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Project Synopsis: 
One impact of anthropogenic climate change is an increase in extreme weather 
and climate events, which carry profound implications for drought, heat waves, 
and food production. These extreme climate events are modulated by low-
frequency modes of atmosphere/ocean variability like the El Niño/Southern 
Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic 
multidecadal oscillation (AMO). Global climate models (GCMs) resolve these low-
frequency modes with varying degrees of success, but the extreme events 
themselves are fundamentally realized on a local or regional level. Current GCMs 
may represent some aspects of these extreme weather and climate events, but 
because of the scale mismatch, the GCM realizations of these events are 
incomplete. Regional climate models can complete the picture by providing the 
focused level of local detail missing in the GCM output.  

The goal of our project has been to evaluate the behavior of extreme weather 
events in the historical observational dataset, large-scale GCM simulations of 
20th- and 21st-century climate, and suites of regional climate simulations driven 
by GCM output. This project has examined observational data and climate 
simulation output conducted over the continental United States by applying a 
recently developed technique that combines wavelet multi–resolution analysis 
with information theory metrics. This research is motivated by the following two 
fundamental questions concerning the spatial and temporal structure of extreme 
events: 

1) What are the temporal scales of the extreme value distributions most 
sensitive to alteration by low-frequency climate forcings? 

2) What is the nature of the spatial structure of variation in these timescales?  

The primary objective was to assess how information theory metrics can be 
useful in characterizing the nature of extreme weather phenomena. Specifically, 
we have (1) addressed how changes in the nature of extreme events impact the 
temporal probability density functions, and the degree to which information theory 
metrics are sensitive these changes, and (2) characterized, via a wavelet multi–
resolution analysis, the relative contribution of different timescales on the 
stochastic nature of extreme events. 

This project has employed a unique combination of an established regional 
climate modeling approach and advanced statistical techniques to assess the 
effects of low-frequency modes on climate extremes over North America. 
Partway through the project, we transitioned from using the AR4 GCM output to 
that from the AR5 runs, the rationale being that the AR5 simulations better 
represented the low-frequency variability of interest and more realistically 
reflected possible 21st-century climate scenarios. The behavior of climate 
extremes in RCM simulations for the 20th century has been compared to 
historical climate from the North American Regional Reanalysis (NARR), the 



United States Historical Climatology Network (USHCN), and simulations from the 
North American Regional Climate Change Assessment Program (NARCCAP). 
Our efforts serve to establish the baseline behavior of climate extremes, the 
validity of an innovative multi–resolution information theory approach, and the 
ability of the RCM modeling framework to represent the low-frequency 
modulation of extreme climate events.  

 

Analysis of 20th century meteorological station data 
 
We have focused on conducting an analysis of historical station observations as 
a baseline for comparison. The station data comes from the United States 
Historical Climate Network (USHCN, Menne et al. 2011) and the distribution is 
shown in figure 1. We have calculated the linear trends in the magnitude of 
extreme precipitation, daily maximum and minimum temperatures at the 90th, 
95th, and 99th percentiles for both the intensity value and the number of 
exceedances. These values are all calculated on a per station basis and tested 
for statistical significance using the Mann-Kendall and other measures. These 
seasonal results were mapped to show the geographic coherence of both the 
magnitudes and the trends in the extreme events over the 20th century, as well as 
illustrating locations where extreme values are trending in opposite directions 
(e.g. southwestern US) (figures 2-7).  
 
Of particular interest is the spatial and temporal (monthly/seasonal) variability in 
these trends. In an effort to aggregate the trends into meaningful biophysical and 
climatic units, we have chosen to use the Koeppen climate classification. Here, 
we have chosen to pursue only 9 of the 14 climates, as these climates account 
for over 95% of the land area in the U.S. This allows easy quantification of the 
geographic variability of the trends in relation to local climate. Through this 
aggregation, we are also looking at how the mean and the distribution of monthly 
slopes of extreme events (e.g. the 90th percentile precipitation intensity) vary 
across climatic regions and by month (Figures 9-10). 
 
In addition, we have focused on 20th-century trends in extreme events by 
examining the changes in the distribution of extreme magnitude precipitation, 
minimum and maximum temperature for the 1950-1980 and the 1980-2009 
periods (Figure 11). A paired t-test was performed on the data with the null 
hypothesis being there is no difference between the two samples. The samples 
that reject the null hypothesis with 95% confidence are indicated by an asterisk. 
For precipitation extremes, the climate groups that are non-stationary are BWh, 
BWk and Csa. The climate zones BWh, BWk and Csa all show trends for 
extremes in maximum temperature. All regions exhibit non-stationarity for 
extremes in minimum temperature, indicating that the distribution of cold 
extremes is changing. These trends are indicative of a shifting climate, resulting 



in a new distribution of extreme events for the future. 
 
 
Multiscale decomposition and relationship between extreme events and regional 
teleconnection indices 
 
Following the above analysis, we were able to quantify the nature of the extreme 
value distributions across the continental United States. The next stage of the 
project was to relate the variations in extreme value distributions to phases of the 
low-frequency modes of ENSO and PDO (Figure 12). We conducted a multiscale 
wavelet approach. Figure 13 shows the continuous wavelet transform for the 
normal versus extreme weather events and is averaged across Koeppen-Geiger 
climates. These results indicate that extreme events occur at different wavelet 
powers than normal daily events.  
 
An example result is shown in Figure 13, which shows the wavelet co-spectra 
and coherency signal for precipitation and the ENSO in Lawrence, KS. This 
analysis was conducted for all 958 stations and spatially aggregated across 
climate zone.  
 
For this study, an extreme event was quantified as an event that occurs above 
the 90th percentile of its monthly bin. There is a monthly bin for each month and 
the total number of months in each bin is based on the length of record. The 
monthly threshold values were calculated based on the previous analysis and are 
found to be unique for each station. This methodology provides a date for each 
extreme weather event and can be used for assessing normal weather events 
against those of extreme responses.  

Geophysical time series can often exhibit non-stationarity, contain dominant 
periodic signals and hidden patterns. These time series can be decomposed 
using wavelets into signals, that vary in both time and frequency space. Long-
term weather data can exhibit this periodic behavior as well as long-term climate 
patterns such as ENSO and PDO. Wavelet analysis allows the weather time 
series and the teleconnection signals to be analyzed at different periods 
throughout the length of the signal. They also provide the ability to 
simultaneously view the spatial and temporal nature of an extreme weather event 
against those of a normal weather event. For this study all wavelet transforms 
(continuous wavelet transform (cwt), wavelet cross wavelet transform (xwt) and 
wavelet transform coherence (wtc)) were conducted using the Biwavelet package 
(Gouhier and Grinsted, 2013) in R. Wavelet transform is chosen over Fourier 
transform due to the frequency localization limitation with Fourier transforms. 
Wavelets analysis avoids this issue by simultaneously decomposing in time 
space and frequency space. This allows for information regarding the power of 
any periodic signal as well as how that power varies over time.  



These localized responses are taken separately for each extreme day and 
normal day and then averaged across each period to provide a final solution for a 
single localized response over time. An example of this process is shown for 
Station Number 011084 (Brewton, Al) in Figure 15 (a), where 15a shows the 
wavelet transform, 15b illustrated the time series highlighting the extremes and 
15c provides detailed information about each probability density function (pdf) for 
the extreme and normal series and the average response for each scale. This 
process was completed for each station and then averaged across the 9 KG 
regions.  

To ascertain the change in the relative influence of SOI and PDO signals on the 
extreme events to the normal, the xwt and wtc power spectrums were calculated 
and averaged for extreme days and normal days across each climate zone (an 
example is found in Figure 16). The example plot shows the xwt and wtc results 
for the decompositions of precipitation and SOI in Brewton, Alabama. The xwt 
and wtc plots are shown with the precipitation time series and the SOI signal. The 
extreme against those of a normal signal is not shown but follows the same 
process for averaging in time and is shown in Figure 16. This process was also 
completed for each station and then averaged across the 9 KG regions the same 
as described above. Both xwt and wtc were calculated for precipitation, maximum 
temperature, minimum temperature, SOI and PDO timeseries.  

The average cwt decomposition for extreme and normal events within each KG 
zone are shown in Figure 17. Precipitation is column 1 (17a, 17b and 17c), 
maximum temperature is column 2 (17d, 17e and 17f) and minimum temperature 
is the last column (17g, 17h and 17i). The extreme spectra are shown as a 
dashed line where the normal spectra is a solid line. Scales that show a 
significant difference between the extreme and normal are shown with an 
asterisk and are significant at a p-value ≤ 0.05. Each time series was 
decomposed using a cwt at each USHCN station, and then averaged across 9 
KG regions and grouped into 3 zones (Arid, Warm Temperate and Snow).  

Following the analysis above, we were able to relate extreme events with 
regional climate teleconnections ENSO and PDO. The average arid, warm 
temperate and snow zone wtc(ppt,soi) decompositions are shown in Figure 18, 
column 1(18a, 18b and 18c). Figure 18d, 18e and 18f show the same but for 
wtc(ppt, pdo).  

For wtc(ppt,pdo) the arid zone indicates that BSk and BWh have significantly 
different responses for extreme precipitation at 128 days and 512 days (BSk) and 
256 days for BWh. The warm temperate zone shows that Cfa and Csb indicate 
significant differences within the periods of 32-512 days. Where the snow zone 
indicates later scales for significance at 128-512 for both Dfa and Dfb with an 
additional scale at 32 days for Dfb. High coherency is found with a peak at the 
annual timescale, which illustrates that the annual signal of precipitation is 



correlated with both teleconnections.  

For the wtc(ppt, soi) the arid zone contains significantly different scales within the 
BSk at 32-256, the BWh at 64 and the BWK region at 64 and 256 days. The 
warm temperate zone shows significant scales within the Cfa region at 32-1024 
days, and not so many for Csa and Csb at 64 and 32-256 days, respectively. For 
the snow zone the significance can be found in for Dfa and Dfb at 32-256 days or 
a period of 512 days, respectively. One difference is that the instead of high 
coherency at the annual the ppt, soi shows the opposite trend than ppt, pdo.  

Overall, extreme weather events behave differently than normal events on 
specific timescales within different climate zones. The cwt results indicate that 
extreme precipitation separates from the normal at less than annual timescales. 
For maximum temperature, both extreme and normal events contain significant 
signals at the monthly timescale. For minimum temperature there are not many 
significant results in terms of the difference in extreme and normal responses. A 
significant difference is seen in the snow zone, which indicates extreme cold 
events vary in a different power spectra than normal.  

The xwt results are indicative of phase differences and similarities between the 
time series and teleconnection patterns. Precipitation and SOI interactions are 
mostly significant at all scales while precipitation and PDO are only significantly 
different below the annual timescale. As both teleconnection patterns and 
precipitation spectra results move through time they become more in phase with 
each other, which indicates the precipitation has a high power spectrum which is 
significant on longer timescales, indicative of ENSO and PDO. In terms of xwt, 
results for temperature both maximum and minimum temperate exhibit similar 
results. Both peaking in phase consistency around the annual timescale, 
indicating that the annual temperature cycle is a dominate feature. In terms of 
separating normal from extreme events, this occurs in the longer timescales, and 
only within a few regions, indicating the sensitive nature of ENSO and PDO on 
temperature events.  

The wtc results show how correlated two decompositions are, in this case 
extreme weather and either SOI or PDO. For all three extreme weather events 
there is an opposing peak of high correlation at the annual timescale for all the 
PDO transforms and a peak of low correlation between all the SOI transforms. 
The warm temperate zone shows many significantly different scales for 
precipitation while for temperature the majority of the differences can be found in 
the snow zone. This indicates there is more variability in warm temperature 
extreme precipitation and the role teleconnections play while the snow zone is 
most sensitive to temperature and teleconnection interactions.  

 



Dynamical downscaling of extreme events 

Our methodology consists of dynamically downscaling GCM simulations via a 
regional climate model (RCM). This effort has involved two approaches. First, we 
have explored the extreme value behavior for a subset of the simulations in the 
North American Regional Climate Change Assessment Program (NARCCAP; 
Mearns et al. 2009) model output. NARCCAP is a suite of simulations composed 
of a number of regional models driven by different GCMs. Figure 19 shows 
differences between 20th- and 21st-century for the 95th percentile of the 
distribution of daily precipitation. We deliberately selected runs with different 
driving GCMs to maximize the differences between models, and indeed the 
models diverge substantially in their projection of differences between 
precipitation extremes. The WRFG simulation shows strong increases in 
precipitation extremes over the southern plains; HRM3 and CRCM simulations 
exhibit weaker increases, and the ECP2 runs show little change. Simulation 
results over the desert southwest differ substantially: WRFG exhibits weaker 
extremes over the desert southwest, but ECP2 and HRM3 indicate stronger 
extremes. Most of the differences in extreme values are greater than changes to 
the central tendencies (medians). Therefore, the changes to the extrema stem 
from broadening of the distributions. 

Probability distributions in the vicinity of three cities in widely different climate 
regimes (Fig. 20) sheds additional light on the behavior of precipitation extremes. 
The inter-model differences are especially apparent on this figure. For example, 
the CRCM model produces very little in the way of high-magnitude precipitation 
events. The 21st-century WRFG results over Nashville show a substantially 
increased distribution tail, which is consistent with the increase in 95th-percentile 
magnitude seen in Fig. 19. 

Our longer-term modeling effort has revolved around conducting multi-decadal 
simulations in order to capture sufficient statistical realizations of the low-
frequency modes (ENSO and PDO). Although we originally proposed simulations 
driven with CCSM3 GCM output, the substantial improvement of the 
representation of low-frequency modes of variability such as ENSO and PDO in 
CESM1/CCSM4 (Deser et al. 2012) caused us to reevaluate our efforts and 
begin to use CESM1 to drive our RCM simulations.  

Our RCM simulations employ the Advanced Regional WRF (WRF v3.6), using 
initial and boundary conditions from CESM1. These simulations were a result of 
extensive collaboration with Andrew Monaghan at the National Center for 
Atmospheric Research (NCAR), who has substantial experience downscaling 
WRF with different versions of CCSM. WRF simulations of the periods 1950–
1999 (beginning with CESM1 simulation b40.20th.track1.1deg.012) and 2050–
2099 (RCP6.0 scenario) have been performed. Improved simulations currently 
underway cover the period from 1950–2061 and will eventually cover the entire 



1950–2099 period. Our methodologies developed for analyzing the 
observational, GCM, and NARCCAP products have been applied to these long-
term RCM simulations. We compare the variation in extreme events between 
driving model (CESM1) and regional model (WRF), and between 20th- and 21st-
century simulations. 

In our dynamical downscaling configuration, biases may arise from both the GCM 
and the RCM components. Model evaluation therefore becomes especially 
important to establish the veracity of any dynamical downscaling approach. The 
evaluation of NARCCAP output compared mean precipitation and temperature 
fields between the model results and the reanalysis data sets in order to quantify 
simulation bias (Mearns et al., 2012a; Bukovsky et al., 2013). In this research, we 
have evaluated the CESM-WRF downscaling approach by comparing long-term 
means of precipitation and temperature between every two members of these 
three data sets: WRF and CESM; WRF and NARR; NARR and CESM. Data from 
these three data sets are all chosen from the overlapping period of NARR and 
WRF, the years of 1979-1999. Figure 21 presents the difference maps for PR, 
TMAX, and TMIN, between WRF and CESM (WRF minus CESM), CESM and 
NARR (CESM minus NARR), as well as WRF and NARR (WRF minus NARR). 
This approach allows us to investigate the origin of the bias between CESM–
WRF and the observational fields (as represented by NARR). 

For precipitation, the region east of Mississippi River shows good agreement 
between WRF and NARR (< 125 mm annual difference). However, over the 
western mountainous U.S., the WRF-CESM simulation exhibits a substantial wet 
biase (Fig. 21a). Figure 21g suggests that WRF contributes substantially to the 
wet bias over the high topography and also appears to introduce a dry bias just 
downstream (east) of the mountain peaks. Both WRF and the driving CESM 
model exhibit the well-known dry bias. The greatest dry bias is over the southern 
states adjacent to the Gulf of Mexico, and then decreases towards the north (Fig. 
21d). 

 

We apply a bias correction using the linear scaling method (Lenderink et al., 
2007), a relatively simple approach compared to other methods that rescale the 
entire distribution (Teutschbein and Seibert, 2012). This linear bias correction 
rescales the distribution such that the long-term mean of simulated distribution 
and the mean of observed distribution are equal. This method artificially rescales 
modeled PDFs to fit the observational (NARR) long-term means, but the 
distribution retains the same shape as the uncorrected PDFs. The long-term 
mean of PR is calculated from NARR over the interval 1979–1999.  

Using the 90%, 95%, and 99% thresholds of the TMAX, TMIN, and PR 
distributions is one way we quantify extremes, and differences in these 



thresholds between 21st- and 20th-century simulations represent a trend in 
extreme events. For precipitation, the threshold differences increase for 
increasing percentiles (Fig. 22a, d, and g). The highest threshold differences are 
found over the south-central U.S. and southeastern U.S. near the Gulf Coast. 
Precipitation threshold differences increase from 3 mm in the 90% extreme map 
(Fig. 22a) to over 15 mm in the 99% extreme map (Fig. 22g). The increasing 
differences in precipitation for increasing threshold percentages suggests that the 
rarer the event, the greater (i.e., more extreme) will be the difference between 
projected and historical values. Similar TMAX threshold difference patterns 
across the different percentiles indicate that differences vary little as percentile 
increases (Fig. 22b, e, and h). Thresholds of the projected simulation are ∼3-6 K 
higher than those of the historical simulation and vary widely over the whole 
domain. The greatest difference occurs over the north central U.S., just west of 
the Great Lakes, with a massive area of differences > 5 K for all three thresholds. 
TMIN threshold difference patterns are also largely similar across the different 
percentiles, although the magnitudes of the differences are greater than the 
increases in TMAX. This behavior is consistent with a reduction of the diurnal 
temperature variation in the projected simulation relative to the historical 
simulation. 

In summary, systematic higher extreme percentile thresholds are found in PR, 
TMAX, and TMIN in the projected simulation, indicating that daily precipitation 
and daily maximum temperature are more extreme in the projected simulation, 
whereas daily minimum temperature behavior is less extreme (cold nights 
become warmer). For the TMAX and TMIN, substantial changes to TMIN 
thresholds appear more prevalent, a result consistent with lower projected diurnal 
temperature variation. 

In order to quantify the behavior of extreme weather and climate events to the 
low-frequency modes of variability, we have conditionally sampled the simulation 
results by ENSO phase. ENSO conditions are classified as El Niño (warm 
phase), La Niña (cool phase), or neutral conditions by applying the southern 
oscillation index (SOI), calculated from the parent CESM1 output. We have found 
that the dependence of precipitation extremes on ENSO phase exhibits 
substantial geographic dependence, with large differences in the Pacific 
Northwest but smaller differences over the southeast. 

In order to gain additional insight into the behavior of the extreme value statistics 
previously calculated, we aggregate the statistics across climate zones. We 
employ the Köppen-Geiger climate classification to divide the entire domain into 
12 climate zones.  

Figure 23 shows the springtime frequency and intensity of extreme precipitation 
distributions for spring (MAM). The box plots show both the historical (red) and 
projected (blue) simulation distributions. Colored dots over the median lines of 



some boxes indicate the statistical significance of differences between samples 
from the historical and projected simulations. We employ the two-sample stu-
dent’s t-test to evaluate statistical significance. Although the samples do not 
strictly fit to normal distribution, the sample sizes are sufficiently large (> 30) that 
the t-test is justified. The null hypothesis is that there is no difference between 
samples of the historical simulation and projected simulation (alpha = 0.05). The 
B class zones, which represent arid climatologies, have the lowest frequency and 
intensity medians. C class zones, which represent warm and humid 
climatologies, have higher frequency medians than B class zones but lower 
frequency medians than D class zones, and also the highest intensity medians 
(30-40 mm/event). D class zones that represent cold and snowy winter climatolo-
gies have frequency medians > 0.05 events/day and intensity medians slightly 
below 30 mm/event. Within the C class zones, Csa frequency and intensity 
behave differently compared to Cfa and Cfb. The different behavior of the Csa is 
largely a function of its coastal location but also may partly be a nonphysical 
result of the high precipitation bias over the mountainous west. 

In nearly all zones, intensity in the projected simulation is greater than the 
respective historical value, and for most zones frequency is higher, too (BWk, 
BWh and Csa being the only zones with lower projected frequency). The four 
zones of Cfa, Cfb, Dfa, Dfb, which together includes most of U.S. east of the 
Rocky Mountains, have frequency and intensity differences that are tested 
significant. 

In order to fully understanding the causes of the more extreme TMAX events and 
more heat waves with longer durations, in this section we plot the PDFs of TMAX 
for each climate zone in both the historical and projected simulations, and we 
calculated the difference of mean percentile values based on the historical and 
the projected simulations. PDFs are presented as violin plots in Fig. 24a. The 81st 

and 97.5th percentile values, as well as mean TMAX, are indicated by lines on the 
distributions. Difference of these percentile values, as well as the means for each 
climate zone are presented in Fig. 24b. 

For the two thresholds used to quantify heat waves, the 97.5th percentile value 
determines how warm each heat wave is, while the 81st percentile value 
determines how many consecutive days can be included in a heat wave events. 
Therefore the heat wave frequency and duration are more profoundly affected by 
the 81st percentile value. Over most of the contiguous U.S. other than northeast, 
the mean TMAX increase in projected simulation is larger than the increase of 
the 81th percentile TMAX value. Considering the TMAX PDFs, other than the 
shifting of the whole distribution toward warmer side (increase of mean TMAX), 
there also higher percentage of days in the PDF higher than the mean TMAX in 
the projected simulation than in the historical simulation. As a result, the increase 
of mean TMAX is the predominate cause of more heat waves with longer 
durations in the projected simulation. 
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Figures 
 

 
 
Figure 1. USHCN station distribution with corresponding Koeppen-Geiger 
classification. 
 
 
 
 
 
  



 
 

 
 
 
 
Figure 2. Magnitude threshold for an extreme precipitation event to occur [mm]. 
(a) Winter (178 significant stations), (b) Spring (171 significant stations), (c) 
Summer (156 significant stations) and (d) Fall (202 significant stations). 
Significant stations indicated by a Mann- Kendall p-value ≤ 0.05. 

 
 
 
 
  



 
 
 
 
 
 
 
 

 
Figure 3. Slope of extreme precipitation events [number of extremes/year]. (a) 
Winter (178 significant stations), (b) Spring (171 significant stations), (c) Summer 
(156 significant stations) and (d) Fall (202 significant stations). Significant 
stations indicated by a Mann-Kendall p-value ≤ 0.05. Koeppen-Geiger 
classification are shown faded in bottom layer. 

 
 
 
 
 
 
 
 
 



 
 

 
 
Figure 4. Magnitude threshold for an extreme maximum temperature event to 
occur [◦C]. (a) Winter (206 significant stations), (b) Spring (263 significant 
stations), (c) Summer (376 significant stations) and (d) Fall (362 significant 
stations). Significant stations indicated by a Mann-Kendall p-value ≤ 0.05. 

  



 
Figure 5. Slope of extreme maximum temperature events [number of 
extremes/year]. (a) Winter (206 significant stations), (b) Spring 263 significant 
stations), (c) Summer (376 significant stations) and (d) Fall (362 significant 
stations). Significant stations indicated by a Mann-Kendall p-value ≤ 0.05. 
Koeppen-Geiger classification are shown faded in bottom layer. 

 
 
 
 
  



 
Figure 6. Magnitude threshold for an extreme minimum temperature event to 
occur [◦C]. (a) Winter (325 significant stations), (b) Spring (317 significant 
stations), (c) Summer (564 significant stations) and (d) Fall (346 significant 
stations). Significant stations indicated by a Mann-Kendall p-value ≤ 0.05. 

 



 
Figure 7. Slope of extreme minimum temperature events [number of 
extremes/year]. (a) Winter (325 significant stations), (b) Spring (317 significant 
stations), (c) Summer (564 significant stations) and (d) Fall (346 significant 
stations). Significant are stations based on the Mann-Kendall P-value ≤ 0.05. 
Koeppen-Geiger classification are shown faded in bottom layer. 



 
Figure 8. Mean slope [number of extremes/years of record] and magnitude [mm] 
values for extreme precipitation, calculated at all 958 stations. a) Slope values for 
Koeppen-Geiger B regions , b) Magnitude thresholds for Koeppen-Geiger B 
regions, c) Slope values for Koeppen-Geiger C regions, d) Magnitude thresholds 
for Koeppen-Geiger C regions, e) Slope values for Koeppen-Geiger D regions 
and f) Magnitude thresholds for Koeppen-Geiger D regions. 

 
 
 
 
 
 
 



 
Figure 9. Mean slope [number of extremes/years of record] and magnitude [◦C] 
values for extreme maximum temperature, calculated at all 958 stations. a) Slope 
values for Koeppen- Geiger B regions, b) Magnitude thresholds for Koeppen-
Geiger B regions, c) Slope values for Koeppen-Geiger C regions, d) Magnitude 
thresholds for Koeppen-Geiger C regions, e) Slope values for Koeppen-Geiger D 
regions and f) Magnitude thresholds for Koeppen-Geiger D regions. 

 



 
Figure 10. Mean slope [number of extremes/years of record] and magnitude [◦C] 
values for extreme minimum temperature, calculated at all 958 stations. a) Slope 
values for Koeppen- Geiger B regions, b) Magnitude thresholds for Koeppen-
Geiger B regions, c) Slope values for Koeppen-Geiger C regions, d) Magnitude 
thresholds for Koeppen-Geiger C regions, e) Slope values for Koeppen-Geiger D 
regions and f) Magnitude thresholds for Koeppen-Geiger D regions. 

 



 
Figure 11. Two-sided bean plots comparing 1950-1980 and 1980-2011 monthly 
extreme magnitude thresholds. All 958 stations are represented and separated 
by Koeppen-Geiger region. (a) Extreme precipitation threshold [mm], (b) Extreme 
maximum temperature threshold [◦C], (c) Extreme minimum temperature 
threshold [◦C]. The asterisk (*) indicates that there is a statistical difference 
between the two sampled groups, significant at the 95th percentile. 



 

 
 
Figure 14. Results for Lawrence, KS precipitation and SOI behavior (a) Wavelet 
Cospectra and (b) Wavelet Coherence. 
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Figure 15 Results for Brewton, AL (USHCN Station 011084) daily precipi- tation 
continuous wavelet transform (cwt) (a), precipitation time series with extreme 
event highlighted (b) and bean plots representing the pdf of extreme or normal 
events at each timescale (c).  

 
 
 
 
  



 
 
Figure 16 Results for Brewton, AL (USHCN Station 011084) daily precipitation 
and SOI behavior (a) cross wavelet transform (xwt), (b) the observed 
precipitation trend with the extremes highlighted alongside the observed SOI 
trend and (c) illustrating the power distribution of extreme and normal events for 
each period. The wtc example results are shown the following column (d) the 
wavelet coherence transform, (e) the observed precipitation and SOI and (f) the 
power distribution of the extreme and normal events throughout time.  



 
 
Figure 17 Continuous wavelet transform (cwt) results for precipitation (a- c), 
maximum temperature (d-f) and minimum temperature (g-i). Extreme (dashed) 
and normal (solid) results averaged across each Koeppen-Geiger region, where 
the arid zone is row 1, warm temperate zone is row 2 and snow zone is row 3. 
Vertical dashed grey lines are indicative of monthly, annual and decadal 
timescales respectively.  

  



 
Figure 18 Wavelet coherence transform (wtc) results of precipitation and 
teleconnections. Extreme (dashed) and normal (solid) results averaged across 
each Koeppen-Geiger region, where the arid zone is row 1, warm temperate 
zone is row 2 and snow zone is row 3. Vertical dashed grey lines are indicative of 
monthly, annual and decadal timescales respectively.  
 
 
 
 
 



 
 
Figure 19. Differences between 21st- and 20th-century daily precipitation 
extremes (95th-percentile) for four different NARCCAP RCM–GCM combinations. 

 
 
 

 
 
Figure 20. Distributions of daily precipitation in the vicinity of three cities for the 
20th- (black) and 21st-century (red) NARCCAP simulations. Gray and red vertical 
lines denote 90th, 95th, and 99th percentiles. 
 

 



 

Figure 21. Quantification of GCM and RCM bias. (a), (b), and (c) show 
differences between WRF and NARR (WRF minus NARR); (d), (e), and (f) show 
differences between CESM and NARR (CESM minus NARR); (g), (h), and (i) 
show differences between WRF and CESM (WRF minus CESM). 

 

 

Figure 22: Differences between projected and historical extreme values 
corresponding to the 90th, 95th, and 99th percentile of distribution for PR (left 
panel), and TMAX (middle panel), and to the 1st, 5th, and 10th percentile of the 
distribution for TMIN (right panel). 

  



 

Figure 23: Box plots for frequency (a) and intensity (b) of extreme precipitation 
during spring. Within each climate zone, the red box denotes the historical 
simulation and the blue box denotes the projected simulation. Colored dots 
indicate the difference between the two samples in that climate zone is 
statistically significant. 

  

 



 

 

Figure 24. (a): Violin plots of the TMAX distributions for each climate zone in both 
the historical (red) and projected (blue) simulations. (b): TMAX increases in the 
projected simulation compared to the historical simulation for the 81st (red), 90th 

(blue), and 97.5th (green) percentile values, as well as the mean (black) for each 
climate zones. 
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