellautomation/pdf/events/pnc-13/sessions/industrial-security-perspectives.pdf>
<https://www.rockwellautomation.com/resources/downloads/rockwellautomation/pdf/events/pnc-13/sessions/industrial-security-perspectives.pdf>

LA-110-14-24320

Rockwell Software & Firmware

Rockwell Software Product Directory

1 Design & Configuration

(e.g. Ladder Logic)

- [Arena](#)
- [FactoryTalk AssetCentre](#)
- [RSLinx®](#)
- [RSLogix](#)
- [RSLogix Emulate](#)
- [RSNetWorx](#)
- [Studio 5000](#)

2 HMI

- [FactoryTalk View](#)
- [FactoryTalk ViewPoint](#)
- [RSView32](#)

3 Firmware

FIND DOWNLOADS

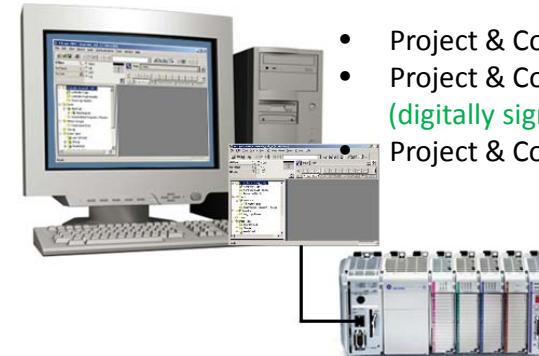
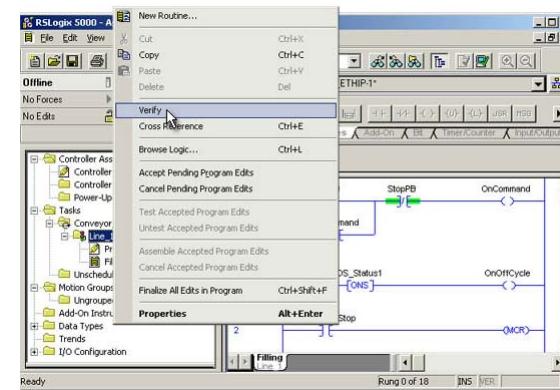
Select one or more products to view the available downloads for those products. You also have an option to view firmware. Type in the catalog numbers and/or descriptions of the products you wish to find. Use the drop down lists to limit your search.

Start by selecting products

Product Search:	All Categories	Controller
Example: 1756-L61, L65, Logix, Ethernet	You can also filter by product category or family	
1756-L1	ControllLogix Controllers	13.034
1756-L53	ControllLogix Controllers	8.002
1756-L55	ControllLogix Controllers	7.11.03
1756-L55M12	ControllLogix Controllers	7.10.01
1756-L55M13	ControllLogix Controllers	6.20.01
1756-L55M14	ControllLogix Controllers	5.16.01
1756-L55M16	ControllLogix Controllers	4.47.01
1756-L55M22	ControllLogix Controllers	12.003
1756-L55M23	ControllLogix Controllers	11.035
1756-L55M24	ControllLogix Controllers	10.024

LA-UR-14-24320

<http://www.rockwellautomation.com/rockwellsoftware/products/overview.page>



<http://compatibility.rockwellautomation.com/Pages/MultiProductDownload.aspx?famID=2&keyword=Controller&crumb=112>

Rockwell Automation – Firmware “Verify”

RSLogix 5000 How Do I?

Media clips and tutorials organized under the topics: Get Started, Get Connected, and My First Project that show a user how to use the software to complete common tasks.

- [Get Started](#)
- [Get Connected](#)
- [My First Project](#)
 - [Create a New Project](#)
 - [Modify the Main Task](#)
 - [Modify the Main Program](#)
 - [Modify the Main Routine](#)
 - [Configure an Input Module](#)
 - [Configure an Output Module](#)
 - [Create a Tag](#)
 - [Create a User-Defined Data Type](#)
 - [Enter Ladder Diagram Routine Logic](#)
 - [Reference a Tag in a Routine](#)
 - [Verify a Project](#)
 - [Download a Project](#)
 - [Go Online](#)
 - [Change a Controller's Mode](#)
 - [Monitor & Edit Data Online](#)

- Project & Controller slot #
- Project & Controller firmware revision (digitally signed)
- Project & Controller serial #

<http://www.rockwellautomation.com/resources/downloads/rockwellautomation/multimedia/solutions/integrated-architecture/StartPageMedia/MediaPlayer.html?media=P11-Verify.swf&mediaLang=ENU&defaultMediaLang=ENU>

<http://www.rockwellautomation.com/resources/downloads/rockwellautomation/multimedia/solutions/integrated-architecture/StartPageMedia/MediaPlayer.html?media=P15-DownloadProject.swf&mediaLang=ENU&defaultMediaLang=ENU>

Rockwell Automation - Add-On Instructions

- Custom instructions that you design and create
- Encapsulate commonly used functions or device controls
- High integrity – 32-bit signature values seals the instruction to prevent modification and provide high integrity

Instruction Signature

The instruction signature, available for both standard and safety controllers, lets you quickly determine if the Add-On Instruction has been modified. Each Add-On Instruction has its own instruction signature on the Add-On Instruction definition. The instruction signature is required when an Add-On Instruction is used in SIL 3 safety-related functions, and may be required for regulated industries. Use it when your application calls for a higher level of integrity.

Once generated, the instruction signature seals the Add-On Instruction, preventing it from being edited until the signature is removed. This includes rung comments, tag descriptions, and any instruction documentation that was created. When an instruction is sealed, you can perform only these actions:

- Copy the instruction signature
- Create or copy a signature history entry
- Create instances of the Add-On Instruction
- Download the instruction
- Remove the instruction signature
- Print reports

LA-UR-14-24320

Rockwell Automation Support Center

Search Knowledgebase Explore Forums Submit Questions Chat Live Find My Stuff Get Help

54102 - Industrial Security Advisory Index

Access Level: Everyone

Date Created: 07/30/2008 01:26 PM

Last Updated: 03/27/2014 09:20 AM

Industrial security continues to rapidly become an essential consideration in the design and operation of contemporary controls systems. Rockwell Automation recognizes the importance of security for industrial control applications. Employing good security measures in a control system can help protect amongst other things personal safety, critical assets, intellectual property and key proprietary data. It remains an integral aspect to the Rockwell Automation controls philosophy to deliver and evolve comprehensive security solutions that meet customer needs while also providing an appropriate level of support and services that help fulfill our customer's security goals and requirements.

This Industrial Security Advisory Index contains direct pointers to specific industrial security content held in Rockwell Automation's Knowledgebase and public website. The materials contained herein and hereby referenced are intended to inform, educate, and assist our customers about industrial security as it relates to Rockwell Automation products and systems.

Rockwell Automation Security Notices & Alerts:

- [54103 - Firmware Upgrade Security Notice: Comment on DHS Communication \(Control Systems Vulnerability\)](#)
- [57729 - Potential Security Vulnerabilities in ControlLogix 1756-ENBT/A EtherNet/IP Bridge](#)
- [58964 - ControlLogix 1756-ENBT/A EtherNet/IP Bridge Firmware Upgrade Process](#)
- [65980 - Password Security Vulnerability in MicroLogix™ Controllers](#)
- [65982 - Client Software Authentication Security Vulnerability in MicroLogix™ Controllers](#)
- [66678 - Password Security Vulnerability in PLC5® and SLC™ 5/0x Controllers](#)
- [66684 - Client Software Authentication Security Vulnerability in PLC5® and SLC™ 5/0x Controllers](#)

54103 - Firmware Upgrade Security Notice: Comment on DHS Communication (Control Systems Vulnerability in Multiple Sectors)

Access Level: Everyone

Date Created: 07/30/2008 01:32 PM

Last Updated: 02/19/2013 11:27 AM

Rockwell Automation recognizes the importance of information and control system security to our customers. We are committed to working with government agencies and standards development organizations to develop solutions targeted to help our customers improve their overall system security strategy.

As part of this effort, the Idaho National Laboratory (INL) Control Systems Security Program, under contract to the Department of Homeland Security (DHS), identified a potential security concern within the firmware upgrade process used in control systems deployed in Critical Infrastructure and Key Resources (CIKR). DHS has confirmed that the firmware upgrade process can be intentionally manipulated in a manner that has potential to render the device inoperable and cause a disruption to the process and/or system operation.

Rockwell Automation has been working in partnership with DHS to identify potential short-term and long-term mitigation strategies.

As a result, Rockwell Automation is implementing a policy to digitally sign most firmware images and require contemporary devices to validate this signature before applying a firmware upgrade. Over time, many contemporary Rockwell Automation products will include this signature validation mechanism to help ensure firmware integrity and authenticity.

The following Rockwell Automation products currently authenticate firmware using digital signatures:

- ControlLogix 1756-L72, L73, L74, L75 Programmable Automation Controllers
- Virtual firmware of the 1789 SoftLogix PC based controllers

For other devices, to help reduce the likelihood of the upgrade process being exploited and help reduce associated security risk, Rockwell Automation and DHS recommend the following short-term mitigation strategies (Note: multiple strategies can be employed simultaneously):

1. Disable where possible the capability to perform remote firmware upgrades over a network to a controller by placing the controller key switch into RUN mode. This prevents the Allen-Bradley brand controllers from accepting firmware upgrades.

Outline

- Motivation
- Standards
- Vendors
- LANL
- Next Steps

What is LANL doing for Control Systems?

- Participating in DOE G 414.1-4 Revision
- Kristi’s “Secure Coding” initiative
 - LANL Secure Coding Day – Control System speaker
- Quality & Performance Assurance Audit – Control system SW/FW
- Control System
 - Security Plan – included “SW Quality Management” reference for SW/FW
 - Annual Control System Workshop – LANL talk

Outline

- Motivation
- Standards
- Vendors
- LANL
- **Next Steps**

Next Steps

- Add Control Systems to Kristi's plan
 - Initial Phase
 - Awareness, education, building/maturing basic services and prototyping with a small team
 - Institutional Phase
 - Scale team to LANL, make resources available to all developers, enforce secure coding practices
- Mindset – “Adapt to this evolving discipline”