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Summary

The overall objective of this research was to develop fundamental understanding of
selective oxidation processes (oxidation, ammoxidation, and oxidative dehydrogenation) of
lower alkanes (C,-C4) over complex Mo-V-M-O mixed metal oxides (M= Nb, Ta, Te, Sb, and
their combinations, etc.) containing so-called “M1” and “M2” phases via the integration of
theory and modeling; catalyst synthesis and characterization of its bulk and surface; microreactor
studies; and catalyst optimization. Many exciting and important fundamental advances were
made to date while pursuing the following specific objectives:

s Establish roles of Mo-V-M-O M1 and M2 phases in propane ammoxidation

s Investigate Nb and Ta location in the M1 structure

*  FElucidate surface ab plane termination in Mo-V-Te-Nb-O M1 catalysts

*  Probe mechanism of propane ammoxidation over surface ab plane of Mo-V-Te-Nb-O M1 phase

We demonstrated a synergy between the Mo-V-Te-Nb-O M1 and M2 phases at low
propane conversion because this Nb-free M2 phase was much more active than the Nb-
containing M1 phase in the ammoxidation of the propylene intermediate formed over the M1
phase (Korovchenko and Guliants 2007; Korovchenko et al. 2007; Guliants, 2008; Korovchenko
et al. 2008). We also showed that at high propane conversion the Mo-V-Te-Nb-O M1 is the only
phase required for propane ammoxidation to acrylonitrile (ACN) and oxidation to acrylic acid
(Korovchenko et al. 2008) and that its surface ab planes are responsible for its activity and
selectivity in propane (amm)oxidation (Guliants et al. 2005a; Guliants et al. 2005b; Guliants et
al. 2006a; Guliants et al. 2006b; Trunschke et al. 2006). Redox VOx sites present in the surface
ab planes of the M1 phase activate C-H bonds in propane and propylene, whereas other surface
MOy species (Mo and Te) are responsible for the selectivity of the NH insertion into the allyl
intermediate. Our XANES study confirmed that only VOy species undergo reversible oxidation



state changes when the M1 catalyst is cycled between reducing (H,/He) and oxidizing (O,/He)
environments (Shiju et al. 2007a; Shiju et al. 2008a).

Parallel structural studies of Mo-V-O, Mo-V-Te-O, Mo-V-Te-Nb-O and Mo-V-Te-Ta-O
M1 phases revealed that the nature of substituting element (Nb, Ta, Mo or even V) at the
pentagonal Site 9 (S9) has a significant impact on the vanadium occupancy in the proposed
surface active center and its catalytic behavior in propane ammoxidation (Shiju et al. 2008b).
BC-labeled propane ammoxidation to ACN over the Mo-V-Te-Nb-O M1 phase demonstrated
that this reaction occurs directly via C; intermediates without their dimerization or skeletal
rearrangement as was suggested previously for propane oxidation over other classes of mixed
metal oxides (Shiju et al. 2007b). The Mo-V-Te-Nb-O M1 catalysts modified by atomic layer
deposition (ALD) of alumina and silica and selectively exposing surface ab planes displayed
much greater catalytic activity and selectivity in propane ammoxidation than the original Mo-V-
Te-Nb-O M1 catalysts indicating that the surface ab planes contain the active and selective
catalytic sites for this reaction (Shiju et al. 2008c¢).

Our experimental studies during the last renewal period have focused on the synthesis
and characterization of Ta- and Sb-substituted M1 and M2 phases. Pure reference Mo-V-Te-Ta-
O M1 phases with different Ta content were successfully made for the first time by hydrothermal
synthesis. The Ta-substituted M1 phases were used a model for the structurally and chemically
similar Nb-M1 because Nb and Mo in the latter M1 phase could not distinguished by structural
methods due to similar scattering factors of these 2 elements. The Ta-M1 phases were employed
in a STEM study to directly image the Ta sites in the M1 structure and determine their partial
occupancies from the analysis of the Ta atomic column contrast across many unit cells from the
surface region to the crystal bulk (Yu et al. 2012). The same analysis was also applied to
determine the Mo/V partial occupancies in 10 other metal lattice sites in the M1 phase. This
analysis revealed that Ta was present only in so-called pentagonal bipyramidal Site 9 where its
occupancy varied from 12 to 39%, the rest being Mo. Contrary to findings of an earlier study
employing a Ta-M1 phase made by rapid slurry evaporation (Pyrz et al. 2009), the Ta content
was constant from the surface region to the crystal bulk confirming that hydrothermal synthesis
results in better-defined catalytic materials. A density functional theory (DFT) study of the
model clusters of the Ta- and Nb-M1 phase further confirmed that Site 9 was by far the most
preferred location for both Ta and Nb, thereby providing first concrete support for earlier
hypothetical models of Nb location in the M1 phase (Yu et al. 2012).

The Ta-M1 phase with the highest Ta content (39% Site 9 occupancy) displayed slightly
higher selectivity to ACN (87 vs. 84 mol. %) at optimal propane conversion (28%) as compared
to the Nb-M1 phase with assumed 100% Nb occupancy at Site 9. A linear correlation was
established between the selectivity to ACN and the Ta partial occupancy in Site 9 suggesting a
beneficial active site isolation effect due to the presence of Ta at Site 9. Moreover, a volcano-
shaped curve was suggested when the selectivity to ACN at optimal propane conversion (28%)
was plotted against the probability of finding a single V°" cation in the proposed active center
(Woo et al. 2014). This is primarily explained by poor site isolation effect observed at very high
concentration of active centers in a Mo-V-Te-O M1 catalyst. The maximum selectivity to ACN
corresponded to ca. 49% probability of finding just one V> cation in the active center, which is
the proposed active and selective site for propane activation to ACN over the ab planes of the
M1 phase. This volcano plot is in good agreement with another volcano plot reported in our
earlier study of the Mo-V-Te-O M1 phases where the ACN selectivity was plotted against the V



concentration in the topmost surface of these M1 phases found in a LEIS study (Guliants et al.
2005a). Furthermore, a direct correlation was indicated between the selectivity to combustion
products (COy) and the probability of finding only Mo in the active center. This correlation
suggested that Mo®" might be responsible for combustion reactions.

These very important findings provide support for the new concept of active site isolation
that manifests itself on two length scales. On a shorter length scale, the isolated (single) V>
cations present at the active centers are associated with high activity and selectivity of the M1
phase in propane ammoxidation to ACN. On a longer length scale, these active centers are
further isolated from one another due to the presence of either Ta or Nb at Site 9 that are unable
to activate propane and other Cs intermediates. The active site isolation on a longer length scale
further boosts the selectivity of the M1 phase catalysts towards acrylonitrile. These novel
insights into the composition of the active centers and roles of constituent metal oxide species
guided our theoretical studies of propane ammoxidation on the surface ab planes of the Mo-V-
Te-Nb-O M1 phase.

Our theoretical studies of propane ammoxidation on the surface ab planes of the Mo-V-
Te-Nb-O M1 phase (Govindasamy et al. 2010; Muthukumar et al. 2011; Yu et al. 2014a; Yu et
al. 2014b) have yielded significant new insights into the elementary reaction steps that suggest
different pathways from those advanced in current hypothetical models. Contrary to the
hypothetical models, propane is activated over a surface V=0 species resulting in isopropyl
radical and H atoms adsorbed on V=0 and Te=0, respectively, with a 1.15 eV barrier consistent
with the experimental observations. Moreover, the second and third H abstraction steps were also
found to occur over the surface V=0 and Te=O sites. Contrary to the hypothetical model,
ammonia is activated on an oxo-depleted Mo site, which is different from the sites for dioxygen
and propane activation. Activation of NHy (x=1-3) species over this Mo site is energetically
downhill all the way to recombination of N atoms into gas-phase dinitrogen, making the surface
imido (Mo=NH) the most stable H-containing N species. NH insertion from Mo=NH into the
allyl radical was found to be energetically favorable proceeding essentially without an energy
barrier (0.09 eV). This observation suggests that the selectivity of this step would depend on
relative abundance of surface Mo=NH and various oxygen-containing metal oxide species.

The findings gained in these experimental and theoretical studies are particularly
significant due to unique ability of the M1 phase among mixed metal oxides to selectively
catalyze several alkane transformation reactions, e.g., propane ammoxidation to ACN (Guliants
et al. 2006a), propane oxidation to acrylic acid (Guliants et al. 2004; Guliants et al. 2005a;
Guliants et al. 2005b; Trunschke et al. 2006; Guliants et al. 2006b), selective oxidation of n-
butane to butadiene and maleic anhydride and i-butane to methacrolein, and oxidative
dehydrogenation (ODH) of ethane (Botella et al. 2004). Therefore, fundamental advances made
in understanding the surface molecular structure — reactivity relationships for this unique system
offer a possibility of not only rational design of propane ammoxidation catalysts, but also
expanding the scope of selective alkane oxidation beyond the limited number of feedstocks that
have met with technological and commercial success.
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