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Summary 
The overall objective of this research was to develop fundamental understanding of 

selective oxidation processes (oxidation, ammoxidation, and oxidative dehydrogenation) of 
lower alkanes (C2-C4) over complex Mo-V-M-O mixed metal oxides (M= Nb, Ta, Te, Sb, and 
their combinations, etc.) containing so-called “M1” and “M2” phases via the integration of 
theory and modeling; catalyst synthesis and characterization of its bulk and surface; microreactor 
studies; and catalyst optimization. Many exciting and important fundamental advances were 
made to date while pursuing the following specific objectives: 

• Establish roles of Mo-V-M-O M1 and M2 phases in propane ammoxidation 
• Investigate Nb and Ta location in the M1 structure 
• Elucidate surface ab plane termination in Mo-V-Te-Nb-O M1 catalysts 
• Probe mechanism of propane ammoxidation over surface ab plane of Mo-V-Te-Nb-O M1 phase 

We demonstrated a synergy between the Mo-V-Te-Nb-O M1 and M2 phases at low 
propane conversion because this Nb-free M2 phase was much more active than the Nb-
containing M1 phase in the ammoxidation of the propylene intermediate formed over the M1 
phase (Korovchenko and Guliants 2007; Korovchenko et al. 2007; Guliants, 2008; Korovchenko 
et al. 2008). We also showed that at high propane conversion the Mo-V-Te-Nb-O M1 is the only 
phase required for propane ammoxidation to acrylonitrile (ACN) and oxidation to acrylic acid 
(Korovchenko et al. 2008) and that its surface ab planes are responsible for its activity and 
selectivity in propane (amm)oxidation (Guliants et al. 2005a; Guliants et al. 2005b; Guliants et 
al. 2006a; Guliants et al. 2006b; Trunschke et al. 2006). Redox VOx sites present in the surface 
ab planes of the M1 phase activate C-H bonds in propane and propylene, whereas other surface 
MOx species (Mo and Te) are responsible for the selectivity of the NH insertion into the allyl 
intermediate. Our XANES study confirmed that only VOx species undergo reversible oxidation 
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state changes when the M1 catalyst is cycled between reducing (H2/He) and oxidizing (O2/He) 
environments (Shiju et al. 2007a; Shiju et al. 2008a). 

Parallel structural studies of Mo-V-O, Mo-V-Te-O, Mo-V-Te-Nb-O and Mo-V-Te-Ta-O 
M1 phases revealed that the nature of substituting element (Nb, Ta, Mo or even V) at the 
pentagonal Site 9 (S9) has a significant impact on the vanadium occupancy in the proposed 
surface active center and its catalytic behavior in propane ammoxidation (Shiju et al. 2008b). 
13C-labeled propane ammoxidation to ACN over the Mo-V-Te-Nb-O M1 phase demonstrated 
that this reaction occurs directly via C3 intermediates without their dimerization or skeletal 
rearrangement as was suggested previously for propane oxidation over other classes of mixed 
metal oxides (Shiju et al. 2007b). The Mo-V-Te-Nb-O M1 catalysts modified by atomic layer 
deposition (ALD) of alumina and silica and selectively exposing surface ab planes displayed 
much greater catalytic activity and selectivity in propane ammoxidation than the original Mo-V-
Te-Nb-O M1 catalysts indicating that the surface ab planes contain the active and selective 
catalytic sites for this reaction (Shiju et al. 2008c).  

Our experimental studies during the last renewal period have focused on the synthesis 
and characterization of Ta- and Sb-substituted M1 and M2 phases. Pure reference Mo-V-Te-Ta-
O M1 phases with different Ta content were successfully made for the first time by hydrothermal 
synthesis. The Ta-substituted M1 phases were used a model for the structurally and chemically 
similar Nb-M1 because Nb and Mo in the latter M1 phase could not distinguished by structural 
methods due to similar scattering factors of these 2 elements. The Ta-M1 phases were employed 
in a STEM study to directly image the Ta sites in the M1 structure and determine their partial 
occupancies from the analysis of the Ta atomic column contrast across many unit cells from the 
surface region to the crystal bulk (Yu et al. 2012). The same analysis was also applied to 
determine the Mo/V partial occupancies in 10 other metal lattice sites in the M1 phase. This 
analysis revealed that Ta was present only in so-called pentagonal bipyramidal Site 9 where its 
occupancy varied from 12 to 39%, the rest being Mo. Contrary to findings of an earlier study 
employing a Ta-M1 phase made by rapid slurry evaporation (Pyrz et al. 2009), the Ta content 
was constant from the surface region to the crystal bulk confirming that hydrothermal synthesis 
results in better-defined catalytic materials. A density functional theory (DFT) study of the 
model clusters of the Ta- and Nb-M1 phase further confirmed that Site 9 was by far the most 
preferred location for both Ta and Nb, thereby providing first concrete support for earlier 
hypothetical models of Nb location in the M1 phase (Yu et al. 2012). 

The Ta-M1 phase with the highest Ta content (39% Site 9 occupancy) displayed slightly 
higher selectivity to ACN (87 vs. 84 mol. %) at optimal propane conversion (28%) as compared 
to the Nb-M1 phase with assumed 100% Nb occupancy at Site 9. A linear correlation was 
established between the selectivity to ACN and the Ta partial occupancy in Site 9 suggesting a 
beneficial active site isolation effect due to the presence of Ta at Site 9. Moreover, a volcano-
shaped curve was suggested when the selectivity to ACN at optimal propane conversion (28%) 
was plotted against the probability of finding a single V5+ cation in the proposed active center 
(Woo et al. 2014). This is primarily explained by poor site isolation effect observed at very high 
concentration of active centers in a Mo-V-Te-O M1 catalyst. The maximum selectivity to ACN 
corresponded to ca. 49% probability of finding just one V5+ cation in the active center, which is 
the proposed active and selective site for propane activation to ACN over the ab planes of the 
M1 phase. This volcano plot is in good agreement with another volcano plot reported in our 
earlier study of the Mo-V-Te-O M1 phases where the ACN selectivity was plotted against the V 
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concentration in the topmost surface of these M1 phases found in a LEIS study (Guliants et al. 
2005a). Furthermore, a direct correlation was indicated between the selectivity to combustion 
products (COx) and the probability of finding only Mo in the active center. This correlation 
suggested that Mo6+ might be responsible for combustion reactions. 

These very important findings provide support for the new concept of active site isolation 
that manifests itself on two length scales. On a shorter length scale, the isolated (single) V5+ 
cations present at the active centers are associated with high activity and selectivity of the M1 
phase in propane ammoxidation to ACN. On a longer length scale, these active centers are 
further isolated from one another due to the presence of either Ta or Nb at Site 9 that are unable 
to activate propane and other C3 intermediates. The active site isolation on a longer length scale 
further boosts the selectivity of the M1 phase catalysts towards acrylonitrile. These novel 
insights into the composition of the active centers and roles of constituent metal oxide species 
guided our theoretical studies of propane ammoxidation on the surface ab planes of the Mo-V-
Te-Nb-O M1 phase. 

Our theoretical studies of propane ammoxidation on the surface ab planes of the Mo-V-
Te-Nb-O M1 phase (Govindasamy et al. 2010; Muthukumar et al. 2011; Yu et al. 2014a; Yu et 
al. 2014b) have yielded significant new insights into the elementary reaction steps that suggest 
different pathways from those advanced in current hypothetical models. Contrary to the 
hypothetical models, propane is activated over a surface V=O species resulting in isopropyl 
radical and H atoms adsorbed on V=O and Te=O, respectively, with a 1.15 eV barrier consistent 
with the experimental observations. Moreover, the second and third H abstraction steps were also 
found to occur over the surface V=O and Te=O sites. Contrary to the hypothetical model, 
ammonia is activated on an oxo-depleted Mo site, which is different from the sites for dioxygen 
and propane activation. Activation of NHx (x=1-3) species over this Mo site is energetically 
downhill all the way to recombination of N atoms into gas-phase dinitrogen, making the surface 
imido (Mo=NH) the most stable H-containing N species. NH insertion from Mo=NH into the 
allyl radical was found to be energetically favorable proceeding essentially without an energy 
barrier (0.09 eV). This observation suggests that the selectivity of this step would depend on 
relative abundance of surface Mo=NH and various oxygen-containing metal oxide species.  

The findings gained in these experimental and theoretical studies are particularly 
significant due to unique ability of the M1 phase among mixed metal oxides to selectively 
catalyze several alkane transformation reactions, e.g., propane ammoxidation to ACN (Guliants 
et al. 2006a), propane oxidation to acrylic acid (Guliants et al. 2004; Guliants et al. 2005a; 
Guliants et al. 2005b; Trunschke et al. 2006; Guliants et al. 2006b), selective oxidation of n-
butane to butadiene and maleic anhydride and i-butane to methacrolein, and oxidative 
dehydrogenation (ODH) of ethane (Botella et al. 2004). Therefore, fundamental advances made 
in understanding the surface molecular structure – reactivity relationships for this unique system 
offer a possibility of not only rational design of propane ammoxidation catalysts, but also 
expanding the scope of selective alkane oxidation beyond the limited number of feedstocks that 
have met with technological and commercial success. 
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