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ABSTRACT

The majority of energy release in the fission process is due to the
kinetic energy of the fission fragments. Average Total Kinetic Energy
<TKE> measurements for the major actinides over a wide range of
incident neutron energies were performed at LANSCE using a
Frisch-gridded ionization chamber. The experiments and results of the
238U(n,f) and 235U(n,f) will be presented, including <TKE>(En),
<TKE>(A), and mass yield distributions as a function of neutron
energy. A preliminary <TKE>(En) for 239Pu(n,f) will also be shown.
The <TKE>(En) shows a clear structure at multichance fission
thresholds for all the reactions that we studied. The fragment masses
are determined using the iterative double energy (2E) method, with a
resolution of A=4 - 5 amu. The correction for the prompt fission
neutrons is the main source of uncertainty, especially at high incident
neutron energies, since the behavior of nubar(A,En) is largely
unknown. Different correction methods will be discussed.
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Introduction

e There is a need for more complete <TKE>(E ) data for the
major actinides.

* Opportunity arose to complete the work at LANSCE using
a digitizer DAQ and the white neutron source at WNR.

* Work at LANSCE has collected experimental data for
neutron induced fission #®U, U, and **°Pu.
- 238U is being prepared for publication
- 23U is currently being analyzed
— 239Pu data has just finished being collected and is in preliminary

analysis
A
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Experimental method : lonization chamber

* The Frisch-gridded
lonization chamber has
been traditionally used to
measure <TKE>.

* Fission products ionize the
gas, producing electrical
signals within the detector.

* These signals are recorded 1000V OV 1500V

to extract energy and angle Anodes, grids, and a cathode

of the fission products. all record signals from the
fission event.

£ [Straede, C. et al. Nuclear Physics A, 1987, 462, 85 - 108]
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Extracting the physics: E , angles, and energy

* Extract pulse heights and neutron time-of-flight from the

wave forms.
- Grid inefficiency and preamplifyer gain correction

- Angular emission (calculate 0)
- Energy loss in the target and backing material

— Pulse height defect (detector effect)
e (Calibration to previous measurement (calculate energy) *

* 2E method (calculate mass)

- Neutron sawtooth correction *

/“ * Sources of systematic uncertainty
. Los Alamos
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Calculate E_- Neutron Time of Flight
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* A neutron time-of-flight method is employed to deduce the incident
neutron energies. Relativistic corrections are made. Uncertainty on
neutron energies is determined by the width of the photo fission peak.

* This is a common analysis technique at WNR.
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Energy calibration
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The various correction for energy loss and angle are made until the
anode pulse height (energy) overlay.

The peaks are fit with Gaussians. Centroids of the light and heavy
peak are compared with the average light and heavy product energies
of a previous measurement to get a linear anode [channel] = energy

[MeV] calibration equation.

Uncertainties on the corrections . gees into calibration uncertainty.
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Energy calibration : notes

e Systematic uncertainty for the pulse height corrections are all part of
the calibration uncertainty and includes pulse height defect (PHD).

* Uncertainty of the previous measurement is also incorporated.

* The uncertainty on the linear equation parameters is the systematic
uncertainty on the fission product energies.

E=(m+dm) - APH + (b= 6b) =7
6F = \/(APH - ém)? + (6b)? = 51 (APH ,E)
@
ex. m=0.93 +- 0.004 é
IfAtZ’IfI :0 '13040--0%,4 E = (92.7 +- 0.6) MeV %j \ (APH,,E,) \
Ji:;s Alamos ‘ Anode Pulse Height
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239 . .
Pu Product <TKE> (courtesy Krista Meierbachtol)
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* The models of Lestone fit the data quite well in all 3 cases.

* [For uranium, the statistical error of the <TKE> is based off the
uncertainty in the fit parameters of the Gaussians.

* For plutonium, the statistical error is (currently) the standard deviation
of the mean.

e Systematic uncertainty in <TKE> is about 0.5 - 1% and shifts the
vertical position of the data.

.
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Calculating Fission Fragment Masses with 2E

1) Assume equal mass fragments: m (]ijr +m,, /2

ost
2) Correct for prompt neutron emission*: mi? — mpre — L’(A, En_)
3) Correct energy for PHD*: Efobt Em"F + PHD( pmt)

4) Calculate fragment masses using energies:

pre (ﬂ{tm + mn)EimSt P — (ﬂ'{tar + mn.)EgDSt mgre ' mlfoﬁt

2 E%}QH(B) 4 Efost 1 EfDSt/(B) + Epast mgmt m;l}re
mt"

5) Calculate fragment energies in lab frame: E,fab — pmepM

'E.
6) Test for convergence:  |m!" “(end) - m2"“(begin)| < 0.125

7) Start over at (2) if necessary.
3
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Neutron sawtooth correction, nu(A,E )

* To explore TKE(A), we calculate masses using the 2E
method, which requires a correction for prompt neutron
emission. m!”" =m!’" — v(A, E,)

2 [

* Method 1: Average
- The sawtooth at thermal energies is “scaled” using a
multiplicative factor determined by nubar. The number of
emitted neutrons is shared equally between the two
fragments.

* Method 2: Heavy

- The sawtooth is simulated using GEF code for different incident
neutron energies —» Assumes the heavy fragment evaporates
2 more neutrons.
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Average vs. Heavy method

Calculated U Neutron Sawtooth Scaled Up to Higher Incident Neutron Energies Ave rage
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[Wahl, A. C. Atomic Data and Nuclear Data Tables , 1988, 39, 1 — 156]

[J. Terrell, Phys. Rev. 127 1962]

[L,eﬁ?e)ne, J. Nuclear Data Sheets , 2011, 112, 3120 — 3134]

» Los Alamos
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[Al-Adili, A, et. al. Phys. Rev. C, 2012, 86, 54601-8]
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Calculating Fission Fragment Masses with 2E

1) Assume equal mass fragments: m (]ijr +m,, /2

ost
2) Correct for prompt neutron emission*: mi? — mpre — L’(A, En_)
3) Correct energy for PHD*: Efobt Em"F + PHD( pmt)

4) Calculate fragment masses using energies:

pre (ﬂ{tm + mn)EimSt P — (ﬂ'{tar + mn.)EgDSt mgre ' mlfoﬁt

2 E%}QH(B) 4 Efost 1 EfDSt/(B) + Epast mgmt m;l}re
mt"

5) Calculate fragment energies in lab frame: E,fab — pmepM

'E.
6) Test for convergence:  |m!" “(end) - m2"“(begin)| < 0.125

7) Start over at (2) if necessary.
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Mass yields %3¥U(n,f) — Average method
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Average TKE(A, E ) for >**U(n,f)

TKE v. Mass “"U(n,f) E = 3.0 MeV
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e The mass resolution of the ionization chamber is 4-5 AMU, calculated
by comparing to ENDF. [Mosby, S. et. al., NIM A, 2014, 757, 75 - 81]

;\ Results displayed here with model for 1 AMU. (courtesy Arnie Sierk)
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Conclusions

e Models of the <TKE>(E ) fit the data quite well.

* Sources of uncertainty in the 2E method are not
guantified. We can do this, but we need your input.

* The mass yields and measurement at higher energies
requires a better understanding of prompt neutron
evaporation and what multichance fission processes are
happening.
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