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Abstract 
 This project investigated the development and utilization of Adaptive Model Refinement (AMoR) 
for nuclear systems simulation applications. AMoR refers to utilization of several models of physical 
phenomena which differ in prediction fidelity. If the highest fidelity model is judged to always provide or 
exceeded the desired fidelity, than if one can determine the difference in a Quantity of Interest (QoI) 
between the highest fidelity model and lower fidelity models, one could utilize the fidelity model that 
would just provide the magnitude of the QoI desired. Assuming lower fidelity models require less 
computational resources, in this manner computational efficiency can be realized provided the QoI value 
can be accurately and efficiently evaluated. This work utilized Generalized Perturbation Theory (GPT) to 
evaluate the QoI, by convoluting the GPT solution with the residual of the highest fidelity model 
determined using the solution from lower fidelity models. Specifically, a reactor core neutronics problem 
and thermal-hydraulics problem were studied to develop and utilize AMoR. The highest fidelity 
neutronics model was based upon the 3D space-time, two-group, nodal diffusion equations as solved in 
the NESTLE computer code. Added to the NESTLE code was the ability to determine the time-dependent 
GPT neutron flux. The lower fidelity neutronics model was based upon the point kinetics equations along 
with utilization of a prolongation operator to determine the 3D space-time, two-group flux. The highest 
fidelity thermal-hydraulics model was based upon the space-time equations governing fluid flow in a 
closed channel around a heat generating fuel rod. The Homogenous Equilibrium Mixture (HEM) model 
was used for the fluid and Finite Difference Method was applied to both the coolant and fuel pin energy 
conservation equations. The lower fidelity thermal-hydraulic model was based upon the same equations 
as used for the highest fidelity model but now with coarse spatial meshing, corrected somewhat by 
employing effective fuel heat conduction values. The effectiveness of switching between the highest 
fidelity model and lower fidelity model as a function of time was assessed using the neutronics problem. 
Based upon work completed to date, one concludes that the time switching is effective in annealing out 
differences between the highest and lower fidelity solutions. The effectiveness of using a lower fidelity 
GPT solution, along with a prolongation operator, to estimate the QoI was also assessed. The utilization 
of a lower fidelity GPT solution was done in an attempt to avoid the high computational burden 
associated with solving for the highest fidelity GPT solution. Based upon work completed to date, one 
concludes that the lower fidelity adjoint solution is not sufficiently accurate with regard to estimating the 
QoI; however, a formulation has been revealed that may provide a path for addressing this shortcoming.                                                                                                                                  
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Overview 

To further enhance simulation capabilities, whether it is of a nuclear power system or nuclear fuel 

assembly, the inclusion of high fidelity models of different physics phenomena coupled together in a tight 

fashion will be required. One of the challenges of accomplishing this is to do it in such a way that a given 

level of computational fidelity can be obtained without over burdening the computer resources that are 

available to end users. If all of the modeling of the physics is accomplished by using highly detailed 

models, it is doubtful that available computer resources would be able to complete typical design and 

safety analysis tasks. To overcome this limitation, multifidelity approaches have been proposed and to a 

limited extent pursued. [Note, within the context of the work proposed, multiscale models can be thought 

of as one class of multifidelity models.] If a multifidelity model approach is to be utilized, there must be 

the capability to determine the differences of the collection of fidelities for different physics models that 

are being employed so that higher-fidelity physics models can be called upon when necessary to satisfy 

stated accuracy requirements. For transient applications, one would expect the fidelity for each physics 

model to change with time. The work completed developed the capability to determine the differences in 

predicted values of Quantities of Interest (QoI) due to model introduced errors for the collection of 

fidelity-level models currently being employed, and automatically change this collection of fidelity-level 

models as necessary to just meet stated accuracy requirements. In this manner the minimum multiphysics 

and multifidelity modeling computational resources is expended to meet a stated set of accuracy 

requirements as controlled by differences caused by model introduced errors. More concisely, an 

Adaptive Model Refinement (AMoR) capability has been investigated for usage in modeling nuclear 

systems. 

 

Work Completed 

The milestones as originally planned are presented in Table I. 

Table I. Original milestones 
Milestone 

1. Task 1.a Development of Multifidelity Neutronics Models 
2. Issue Annual Report 
3. Task 1.b Development of AMoR for Neutronics Models 
4. Issue Annual Report 
5. Task 2. Development of Multiphysics Models 
6. Task 3. Development of AMoR for Multiphysics Models 
7. Issue Final Report 
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As noted in Table I, model development and AMoR tasks were divided into those focusing on neutronics 
and subsequently on multiphysics. The neutronics model development included the following subtasks: 

• establishing a PWR core model for an operating reactor in a reload cycle for the nodal diffusion 
code NESTLE to obtain the higher fidelity 3D space-time flux solution, 

• adding time-dependent Generalized Adjoint Capability (GPT) to NESTLE, 
• adding the capability to determine the residual of the nodal diffusion equations based upon the 

prolongated point kinetic equations forward flux solution and convoluting it with the GPT flux to 
obtain the QoI, 

• adding the capability to generate point kinetic parameters and prolongation operators utilizing 
NESTLE, and 

• development of a point kinetics equations solver code and utilization of prolongation operators 
to construct the lower fidelity 3D space-time dependent flux . 

The multiphysics model development included the following subtasks: 
• development of a single closed channel thermal-hydraulic model of the coolant and fuel pin 

using the Homogenous Equilibrium Mixture (HEM) fluids model  and the Finite Difference 
Method (FDM) to establish the higher-fidelity computer code to determine the time-space 
dependent coolant and fuel temperatures, 

• generation, using the higher fidelity thermal-hydraulic model, of effective thermal conductivities  
for the fuel to be used in the lower fidelity model based upon using a coarser spatial mesh and 
the associated prolongation operator, 

• development of a time-dependent GPT solver code for the thermal-hydraulic model, one solver 
based upon the mathematical adjoint and another solver based upon the physical adjoint, and 

• addition of the capability to determine the residual of the thermal-hydraulic equations based 
upon the prolongated lower-fidelity forward coolant and fuel temperature solution and 
convoluting it with the GPT fuel and coolant temperatures to obtain the QoI. 

These capabilities were subsequently utilized to obtain higher and lower fidelity solutions for the 
neutronics and thermal-hydraulic problems. 

For the neutronics problem the focus was on having determined the Quantity of Interest (QoI), 
whether the differences of the lower and higher fidelity solution could be annealed out by switching 
periodically with time from the lower to the higher fidelity solution for a short span of time. The higher 
fidelity GPT solution was used to determine the QoI. Switching with time between the higher and lower 
fidelity solutions, including regeneration of the prolongation operator, was completed using the 
prolongated point kinetic equations solution as the initial conditions for NESTLE when branching 
occurred. The conclusion from the study so far completed is that the strategy of switching between the 
lower and higher fidelity solution as directed by the magnitude of the QoI can be effective, implying 
lower fidelity solution differences with the higher fidelity solution can be periodically annealed out. 
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For the thermal-hydraulic problem the focus was on exploring the usage of the lower fidelity GPT 
solution to estimate the QoI. Since more computational effort is required to determine the higher 
fidelity GPT solution [N(N+1)/2 versus N time steps solved for], for AMoR to be computationally efficient 
a lower fidelity GPT solution must be such that the QoI interest can be estimated sufficiently accurate. 
This was assessed by convoluting the lower fidelity GPT coolant and fuel temperature solution with the 
residual of the higher fidelity thermal-hydraulic equations using the prolongated lower fidelity, forward 
solution. As noted earlier, this was done utilizing adjoint operators based upon both the mathematical 
and physical adjoints, in addition to an analytic adjoint that enabled code verification. The conclusion 
from the study so far completed is that no prolongated lower fidelity GPT solution has been found that 
approximates the QoI with sufficient accuracy. However, a formulation has been revealed that indicates 
exactly what QoI the prolongated lower fidelity GPT solution is determining, which we believe can be 
utilized to determine a lower fidelity adjoint operator and/or prolongation operator that will improve 
the accuracy of the estimated QoI. 
 
Organization of Report 

In Section A of this report, the neutronics results are presented in the fashion of the master‘s thesis 
of Mr. Sterling Scatterfield. His work builds upon earlier work of Mr. Jason Andrus and is being 
continued by Ms. B Ellen Eldridge. In Section B of this report, the thermal-hydraulics results are 
presented in the fashion of the master’s thesis of Mr. Trip Dacus. His work builds upon earlier work of 
Mr. Philip Marquis and is being continued by Mr. Dacus, but not focused on the GPT solution of two-
phase fluid flow utilizing Computational Fluid Dynamics (CFD). Finally, Section C presents the derivation 
of the time dependent GPT equations that have been programed into the NESTLE code by Post Docs Dr. 
Jaesok Heo and Dr.  Ross Hays. Ms. Eldridge is continuing this work utilizing the NESTLE code’s GPT 
capability. 
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ABSTRACT

SATTERFIELD, STERLING JUSTIN. The Application of Adaptive Model Refinement to
Nuclear Reactor Core Simulation. (Under the direction of Paul Turinsky.)

Nuclear reactor design is a complex, iterative process consisting of the integration of multiple

independent system designs, resulting in near constant redesign requiring more simulations.

The nature of this processes is perpetually driving designers to improve the time/accuracy

ratio of reactor simulations to help ensure the achievement of the best possible solution. The

application of advanced simulation techniques is used by designers to improve their simulation

capabilities. These techniques revolve around two basic approaches, one of which is to integrate

multiple simulation models to create a hybrid model with the hopes of yielding higher fidelity

solutions faster; This is the aspiration of Adaptive Model Refinement (AMoR). This work is a

proof of concept for the application of the AMoR method to nuclear reactor neutron simulation,

specifically the integration of NESTLE [1], a few-group diffusion simulator, with a point reactor

kinetics solver (PKE-Solver).

The basis for this approach is grounded in the Quasi-Static method [7] [8], expanding on

the concept of the separability of the flux into amplitude-flux shape-functions [6]. Using this

idea, a formulation for the separation of the flux and precursor concentrations into amplitude-

spatial factors was created. The relationship between these factors allowed for the calculation of

the spatial factors by NESTLE, the higher fidelity model, and the calculation of the amplitude

factors by the PKE-Solver, the lower fidelity model, resulting in a projected 3-D model. Multiple

error metrics were developed to asses the fidelity of this projected model.

Two AMoR approaches were evaluated in this research. One approach involved the creation

of a steady-state library containing the shape-factors, which were used in real-time with the

PKE-Solver to generate the projected model. This approach resulted in a maximum locally

normalized flux and precursor concentration error of roughly 12 - 30% and 60 - 65%, respectively,

for the transients simulated. A 2 second transient test case and a 120 second transient test case

were evaluated. The second approach, involved updating the shape-factors from the higher

fidelity model, in real time, when the error of the projected model was deemed too large. For

the 2 second transient case, 8 shape-factor updates were required, using a PKE-Solver time-step

size of 0.01 seconds, to maintain a maximum flux error of 25%. For the 120 second transient case,

only 4 updates were required, using a PKE-Solver time-step size of 0.30 seconds, to maintain a

maximum flux error of 10%.
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Chapter 1

Introduction

Nuclear reactor design is a complex process involving the evaluation of many technical param-

eters. In addition, most of these design parameters have interdependencies which are not easily

evaluated by designers. As a result, multiple reactor simulation codes are used to validate a

reactor design before a design can be constructed.

In general, reactor simulations are non-trivial and require significant resources to provide

a solution. To ensure that the design space is adequately explored, simulations are repeatedly

solved under varying conditions. This repetitive solution analysis can quickly drive up cost and

time required for reactor design. Also, it is important to note that not all simulation solutions

provide the same detail or resolution. Thus the design processes consists of many trade-offs

resulting in varied financial consequences. These economic consequences fuel the motivation to

continually increase current simulation capabilities to optimize reactor design; in short, pushing

designers to find better designs, faster and cheaper.

For simulation purposes the nuclear reactor is divided into multiple independent systems.

Each of these systems are simulated and validated separately, then the results are integrated

to create the final design. From this description it is easy to understand how the design process

can be plagued with seemingly constant re-designs, requiring more simulations. The division of

the reactor into multiple systems is simply because simulating an entire reactor with a single,

multi-physics code, is beyond the current state of the art, though there are teams of researchers

attempting to address this issue such as CASL1. Thus, designers have a multi-facade problem

consisting of limited computational capabilities, multi-physics coupling, and independent system

simulations.

This research aims to address one piece of this complicated design process, the independent

1CASL is the Consortium for Advanced Simulation of Light water reactors. CASL’s mission is to ”Pro-
vide coupled, higher-fidelity, usable modeling and simulation capabilities needed to address light water reactor
operational and safety performance-defining phenomena.

1



systems simulation; more specifically, the reactor core design process. Reactor core design is a

large, active area of research primarily concerned with controlling the reactor power distribution

and reactivity. The behavior of the reactor core is studied by simulating the interactions of

neutrons with materials, this is known as neutron transport simulation.

Neutron transport simulations are divided into two main methods, deterministic and stochas-

tic. In short, stochastic methods utilize random variables, in a systematic manner, to evaluate

a design. This research does not focus on stochastic methods but rather deterministic methods.

The deterministic method attempts to solve the Boltzmann transport equation while minimiz-

ing the necessary computer resources and maximizing the level of solution accuracy. The goal

of this research is to determine the applicability of an advanced modeling technique, Adaptive

Model Refinement, to deterministic neutron transport simulations.

1.1 Deterministic Simulation Techniques

1.1.1 Overview

The deterministic approach utilizes the Boltzmann transport equation which expresses an in-

ventory balance of all neutrons in the phase space. The Boltzmann equation was developed

circa 1800 to describe the kinetic gas theory. This equation was adapted to explain neutron

transport in 1940 and in this form is known as the neutron transport equation [2]. Following, is

the transport equation using standard notation, Eq. 1.1.

1

v

B ψp~r,Ω, E, tq

Bt
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1, tqψp~r,Ω1, E1, tq �Qp~r,Ω, E, tq (1.1)

Note that delayed neutrons are ignored in writing this equation.

Numerical approaches to solving the transport equation are widely used for general geome-

tries, as analytic solutions are only known for few simplistic geometric arrangements. In general

solving the transport equation is a formidable task and because of this several approxima-

tion techniques have been developed. The ultimate goal of this research is to extended current

transport simulation capabilities by implementing an advanced modeling technique. For this

proof of concept study the advanced technique has been applied to diffusion and point kinetics

simulations, which approximate the transport equation.

The diffusion equation basis is founded through the assumption that the flux is linearly
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anisotropic2. Following this, assuming that the neutron source is isotropic3 and that the rate

of change of the current density is much smaller than the other terms of the equation4, results

in the formulation of Fick’s law in terms of the neutron current density5. From all of these

assumptions, the diffusion approximation of the neutron transport equation arises and can be

concisely presented using standard notation as the energy dependent diffusion equation [2].

Following, is the energy dependent diffusion equation using standard notation, Eq. 1.2 .

1

vpEq

Bφp~r,E, tq

Bt
�

∇ �Dp~r,E, tq∇φp~r,E, tq � Σtp~r,E, tqφp~r,E, tq �

» 8

0
dE1 Σsp~r,E

1 Ñ E, tqφp~r,E1, tq�

χp~r,E, tq

» 8

0
dE1 νf p~r,E

1, tqΣf p~r,E
1, tqψp~r,E1, tq �Qp~r,E, tq (1.2)

The point kinetic equations are a further simplification of the diffusion equation. Though,

before the point kinetic equations can be formulated the diffusion equation must be modified

to account for delayed neutron effects6. The source term in the diffusion equation must also

include terms which account for the contributions of delayed neutrons. Accompanying this

substitution, the precursor concentration balance equations are introduced7. The point kinetic

treatment is based upon expressing both the flux and precursor concentrations as a product

of time dependent amplitude functions and slowly time varying spatial shape functions. Using

adjoint perturbation theory and applying a likewise treatment for the adjoint functions, the

point kinetic equations [2] for the amplitude functions are obtained without approximation.

Following, are the set of equations which make up the point reactor kinetics equations using

standard notation, Eq. 1.3 and Eq. 1.4.

dnptq

dt
�
kptqp1 � βptqq � 1

l
nptq �

I̧

i�1

λiCiptq, (1.3)

dCiptq

dt
� βiptq

kptq

lptq
nptq � λiCiptq, i � 1, . . . , I (1.4)

It is common practice to assume that the spatial shape functions equations’ time derivative

2The linearly anisotropic assumption implies that the angular flux is weakly dependent on angle.
3A isotropic neutron source implies: Qp~r,Ω, E, tq � 1

4π
Qp~r, E, tq

4Assuming that the derivative is negligibly small in comparison, implies that the rate of current density
variation with respect to time is much slower than the collision frequency, vpEqΣtp~r, Eq.

5Fick’s law formulated in terms of the neutron current density: Jp~r, E, tq � �Dp~r, Eq∇φp~r, E, tq
6To account for delayed neutrons, the fission source is modified:

Sf p~r, tq � p1 � βq
³8
0
dE νf p~r, E, tqΣf p~r, E, tqφp~r, E, tq

7The precursor concentration balance equations:
BCip~r,tq

Bt
� �λiCip~r, tq � βiptq

³8
0
dE νf p~r, E, tqΣf p~r, E, tqφp~t, E, tq
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can be ignored, implying a quasi steady state exists, achieved mathematically by casting as an

eigenvalue equations. Note that the spatial shape equations still have time dependence through

the time dependence of cross-sections. The time dependence of the point kinetic parameters,

i.e. kptq, βptq, βiptq, and lptq, originate since they are given by inner products involving not only

cross-sections but also the forward and adjoint spatial shape functions.

For the purposes of this research, the diffusion equation will be solved by the NESTLE code

and the point kinetics equations will be solved by a point kinetics solver simply referred to as

the PKE-Solver.

1.1.2 NESTLE

The code name NESTLE stands for Nodal Eigenvalue, Steady-state, Transient, Le core

Evaluator. NESTLE was developed using FORTRAN 77. As the title implies, NESTLE is capa-

ble of solving the eigenvalue, eigenvalue adjoint, external fixed-source steady-state, and external

fixed-source transient or eigenvalue initiated transient problems. The code solves the few-group

neutron diffusion equation using the Nodal Expansion Method (NEM) and supports hexagonal

and Cartesian geometries. When evaluating a transient case, delayed neutrons are accounted for

utilizing the standard multi-group precursor concentration equations. Also, criticality or power

level searches can be performed when analyzing steady-state eigenvalue or steady-state exter-

nal fixed-source problems, respectively. In addition, NESTLE contains an impressive arsenal of

features not needed for this proof of concept study [1].

For the steady-state cases NESTLE solves the multi-group steady-state fixed-source dif-

fusion equation [1]. To accommodate the use of a numerical method the diffusion equation

is discretized using the finite difference method. To minimize finite difference errors, spatial

coupling coefficients are corrected using a nodal expansion method. Following, is the modified

diffusion equation using standard multi-group notation, Eq. 1.5, where from now on spatial ~r

and time t dependence is suppressed.

�∇ �Dg∇φg � Σtgφg �
Ģ

g1�1

Σsg,g1φg1 � χg

Ģ

g1�1

νg1 Σfg1
φg1 �Qextg (1.5)

g � 1, . . . , G

When solving the transient problem under external fixed-source conditions the multi-group

diffusion equation is adapted to account for the delayed neutrons [1]. The equation is modified

in the same way the equation is changed for point reactor kinetics. The following is the adapted

multi-group equation using standard notation, Eq. 1.6 and Eq. 1.7.
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1

vg

Bφg
Bt

�∇ �Dg∇φg � Σtgφg �

Ģ

g1�1

Σsg,g1φg1 � p1 � βqχppq
g

Ģ

g1�1

νg1 Σfg1
φg1 �

IpDq¸
i�1

χ
pDq
gi λiCi �Qextg

(1.6)

and
BCi
Bt

� βi

Ģ

g�1

νg Σfgφg � λiCi, i � 1, . . . , IpDq (1.7)

To accommodate the eigenvalue initiated transient problem the equation is slightly altered

by setting Qextg � 0 and replacing νg Σfg with pνg Σfgq{k [1].

1.1.3 PKE-Solver

The point kinetics equations solver (PKE-solver) consist of a simple matrix solver which eval-

uates the point kinetic equations with input parameters generated by NESTLE. It is advanta-

geous to modify the point kinetic equations slightly to utilize two new terms, ρ and Λ, which

represent reactivity and mean neutron generation time, respectively. Reactivity is formulated

in the following manner,

ρptq �
kptq � 1

kptq
,

and mean neutron generation time, the mean generation time between the birth of a neutron

and the subsequent absorption, is defined simply by

Λ �
l

k
.

Applying these formulations to the standard point kinetic equations yields the most convenient

form of the equations, (Eq. 1.8).

dn

dt
�
ρ� β

Λ
n�

I̧

i�1

λiCi, (1.8)

dCi
dt

�
βi
Λ
n� λiCi, i � 1, . . . , I.

This form of the point reactor kinetic equations is known as the conventional form [2].
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1.2 Advanced Simulation Techniques

1.2.1 Overview

Due to the complexity of nuclear reactors the desired simulation fidelity is currently out of

reach for designers. This creates a level of uncertainty in many aspects of reactor design. This

uncertainty is generally accommodated by increasing safety margins, resulting in increased

financial burden. For this reason, reactor simulation is a constantly evolving field of research.

To help overcome the formidable challenges accompanying reactor simulation, many ad-

vanced simulation approaches have been and continue to be researched. Advanced modeling

techniques can take many forms but most techniques revolve around two central ideas. One

method is to integrate multiple simulation models to create a hybrid model with the hopes of

yielding higher fidelity solutions faster. The second central idea attempts to couple multiple

physics phenomena into a single code, called multi-physics coupling, with the intentions of pro-

ducing similar fidelity results faster. For this study, the first approach was investigated further

by combining a diffusion code and point reactor kinetics code to create a type of hybrid model,

with the goal of producing higher fidelity results faster; though, the speed at which these results

can be calculated was not investigated during this demonstration of concept.

The approach being evaluated in this study has a well known and very similar ’sister’

technique, adaptive mesh refinement (AMR). AMR is an advanced simulation technique which

is used to vary the resolution of numerical schemes. When a numerical method is applied to a

problem the dimensions of the problem are often broken into discrete regions or ’cells’, typically

for neutron diffusion calculations in a repeating fashion, creating a grid or ’mesh’. Assuming

the numerical scheme is well behaved, the resolution of the solution is dependent upon the

grid spacing. From this point forward, when describing the problem space only the spatial

dimensions will be discussed for simplicity.

In general, the simulation of a realistic problem involves regions of the problem space which

have differing requirements for grid spacing to supply a solution of acceptable fidelity. To take

advantage of this disparity AMR is applied. When using AMR the spatial mesh is varied to

provide higher resolution where needed and lower resolution where acceptable. This allows the

user to find the solution to a problem using differing resolutions while still providing the same

accuracy as simulating with a higher cell count uniform grid, thus improving the time/accuracy

ratio. Adaptive Model Refinement (AMoR) is similar in that it allows the user to adjust the

solution method to best fit the varying complexity of the problem space, but differs in that

instead of varying the resolution, the model fidelity is varied by switching between physics

models.
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1.2.2 Adaptive Model Refinement

The goal AMoR is to develop the capability to determine which physics model, given physics

models of differing fidelity, to utilized to provide a solution with the desired level of fidelity while

requiring minimum computational resources. Applying this to steady-state problems would

entail a single selection. Considering this selection in terms of multi-fidelity, not unlike multi-

grid, would correspond to the height of a V cycle, in that higher-fidelity models are associated

with traversing up the V. In contrast to the steady-state application, applying this method to

time-dependent problems would require the switching between models of differing fidelity as

one model advances in time. The foundation of this approach is grounded in what is known as

the quasi-static method of reactor kinetics. The past success of this method demonstrates the

applicability of neutron flux reconstruction techniques with loosely coupled systems, resulting

in an improved time/accuracy ratio [11].

The eventual goal of this research is to utilize an adjoint method to determine the fidelity of

the specific physics model and thus act as a guide to determine which physics model will produce

results with the desired fidelity at minimum computational expense. Since the adjoint method

is still under development, the fidelity of models produced during this study were determined

by comparing the AMoR results with the higher fidelity solution, which was solved in advance.

The switching between physics models requires projection and restriction operator capabil-

ities. When considering these operators in terms of several physics models of differing fidelities,

their interpreted meaning should not be limited to only discretized spatial-energy group pro-

jection mappings but also be viewed as restriction operators generating lower-fidelity models

from higher-fidelity models. This interpretation yields insight into the AMoR’s ability to utilize

physics models of differing fidelity to produce a single solution of acceptable fidelity.

For the purposes of this research, the AMoR method was studied utilizing NESTLE, a 3-D,

two-group, space-time solution calculated by the nodal form of the neutron diffusion equations,

as the higher-fidelity model and the PKE-Solver, a point reactor kinetics equation solver, as the

lower fidelity model. The projection operator involves mapping the point kinetics flux to a 3-D,

two group flux and the precursor group concentrations to a 3-D precursor group concentrations.

The restriction operator will involve determining the point kinetic parameters from the 3-D flux

and precursor group concentrations.

1.2.3 Quasi-static Diffusion

The quasi-static approach of reactor kinetics was first introduced by Henry roughly fifty-five

years ago [7] [8]. This approach was created to address the questionable results produced when

applying point reactor kinetics equations. The approach developed by Henry factors the neutron
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flux into ’amplitude’ and ’shape’ functions, Eq. 1.9.

φp~r,E, tq � T ptqψp~r,E, tq (1.9)

The amplitude function, T ptq, is solely dependent upon time and provides the determining

information regarding changes in reactor power, where as the shape function, ψp~r,E,Ω, tq, de-

scribes the time-dependence of the power distribution. This factorization is done by demanding

that the spatial weighted integral of the shape function be time independent. This assures

that the shape function varies slower with time than the amplitude function, allowing larger

time-steps to be taken for the shape function versus the amplitude function. For the so called

’adiabatic’ approach, the shape function is assumed independent of time. For reactor dynamics

the adiabatic approach yields much better results when compared with point kinetics alone [12];

though, when compared with full space-time calculations the differences were significant for cer-

tain transients [9]. A short time later it was demonstrated that the error of this approach could

be minimized by applying a nonlinear coupling between amplitude and shape functions [10];

This approach is referred to as ’quasi-static’. This method was further developed by not set-

ting to zero the shape function time derivative [11], resulting in the present day form of the

quasi-static scheme, commonly referred to as the ’Improved Quasi-static Method’, (IQM).

The IQM is utilized by solving the point reactor kinetic parameters using the shape function

equation on a macro-time-step, ∆t, and applying these parameters to the amplitude function

equations, i.e. the point reactor kinetic equations, solved on a micro-time-step, δt, and then

after n � ∆t{δt time steps switching back to solve the amplitude function equations [5]. As a

result of the nonlinear treatment, there exist problems of such complexity that the convergence

of the iterative method can take longer than the time needed to find a solution by the most

suitable implicit numerical algorithm [3].

As opposed to applying the coupled amplitude-shape function approach used by the IQM, it

is possible to develop an alternative method applying a coupled amplitude-flux shape function

approach [6]. In this approach the flux is factored into ’amplitude’ and ’flux’ functions, Eq. 1.10.

φp~r,E, tq � T ptqφ̂p~r,E, tq (1.10)

The resulting integration scheme is linear, as opposed to the non-linear IQM scheme, and as a

result is much easier to implement. This scheme is known as the ’Predictor-Corrector Quasi-

static Method’ (PCQM) [4].

The application of the AMoR method is most similar to the PCQM, in that the flux is

factored into amplitude-flux shape functions. In addition to this factorization, the precursor

concentrations are also factored into amplitude-precursor shape functions. The primary differ-
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ence between the IQM/PCQM and the AMoR approach is the treatment of the macro-time-step,

∆t; the AMoR method does not use a constant value for ∆t. The overall goal of the AMoR

method is such that ∆t is not assumed and is instead determined, during the simulation with

time by the adjoint method. Though the adjoint method is not used in this research as it is still

under development, the macro-time-step is defined by the discrepancies between the projected

model and the higher fidelity solution.
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Chapter 2

Methodology

2.1 Adaptive Model Refinement Method Formulation

The application of the AMoR method requires the development of shape-factors for the flux and

precursor group concentrations. The values are calculated by NESTLE and used by the PKE-

Solver to create the projected 3-D model. Speaking in terms of the IQM method, the macro-

time-step, at which the shape-factor values are calculated, is dependent upon the formulation of

the specific AMoR approach. As discussed above, the discrepancies between the higher fidelity

model and the projected result indicates when physics model switching is needed. In addition

to this approach, a steady-state library approach was also developed to explore the possibilities

of a predetermined macro-time-step using a AMoR scheme and is discussed in detail in section

2.2.1 Organization of the Steady-state Library.

2.1.1 Output from NESTLE

Specific to this research, NESTLE solved the 2-neutron energy group, 6-precursor group, nodal

diffusion equation. The core geometry consisted of a quarter core slice of a Westinghouse 4-loop,

3,311 MWt, PWR. The specific geometric inputs, material inputs, and cross-section data were

from a sample data set1. Specific reductions in complexity were assumed2 in this research to

simplify the problem and help demonstrate the concept. The unaltered NESTLE v5.2.1 outputs

some of the needed values for the AMoR method, such as the scalar flux,

φp~r,E, tq Ñ φg,mptq,

1The data set was sampled from the McGuire Nuclear Station, Unit 1, Cycle 13.
2The specific assumptions are turning off the Xenon and Samarium options and not using the thermal-

hydraulic feedback option.
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the precursor group concentration,

Cip~r, tq Ñ Ci,mptq,

and the neutron velocity,

vp~r,E, tq Ñ vg,mptq,

where g is the neutron energy group ranging g � 1, 2, i is the precursor group ranging i �

1, . . . , 6, and n is the spatial node ranging m � 1, . . . ,M .

Modifications to NESTLE were needed to adapt the code for use with the AMoR method.

The energy dependent neutron density is calculated as,

ng,mptq �
φg,mptq

vg,mptq
.

Let the initial energy dependent neutron density be denoted by ng,mp0q.

In addition the volume average neutron density, the energy dependent volume averaged

scalar flux, the volume averaged scalar flux, the volume average precursor group concentration

values, and the volume averaged neutron velocity values are needed. Note that any volume

averaged values are only averaged over the fuel containing volume of the core and not the

entirety of the geometric core. The volume calculations are limited to this region because the

PKE-Solver is only capable of approximating the fueled region of the core. The volume averaged

neutron density is formulated as,

xnptqy �

³
V dV

³8
0 dE np~r,E, tq³
V dV

�

°M
m�1

°2
g�1 ng,mptqVm°M
m�1 Vm

,

where Vm is the volume of node m and V is the total volume of the fueled region of the core. Let

the initial volume averaged neutron density be denoted by xnp0qy. Also, allow the normalized

volume averaged neutron density to be defined as xn̄ptqy, such that,

xn̄ptqy �
xnptqy

xnp0qy
. (2.1)

The energy dependent volume averaged scalar flux is calculated by,

xφgptqy �

³
V dV

³Eg
Eg�1

dE φp~r,E, tq³
V dV

�

°M
m�1 φg,mptqVm°M

m�1 Vm
. (2.2)
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The volume averaged scalar flux is formulated as,

xφptqy �

³
V dV

³8
0 dE φp~r,E, tq³
V dV

�

°M
m�1

°2
g�1 φg,mptqVm°M
m�1 Vm

.

The volume averaged precursor group concentration is calculated by,

xCiptqy �

³
V Cip~r, tqdV³

V dV
�

°M
m�1Ci,mptqVm°M

m�1 Vm
. (2.3)

Let the initial volume averaged precursor group concentrations be denoted by xCip0qy. Also,

allow the normalized volume averaged precursor group concentration to be defined as xC̄iptqy,

such that,

xC̄iptqy �
xCiptqy

xCip0qy
. (2.4)

The volume averaged neutron velocity is formulated as,

xvptqy �
xφptqy

xnptqy
. (2.5)

Before the shape-factor values can be formulated one additional value is needed, this factor

is referred to as the flux energy partition function, xf
pφq
g ptqy, and is calculated by,

xf pφqg ptqy �
xφgptqy

xφptqy
. (2.6)

2.1.2 Shape-factor Formulation

The scalar flux and precursor group concentration shape-factors can be formulated simply in

terms of the nodal value divided by the volume averaged value. Thus the scalar flux shape-factor,

S
pφq
g,mptq, can be calculated by,

Spφqg,mptq �
φg,mptq

xφgptqy
, (2.7)

and the precursor group concentration shape-factor, S
pCq
i,m ptq, can be calculated by,

S
pCq
i,m ptq �

Ci,mptq

xCiptqy
. (2.8)

From these factors the scalar flux and precursor group concentration values can be broken down

from their 3-D form into their amplitude-shape form. The scalar flux can be factored using the

following,

φg,mptq � Spφqg,mptqxf
pφq
g ptqyxvptqyxn̄ptqyxnp0qy. (2.9)

12



The precursor group concentration can be factored using the following,

Ci,mptq � S
pCq
i,m ptqxC̄iptqyxCip0qy. (2.10)

2.1.3 Output from the PKE-Solver

The PKE-Solver evaluates the point reactor kinetics equations utilizing 6-precursor group con-

centrations. The point kinetic input parameters, i.e. beta values, reactivity, etc., are provided by

NESTLE v5.2.1 under steady-state conditions. The PKE-Solver outputs the approximate nor-

malized core averaged neutron density, x¯̃nptqy, and the approximate normalized core averaged

precursor group concentration, x ¯̃Ciptqy.

2.1.4 Formulation of the Projected Model

Using the outputs from NESTLE and PKE-Solver it is now possible to create an approximation

of the 3-D flux and precursor group concentrations. This approximation is referred to as the

Projected Model. Recall equation Eq. 2.9 and replace the normalized volume averaged neutron

density, xn̄ptqy, with the PKE-Solver approximate normalized volume averaged neutron density,

x¯̃nptqy. This substitution produces the approximate, or projected 3-D flux3, φ̃g,mptq.

φ̃g,mptq � Spφqg,mptqxf
pφq
g ptqyxvptqyx¯̃nptqyxnp0qy (2.11)

Recall equation Eq. 2.10 and replace the normalized volume averaged precursor group con-

centrations, xC̄iptqy, with the PKE-Solver calculated approximate normalized volume averaged

precursor group concentrations, x ¯̃Ciptqy. This substitution results in the projected 3-D precursor

group concentrations4, C̃i,mptq.

C̃i,mptq � S
pCq
i,m ptqx

¯̃CiptqyxCip0qy (2.12)

2.1.5 Formulation of Verification Calculations

To ensure that the AMoR method was implemented correctly, verification calculations were

developed. These equations specifically ensure that the projected model is calculated correctly

along with the locally normalized error calculations for the flux and precursor group concen-

trations. For verification purposes the shape-factor values for both flux and precursor group

concentrations are updated at each time-step, as well as the flux energy partition function and

3Due to the initialization of the shape-factors and the relatively low computational cost of solving a steady-
state problem with NESTLE, xnp0qy is always obtainable.

4Due to the initialization of the shape-factors and the relatively low computational cost of solving a steady-
state problem with NESTLE, xCip0qy is always obtainable.
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the volume averaged neutron velocity. Updating these factors makes it possible to find a rela-

tionship between the locally normalized error calculations and the normalized volume averaged

calculations.

For the flux values, consider the locally normalized error equation between the NESTLE

calculated 3-D flux and the projected 3-D flux,

εflux,g,mptq �
φg,mptq � φ̃g,mptq

φg,mptq
.

Recall Eq. 2.11 and applying this to the locally normalized error equation results in the follow-

ing,

εflux,g,mptq �
φg,mptq �

φg,mptq
xφgptqy

xφgptqy
xφptqy xvptqyxnp0qyx

¯̃nptqy

φg,nptq
� 1 �

xvptqyxnp0qyx¯̃nptqy

xφptqy
.

From this form, a relationship between the two error equations can be reached by applying

Eq. 2.1 and Eq. 2.5, such that,

εflux,g,mptq �
xnptqy � xnp0qyx¯̃nptqy

xnptqy
�
xn̄ptqy � x¯̃nptqy

xn̄ptqy
.

A formal relationship between the locally normalized flux error, εflux,g,mptq, and the normalized

volume averaged neutron density error, εdenptq, has been obtained.

εdenptq �
xn̄ptqy � x¯̃nptqy

xn̄ptqy
� εflux,g,mptq �

φg,mptq � φ̃g,mptq

φg,mptq
(2.13)

Using the error relationship (Eq. 2.13) the flux projection calculations can be verified by ensur-

ing that the locally normalized flux error values, εflux,g,mptq, do not differ from the normalized

volume averaged neutron density error values, εdenptq, by more than single precision5 machine

error, εmach
6, which is approximately 10�7; This can be expressed as,

�εmach ¤
�
εflux,g,mptq � εdenptq

�
¤ εmach.

For the precursor group concentrations, consider the locally normalized error equation be-

tween the NESTLE calculated 3-D precursor group concentrations and the projected 3-D pre-

5Single precision calculations were performed because NESTLE was coded using FORTRAN 77 which is a
single precision code language by default.

6Note that the value denoted as εmach is not strictly the single precision machine error value, which is variable.
The value is actually on the order of the single precision machine error as more than one calculation is performed.
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cursor group concentrations,

εprec,i,mptq �
Ci,mptq � C̃i,mptq

Ci,mptq
.

Recall Eq. 2.12 and applying this to the locally normalized error equation results in the follow-

ing,

εprec,i,mptq �
Ci,mptq �

Ci,mptq
xCiptqy

xCip0qyx
¯̃Ciptqy

Ci,mptq
� 1 �

xCip0qyx
¯̃Ciptqy

xCiptqy
.

From this form, a relationship between the two error equations can be reached by applying

Eq. 2.4, such that,

εprec,i,mptq �
xCiptqy � xCip0qyx

¯̃Ciptqy

xCiptqy
�
xC̄iptqy � x ¯̃Ciptqy

xC̄iptqy
.

A formal relationship between the locally normalized precursor group concentrations error,

εprec,i,mptq, and the normalized volume averaged precursor group concentrations error, εprec,iptq,

has been reached.

εprec,iptq �
xC̄iptqy � x ¯̃Ciptqy

xC̄iptqy
� εprec,i,mptq �

Ci,mptq � C̃i,mptq

Ci,mptq
(2.14)

Using the error relationship (Eq. 2.14) the precursor group concentration projection calcula-

tions can be verified by ensuring that the locally normalized precursor group concentration

error values, εprec,i,mptq, do not differ from the normalized volume averaged precursor group

concentrations error values, εprec,iptq, by more than the single precision machine error, εmach;

This can be expressed as,

�εmach ¤
�
εprec,i,mptq � εprec,iptq

�
¤ εmach.

2.1.6 Formulation of Error Calculations

To determine the fidelity of the projected model, a set of error equations were developed. The

calculations were developed specifically for use with a steady-state library data set but are also

applicable to updated transient values. To formulate the error equations the steady-sate values

must be determined using the steady-state library data set. The library is arranged such that

the needed quantities are identified by rod position. Thus, using the current rod position of

the PKE-Solver, xptq, the corresponding values from the data set can be obtained. This brings

about two cases;
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Case 1: No interpolation

One case is when the PKE-Solver rod position equals a library archived rod position, i.e.

xptq � xssk for some k � 1, . . . ,K. When this occurs, the archived steady-state values are the

needed values and no interpolation is required. Thus, from the data entry corresponding to the

steady-state rod position, xsskptq, the approximated flux shape-factor is denoted by,

S̃pφqg,mptq � S
pφq,ss
g,m,kptq,

and the approximate precursor group concentration shape-factor is defined as,

S̃
pCq
i,m ptq � S

pCq,ss
i,m,kptq.

In addition, the flux energy partition function is obtained as,

xf̃ pφqg ptqy � xf
pφq,ss
g,kptq y,

and the volume averaged neutron velocity is denoted by,

xṽptqy � xvsskptqy.

Case 2: Interpolation

Another case to consider is when the PKE-Solver rod position lies between two archived data

entries and the values are found by linearly interpolating the entries. From the data set’s upper

rod position entry the upper flux shape-factor, flux energy partition function, volume averaged

neutron velocity, and precursor group concentrations shape-factor are obtained and denoted

with pkptq. Using the data set’s lower rod position entry the factors are obtained and denoted

with qkptq 7.

Once the upper and lower values have been retrieved the interpolated values can be deter-

mined as follows.

The approximate flux shape-factor:

S̃pφqg,mptq �

�
S
pφq,ss

g,m,pkptq
� S

pφq,ss

g,m,qkptq

xss
pkptq

� xss
qkptq

�
xptq � xss

qkptq

��
� S

pφq,ss

g,m,qkptq

7The designation of the rod position pkptq and qkptq are not to be confused with the multiplication factor k
described in Chapter 1. There is no significant relationship between the two variables.
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The approximate flux energy partition function:

xf̃ pφqg ptqy �

�
xf

pφq,ss

g,pkptq
y � xf

pφq,ss

g,qkptq
y

xss
pkptq

� xss
qkptq

�
xptq � xss

qkptq

��
� xf

pφq,ss

g,qkptq
y

The approximate volume averaged neutron velocity:

xṽptqy �

�
xvss

pkptq
y � xvss

qkptq
y

xss
pkptq

� xss
qkptq

�
xptq � xss

qkptq

��
� xvss

qkptq
y

The approximate precursor group concentration shape-factor:

S̃
pCq
i,m �

�
S
pCq,ss

i,m,pkptq
� S

pCq,ss

i,m,qkptq

xss
pkptq

� xss
qkptq

�
xptq � xss

qkptq

��
� S

pCq,ss

i,m,qkptq

Using these factors with the PKE-Solver calculated approximate normalized volume aver-

aged neutron density and approximate normalized volume averaged precursor group concen-

trations, the projected model can be constructed. Applying Eq. 2.11 yields the approximate

projected 3-D flux.

φ̃g,mptq � S̃pφqg,mptqxf̃
pφq
g ptqyxṽptqyxnp0qyx¯̃nptqy (2.15)

Applying Eq. 2.12 results in the approximate projected 3-D precursor group concentrations.

C̃i,mptq � S̃
pCq
i,m ptqxCip0qyx

¯̃Ciptqy (2.16)

Once the approximate projected model values (Eq. 2.15 and Eq. 2.16) have been calculated

it is possible to formulate various error metrics. For the flux values the following metrics can

be formulated:

Energy group dependent, locally normalized L-1 error at the maximum flux position or the

maximum flux error position:

ε1,f lux,local,g ���
φg,m�ptq � φ̃g,m�ptq

φg,m�ptq

�
: m� �

�
arg max

m
rφg,mptqs or arg max

m

|φg,mptq � φ̃g,mptq|

φg,mptq


�
(2.17)
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Locally normalized L-1 error at the maximum flux position or the maximum flux error position:

ε1,f lux,local,total ���
φm�ptq � φ̃m�ptq

φm�ptq

�
: m� �

�
arg max

m
rφmptqs or arg max

m

|φmptq � φ̃mptq|

φmptq


�

Energy group dependent average normalized L-1 error at the maximum flux position or the

maximum flux error position:

ε1,f lux,avg,g ���
φg,m�ptq � φ̃g,m�ptq

xφgptqy

�
: m� �

�
arg max

m
rφg,mptqs or arg max

m

|φg,mptq � φ̃g,mptq|

xφgptqy


�
(2.18)

Average normalized L-1 error at the maximum flux position or the maximum flux error position:

ε1,f lux,avg,total ���
φm�ptq � φ̃m�ptq

xφptqy

�
: m� �

�
arg max

m
rφmptqs or arg max

m

|φmptq � φ̃mptq|

xφptqy


�

Energy group dependent volume weighted L-2 error8:

ε2,f lux,g �

gfffe M°
m�1

��
φg,mptq � φ̃g,mptq

	2
∆zm

�
MxyZ

1

xφgptqy

where ∆zm is the height of the mth node, Z is the total height of the reactor, and mxy is the

number of nodes in a single XY-plane. Note, that the XY-grid is uniform though the height of

each Z-plane differs. Thus, to volume weight the error of each node, a single node need only be

multiplied by the height of the node, ∆zm. The relationship between the number of nodes in a

single XY-plane and the total number of nodes, M , can be represented by,

Mxy �
M

Mz
,

8The L-2 error describes the overall/average error of the projected model, where as the L-1 errors only describe
a single node within the projected model.
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where Mz is the number of Z-planes. From this it is clear that,

Z �
1

Mxy

M̧

m�1

∆zm.

Volume weighted L-2 error:

ε2,f lux,total �

gfffe M°
m�1

��
φmptq � φ̃mptq

	2
∆zm

�
MxyZ

1

xφptqy

For the precursor group concentration values the following metrics can be formulated:

Locally normalized L-1 error at the maximum precursor group concentration position or the

maximum precursor group concentration error position:

ε1,pre,local,i ���
Ci,m�ptq � C̃i,m�ptq

Ci,m�ptq

�
: m� �

�
arg max

m
rCi,mptqs or arg max

m

|Ci,mptq � C̃i,mptq|

Ci,mptq


�
(2.19)

Averaged normalized L-1 error at the maximum precursor group concentration position or the

maximum precursor group concentration error position:

ε1,pre,avg,i ���
Ci,m�ptq � C̃i,m�ptq

xCiptqy

�
: m� �

�
arg max

m
rCi,mptqs or arg max

m

|Ci,mptq � C̃i,mptq|

xCiptqy


�
(2.20)

Volume weighted L-2 error:

ε2,pre,i �

gfffe M°
m�1

��
Ci,mptq � C̃i,mptq

	2
∆zm

�
MxyZ

1

xCiptqy

2.1.7 Component Error Analysis

To understand and assess the performance of the projected model, it is important to analysis

the error equations to determine the sources of the error. This analysis was performed for the

group dependent locally normalized and average normalized error calculations.
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Flux Component Error Analysis

The energy group dependent locally normalized L-1 error at the maximum flux position or max-

imum flux error position, Eq. 2.17, can be combined with the approximate projected 3-D flux,

Eq. 2.15, to produce the following (only considering the error term for notational simplicity),�
φg,m�ptq � φ̃g,m�ptq

φg,m�ptq

�
�

�
φg,m�ptq � S̃

pφq
g,m�ptq xf̃

pφq
g ptqy xṽptqy xnp0qy x¯̃nptqy

φg,m�ptq

�
. (2.21)

Notice that the approximate flux shape-factor, approximate flux energy partition function,

approximate volume averaged neutron velocity, and PKE-Solver calculated normalized volume

averaged neutron density factors can be reformulated into the following:

S̃pφqg,mptq � Spφqg,mptq � ∆Spφqg,mptq (2.22)

xf̃ pφqg ptqy � xf pφqg ptqy � ∆xf pφqg ptqy (2.23)

xṽptqy � xvptqy � ∆xvptqy (2.24)

x¯̃nptqy � xn̄ptqy � ∆xn̄ptqy (2.25)

where the first terms are the exact values and the ∆ terms are the difference between the exact

terms and approximate terms.

Applying Eq. 2.22 - Eq. 2.25 to the right-hand-side of Eq. 2.21 results in:�
φg,m�ptq �

��
S
pφq
g,m�ptq � ∆S

pφq
g,m�ptq

	�
xf pφqg ptqy � ∆xf pφqg ptqy

	
�
xvptqy � ∆xvptqy

	
xnp0qy

�
xn̄ptqy � ∆xn̄ptqy

	�� 1

φg,m�ptq
(2.26)

Expansion of the multi-factor term in Eq. 2.26 provides the following equation9:�
S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy xn̄ptqy � ∆S

pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy xn̄ptqy�

S
pφq
g,m�ptq∆xf pφqg ptqy xvptqy xnp0qy xn̄ptqy � S

pφq
g,m�ptq xf

pφq
g ptqy∆xvptqy xnp0qy xn̄ptqy�

S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy∆xn̄ptqy �Op∆2q

�
(2.27)

Considering the terms independently and using Eq. 2.22 - Eq. 2.25, and Eq. 2.9 where applicable

yields valuable insight.

9Note there are no bounds placed on the magnitude of the second order terms denoted, Op∆2q.
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1st Term:

S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy xn̄ptqy � φg,m�ptq (2.28)

2nd Term:

∆S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy xn̄ptqy ��

S
pφq
g,m�ptq � S̃

pφq
g,m�ptq



xf pφqg ptqy xvptqy xnp0qy xn̄ptqy (2.29)

3rd Term:

S
pφq
g,m�ptq∆xf pφqg ptqy xvptqy xnp0qy xn̄ptqy �

S
pφq
g,m�ptq

�
xf pφqg ptqy � xf̃ pφqg ptqy



xvptqy xnp0qy xn̄ptqy (2.30)

4th Term:

S
pφq
g,m�ptq xf

pφq
g ptqy∆xvptqy xnp0qy xn̄ptqy �

S
pφq
g,m�ptq xf

pφq
g ptqy

�
xvptqy � xṽptqy



xnp0qy xn̄ptqy (2.31)

5th Term:

S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy∆xn̄ptqy �

S
pφq
g,m�ptq xf

pφq
g ptqy xvptqy xnp0qy

�
xn̄ptqy � x¯̃nptqy



(2.32)

Recall Eq. 2.26 and apply the relationships obtained from Eq. 2.28 - Eq. 2.32 to obtain the

following;

��
S
pφq
g,m�ptq � S̃

pφq
g,m�ptq

	
S
pφq
g,m�ptq

�

�
xf

pφq
g ptqy � xf̃

pφq
g ptqy

	
xf

pφq
g ptqy

�

�
xvptqy � xṽptqy

	
xvptqy

��
xn̄ptqy � x¯̃nptqy

	
xn̄ptqy

�Op∆2q

�
(2.33)
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Let the following definitions hold.

Flux shape-factor error:

ε
S̃
pφq

g,m� ptq
�

�
S
pφq
g,m�ptq � S̃

pφq
g,m�ptq

	
S
pφq
g,m�ptq

(2.34)

Flux energy partition function error:

ε
xf̃

pφq
g ptqy

�

�
xf

pφq
g ptqy � xf̃

pφq
g ptqy

	
xf

pφq
g ptqy

(2.35)

Volume averaged neutron velocity error:

εxṽptqy �

�
xvptqy � xṽptqy

	
xvptqy

(2.36)

Normalized volume averaged neutron density error:

εx¯̃nptqy �

�
xn̄ptqy � x¯̃nptqy

	
xn̄ptqy

(2.37)

Thus Eq. 2.17 can be reformulated by applying Eq. 2.34 - Eq. 2.37 to Eq. 2.33 resulting in,

ε1,f lux,local,g �

�
ε
S̃
pφq

g,m� ptq
� ε

xf̃
pφq
g ptqy

� εxṽptqy � εx¯̃nptqy �Op∆2q

�
(2.38)

where m� is defined in Figure 2.17.

The energy group dependent average normalized L-1 error at the maximum flux position or

the maximum flux error position, Eq. 2.18, can be combined with the approximate projected

3-D flux, Eq. 2.15, to produce the following (only considering the error term for notational

simplicity),�
φg,m�ptq � φ̃g,m�ptq

xφgptqy

�
�

�
φg,m�ptq � S̃

pφq
g,m�ptq xf̃

pφq
g ptqy xṽptqy xnp0qy x¯̃nptqy

xφgptqy

�
. (2.39)
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Applying Eq. 2.22 - Eq. 2.25 to the right-hand-side of Eq. 2.21 results in:�
φg,m�ptq �

��
S
pφq
g,m�ptq � ∆S

pφq
g,m�ptq

	�
xf pφqg ptqy � ∆xf pφqg ptqy

	
�
xvptqy � ∆xvptqy

	
xnp0qy

�
xn̄ptqy � ∆xn̄ptqy

	�� 1

xφgptqy
(2.40)

Recall the energy dependent volume averaged flux, Eq. 2.2, and apply this to the approximate

projected 3-D flux, Eq. 2.15, to yield,

xφ̃gptqy � xS̃pφqg ptqy xf̃ pφqg ptqy xṽptqy xnp0qy x¯̃nptqy, (2.41)

where the volume averaged flux shape-factor is defined as,

xSpφqg ptqy �

M°
m�1

S
pφq
g,mptqVm

M°
m�1

Vm

. (2.42)

Recall the definition of the flux shape-factor, Eq. 2.7, and the definition of the energy dependent

volume averaged flux, Eq. 2.2; Apply these definitions to Eq. 2.42 yielding,

xSpφqg ptqy �
1

xφgptqy

M°
m�1

φg,mptqVm

M°
m�1

Vm

� 1. (2.43)

Apply Eq. 2.28 - Eq. 2.32, Eq. 2.41, and Eq. 2.43 to Eq. 2.40 resulting in the following equation.

S
pφq
g,m�ptq

��
S
pφq
g,m�ptq � S̃

pφq
g,m�ptq

	
S
pφq
g,m�ptq

�

�
xf

pφq
g ptqy � xf̃

pφq
g ptqy

	
xf

pφq
g ptqy

��
xvptqy � xṽptqy

	
xvptqy

�

�
xn̄ptqy � x¯̃nptqy

	
xn̄ptqy

�Op∆2q

�
(2.44)

Thus Eq. 2.18 can be reformulated by applying Eq. 2.34 - Eq. 2.37 to Eq. 2.44 yielding,

ε1,f lux,average,g �

�
S
pφq
g,m�ptq

�
ε
S̃
pφq

g,m� ptq
� ε

xf̃
pφq
g ptqy

� εxṽptqy � εx¯̃nptqy



� Op∆2q

�
(2.45)

where m� is defined by Eq. 2.18.
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Precursor Group Concentration Component Error Analysis

The locally normalized L-1 error at the maximum precursor group concentration position or

the maximum precursor group concentration error position, Eq. 2.19, can be combined with the

approximate projected 3-D precursor group concentrations, Eq. 2.16, to produce the following

(only consider the error term for notational simplicity),�
Ci,m�ptq � C̃i,m�ptq

Ci,m�ptq

�
�

�
Ci,m�ptq � S̃

pCq
i,m�ptq xCip0qy x

¯̃Ciptqy

Ci,m�ptq

�
. (2.46)

Notice that the approximate precursor shape-factor and the PKE-Solver calculated normalized

volume averaged precursor group concentration factors can be reformulated into the following:

S̃
pCq
i,m ptq � S

pCq
i,m ptq � ∆S

pCq
i,m ptq (2.47)

x ¯̃Ciptqy � xC̄iptqy � ∆xC̄iptqy (2.48)

where the first terms are the exact values and the ∆ terms are the difference between the exact

values and the approximate values.

Applying Eq. 2.47 and Eq. 2.48 to the right hand side of Eq. 2.46 results in:�
Ci,m�ptq �

�
S
pCq
i,m�ptq � ∆S

pCq
i,m�ptq

	
xCip0qy

�
xC̄iptqy � ∆xC̄iptqy

	� 1

Ci,m�ptq
(2.49)

Expansion of the multi-factor term in Eq. 2.49 provides the following equation:�
S
pCq
i,m�ptq xCip0qy xC̄iptqy�

∆S
pCq
i,m�ptq xCip0qy xC̄iptqy � S

pCq
i,m�ptq xCip0qy∆xC̄iptqy �Op∆2q

�
(2.50)

Considering the terms of Eq. 2.50 independently and using Eq. 2.47, Eq. 2.48, and Eq. 2.10

where applicable yields valuable insight.

1st Term:

S
pCq
i,m�ptq xCip0qy xC̄iptqy � Ci,m�ptq (2.51)

2nd Term:

∆S
pCq
i,m�ptq xCip0qy xC̄iptqy �

�
S
pCq
i,m�ptq � S̃

pCq
i,m�ptq

	
xCip0qy xC̄iptqy (2.52)

3rd Term:

S
pCq
i,m�ptq xCip0qy∆xC̄iptqy � S

pCq
i,m�ptq xCip0qy

�
xC̄iptqy � x ¯̃Ciptqy

	
(2.53)
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Apply the relationships obtained from Eq. 2.51 - Eq. 2.53 to Eq. 2.49 resulting in;

��
S
pCq
i,m�ptq � S̃

pCq
i,m�ptq

	
S
pCq
i,m�ptq

�

�
xC̄iptqy � x ¯̃Ciptqy

	
xC̄iptqy

�Op∆2q

�
(2.54)

Let the following definitions hold.

Precursor group concentration shape-factor error:

ε
S̃
pCq

i,m� ptq
�

�
S
pCq
i,m�ptq � S̃

pCq
i,m�ptq

	
S
pCq
i,m�ptq

(2.55)

Normalized volume averaged precursor group concentration error:

ε
x ¯̃Ciptqy

�

�
xC̄iptqy � x ¯̃Ciptqy

	
xC̄iptqy

(2.56)

Thus Eq. 2.19 can be refomulated by applying Eq. 2.55 and Eq. 2.56 to Eq. 2.54 yielding,

ε1,pre,local,i �

�
ε
S̃
pCq

i,m� ptq
� ε

x ¯̃Ciptqy
�Op∆2q

�
(2.57)

where m� is defined by Eq. 2.19.

The average normalized L-1 error at the maximum precursor group concentration position or

the maximum precursor group concentration error position, Eq. 2.20, can be combined with the

approximate projected 3-D precursor group concentration, Eq. 2.16, to produce the following

(only consider the error term for notational simplicity),�
Ci,m�ptq � C̃i,m�ptq

xCiptqy

�
�

�
Ci,m�ptq � S̃

pCq
i,m�ptq xCip0qy x

¯̃Ciptqy

xCiptqy

�
. (2.58)

Applying Eq. 2.47 and Eq. 2.48 to the right hand side of Eq. 2.58 results in:�
Ci,m�ptq �

�
S
pCq
i,m�ptq � ∆S

pCq
i,m�ptq

	
xCip0qy

�
xC̄iptqy � ∆xC̄iptqy

	� 1

xCiptqy
(2.59)

Recall the volume averaged precursor concentration, Eq. 2.3, and apply this to the approximate

projected 3-D precursor group concentration, Eq. 2.16, to yield,

xC̃iptqy � xS̃
pCq
i ptqy xCip0qy x

¯̃Ciptqy, (2.60)
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where the volume averaged precursor group concentration shape-factor is defined as,

xS
pCq
i ptqy �

M°
m�1

S
pCq
i,m ptqVm

M°
m�1

Vm

. (2.61)

Recall the definition of the precursor group concentration shape-factor, Eq. 2.8, and the defini-

tion of the volume averaged precursor group concentration, Eq. 2.3; Apply these definitions to

Eq. 2.61 yielding,

xS
pCq
i ptqy �

1

xCiptqy

M°
m�1

Ci,mptqVm

M°
m�1

Vm

� 1. (2.62)

Apply Eq. 2.51 - Eq. 2.53, Eq. 2.60, and Eq. 2.62 to Eq. 2.59 resulting in the following equation.

S
pCq
i,m�ptq

��
S
pCq
i,m�ptq � S̃

pCq
i,m�ptq

	
S
pCq
i,m�ptq

�

�
xC̄iptqy � x ¯̃Ciptqy

	
xC̄iptqy

�Op∆2q

�
(2.63)

Thus Eq. 2.20 can be reformulated by applying Eq. 2.55 and Eq. 2.56 to Eq. 2.63 yielding,

ε1,pre,avg,i �

�
S
pCq
i,m�ptq

�
ε
S̃
pCq

i,m� ptq
� ε

x ¯̃Ciptqy



�Op∆2q

�
(2.64)

where m� is defined by Eq. 2.20.

2.1.8 NESTLE Restart Error Analysis

When using the AMoR model switching approach, the projected model results are input into

NESTLE. The code is then restarted, with the belief that NESTLE will anneal out the intro-

duced error. This claim is based on the following argument:

Let the time-space discretized equation, Eq. 1.6, be represented by the following form,

¯̄Atφ̄t �
¯̄Btφ̄t�1. (2.65)

This representation (Eq. 2.65) will be referred to as the exact solution, where ¯̄At operates on

φ̄t,
¯̄Bt operates on φ̄t�1, and φ̄t is the flux at time-step t and t� 1. The operator ¯̄At is the loss

operator associated with the left hand side of Eq. 1.6 and the operator ¯̄Bt is the production

operator associated with the right hand side of Eq. 1.6.

Note that the flux produced by the projected model is an approximation of the exact flux
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and can be expressed as,

φ̄t �
¯̃
φt � ε̄t (2.66)

where ε̄t is the error between the exact flux, φ̄t, and projected flux,
¯̃
φt.

Substituting Eq. 2.66, into the time-space discretized equation, Eq. 2.65, yields,

¯̄Atp
¯̃
φt � ε̄tq �

¯̄Btp
¯̃
φt�1 � ε̄t�1q, (2.67)

which can be rearranged into,

¯̄Atε̄t �
¯̄Btε̄t�1 � p ¯̄Bt

¯̃
φt�1 �

¯̄At
¯̃
φtq. (2.68)

Let the residual, r̄t, be defined as p ¯̄Bt
¯̃
φt�1 �

¯̄At
¯̃
φtq, such that Eq. 2.68 can be expressed in the

following form,
¯̄Atε̄t �

¯̄Btε̄t�1 � r̄t. (2.69)

Note that Eq. 2.69 does not directly lend insight into the error at time-step t, denoted by

ε̄t, because the error at time-step t� 1, denoted as ε̄t�1, is unknown. Though, continuing this

argument further does provide insight into the previously made claim. Pressing forward, by

rearranging10 Eq. 2.69, the error at time-step t can be expressed as,

ε̄t �
¯̄A�1
t p ¯̄Btε̄t�1 � r̄tq. (2.70)

Given the general nature of Eq. 2.70, the error for time-step t� 1 can be represented by,

ε̄t�1 �
¯̄A�1
t�1 p

¯̄Bt�1ε̄t � r̄t�1q (2.71)

and combining Eq. 2.70 and Eq. 2.71 yields an expression for the error at time-step t � 1, in

terms of ε̄t�1,

ε̄t�1 �
¯̄A�1
t�1

�
¯̄Bt�1

� ¯̄A�1
t p ¯̄Btε̄t�1 � r̄tq

�
� r̄t�1

	
. (2.72)

Expanding out terms in Eq. 2.72.

ε̄t�1 �
� ¯̄A�1

t�1
¯̄Bt�1

�� ¯̄A�1
t

¯̄Bt
�
ε̄t�1 � p ¯̄A�1

t�1
¯̄Bt�1q

¯̄A�1
t r̄t�1 �

¯̄At�1r̄t�1 (2.73)

Notice that the general basis provided by Eq. 2.73 can be extended to time-step t�2 rather

10Given the physics of the system, matrix ¯̄At is invertible. See the NESTLE manual for further explanation [1].
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easily,

ε̄t�2 � p ¯̄A�1
t�2

¯̄Bt�2qp
¯̄A�1
t�1

¯̄Bt�1qp
¯̄A�1
t

¯̄Btqε̄t�1�

p ¯̄A�1
t�2

¯̄Bt�2qp
¯̄A�1
t�1

¯̄Bt�1q
¯̄A�1
t r̄t � p ¯̄A�1

t�2
¯̄Bt�2q

¯̄A�1
t�1 r̄t�1 �

¯̄A�1
t�2 r̄t�2 (2.74)

and thus generally extended to time-step t� j,

ε̄t�j �

� j¹
j1�0

¯̄A�1
t�j1

¯̄Bt�j1

�
ε̄t�1 �

t�j̧

t1�t

� j¹
j1�pt1�t�1q

�
¯̄A�1
t�j1

¯̄Bt�j1
	�

¯̄A�1
t1 r̄t1 �

� j¹
j1�0

¯̄Ct�j1

�
ε̄t�1 �

t�j̧

t1�t

� j¹
j1�pt1�t�1q

¯̄Ct�j1

�
¯̄A�1
t1 r̄t1 (2.75)

where ¯̄Ct�j1 is defined simply as the product of ¯̄A�1
t�j1

¯̄Bt�j1 . Note that when j1 ¡ j the product

term equals one11.

Assuming the operators ¯̄A and ¯̄B have no dependence on time implies that ¯̄C also has no

time dependence. The eigenvalue problem associated with ¯̄C is given by,

¯̄Cψ̄p � λpψ̄p for p � 1, 2, . . . . (2.76)

Assume the spectrum of λp is discrete and tψ̄pu forms a complete basis. Then we can express

ε̄ and r̄ as follows,

ε̄t�1 �
¸
p

cpεt�1q
p ψ̄p (2.77)

and
¯̄A�1
t r̄t �

¸
p

c
pA�1
t rtq

p ψ̄p. (2.78)

where cp denotes the coefficients for the expansion in terms of the eigenvector. Thus Eq. 2.76

terms involving multiples of ¯̄C operating on a vector can be written as follows,

� j¹
j1�0

¯̄Ct�j1

�
ε̄t�1 �

¸
p

cpεt�1q
p pλpq

j�1 ψ̄p (2.79)

and � j¹
j1�pt1�t�1q

¯̄Ct�j1

�
¯̄A�1
t1 r̄t1 �

¸
p

c
pA�1
t rtq

p pλpq
j ψ̄p. (2.80)

Denoted by σ1 is the spectral radius of C, i.e. the largest absolute eigenvalue. It follows,

11This case occurs when t1 � t� j, thus j1 � pt1 � t� 1q � pt� j � t� 1q � j � 1 which is larger than j.
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that as long as σ1   1 is true12, the term involving ε̄t�1 will approach zero as j Ñ8. Also the

terms involving r̄t will approach zero, as will other time-step values, when time step t1 ! t� j.

For time-step values where t1 � t� j there will not be much damping.

But as j advances these terms will be dampened implying |ε̄t�j | gets smaller, which in

turn implies |r̄t�j | gets smaller. This supports a continuing decrease in magnitude of the error.

Numerical experiments will be used to observe the actual behavior of tr̄t1u.

2.2 Adaptive Model Refinement Organization

The organization of the AMoR method is dependent upon the approach. As mentioned previ-

ously, two approaches were implemented in this research; One approach involving the use of a

steady state library and a second approach utilizing active model switching. In both approaches

the point kinetic parameters13 are calculated by NESTLE beforehand under steady-state con-

ditions. Both approaches begin with NESTLE calculated shape-factors to create the projected

3-D model. From this point forward, when mentioning the input of the NESTLE calculated fac-

tors for the projected model these will simply be referred to as the shape-factors even though

they include the flux shape-factors, the precursor group concentration shape-factors, the av-

erage neutron velocity, the flux energy partition function, the initial volume averaged neutron

density, and the initial volume averaged precursor group concentrations.

2.2.1 Organization of the Steady-state Library Approach

When using the steady-state library approach, NESTLE is used, before the beginning of the

transient, to calculate the input point kinetic parameters and to generate a library of factors

needed for the projected model. As with the point kinetic parameters, the steady-state library

values are evaluated under steady-state conditions for various rod positions, starting with all

rods out (ARO) and ending with one (actually a grouping of rods) rod fully inserted.

At the beginning of the transient, the PKE-Solver starts by reading in the point kinetic

parameters and the ARO shape-factors. The PKE-Solver then initiates the transient and cal-

culates the projected model at the end of the first time-step. This is done by slightly inserting

the rod using the same insertion speed, solving the PKE, determining the shape-factors for this

position by linear interpolation, and using these results in the projected model. This continues

until the rod is fully inserted. While the PKE-Solver is executing the transient the error between

12This is surely true for the steady-state case based on the physics of the system. See the NESTLE manual for
further explanation [1]

13The specific point kinetic parameters input are current rod position, calculated static bank worth, average
neutron lifetime,average neutron velocity, precursor group yield fractions or beta values, and precursor group
decay constants or lambda values. These values are calculated under steady-state conditions for various rod
positions starting with all rods out (ARO) and ending with one rod fully inserted.
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the projected model, i.e. the lower fidelity model, and the NESTLE output solution, i.e. the

higher fidelity model, is calculated.

This method was primarily developed to gain insight into the behavior of the point kinetics

solution relative to the diffusion solution and to set a baseline error to compare with the active

model switching approach. It is obvious that there is at least one short coming with this approach

compared to the active model switching approach; The steady-state library does not account

for transient effects on the shape-profile. In short, the precursor values are in equilibrium with

the rod position which is not the case during transients.

2.2.2 Organization of the Active Model Switching Approach

For the active model switching approach, NESTLE is used, before the beginning of the tran-

sient, to calculate the input point kinetic parameters and to generate the needed shape-factor

values for the projected model. As opposed to the steady-state conditions the point kinetic

parameters and the shape-factor values are calculated under transient conditions for various

rod positions. This is accomplished by initializing the transient under steady-state conditions

and then recording the ARO shape-factors. Next the rod is quickly inserted14 producing shape-

factor values which account for the prompt neutron shape-profile effects but do not account for

the precursor equilibrium effects, which is an advantage over the steady-state approach.

The calculation proceeds as for the steady-state library approach, except when the error is

deemed too large the PKE-Solver is paused. Let this point in the transient be denoted as time

τ .

Once the PKE-Solver is paused the projected 3-D flux and precursor group concentration

values are output from three two-steps15 prior, let this be denoted by τ�2∆t. The earlier values

are used because the current values posses larger amounts of error. These flux and precursor

group concentration values are then utilized to restart NESTLE. The restart begins at τ � 2∆t

and is advanced to time τ using a much smaller time-step than the PKE-Solver time-step. This

slow marching is believed to anneal out some of the error introduced by the PKE-Solver and the

short comings of the projected model. Once time τ is reached the shape-factor values are output.

Then NESTLE quickly inserts the rods, producing shape-factor values for the remainder of the

transient. These new outputs are transferred to the PKE-Solver and replace the old shape-factor

values. The PKE-Solver is then un-paused and advanced forward. This process continues until

a single rod is fully inserted.

This method has its advantages, namely the incorporation of precursor transient behavior

14In this case quickly inserted means that the time-step is at least 1000x smaller than the smallest decay
constant (approximately 1{3 sec). The entire insertion transient last roughly two thousandths of a second.

15The two time-steps prior was assumed for this research but in the future this value can be investigated to
find some formulation to indicate the most ideal value.
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into the shape-profile. Though this approach also has draw backs, most prominently the increase

complexity stemming from the selection of the number of time-steps prior to the current time

τ needed to provide acceptable values to restart NESTLE and also determining the time-step

size for the NESTLE restart and quick rod insertion. In this research these values were assumed

and not investigated to find the optimal values.
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Chapter 3

Results

The motivation behind this work is to investigate the implementation of AMoR methods and

to gauge the accuracy of the resulting projected 3-D model. In this chapter the finding of this

research will be presented. Namely, the results of the error metrics applied to the two AMoR

approaches developed and outlined in Chapter 2.

3.1 Testing Environment

This research was conducted on a standard desktop computer running Windows XP 64-bit.

The codes used for this research are NESTLE v5.2.1 [1] and a simple PKE-Solver which were

modified to accommodate the AMoR approaches. The codes were compiled and executed with

Microsoft Visual Studios 2005 using the Intel FORTRAN compiler.

3.2 Test Cases

The cases executed for this work consist of NESTLE inputs from a sample data set. The data is

from the McGuire Nuclear Station, Unit 1 on fuel cycle 13. This reactor is a 3,311 MWt 4-loop

Westinghouse PWR. The simulation entails a quarter-core, Cartesian geometry with a cyclic

radial interior boundary condition and zero flux boundary conditions on the radial exterior,

Z-plane top, and Z-plane bottom. The core consist of 28 Z-planes made up of 18X18 node,

XY-planes. Materials do not fill the entire 18X18 XY-plane as the shape of the core is not

strictly square. The fueled region of the core consist of the inner 26 Z-planes and a restricted

selection of the 18X18 XY-planes. The NESTLE Xenon and Samarium options are turned off,

as is the thermal-hydraulic feedback option. A soluble boron level of 1899.83ppm was used along

with a constant coolant inlet temperature of 555.50�F and a constant coolant mass flow rate

of 1,439,284.5 lb{pft2 secq.

32



All transient cases began at the ARO position and ended with a single rod bundle fully

inserted over varying transient durations. Two temporal cases were considered for this research;

A fast rod insertion transient with a duration of 2 seconds and a slow rod insertion transient

with a duration of 120 seconds. The AMoR approaches were applied under differing precursor

conditions. For the verification calculations and the steady-state library approach, the transients

were performed with fully active precursor calculations but for the active model switching

approach the precursor βi values, or the fraction of all fission neutrons emitted per fission

in a precursor group, were set to value of 0.00011. This assumption was applied to limit the

precursor influence on the calculations because when executing the active model switching

approach their values are highly erroneous. Minimizing the precursor’s effects allows for the

analysis of this method’s ability to perform prompt neutron calculations without interference

from the precursor concentrations which makes the results look more like the hybrid method

to be discussed later.

The volume averaged neutron density and volume averaged precursor group concentrations

behave nearly identical for the verification calculations and the steady-state library approach;

the only variant being, the number of transient data outputs provided from the exact solution,

though this makes a very minor difference in the average behavior.

1The value of 0.0001 was used because exactly zero is problematic for computational reasons. At this small
of a value the precursor contributions are negligible.
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For the 2 second transient, the exact transient solution contained 40 printouts. The general

behavior of the volume averaged neutron density and the volume averaged precursor group

concentrations can be viewed in Figure 3.1 and Figure 3.2 - Figure 3.7, respectively. These

figures contain the NESTLE and PKE-Solver solutions side-by-side to illustrate that both the

higher and lower fidelity models produce similarly behaving average solutions. The radial and

axial relative power distributions for the 2 second transient, 10 data records are displayed in

Table A.1 - Table A.22.
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Figure 3.1: Normalzied Volume Averaged Neutron Density
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Figure 3.2: Normalized Volume Averaged Precursor Concentration (Group: 1)
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Figure 3.3: Normalized Volume Averaged Precursor Concentration (Group: 2)
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Figure 3.4: Normalized Volume Averaged Precursor Concentration (Group: 3)
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Figure 3.5: Normalized Volume Averaged Precursor Concentration (Group: 4)
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Figure 3.6: Normalized Volume Averaged Precursor Concentration (Group: 5)
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Figure 3.7: Normalized Volume Averaged Precursor Concentration (Group: 6)
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Like wise, for the 120 second transient, the exact transient solution contained 40 printouts.

The general behavior of the volume averaged neutron density and the volume averaged precursor

group concentrations can be viewed in Figure 3.8 and Figure 3.9 - Figure 3.14, respectively. The

figures display the NESTLE and PKE-Solver solutions side-by-side to illustrate that the higher

fidelity and lower fidelity models produce similarly behaving average solutions. The radial and

axial relative power distributions for the 120 second transient, 10 data records are displayed in

Table A.23 - Table A.44.
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Figure 3.8: Normalzied Volume Averaged Neutron Density
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Figure 3.9: Normalized Volume Averaged Precursor Concentration (Group: 1)
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Figure 3.10: Normalized Volume Averaged Precursor Concentration (Group: 2)
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Figure 3.11: Normalized Volume Averaged Precursor Concentration (Group: 3)

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
re

cu
rs

or
 G

ro
up

 C
on

ce
nt

tr
at

io
n

Time (seconds)

Average Precursor Group Concentration (Group: 4)

NESTLE
PKE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120

Figure 3.12: Normalized Volume Averaged Precursor Concentration (Group: 4)
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Figure 3.13: Normalized Volume Averaged Precursor Concentration (Group: 5)
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Figure 3.14: Normalized Volume Averaged Precursor Concentration (Group: 6)

41



The volume averaged neutron density and volume averaged precursor group concentrations

behavior for the active model switching approach differs significantly from the verification cal-

culations and the steady-state library approach. This difference stems from the assumption

applied to the precursor βi values.

For the 2 second and the 120 second transient, the exact transient solution contained 40

printouts. The general behavior of the volume averaged neutron density for the 2 second case

and the 120 second case can be viewed in Figure 3.15 and Figure 3.16, respectively. The vol-

ume averaged precursor group concentration behavior has been omitted due to the assumption

applied to this approach. Like the steady-state library approach, the NESTLE and PKE-Solver

solutions are shown side-by-side to demonstrate that the higher and lower fidelity solutions

produce very similarly behaving average solutions. The radial and axial relative power distribu-

tions for the 2 second transient, 40 data records are displayed in Table A.45 - Table A.66 and

the radial and axial relative power distributions for the 120 second transient, 40 data records

are displayed in Table A.67 - Table A.88. They indicate a substantial change in both the core

average and radially integrated relative power (flux) distributions, implying a severe test for

the AMoR methods examples.
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Figure 3.15: Normalzied Volume Averaged Neutron Density
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Figure 3.16: Normalzied Volume Averaged Neutron Density
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3.3 Verification Calculation Results

As described in Chapter 2, the verification of the projection calculations can be preformed by us-

ing the NESTLE calculated transient data to also provide the actual transient, time-dependent

shape-factor values for the projection calculations, as opposed to using one of the AMoR ap-

proaches outlined previously. Two transient cases performed for the verification analysis entailed

a 2 second rod insertion transient and a 120 second rod insertion transient.

For the 2 second transient, NESTLE was executed with a time-step of 0.002 seconds. Every

25 time-steps or 0.05 seconds the transient and shape-factor data were recorded, resulting in

40 data points. The PKE-Solver was executed using a time-step of 0.02 seconds and the error

results were output every time-step.

For the 120 second transient, NESTLE was executed with a time-step of 0.12 seconds. The

transient and shape-factor data were recorded every 25 time-steps or 3.0 seconds, resulting in

40 data points.The PKE-Solver was executed using a time-step of 1.20 seconds and the error

results were output every time-step.

The 2 second transient case is described by Figure 3.17 and Figure 3.18. The 120 second

transient case results can be observed by Figure 3.19 and Figure 3.20.
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Figure 3.17: Error Bounds of the Normalized Volume Averaged Neutron Density Error and
Locally Normalized Nodal Flux Error at the Maximum Flux Error Position (2 Second Case)
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Figure 3.18: Error Bounds of the Normalized Volume Averaged Precursor Group Concentration
Error and the Locally Normalized Nodal Precursor Group Concentration Error at the Maximum
Precursor Group Concentration Error Position (2 Second Case)
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Figure 3.19: Error Bounds of the Normalized Volume Averaged Neutron Density Error and
Locally Normalized Nodal Flux Error at the Maximum Flux Error Position (120 Second Case)
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Figure 3.20: Error Bounds of the Normalized Volume Averaged Precursor Group Concentration
Error and the Locally Normalized Nodal Precursor Group Concentration Error at the Maximum
Precursor Group Concentration Error Position (120 Second Case)

Figure 3.17 and Figure 3.19 clearly demonstrate that the projection flux calculations for

the 2 second and 120 second transient are within the single precision machine error bounds.

From Figure 3.18 and Figure 3.20 it is clear that the projection precursor group concentration

calculations for the 2 second and 120 second transient are within the single precision machine

error bounds. Given these results, it is reasonable to believe that the projection calculations

have been implemented correctly.
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3.4 Steady-State Library Results

As described in Chapter 2, the steady-state library approach involves the use of a data library

consisting of steady-state, equilibrium conditions entries at various rod positions, beginning

with ARO and ending with one rod fully inserted. For this work, two steady-state libraries

were created containing either 10 steady-state entries or 25 steady-state entries. As with the

verification results, a fast transient, duration of 2 seconds, and a slow transient, duration 120

seconds, were used for the exact solutions. Each transient case was evaluated with either 10 data

outputs or with 40 data outputs. The use of multiple steady-state library sizes and multiple exact

transient solutions output intervals, provides insight into the effects of the linear interpolation

on both the shape-factors and the exact solution.

2 Second Transient, 10 Steady-State Data Points, 10 Transient Data Points

For the 2 second transient utilizing the 10 entry steady-state library and the 10 data output

exact solution, the following results were obtained regarding the flux error and precursor error

equations developed in Chapter 2 (See section 2.1.6). The flux error at the maximum flux posi-

tion and maximum flux error position, locally and averaged normalized results, can be viewed in

Figure 3.21-Figure 3.24. Also the L-2 flux error is displayed in Figure 3.25. The precursor group

concentration error at the maximum precursor group concentration position and the maximum

precursor group concentration error position, locally and averaged normalized results, can be

viewed in Figure 3.26 - Figure 3.29. As well, the L-2 precursor group concentration error can

be observed in Figure 3.30. In addition, the flux and precursor group concentration error and

error component values are located in Appendix-B.
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Figure 3.21: Locally Normalized Flux Error at the Maximum Flux Position (10 SS, 10 Trans)
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Figure 3.22: Average Normalized Flux Error at the Maximum Flux Position (10 SS, 10 Trans)

Comparing the locally normalized error (Figure 3.21) with the volume averaged normalized

error (Figure 3.22), it is clear that the average normalization results in a larger error value.

This is obviously because the average value must be less than the maximum value, resulting in

a higher error from the normalization.
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Figure 3.23: Locally Normalized Flux Error at the Maximum Flux Error Position (10 SS, 10
Trans)
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Figure 3.24: Average Normalized Flux Error at the Maximum Flux Error Position (10 SS, 10
Trans)

Note the differences in behavior between the flux locally normalized maximum error (Fig-

ure 3.23) and the flux averaged normalized maximum error (Figure 3.24). These difference are
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possible because the locally normalized and average normalized maximum error may not occur

at the same position. Let the maximum flux difference occurs at a single node ndiff where the

following expression holds true.

ndiff :� arg max
n

|φg,nptq � φ̃g,nptq|.

The position of ndiff may or may not satisfy the conditions of the locally and averaged nor-

malized maximum error; such that the flux locally normalized maximum error occurs at node

nloc and the flux average normalized maximum error is obtained at position navg, where the

flux locally normalized maximum error position is defined as

nloc :� arg max
n

|φg,nptq � φ̃g,nptq|

φg,nptq

and the flux average normalized maximum error position is defined as

navg :� arg max
n

|φg,nptq � φ̃g,nptq|

xφgptqy
.

To further illustrate consider the following numerical example. Let the flux locally normalized

maximum error be equal to the following,

εflx,local �
2.0 � 1014 � 6.0 � 1014

2.0 � 1014
�
�4.0 � 1014

2.0 � 1014
� �2.0

where φnlocptq � 2.0�1014 and φ̃nlocptq � 6.0�1014. Let the flux average normalized maximum

error be equal to the following,

εflx,avg �
1.5 � 1015 � 2.5 � 1015

1.0 � 1015
�
�1.0 � 1015

1.0 � 1015
� �1.0

where φnavgptq � 1.5 � 1015, φ̃navg � 2.5 � 1015, and xφy � 1.0 � 1015. Also, let the maximum

flux difference be defined as,

0.1 � 1015 � 1.35 � 1015 � �1.25 � 1015

where φndiff � 0.1 � 1015 and φ̃ndiff � 1.35 � 1015.

In this example, the flux locally normalized, the flux average normalized, and the flux

difference maximums all occur at different positions. The example displays how the locally

normalized maximum error value provides consideration to the large magnitude and small

magnitude flux nodes, on a node by node basis. The downside to this is that the information
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yielded may only involve small magnitude nodes which are of less interest since the associated

power level will be low and not that limiting. On the other hand, the average normalized

maximum error value provides insight into the node which has the largest difference relative to

the volume averaged value, which is likely to be biased toward large magnitude flux nodes and

therefore of more interest due to the associated higher power levels. As for the flux maximum

difference, this error metric only provides information regarding the node with the largest

absolute difference. The difficultly of formulating an all encompassing error metric is now clear

and to some degree can be contributed to the fact that the flux values span across multiple

orders of magnitude.

N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux L-2 Norm Error

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.5  1  1.5  2

Figure 3.25: Flux L2-Error (10 SS, 10 Trans)

Note that even though the flux maximum error is relatively large (see Figure 3.23 and

Figure 3.24), the flux L2 error is roughly half the maximum (Figure 3.25).
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Figure 3.26: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 10 Trans)
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Figure 3.27: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 10 Trans)

As with the flux errors at the maximum flux position, notice the increase in error mag-

nitude between the locally normalized (Figure 3.26) versus average normalized error values

(Figure 3.27).
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Figure 3.28: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 10 Trans)
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Figure 3.29: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 10 Trans)

Notice the magnitude of the error in Figure 3.28 and Figure 3.29. The error is very large

because of the precursor values reaching equilibrium in the steady-state cases used to deter-
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mine the point reactor kinetic parameters and shape-factor values. This behavior is then passed

through the shape-factor values to the projected model, resulting in erroneous projected pre-

cursor group concentrations.

Also, note the difference in behavior between the precursor group concentration locally

normalized and averaged normalized maximum error, Figure 3.28 and Figure 3.29, respectively;

specifically at roughly time equal to 1 second. The ability for Figure 3.28 to display negative

values while Figure 3.29 displays positive values is because of the capability of the precursor

group concentration locally normalized and averaged normalized maximum error values to not

occur at the same positions, as discussed previously for the flux locally normalized and average

normalized maximum error values (Figure 3.23 and Figure 3.24). The jump at about 1.0 and

1.3 seconds in Figure 3.28 occurs because the location of the spatial location of the maximum

error is based upon the absolute error; whereas, the error plotted in this figure is the ”signed”

error. So when spatial location shifts at these two times, shifting between positive and negative

errors are occurring. If the absolute error were plotted the curve would be smooth.
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Figure 3.30: Precursor Group Concentration L2-Error (10 SS, 10 Trans)

The same behavior displayed by the flux L2-Error Figure 3.25, such that the maximum

error values are relatively large but the L2-Error values are smaller, is also exhibited in the

precursor group concentrations maximum error, see Figure 3.28 and Figure 3.29 compared with

Figure 3.30.
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2 Second Transient, 10 Steady-State Data Points, 40 Transient Data Points

For the 2 second transient utilizing the 10 entry steady-state library and the 40 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.31 and Figure 3.32. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.35

and Figure 3.36. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.31: Locally Normalized Flux Error at the Maximum Flux Position (10 SS, 40 Trans)
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Figure 3.32: Locally Normalized Flux Error at the Maximum Flux Error Position (10 SS, 40
Trans)

Contrasting Figure 3.32 with Figure 3.23 the behavior displayed may appear erratic. This is

due in part to the fact that Figure 3.23 is displaying the true error values and not the absolute

error values, resulting in some flipping across the axis, as previously explained. Taking the

absolute value of the error paints a slightly less erratic picture (Figure 3.33).
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Figure 3.33: Absolute Value of the Locally Normalized Flux Error at the Maximum Flux Error
Position (10 SS, 40 Trans)
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The spikes that occur throughout the plot are attributed to errors introduced from the

shape-factor values and are predominantly evident in group: 2, see Figure 3.34.
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Figure 3.34: Absolute Value of the Locally Normalized Flux Error and Error Components at
the Maximum Flux Error Position (10 SS, 40 Trans, Group: 2)

At this time the cause of these spikes are believed to stem from interpolation errors and

differences between the equilibrium conditions experienced by the steady-state data library and

the transient conditions experienced by the NESTLE transient solution. It is clear that the errors

originate with the shape-factors and are then past on to the projected model. This behavior is

not evident in Figure 3.23 when the transient and steady-state data was recorded on the same

rod intervals, i.e. 10 steady-state data points recorded on the same regular intervals as the 10

transient data points were recorded. The behavior is also found in Figure 3.32, Figure 3.38, and

Figure 3.42 where the data output intervals do not align, i.e. 10 transient data records versus

40 transient data records. In addition, note that the average neutron density error plays a very

minor role in the component error.

Also, note that the extreme behavior is limited to flux group 2, the thermal group. As

57



the rod is stepped into the core, the absorption cross-section values at nodes where the rod is

inserted fluctuate widely for the thermal group, thus this group is heavily influenced by the rod

insertion relative to the fast group, group 1. Also, the larger cross-section values for the thermal

group, relative to the fast group, result in a small mean free path, or average lifetime; this makes

interpolation difficult under spatially dynamic conditions. In addition the spikes appear to occur

on a slightly irregular interval. This behavior is believed to stem from the interpolation error

and occurs slightly irregular because the Z-planes do not have a uniform height. The Z-plane

heights affect when the rod tip effects are felt by the shape-factors, resulting in highly erroneous

values for some interpolation calculations.
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Figure 3.35: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 40 Trans)
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Figure 3.36: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 40 Trans)

Note, that the error in Figure 3.35 is located at the maximum precursor group concentration

position and in Figure 3.36 is located at the precursor group concentration locally normalized

maximum error position, which are not necessarily located at the same node; hence, their

difference in appearance.
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2 Second Transient, 25 Steady-State Data Points, 10 Transient Data Points

For the 2 second transient utilizing the 25 entry steady-state library and the 10 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.37 and Figure 3.38. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.39

and Figure 3.40. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.37: Locally Normalized Flux Error at the Maximum Flux Position (25 SS, 10 Trans)
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Figure 3.38: Locally Normalized Flux Error at the Maximum Flux Error Position (25 SS, 10
Trans)

The erratic behavior displayed in Figure 3.38 is believed to be caused by the same factors

explaining the behavior of Figure 3.32.
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Figure 3.39: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 10 Trans)
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Figure 3.40: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 10 Trans)

Likewise, Figure 3.39 displays the error at the maximum precursor group concentration

position; whereas, Figure 3.40 represents the error at the precursor group concentration locally

normalized maximum error position, hence their differences.
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2 Second Transient, 25 Steady-State Data Points, 40 Transient Data Points

For the 2 second transient utilizing the 25 entry steady-state library and the 40 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.41 and Figure 3.42. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.43

and Figure 3.44. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.41: Locally Normalized Flux Error at the Maximum Flux Position (25 SS, 40 Trans)
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Figure 3.42: Locally Normalized Flux Error at the Maximum Flux Error Position (25 SS, 40
Trans)

Again, the behavior presented in Figure 3.42 is believed to be caused by the same factors

influencing the behavior of Figure 3.32; though, comparing Figure 3.42 with Figure 3.23, the

overall behavior is similar.
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Figure 3.43: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 40 Trans)
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Figure 3.44: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 40 Trans)

As well, the differences between Figure 3.43 and Figure 3.44 are attributed to the ability

of the maximum precursor group concentration position and the precursor group concentration

locally normalized maximum error position to not coincide.

Also, notice the small ridges present in precursor group 6 in Figure 3.36 and compare with

Figure 3.44. These small variations are believed to also be the results of interpolation effects

from the differing number of steady-state data points used. Again, comparing the ridges present

in precursor group 6 in Figure 3.40 with Figure 3.44, it is apparent that the differing number

of transient data points also has bearing on these effects. Including Figure 3.28 and comparing

with Figure 3.44, it is apparent that both the number of steady-state data records and the

number of transient data records affects the small ridges present in precursor group 6.
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120 Second Transient, 10 Steady-State Data Points, 10 Transient Data Points

For the 120 second transient utilizing the 10 entry steady-state library and the 10 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.45 and Figure 3.46. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.48

and Figure 3.49. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.45: Locally Normalized Flux Error at the Maximum Flux Position (10 SS, 10 Trans)

Contrasting Figure 3.21 with Figure 3.45, it is apparent that the 120 second transient

maintains lower flux locally normalized maximum flux position error values than the 2 second

transient. This is believed to be a results of the longer transient time, which is better approx-

imated by the steady-state cases than is the 2 second transient. Again the ridges are believed

to be caused by interpolation.
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Figure 3.46: Locally Normalized Flux Error at the Maximum Flux Error Position (10 SS, 10
Trans)

Notice the seemingly erratic behavior of Figure 3.46 as compared to Figure 3.23. If the

absolute error were plotted instead of the ”signed” error the curve would be much smoother. It

is apparent that the overall error values are smaller in comparison to the 2 second transient, by

almost half. This occurs even though the volume averaged neutron density error is much more

significant in the case of the 120 second transient, as seen in Figure 3.47.
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Figure 3.47: Locally Normalized Flux Error and Error Components at the Maximum Flux
Error Position (10 SS, 10 Trans, Group: 2)
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Figure 3.48: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 10 Trans)
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Figure 3.49: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 10 Trans)

As with the flux locally normalized maximum error Figure 3.46, the precursor group 6

displays less smoothness in comparison to group 1, group 2, group 3, and group 4. Some insight

as to the source of this discrepancy can be gleaned from viewing the component error analysis

for these groups. Again, the jumps are due to error sign switching when location of the absolute

maximum occurs.
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Figure 3.50: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 10 Trans, Group 6)
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Figure 3.51: Locally Normalized Precursor Group Concentration Error and Error Components
at the Maximum Precursor Group Concentration Error Position (10 SS, 10 Trans, Group 1)
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Figure 3.52: Locally Normalized Precursor Group Concentration Error and Error Components
at the Maximum Precursor Group Concentration Error Position (10 SS, 10 Trans, Group 4)

It is clear from Figure 3.50, Figure 3.51, and Figure 3.52 that the behavior becomes less

smooth as the volume averaged precursor group concentration error becomes more significant.
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120 Second Transient, 10 Steady-State Data Points, 40 Transient Data Points

For the 120 second transient utilizing the 10 entry steady-state library and the 40 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.53 and Figure 3.54. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.55

and Figure 3.56. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.53: Locally Normalized Flux Error at the Maximum Flux Position (10 SS, 40 Trans)
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Figure 3.54: Locally Normalized Flux Error at the Maximum Flux Error Position (10 SS, 40
Trans)

The description for the distinct behavior of Figure 3.54 is the same as the argument made

for Figure 3.46.
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Figure 3.55: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 40 Trans)
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Figure 3.56: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 40 Trans)

As well, see the argument characterizing the behavior for Figure 3.49 to describe the trends

seen in Figure 3.56.
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120 Second Transient, 25 Steady-State Data Points, 10 Transient Data Points

For the 120 second transient utilizing the 25 entry steady-state library and the 10 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.57 and Figure 3.58. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.59

and Figure 3.60. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.57: Locally Normalized Flux Error at the Maximum Flux Position (25 SS, 10 Trans)

74



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux Error, Locally Normalized at the Max Flux Error Position

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80  100  120

Figure 3.58: Locally Normalized Flux Error at the Maximum Flux Error Position (25 SS, 10
Trans)

Again, see the argument made for Figure 3.46 to describe the behavior of Figure 3.58.
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Figure 3.59: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 10 Trans)
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Figure 3.60: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 10 Trans)

As well, see the description for the behavior of Figure 3.49 to describe Figure 3.60.

76



120 Second Transient, 25 Steady-State Data Points, 40 Transient Data Points

For the 120 second transient utilizing the 25 entry steady-state library and the 40 data out-

put exact solution, the following results were obtained regarding the flux error and precursor

error equations. The locally normalized flux error at the maximum flux position and the max-

imum flux error position have been supplied in Figure 3.61 and Figure 3.62. Also, the locally

normalized precursor group concentration error at the maximum precursor group concentration

position and the maximum precursor group concentration error position are given in Figure 3.63

and Figure 3.64. Appendix-B contains the flux and precursor average normalized errors along

with the L2-error values.
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Figure 3.61: Locally Normalized Flux Error at the Maximum Flux Position (25 SS, 40 Trans)
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Figure 3.62: Locally Normalized Flux Error at the Maximum Flux Error Position (25 SS, 40
Trans)

Once again, see the argument made for Figure 3.46 to describe the behavior of Figure 3.62.
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Figure 3.63: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 40 Trans)

78



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Precursor Group Concentration Error, Locally Normalized at the   Max Precursor Group Concentration Error Position

Precursor Group: 1
Precursor Group: 2
Precursor Group: 3
Precursor Group: 4
Precursor Group: 5
Precursor Group: 6

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  20  40  60  80  100  120

Figure 3.64: Locally Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 40 Trans)

Also, notice the small ridges present in precursor group 6 in Figure 3.56 and compare with

Figure 3.64. These small variations are believed to also be the results of interpolation effects

from the differing number of steady-state data points used. Again, comparing the ridges present

in precursor group 6 in Figure 3.60 with Figure 3.64 it is apparent that the differing number

of transient data points also has bearing on these effects. Including Figure 3.49 and comparing

with Figure 3.64, it is apparent that both the number of steady-state data records and the

number of transient data records affect the small ridges present in precursor group 6.

Note that both the 2 second and 120 second transients reported mixed results dependent

upon the number of steady-state library and transient solution data points.
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3.5 Active Model Switching Results

For the active model switching approach, three test scenarios were evaluated; one with no

switching, another with only one update, and a third case with full switching capability. Each

test scenario studied a fast rod insertion, duration of 2 seconds, and a slow rod insertion,

duration of 120 seconds. The fidelity of the projected model was determined by comparison

with the NESTLE transient solution. For the fast transient, the exact solution consist of a 2

second transient with a time-step of 0.002 seconds and a data record every 25 time-steps or

0.050 seconds, resulting in 40 data points. For the slow transient, the exact solution consist of

a 120 second transient with a time-step of 0.120 seconds and a data record every 25 time-steps

or 3.0 seconds, resulting in 40 data points.

Utilization of the NESTLE restart capability requires a restart input file. This file consist of

various factors that are printed when NESTLE is stopped with the intention of being restarted

at some later time. To facilitate the active model switching approach, a transient is executed

using NESTLE and is stopped after one time-step and the restart factors are recorded. Note

that some of the restart factors are time dependent. Thus, when the error is determined to

be too large, at some time during the transient, the correct time dependent restart factors

are unknown. To reconcile this issue, the restart factors generated after the first time-step are

utilized. For the 2 second case the initial time-step was 0.0010 seconds and the rod was inserted

from the ARO position, 141.250 inches, to a slightly inserted position of 141.179375 inches. For

the 120 second case, the initial time-step was 0.060 seconds and the rod was inserted from the

ARO position to the same 141.179375 inches position.

3.5.1 No Switching - 2 Second Transient

The shape-factors for the 2 second no switching test case were generated by NESTLE from a

quick insertion transient. This consisted of an initialization of the steady-state case, at time

0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a period of

0.0020 seconds, having a time-step of 0.0001 seconds, providing 20 data records. The PKE-Solver

executed the 2 second transient with a time-step of 0.01 seconds. The flux error at the maximum

flux error position, locally and averaged normalized, can be viewed in Figure 3.65-Figure 3.66.

Also the L-2 flux error is displayed in Figure 3.67. The precursor group concentration error

values are not presented because they have no bearing on this analysis due to the assumption

of setting the βi values to be negligible small (See Section 3.2).
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Figure 3.65: Locally Normalized Flux Error at the Maximum Flux Error Position (No switch,
Trans 40)

Comparing Figure 3.23, Figure 3.32, Figure 3.38, and Figure 3.42 with Figure 3.65 it is

apparent that the flux locally normalized maximum error values for the steady-state cases are

roughly the same as for the no switching 2 second transient.
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Figure 3.66: Average Normalized Flux Error at the Maximum Flux Error Position (No switch,
Trans 40)

When comparing Figure 3.24, Figure B.35, Figure B.41, and Figure B.47 with Figure 3.66,

the flux average normalized maximum error values are demonstrated to approximately equal

those for the steady-state cases as for the no switching 2 second transient.
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Figure 3.67: Flux L2-Error (No switch, Trans 40)

Notice that even though the maximum flux error values reach approximately 22% (Fig-

ure 3.65 and Figure 3.66) the average flux error stays marginally lower, around 15% (Fig-

ure 3.67). In addition, Appendix-C contains the flux error and error component values, locally

and average normalized, (Figure C.1 - Figure C.8).
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3.5.2 No Switching - 120 Second Transient

The shape-factors for the 120 second no switching test case were generated by NESTLE from

a quick insertion transient. This consisted of a initialization of the steady-state case, at time

0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a period of

0.0020 seconds, having a time-step of 0.0001 seconds, providing 20 data printouts. The PKE-

Solver executed the 120 second transient with a time-step of 0.30 seconds. The flux error at the

maximum flux error position, locally and averaged normalized can be viewed in Figure 3.68-

Figure 3.69. Also the L-2 flux error is displayed in Figure 3.70.
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Figure 3.68: Locally Normalized Flux Error at the Maximum Flux Error Position (No switch,
Trans 40)

Comparing Figure 3.46, Figure 3.54, Figure 3.58, and Figure 3.62 with Figure 3.68 it is

apparent that the flux locally normalized maximum error values for the steady-state cases are

roughly the same as for the no switching 120 second transients when using 10 steady-state

records with 40 transient records (Figure 3.54) and 25 steady-state records with 10 transient

records (Figure 3.58). The no switching 120 second transient results in Figure 3.68 appear to

be worse than the 120 second transient cases utilizing 10 steady-state records with 10 transient

records (Figure 3.46) and 25 steady-state records with 40 transient records (Figure 3.62).
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Figure 3.69: Average Normalized Flux Error at the Maximum Flux Error Position (No switch,
Trans 40)

When comparing Figure B.53, Figure B.59, Figure B.65, and Figure B.71 with Figure 3.69,

the flux average normalized maximum error values of the no switching 120 second transient

are demonstrated to be approximately equal the transients using 10 steady-state records with

40 transient records (Figure B.59) and 25 steady-state records and 10 transient records (Fig-

ure B.65). The 120 second transient cases utilizing 10 steady-state records with 10 transient

records (Figure B.53) and 25 steady-state records with 40 transient records (Figure B.71) appear

to produce better values than the no switching 120 second transient (Figure 3.69).
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Figure 3.70: Flux L2-Error (No switch, Trans 40)

Notice that even though the maximum flux error values reach approximately 40-60% (Fig-

ure 3.68 and Figure 3.69) the average flux error stays marginally lower, around 15% (Fig-

ure 3.70). In addition, observe how similar the results from the 2 second transient (Figure 3.65

- Figure 3.67) are to the 120 second transient (Figure 3.70 - Figure 3.69). Appendix-C con-

tains the flux error and error component values, locally and average normalized, (Figure C.9 -

Figure C.16).
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3.5.3 Single Update - 2 Second Transient

The initial shape-factors for the 2 second single update test case were generated by NESTLE

from a quick insertion transient. This consisted of a initialization of the steady-state case, at

time 0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a period

of 0.0020 seconds, having a time-step size of 0.0001 seconds, providing 20 data records. The

PKE-Solver executed the 2 second transient with a time-step of 0.01 seconds. The single shape-

factor update was performed at 1.00 second, the middle of the transient. The PKE-Solver was

executed for 1.00 second. NESTLE was then restarted with the projected flux and projected

precursor group concentration values from two PKE-Solver time-steps prior to the current time,

at the time 0.98 seconds. NESTLE used a time-step size of 0.001 seconds until it reached the

current transient time of 1.00 seconds and printed the first updated shape-factor values. Then

the code was executed with a time-step size of 0.0001 seconds until the single rod was fully

inserted at time 1.0010 seconds, outputting the shape-factor values at each time-step. The new

shape-factor values replaced the old values and the PKE-Solver was restarted. In this case only

a single update was allowed to demonstrate the abilities relative to no switching.

The flux error at the maximum flux error position, locally and averaged normalized can be

viewed in Figure 3.71-Figure 3.72. Also the L-2 flux error is displayed in Figure 3.73. As with

the no switching scenario, the precursor group concentration error values are not presented

because they have no bearing on this analysis due to the assumption explained in Section 3.2.
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Figure 3.71: Locally Normalized Flux Error at the Maximum Flux Error Position (One update,
Trans 40)

Note the drastic reduction in error for the flux locally normalized maximum error values at

1.0 seconds, Figure 3.71. Comparing Figure 3.65 with Figure 3.71, the first half of the transient

cases appear identical, which they should as nothing between the two cases differs until 1.0

second. At 1.0 second the reduction in the flux locally normalized maximum error for the single

update case is dramatic. After 1.0 second the flux locally normalized maximum error for the

single update case rises rapidly and ends the transient with a larger value than the no switch

2 second transient case.

88



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux Error, Average Normalized at the Max Flux Error Position

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.5  1  1.5  2

Figure 3.72: Average Normalized Flux Error at the Maximum Flux Error Position (One up-
date, Trans 40)

Note the drastic reduction in error for the flux averaged normalized maximum error values

at 1.0 seconds,Figure 3.72. Comparing Figure 3.66 with Figure 3.72, the same comments apply

as made when comparing Figure 3.65 with Figure 3.71.
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Figure 3.73: Flux L2-Error (One update, Trans 40)

Notice the drastic reduction in error for every error metric at 1.0 second (Figure 3.71 - Fig-

ure 3.73). These results agree nicely, because the flux locally normalized and average normalized

maximum error values (Figure 3.71 and Figure 3.72) are roughly 2% at 1.0 second. Thus, every

other error value must be smaller than this, resulting in a very small flux L2-Error (  1.0%)

at 1.0 second (Figure 3.73). Comparing Figure 3.67 with Figure 3.73, the same explanation as

noted for the other figures (Figure 3.65 compared with Figure 3.71 and Figure 3.66 compared

with Figure 3.72) apply.

Appendix-C contains the flux error and error component values, locally and average nor-

malized, (Figure C.17 - Figure C.24).
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3.5.4 Single Update - 120 Second Transient

The initial shape-factors for the 120 second single update test case were generated by NESTLE

form a quick insertion transient. This consisted of a initialization of the steady-state case,

at time 0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a

period of 0.0020 seconds, having a time-step of 0.0001 seconds, providing 20 data printouts.

The PKE-Solver executed the 120 second transient with a time-step of 0.30 seconds. The single

shape-factor update was performed at 60.00 seconds, the middle of the transient. The PKE-

Solver was executed for 60.00 seconds. NESTLE was then restarted with the projected flux

and projected precursor group concentration values from two PKE-Solver time-steps prior to

the current time, at time 59.40 seconds. NESTLE used a time-step of 0.01 seconds until it

reached a transient time of 60.00 seconds and printed the first updated shape-factor values.

Then the code was executed at the same time-step of 0.01 seconds until the a single rod was

fully inserted at time 60.12 seconds, outputting the shape-factor values at each time-step. The

new shape-factor values replaced the old values and the PKE-Solver was restarted. In this case

only a single update was allowed to demonstrate the ability relative to no switching.

The flux error at the maximum flux error position, locally and averaged normalized can be

viewed in Figure 3.74-Figure 3.75. Also the L-2 flux error is displayed in Figure 3.76. As with

the no switching scenario, the precursor group concentration error values are not presented

because they have no bearing on this analysis due to the assumption explained in Section 3.2.

91



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux Error, Locally Normalized at the Max Flux Error Position

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  20  40  60  80  100  120

Figure 3.74: Locally Normalized Flux Error at the Maximum Flux Error Position (One update,
Trans 40)

Note the drastic reduction in error for the flux locally normalized maximum error values

at 60.0 seconds, Figure 3.74. Comparing Figure 3.68 with Figure 3.74, the first half of the

transient cases appear identical, which they should as nothing between the two cases differ

until 60.0 second. At 60.0 second the reduction in the flux locally normalized maximum error

for the single update case is dramatic. After 60.0 second the flux locally normalized maximum

error for the single update case maintains a relatively low value until the end of the transient,

compared to the no switch 120 second transient case.
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Figure 3.75: Average Normalized Flux Error at the Maximum Flux Error Position (One up-
date, Trans 40)

Note the drastic reduction in error for the flux averaged normalized maximum error values

at 60.0 seconds,Figure 3.75. Comparing Figure 3.69 with Figure 3.75, the same explanation as

used when comparing Figure 3.68 with Figure 3.74 applies.

93



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux L-2 Norm Error

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  20  40  60  80  100  120

Figure 3.76: Flux L2-Error (One update, Trans 40)

Notice the drastic reduction in error for every error metric at 60.0 second (Figure 3.74 -

Figure 3.76). These results agree nicely, because the locally normalized and average normalized

maximum error values (Figure 3.74 and Figure 3.75) are roughly 3% at 60.0 second. Thus, every

other error value must be smaller than this, resulting in a very small flux L2-Error (  1.5%)

at 60.0 second (Figure 3.76). Comparing Figure 3.70 with Figure 3.76, the same explanation as

noted for the other figures (Figure 3.68 compared with Figure 3.74 and Figure 3.69 compared

with Figure 3.75) applies.

In addition, the behavior exhibited by the 2 second single update transient (Figure 3.71

- Figure 3.73)contrast the behavior displayed by the 120 second single update transient (Fig-

ure 3.74 - Figure 3.76). This suggest that the longer transients respond better to shape-factor

updating than the shorter transients.

Appendix-C contains the flux error and error component values, locally and average nor-

malized, (Figure C.25 - Figure C.32).
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3.5.5 Active Switching - 2 Second Transient

The initial shape-factors for the 2 second active switching test case were generated by NESTLE

from a quick insertion transient. This consisted of a initialization of the steady-state case, at

time 0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a period of

0.0020 seconds, having a time-step size of 0.0001 seconds, providing 20 data records. The PKE-

Solver executed the 2 second transient with a time-step size of 0.01 seconds. The acceptable

error limit was set at 25%; This value seemed to provide a nice trade-off between number of

updates and precision for the 2 second transient. Eight shape-factor updates were performed for

this case at times 0.15 second, 0.34 second, 0.55 second, 0.75 second, 0.95 second, 1.35 second,

1.65 second, and 1.95 second.

For the 0.15 second restart, the PKE-Solver was paused at 0.15 seconds, once the error had

been determined to be in excess of the acceptable limit. NESTLE was then restarted with the

projected flux and projected precursor group concentration values from two PKE-Solver time-

steps prior to the current time, at the time 0.13 second. NESTLE used a time-step of 0.001

seconds until it reached the current transient time of 0.15 second. Then the code executed

with a time-step of 0.0001 seconds until a single rod was fully inserted at time 0.1523 seconds,

recording the shape-factor values at each time-step. The new shape-factor values replaced the

old values and the PKE-Solver was restarted.

This process was then repeated at 0.34 second, 0.55 second, 0.75 second, 0.95 second, 1.35

second, 1.65 second, and 1.95 second.

The flux error at the maximum flux error position, locally and averaged normalized, can

be viewed in Figure 3.77 - Figure 3.78. Also the L-2 flux error is displayed in Figure 3.79. As

with the no switching scenario, the precursor group concentration error values are not presented

because they have no bearing on this analysis due to the assumption explained in Section 3.2.

Appendix-C contains the flux error and error component values, locally and average normalized

(Figure C.33 - Figure C.40).

95



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Neutron Scalar Flux Error, Locally Normalized at the Max Flux Error Position

Energy Group: 1
Energy Group: 2

Energy Group: 1+2

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.5  1  1.5  2

Figure 3.77: Locally Normalized Flux Error at the Maximum Flux Error Position (Active,
Trans 40)

Note the drastic reduction in error for the flux locally normalized maximum error values at

each shape-factor update, Figure 3.77. Comparing Figure 3.65 and Figure 3.71 with Figure 3.77,

all of the cases behave identically until the first update at 0.15 second. At this point the flux

locally normalized maximum error value is drastically reduced for the active switching 2 second

transient. In addition, notice that the locally flux normalized maximum error value for the

switching case Figure 3.77 is maintained at or below 25% error.
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Figure 3.78: Average Normalized Flux Error at the Maximum Flux Error Position (Active,
Trans 40)

Note the drastic reduction in error for the flux locally normalized maximum error values at

each shape-factor update, Figure 3.78. Comparing Figure 3.66 and Figure 3.72 with Figure 3.78,

the same explanation as used when comparing Figure 3.65 and Figure 3.71 with Figure 3.77

applies.
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Figure 3.79: Flux L2-Error (Active, Trans 40)

Comparing Figure 3.67 and Figure 3.73 with Figure 3.79, all of the cases behave identically

until the first update at 0.15 second. At this point the flux L2-Error is drastically reduced

for the active switching 2 second transient. In addition, notice that the flux L2-Error for the

switching case is maintained below 8.0%.

Notice the drastic reduction in error for every error metric at every shape-factor update

(Figure 3.77 - Figure 3.79). These results agree nicely, because the locally normalized and

average normalized maximum error values (Figure 3.77 and Figure 3.78) are maintained at

or below 25% throughout the transient. Thus, every other error value must be smaller than

this, resulting in a small flux L2-Error (  8.0%) (Figure 3.79). As well, observe the updating

interval spacing in Figure 3.79. As the transient approaches 1.0 second, 6 updates were required

to maintain the acceptable error limit; whereas, only 2 updates were required from 1.0 seconds

to 2.0 seconds.

Appendix-C contains the flux error and error component values, locally and average nor-

malized, (Figure C.33 - Figure C.40).
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3.5.6 Active Switching - 120 Second Transient

The initial shape-factors for the 120 second active switching test case were generated by NES-

TLE from a quick insertion transient. This consisted of a initialization of the steady-state case,

at time 0 seconds, and then a rod insertion from ARO to a single rod fully inserted over a

period of 0.0020 seconds, having a time-step size of 0.0001 seconds, providing 20 data records.

The PKE-Solver executed the 120 second transient with a time-step size of 0.30 seconds. The

acceptable error limit was set at 10%; This value seemed to provide a nice trade-off between

number of updates and precision for the 2 second transient. Four shape-factor updates were

performed for this case at times 2.10 second, 6.00 second, 116.10 second, and 116.70 second.

For the 2.10 second restart, the PKE-Solver was paused at 2.10 seconds, once the error had

been determined to be in excess of the acceptable limit. NESTLE was then restarted with the

projected flux and projected precursor group concentration values from two PKE-Solver time-

steps prior to the current time, at the time 1.50 second. NESTLE used a time-step size of 0.01

seconds until it reached the current transient time of 2.10 second. Then the code executed with

a time-step of 0.01 seconds until a single rod was fully inserted at time 2.34 seconds, outputting

the shape-factor values at each time-step. The new shape-factor values replaced the old values

and the PKE-Solver was restarted.

This process was repeated at 6.00 second, 116.10 second, and 116.70 second.

The flux error at the maximum flux error position, locally and averaged normalized, can

be viewed in Figure 3.80 - Figure 3.81. Also the L-2 flux error is displayed in Figure 3.82. As

with the no switching scenario, the precursor group concentration error values are not presented

because they have no bearing on this analysis due to the assumption explained in Section 3.2.

Appendix-C contains the flux error and error component values, locally and average normalized

(Figure C.41 - Figure C.48).
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Figure 3.80: Locally Normalized Flux Error at the Maximum Flux Error Position (Active,
Trans 40)

Note the reduction in error for the flux locally normalized maximum error values at each

shape-factor update, Figure 3.80. Comparing Figure 3.68 and Figure 3.74 with Figure 3.80, all of

the cases behave identically until the first update at 2.34 seconds. At this point the flux locally

normalized maximum error value is reduced for the active switching 120 second transient. In

addition, notice that the locally flux normalized maximum error value for the switching case

Figure 3.80 is maintained at or below 10% error.
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Figure 3.81: Average Normalized Flux Error at the Maximum Flux Error Position (Active,
Trans 40)

Note the reduction in error for the flux locally normalized maximum error values at each

shape-factor update, Figure 3.78. Comparing Figure 3.69 and Figure 3.75 with Figure 3.81, the

same explanation made for comparing Figure 3.68 and Figure 3.74 with Figure 3.80 applies.
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Figure 3.82: Flux L2-Error (Active, Trans 40)

Comparing Figure 3.70 and Figure 3.76 with Figure 3.82, all of the cases behave identically

until the first update at 2.34 second. At this point the flux L2-Error is reduced for the active

switching 120 second transient. In addition, notice that the flux L2-Error for the switching case

is maintained below 4.0%.

Notice the reduction in error for every error metric at every shape-factor update (Figure 3.80

- Figure 3.82). These results agree nicely, because the locally normalized and average normalized

maximum error values (Figure 3.80 and Figure 3.81) are maintained at or below 10% throughout

the transient. Thus, every other error value must be smaller than this, resulting in a small flux

L2-Error (  4.0%) (Figure 3.82).

In addition, the behavior exhibited by the 2 second active transient (Figure 3.77 - Fig-

ure 3.79) contrast the behavior displayed by the 120 second single update transient (Figure 3.80

- Figure 3.82). Also, recall that the 2 second transient required 8 shape-factor updates, given a

PKE-Solver time-step size of 0.01 seconds, and the 120 second transient only required 4 shape-

factor updates, given a PKE-Solver time-step size of 0.30 seconds. This suggest that the longer

transients respond better to shape-factor updating than the shorter transients. Also, take note
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that 2 updates were required within the first 6.0 seconds of the transient to maintain the accept-

able error limit, after which no updates were required until 116.10 seconds. In addition, another

update was needed relatively quickly at 116.70 seconds. This suggest that while the 120 second

transient behaves more predictably over the majority of the transient duration, maintaining the

acceptable error limit is problematic at the beginning and end of the transient.

Appendix-C contains the flux error and error component values, locally and average nor-

malized, (Figure C.41 - Figure C.48).
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Chapter 4

Conclusions and Recommendations

Designing a nuclear reactor is a complex and lengthy process made up of various technical trade-

offs. Choices made during this stage result in long term economic effects, both good and bad.

The constant pressure placed on designers to reduce the finical burden involved with the design

process is the motivating force behind improving the reactor simulation time/accuracy ratio.

The application of AMoR methods to reactor core design has the potential to help engineers

increase their simulation capabilities while reducing their overhead, thus making the process

more efficient. In addition, this development will help enhance researcher’s abilities to explore

the problem space, aiding in achieving the best possible solution. Also, investigating the capa-

bilities of this technique may lend insight into the applicability of similar AMoR approaches to

other aspects of reactor design, such as thermal-hydraulics.

Evaluating the 2 second and 120 second transients with the steady-state library AMoR

approach resulted in a maximum of the locally normalized flux error values at the maximum

flux position of roughly 10% and 5 - 7%, respectively, and a maximum of the locally normalized

flux error values at the maximum flux error position of approximately 27 - 30% and 12 - 30%,

respectively. The simulations also resulted in a maximum of the locally normalized precursor

group concentration error values at the maximum precursor group concentration position of

10% for the 2 second transient and 10% for the 120 second transient, and a maximum of the

locally normalized precursor group concentration error values at the maximum precursor group

concentration error position around 65% for the 2 second transient and 60% for the 120 second

transient.

To provide a baseline error, the active model switching AMoR approach was used with no

model switching. The 2 second and 120 second transients investigated behaved similarly, yielding

a maximum of the, locally normalized and average normalized, flux error at the maximum flux

error position of 50 - 80% and 20 - 40%, respectively.

In addition, the 2 second and 120 second transients were evaluated with the same active
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model switching approach but instead allowed a single update. This test scenario yielded a

locally normalized flux error at the maximum flux error position of 60 - 100% for the 2 second

transient and 30 - 40% for the 120 second transient. Also, the maximum of the average normal-

ized flux error at the maximum flux error position was roughly 30 - 40% for both transients.

Immediately following the update each transient experienced a reduction in error from roughly

25% to 5% for both the locally and averaged normalized flux error calculations. The 2 second

transient experienced a reduction in the flux L2 error from roughly 13% to 0.5%, which later

returned to roughly 13%, near the end of the transient. The 120 second transient experienced

a reduction in the flux L2 error from approximately 13% to 1.0%, which remained below 2.0%

until the end of the transient.

Evaluating the 2 second and 120 second transients with the active model switching AMoR

approach using multiple updates, maintained the maximum, locally normalized and averaged

normalized, flux error at the maximum flux error position below 25% and 10%, respectively. The

2 second transient flux L2 error maximum was approximately 8% and the 120 second transient

flux L2 error maximum was roughly 4%.The 2 second transient required 8 updates and the

120 second transient required only 4 updates. In addition, all of the error metrics experienced

significant reductions in error after each update.

In general, the application of the AMoR method proved capable of producing 3-D projected

models from a combination of amplitude-shape factors. The efficacy of the active switching

approach was demonstrated for prompt neutron calculations, though the ability of this approach

to reduce the simulation time/accuracy ratio is still untested.

4.1 Future Work

As with most simulation techniques this early in development, there remains a wide variety of

applications, methods, and variations of the AMoR technique still to be investigated. Specific

to neutron transport simulations, many different variations of the approaches outlined in this

research are waiting to be evaluated, three of which are on the immediate horizon; the hybrid

precursor model (to be explained), the utilization of the adjoint method to perform model

fidelity analysis during simulation with time, and the integration of the AMoR approaches

outlined in this research with the Quasi-Static method.

Considering the active model switching AMoR approach utilized in this research, there

is a definite need to extend this approach to also calculate the precursor group concentration

values. It was realized during this work, that the precursor values with this approach were highly

unreliable and were thus limited to not interfere with the prompt neutron calculations testing.

A solution to this problem has already been conceptualized regarding a hybrid precursor model.

This would involve using the 3-D precursor equations in NESTLE to calculate the time-spatial
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precursor values within the PKE-Solver using the 3-D projected flux. This solution has merit

because the precursor calculations are not computationally demanding.

All of the testing performed in this research used the NESTLE calculated solution to deter-

mine the projected model’s fidelity. If the AMoR method is to be employed, the NESTLE cal-

culated solution will be unknown. Instead another method for determining the model’s fidelity

is needed. A solution to this issue has already been conceptualized and is under development.

The solution entails utilizing the adjoint method to evaluate the fidelity of the projected model.

This approach would not involve the NESTLE calculated solution, only the adjoint solution.

Finally, the AMoR technique can potentially be integrated with the Quasi-Static method

to yield a simulation which uses a more mathematically rigorous formulation of the amplitude

and shape factor equations to solve the diffusion or transport neutron equation. This has the

potential to enhance the lower and higher fidelity models’ fidelity.

In addition to extending the approaches outlined in this research, there is reason to further

investigate the steady-state library approach. From the steady-state library test cases evaluated

for this work, it is apparent that the number of steady-state data points and the number of

transient solution data points are extremely relevant to the behavior of some error values. The

impact of the data library and transient solution data records, both in terms of absolute number

of data points and frequency of data points relative to one another, needs to be evaluated further

if this method is to be utilized heavily.
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Appendix A

Test Cases General Behavior

(Continued)

A.1 2 Second Transient

The axial and radial power distributions have been supplied for the 2 second transient case

printing data over 10 rod intervals.

Table A.1: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 141.25 inches
- All Rods Out

Y/X 1 2 3 4 5 6 7 8

1 0.8636 1.1431 0.9905 1.2570 1.2514 1.3239 1.0740 0.7320
2 1.1442 1.1009 1.1697 1.1844 1.2782 1.2659 1.2123 0.4723
3 1.0128 1.1745 0.8908 1.1839 1.2438 1.2977 0.9951 0.3733
4 1.2586 1.1875 1.1862 1.2122 1.2969 1.2325 1.0950 0.2865
5 1.2530 1.2792 1.2446 1.2967 1.2186 1.2328 0.5955
6 1.3239 1.2653 1.2974 1.2320 1.2327 0.5361 0.2243
7 1.0740 1.2118 0.9945 1.0947 0.5957 0.2247
8 0.7320 0.4723 0.3731 0.2864

109



Table A.2: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 127.12 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8645 1.1448 0.9883 1.2453 1.2081 1.3132 1.0729 0.7335
2 1.1459 1.1018 1.1692 1.1782 1.2679 1.2610 1.2134 0.4731
3 1.0106 1.1741 0.8905 1.1850 1.2444 1.3008 0.9984 0.3745
4 1.2470 1.1813 1.1872 1.2161 1.3031 1.2392 1.1016 0.2880
5 1.2097 1.2690 1.2452 1.3030 1.2260 1.2416 0.5996
6 1.3132 1.2604 1.3006 1.2387 1.2415 0.5398 0.2259
7 1.0728 1.2129 0.9978 1.1013 0.5998 0.2262
8 0.7334 0.4730 0.3743 0.2879

Table A.3: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 113.00 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8656 1.1471 0.9833 1.2220 1.1349 1.2915 1.0693 0.7353
2 1.1482 1.1022 1.1671 1.1647 1.2476 1.2503 1.2142 0.4742
3 1.0056 1.1719 0.8895 1.1862 1.2450 1.3067 1.0047 0.3769
4 1.2236 1.1678 1.1885 1.2234 1.3160 1.2530 1.1154 0.2910
5 1.1366 1.2487 1.2458 1.3158 1.2417 1.2603 0.6083
6 1.2916 1.2497 1.3064 1.2525 1.2603 0.5479 0.2293
7 1.0692 1.2138 1.0041 1.1151 0.6085 0.2297
8 0.7353 0.4741 0.3767 0.2909

Table A.4: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 98.88 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8673 1.1494 0.9783 1.1958 1.0550 1.2667 1.0648 0.7367
2 1.1505 1.1028 1.1643 1.1501 1.2247 1.2384 1.2143 0.4753
3 1.0005 1.1692 0.8887 1.1873 1.2459 1.3128 1.0117 0.3796
4 1.1974 1.1532 1.1896 1.2318 1.3303 1.2685 1.1307 0.2946
5 1.0566 1.2258 1.2467 1.3302 1.2596 1.2815 0.6182
6 1.2668 1.2377 1.3125 1.2680 1.2814 0.5573 0.2333
7 1.0648 1.2138 1.0110 1.1303 0.6184 0.2337
8 0.7367 0.4753 0.3794 0.2945
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Table A.5: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 84.75 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8703 1.1522 0.9737 1.1665 0.9654 1.2385 1.0600 0.7378
2 1.1533 1.1041 1.1614 1.1349 1.1989 1.2254 1.2138 0.4768
3 0.9958 1.1663 0.8889 1.1886 1.2473 1.3190 1.0193 0.3829
4 1.1680 1.1379 1.1909 1.2415 1.3459 1.2855 1.1470 0.2986
5 0.9669 1.1999 1.2480 1.3457 1.2795 1.3044 0.6292
6 1.2385 1.2247 1.3187 1.2850 1.3043 0.5680 0.2378
7 1.0599 1.2133 1.0186 1.1466 0.6293 0.2382
8 0.7378 0.4768 0.3827 0.2985

Table A.6: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 70.63 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8742 1.1550 0.9700 1.1384 0.8799 1.2110 1.0555 0.7386
2 1.1561 1.1060 1.1588 1.1211 1.1739 1.2133 1.2129 0.4784
3 0.9920 1.1637 0.8896 1.1898 1.2489 1.3245 1.0265 0.3862
4 1.1400 1.1241 1.1921 1.2510 1.3603 1.3016 1.1621 0.3026
5 0.8813 1.1749 1.2497 1.3601 1.2985 1.3257 0.6396
6 1.2110 1.2126 1.3242 1.3010 1.3256 0.5783 0.2422
7 1.0554 1.2124 1.0258 1.1617 0.6398 0.2426
8 0.7386 0.4783 0.3859 0.3025

Table A.7: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 56.50 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8783 1.1577 0.9668 1.1121 0.8000 1.1851 1.0516 0.7393
2 1.1588 1.1082 1.1564 1.1087 1.1504 1.2022 1.2119 0.4799
3 0.9887 1.1613 0.8907 1.1907 1.2507 1.3294 1.0332 0.3893
4 1.1137 1.1117 1.1930 1.2600 1.3734 1.3164 1.1759 0.3063
5 0.8012 1.1514 1.2515 1.3732 1.3164 1.3453 0.6493
6 1.1851 1.2016 1.3290 1.3159 1.3452 0.5880 0.2463
7 1.0515 1.2114 1.0325 1.1755 0.6495 0.2467
8 0.7393 0.4799 0.3890 0.3062
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Table A.8: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 42.38 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8820 1.1600 0.9639 1.0887 0.7292 1.1619 1.0482 0.7401
2 1.1611 1.1103 1.1541 1.0980 1.1293 1.1926 1.2111 0.4814
3 0.9857 1.1590 0.8916 1.1914 1.2525 1.3335 1.0392 0.3921
4 1.0902 1.1010 1.1937 1.2681 1.3849 1.3296 1.1881 0.3097
5 0.7302 1.1303 1.2532 1.3846 1.3323 1.3626 0.6580
6 1.1619 1.1919 1.3331 1.3290 1.3626 0.5966 0.2500
7 1.0481 1.2106 1.0385 1.1877 0.6582 0.2504
8 0.7400 0.4813 0.3919 0.3096

Table A.9: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 28.25 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8847 1.1615 0.9615 1.0707 0.6757 1.1443 1.0459 0.7408
2 1.1626 1.1118 1.1522 1.0899 1.1132 1.1854 1.2106 0.4825
3 0.9833 1.1570 0.8922 1.1917 1.2538 1.3365 1.0439 0.3943
4 1.0722 1.0929 1.1940 1.2743 1.3934 1.3396 1.1975 0.3123
5 0.6767 1.1141 1.2546 1.3932 1.3444 1.3759 0.6647
6 1.1443 1.1847 1.3361 1.3390 1.3758 0.6032 0.2528
7 1.0458 1.2101 1.0432 1.1971 0.6649 0.2533
8 0.7408 0.4825 0.3940 0.3122

Table A.10: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 14.13 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8863 1.1624 0.9595 1.0576 0.6375 1.1317 1.0445 0.7416
2 1.1635 1.1127 1.1506 1.0841 1.1014 1.1804 1.2106 0.4834
3 0.9812 1.1555 0.8924 1.1918 1.2548 1.3387 1.0473 0.3959
4 1.0591 1.0871 1.1941 1.2786 1.3995 1.3468 1.2044 0.3141
5 0.6383 1.1023 1.2555 1.3992 1.3531 1.3854 0.6695
6 1.1317 1.1797 1.3383 1.3463 1.3854 0.6079 0.2548
7 1.0444 1.2101 1.0466 1.2040 0.6697 0.2553
8 0.7416 0.4834 0.3956 0.3140
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Table A.11: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 0.00 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8869 1.1626 0.9585 1.0516 0.6194 1.1260 1.0441 0.7422
2 1.1637 1.1131 1.1499 1.0815 1.0959 1.1783 1.2108 0.4839
3 0.9802 1.1548 0.8924 1.1918 1.2553 1.3398 1.0490 0.3966
4 1.0531 1.0846 1.1941 1.2805 1.4022 1.3501 1.2076 0.3149
5 0.6202 1.0968 1.2560 1.4019 1.3570 1.3897 0.6717
6 1.1260 1.1776 1.3394 1.3495 1.3896 0.6099 0.2557
7 1.0440 1.2103 1.0483 1.2072 0.6718 0.2562
8 0.7422 0.4839 0.3964 0.3148

Table A.12: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 141.25 inches
- All Rods Out

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1365 8.76 0.3126 11.76 0.3624 15.00 0.4079 21.00 0.4944
27.00 0.5787 33.00 0.6653 39.00 0.7559 45.00 0.8511 51.00 0.9501
57.00 1.0512 63.00 1.1523 69.00 1.2506 75.00 1.3428 81.00 1.4250
87.00 1.4930 93.00 1.5421 99.00 1.5676 105.00 1.5634 111.00 1.5227
117.00 1.4370 123.00 1.2952 129.00 1.0795 134.76 0.7902 137.76 0.6559
141.00 0.3424

Table A.13: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 127.12 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1402 8.76 0.3211 11.76 0.3722 15.00 0.4187 21.00 0.5073
27.00 0.5935 33.00 0.6818 39.00 0.7741 45.00 0.8706 51.00 0.9707
57.00 1.0725 63.00 1.1736 69.00 1.2712 75.00 1.3619 81.00 1.4414
87.00 1.5053 93.00 1.5491 99.00 1.5674 105.00 1.5544 111.00 1.5033
117.00 1.4056 123.00 1.2509 129.00 1.0230 134.76 0.7346 137.76 0.6049
141.00 0.3147
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Table A.14: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 113.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1499 8.76 0.3432 11.76 0.3977 15.00 0.4471 21.00 0.5410
27.00 0.6317 33.00 0.7240 39.00 0.8196 45.00 0.9187 51.00 1.0204
57.00 1.1225 63.00 1.2222 69.00 1.3161 75.00 1.4005 81.00 1.4707
87.00 1.5218 93.00 1.5488 99.00 1.5464 105.00 1.5084 111.00 1.4284
117.00 1.2998 123.00 1.1371 129.00 0.9284 134.76 0.6707 137.76 0.5532
141.00 0.2882

Table A.15: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 98.88 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1613 8.76 0.3691 11.76 0.4276 15.00 0.4804 21.00 0.5801
27.00 0.6756 33.00 0.7718 39.00 0.8704 45.00 0.9712 51.00 1.0730
57.00 1.1730 63.00 1.2681 69.00 1.3543 75.00 1.4272 81.00 1.4816
87.00 1.5122 93.00 1.5137 99.00 1.4803 105.00 1.4099 111.00 1.3264
117.00 1.2196 123.00 1.0784 129.00 0.8868 134.76 0.6434 137.76 0.5316
141.00 0.2771

Table A.16: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 84.75 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1723 8.76 0.3939 11.76 0.4560 15.00 0.5117 21.00 0.6163
27.00 0.7154 33.00 0.8137 39.00 0.9128 45.00 1.0123 51.00 1.1102
57.00 1.2035 63.00 1.2881 69.00 1.3597 75.00 1.4132 81.00 1.4429
87.00 1.4437 93.00 1.4267 99.00 1.4019 105.00 1.3620 111.00 1.3002
117.00 1.2084 123.00 1.0770 129.00 0.8905 134.76 0.6483 137.76 0.5363
141.00 0.2797
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Table A.17: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 70.63 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1793 8.76 0.4095 11.76 0.4737 15.00 0.5310 21.00 0.6377
27.00 0.7373 33.00 0.8344 39.00 0.9303 45.00 1.0241 51.00 1.1135
57.00 1.1947 63.00 1.2635 69.00 1.3145 75.00 1.3436 81.00 1.3692
87.00 1.3908 93.00 1.4025 99.00 1.3992 105.00 1.3752 111.00 1.3243
117.00 1.2390 123.00 1.1094 129.00 0.9203 134.76 0.6714 137.76 0.5559
141.00 0.2900

Table A.18: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 56.50 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1811 8.76 0.4133 11.76 0.4776 15.00 0.5346 21.00 0.6398
27.00 0.7361 33.00 0.8280 39.00 0.9162 45.00 0.9994 51.00 1.0749
57.00 1.1384 63.00 1.1899 69.00 1.2465 75.00 1.3029 81.00 1.3542
87.00 1.3960 93.00 1.4237 99.00 1.4325 105.00 1.4171 111.00 1.3714
117.00 1.2876 123.00 1.1560 129.00 0.9607 134.76 0.7017 137.76 0.5811
141.00 0.3033

Table A.19: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 42.38 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1766 8.76 0.4024 11.76 0.4647 15.00 0.5191 21.00 0.6185
27.00 0.7073 33.00 0.7895 39.00 0.8651 45.00 0.9330 51.00 1.0016
57.00 1.0769 63.00 1.1552 69.00 1.2330 75.00 1.3067 81.00 1.3723
87.00 1.4257 93.00 1.4625 99.00 1.4781 105.00 1.4671 111.00 1.4233
117.00 1.3389 123.00 1.2036 129.00 1.0012 134.76 0.7317 137.76 0.6061
141.00 0.3164
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Table A.20: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 28.25 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1667 8.76 0.3794 11.76 0.4376 15.00 0.4879 21.00 0.5785
27.00 0.6569 33.00 0.7270 39.00 0.8024 45.00 0.8845 51.00 0.9717
57.00 1.0619 63.00 1.1527 69.00 1.2410 75.00 1.3236 81.00 1.3967
87.00 1.4562 93.00 1.4978 99.00 1.5169 105.00 1.5078 111.00 1.4646
117.00 1.3788 123.00 1.2403 129.00 1.0322 134.76 0.7545 137.76 0.6251
141.00 0.3263

Table A.21: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 14.13 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1525 8.76 0.3465 11.76 0.3993 15.00 0.4441 21.00 0.5265
27.00 0.6072 33.00 0.6905 39.00 0.7779 45.00 0.8697 51.00 0.9651
57.00 1.0622 63.00 1.1589 69.00 1.2523 75.00 1.3394 81.00 1.4162
87.00 1.4788 93.00 1.5228 99.00 1.5436 105.00 1.5355 111.00 1.4922
117.00 1.4054 123.00 1.2646 129.00 1.0526 134.76 0.7695 137.76 0.6376
141.00 0.3328

Table A.22: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 0.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1403 8.76 0.3209 11.76 0.3721 15.00 0.4188 21.00 0.5073
27.00 0.5930 33.00 0.6804 39.00 0.7712 45.00 0.8660 51.00 0.9639
57.00 1.0633 63.00 1.1621 69.00 1.2574 75.00 1.3461 81.00 1.4244
87.00 1.4883 93.00 1.5333 99.00 1.5549 105.00 1.5472 111.00 1.5039
117.00 1.4167 123.00 1.2749 129.00 1.0613 134.76 0.7760 137.76 0.6429
141.00 0.3356
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A.2 120 Second Transient

The axial and radial power distributions have been supplied for the 120 second transient case

printing data over 10 rod intervals.

Table A.23: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 141.25
inches - All Rods Out

Y/X 1 2 3 4 5 6 7 8

1 0.8636 1.1431 0.9905 1.2570 1.2514 1.3239 1.0740 0.7320
2 1.1442 1.1009 1.1697 1.1844 1.2782 1.2659 1.2123 0.4723
3 1.0128 1.1745 0.8908 1.1839 1.2438 1.2977 0.9951 0.3733
4 1.2586 1.1875 1.1862 1.2122 1.2969 1.2325 1.0950 0.2865
5 1.2530 1.2792 1.2446 1.2967 1.2186 1.2328 0.5955
6 1.3239 1.2653 1.2974 1.2320 1.2327 0.5361 0.2243
7 1.0740 1.2118 0.9945 1.0947 0.5957 0.2247
8 0.7320 0.4723 0.3731 0.2864

Table A.24: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 127.12
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8642 1.1445 0.9880 1.2451 1.2079 1.3131 1.0728 0.7335
2 1.1456 1.1014 1.1690 1.1778 1.2678 1.2608 1.2134 0.4730
3 1.0103 1.1739 0.8903 1.1849 1.2444 1.3010 0.9985 0.3745
4 1.2467 1.1809 1.1872 1.2161 1.3034 1.2394 1.1020 0.2880
5 1.2096 1.2688 1.2451 1.3032 1.2263 1.2420 0.5998
6 1.3131 1.2602 1.3007 1.2390 1.2420 0.5400 0.2259
7 1.0727 1.2130 0.9979 1.1016 0.5999 0.2263
8 0.7335 0.4730 0.3743 0.2879
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Table A.25: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 113.00
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8640 1.1460 0.9820 1.2215 1.1366 1.2917 1.0689 0.7353
2 1.1471 1.1008 1.1662 1.1636 1.2476 1.2499 1.2143 0.4739
3 1.0043 1.1710 0.8884 1.1860 1.2447 1.3072 1.0049 0.3768
4 1.2231 1.1667 1.1883 1.2233 1.3168 1.2537 1.1164 0.2911
5 1.1383 1.2487 1.2455 1.3166 1.2423 1.2616 0.6087
6 1.2917 1.2493 1.3069 1.2532 1.2616 0.5482 0.2294
7 1.0688 1.2139 1.0043 1.1160 0.6089 0.2298
8 0.7353 0.4739 0.3766 0.2910

Table A.26: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 98.87
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8640 1.1470 0.9759 1.1958 1.0613 1.2680 1.0641 0.7365
2 1.1481 1.0997 1.1625 1.1485 1.2257 1.2380 1.2144 0.4748
3 0.9980 1.1674 0.8867 1.1869 1.2452 1.3136 1.0117 0.3793
4 1.1974 1.1515 1.1892 1.2311 1.3314 1.2694 1.1320 0.2945
5 1.0629 1.2268 1.2460 1.3313 1.2602 1.2833 0.6187
6 1.2680 1.2374 1.3133 1.2689 1.2833 0.5576 0.2333
7 1.0640 1.2139 1.0111 1.1317 0.6188 0.2337
8 0.7365 0.4748 0.3791 0.2944

Table A.27: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 84.75
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8655 1.1484 0.9702 1.1670 0.9767 1.2407 1.0588 0.7373
2 1.1495 1.0994 1.1587 1.1326 1.2008 1.2251 1.2137 0.4761
3 0.9923 1.1636 0.8860 1.1878 1.2462 1.3201 1.0192 0.3824
4 1.1686 1.1357 1.1901 1.2404 1.3473 1.2866 1.1488 0.2985
5 0.9783 1.2018 1.2470 1.3471 1.2802 1.3069 0.6298
6 1.2408 1.2244 1.3198 1.2861 1.3068 0.5683 0.2379
7 1.0587 1.2132 1.0186 1.1483 0.6299 0.2383
8 0.7373 0.4760 0.3822 0.2984
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Table A.28: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 70.63
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8682 1.1500 0.9654 1.1383 0.8929 1.2131 1.0538 0.7378
2 1.1511 1.1000 1.1550 1.1179 1.1757 1.2126 1.2125 0.4774
3 0.9874 1.1599 0.8860 1.1887 1.2477 1.3260 1.0266 0.3857
4 1.1399 1.1210 1.1910 1.2499 1.3625 1.3035 1.1647 0.3026
5 0.8944 1.1767 1.2485 1.3623 1.3002 1.3295 0.6408
6 1.2131 1.2119 1.3256 1.3029 1.3295 0.5792 0.2425
7 1.0537 1.2120 1.0259 1.1642 0.6409 0.2429
8 0.7378 0.4774 0.3854 0.3025

Table A.29: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 56.50
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8716 1.1516 0.9611 1.1098 0.8101 1.1853 1.0490 0.7382
2 1.1527 1.1012 1.1514 1.1041 1.1505 1.2006 1.2111 0.4789
3 0.9830 1.1562 0.8866 1.1893 1.2495 1.3312 1.0339 0.3891
4 1.1114 1.1071 1.1916 1.2596 1.3769 1.3200 1.1800 0.3068
5 0.8114 1.1514 1.2503 1.3767 1.3200 1.3515 0.6517
6 1.1852 1.1999 1.3308 1.3194 1.3514 0.5901 0.2472
7 1.0490 1.2106 1.0332 1.1795 0.6518 0.2476
8 0.7382 0.4789 0.3888 0.3067

Table A.30: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 42.37
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8751 1.1529 0.9572 1.0831 0.7332 1.1591 1.0449 0.7387
2 1.1540 1.1025 1.1478 1.0917 1.1267 1.1896 1.2097 0.4805
3 0.9789 1.1526 0.8872 1.1896 1.2514 1.3357 1.0407 0.3924
4 1.0846 1.0947 1.1919 1.2687 1.3900 1.3353 1.1941 0.3107
5 0.7343 1.1277 1.2522 1.3898 1.3387 1.3718 0.6619
6 1.1591 1.1889 1.3353 1.3347 1.3717 0.6004 0.2516
7 1.0448 1.2092 1.0400 1.1937 0.6621 0.2520
8 0.7386 0.4804 0.3921 0.3106
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Table A.31: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 28.25
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8776 1.1536 0.9537 1.0619 0.6735 1.1387 1.0420 0.7393
2 1.1547 1.1034 1.1447 1.0820 1.1079 1.1812 1.2088 0.4818
3 0.9753 1.1495 0.8875 1.1895 1.2530 1.3391 1.0462 0.3950
4 1.0635 1.0850 1.1918 1.2759 1.4000 1.3473 1.2054 0.3138
5 0.6745 1.1089 1.2537 1.3998 1.3534 1.3878 0.6701
6 1.1386 1.1805 1.3387 1.3467 1.3877 0.6084 0.2550
7 1.0419 1.2083 1.0455 1.2049 0.6703 0.2555
8 0.7393 0.4817 0.3947 0.3137

Table A.32: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 14.12
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8790 1.1538 0.9509 1.0466 0.6310 1.1241 1.0403 0.7401
2 1.1549 1.1039 1.1422 1.0751 1.0943 1.1754 1.2086 0.4828
3 0.9724 1.1470 0.8874 1.1892 1.2541 1.3416 1.0503 0.3969
4 1.0481 1.0781 1.1915 1.2809 1.4070 1.3559 1.2136 0.3161
5 0.6319 1.0952 1.2548 1.4068 1.3639 1.3993 0.6759
6 1.1240 1.1747 1.3412 1.3554 1.3992 0.6141 0.2575
7 1.0402 1.2081 1.0495 1.2131 0.6761 0.2579
8 0.7401 0.4827 0.3966 0.3159

Table A.33: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 0.00
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8794 1.1536 0.9495 1.0396 0.6115 1.1177 1.0398 0.7407
2 1.1547 1.1040 1.1410 1.0721 1.0881 1.1730 1.2088 0.4833
3 0.9710 1.1458 0.8873 1.1890 1.2546 1.3427 1.0522 0.3977
4 1.0411 1.0751 1.1913 1.2831 1.4101 1.3598 1.2173 0.3171
5 0.6123 1.0890 1.2553 1.4099 1.3686 1.4044 0.6785
6 1.1176 1.1723 1.3423 1.3592 1.4043 0.6167 0.2586
7 1.0397 1.2083 1.0515 1.2168 0.6787 0.2590
8 0.7406 0.4833 0.3975 0.3170
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Table A.34: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 141.25
inches - All Rods Out

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1365 8.76 0.3126 11.76 0.3624 15.00 0.4079 21.00 0.4944
27.00 0.5787 33.00 06653 39.00 0.7559 45.00 0.8511 51.00 0.9501
57.00 1.0512 63.00 1.1523 69.00 1.2506 75.00 1.3428 81.00 1.4250
87.00 1.4930 93.00 1.5421 99.00 1.5676 105.00 1.5634 111.00 1.5227
117.00 1.4370 123.00 1.2952 129.00 1.0795 134.76 0.7902 137.76 0.6559
141.00 0.3424

Table A.35: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 127.12
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1412 8.76 0.3235 11.76 0.3750 15.00 0.4218 21.00 0.5109
27.00 0.5975 33.00 0.6861 39.00 0.7785 45.00 0.8751 51.00 0.9751
57.00 1.0766 63.00 1.1773 69.00 1.2743 75.00 1.3640 81.00 1.4424
87.00 1.5050 93.00 1.5473 99.00 1.5641 105.00 1.5496 111.00 1.4971
117.00 1.3985 123.00 1.2433 129.00 1.0160 134.76 0.7290 137.76 0.6001
141.00 0.3122

Table A.36: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 113.00
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1551 8.76 0.3550 11.76 0.4113 15.00 0.4622 21.00 0.5584
27.00 0.6508 33.00 0.7443 39.00 0.8405 45.00 0.9395 5100 1.0404
57.00 1.1407 63.00 1.2378 69.00 1.3281 75.00 1.4079 81.00 1.4726
87.00 1.5176 93.00 1.5380 99.00 1.5290 105.00 1.4850 111.00 1.4002
117.00 1.2689 123.00 1.1059 129.00 0.9001 134.76 0.6488 137.76 0.5347
141.00 0.2784
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Table A.37: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 98.88
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1726 8.76 0.3946 11.76 0.4567 15.00 0.5125 21.00 0.6171
27.00 0.7161 33.00 0.8144 39.00 0.9136 45.00 1.0137 51.00 1.1130
57.00 1.2086 63.00 1.2974 69.00 1.3753 75.00 1.4381 81.00 1.4808
87.00 1.4988 93.00 1.4875 99.00 1.4421 105.00 1.3617 111.00 1.2706
117.00 1.1597 123.00 1.0192 129.00 0.8342 134.76 0.6033 137.76 0.4977
141.00 0.2593

Table A.38: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 84.75
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1898 8.76 0.4333 11.76 0.5011 15.00 0.5613 21.00 0.6732
27.00 0.7772 33.00 0.8781 39.00 0.9775 45.00 1.0747 51.00 1.1677
57.00 1.2532 63.00 1.3271 69.00 1.3852 75.00 1.4230 81.00 1.4352
87.00 1.4182 93.00 1.3840 99.00 1.3436 105.00 1.2909 111.00 1.2202
117.00 1.1247 123.00 0.9957 129.00 0.8192 134.76 0.5945 137.76 0.4910
141.00 0.2560

Table A.39: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 70.63
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.2013 8.76 0.4592 11.76 0.5305 15.00 0.5932 21.00 0.7086
27.00 0.8136 33.00 0.9130 39.00 1.0080 45.00 1.0976 51.00 1.1793
57.00 1.2493 63.00 1.3035 69.00 1.3372 75.00 1.3469 81.00 1.3525
87.00 1.3544 93.00 1.3478 99.00 1.3286 105.00 1.2921 111.00 1.2332
117.00 1.1453 123.00 1.0196 129.00 0.8422 134.76 0.6127 137.76 0.5066
141.00 0.2642

122



Table A.40: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 56.50
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.2047 8.76 0.4663 11.76 0.5381 15.00 0.6007 21.00 0.7144
27.00 0.8155 33.00 0.9084 39.00 0.9940 45.00 1.0709 51.00 1.1364
57.00 1.1864 63.00 1.2217 69.00 1.2608 75.00 1.2990 81.00 1.3320
87.00 1.3562 93.00 1.3678 99.00 1.3629 105.00 1.3369 111.00 1.2845
117.00 1.1991 123.00 1.0717 129.00 0.8876 134.76 0.6468 137.76 0.5352
141.00 0.2792

Table A.41: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 42.38
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1982 876 0.4509 11.76 0.5197 15.00 0.5790 21.00 0.6854
27.00 0.7772 33.00 0.8587 39.00 0.9301 45.00 0.9904 51.00 1.0490
57.00 1.1126 63.00 1.1779 69.00 1.2417 75.00 1.3010 81.00 1.3520
87.00 1.3914 93.00 1.4153 99.00 1.4199 105.00 1.4003 111.00 1.3512
117.00 1.2654 123.00 1.1336 129.00 0.9406 134.76 0.6861 137.76 0.5679
141.00 0.2963

Table A.42: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 28.25
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1836 8.76 0.4172 11.76 0.4804 15.00 0.5343 21.00 0.6295
27.00 0.7093 33.00 0.7776 39.00 0.8493 45.00 0.9262 51.00 1.0068
57.00 1.0890 63.00 1.1706 69.00 1.2488 75.00 1.3208 81.00 1.3829
87.00 1.4316 93.00 1.4632 99.00 1.4735 105.00 1.4575 111.00 1.4097
117.00 1.3226 123.00 1.1864 129.00 0.9853 134.76 0.7192 137.76 0.5954
141.00 0.3107
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Table A.43: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 14.13
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1641 8.76 0.3722 11.76 0.4284 15.00 0.4755 21.00 0.5610
27.00 0.6430 33.00 0.7262 39.00 0.8122 45.00 0.9012 51.00 0.9926
57.00 1.0845 63.00 1.1749 69.00 1.2611 75.00 1.3402 81.00 1.4087
87.00 1.4628 93.00 1.4988 99.00 1.5123 105.00 1.4984 111.00 1.4510
117.00 1.3627 123.00 1.2233 129.00 1.0165 134.76 0.7422 137.76 0.6146
141.00 0.3207

Table A.44: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 0.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1485 8.76 0.3388 11.76 0.3926 15.00 0.4413 21.00 0.5329
27.00 0.6204 33.00 0.7084 39.00 0.7989 45.00 0.8921 51.00 0.9874
57.00 1.0830 63.00 1.1770 69.00 1.2665 75.00 1.3488 81.00 1.4202
87.00 1.4769 93.00 1.5150 99.00 1.5302 105.00 1.5173 111.00 1.4704
117.00 1.3817 123.00 1.2409 129.00 1.0314 134.76 0.7532 137.76 0.6237
141.00 0.3255
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A.3 2 Second Transient, βi � 0.0001

The axial and radial power distributions have been supplied for the 2 second transient case

printing data over 40 rod intervals (Though only the same 10 intervals printed for Sections A.1

and A.2 will be shown here to save space), utilizing the precursor assumption, βi � 0.0001.

Table A.45: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 141.25
inches - All Rods Out

Y/X 1 2 3 4 5 6 7 8

1 0.8636 1.1431 0.9905 1.2570 1.2514 1.3239 1.0740 0.7320
2 1.1442 1.1009 1.1697 1.1844 1.2782 1.2659 1.2123 0.4723
3 1.0128 1.1745 0.8908 1.1839 1.2438 1.2977 0.9951 0.3733
4 1.2586 1.1875 1.1862 1.2122 1.2969 1.2325 1.0950 0.2865
5 1.2530 1.2792 1.2446 1.2967 1.2186 1.2328 0.5955
6 1.3239 1.2653 1.2974 1.2320 1.2327 0.5361 0.2243
7 1.0740 1.2118 0.9945 1.0947 0.5957 0.2247
8 0.7320 0.4723 0.3731 0.2864

Table A.46: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 127.12
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8639 1.1443 0.9877 1.2448 1.2079 1.3130 1.0727 0.7335
2 1.1454 1.1012 1.1688 1.1775 1.2676 1.2607 1.2134 0.4730
3 1.0100 1.1737 0.8901 1.1849 1.2443 1.3011 0.9986 0.3746
4 1.2465 1.1806 1.1871 1.2161 1.3036 1.2396 1.1022 0.2880
5 1.2096 1.2687 1.2451 1.3034 1.2265 1.2423 0.5999
6 1.3130 1.2601 1.3008 1.2392 1.2423 0.5401 0.2260
7 1.0726 1.2130 0.9980 1.1019 0.6001 0.2263
8 0.7335 0.4730 0.3743 0.2879
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Table A.47: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 113.00
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8636 1.1457 0.9817 1.2216 1.1376 1.2918 1.0687 0.7352
2 1.1468 1.1004 1.1660 1.1634 1.2478 1.2498 1.2142 0.4739
3 1.0040 1.1709 0.8882 1.1859 1.2446 1.3072 1.0049 0.3768
4 1.2232 1.1665 1.1882 1.2232 1.3169 1.2538 1.1165 0.2911
5 1.1393 1.2489 1.2454 1.3168 1.2424 1.2618 0.6088
6 1.2918 1.2492 1.3069 1.2533 1.2618 0.5483 0.2294
7 1.0686 1.2138 1.0043 1.1162 0.6090 0.2298
8 0.7352 0.4738 0.3766 0.2910

Table A.48: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 98.88 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8641 1.1471 0.9760 1.1961 1.0626 1.2680 1.0638 0.7362
2 1.1482 1.0998 1.1627 1.1486 1.2259 1.2380 1.2141 0.4748
3 0.9982 1.1675 0.8869 1.1869 1.2451 1.3134 1.0116 0.3794
4 1.1977 1.1517 1.1892 1.2312 1.3313 1.2692 1.1318 0.2945
5 1.0642 1.2269 1.2459 1.3311 1.2601 1.2831 0.6187
6 1.2680 1.2373 1.3131 1.2687 1.2831 0.5576 0.2334
7 1.0638 1.2136 1.0110 1.1314 0.6188 0.2338
8 0.7362 0.4748 0.3792 0.2944

Table A.49: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 84.75 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8665 1.1490 0.9710 1.1669 0.9760 1.2399 1.0585 0.7369
2 1.1502 1.1004 1.1591 1.1331 1.2003 1.2248 1.2131 0.4761
3 0.9930 1.1640 0.8867 1.1880 1.2464 1.3196 1.0192 0.3827
4 1.1685 1.1362 1.1903 1.2408 1.3471 1.2865 1.1483 0.2987
5 0.9776 1.2014 1.2472 1.3469 1.2804 1.3065 0.6299
6 1.2399 1.2242 1.3192 1.2860 1.3065 0.5686 0.2382
7 1.0584 1.2126 1.0185 1.1479 0.6301 0.2386
8 0.7369 0.4761 0.3825 0.2986
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Table A.50: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 70.63 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8704 1.1514 0.9668 1.1376 0.8891 1.2111 1.0535 0.7373
2 1.1525 1.1020 1.1559 1.1186 1.1743 1.2121 1.2116 0.4777
3 0.9888 1.1607 0.8874 1.1889 1.2482 1.3251 1.0266 0.3862
4 1.1391 1.1217 1.1912 1.2508 1.3622 1.3035 1.1640 0.3030
5 0.8906 1.1753 1.2489 1.3620 1.3007 1.3291 0.6411
6 1.2111 1.2114 1.3247 1.3029 1.3290 0.5798 0.2430
7 1.0534 1.2111 1.0260 1.1636 0.6412 0.2434
8 0.7373 0.4777 0.3860 0.3028

Table A.51: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 56.50 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8748 1.1537 0.9633 1.1089 0.8045 1.1827 1.0489 0.7377
2 1.1548 1.1041 1.1527 1.1053 1.1486 1.2000 1.2100 0.4794
3 0.9851 1.1576 0.8886 1.1897 1.2502 1.3299 1.0339 0.3898
4 1.1104 1.1084 1.1920 1.2608 1.3763 1.3198 1.1789 0.3072
5 0.8057 1.1496 1.2510 1.3761 1.3206 1.3506 0.6520
6 1.1827 1.1993 1.3295 1.3192 1.3505 0.5908 0.2477
7 1.0488 1.2095 1.0332 1.1785 0.6521 0.2481
8 0.7376 0.4793 0.3895 0.3071

Table A.52: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 42.38 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8791 1.1557 0.9600 1.0828 0.7280 1.1568 1.0451 0.7382
2 1.1568 1.1063 1.1497 1.0937 1.1252 1.1894 1.2086 0.4810
3 0.9817 1.1546 0.8897 1.1901 1.2523 1.3340 1.0406 0.3931
4 1.0844 1.0967 1.1923 1.2699 1.3887 1.3344 1.1923 0.3110
5 0.7291 1.1262 1.2530 1.3885 1.3386 1.3699 0.6619
6 1.1568 1.1887 1.3337 1.3339 1.3698 0.6008 0.2520
7 1.0450 1.2081 1.0399 1.1919 0.6620 0.2525
8 0.7381 0.4810 0.3928 0.3109
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Table A.53: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 28.25 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8820 1.1569 0.9573 1.0632 0.6712 1.1376 1.0426 0.7388
2 1.1580 1.1079 1.1473 1.0851 1.1076 1.1816 1.2078 0.4823
3 0.9790 1.1521 0.8904 1.1901 1.2538 1.3370 1.0456 0.3956
4 1.0648 1.0881 1.1924 1.2767 1.3978 1.3454 1.2025 0.3139
5 0.6722 1.1085 1.2546 1.3976 1.3521 1.3843 0.6693
6 1.1376 1.1809 1.3366 1.3448 1.3843 0.6082 0.2552
7 1.0425 1.2073 1.0449 1.2021 0.6695 0.2557
8 0.7388 0.4823 0.3953 0.3138

Table A.54: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 14.13 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8837 1.1577 0.9552 1.0496 0.6321 1.1245 1.0412 0.7397
2 1.1587 1.1089 1.1455 1.0792 1.0953 1.1765 1.2077 0.4833
3 0.9768 1.1503 0.8906 1.1900 1.2549 1.3391 1.0492 0.3973
4 1.0511 1.0822 1.1923 1.2812 1.4039 1.3529 1.2096 0.3159
5 0.6329 1.0962 1.2556 1.4037 1.3612 1.3942 0.6744
6 1.1244 1.1758 1.3388 1.3523 1.3942 0.6131 0.2574
7 1.0411 1.2072 1.0485 1.2092 0.6746 0.2578
8 0.7397 0.4832 0.3970 0.3158

Table A.55: Radial Relative Power Distribution, 2 Second Transient, Rod Position: 0.00 inches

Y/X 1 2 3 4 5 6 7 8

1 0.8844 1.1580 0.9543 1.0438 0.6144 1.1190 1.0409 0.7403
2 1.1591 1.1094 1.1449 1.0768 1.0900 1.1745 1.2080 0.4838
3 0.9759 1.1497 0.8906 1.1900 1.2554 1.3401 1.0508 0.3980
4 1.0453 1.0798 1.1923 1.2831 1.4064 1.3559 1.2126 0.3167
5 0.6152 1.0909 1.2561 1.4062 1.3649 1.3982 0.6764
6 1.1189 1.1738 1.3397 1.3554 1.3982 0.6151 0.2582
7 1.0408 1.2075 1.0501 1.2122 0.6766 0.2586
8 0.7403 0.4837 0.3977 0.3166
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Table A.56: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 141.25 inches
- All Rods Out

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1365 8.76 0.3126 11.76 0.3624 15.00 0.4079 21.00 0.4944
27.00 0.5787 33.00 0.6653 39.00 0.7559 45.00 0.8511 51.00 0.9501
57.00 1.0512 63.00 1.1523 69.00 1.2506 75.00 1.3428 81.00 1.4250
87.00 1.4930 93.00 1.5421 99.00 1.5676 105.00 1.5634 111.00 1.5227
117.00 1.4370 123.00 1.2952 129.00 1.0795 134.76 0.7902 137.76 0.6559
141.00 0.3424

Table A.57: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 127.12 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1427 8.76 0.3268 11.76 0.3788 15.00 0.4261 21.00 0.5158
27.00 0.6029 33.00 0.6918 39.00 0.7844 45.00 0.8809 51.00 0.9806
57.00 1.0817 63.00 1.1816 69.00 1.2776 75.00 1.3661 81.00 1.4429
87.00 1.5039 93.00 1.5444 99.00 1.5595 105.00 1.5432 111.00 1.4894
117.00 1.3898 123.00 1.2344 129.00 1.0078 134.76 0.7228 137.76 0.5948
141.00 0.3094

Table A.58: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 113.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1582 8.76 0.3619 11.76 0.4192 15.00 0.4709 21.00 0.5684
27.00 0.6618 33.00 0.7558 39.00 0.8522 45.00 0.9510 51.00 1.0511
57.00 1.1502 63.00 1.2455 69.00 1.3336 75.00 1.4107 81.00 1.4723
87.00 1.5139 93.00 1.5309 99.00 1.5186 105.00 1.4717 111.00 1.3849
117.00 1.2528 123.00 1.0902 129.00 0.8864 134.76 0.6384 137.76 0.5260
141.00 0.2738
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Table A.59: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 98.88 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1750 8.76 0.4000 11.76 0.4629 15.00 0.5193 21.00 0.6248
27.00 0.7245 33.00 0.8230 39.00 0.9223 45.00 1.0219 51.00 1.1203
57.00 1.2148 63.00 1.3019 69.00 1.3779 75.00 1.4384 81.00 1.4787
87.00 1.4943 93.00 1.4807 99.00 1.4335 105.00 1.3519 111.00 1.2604
117.00 1.1497 123.00 1.0100 129.00 0.8264 134.76 0.5976 137.76 0.4930
141.00 0.2569

Table A.60: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 84.75 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1896 8.76 0.4329 11.76 0.5005 15.00 0.5607 21.00 0.6724
27.00 0.7761 33.00 0.8767 39.00 0.9756 45.00 1.0724 51.00 1.1648
57.00 1.2497 63.00 1.3233 69.00 1.3811 75.00 1.4189 81.00 1.4316
87.00 1.4155 93.00 1.3828 99.00 1.3443 105.00 1.2936 111.00 1.2249
117.00 1.1308 123.00 1.0025 129.00 0.8256 134.76 0.5995 137.76 0.4953
141.00 0.2583

Table A.61: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 70.63 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1968 8.76 0.4490 11.76 0.5188 15.00 0.5803 21.00 0.6937
27.00 0.7972 33.00 0.8955 39.00 0.9900 45.00 1.0796 51.00 1.1619
57.00 1.2332 63.00 1.2896 69.00 1.3265 75.00 1.3404 81.00 1.3512
87.00 1.3588 93.00 1.3581 99.00 1.3446 105.00 1.3131 111.00 1.2580
117.00 1.1720 123.00 1.0460 129.00 0.8657 134.76 0.6305 137.76 0.5215
141.00 0.2721
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Table A.62: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 56.50 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1956 8.76 0.4458 11.76 0.5147 15.00 0.5750 21.00 0.6850
27.00 0.7835 33.00 0.8751 39.00 0.9604 45.00 1.0384 51.00 1.1065
57.00 1.1606 63.00 1.2017 69.00 1.2478 75.00 1.2941 81.00 1.3359
87.00 1.3692 93.00 1.3898 99.00 1.3930 105.00 1.3737 111.00 1.3261
117.00 1.2426 123.00 1.1139 129.00 0.9246 134.76 0.6747 137.76 0.5585
141.00 0.2914

Table A.63: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 42.38 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1853 8.76 0.4218 11.76 0.4866 15.00 0.5428 21.00 0.6443
27.00 0.7333 33.00 0.8138 39.00 0.8863 45.00 0.9496 51.00 1.0132
57.00 1.0832 63.00 1.1564 69.00 1.2294 75.00 1.2989 81.00 1.3607
87.00 1.4110 93.00 1.4453 99.00 1.4592 105.00 1.4471 111.00 1.4030
117.00 1.3191 123.00 1.1852 129.00 0.9854 134.76 0.7198 137.76 0.5961
141.00 0.3112

Table A.64: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 28.25 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1695 8.76 0.3854 11.76 0.4443 15.00 0.4950 21.00 0.5856
27.00 0.6632 33.00 0.7318 39.00 0.8055 45.00 0.8858 51.00 0.9714
57.00 1.0602 63.00 1.1499 69.00 1.2374 75.00 1.3197 81.00 1.3926
87.00 1.4523 93.00 1.4942 99.00 1.5138 105.00 1.5053 111.00 1.4624
117.00 1.3770 123.00 1.2387 129.00 1.0307 134.76 0.7533 137.76 0.6239
141.00 0.3257
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Table A.65: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 14.13 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1509 8.76 0.3429 11.76 0.3952 15.00 0.4397 21.00 0.5214
27.00 0.6016 33.00 0.6845 39.00 0.7718 45.00 0.8638 51.00 0.9596
57.00 1.0575 63.00 1.1552 69.00 1.2500 75.00 1.3387 81.00 1.4172
87.00 1.4815 93.00 1.5272 99.00 1.5494 105.00 1.5424 111.00 1.4998
117.00 1.4131 123.00 1.2718 129.00 1.0586 134.76 0.7738 137.76 0.6410
141.00 0.3346

Table A.66: Axial Relative Power Distribution, 2 Second Transient, Rod Position: 0.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1373 8.76 0.3143 11.76 0.3647 15.00 0.4110 21.00 0.4986
27.00 0.5840 33.00 0.6714 39.00 0.7627 45.00 0.8582 51.00 0.9572
57.00 1.0580 63.00 1.1584 69.00 1.2556 75.00 1.3464 81.00 1.4269
87.00 1.4929 93.00 1.5399 99.00 1.5631 105.00 1.5567 111.00 1.5141
117.00 1.4270 123.00 1.2845 129.00 1.0694 134.76 0.7817 137.76 0.6476
141.00 0.3381
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A.4 120 Second Transient, βi � 0.0001

The axial and radial power distributions have been supplied for the 120 second transient case

printing data over 10 rod intervals (Though only the same 10 intervals printed for Sections A.1

and A.2 will be shown here to save space), utilizing the precursor assumption, βi � 0.0001.

Table A.67: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 141.25
inches - All Rods Out

Y/X 1 2 3 4 5 6 7 8

1 0.8636 1.1431 0.9905 1.2570 1.2514 1.3239 1.0740 0.7320
2 1.1442 1.1009 1.1697 1.1844 1.2782 1.2659 1.2123 0.4723
3 1.0128 1.1745 0.8908 1.1839 1.2438 1.2977 0.9951 0.3733
4 1.2586 1.1875 1.1862 1.2122 1.2969 1.2325 1.0950 0.2865
5 1.2530 1.2792 1.2446 1.2967 1.2186 1.2328 0.5955
6 1.3239 1.2653 1.2974 1.2320 1.2327 0.5361 0.2243
7 1.0740 1.2118 0.9945 1.0947 0.5957 0.2247
8 0.7320 0.4723 0.3731 0.2864

Table A.68: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 127.12
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8638 1.1443 0.9876 1.2448 1.2079 1.3130 1.0727 0.7335
2 1.1454 1.1011 1.1688 1.1775 1.2677 1.2607 1.2134 0.4730
3 1.0100 1.1737 0.8901 1.1849 1.2443 1.3012 0.9986 0.3745
4 1.2465 1.1806 1.1872 1.2161 1.3037 1.2396 1.1022 0.2880
5 1.2096 1.2688 1.2451 1.3035 1.2265 1.2424 0.5999
6 1.3130 1.2601 1.3009 1.2392 1.2423 0.5401 0.2260
7 1.0726 1.2130 0.9980 1.1019 0.6001 0.2263
8 0.7334 0.4729 0.3743 0.2879
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Table A.69: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 113.00
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8634 1.1456 0.9816 1.2216 1.1379 1.2919 1.0686 0.7352
2 1.1467 1.1003 1.1659 1.1633 1.2479 1.2498 1.2142 0.4738
3 1.0039 1.1708 0.8881 1.1859 1.2445 1.3073 1.0049 0.3768
4 1.2232 1.1664 1.1882 1.2232 1.3170 1.2538 1.1166 0.2911
5 1.1396 1.2490 1.2453 1.3169 1.2424 1.2619 0.6088
6 1.2919 1.2491 1.3070 1.2533 1.2619 0.5482 0.2294
7 1.0685 1.2138 1.0043 1.1162 0.6089 0.2298
8 0.7352 0.4738 0.3765 0.2909

Table A.70: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 98.87
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8637 1.1469 0.9758 1.1963 1.0635 1.2683 1.0638 0.7362
2 1.1480 1.0995 1.1625 1.1485 1.2261 1.2380 1.2141 0.4747
3 0.9980 1.1674 0.8867 1.1869 1.2451 1.3135 1.0116 0.3794
4 1.1979 1.1516 1.1892 1.2311 1.3314 1.2693 1.1319 0.2945
5 1.0651 1.2272 1.2458 1.3312 1.2600 1.2832 0.6187
6 1.2683 1.2373 1.3132 1.2687 1.2832 0.5576 0.2334
7 1.0637 1.2136 1.0109 1.1315 0.6188 0.2338
8 0.7362 0.4747 0.3791 0.2944

Table A.71: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 84.75
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8660 1.1487 0.9707 1.1671 0.9774 1.2403 1.0584 0.7368
2 1.1498 1.0999 1.1589 1.1329 1.2007 1.2249 1.2131 0.4761
3 0.9927 1.1638 0.8864 1.1879 1.2463 1.3197 1.0191 0.3827
4 1.1687 1.1360 1.1903 1.2407 1.3472 1.2865 1.1483 0.2986
5 0.9790 1.2017 1.2471 1.3470 1.2803 1.3066 0.6299
6 1.2403 1.2242 1.3193 1.2860 1.3066 0.5686 0.2381
7 1.0583 1.2126 1.0184 1.1479 0.6300 0.2385
8 0.7368 0.4760 0.3824 0.2985
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Table A.72: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 70.63
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8698 1.1510 0.9665 1.1377 0.8906 1.2114 1.0534 0.7372
2 1.1521 1.1014 1.1556 1.1184 1.1746 1.2121 1.2116 0.4776
3 0.9884 1.1605 0.8871 1.1889 1.2480 1.3252 1.0266 0.3862
4 1.1393 1.1215 1.1912 1.2507 1.3623 1.3036 1.1641 0.3029
5 0.8921 1.1756 1.2488 1.3621 1.3007 1.3293 0.6411
6 1.2114 1.2114 1.3248 1.3030 1.3292 0.5798 0.2430
7 1.0533 1.2111 1.0259 1.1637 0.6413 0.2434
8 0.7372 0.4776 0.3859 0.3028

Table A.73: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 56.50
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8743 1.1532 0.9628 1.1088 0.8055 1.1827 1.0487 0.7376
2 1.1543 1.1035 1.1523 1.1049 1.1487 1.1999 1.2099 0.4793
3 0.9846 1.1572 0.8883 1.1896 1.2501 1.3301 1.0340 0.3898
4 1.1103 1.1080 1.1919 1.2608 1.3766 1.3200 1.1792 0.3072
5 0.8067 1.1497 1.2509 1.3764 1.3209 1.3511 0.6522
6 1.1827 1.1992 1.3297 1.3195 1.3510 0.5910 0.2478
7 1.0486 1.2094 1.0333 1.1788 0.6523 0.2482
8 0.7375 0.4792 0.3895 0.3071

Table A.74: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 42.37
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8785 1.1551 0.9594 1.0824 0.7284 1.1566 1.0448 0.7380
2 1.1562 1.1056 1.1492 1.0931 1.1250 1.1891 1.2085 0.4809
3 0.9812 1.1540 0.8894 1.1899 1.2522 1.3342 1.0407 0.3931
4 1.0839 1.0962 1.1922 1.2700 1.3892 1.3349 1.1928 0.3111
5 0.7295 1.1260 1.2529 1.3889 1.3391 1.3706 0.6622
6 1.1566 1.1884 1.3338 1.3343 1.3706 0.6011 0.2522
7 1.0447 1.2080 1.0400 1.1924 0.6624 0.2526
8 0.7380 0.4809 0.3928 0.3110
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Table A.75: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 28.25
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8814 1.1563 0.9567 1.0625 0.6711 1.1371 1.0422 0.7387
2 1.1574 1.1071 1.1467 1.0844 1.1071 1.1813 1.2077 0.4822
3 0.9783 1.1515 0.8900 1.1900 1.2538 1.3372 1.0458 0.3956
4 1.0640 1.0874 1.1922 1.2768 1.3984 1.3460 1.2032 0.3141
5 0.6720 1.1080 1.2545 1.3981 1.3529 1.3853 0.6698
6 1.1371 1.1806 1.3369 1.3455 1.3853 0.6086 0.2554
7 1.0421 1.2072 1.0451 1.2028 0.6700 0.2559
8 0.7387 0.4822 0.3954 0.3139

Table A.76: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 14.12
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8831 1.1569 0.9544 1.0487 0.6315 1.1238 1.0408 0.7396
2 1.1580 1.1081 1.1448 1.0784 1.0947 1.1760 1.2075 0.4832
3 0.9760 1.1496 0.8901 1.1898 1.2548 1.3394 1.0495 0.3974
4 1.0502 1.0814 1.1921 1.2814 1.4046 1.3537 1.2104 0.3161
5 0.6324 1.0956 1.2555 1.4043 1.3622 1.3954 0.6749
6 1.1238 1.1753 1.3390 1.3531 1.3954 0.6137 0.2576
7 1.0407 1.2070 1.0488 1.2100 0.6751 0.2580
8 0.7395 0.4832 0.3971 0.3159

Table A.77: Radial Relative Power Distribution, 120 Second Transient, Rod Position: 0.00
inches

Y/X 1 2 3 4 5 6 7 8

1 0.8838 1.1573 0.9535 1.0427 0.6137 1.1182 1.0405 0.7402
2 1.1584 1.1086 1.1441 1.0759 1.0893 1.1740 1.2078 0.4837
3 0.9751 1.1489 0.8902 1.1898 1.2553 1.3404 1.0511 0.3981
4 1.0443 1.0789 1.1921 1.2833 1.4071 1.3568 1.2134 0.3169
5 0.6145 1.0902 1.2560 1.4069 1.3659 1.3995 0.6770
6 1.1182 1.1733 1.3400 1.3562 1.3995 0.6157 0.2585
7 1.0404 1.2073 1.0504 1.2130 0.6772 0.2589
8 0.7401 0.4837 0.3978 0.3168
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Table A.78: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 141.25
inches - All Rods Out

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1365 8.76 0.3126 11.76 0.3624 15.00 0.4079 21.00 0.4944
27.00 0.5787 33.00 0.6653 39.00 0.7559 45.00 0.8511 51.00 0.9501
57.00 1.0512 63.00 1.1523 69.00 1.2506 75.00 1.3428 81.00 1.4250
87.00 1.4930 93.00 1.5421 99.00 1.5676 105.00 1.5634 111.00 1.5227
117.00 1.4370 123.00 1.2952 129.00 1.0795 134.76 0.7902 137.76 0.6559
141.00 0.3424

Table A.79: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 127.12
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1430 8.76 0.3275 11.76 0.3796 15.00 0.4269 21.00 0.5168
27.00 0.6040 33.00 0.6930 39.00 0.7856 45.00 0.8821 51.00 0.9818
57.00 1.0827 63.00 1.1825 69.00 1.2782 75.00 1.3665 81.00 1.4430
87.00 1.5037 93.00 1.5438 99.00 1.5585 105.00 1.5419 111.00 1.4878
117.00 1.3881 123.00 1.2327 129.00 1.0062 134.76 0.7215 137.76 0.5938
141.00 0.3089

Table A.80: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 113.00
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1591 8.76 0.3640 11.76 0.4215 15.00 0.4735 21.00 0.5714
27.00 0.6651 33.00 0.7592 39.00 0.8556 45.00 0.9543 51.00 1.0542
57.00 1.1530 63.00 1.2478 69.00 1.3352 75.00 1.4115 81.00 1.4722
87.00 1.5128 93.00 1.5288 99.00 1.5155 105.00 1.4679 111.00 1.3804
117.00 1.2480 123.00 1.0855 129.00 0.8822 134.76 0.6352 137.76 0.5233
141.00 0.2724
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Table A.81: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 98.88
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1766 8.76 0.4037 11.76 0.4671 15.00 0.5239 21.00 0.6302
27.00 0.7303 33.00 0.8291 39.00 0.9283 45.00 1.0277 51.00 1.1257
57.00 1.2194 63.00 1.3056 69.00 1.3802 75.00 1.4393 81.00 1.4780
87.00 1.4919 93.00 1.4766 99.00 1.4280 105.00 1.3453 111.00 1.2529
117.00 1.1419 123.00 1.0023 129.00 0.8197 134.76 0.5925 137.76 0.4887
141.00 0.2546

Table A.82: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 84.75
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1917 8.76 0.4377 11.76 0.5060 15.00 0.5667 21.00 0.6793
27.00 0.7835 33.00 0.8843 39.00 0.9832 45.00 1.0796 51.00 1.1714
57.00 1.2553 63.00 1.3275 69.00 1.3837 75.00 1.4196 81.00 1.4303
87.00 1.4122 93.00 1.3776 99.00 1.3375 105.00 1.2854 111.00 1.2157
117.00 1.1213 123.00 0.9933 129.00 0.8176 134.76 0.5934 137.76 0.4902
141.00 0.2556

Table A.83: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 70.63
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1992 8.76 0.4544 11.76 0.5250 15.00 0.5872 21.00 0.7015
27.00 0.8055 33.00 0.9041 39.00 0.9984 45.00 1.0875 51.00 1.1689
57.00 1.2390 63.00 1.2938 69.00 1.3288 75.00 1.3407 81.00 1.3493
87.00 1.3548 93.00 1.3523 99.00 1.3371 105.00 1.3043 111.00 1.2482
117.00 1.1619 123.00 1.0363 129.00 0.8572 134.76 0.6241 137.76 0.5161
141.00 0.2692
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Table A.84: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 56.50
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1979 8.76 0.4510 11.76 0.5206 15.00 0.5814 21.00 0.6923
27.00 0.7913 33.00 0.8829 39.00 0.9680 45.00 1.0454 51.00 1.1124
57.00 1.1653 63.00 1.2049 69.00 1.2493 75.00 1.2939 81.00 1.3340
87.00 1.3656 93.00 1.3846 99.00 1.3864 105.00 1.3660 111.00 1.3176
117.00 1.2338 123.00 1.1053 129.00 0.9171 134.76 0.6690 137.76 0.5537
141.00 0.2889

Table A.85: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 42.38
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1873 8.76 0.4264 11.76 0.4918 15.00 0.5485 21.00 0.6507
27.00 0.7400 33.00 0.8205 39.00 0.8926 45.00 0.9553 51.00 1.0180
57.00 1.0870 63.00 1.1590 69.00 1.2308 75.00 1.2989 81.00 1.3593
87.00 1.4081 93.00 1.4411 99.00 1.4537 105.00 1.4406 111.00 1.3957
117.00 1.3114 123.00 1.1778 129.00 0.9789 134.76 0.7149 137.76 0.5919
141.00 0.3089

Table A.86: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 28.25
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1711 8.76 0.3890 11.76 0.4484 15.00 0.4994 21.00 0.5905
27.00 0.6683 33.00 0.7369 39.00 0.8103 45.00 0.8902 51.00 0.9754
57.00 1.0635 63.00 1.1523 69.00 1.2389 75.00 1.3201 81.00 1.3919
87.00 1.4503 93.00 1.4911 99.00 1.5095 105.00 1.5000 111.00 1.4564
117.00 1.3706 123.00 1.2324 129.00 1.0251 134.76 0.7490 137.76 0.6203
141.00 0.3238
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Table A.87: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 14.13
inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1519 8.76 0.3452 11.76 0.3977 15.00 0.4427 21.00 0.5246
27.00 0.6049 33.00 0.6880 39.00 0.7753 45.00 0.8671 51.00 0.9627
57.00 1.0602 63.00 1.1575 69.00 1.2516 75.00 1.3395 81.00 1.4171
87.00 1.4805 93.00 1.5251 99.00 1.5464 105.00 1.5386 111.00 1.4953
117.00 1.4082 123.00 1.2669 129.00 1.0542 134.76 0.7704 137.76 0.6381
141.00 0.3331

Table A.88: Axial Relative Power Distribution, 120 Second Transient, Rod Position: 0.00 inches

Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value Z(in.) Value

3.00 0.1386 8.76 0.3168 11.76 0.3676 15.00 0.4141 21.00 0.5023
27.00 0.5880 33.00 0.6756 39.00 0.7669 45.00 0.8623 51.00 0.9610
57.00 1.0613 63.00 1.1611 69.00 1.2575 75.00 1.3474 81.00 1.4267
87.00 1.4916 93.00 1.5374 99.00 1.5595 105.00 1.5521 111.00 1.5088
117.00 1.4212 123.00 1.2788 129.00 1.0642 134.76 0.7778 137.76 0.6442
141.00 0.3363
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Appendix B

Steady-State Library Results

(Continued)

B.1 2 Second Insertion Transient Using the 10 Entry Steady-

State Library and the 10 Output Exact Solution

For the 2 second transient utilizing the 10 record steady-state library and the 10 record tran-

sient solution, the following results were obtained regarding the flux error and precursor error

equations developed in Chapter 2 (See section 2.1.6). The flux error and error components at

the maximum flux position and maximum flux error position, locally and averaged normalized

results can be viewed in Figure B.1-Figure B.8. The precursor group concentration error and

error components at the maximum precursor group concentration position and the maximum

precursor group concentration error position, locally and averaged normalized, results can be

viewed in Figure B.9 - Figure B.32.
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Figure B.1: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Group: 1, 10 SS, 10 Trans)
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Figure B.2: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Group: 2, 10 SS, 10 Trans)
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Figure B.3: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Group: 1, 10 SS, 10 Trans)
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Figure B.4: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Group: 2, 10 SS, 10 Trans)
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Figure B.5: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.6: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Group: 2, 10 SS, 10 Trans)

144



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux Error, Average Normalized And   Flux Error Components (Energy Group: 1)

Flx error  max flx error factor, average normalized
Flx shp-fact  max flx error factor, average normalized

Flx engy part func error factor
avg velocity error factor

avg neu den error factor
2nd order error term

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

Figure B.7: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.8: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Group: 2, 10 SS, 10 Trans)
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Figure B.9: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.10: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 2, 10 SS, 10 Trans)
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Figure B.11: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 3, 10 SS, 10 Trans)
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Figure B.12: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 4, 10 SS, 10 Trans)
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Figure B.13: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 5, 10 SS, 10 Trans)

N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Precurosr Error  Max Precursor, Locally Normalized And   Precursor Error Components (Precursor Group: 6)

Prec error  max prec, locally normalized
Prec shp-fact error  max prec

avg prec conc error
2nd order error term

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  0.5  1  1.5  2

Figure B.14: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Locally Normalized (Group: 6, 10 SS, 10 Trans)
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Figure B.15: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.16: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 2, 10 SS, 10 Trans)
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Figure B.17: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 3, 10 SS, 10 Trans)
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Figure B.18: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 4, 10 SS, 10 Trans)
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Figure B.19: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 5, 10 SS, 10 Trans)
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Figure B.20: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Position Average Normalized (Group: 6, 10 SS, 10 Trans)
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Figure B.21: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.22: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 2, 10 SS, 10 Trans)
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Figure B.23: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 3, 10 SS, 10 Trans)
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Figure B.24: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 4, 10 SS, 10 Trans)
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Figure B.25: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 5, 10 SS, 10 Trans)
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Figure B.26: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Locally Normalized (Group: 6, 10 SS, 10 Trans)
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Figure B.27: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 1, 10 SS, 10 Trans)
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Figure B.28: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 2, 10 SS, 10 Trans)
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Figure B.29: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 3, 10 SS, 10 Trans)
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Figure B.30: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 4, 10 SS, 10 Trans)
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Figure B.31: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 5, 10 SS, 10 Trans)
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Figure B.32: Precursor Concentration Error and Error Components at the Maximum Precursor
Concentration Error Position Average Normalized (Group: 6, 10 SS, 10 Trans)
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B.2 2 Second Insertion Transient Using the 10 Entry Steady-

State Library and the 40 Output Exact Solution

For the 2 second transient utilizing the 10 record steady-state library and the 40 record tran-

sient solution, the following results were obtained regarding the flux error and precursor error

equations. The average normalized flux and precursor group concentration error values at the

maximum and maximum error positions are viewable in Figure B.34 - Figure B.35 and Fig-

ure B.36 - Figure B.37, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.33 and Figure B.38, respectively.
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Figure B.33: Flux L2-Error (10 SS, 40 Trans)
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Figure B.34: Average Normalized Flux Error at the Maximum Flux Position (10 SS, 40 Trans)
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Figure B.35: Average Normalized Flux Error at the Maximum Flux Error Position (10 SS, 40
Trans)
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Figure B.36: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 40 Trans)
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Figure B.37: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 40 Trans)
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Figure B.38: Precursor Group Concentration L2-Error (10 SS, 40 Trans)
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B.3 2 Second Insertion Transient Using the 25 Entry Steady-

State Library and the 10 Output Exact Solution

For the 2 second transient utilizing the 25 record steady-state library and the 10 record tran-

sient solution, the following results were obtained regarding the flux error and precursor error

equations. The average normalized flux and precursor group concentration error values at the

maximum and maximum error positions are viewable in Figure B.40 - Figure B.41 and Fig-

ure B.42 - Figure B.43, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.39 and Figure B.44, respectively.
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Figure B.39: Flux L2-Error (25 SS, 10 Trans)
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Figure B.40: Average Normalized Flux Error at the Maximum Flux Position (25 SS, 10 Trans)
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Figure B.41: Average Normalized Flux Error at the Maximum Flux Error Position (25 SS, 10
Trans)

163



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Precursor Group Concentration Error, Average Normalized at the   Max Precursor Group Concentration Position

Precursor Group: 1
Precursor Group: 2
Precursor Group: 3
Precursor Group: 4
Precursor Group: 5
Precursor Group: 6

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.5  1  1.5  2

Figure B.42: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 10 Trans)
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Figure B.43: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 10 Trans)
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Figure B.44: Precursor Group Concentration L2-Error (25 SS, 10 Trans)
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B.4 2 Second Insertion Transient Using the 25 Entry Steady-

State Library and the 40 Output Exact Solution

For the 2 second transient utilizing the 25 record steady-state library and the 40 record tran-

sient solution, the following results were obtained regarding the flux error and precursor error

equations. The average normalized flux and precursor group concentration error values at the

maximum and maximum error positions are viewable in Figure B.46 - Figure B.47 and Fig-

ure B.48 - Figure B.49, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.45 and Figure B.50, respectively.
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Figure B.45: Flux L2-Error (25 SS, 40 Trans)
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Figure B.46: Average Normalized Flux Error at the Maximum Flux Position (25 SS, 40 Trans)
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Figure B.47: Average Normalized Flux Error at the Maximum Flux Error Position (25 SS, 40
Trans)
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Figure B.48: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 40 Trans)
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Figure B.49: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 40 Trans)
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Figure B.50: Precursor Group Concentration L2-Error (25 SS, 40 Trans)
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B.5 120 Second Insertion Transient Using the 10 Entry Steady-

State Library and the 10 Output Exact Solution

For the 120 second transient utilizing the 10 record steady-state library and the 10 record

transient solution, the following results were obtained regarding the flux error and precursor

error equations. The average normalized flux and precursor group concentration error values

at the maximum and maximum error positions are viewable in Figure B.52 - Figure B.53 and

Figure B.54 - Figure B.55, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.51 and Figure B.56, respectively.
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Figure B.51: Flux L2-Error (10 SS, 10 Trans)
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Figure B.52: Average Normalized Flux Error at the Maximum Flux Position (10 SS, 10 Trans)
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Figure B.53: Average Normalized Flux Error at the Maximum Flux Error Position (10 SS, 10
Trans)
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Figure B.54: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 10 Trans)
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Figure B.55: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 10 Trans)
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Figure B.56: Precursor Group Concentration L2-Error (10 SS, 10 Trans)
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B.6 120 Second Insertion Transient Using the 10 Entry Steady-

State Library and the 40 Output Exact Solution

For the 120 second transient utilizing the 10 record steady-state library and the 40 record

transient solution, the following results were obtained regarding the flux error and precursor

error equations. The average normalized flux and precursor group concentration error values

at the maximum and maximum error positions are viewable in Figure B.58 - Figure B.59 and

Figure B.60 - Figure B.61, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.57 and Figure B.62, respectively.
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Figure B.57: Flux L2-Error (10 SS, 40 Trans)
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Figure B.58: Average Normalized Flux Error at the Maximum Flux Position (10 SS, 40 Trans)
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Figure B.59: Average Normalized Flux Error at the Maximum Flux Error Position (10 SS, 40
Trans)

175



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Precursor Group Concentration Error, Average Normalized at the   Max Precursor Group Concentration Position

Precursor Group: 1
Precursor Group: 2
Precursor Group: 3
Precursor Group: 4
Precursor Group: 5
Precursor Group: 6

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  20  40  60  80  100  120

Figure B.60: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (10 SS, 40 Trans)
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Figure B.61: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (10 SS, 40 Trans)
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Figure B.62: Precursor Group Concentration L2-Error (10 SS, 40 Trans)
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B.7 120 Second Insertion Transient Using the 25 Entry Steady-

State Library and the 10 Output Exact Solution

For the 120 second transient utilizing the 25 record steady-state library and the 10 record

transient solution, the following results were obtained regarding the flux error and precursor

error equations. The average normalized flux and precursor group concentration error values

at the maximum and maximum error positions are viewable in Figure B.64 - Figure B.65 and

Figure B.66 - Figure B.67, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.63 and Figure B.68, respectively.
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Figure B.63: Flux L2-Error (25 SS, 10 Trans)
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Figure B.64: Average Normalized Flux Error at the Maximum Flux Position (25 SS, 10 Trans)
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Figure B.65: Average Normalized Flux Error at the Maximum Flux Error Position (25 SS, 10
Trans)

179



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Precursor Group Concentration Error, Average Normalized at the   Max Precursor Group Concentration Position

Precursor Group: 1
Precursor Group: 2
Precursor Group: 3
Precursor Group: 4
Precursor Group: 5
Precursor Group: 6

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  20  40  60  80  100  120

Figure B.66: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 10 Trans)
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Figure B.67: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 10 Trans)
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Figure B.68: Precursor Group Concentration L2-Error (25 SS, 10 Trans)
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B.8 120 Second Insertion Transient Using the 25 Entry Steady-

State Library and the 40 Output Exact Solution

For the 120 second transient utilizing the 25 record steady-state library and the 40 record

transient solution, the following results were obtained regarding the flux error and precursor

error equations. The average normalized flux and precursor group concentration error values

at the maximum and maximum error positions are viewable in Figure B.70 - Figure B.71 and

Figure B.72 - Figure B.73, respectively. Also, the L2 error flux and precursor group concentration

values can be observed in Figure B.69 and Figure B.74, respectively.
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Figure B.69: Flux L2-Error (25 SS, 40 Trans)
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Figure B.70: Average Normalized Flux Error at the Maximum Flux Position (25 SS, 40 Trans)
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Figure B.71: Average Normalized Flux Error at the Maximum Flux Error Position (25 SS, 40
Trans)
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Figure B.72: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Position (25 SS, 40 Trans)
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Figure B.73: Average Normalized Precursor Group Concentration Error at the Maximum Pre-
cursor Group Concentration Error Position (25 SS, 40 Trans)
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Figure B.74: Precursor Group Concentration L2-Error (25 SS, 40 Trans)
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Appendix C

Active Model Switching (Continued)

C.1 No Switching - 2 Second Transient

For the no switching 2 second transient, the following results were obtained regarding the flux

error equations developed in Chapter 2 (See Section 2.1.6). The flux error and error components

at the maximum flux position and maximum flux error position, locally and averaged normalized

results can be viewed in Figure C.1-Figure C.8.
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Figure C.1: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (No switch, Trans 40, Group: 1)
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Figure C.2: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (No switch, Trans 40, Group: 2)
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Figure C.3: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (No switch, Trans 40, Group: 1)
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Figure C.4: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (No switch, Trans 40, Group: 2)
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Figure C.5: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (No switch, Trans 40, Group: 1)
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Figure C.6: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (No switch, Trans 40, Group: 2)
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Figure C.7: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (No switch, Trans 40, Group: 1)
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Figure C.8: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (No switch, Trans 40, Group: 2)
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C.2 No Switching - 120 Second Transient

For the no switching 120 second transient, the following results were obtained regarding the

flux error equations. The flux error and error components at the maximum flux position and

maximum flux error position, locally and averaged normalized results can be viewed in Fig-

ure C.9-Figure C.16.
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Figure C.9: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (No switch, Trans 40, Group: 1)
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Figure C.10: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (No switch, Trans 40, Group: 2)

191



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux, Average Normalized And   Flux Error Components (Energy Group: 1)

Flx error  max flx, average normalized
Flx shp-fact error factor  max flx

Flx engy part func error factor
avg velocity error factor

avg neu den error factor
2nd order error term

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  20  40  60  80  100  120

Figure C.11: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (No switch, Trans 40, Group: 1)
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Figure C.12: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (No switch, Trans 40, Group: 2)
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Figure C.13: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (No switch, Trans 40, Group: 1)

N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux Error, Locally Normalized And   Flux Error Components (Energy Group: 2)

Flx error  max flx error, locally normalized
Flx shp-fact  max flx error, locally normalized

Flx engy part func error
avg velocity error

avg neu den error
2nd order error term

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  20  40  60  80  100  120

Figure C.14: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (No switch, Trans 40, Group: 2)

193



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux Error, Average Normalized And   Flux Error Components (Energy Group: 1)

Flx error  max flx error factor, average normalized
Flx shp-fact  max flx error factor, average normalized

Flx engy part func error factor
avg velocity error factor

avg neu den error factor
2nd order error term

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  20  40  60  80  100  120

Figure C.15: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (No switch, Trans 40, Group: 1)
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Figure C.16: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (No switch, Trans 40, Group: 2)
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C.3 Single Update - 2 Second Transient

For the single update 2 second transient, the following results were obtained regarding the

flux error equations. The flux error and error components at the maximum flux position and

maximum flux error position, locally and averaged normalized results can be viewed in Fig-

ure C.17-Figure C.24.
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Figure C.17: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (One update, Trans 40, Group: 1)
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Figure C.18: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (One update, Trans 40, Group: 2)
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Figure C.19: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (One update, Trans 40, Group: 1)
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Figure C.20: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (One update, Trans 40, Group: 2)
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Figure C.21: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (One update, Trans 40, Group: 1)
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Figure C.22: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (One update, Trans 40, Group: 2)
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Figure C.23: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (One update, Trans 40, Group: 1)
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Figure C.24: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (One update, Trans 40, Group: 2)
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C.4 Single Update - 120 Second Transient

For the single update 120 second transient, the following results were obtained regarding the

flux error equations. The flux error and error components at the maximum flux position and

maximum flux error position, locally and averaged normalized results can be viewed in Fig-

ure C.25-Figure C.32.
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Figure C.25: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (One update, Trans 40, Group: 1)
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Figure C.26: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (One update, Trans 40, Group: 2)
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Figure C.27: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (One update, Trans 40, Group: 1)
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Figure C.28: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (One update, Trans 40, Group: 2)
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Figure C.29: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (One update, Trans 40, Group: 1)
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Figure C.30: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (One update, Trans 40, Group: 2)
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Figure C.31: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (One update, Trans 40, Group: 1)
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Figure C.32: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (One update, Trans 40, Group: 2)
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C.5 Active Switching - 2 Second Transient

For the single update 2 second transient, the following results were obtained regarding the

flux error equations. The flux error and error components at the maximum flux position and

maximum flux error position, locally and averaged normalized results can be viewed in Fig-

ure C.33-Figure C.40.
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Figure C.33: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Active, Trans 40, Group: 1)
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Figure C.34: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Active, Trans 40, Group: 2)

203



N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux, Average Normalized And   Flux Error Components (Energy Group: 1)

Flx error  max flx, average normalized
Flx shp-fact error factor  max flx

Flx engy part func error factor
avg velocity error factor

avg neu den error factor
2nd order error term

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2

Figure C.35: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Active, Trans 40, Group: 1)
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Figure C.36: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Active, Trans 40, Group: 2)
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Figure C.37: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (Active, Trans 40, Group: 1)

N
or

m
al

iz
ed

 E
rr

or

Time (seconds)

Flux Error  Max Flux Error, Locally Normalized And   Flux Error Components (Energy Group: 2)

Flx error  max flx error, locally normalized
Flx shp-fact  max flx error, locally normalized

Flx engy part func error
avg velocity error

avg neu den error
2nd order error term

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.5  1  1.5  2

Figure C.38: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (Active, Trans 40, Group: 2)
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Figure C.39: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (Active, Trans 40, Group: 1)
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Figure C.40: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (Active, Trans 40, Group: 2)
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C.6 Active Switching - 120 Second Transient

For the single update 120 second transient, the following results were obtained regarding the

flux error equations. The flux error and error components at the maximum flux position and

maximum flux error position, locally and averaged normalized results can be viewed in Fig-

ure C.41-Figure C.48.
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Figure C.41: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Active, Trans 40, Group: 1)
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Figure C.42: Flux Error and Error Components at the Maximum Flux Position Locally Nor-
malized (Active, Trans 40, Group: 2)
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Figure C.43: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Active, Trans 40, Group: 1)
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Figure C.44: Flux Error and Error Components at the Maximum Flux Position Average Nor-
malized (Active, Trans 40, Group: 2)
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Figure C.45: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (Active, Trans 40, Group: 1)
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Figure C.46: Flux Error and Error Components at the Maximum Flux Error Position Locally
Normalized (Active, Trans 40, Group: 2)
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Figure C.47: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (Active, Trans 40, Group: 1)
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Figure C.48: Flux Error and Error Components at the Maximum Flux Error Position Average
Normalized (Active, Trans 40, Group: 2)
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ABSTRACT

DACUS, ROBERT WARREN. Development of an Adaptive Thermal Conductivity Modeling
Capability. (Under the direction of Paul Turinsky.)

This thesis presents a study of a generalized perturbation theory approach to determining

the difference in the values of a Quantity of Interest (QoI) as predicted by two physics models.

This is accomplished by forming an inner product of a generalized adjoint solution for one model

with its respective residual formed from that model’s operators acting upon the other model’s

determined solution. This study supports the development of an adaptive model refinement

capability where the value of the QoI is used to decide among models of various fidelity levels

satisfying accuracy requirements.

The specific application for this thesis is the modeling of the temperature profile of a single

nuclear reactor core fuel pin of ceramic uranium oxide. The fuel pin has a radius of 0.3325

inches and height of 150 inches. It is assumed to deposit heat by conduction into a closed flow

channel of water surrounding the fuel. The low fidelity model chosen utilizes a finite difference

model with coarse spatial meshing whereas the high fidelity model employs finer spatial mesh-

ing. Lumped parameters are used for the low fidelity model’s heat transfer coefficients. Several

alternative adjoint methods were developed to estimate the difference in high and low fidelity

fuel temperatures. These adjoint methods include mathematical, physical, and analytical types

as derived from their respective equations. The associated high fidelity adjoint solutions were

found to accurately predict fuel pin temperature differences for cases where the low fidelity

solution was assumed constant due to equivalent forward problem high fidelity residual values.

The physical and analytical adjoint solutions were unable to predict temperature differences

for cases where spatial derivatives of the low fidelity temperatures were not equal to zero. In all

cases, usage of the low fidelity adjoint solution in place of the high fidelity adjoint solution re-

sulted in inaccurate predictions of temperature differences, while the high fidelity mathematical

adjoint was able to predict differences exactly at every axial and radial location.
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Chapter 1

Introduction

In computational engineering, there is always a tension between being able to predict a physical

phenomenon with the highest accuracy while maintaining a reasonable computational resource

requirement. Oftentimes, the interests of accuracy and CPU resource demand are directly op-

posed, and designers find themselves sacrificing one advantage for another. In some cases, higher

fidelity models are only necessary for problems with complex geometry or rapid transients, while

at other times low fidelity models offer acceptable resolution for predicting spatial or temporal

behavior.

Thermal hydraulic predictions of flow regimes within nuclear reactor cores require signifi-

cant computational resources and accuracy to ensure that the core design does not violate the

thermal limits of involved materials. These predictions often sacrifice accuracy for efficiency or

vice versa. Fluid models like direct numerical simulation (DNS) resolve flow field phenomena

at the smallest physical and temporal length scales. These simulations are able to determinis-

tically calculate velocity and pressure fields of turbulent flow but at an extreme computational

cost. Other models such as Reynolds Average Navier Stokes (RANS), using turbulence models,

are able to approximate system wide pressures and velocities but are unable to determine local

eddy configurations on the scale of DNS. In many cases, these turbulence approximations and

averaging techniques are all that is needed for simple problems such as channel flow. However,

for complex geometry, it is oftentimes desired to resolve smaller length scales in order to un-

derstand and simulate appropriate thermal hydraulic behavior at, for example, downstream

locations from assembly grid spacers with mixing vanes.

Even for less sophisticated methods like drift-flux or homogeneous equilibrium mixture

modeling, there can still be a significant trade off between computational demand and accu-

racy. Ideally, a model would exist that could actively switch between higher and lower fidelity
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problems such that it would employ levels of fidelity where appropriate in order to save com-

putational resources and improve accuracy at respective locations of interest. This approach is

referred to as Adaptive Model Refinement (AMoR) and has the potential of capitalizing on the

accuracy and CPU resource advantages of high and low fidelity models during a single simu-

lation. In order to employ AMoR techniques, there must be a way to estimate the differences

between predicted values for the high and low fidelity models such that the computational

resource requirement for the prediction still remains less than the requirement for the high

fidelity model. If the adaptation algorithm exceeds the high fidelity model CPU requirement,

then the advantage of using the CPU efficient low fidelity model is lost. In a related field, AMoR

techniques have been shown by Jackson, Cacuci, and Finnemann to produce accurate results

using three fidelity levels for nuclear reactor safety transients that require only 30% to 70% of

the CPU time needed using the highest fidelity level. [1], [2].

This masters thesis project examines an adaptive model refinement approach using adjoint

methods for predicting differences between high and low fidelity models and its potential ap-

plication to thermal hydraulic simulations. The focus of the work is on the generalized adjoint

equations formulation. What follows is a rigorous derivation of all mathematics pertaining to

the investigated adaptive model refinement method as well as an investigation of the numerical

results from using this method with application to a heat conduction and convection model for

a single fuel pin within a fuel assembly.

1.1 Thermal Hydraulic Design and Simulation

For safe and efficient operation of a thermal nuclear power core, a fluid must effectively cool

the reactor core to appropriate temperatures in order to maintain the functional integrity of

materials without compromising the configuration necessary to sustain a self-propagating chain

reaction of the nuclear fuel. It is necessary for designers to understand the behavior of system

wide pressures and velocities and how they affect overall plant performance as well as local fluid

behavior that can influence things like corrosion and neutron flux. A wide variety of numerical

tools is necessary in order to properly design and simulate a nuclear reactor and its plant and

safety components. Each tool essentially presents a solution or approximation of the three di-

mensional mass, momentum, and energy balance equations for single or multiphase fluid flow.

The level of simplification and estimation of these equations coincides with the demand for

accuracy that a designer requires to predict a specific quantity of interest.

One dimensional or three dimensional techniques for solving the two phase mixture equa-
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tions are typical for basic system wide simulation. Design codes such as RELAP and TRAC

implement these methods for best-estimate thermal hydraulic design [19], [20]. Correlations are

chosen in order to close the six-equation two phase system describing the mass, momentum,

and internal energy of a flow field. For simulation and analysis focused on core internal ther-

mal hydraulic behavior, either closed-channel methods or sub-channel methods as incorporated

by COBRA and VIPRE codes are employed [21], [22]. The two-phase drift flux model, which

considers only mixture momentum instead of separate phasic momentum equations and uses a

correlation for determining the relative velocity of phases, may be employed for similar simu-

lation conditions. Alternatively, the homogeneous equilibrium mixture (HEM) model assumes

that both phases are at saturation and moving at the same velocity; therefore one only needs to

solve for mixture momentum, mass, and energy. Although these methods are fast, they typically

are unable to resolve flow mechanics close to the wall of the system, where oftentimes safety

criteria such as critical heat flux (CHF) are a concern.

For simulating the wall resolved effects of turbulent flow, various computational multiphase

fluid dynamics (CMFD) methods can be used to investigate flow phenomena that cannot be

resolved by using simplified equations. In most cases momentum, mass, and energy are solved

explicitly for each phase. Equations for turbulent kinetic energy and turbulent dispersion are

also necessary in order to describe the effect of turbulence on the flow regime. Models such as

k-ε or k-ω are typical for RANS equations and use correlations to describe the velocity distribu-

tion near the wall. As a consequence, the averaging technique used by RANS loses information

regarding small eddy formation and dissipation within the flow field. Large eddy simulation

(LES) can be used in its stead in order to retain the turbulence induced time dependent pertur-

bation in the flow field. However, this is often computationally limiting due to the need for finer

spatial meshing and time dependent ensemble average solutions. Codes such as STAR-CCM+

and HYDRA-TH enable RANS and LES methods to be used, employing a multiphase, N-field

model [23], [24].

DNS methods mentioned previously have the capability of resolving all micro scales of fluid

flow. These methods employ a variety of techniques for tracking the interface between liquid

and vapor. Examples are front tracking and level set methods which both have the capability of

simulating individual bubble or droplet interaction within a fluid. In this case, no wall models

or correlations are necessary due to the fact that the length scale of individual bubbles has been

resolved. The computational resources needed to implement these methods for a single reactor

core channel containing thousands of bubbles are vast and DNS techniques are not typically

used for large scale design. The computational codes PHASTA and FTC3D employ these DNS

methods [25], [26]. They have proven useful for gaining insights and developing closure rela-
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tionships for LES and RANS models, e.g. bubble lift and drag forces.

Each of the aforementioned fluid simulation techniques have advantages and disadvantages

in terms of accuracy and computational resource requirement. Depending on the level of resolu-

tion required at the wall of a channel or whether full system response phenomena is of interest,

designers will choose a model which exhibits a level of accuracy analogous with their design

requirements.

All of these fidelity levels are used in concert with one other to ensure proper design of a

nuclear reactor core and its supporting thermal hydraulic systems. Within each method, various

closure models or equation parameters can help improve the physical accuracy of the problem

at the cost of additional computational resources. In some cases though, the fidelity required

at one point in the problem’s geometry may not be necessary at other parts of the problem

and the resulting computational requirement of using the higher fidelity model for the entire

geometry may prove burdensome.

1.2 Adjoint Methods

Adjoint problems are mathematical constructs that mirror behavior found in physical or forward

problems and help describe the importance of functionals with respect to a specific quantity

of interest. Adjoint methods have found widespread use in the field of radiation transport due

to its usefulness in perturbation analysis [1] - [3]. For small changes in specific parameters,

adjoint solutions can describe the influence that these changes have within the detection region

of interest. In neutronics, these changes can include material properties, source distributions,

and cross sections. In thermal hydraulics, these changes include material properties as well as

heat conduction estimations for inverse problems [4] - [8].

In computational fluid dynamics (CFD - single phase fluids as opposed to CMFD), adjoint

methods are often used for adaptive grid refinement. These methods provide error controlled

localized grid refinement as an attempt to reduce the numerical error present in CFD methods.

Refining the grid needlessly does not explicitly reduce the numerical error, and there is a need

to understand where and when grid refinement improves accuracy in order to maximize the

efficiency of the refinement. Adjoint solution shapes can be thought of as importance weight-

ing functions, and they can be used to quantify the importance of functionals like lift or drag

within specific geometric locations of the spatial grid. Analysts can then use this information to

determine where and to what degree a grid can be improved in order to reduce the numerical
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error of the functional [9].

1.2.1 Detector Example

In adjoint problems, one has the freedom to describe boundary conditions and source terms

such that the evaluation of a function yields the desired quantity of interest. A simple example

is the detector response problem which is applicable to both thermal hydraulics and neutronics

problems. In this problem, the response of a detector is desired as a function of source loca-

tion. Typically, moving the source anywhere within the geometry of the problem necessitates a

new temperature or flux field solution in order to evaluate detector response. Adjoint methods

present an alternative approach.

Starting with the following forward and adjoint linear equations

A [φ] = Q, A∗ [φ∗] = Q∗ (1.1)

the adjoint operator A∗ is defined such that the following inner product equality holds for all

φ and φ∗ within the solution space

〈A [φ] , φ∗〉 = 〈A∗[φ∗ ], φ〉 (1.2)

Ensuring equality of (1.2) imposes restrictions on the boundary conditions of the adjoint

problem. If the response function desired is defined as R = 〈Σ, φ〉 then one can provide an exact

evaluation of the response when the adjoint source term is given by Q∗ = Σ

〈Σ, φ〉 = 〈Q∗, φ〉 = 〈A∗[φ∗], φ〉 = 〈A [φ] , φ∗〉 = 〈Q,φ∗〉 (1.3)

Using (1.3), one is able to determine the response of a detector for various Q locations

without having to solve for φ each time Q is moved. Instead, φ∗ is determined once and then can

provide the response for any value of Q in the solution space. This method of functional response

prediction with respect to adjoint solutions can provide a means for performing adaptive model

refinement with application to simple fuel conduction and convection problems investigated by

this thesis.

1.2.2 Physical and Mathematical Adjoint Operators

There are two distinct methods for deriving the adjoint A∗ operator. A physical adjoint is de-

fined as an adjoint operator that is derived from the continuous set of forward equations. One

constrains the adjoint operator in order to satisfy equation (1.2) and, using integration by parts,
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comes to an appropriate adjoint operator. The application of appropriate boundary conditions

(generally homogeneous) ensures that the equality in (1.2) holds.

Each forward operator present in a set of equations will have a corresponding adjoint op-

erator. These operators are said to be self adjoint if A∗ = A. Second derivatives and constant

multipliers are examples of self adjoint operators while first order derivatives are not self adjoint

[1]. Adjoints of matrix operators can be derived as well by taking the conjugate transpose of

the original matrix.

Discrete adjoint solutions can be found by solving for the discretized set of adjoint equations

as derived from the forward equations. This adjoint problem is referred to in this work as a

physical adjoint.

Another method of arriving at a set of discretized adjoint equations is to derive them

from the discretized forward equations. Since the adjoint of a matrix operator is the conjugate

transpose of the matrix, then for a discretized forward matrix ¯̄A operating on the forward

solution vector φ̄, we have the following forward and adjoint problem

¯̄A
[
φ̄
]

= Q̄, ¯̄AT
[
φ̄
∗]

= Q̄∗ (1.4)

This method requires no integration by parts, and the appropriate boundary and initial

conditions for the adjoint problem are embedded in the transposed matrix ¯̄A
T

. In this work,

the previously defined adjoint problem is referred to as the mathematical adjoint. As the time

and spatial discretization steps approach zero, the discrete mathematical adjoint equations

are expected to approach the physical adjoint equations. For discrete problems, there is no

guarantee that the discretized physical adjoint solution will be the same as the mathematical

adjoint solution. However, if the problems are defined correctly, the functional as predicted by

the adjoint solutions should be the same for both the physical and mathematical problems.

1.3 Problem Definition

1.3.1 Forward Problem

This forward problem models one dimensional heat conduction through a cylindrical fuel pin

of uranium oxide. This fuel pin has a radius of 0.3325 inches and a height of 150 inches. It is

assumed to deposit heat directly into a channel of water surrounding the fuel. The heat gener-

ation can either vary sinusoidally in the axial direction and is constant in the radial direction

or is constant in all directions. The coolant model assumes that the steam and liquid are both
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have the same pressure and velocity, and have temperatures that vary in the axial direction.

The equation set, initial conditions, and boundary conditions below model the fuel conduction

and convection of a cylindrical fuel pin.

cfpρf
∂

∂t
Tf − kf∇2

r Tf = q′′′ (1.5)

ccpρcAx
∂

∂t
Tc + ccpṁc

∂

∂z
Tc + Sfkf∇r Tf |r=R = 0 (1.6)

hc
(
Tf |r=R − Tc

)
= −kf∇r Tf |r=R (1.7)

Tc|t=0 = T (o)
c Tf |t=0 = T

(o)
f (1.8)

Tc|z=0 = T Inc ∇r Tf |r=o = 0 (1.9)

where Tf is the fuel temperature as a function of time t, axial location z, and radial location

r; Tc is the coolant temperature as a function of time t and axial location z. Heat energy gen-

erated, denoted by the z dependent variable q′′′, conducts radially through the pin. Axial heat

conduction is ignored, however Tf is still z dependent. This dependency arises from the axial

coupling present in equation (1.7) which describes heat convection along the outside surface of

the pin. All heat generated in the pin by the q′′′ term is conducted to the outside surface and

passes into the coolant and out the exit boundary condition at the top of the channel. Fluid

flow properties are represented by a single mass flow rate term ṁc where closed flow channel,

single phase, and constant density are assumed to make the flow rate constant with z.

Figure 1.1 contains a visual representation of the cylindrical UO2 fuel pin and its respective

radial and axial discretization. There are 4 radial cells or rings and 4 axial meshes shown in

the figure. Each fuel and coolant temperature location, denoted by Tf−i,j and Tc−j respectively

with i ∈ [1, 2, ..., Nr] and j ∈ [1, 2, ..., Nz], is shown along with its node number, denoted by

φl with l ∈ [1, 2, ..., Nl] where Nl represents the total number of discretized cells. Again, φ̄ is

the solution vector containing all fuel and coolant temperatures. The cell numbering starts at

the center radial cell of the first axial mesh and then increases as it moves in the positive r

direction. Upon reaching the outer most radial cell, the numbering drops below to the next

axial mesh, center radial ring and increases in node number as r increases. The coolant temper-

ature nodes are at the end of the φ̄ vector, starting at the top axial mesh and moving downward.
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Figure 1.1: Physical geometry of simplified forward problem and example discretiza-
tion and node numbering
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The gradient and Laplacian operators, ∇r and ∇2
r respectively, denote the use of cylindrical

coordinates. Table 1.1 contains a list of constants and their values used for the high fidelity for-

ward problem. These values are assumed to remain constant regardless of material temperature

for the high fidelity case. In the low fidelity case, kf and hc are adjusted in order to conserve the

heat flux between collapsed discretized radial mesh cells, simply refered to as rings throughout

this thesis.

Table 1.1: Physical properties for fuel pin equations

Property Symbol Value

Fuel Specific Heat cfp 0.0762 BTU/lbm-F
Coolant Specific Heat ccp 1.394 BTU/lbm-F

Fuel Thermal Conductivity kf 2.00 BTU/hr-ft-F
Fuel Density ρf 685 lbm/ft3

Coolant Mass Flow Rate ṁc 3124 lbm/hr
Coolant Convection Coefficient hc 8,500 BTU/hr-ft2 − F
Coolant Flow Area Ax 0.174 in2

Fuel Pin Radius R 0.161 in
Fuel Pin Circumference Sf 1.013 in

Equations (1.5) and (1.6) are solved using two separate levels of discretization. The high

fidelity model employs a finite difference model for approximating both radial and axial deriva-

tives. The low fidelity problem uses lumped parameters in order to determine material conduc-

tivities of the fuel and coolant. It also uses finite difference to approximate derivatives with

fewer radial rings as compared to the high fidelity model. The number of axial nodes remains

constant and equal for both the high fidelity and low fidelity simulations.

Additionally, for q′′′constant, there is a simple analytical solution to the forward continuous

equation set. This can be used to verify the discrete numerical solution for the high fidelity

forward problem. Additionally, this analytic solution can be used in conjunction with the adjoint

analytical solution to verify the continuous adjoint’s evaluation of a functional. The analytic

solution provides insight into the ability of low fidelity adjoints for use in the approximation of

functional values. The discrete high and low fidelity models and continuous forward model are

investigated rigorously in the derivation section of this thesis.
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1.3.2 Adjoint Problem

Three adjoint problems are considered with application for adaptive model refinement. These

are referred to as the mathematical, physical, and analytic adjoint models respectively. The

adjoint equation set, final conditions, and boundary conditions presented below are derived

from the forward continuous equations (1.5) - (1.9)

−ρf
∂

∂t
T ∗f − kf∇2

rT
∗
f = Q∗ (1.10)

ccpρcAc
∂

∂t
T ∗c + ccpṁc

∂

∂z
T ∗c = Sfkf∇r T ∗f

∣∣
r=R

(1.11)

−kf∇rT ∗f
∣∣
r=R

= hc

(
T ∗f
∣∣
r=R
− T ∗c

)
= q′′∗

∣∣
r=R

(1.12)

T ∗c |t=tF = T ∗f
∣∣
t=tF

= 0 (1.13)

T †c

∣∣∣
z=H

= 0, ∇r T †f
∣∣∣
r=0

= 0 (1.14)

with tf denoting the final time. This equation set is referred to as the analytic adjoint and is

derived rigorously in the following section. Q∗ varies according to the problem definition and

the quantity of interest to be evaluated by the response. For certain Q∗, this equation set admits

an analytic solution.

Similar to the analytic forward solution, the analytic adjoint solution presents a continuous

solution to the simplified adjoint problem for use in verifying the physical and mathematical

adjoint results. The physical adjoint refers to the discretized version the above equation set

using finite difference in the same manner as the high fidelity forward problem.

Another method for arriving at a discretized adjoint is to take the conjugate transpose of

the forward matrix operator. The time dependent forward problem can be described by the

following matrix equation

¯̄Cn+1φ̄n+1 = ¯̄Bn+1φ̄n + Q̄n+1 (1.15)

where n + 1 is the current timestep, n is the previous timestep, and the ¯̄C and ¯̄B are matrix

operators acting on the appropriate time dependent solution vector φ̄. Equation (1.15) can be

written in block matrix form as
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
¯̄C1

¯̄B2
¯̄C2

¯̄B3
¯̄C3

. . .
. . .



φ̄1

φ̄2

φ̄3
...

 =


Q̄1

Q̄2

Q̄3

...


which can be explicitly solved for a given set of initial conditions. The time dependent mathe-

matical adjoint is then simply the conjugate transpose of this block matrix structure and each

individual matrix operator. Similar to the analytic forward solution, the analytic adjoint so-

lution admits a continuous solution to the simplified adjoint problem for use in verifying the

physical and mathematical adjoint results. Therefore, one has for the mathematical adjoint

problem 
¯̄C∗1

¯̄B∗2
¯̄C∗2

¯̄B∗3
¯̄C∗3

. . .

. . .



φ̄
∗
1

φ̄
∗
2

φ̄
∗
3

...

 =


Q̄∗1
Q̄∗2
Q̄∗3
...


which can also be explicitly solved for a given a set of final conditions. The definition of adjoint

matrix operators results in

¯̄C∗ = ¯̄CT, ¯̄B∗ = ¯̄BT
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Chapter 2

Derivation of Forward and Adjoint

Problems

The following section describes the derivation of the forward and adjoint methods used by the

adaptive model refinement method for heat conduction and convection. The first section out-

lines the continuous and discrete high fidelity forward problem. The next section shows the

derivation of adjoint equations by two separate means - formulating both the physical adjoint

and a mathematical adjoint. The physical adjoint equation derives discrete adjoint equations

from the continuous adjoint equations. Conversely, mathematical adjoint equations derives op-

erators from discrete forward equations by taking the conjugate transpose of the forward linear

operator. Ideally, a physical and mathematical adjoint derivation should arrive at the same set

of continuous adjoint equations in the limit where time and spatial step sizes approach zero.

Due to the simplicity of the forward heat conduction and single node convection problem,

it was possible under certain conditions to formulate an analytical solution for both the steady

state forward and adjoint problem. One can then show explicitly that the response function of

interest with regards to the adjoint solution can represent the exact quantity of interest. The

final section of this chapter describes the low fidelity problem.

2.1 Forward Problem

The following section describes the forward fuel conduction and convection problem discretiza-

tion for both the low and high fidelity models. Also included is a derivation of the analytic

solution to the steady state problem with constant heat generation.
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2.1.1 High Fidelity Discretization

In order to discretize the forward problem using finite difference methods, the steady state

problem is first considered. Setting time derivatives to zero we have the following forward

problem

kf∇2
rTf = q′′′, −cpcṁc

∂Tc
∂z

+ q′′
∣∣
r=R

= 0

−kf∇r Tf |r=R = hc
(
Tf |r=R − Tc

)
∇r Tf |r=0 = 0, Tc|z=0 = Tc,in

q′′
∣∣
r=R

= hcSf
(
Tf |r=R − Tc

)
Integrating the fuel equation over

ri+1∫
ri

·2πrdr results in

kf

ri+1∫
ri

∇2Tf2πrdr = kf

ri+1∫
ri

2πr

(
1

r

∂

∂r

(
r
∂Tf
∂r

))
dr

= 2πkf

ri+1∫
ri

(
∂

∂r

(
r
∂Tf
∂r

))
dr = 2πkfr

∂Tf
∂r

∣∣∣∣ri+1

ri

Taking the finite difference of
∂Tf
∂r

, assuming ∆r is constant, and setting z = zj we have

2πkfr
∂Tf
∂r

∣∣∣∣ri+1

ri

≈ 2πkf

[
rh
Tfh,j − Tfh−1,j

∆r

∣∣∣∣h=ri+1

h=ri

= 2πkf

[
ri
Tfi+1,j

− Tfi,j
∆r

− ri−1

Tfi,j − Tfi−1,j

∆r

]
= 2πkf

[ ri
∆r

Tfi+1,j
−
( ri

∆r
+
ri−1

∆r

)
Tfi,j +

ri−1

∆r
Tfi−1,j

]
where r+

i ≡ ri + ∆r/2 and Tfi,j ≡ Tf
(
r+
i , zj + ∆z/2

)
.

Define the following constants for i = (1, Nr − 1):

ai ≡ 2πkf
ri
∆r

bi ≡ − (ai−1 + ai)

Using these constants, the previous expression becomes
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= aiTfi+1,j
+ biTfi,j + ai−1Tfi−1,j

In order to evaluate the expression 2πkfr
∂Tf
∂r

∣∣∣∣ri+1

ri

at the first node, the boundary condition

for ∇r Tf |r=0 is directly substituted resulting in:

2πkfr
∂Tf
∂r

∣∣∣∣r2
r1

= 2πkfr
∂Tf
∂r

∣∣∣∣
r2

− 2πkfr
∂Tf
∂r

∣∣∣∣
r1

= 2πkfr2

(
Tf2,j − Tf1,j

∆r

)
= 2πkf

[ r2

∆r
Tf2,j −

r2

∆r
Tf1,j

]
= a2Tf2,j − a2Tf1,j

At the fuel pin surface, there is a special definition for Tf∗Nr
such that Tf∗Nr

≡ Tf (R, zj + ∆z/2).

The pin edge fuel temperature, Tf |R, is assumed to equal the average fuel temperature for the

outermost ring. Applying this relationship to the final radial node of the fuel pin results in the

following

2πkfr
∂Tf
∂r

∣∣∣∣rNr

rNr−1

= 2πkfr
∂Tf
∂r

∣∣∣∣
rNr

− 2πkfr
∂Tf
∂r

∣∣∣∣
rNr−1

= 2πRkf

[
−hc
kf

(
Tf∗Nr,j

− Tcj
)]
− 2πkfrNr−1

(
Tf∗Nr,j

− TfNr−1,j

∆r

)

= 2πRhcTcj −
(

2πRhc +
2πkfrNr−1

∆r

)
T ∗fNr,j

+

(
2πkfrNr−1

∆r

)
TfNr−1,j

Noting that 2πR = Sf the following constants are defined

f = Sfhc

e = − (f + aNr−1)

Using these constants, the previous expression is then

= fTcj + eTf∗Nr,j
+ aNr−1TfNr−1,j

For the coolant, we assume that ∆z is uniform axially along the pin, and we define Tcj ≡
Tc (zj) at the axial node position for zj ∈ [0, H]. At j = 0, we have Tco = Tc(0) = Tc,in.
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For the surface boundary condition of the pin we have the following expression

q′′
∣∣
r=R

= hcSf
(
Tf |r=R − Tc

)
= hcSf

(
Tf∗Nr

− Tcj+1/2

)
= hcSf

(
Tf∗Nr

− Tcj
)

Substituting the upwinded finite difference for
∂Tc
∂z

at cell j + 1/2 results in the following

−cpcṁc
∂Tc
∂z

+ q′′|r=R ≈ −cpcṁc

(
Tcj+1 − Tcj

∆z

)
+ hcSf

(
Tf∗Nr,j

− Tcj
)

=

(
cpcṁc

∆z
− hcSf

)
Tcj −

(
cpcṁc

∆z

)
Tcj+1 + hcSfTf∗Nr,j

Define the following constants

k = −cpcṁc

∆z

m = − (k + f)

Using these constants, the previous expression becomes

= mTcj + kTcj+1 + fTf∗Nr,j

The steady state discretized problem is then

¯̄Aφ̄ + d̄ = 0 (2.1)

with φ̄ =
[
T̄f T̄c

]T
and, the steady state temperature operator ¯̄A defined as
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¯̄A =

[
¯̄Df

¯̄Of

¯̄Oc
¯̄Dc

]
with

¯̄Df =



−a2 a2

a2 b3 a3

a3 b4 a4

. . .

aNr−2 bNr−1 aNr−1

aNr−1 e
. . .


, ¯̄Of =



...

f
. . .

f
. . .

f


,

¯̄Dc =


m

k m
. . .

k m

 , ¯̄Oc =


. . . f

. . .

f



In order to solve the time dependent system, we consider the following spatially discretized

system

γ̄
∂φ̄

∂t
= ¯̄Aφ̄ + d̄ (2.2)

with γ̄ = [cfpρf c
f
pρf . . . c

f
pρf ]T . Integrate equation (2.1) over the interval

tn+1∫
tn

·dt

tn+1∫
tn

[
γ̄
∂φ̄

∂t
= ¯̄Aφ̄ + d̄

]
dt

γ̄φ̄n+1 − γ̄φ̄n =

tn+1∫
tn

(
¯̄Aφ̄ + d̄

)
dt

We approximate the time integration by using the following equation

γ̄φ̄n+1 − γ̄φ̄n ≈
{
α
[

¯̄Aφ̄ + d̄
]
tn+1

+ (1− α)
[

¯̄Aφ̄ + d̄
]
tn

}
∆tn
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which is an explicit or implicit time discretization with α = (0, 1). Reordering the previous

equation results in

γ̄φ̄n+1 − α∆tn
¯̄An+1φ̄n+1 = γ̄φ̄n + (1− α)∆tn

¯̄Anφ̄n + α∆tnd̄n+1

This expression can be written generally as

¯̄Cn+1φ̄n+1 = − ¯̄Bn+1φ̄n + Q̄n+1 (2.3)

with

¯̄Cn+1 ≡ γ̄¯̄I−∆tn
¯̄An+1

¯̄Bn+1 ≡ γ̄¯̄I−∆tn
¯̄An

Q̄n+1 ≡ α∆tnd̄n+1 + (1− α)∆tnd̄n

This time discretization structure results in a block matrix similar to the one presented in

the previous mathematical adjoint example.
¯̄C1

¯̄B2
¯̄C2

¯̄B3
¯̄C3

. . .
. . .



φ̄1

φ̄2

φ̄3
...

 =


Q̄1

Q̄2

Q̄3

...


The above system of equations can be solved given an appropriate set of initial conditions.

2.1.2 Low Fidelity Problem

The low fidelity problem is roughly the same as the high fidelity problem but with fewer radial

rings. Adjusted values for thermal conductivities are used in the low fidelity problem such that

the volume averaged temperatures for the high fidelity solution are equivalent to the low fidelity

solution. This resulting low fidelity solution must then be mapped onto the high fidelity mesh

in order to evaluate the high fidelity residual used with the adjoint to evaluate the difference

metric. The current mapping method is simple linear interpolation between low fidelity node

solutions. Figure 2.1 below shows a representative grid of a high and low fidelity problem con-

taining 8 and 4 nodes respectively. The ∆rl values are selected such that the high and low

temperature locations for the quantity of interest match.
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Figure 2.1: Low and high fidelity representative mesh such that the quantity of
interest locations match for four and eight ring models

The adjusted parameters used in the low fidelity problem are defined as follows. For the fuel

region, we have

keff = kf

[
Tfi+1,j

− Tfi,j
T̄fl+1,j

− T̄fl,j

]
∆rl
∆ri

(2.4)

where the subscript l denotes the low fidelity node number and T̄fl,j denotes the high fidelity

temperature solution mapped to the low fidelity mesh. Using keff values instead of k values

ensures that the heat flux between radial rings is equal for both models.

Similarly, for the low fidelity coolant equations, the following adjusted convection coefficient

is used

heff = hc

[
TfN∗r ,j

− Tcj
T̄fNrl,j

− T̄cjl

]
(2.5)

where T̄fNrl,j
and T̄cjl denote the low fidelity final ring temperature and coolant temperature

respectively for node j. Similarly to the previous expression, this ensures that the heat flux at

the pin boundary is the same for both the high and low fidelity. Using these adjusted parameters

with the finite differenced coolant equations represented in the previous section will result in
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an equality between high and low fidelity volume averaged temperatures. Because the adjusted

parameters are calculated using steady state values, the average high fidelity fuel temperatures

will not match the low fidelity fuel temperatures during transients.

Similarly to the high fidelity forward problem, the low fidelity steady state discretized prob-

lem is

˜̄Aφ̃ + d̃ = 0 (2.6)

with φ̃ =
[
T̃f T̃c

]T
. The low fidelity steady state temperature operator ˜̄A is a coarse version of

¯̄A using the keff and heff constants for the fluid and fuel equations. The matrix structure of˜̄A will have the same structure as ¯̄A but with fewer rows dedicated to radial temperatures.

The time dependent low fidelity solution will have the following structure

˜̄Cn+1φ̃n+1 = − ˜̄Bn+1φ̃n + Q̃n+1 (2.7)

with

˜̄Cn+1 ≡
[
γ̃¯̄I−∆tn

˜̄An+1

]
˜̄Bn+1 ≡

[
γ̃¯̄I−∆tn

˜̄An

]
Q̃n+1 ≡ α∆tnd̃n+1 + (1− α)∆tnd̃n

Linear interpolation between low fidelity temperatures for mapping onto the high fidelity

mesh will also cause a discrepancy between fidelity temperatures for both steady state and time

dependent problems. It is important to note that although the low fidelity problem is using a

finite difference scheme on a coarser mesh, refinement is not the only difference between high

fidelity and low fidelity problems. If this were the case, the adjoint methods presented in this

thesis would simply be an extension to adaptive meshing applied to a heat conduction problem.

Since the low fidelity problem uses adjusted convection and conduction coefficients in addition

to linear interpolation, it can be thought of as a separate mathematical model for predicting

fuel temperatures on a radial mesh comparable to the high fidelity finite difference scheme.

2.1.3 Forward Analytic Solution

An analytic solution to the steady state forward equations was determined for verification pur-

poses. For this thesis, much of the verification work was done with the steady state problem
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since time dependent adjoint behavior was found to be a trivial extension. A constant heat gen-

eration was assumed to help simplify analytic derivations. What follows is the determination

of an analytic solution to the steady state forward problem with constant heat generation.

Start with the steady state forward problem definition

−
kf
r

∂

∂r

(
r
∂Tf
∂r

)
= q′′′ = constant (2.8)

ccpṁc
dTc
dz
− 2πRq′′ = 0 (2.9)

Tc|z=0 = Tcin ,
∂Tf
∂r

∣∣∣∣
r=0

= 0

−kf
∂Tf
∂r

∣∣∣∣
r=R

= hc
(
Tf |r=R − Tc

)
= q′′

∣∣
r=R

Solving for the heat flux q′′ at the pin surface:

q′′′
(
πR2H

)
= q′′ (2πRH)

q′′
∣∣
r=R

= q′′′
πR2H

2πRH
= q′′′

R

2

The coolant equation becomes

∂Tc
∂z

= q′′′
R

2ccpṁc
2πR =

q′′′πR2

ccpṁc

Integrating from 0 to z ∫ z

0

(
∂Tc
∂z′

=
q′′′πR2

ccpṁc

)
dz′

Tc(z)− Tc(0) =
q′′′πR2

ccpṁc
z

Tc(z) =
q′′′πR2

ccpṁc
z + Tc(0)

which is defined for a given incoming coolant temperature.

To solve for Tf (r), the fuel equation is first integrated from 0 to r:∫ r

0

(
−
kf
r′

∂

∂r′

(
r′
∂Tf
∂r′

)
= q′′′

)
r′dr′
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−kf r′
∂Tf
∂r′

∣∣∣∣r
0

=
q′′′

2
r2

Applying the boundary condition
∂Tf
∂r

∣∣∣∣
r=0

= 0 results in

∂Tf
∂r

= − q′′′

2kf
r

Integrating from r to R ∫ R

r

(
∂Tf
∂r′

= − q′′′

2kf
r′
)
dr′

[
Tf
(
r′, z

)
= − q′′′

4kf
r′2
]R
r

Tf (r, z) = Tf (R, z) +
q′′′

4kf

(
R2 − r2

)
Examining the boundary condition for Tf (R):

q′′
∣∣
r=R

= q′′′
R

2
= hc (Tf (R, z)− Tc(z))

Tf (R, z) = q′′′
R

2hc
+ Tc(z)

and substituting this expression for Tf (R, z) into the previous solution for Tf (r, z) results in

the following expression:

Tf (r, z) = q′′′
R

2hc
+ Tc(z) +

q′′′

4kf

(
R2 − r2

)
This analytic forward solution is used for verification with the discrete forward problem as

well as with the analytical adjoint.

2.2 Adjoint Problem

Adjoint techniques are employed in order to evaluate the difference between a high fidelity and

low fidelity fuel temperature at specific locations of interest. In order to derive the functional,

the following Quantity of Interest associated with the difference between the high and low

fidelity solution is examined. This response is written as

< ≡
〈
f̄R, T̄ − T̃

〉
t,z,r

where subscripts t, z, and r define the dimensions of the inner product, f̄R defines the response
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function for the Quantity of Interest, T̄ denotes the high-fidelity solution vector, and T̃ denotes

the low fidelity solution vector. The vector dependence captures the coolant and fuel temper-

atures, T̄ = (Tf Tc)
T . Set Q̄† ≡ f̄R and ¯̄A†

[
T̄ †
]

= Q̄†, where the matrix operators still denote

continuous versus discretized operators, produces

< ≡
〈
f̄R, T̄ − T̃

〉
t,z,r

=
〈

¯̄A†[T̄ †], T̄ − T̃
〉
t,z,r

=
〈
T̄ †, ¯̄A[T̄ − T̃ ]

〉
t,z,r

+BC + IC + FC =
〈
T̄ †, ¯̄A[T̄ ]− ¯̄A[T̃ ]

〉
t,z,r

+BC + IC + FC

where BC, IC, and FC represent the boundary conditions, initial condition, and final condition

that are the byproducts of the formulation of ¯̄A from ¯̄A†. Note that the expression ¯̄A[T̄ ] = Q̄ is

exact. Therefore we have

< =
〈
T̄ †, Q̄− ¯̄A[T̃ ]

〉
+BC + IC + FC

After defining the residual, r̄ = Q̄− ¯̄A[T̃ ], the response is written as

< =
〈
T̄ †, r̄

〉
t,z,r

+BC + IC + FC

Properly defining the adjoint problem will ensure that

BC + IC + FC = 0

so that the only remaining term is the inner product. Therefore, given a residual from the low

fidelity solution T̃ operated on by the high fidelity operator, an inner product with the appro-

priate adjoint will yield the difference between the high and low fidelity temperatures at the

appropriate location of interest.

This project investigated the possibility to estimate the response by using a low fidelity

adjoint solution in place of the high fidelity adjoint. This approach would evaluate the response

using

<̃ =
〈
T̃ †, r̄

〉
t,z,r

where T̃ † is the elongated low fidelity adjoint solution found by evaluating

˜̄A† [T̂ †] = Q̃†

and
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T̃ † = ˜̄E†T T̂ †
We define ˜̄E†t is an elongation operator that projects the coarsened low fidelity adjoint

solution onto the high fidelity mesh. This implies that if

¯̄A† ˜̄E†T ˜̄A†−1 = Q̃† = Q̄†

then exact values of the response are obtained. By inspection, it can be seen that if

˜̄E†T ˜̄A†−1 = ¯̄A†−1

holds, one would think that there may also be definitions for Q̃† that could enforce this equality.

However, since ˜̄E†T is a non-square matrix leading to an ill posed problem, the best one can do

is a least squares approximation.

If the response found using the low fidelity adjoint solution results in temperature differ-

ences that are within an appropriate tolerance, then the low fidelity solution could be used

to effectively estimate the difference between the high and low fidelity solutions without ever

needing to explicitly solve the high fidelity problem. This method is the primary means for

which a low fidelity problem can determine at which times and locations it is necessary to use a

higher level of fidelity without unduly compromising its greater level of computational efficiency

as compared to the high fidelity problem.

In order to accomplish this, an appropriate method for determining a low fidelity adjoint

operator and elongation operator that will map the low fidelity problem onto the high fidelity

spatial and temporal mesh must be developed. What follows in this section is a detailed account

of various adjoint problem definitions and their resulting system of expressions used to deter-

mine either the high or the low fidelity adjoint solutions. Understanding their similarities and

differences is integral to evaluating the behavior of adjoint methods used for adaptive model

refinement.

2.2.1 Mathematical Adjoint

The mathematical adjoint is derived from the forward time dependent discretized problem much

in the same way as described in section 1.3.2. Starting with the block matrix system from the

discretized forward problem represented by equation (2.3)
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
¯̄C1

¯̄B2
¯̄C2

¯̄B3
¯̄C3

. . .
. . .



φ̄1

φ̄2

φ̄3
...

 =


Q̄1

Q̄2

Q̄3

...


we derive the adjoint problem by taking the transpose of the above system.

¯̄C∗1
¯̄B∗2
¯̄C∗2

¯̄B∗3
¯̄C∗3

. . .

. . .



φ̄
∗
1

φ̄
∗
2

φ̄
∗
3

...

 =


Q̄∗1
Q̄∗2
Q̄∗3
...


with the adjoint matrix operators

¯̄C∗ = ¯̄CT, ¯̄B∗ = ¯̄BT

and

¯̄C∗n+1 ≡
[
γ̄¯̄I−∆tn

¯̄A∗n+1

]
¯̄B∗n+1 ≡

[
γ̄¯̄I−∆tn

¯̄A∗n

]
Q̄∗n+1 ≡ α∆tnd̄

∗
n+1 + (1− α)∆tnd̄

∗
n

This results in the general time dependent mathematical adjoint expression

¯̄C∗nφ̄
∗
n+1 + ¯̄B∗n+1φ̄

∗
n = Q̄∗n (2.10)

The matrix operator ¯̄A∗n+1 is derived by taking the transpose of ¯̄An+1. Using the definition

of this matrix shown previously, this transposed adjoint matrix becomes

¯̄AT =

[
¯̄DT
f

¯̄OT
c

¯̄OT
f

¯̄DT
c

]
with
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¯̄DT
f =



−a2 a2

a2 b3 a3

a3 b4 a4

. . .

aNr−2 bNr−1 aNr−1

aNr−1 e
. . .


, ¯̄OT

c =



...

f
. . .

f
. . .

f


,

¯̄DT
c =


m k

m k
. . .

m

 , ¯̄OT
f =


. . . f

. . .

f


The definitions for the constants shown in the previous matrix are the same as those used

for the forward matrix operator ¯̄An+1. Operating on the adjoint solution vector φ̄
∗
n =

[
T̄ ∗f T̄

∗
c

]T
results in a system of linear equations that can be solved with the given final condition T̄ ∗f =

T̄ ∗c = 0.

Examination of Discrete Adjoint Equations as ∆r,∆z → 0

Multiplying the previously defined adjoint operator ¯̄A∗ by it’s solution vector T̄ ∗ =
[
T ∗f T

∗
c

]T
results in the following set of equations.

ai−1T
∗
fi−1,j

+ biT
∗
fi,j

+ aiT
∗
fi+1,j

= Q∗i,j (1a)

aNr−1T
∗
fNr−1,j

+ eT ∗f∗Nr,j

∗ + fT ∗cj = Q∗Nr,j
(2a)

fT ∗f∗Nr,j
+mT ∗cj + hT ∗cj+1

= Q∗cj (3a)

fT ∗f∗
N∗r ,Nz

+mT ∗cNz
= Q∗cNz

(4a)

Examining equation 1a, we have the following dicretized relationship

ai−1T
∗
fi−1,j

+ biT
∗
fi,j

+ aiT
∗
fi+1,j

= 2πkf
ri
∆r

T ∗fi+1,j
− 2πkf

( ri
∆r

+
ri−1

∆r

)
T ∗fi,j + 2πkf

ri−1

∆r
T ∗fi−1,j

= 2πkf

[
ri
T ∗fi+1,j

− T ∗fi,j
∆r

− ri−1

T ∗fi,j − T
∗
fi−1,j

∆r

]
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In order to examine this equation as it approaches the continuous or analytic adjoint equa-

tion, we operate on the previous expression with lim
∆r→0

lim
∆r→0

(
2πkf

[
ri
T ∗fi+1,j

− T ∗fi,j
∆r

− ri−1

T ∗fi,j − T
∗
fi−1,j

∆r

])

= 2πkf

[
r
∂T ∗f
∂r

]ri+1

ri

We then recognize that this expression is equal to

kf

ri+1∫
ri

dr2πr

[
1

r

∂

∂r

(
r
∂T ∗f
∂r

)]
= kf

ri+1∫
ri

2πr∇2
rT
∗
f

Demanding point-wise equality of the energy balance equation implies the term

kf∇2
rT
∗
f

which matches the fuel temperature expression in the analytic adjoint.

Performing the same analysis on equation 2a

aNr−1T
∗
fNr−1,j

+ eT ∗fN∗r ,j
+ fT ∗cj

= 2πkf
rNr−1

∆r
T ∗fNr−1,j

−
(

2πkf
rNr−1

∆r
+ Sfhc

)
T ∗fN∗r

+ 2πhcT
∗
cj

= −2πkfrNr−1

T ∗fN∗r ,j
− T ∗fNr−1,j

∆r
+ 2πrNrhc

(
T ∗cj − T

∗
fN∗r ,j

)
We then impose the following boundary condition

−kf
∂T ∗f
∂r

∣∣∣∣
r=R

= hc

(
T ∗fN∗r ,j

− T ∗cj
)

resulting in

−2πkfrNr−1

T ∗fN∗r ,j
− T ∗fNr−1,j

∆r
+ 2πkf

∂T ∗f
∂r

∣∣∣∣
r=R

We again operate on the previous expression with lim
∆r→0
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lim
∆r→0

2πrNrkf

[
∂T ∗f
∂r

∣∣∣∣
r=R

− rNr−1

T ∗fNr,j
− T ∗fNr−1,j

∆r

]

= 2πkf

[
r
∂T ∗f
∂r

]rNr

rNr−1

which results in

−2πkfrNr−1

T ∗fN∗r ,j
− T ∗fN∗r−1,j

∆r
+ 2f

∂T ∗f
∂r

∣∣∣∣
r=R

Operate on the previous expression with lim
∆r→0

lim
∆r→0

(
−2πkfrNr−1

T ∗fN∗r ,j
− T ∗fN∗r−1,j

∆r
+ 2f

∂T ∗f
∂r

∣∣∣∣
r=R

)

= 2πkf

[
r
∂T ∗f
∂r

]rNr

rNr−1

Recognize that this expression is equal to

rNr∫
rNr−1

dr2πr

[
1

r

∂

∂r

(
r
∂T ∗f
∂r

)]
= kf

rNr∫
rNr−1

dr2πr∇2
rT
∗
f

Again, demanding point wise equality of the energy balance term implies the term

= kf∇2
rT
∗
f

Examining equation 3a and noting that Sf = 2πR

fT ∗fN∗r ,j
+mT ∗cj + hT ∗cj+1

= SfhcT
∗
fN∗r ,j

−
(
hcSf −

cpcṁc

∆z

)
T ∗cj −

cpcṁc

∆z
T ∗cj+1

= −cpcṁc

T ∗cj+1
− T ∗cj

∆z
+ hcSf

(
T ∗fN∗r ,j+1

− T ∗cj
)

We then impose the following source term

q′′|r=R = hc

(
T ∗fN∗r ,j

− T ∗cj
)
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Operate on the previous expression with lim
∆z→0

lim
∆z→0

[
−cpcṁc

(
T ∗cj+1

− T ∗cj
∆z

)
+ Sq′′

]

= −cpcṁc
∂T ∗c
∂z

+ S q′′|r=R

Performing the limit analysis on equation 4a

fT ∗fN∗r ,Nz
+mT ∗cNz

= SfhcT
∗
fN∗r ,Nz

−
(
hcSf −

cpcṁc

∆z

)
T ∗cNz

= cpcṁc

(
T ∗cNz

∆z

)
+ 2πRhc

(
T ∗fNr,Nz

− T ∗cNz

)

It is inferred by the structure of the adjoint operator
¯̄
A† shown previously that the following

boundary conditions also apply:

∇ T †f

∣∣∣
r=0

= 0

T †c

∣∣∣
z=H

= 0

From this analysis, we have the following adjoint equations

kf∇2T †f = Q†f

cpcṁc
∂T †c
∂z
− q′′

∣∣
r=R

= Q†c

with the following boundary conditions

∇ T †f

∣∣∣
r=0

= 0 T †c

∣∣∣
z=H

= 0
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q′′
∣∣†
r=R

= hc

(
T †f

∣∣∣
r=R
− T †c

)
= −kf

∂T †f
∂r

∣∣∣∣∣
r=R

2.2.2 Analytic Adjoint

An alternative way to derive the adjoint equations is to consider an adjoint problem as derived

from the continuous forward equations. This process is briefly described in section 1.3.2 and is

now presented in detail for the time dependent forward equations. For this derivation, it was

necessary to derive a functional based on the forward operators. Rewrite the forward analytic

equations (1.5) - (1.9) as operators on temperature values

Oc( ) ≡ ccpρcAx
∂( )
∂t + ccpṁc

∂( )
∂z

Of ( ) ≡ cfpρf ∂( )
∂t − kf∇

2
r( )

Oc [Tc] = −Sfkf∇r Tf |r=R
Of [Tf ] = q′′′

h
(
Tf |r=R − Tc

)
= −kf∇r Tf |r=R

Tc|t=0 = T
(o)
c Tc|z=0 = T Inc

Tf |t=0 = T
(o)
f ∇r Tf |r=o = 0

The Quantity of Interest associated with the difference between the high fidelity solution

and the low fidelity solution is examined. This response is written as

< ≡
〈
f̄R, T̄ − T̃

〉
t,z,r

=
〈
T̄ †, Q̄− ¯̄A[T̃ ]

〉
+BC + IC + FC

After defining the residual, r̄ = Q̄− ¯̄A[T̃ ], the following expression is produced:

< =
〈
T̄ †, r̄

〉
t,z,r

+BC + IC + FC

Writing out the forward equations reveals the action of the ¯̄A operator for which we seek

the adjoint and associated BC, IC, and FC terms. We also scale the coolant equation by[
R2

2

Sf
R

]−1

=

[
1

πR2

]
anticipating the necessity to relate the fuel and coolant terms with one

another. The fuel and coolant equations are then.

29



[
1

πR2

] (
ccpρcAx

∂
∂t + ccpṁc

∂
∂z

)
Tc +

[
1

πR2

] (
kfSf∇rTf |R

)
= 0

(
cfpρf

∂
∂t − kf∇

2
r

)
Tf = q′′′

By demanding that 〈
T̄ †, ¯̄AT̄

〉
=
〈

¯̄A†T̄ †, T̄
〉

for any T̄ and T̄ † that satisfies specified BC, IC, and FC, the equations are defined along

with the BC, IC, and FC terms. Demanding this holds for any T̄ and T̄ † implies point-wise

enforcement. The forward equations and their respective boundary and initial conditions are

known. To obtain the similar equations for the adjoint problem, the operator must be isolated

to operate on the adjoint temperatures in the inner products. The required equations are found

by writing the inner products and using integration by parts.

〈
T †c ,
[

1
πR2

]
ccpρcAx

∂Tc
∂t

〉
t,z,r

=
[

1
πR2

]
ccpρcAx

R∫
0

rdr
H∫
0

dz
tF∫
0

dt∂Tc∂t T
†
c

=
[

1
πR2

]
ccpρcAx

R∫
0

rdr
H∫
0

dz

[
T †c Tc

∣∣∣tf
0
−

tF∫
0

dt∂T
†
c

∂t Tc

]

=
[

1
πR2

]
ccpρcAx

〈
T †c , Tc

〉
z,r

∣∣∣∣tF
0

−
[

1
πR2

]
ccpρcAx

〈
∂T †c
∂t , Tc

〉
t,z,r

The
〈
cfpρfT

†
f ,

∂Tf
∂t

〉
and

〈
T †c ,
[

1
πR2

]
ccpṁc

∂Tc
∂z

〉
inner products are developed similarly such

that

〈
T †f , c

f
pρf

∂Tf
∂t

〉
t,z,r

= cfpρf

〈
T †f , Tf

〉
z,r

∣∣∣∣tF
0

− cfpρf
〈
∂T †f
∂t , Tf

〉
t,z,r

〈
T †c ,
[

1
πR2

]
ccpṁc

∂Tc
∂z

〉
t,z,r

=
[

1
πR2

]
ccpṁc

〈
T †c , Tc

〉
t,r

∣∣∣∣H
0

−
[

1
πR2

]
ccpṁc

〈
∂T †c
∂z , Tc

〉
t,z,r

Green’s Theorem is applied to
〈
T †f ,−kf∇

2
rTf

〉
to obtain

〈
T †f ,−kf∇

2
rTf

〉
t,z,r

= −kf
〈
T †f , r∇rTf − Tf , r∇rT

†
f

〉
t,z

∣∣∣∣R
0

− kf
〈
∇2
rT
†
f , Tf

〉
t,z,r

30



The resulting BC, IC, and FC terms found in the functional are

〈
T †c ,
[

1
πR2

]
ccpρcTc

〉
z,r

∣∣∣∣tF
0

,
〈
T †f , c

f
pρfTf

〉
z,r

∣∣∣∣tF
0

,
〈
T †c ,
[

1
πR2

]
ccpṁcTc

〉
t,r

∣∣∣∣H
0

,

−kf
〈
T †f , r∇rTf − Tf , r∇rT

†
f

〉
t,z

∣∣∣∣R
0

Included in this list of remaining terms is the inner product with T †c with the following heat

flux term from the coolant equation〈
T †c ,

[
1

πR2

]
kfSf∇rTf

∣∣
R

〉
t,z,r

Noting that Tc and Tf actually denote ∆Tc ≡ Tc−T (o)
c and ∆Tf ≡ Tf −T

(o)
f , the “natural”

boundary and initial conditions for the forward problem are imposed. These conditions are

written as

Tc|z=0 = Tc|t=0 = Tf |t=0 = 0

Additionally, the adjoint final and boundary conditions are free to select and imposed to be

the following to remove the BC and FC terms

T †c

∣∣∣
z=H

= T †c

∣∣∣
t=tF

= T †f

∣∣∣
t=tF

= 0

The remaining terms that appear in the functional are as follows:

−kf
〈
T †f , r∇rTf − Tf , r∇rT

†
f

〉
t,z

∣∣∣∣R
0

+
〈
T †c ,

[
1

πR2

]
kfSf∇rTf

∣∣
R

〉
t,z,r

The expression
〈
T †f , r∇rTf − Tf , r∇rT

†
f

〉
t,z

∣∣∣∣
r=0

= 0 is true due both to symmetry within

the geometry of the problem as well as due to the r variable present. The remaining terms

−kfR
〈
T †f ,∇rTf − Tf ,∇rT

†
f

〉
t,z

∣∣∣∣
r=R

+
〈
T †c ,

[
1

πR2

]
kfSf∇rTf

∣∣
R

〉
t,z,r

can be eliminated by first completing the r integration of the second term. This is possible since

there is no r dependence of the function’s inner product. This produces

(
R2

2

) [
1

πR2

]
Sfkf

〈
T †c ,∇rTf

〉
t,z

∣∣∣∣
r=R

= kfR
〈
T †c ,∇rTf

〉
t,z

∣∣∣∣
r=R

This will produce the remaining BC terms in the functional
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−kfR
〈
T †f ,∇rTf − Tf ,∇rT

†
f

〉
t,z

∣∣∣∣
r=R

+ kfR
〈
T †c ,∇rTf

〉
t,z

∣∣∣∣
R

= 0

Next we impose

−kf∇rTf |r=R = hc
(
Tf |r=R − Tc

)
which produces the following BC terms in the functional

hcR
〈
T †f , (Tf − Tc)

〉∣∣∣
r=R

+ kfR
〈
Tf ,∇rT †f

〉
t,z

∣∣∣∣
r=R

− hcR
〈
T †c , (Tf − Tc)

〉
t,z

∣∣∣∣
r=R

= R
〈
Tf ,
[
kf∇rT †f + hc

(
T †f − T

†
c

)]〉
t,z

∣∣∣∣
r=R

− hcR
〈
Tc,
(
T †f − T

†
c

)〉
t,z

∣∣∣∣
r=R

To make stationary with respect to Tf , impose

−kf∇rT †f
∣∣∣
r=R

= hc

(
T †f

∣∣∣
r=R
− T †c

)
which eliminates the first term in the remaining functional. For the final term, we use the

previously defined BC and return the r dependence to the inner product.

−hcR
〈
Tc,
(
T †f − T

†
c

)〉
t,z

∣∣∣∣
r=R

=
〈
Tc,

2
Rkf ∇rT

†
f

∣∣∣
r=R

〉
t,z,r

Let us define the adjoint heat flux at the pin surface as:

q
′′†
∣∣∣
r=R

= −kf∇rT †f
∣∣∣
r=R

= hc

(
T †f

∣∣∣
r=R
− T †c

)
Gathering up all terms with Tc on one side of the inner product produces the following:

−1
πR2

[
ccpρcAc

∂( )
∂t + ccpṁc

∂( )
∂z

]
T †c − 2

R q
′′†
∣∣∣
r=R

= Q†c

which can be scaled similarly to the forward coolant equation by multiplying through by

πR2.

Doing likewise for Tf produces

−
[
cfpρf

∂( )
∂t + kf∇2

r( )
]
T †f = Q†f

Summarizing the following analytic adjoint operators and previously defined boundary con-

ditions are given by
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O†c( ) = −ccpρcAc
∂( )
∂t − c

c
pṁc

∂( )
∂z

O†f ( ) = −ρf ∂( )
∂t − kf∇

2
r( )

O†c
[
T †c
]

= −Sfkf∇r T †f
∣∣∣
r=R

+Q†c

O†f

[
T †f

]
= Q†f

F.C. T †c

∣∣∣
t=tF

= T †f

∣∣∣
t=tF

= 0

B.C. T †c

∣∣∣
z=H

= 0, ∇r T †f
∣∣∣
r=0

= 0

−kf∇rT †f
∣∣∣
r=R

= hc

(
T †f

∣∣∣
r=R
− T †c

)
= q

′′†
∣∣∣
r=R

These equations are equivalent to the previously presented adjoint equations (1.10) - (1.14).

In order to solve these equations, a similar discretization technique to that of the forward high

fidelity solution is employed.

2.2.3 Analytic Adjoint Solution

An analytic solution to the adjoint equations was derived in order to help verify mathematical

and physical adjoint behavior. Similar to the analytical solution derived for the forward problem,

the system is assumed to be at steady state. These steady state adjoint equations as determined

by the analytic adjoint problem derivation can be written as

−
kf
r

∂

∂r

(
r
∂T ∗f
∂r

)
= Q∗ (2.11)

−ccpṁc
dT ∗c
dz
− 2πRq′′∗ = 0 (2.12)

T ∗c |z=H = 0,
∂T ∗f
∂r

∣∣∣∣
r=0

= 0

−kf
∂T ∗f
∂r

∣∣∣∣
r=R

= hc

(
T ∗f
∣∣
r=R
− T ∗c

)
= q′′∗

∣∣
r=R

The adjoint source term is defined at the location of interest as

Q∗ =
1

2πr
δ (r − ro) δ (z − zo)

We first examine the problem space for zo < z ≤ H. Integrating equation (2.11) from

r′ = (0, r) with 0 ≤ r < R and applying the boundary condition at r = 0 results in the
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following expression for T ∗f : ∫ r

0
dr′2πr′

[
−kf
r′

∂

∂r

(
r′
∂T ∗f
∂r′

)
= 0

]

r′
∂T ∗f
∂r′

∣∣∣∣r
0

= r
∂T ∗f
∂r

= 0

T ∗f (r, z) = constant in r

Therefore, q′′∗|r=R = −kf
∂T ∗f
∂r r=R

= 0 for zo < z ≤ H. Integrating equation (2.12) from

z′ = (z,H) with zo < z ≤ H and applying the boundary condition at z = H results in the

following expression for T ∗c : ∫ H

z
dz′
[
−ccpṁc

dT ∗c
dz′

]
= 0

T ∗c |
H
z = constant

T ∗c = 0

In order to satisfy the boundary condition at r = R, it follows that

T ∗f

∣∣∣
r=R

= T ∗c and thus T ∗f = 0 for zo < z ≤ H and all r.

Consider the analytical solution at z = zo. By the previous argument, the adjoint fuel

temperature solution for 0 ≤ r < ro and z = zo is

T ∗f (r, z)
∣∣
z=zo

= co fo(z)|z=zo

where fo(z) is some function of z. Considering the limit of the solution a distance of ε << 1

around ro, a boundary condition at the r = ro and z = zo position is

lim
ε→0

[∫ ro+ε

ro−ε
−2πrdr

kf
r

∂

∂r

(
r
∂T ∗f
∂r

)
=

∫ ro+ε

ro−ε
2πrdr

δ (r − ro) δ (z − zo)
2πr

]
z=zo

lim
ε→0

[
−kf (2πr)

∂T ∗f
∂r

∣∣∣∣ro+ε

ro−ε
= δ (z − zo)

]
z=zo

This implies that

T ∗f (r, z) = T̂ ∗f (r)δ (z − zo)

Dividing through by δ (z − zo) results in the following expression
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lim
ε→0

−kf (2πr)
∂T̂ ∗f
∂r

∣∣∣∣∣
ro+ε

ro−ε

= 1


z=zo

Noting that T̂ ∗f (r) = co for r < r0, we can eliminate the derivative at ro− ε and are left with

lim
ε→0

[
−kf (2πr)

∂T̂ ∗f
∂r

∣∣∣∣∣
ro+ε

= 1

]
z=zo

which defines a boundary condition.

Integrating the fuel adjoint equation from ro+ε to r for ro < r ≤ R and using the previously

defined boundary condition results in the following:

lim
ε→0

[∫ r

ro+ε

(
−
kf
r′

∂

∂r′

(
r′
∂T ∗f
∂r′

))
2πr′dr′

]
z=zo

= 0

lim
ε→0

[
−2πkfr

′∂T
∗
f

∂r′

∣∣∣∣r
ro+ε

]
z=zo

= 0

−2πkfr
∂T ∗f
∂r
− 1

∣∣∣∣
z=zo

= 0

∂T ∗f
∂r

∣∣∣∣
z=zo

=
1

r

(
−1

2πkf

)
which satisfies the BC at ro + ε. The general solution for the above differential equation is

T ∗f
∣∣
z=zo

= (c̃o + c̃1 ln r) f1(z)|z=zo

with

c̃1 = − 1

2πkf

The temperature across the interface at ro is constrained such that

lim
ε→0

[
T ∗f (ro + ε , z) = T ∗f (ro − ε, z)

]
z=zo

This can be justified due to the fact that integrating the Q∗ delta function across ro at

z = zo produces an expression for the derivative of T ∗f

∣∣∣
z=zo

that is finite. Since the derivative

of T ∗f

∣∣∣
z=zo

at r = ro is finite, there can be no jump discontinuity in T ∗f

∣∣∣
z=zo

at r = ro and the
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previously defined constraint holds. This implies that

[fo(z) = f1(z) = δ(z − zo)]z=zo

Applying the boundary condition for T ∗f

∣∣∣
z=zo

at r = ro+ε results in the following expression

for co

co =
−1

2πkf
ln ro + c̃o

Substituting T ∗f = c̃o + c̃1 ln (r) into the pin surface boundary condition at r = R and

integrating in the limit about zo results in the following pin surface relationship

−kf
c̃1

R
= h

c̃1 lnR+ c̃o − lim
ε→0

zo+ε∫
zo−ε

T ∗c (z)dz


The term

zo+ε∫
zo−ε

T ∗c (z)dz = 0 due to the fact that T ∗c (z) is finite over the interval. Solving for

c̃o

c̃o =

(
kf
hR

+ lnR

)(
−1

2πkf

)
=

1

2π

(
1

hR
+

1

kf
lnR

)
Integrating about z = zo in the limit, the adjoint coolant equation is written as

lim
ε→0

zo+ε∫
zo−ε

[
−ccpṁc

dT ∗c (z)

dz
= 2πRq′′∗ = −2πR

1

2πkf

kf
R
δ (z − zo) = δ (z − zo)

]
producing

lim
ε→0

T ∗c (z)
∣∣∣z+ε
z−ε

= − 1

ccpṁc

Using the solution for z > zo renders

lim
ε→0

T ∗c (z − ε) =
1

ccpṁc

which is a jump boundary condition for T ∗c at z = zo.

Solving the adjoint coolant equation for 0 ≤ z < zo obtains T ∗c (z) = c̃3, therefore we have

for 0 ≤ z < zo
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T ∗c (z) = c̃3 = lim
ε→0

T ∗c (zo − ε) =
1

ccpṁc

As shown for z > zo, there is a solution for the adjoint fuel temperature with z < zo such

that

T ∗f (r, z) = constant in r

Applying the boundary condition and solving for T ∗f (r, z) with z < zo,

−kf
∂T ∗f
∂r

∣∣∣∣
r=R

= 0 = hc

(
T ∗f
∣∣
r=R
− T ∗c

)
T ∗f (r, z) = T ∗f

∣∣
r=R

=
1

ccpṁc

Thus the analytical solution for the adjoint coolant and fuel temperatures for a location of

interest at z = zo and r = ro can be written as

T ∗f (r, z) =



0 0 ≤ r ≤ R, zo < z ≤ H

coδ(z − zo) 0 ≤ r < ro, z = zo(
co + c̃1 ln

(
r

ro

))
δ (z − zo) ro ≤ r ≤ R, z = zo

c1 0 ≤ r ≤ R, 0 ≤ z < zo

T ∗c (z) =

0 zo < z ≤ H

c1 0 ≤ z < zo

with

co =
1

2π

(
1

hR
+

1

kf
ln

(
R

ro

))
c1 =

1

ccpṁc

c̃1 = − 1

2πkf

This analytic solution only applies to steady state systems with the Q∗ defined by Dirac delta

functions as noted. In order to analyze the discrete system, we have to change the definition of

Q∗ to match the discrete adjoint source term.
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Physical Error Metric for High and Low Fidelity Solutions

For verification of the physical high fidelity solution, the response function < ≡
〈
f̄R, T̄ − T̃

〉
z,r

is evaluated using the analytic solutions to the steady state adjoint and forward problems. The

low fidelity solution is defined to be a constant in both the fuel and coolant regions of the

problem space and is written as:

T̃f (r, z) = T̃c(z) = b0

This low fidelity analytical solution will hold for the initial condition and all forward bound-

ary conditions if bo = Tc(z)|z=0.

In order to evaluate the error metric, the residual r̄ = A[T̃ ] − Q is determined using the

previously defined low fidelity solution:

−
kf
r

∂

∂r

(
r
∂

∂r

(
T̃f

))
− q′′′ = −

kf
r

∂

∂r

(
r
∂

∂r
(bo)

)
− q′′′

= −q′′′

ccpṁc
d

dz

(
T̃c

)
+ 2πRkf

∂T̃f
∂r

∣∣∣∣∣
r=R

= ccpṁc
d

dz
(bo)− 2πRkf

∂

∂r
(bo)

= 0

The residual vector for the given low fidelity T̃ solution is therefore

r̄ = [−q′′′ 0]T

The inner product
〈
T̄ ∗, r̄

〉
z,r

should be equal to
〈
Q̄∗, ē

〉
z,r

= e(ro, zo). This error term can

be written explicitly as

e(ro, zo) = bo − Tf (ro, zo)

= −q′′′ R
2hc
− q′′′

4kf

(
R2 − r2

o

)
− q′′′πR2zo

ccpṁc
− Tc(0) + bo

Rewriting T ∗f (r, z) using heaviside step functions

T ∗f (r, z) = [1−H (z − zo)] c1 + coδ (z − zo) +H (r − ro) c̃1 ln

(
r

ro

)
δ (z − zo)
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evaluating the inner product
〈
T̄ ∗, r̄

〉
z,r

〈
T̄ ∗, r̄

〉
z,r

=

∫ R

0
2πrdr

∫ H

0
dz
[
−q′′′

(
T ∗f (r, z)

]

= −2πq′′′
[∫ R

0
rdr

∫ zo

0
dz c1 +

∫ R

0
rdr co +

∫ R

ro

rdrc̃1 ln

(
r

ro

)]

= −2πq′′′
[
R2zoc1

2
+
co
2
R2 − c̃1

2
ln ro

(
R2 − r2

o

)
+
c̃1

4

[
R2 (2 lnR− 1)− r2

o (2 ln ro − 1)
]]

Rewriting using the definition of the constants from the analytical adjoint derivation

= −2πq′′′
[
R2zo
2ccpṁc

− r2
o

4πkf
ln ro +

R2

2

[
1

2π

(
1

hcR
+

1

kf
lnR

)]

− 1

8πkf

[
R2 (2 lnR− 1)− r2

o (2 ln ro − 1)
]]

= −2πq′′′
[
R2zo
2ccpṁc

−
���

��r2
o

4πkf
ln ro +

R

4πhc
+
��

���R2

4πkf
lnR

−
��

���R2

4πkf
lnR+

R2

8πkf
+
���

��r2
o

4πkf
ln ro −

r2
o

8πkf

]

= −2πq′′′
[
R2zo
2ccpṁc

+
R

4πhc
+

1

8πkf

(
R2 − r2

o

)]

= −q
′′′πR2zo
ccpṁc

− q′′′R

hc
− q′′′

4kf

(
R2 − r2

o

)
setting bo = Tc(0), we have

〈
T̄ ∗, r̄

〉
z,r

= −q
′′′πR2zo
ccpṁc

− q′′′R

hc
− q′′′

4kf

(
R2 − r2

o

)
=
〈
Q̄∗, ē

〉
z,r

which shows that the analytical adjoint solution in conjunction with the analytic forward solu-

tion can exactly calculate the difference between the high and low fidelities at a given location

of interest.
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Analytic Adjoint Solution Using Discrete Step Function for Q∗

In order to apply the analytical adjoint solution to the discretized mathematical problem, a

Q∗ value was needed that matched the discretized Q̄∗ used by the mathematical adjoint. We

reconsider the analytic adjoint solution as a Green’s Function for a source at ro, zo that produces

a response at r, z. The analytic adjoint equations are then denoted as follows

O∗f
(
T ∗f
)

= Q∗f,p(ro, zo)

O∗c (T ∗c ) = 0

resulting in the following solution for T ∗f (ro, zo → r, z) and T ∗c (zo → z)

T ∗f (ro, zo → r, z) =



0 0 ≤ r ≤ R, zo < z ≤ H

coδ(z − zo) 0 ≤ r < ro, z = zo(
co + c̃1 ln

(
r

ro

))
δ (z − zo) ro ≤ r ≤ R, z = zo

c1 0 ≤ r ≤ R, 0 ≤ z < zo

T ∗c (zo → z) =

0 zo < z ≤ H

c1 0 ≤ z < zo

with

co =
1

2π

(
1

hR
+

1

kf
ln

(
R

ro

))
c1 =

1

ccpṁc

c̃1 = − 1

2πkf

Noting that this is a Green’s function or solution to the adjoint equations with a unit point

source Q∗f,p(ro, zo), it is possible to determine an analytical solution using a step function source

condition synonymous to the one used by the mathematical adjoint problem using the appro-

priate convolution. By definition, the discrete mathematical adjoint source is a step function

between two discretized radial and axial node locations that are equidistant to a location of

interest. This step source can be written as
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Q∗s(ro, zo) =


1

π
(
r2
H − r2

L

)
(zH − zL)

rL ≤ ro ≤ rH , zL ≤ zo ≤ zH

0 otherwise

where rL, rH , zL, zH are constants as defined by the discretized forward problem. If the dis-

cretized error function is defined as e(r, z)|rH ,zHrL,zL
= e(ro, zo) = constant, then the response of

interest is defined as

〈Q∗s(ro, zo)e(r, z)〉 =

R∫
0

2πrdr

H∫
0

dz (Q∗s(ro, zo)e(r, z))

=
1

π
(
r2
H − r2

L

)
(zH − zL)

[
2πr2

2
ze(ro, zo)

]rH ,zH
rL,zL

= e(ro, zo)

which is consistent with evaluating the error metric at location ro, zo.

An analytic solution to the adjoint equations with a step function source condition Q∗s(ro, zo)

can be found by using the previously determined Green’s function and evaluating the following

convolution

T̄ ∗(r, z) =

R∫
0

2πrodro

H∫
0

dzo
(
Q∗s(ro, zo)T̄

∗(ro, zo → r, z)
)

Rewriting T̄ ∗(ro, zo → r, z) =
[
T ∗f (ro, zo → r, z) T ∗c (zo → z)

]T
and Q∗s(ro, zo) using heavi-

side step functions results in the following expressions

T ∗f (ro, zo → r, z) = [1−H (z − zo)] c1 +

[
co +H (r − ro) c̃1 ln

(
r

ro

)]
δ (z − zo)

T ∗c (zo → z) = [1−H(z − zo)] c1

Q∗s(ro, zo) = H(ro − rL)[1−H(ro − rH)]H(zo − zL)[1−H(zo − zH)]

[
1

π
(
r2
H − r2

L

)
(zH − zL)

]

Examining each piece of the convolution:
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R∫
0

2πrodro

H∫
0

dzoQ
∗
s(ro, zo) [1−H (z − zo)] c1

=



0, z > zH

rH∫
rL

2πrodro
zH∫
z
dzo

c1

π
(
r2
H − r2

L

)
(zH − zL)

, zH ≥ z > zL

rH∫
rL

2πrodro
zH∫
zL

dzo
c1

π
(
r2
H − r2

L

)
(zH − zL)

, z ≤ zL

=



0, z > zH

π
(
r2
H − r2

L

)
(zH − z)

π
(
r2
H − r2

L

)
(zH − zL)

c1 zH ≥ z > zL

π
(
r2
H − r2

L

)
(zH − zL)

π
(
r2
H − r2

L

)
(zH − zL)

c1 z ≤ zL

=



0, z > zH

(zH − z)
(zH − zL)

c1 zH ≥ z > zL

c1 z ≤ zL

R∫
0

2πrodro

H∫
0

dzoQ
∗
s(ro, zo)coδ(z − zo)

=

rH∫
rL

2πrodro

H∫
0

dzo
H(zo − zL)[1−H(zo − zH)]

π
(
r2
H − r2

L

)
(zH − zL)

coδ(z − zo)
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=

rH∫
rL

2rodro
1

(zH − zL)(r2
H − r2

L)
H(z − zL) [1−H(z − zH)]

[
c̃1 ln ro +

1

2π

(
1

hR
+

1

kf
lnR

)]

=
1

2πhR(zH − zL)
+

c̃1

(zH − zL)(r2
H − r2

L)

[
r2
H ln

(rH
R

)
−
r2
H

2
− r2

L ln
(rL
R

)
+
r2
L

2

]
, zL ≤ z ≤ zH

R∫
0

2πrodro

H∫
0

dzoQ
∗
s(ro, zo)H (r − ro) c̃1 ln

(
r

ro

)
δ (z − zo)

=



r∫
rL

2πrodro
H∫
0

dzo
H(zo − zL)[1−H(zo − zH)]

π
(
r2
H − r2

L

)
(zH − zL)

c̃1 ln

(
r

ro

)
δ (z − zo) , rL ≤ r < rH

rH∫
rL

2πrodro
H∫
0

dzo
H(zo − zL)[1−H(zo − zH)]

π
(
r2
H − r2

L

)
(zH − zL)

c̃1 ln

(
r

ro

)
δ (z − zo) , r ≥ rH

=



H(z − zL)[1−H(z − zH)](
r2
H − r2

L

)
(zH − zL)

c̃1

(
−r2

L ln

(
r

rL

)
+
r2 − r2

L

2

)
, rL ≤ r < rH

H(z − zL)[1−H(z − zH)](
r2
H − r2

L

)
(zH − zL)

c̃1

(
r2
H ln

(
r

rH

)
− r2

L ln

(
r

rL

)
+
r2
H − r2

L

2

)
, r ≥ rH
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Therefore, the solution for T̄ ∗(r, z) using the above definition for Q∗s(ro, zo) is

T ∗f (r, z) =



0 0 ≤ r ≤ R, zH < z ≤ H

c1 0 ≤ r ≤ R, 0 ≤ z < zL



(zH − z)
(zH − zL)

c1 +
1

2πhR (zH − zL)
+

1

2πkf (zH − zL)
(
r2
H − r2

L

)


r2
H ln

(
R

rH

)
−r2

L ln

(
R

rL

)
+
r2
H − r2

L

2




0 ≤ r < rL, zL ≤ z ≤ zH



(zH − z)
(zH − zL)

c1 +
1

2πhR (zH − zL)
+

1

2πkf (zH − zL)
(
r2
H − r2

L

)


r2
H ln

(
R

rH

)
−r2

L ln

(
R

r

)
+
r2
H − r2

2




rL ≤ r < rH , zL ≤ z ≤ zH

(zH − z)
(zH − zL)

c1+

1

2πhR (zH − zL)
+

1

2πkf (zH − zL)
ln

(
R

r

)
rH ≤ r ≤ R, zL ≤ z ≤ zH
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T ∗c (z) =



0 zH < z ≤ H

c1 0 ≤ z < zL

(zH − z)
(zH − zL)

c1 zL ≤ z ≤ zH

This solution is then integrated according to the inner product
〈
T̄ ∗, r̄

〉
r,z

using the same

definition for the residual as before in the analytic error metric section with T̃ = bo. Examining

the case where 0 ≤ r ≤ R, 0 ≤ z < zL

R∫
0

2πrdr

zL∫
0

dz
[
−q′′′c1

]
= −q′′′πR2zLc1

Examining the inner product with 0 ≤ r < rL, zL ≤ z ≤ zH

rL∫
0

2πrdr

zH∫
zL

dz

[
−q′′′

(
(zH − z)
(zH − zL)

c1 +
1

2πhR(zH − zL)

)]

+

rL∫
0

2πrdr

zH∫
zL

dz

−q′′′
r

2
H ln

(
R

rH

)
− r2

L ln

(
R

rL

)
+
r2
H − r2

L

2

2πkf (zH − zL)
(
r2
H − r2

L

)



= −q′′′
[
r2
l πzHc1 − r2

Lπc1
zH + zL

2
+

r2
L

2hR

]

−q′′′r2
L

r
2
H ln

(
R

rH

)
− r2

L ln

(
R

rL

)
+
r2
H − r2

L

2

2kf
(
r2
H − r2

L

)


Examining the inner product with rL ≤ r ≤ rH , zL ≤ z ≤ zH

−q′′′
[
(r2
H − r2

L)πzHc1 − (r2
H − r2

L)πc1
z2
H − z2

L

2 (zH − zL)
+

(r2
H − r2

L)

2hR

]
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+

rH∫
rL

2πrdr

zH∫
zL

dz

−q′′′
r

2
H ln

(
R

rH

)
− r2

L ln

(
R

r

)
+
r2
H − r2

2

2πkf (zH − zL)
(
r2
H − r2

L

)



= −q′′′
[
(r2
H − r2

L)πzHc1 − (r2
H − r2

L)πc1
zH + zL

2
+

(r2
H − r2

L)

2hR

]

−q′′′

r
2
H ln

(
R

rH

)
+
r2
H

2

2kf

+
q′′′

8kf

(
r2
H + r2

L

)

−
q′′′r2

L

4kf (r2
H − r2

L)

[
2r2
H ln

(rH
R

)
− 2r2

L ln
(rL
R

)
− (r2

H − r2
L)
]

Examining the inner product with rH < r ≤ R, zL ≤ z ≤ zH

−q′′′
[
(R2 − r2

H)πzHc1 − (R2 − r2
H)πc1

zH + zL
2

+
(R2 − r2

H)

2hR

]

−q′′′
R∫

rH

2πrdr

zH∫
zL

dz
1

2πkf (zH − zL)
ln

(
R

r

)

= −q′′′
[
(R2 − r2

H)πzHc1 − (R2 − r2
H)πc1

zH + zL
2

+
(R2 − r2

H)

2hR

]
− q′′′

4kf

[
2r2
H ln

(rH
R

)
+ (R2 − r2

H)
]

Summing these parts together, we have for
〈
T̄ ∗, r̄

〉
r,z

the expression

〈
T̄ ∗, r̄

〉
r,z

= −q′′′πR2c1
(zH − zL)

2
− q′′′ R

2h
+
q′′′

8kf

(
r2
H + r2

L − 2R2
)

This solution for the analytic adjoint using a step function source was compared with the

mathematical and physical adjoint solutions. The comparison can be found in Numerical Re-

sults, Chapter 3 of this thesis.

46



2.2.4 Low Fidelity Adjoint Problem

Initially, the Adaptive Model Refinement project intended to use low fidelity adjoint solution

based upon coarsened meshes and adjusted thermal conductivity values as a means of predict-

ing the difference between high and low fidelity models. During numerical testing, this method

was shown to lack adequate predictive capability of the quantities of interest. In general, ad-

joint solutions contain information regarding the local temporal and spatial importance of the

residual regarding a specific quantity of interest. The devolution of the mesh from high to low

skewed this local importance such that the estimated quantity of interest no longer held perti-

nent information in regards to the accuracy of the low fidelity model.

Solving for the low fidelity mathematical adjoint is the same as solving for the high fidelity

mathematical adjoint using ˜̄A∗ = ˜̄AT
in place of ¯̄A∗. However, in order to evaluate the response

<̃ =
〈
T̃ †, r̄

〉
, the adjoint solution T̃ † must be projected onto the high fidelity mesh in order to

determine the inner product. This elongation process is non-unique, and a variety of methods

were considered to arrive at a low fidelity adjoint solution extrapolated to the high fidelity mesh.

One method considers an additional linear set of equations for the low-fidelity problem.

Rewriting the low fidelity equation (2.7)

˜̄Cn+1φ̃n+1 = ˜̄Bn+1φ̃n − Q̃n+1,

we have an additional set of linear equations that project the low fidelity temperatures onto

the high fidelity mesh

˜̄Eφ̃n+1 = ¯̄Iθ̃n+1 (2.13)

where θ̃n+1 is the low fidelity temperature projected onto the high fidelity mesh and the ˜̄En+1

is a m × n operator with n > m that linearly interpolates the φ̃n+1 vector. Writing the block

matrix time structure of this problem

˜̄C1˜̄E −¯̄I˜̄B2
˜̄C2˜̄E −¯̄I

. . . ˜̄BN
˜̄CN˜̄E −¯̄I





φ̃1

θ̃1

φ̃2

θ̃2

...

φ̃N

θ̃N


=



Q̃1

0

Q̃2

0
...

Q̃N

0


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Transposing the matrix operator for the time dependent adjoint equation set and selecting

Q̃∗ as now noted produces

˜̄C∗1 ˜̄E∗ ˜̄B∗2
−¯̄I ˜̄C∗2 ˜̄E∗ ˜̄B∗3

−¯̄I
. . . ˜̄C∗N ˜̄E∗

−¯̄I





φ̃
∗
1

θ̃
∗
1

φ̃
∗
2

θ̃
∗
2
...

φ̃
∗
N

θ̃
∗
N


=



0

Q̃∗1
0

Q̃∗2
...

0

Q̃∗N



Note for a single time step, we have the following adjoint matrix equations

˜̄C∗nφ̃∗n + ˜̄E∗θ̃∗n + ˜̄B∗n+1φ̃
∗
n+1 = 0

−¯̄Iθ̃
∗
n = Q̃∗n

where Q̄∗ is the same right hand side as for the mathematical adjoint. The previous system of

linear equations reveals that θ̃
∗
n+1 = −Q̃ which implies that Q̃∗ should be selected equal to Q̄∗.

The system then simply solves the low fidelity adjoint problem with Q̄∗ volume weighted to the

low fidelity mesh. The resulting expression for θ̃
∗
n+1 will contain no information with regards

to the adjoint solution φ̃
∗
n+1, and the resulting response integral is trivial.

Another attempt at arriving at an effective low fidelity adjoint solution used the same

operator ˜̄En+1 to linearly interpolate the low fidelity adjoint solution onto the high fidelity

mesh in a similar fashion to the forward low fidelity problem. This, however, also resulted in

response functions that did not accurately describe the differences between the high and low

fidelity fuel temperatures.
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Chapter 3

Numerical Results

This chapter examines the numerical behavior of the forward and adjoint problems. Various

figures and descriptions are given analyzing the forward low and high fidelity solution behaviors

as well as adjoint solution behavior. The effectiveness of the physical, mathematical, and analytic

adjoint solutions’ prediction of the quantity of interest is also investigated in the following

chapter.

3.1 Numerical Results for Forward Problem

Figure 3.1 below contains the temperature profile for the steady state solution of the forward

problem, equations (2.8) and (2.9), using the high fidelity finite differencing scheme, the low

fidelity lumped parameter and finite differencing scheme, and the linear interpolation used to

project the low fidelity solution onto the high fidelity geometry. The solutions are shown for a

given axial location that is halfway up the height of the fuel pin with a high fidelity ring number

of 8 and a low fidelity ring number of 4. Heat generation is assumed constant across the radial

direction of the pin at this given axial location.
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Figure 3.1: Steady state forward solution as determined by the low fidelity, high
fidelity, and low-to-high linear interpolation solution methods

The red series that represents the high fidelity solution exhibits the quadratic structure that

we would expect for a constant heat generation problem. The green series in Figure 3.1 shows

the coarsened finite difference model with half as many radial nodes as the high fidelity problem.

The adjusted parameters calculated with equation (2.4), when used with the low fidelity prob-

lem, will result in exactly the same volume averaged temperatures as the high fidelity problem.

The linear interpolation of the low fidelity onto the high fidelity geometry will however contain

differences in temperature. The blue line in Figure 3.1 shows the linear interpolation of the

low fidelity solution onto the high fidelity mesh. These temperature differences or ∆T s are the

quantity of interest for both the steady state and time dependent examples. The differences are

noted to be small (2.1% of the largest relative error shown in Figure 3.1). Four linear regions

can be seen between the green low fidelity regions, and a small difference between the blue line

and the red series can be seen for almost every high fidelity temperature node.

The time dependent forward problem exhibits low fidelity and high fidelity volume averaged

temperatures that are not exact. This is due to the fact that the lumped parameters as deter-
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mined by equations (2.4) and (2.5) use the steady state forward temperature rather than the

time dependent values. Figure 3.2 shows the time dependent behavior at a given axial and radial

location within the pin for the low fidelity solution verses the high fidelity solution coarsened

to the low fidelity mesh.
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Figure 3.2: Difference in time dependent hi-fi and low fidelity solution average tem-
peratures at four separate locations of interest

The results presented in Figure 3.2 correspond to a high fidelity ring number of 8, a low

fidelity ring number of 4, and an axial mesh number of 20. The figure shows the ∆T difference

between the volume averaged high fidelity solution and the low fidelity solution at each time

step. At t = 0.005 hrs, the heat generation within the pin is reduced by a factor of 4. Prior to

this heat generation step, the keff and heff values as determined by equations (2.4) and (2.5)

to ensure that the volume averaged high fidelity solution and the low fidelity solution are equal.

Once the q′′′ jump has occurred, the keff and heff values for the pseudo-steady state forward

problem no longer ensure that ∆T = 0 as one can see from the figure. After the transient

has subsided, the difference between the high fidelity volume averaged solution and low fidelity

solution return to zero. Each line in Figure 3.2 represents a different low fidelity radial location.
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All radial locations correspond to an axial location halfway up the pin.

3.2 Numerical Adjoint Behavior

Using the high fidelity mathematical adjoint for either the time dependent or steady state

problem yields the exact value for the quantity of interest at every axial and radial location

regardless of the mesh size. The time dependent shape of the mathematical adjoint solution is

rather unique given its role as an indicator of the relative influence exerted on the temperature

difference at a particular location of interest. Figures 3.3 through 3.5 show the time dependent

nature of the high fidelity adjoint.
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Figure 3.3: Hi-fi adjoint time dependent solution shape for timesteps 1-10
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Figure 3.4: Hi-fi adjoint time dependent solution shape for timesteps 10-20
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Figure 3.5: Hi-fi adjoint time dependent solution shape for timesteps 20-30

Figures 3.3 through 3.5 are for a location of interest at the first radial and first axial node

with a ring number of 8 and a radial mesh of 8. The time steps were 0.0001 hours or 0.36 sec-

onds. “Forward time” refers to a fixed Q∗ location in time. Both adjoint time and forward time

are increasing along the time axis in Figures 3.3 - 3.5 with forward time values listed along the

axis. Each adjoint time node contains 30 forward time nodes, since a full temporal and spatial

distribution of adjoint values is necessary to calculate the inner product for a given forward
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time value. This adjoint time behavior can be seen by observing the T ∗ shape along the time

axis during which the forward time remains constant. Each mathematical adjoint solution will

have a given “adjoint time” dependent shape for a constant value of “forward time.”

The node number denotes all spatial nodes for every axial and radial location including the

axial coolant nodes. Node ordering has the radial values for the first axial location followed

by the radial values for the second axial location and so on. Since the first axial mesh is the

location of interest, its values are nonzero in the previous figures while the other axial locations

are zero with the exception of the coolant values. One can conclude from this that, since there is

no axial coupling conduction model for the fuel, other axial mesh locations exhibit no influence

on the ∆T quantity of interest. It’s also important to note that while the coolant does have

some influence, its adjoint solution value is considerably lower than the fuel ring adjoint values.

With the exception of t = 0.00, all times steps have the same relative shape with regards to

adjoint time. As forward time increases, the location of interest in adjoint time shifts so that

more and more of the time dependent adjoint solution shape is revealed. It can be seen that

the adjoint solution spikes at the location of interest and then begins to decay away. One can

conclude that for a given ∆T , the temperatures at the same time as the examined quantity of

interest exhibit the greatest influence on the evaluated metric. Earlier times also exhibit some

influence on the quantity of interest, but this influence decays away the farther one is from the

time of interest. These figures also demonstrate that future time temperature values have zero

influence on a given ∆T .

A time integrated adjoint solution was investigated for several times of interest to better

understand the differences between the high fidelity and low fidelity solution shapes. The time

integrated adjoints were determined according to the following equation

Thi − Tlo = ∆T (tf ) =

tf∫
0

dt

∫
V

d3r ·R(~r) · T ∗(~r, t)

=

∫
V

d3r ·R(r, z)

tf∫
0

dt · T ∗(r, z, t)

=

∫
V
d3r ·R(r, z) 〈T ∗(r, z)〉tf (3.1)

Because the residuals R(r, z) are assumed to be time independent, equation (3.1) only holds

for pseudo-steady state conditions such that q′′′ is unchanged. Figure 3.6 shows time integrated
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〈T ∗(r, z)〉tf values as defined by equation (3.1) for high and low fidelities at three separate tf

times of interest.

Figure 3.6: Time integrated T ∗ for low and high fidelities for given tf values
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In each case, the location of interest was the centerline radial value and the first axial

location or bottom of the fuel pin. The high fidelity ring number was 8 and the low fidelity

ring number was 4. There are some similarities between the two adjoint solution shapes, but

the low fidelity adjoint is consistently less than the high fidelity adjoint. Since the residuals

used in both error metrics are the same, the low fidelity adjoint solution will therefore predict

a drastically different response than the high fidelity adjoint solution.

3.3 Numerical Determination of the Quantity of Interest

The following section outlines the various results for the evaluation of a given quantity inter-

est using adjoints. Quantities of interest typically are differences between low-fidelity and high

fidelity solutions at a particular location within the fuel pin. It was found that for time depen-

dent problems, the mathematical adjoint predicted perfectly the difference between low and

high fidelity problems for either time dependent, steady state, or pseudo-steady state problems

at every location of interest within the fuel pin. Initial investigation of the low fidelity adjoint’s

best estimate of the quantity of interest showed inaccurate approximations, and it was deemed

unable to accurately predict the difference between high and low fidelity temperatures in the

time dependent problem and steady state problems alike.

Since low fidelity approximations exhibited erratic behavior for the time dependent cases, the

problem was simplified to pseudo-steady state cases using constant heat generation and steady

state cases with no time dependency whatsoever. Even for these cases, the low fidelity adjoint

response does not return accurate approximations of the quantity of interest. The response

estimated by the adjoint solutions is the total sum of each adjoint value multiplied by each

corresponding nodal residual for a given time step. This residual summation behavior was

investigated to gain an understanding of what was occurring during the low fidelity adjoint

approximation. Time index in the following figures pertains to both forward time and adjoint

reverse time. Each index value corresponds to a fixed location in forward time and all subsequent

values in reverse time. Therefore, each “peak” denotes a single location in forward time swept

through all adjoint reverse time values. Index values are simply marking the time dependent

behavior in both forward and adjoint time. The following figures demonstrate the pseudo-steady

state behavior using high and low fidelity adjoint approximations.
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Figure 3.7: Collection of discretized 〈T ∗hi, r〉r,z,t positive and negative values as well
as their summation and its resulting estimate of the quantity of interest
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Figure 3.8: Collection of discretized 〈T ∗lo, r〉r,z,t positive and negative values as well
as their summation and its resulting estimate of the quantity of interest
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The location of interest corresponds to the centerline of the fuel pin and the first axial

location. The low fidelity estimate of 248oF in figure 3.8 is drastically different than the high

fidelity’s estimate of −59oF in figure 3.7. The constant value predicted by the high fidelity

adjoint is consistent with the constant difference found between the linearly interpolated low

fidelity forward problem and the high fidelity forward problem for the pseudo-steady state case.

In these figures, the x-axis index denotes the axial and radial node indices along with the time-

step index, and the y-axis represents the inner product summation up to a specific index value.

Each spike in these figures corresponds to the summation for a specific time of interest. It is in-

teresting to note that although the positive and negative terms approach asymptotic maximum

values in figure 3.7, the estimated quantity of interest remains constant. In figure 3.8 however,

it takes several time steps for the estimated quantity of interest to reach a constant value. This

phenomenon shows the sensitivity of the mathematical adjoint approximation of the quantity

of interest and high fidelity mathematical adjoint’s ability to predict the quantity of interest

regardless of temporal behavior.

In order to verify the low fidelity adjoint, a“low-low” fidelity model was constructed. Com-

paring the low-fidelity to a “low-low” fidelity is effectively the same as comparing a high fidelity

model to a low fidelity model. Therefore, the low fidelity adjoint should predict the exact dif-

ference between the low and “low-low” temperature calculations. The low-low fidelity problem

considered was a constant temperature equal to the coolant inlet temperature. Figure 3.9 shows

the ∆T values as evaluated by the low fidelity adjoint solution and low fidelity < Q∗, e > inner

product.
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Figure 3.9: Verification results for the low fidelity adjoint approximation using a
steady state “low-low” fidelity solution

Before the decrease in q′′′, the low and low-low fidelities are equal to each other and the

resulting error metric is zero as seen in figure 3.9. At t = 0.001 hours, the low fidelity problem

begins to deviate from the pseudo-steady state low-low problem since q′′′ is decreased at that

time. The error metric approximated by the low-fidelity adjoint solution is consistent both with

the 〈Q∗, e〉 inner product and the exact error between the low and low-low fidelity problems.

This verifies that the low fidelity adjoint solution is correct and that the linear interpolation

of the low fidelity adjoint solution onto the high fidelity spatial mesh is where the significant

difference between low and high fidelity response occurs.

Initially, the physical and analytical adjoints showed erratic predictive behavior of the quan-

tity of interest similar to that of the low fidelity adjoint. To contrast the quantity of interest

calculated using the three adjoints, the forward problem was further simplified such that the

low-fidelity was considered to be a constant temperature throughout the fuel and coolant and set

to the coolant inlet temperature. Though completely incorrect, the forward boundary conditions

were still satisfied. In this case, the physical and analytical adjoints were found to approximate
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the quantity of interest exactly. Figure 3.10 below shows the adjoint solution shapes for three

separate radial locations across the same axial location halfway up the fuel pin.
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Figure 3.10: Solution shapes for physical, analytical, and mathematical adjoints for
three separate radial locations of interest

The diamonds, corresponding to the analytical solution, match almost exactly the physical

adjoint values. This solution shape has a constant value from the centerline up to the location of

interest and decreases logarithmically thereafter. By contrast, the dotted line displays a dissim-

ilar solution shape for the mathematical adjoint solution. At the location of interest it matches

the physical and analytical value, but it shows linear and quadratic behavior before and after

this radial point. For the case where the quantity of interest is at a radial location of 0.032

inches, the mathematical solution increases quadratically after the location of interest and then

begins to diminish. For the other cases, the location of interest is where the maximum adjoint

value occurs. Since T ∗ is a representation of the relative importance of a location with regards to

the quantity of interest, figure 3.10 demonstrates that, according to the mathematical adjoint,

regions at or after the location of interest are weighted more heavily than other locations. The

physical and analytical adjoints, however, suggest that all temperature rings before the loca-
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tion of interest are equally weighted and the importance of later rings decreases logarithmically.

Table 3.1 below shows the numerically evaluated quantities of interest corresponding to

the same locations as shown previously in figure 3.10. Note that the quantity of interest being

evaluated is the difference Tlo(r, z)− Thi where Tlo = Tc,inlet.

Table 3.1: Physical, Analytical, and Mathematical Evaluations of the Quantity of
Interest

Inner Product er=0.032in er=0.057in er=0.14in

< T ∗hi, r > -1971.75 oF -1577.39 oF -591.50 oF
< T ∗phys, r > -1971.75 oF -1577.39 oF -591.50 oF

< T ∗anylitic, r > -1971.75 oF -1577.39 oF -591.50 oF

< Q∗, e > -1971.75 oF -1577.39 oF -591.50 oF
Tlo − Thi -1971.75 oF -1577.39 oF -591.50 oF

As mentioned earlier, the analytical and physical adjoints produce the exact value for the

quantity of interest when a constant low fidelity solution is used. The fact that non-constant

values for the low fidelity solution result in incorrect analytical and physical adjoint approxi-

mations can be attributed to the fact that the residuals as determined by the forward operator

are not consistent with those that would be determined using the transpose of the physical

adjoint operator. In the case where the low fidelity forward solution is constant, all second

order derivatives are equal to zero and the residuals defined by the transposed physical adjoint

operator will be equal to the same residuals obtained by the mathematical forward operator.

The low fidelity adjoint mathematical solution shape was also compared to the high fidelity

adjoint shape. Figure 3.11 shows the adjoint solution shape for the same locations of interest

as in figure 3.10.
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Figure 3.11: Solution shapes for low fidelity and high fidelity mathematical adjoints
for three separate radial locations of interest

The high fidelity solution shapes in figure 3.11 are the same as previously shown in figure

3.10. The low fidelity solutions represented by the color coded dotted lines show highly erratic

behavior with no indication of weighting the appropriate location of interest. Table 3.2 below

shows the numerically evaluated quantities of interest corresponding to the same locations as

shown previously in figure 3.11. In this case, the evaluated response is the difference between

the high fidelity forward solution and the linearly interpolated low fidelity solution.

Table 3.2: High and Low Fidelity Evaluations of the Quantity of Interest

Inner Product er=0.032in er=0.057in er=0.14in

< T ∗hi, r > -65.73 oF -65.73 oF -41.08 oF

< T ∗lo, r > 213.54 oF -592.54 oF 5380.72 oF

< Q∗, e > -65.73 oF -65.73 oF -41.08 oF

Tlo − Thi -65.73 oF -65.73 oF -41.08 oF
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Again, the mathematical solution approximates the difference exactly while the low fidelity

solution exhibits highly erratic behavior inconsistent with an appropriate approximation.
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

In all cases, the mathematical adjoint was found to predict exactly the difference between the

low fidelity and high fidelity temperatures regardless of whether the problem was time depen-

dent or how the low fidelity temperatures were determined. Investigation of using the low fidelity

mathematical adjoint in order to approximate the same QoI showed that low fidelity adjoint

solutions were unable to predict quantities within acceptable tolerances. This conclusion was

reinforced regardless of time dependence or low fidelity forward problem definition.

The physical and analytical adjoints were found to predict the proper quantities of inter-

est for cases where the residuals obtained using physical and mathematical adjoint operators

were consistent; namely, cases where the low fidelity coolant and fuel temperatures were con-

stant. For this scenario, all spatial derivatives, including their discretized approximations, were

zero. Although the physical and mathematical adjoint solution shapes varied drastically, the

evaluated QoIs were still correct. The evaluation of the analytical adjoint solution provided a

benchmark that verified the physical adjoint solution.

Given that the high fidelity adjoint appears to be necessary for the accurate evaluation of

specific responses, there need to be adjusted conditions such that it would make sense to use

an adjoint approach to support adaptive simulation. Note that the adjoint source term only

depends on the QoI and not the forward source term, e.g. power density. This implies that

whenever the QoI is to be evaluated, a high fidelity adjoint solution is required. If there are

instances where one is interested in obtaining the forward solution for many different forward

source terms, there may be a computational advantage of employing the adjoint approach to

determine the QoI to judge whether the low fidelity forward solution being employed is suffi-
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ciently accurate.

Although the low fidelity adjoint solution does not provide accurate estimations of tempera-

ture differences, a conclusion can be drawn with regards to adaptive model refinement. Because

the mathematical adjoint gives the exact difference between a given fidelity and all lower fideli-

ties, it can be used to estimate when a given fidelity converges to a higher level of fidelity. In

other words, as the difference between a middle fidelity and lower model fidelity decreases, it

is conjectured that the difference between the middle fidelity and high fidelity also decreases.

This adaptive method can determine when to step up fidelity levels without actually solving

for the high fidelity problem and is similar to methods used in adaptive grid refinement.

4.2 Future Work

The complexity of this problem could be increased for further study of the aforementioned

low/mid/high fidelity difference estimations. Currently, for basic heat conduction and HEM

heat convection, the differences between middle and high fidelities are small. Adding a more

complex convection fluids model that includes radial and axial coolant nodes within a given

channel could help demonstrate the adaptive model technique investigated in this thesis with

more tangible results. Also adding axial coupling with regards to heat conduction could be

another model fidelity level worth investigating using adaptive techniques along with varying

fuel thermal conductivities with respect to temperature. Future work could also include an

expression for the adjoint source, or response function, that results at the high fidelity level

from the formulation of low fidelity adjoint equations. It may be possible to computationally

derive this response function and could be interesting to contrast it with the true and desired

high fidelity response function.
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Theory and Implementation

The adjoint transient problem is useful within the framework of a generalized perturbation theory 
(GPT) problem for estimating the effect of a given perturbation to the flux or precursor density to 
a defined inner-product response function.  This GPT framework is utilized as the basis for an 
Adaptive Model Refinement (AMoR) capability.  The derivation of the transient adjoint problem 
requires several steps, described in the paragraphs that follow. This derivation is based upon the 
time discretized forward, group neutron diffusion equations utilized in the NESTLE computer 
code. For details on the theory utilized by the NESTLE code, see Reference 1.

The first step in the derivation of the adjoint problem to recast the time discretized forward, group 
neutron diffusion equations into a form represented by a single matrix operator.  Thus these equa-
tions:

are transformed into:

which may be more compactly represented as: 
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where: 

where  is the vector of flux values for all energy groups and locations at a given timestep, , 

and  likewise denotes the delayed neutron precursor concentrations for all delay groups and 
spatial locations at timestep .  

Once the transient equation has been cast in this compact form, an error response functional is 
defined as follows:

where  is the error response value associated with a user-defined error quantity-of-interest func-

tion, , and a known difference between two solutions,  (vector notation suppressed 
for clarity) where the “hated” variable denotes a estimate based upon a lower fidelity model’s 
solution.  

Next, define the forward error residual value as follows:

Finally, require that the adjoint solution be the solution of the following equation, where the ad:

The adjoint operator,  is calculated through the mathematical transformations required to repro-
duce the following requirement

This transformation makes use of the initial and boundary conditions of the forward solution and 
introduces final and boundary conditions on the adjoint solution. This transformation results in an 
adjoint operator which is the transpose of the forward operator, with the sign of the first-order 
time derivatives inverted.  
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which results in the following set of equations 

with final and boundary conditions:

To obtain these final conditions, note that the forward flux and precursor concentrations actually 
denote the perturbations of these quantities from their initial condition values. Note that the 
adjoint external source term,  is the quantity-of-interest function, , from before 
expressed in terms of the discretized energy, space and time mesh.  It may also be noted that the 
adjoint equation is structurally similar to the forward equation; thus many of the methods, and 
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much of the NESTLE code used to solve the forward equations may also be utilized to solve the 
adjoint transient with only minor modifications.  

Freezing the coupling coefficients correction factors (alias d-tildes) obtained from the forward 
nodal equations solution using the Nodal Expansion Method (NEM), the adjoint equations are 
discretized to obtain the nodal balance equations. An inner-outer nested iterative solution 
approach is then utilized to solve the resulting fixed source equations. This capability has been 
added to the NESTLE code.In addition, the capability to evaluate the residual, has been added to 
the NESTLE code.

Verification Tests

Various test cases were executed using NESTLE to verify that the adjoint and residual calcula-
tions are being performed correctly. The test case of choice consists of an eigenvalue-initiated 
null-transient (i.e. steady-state) at 0.01% full power in a standard, 4-loop Westinghouse PWR 
reactor model with a quarter-core symmetric load of fuel.  Thermal-hydraulic feedback is dis-
abled.  The number of time-steps was 600, while the size of the timestep was adjusted by decades 
between 0.0005 seconds and 0.5 seconds.  This gives a range of total simulation times between 
0.3 and 300 seconds, allowing for the examination of both the effects of timestep size on short-
lived precursor groups and the contribution of the long decay tails of the long-lived precursors.  
The adjoint source term (the QoI for the response, R), was split into two individual responses, 
referred to simply as Shade 1 and Shade 2.  Shade 1 consists of a constant value of 25.0 (arbitrary 
units) in all flux groups and all spatial nodes at a single specified timestep.  Shade 2 consists of a 
single node -- located at a core location given by indices ixy=7, iz=3 – with a value of 1.0 for all 
flux energy groups at a single specified timestep.  

Figures 1 through 4 show the adjoint flux and precursor values through time for a single node 
where the timestep size is adjusted by decades from 0.0005 seconds to 0.5 seconds.  In these fig-
ures, it can be seen that the adjoint flux values initially decay very quickly (moving backward in 
time), reflecting the very short-lived influence of prompt neutrons on the quantity of interest.  
After this initial drop, the adjoint flux values decay at a lower rate, mirroring the decay of the 
adjoint precursor densities.  This reflects the influence of the flux on the production of delayed 
neutron precursors which have sufficient lifetime to then influence the time of interest for the 
adjoint source.  Furthermore, it can be seen that the adjoint flux and precursor values decay to a 
constant, non-zero value.  This can be attributed to the use of an eigenvalue initiated transient cal-
culation, which has a keff value of 1.0, causing any change in the initial neutron population to be 
carried forward to future timesteps. 



Figure 1: 0.3 Second Null-Transient Test Case Adjoint Solution Values

Figure 2: 3 Second Null-Transient Test Case Adjoint Solution Values



Figure 3: 30 Second Null-Transient Test Case Adjoint Solution Values

Figure 4: 300 Second Null-Transient Test Case Adjoint Solution Values

To define both the forward and adjoint response calculations, one must choose a time-frame of 
interest over which the inner-product is to be defined and for which the initial or final conditions 
will be stated.  The forward and adjoint responses are given by the following equations: 
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The initial or final conditions specified in the derivation of the adjoint impose two constraints on 
the choice of starting and stopping times.  First, at the start time, the natural boundary conditions 

require that for all .  This translates into a requirement that the low-fidelity solu-
tion evolution begin from a known high-fidelity solution.  The adjoint solution likewise has a ter-

minal condition of , which requires that  be chosen such that for all 

.  
The goal is to use the adjoint response formulation to compare the response fidelity of the prolon-
gated point kinetics results to the full NESTLE results.  In order to verify the computational 
results, we will first generate high- and low-fidelity solutions and use them to compare the 
response values obtained from the forward and adjoint based response equations.  For test pur-

poses, define a low-fidelity solution in terms of the high fidelity solution, , and a scaling 

factor, .

where  for and  for , with separate tests used for 

values of 0.2, 1.0, and 1.8.  This set of test cases offers two benefits, first it automatically satis-

fies the initial condition requirements, second, the adjoint response values for the =1.0 case 
will be attributable to the finite convergence tolerances of the high-fidelity solution, effectively 
providing an estimate of their contribution to more complicated cases.  To further evaluate these 

effects, each test case is computed with three different sets of convergence tolerance settings 
on the high-fidelity forward and adjoint solutions.  The convergence settings, termed Loose, Nom-
inal, and Tight, are listed below in Table 1.

                                                      Table 1: Convergence Settings

Loose Nominal Tight Criterion Variable Name

1 1 1 Number of Scattering iterations NITTH

400 500 1000 Outer iteration limit KITR

1.0E‐05 1.0E‐06 5.0E‐07 Keff relative error criteria EPSK

5.0E‐05 1.0E‐05 1.0E‐06 L‐2 residual outer iteration norm EPSOT

3.0E+01 1.0E+01 5.0E+00 L‐2 residual norm criteria EPSRESID

1.0E‐01 1.0E‐02 1.0E‐03 L‐infinity error norm criteria EPSIN

1.0E‐02 1.0E‐03 1.0E‐04 Inner iterations criteria EPSDET

5 5 5 NEM Update Frequency NNEM

1.00E‐05 1.00E‐05 1.00E‐06 NEM L‐2 Error reduction Factor EPSNEM
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The response values computed using both the forward and adjoint based equations are listed in 
Table 2.  Several important features may be seen.  First, a symmetric perturbation in the flux (up 
or down), produces a nearly symmetric change in the response value.  Secondly, as the conver-
gence tolerances are decreased, the forward and adjoint response values appear to converge 
toward similar values, again displaying the previously noted symmetry.  Finally, note that though 

the adjoint response value is nonzero for all cases, its magnitude remains two to five 

orders of magnitude below that of the other cases, and decreases greatly when the tight conver-
gence tolerances are used.  Thus, it is expected that unwanted contributions of the high-fidelity 
solution residual to the computed response value should be relatively minor.

                                               Table 2: Computed Response Values

These and other tests completed verify that the GPT time-dependent adjoint solution and the 
response functional evaluation implemented in the NESTLE code are done correctly.

 Loose Nominal Tight

0.2 ‐9.67172E+12 ‐9.28002E+12 ‐9.21589E+12

1 0.00000E+00 0.00000E+00 0.00000E+00

1.8 9.67171E+12 9.28002E+12 9.21589E+12

 Loose Nominal Tight

0.2 ‐9.79801E+12 ‐9.26428E+12 ‐9.26587E+12

1 2.50682E+10 7.82798E+10 ‐1.43522E+07

1.8 9.84842E+12 9.42084E+12 9.26584E+12

0 1.0 

0
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