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DISCLAIMER 

 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
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ABSTRACT 

Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more 
straightforward reprocessing path, which does not separate out pure plutonium from the process 
stream.  Fabrication of fuel containing minor actinides and rare earth (RE) elements for 
irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National 
Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting 
system and further scale up development, computational modeling of the casting process is 
needed to provide information on melt flow and solidification for process optimization. 
Therefore, there is a need for melt viscosity data, the most important melt property that controls 
the melt flow.  The goal of the project was to develop a measurement technique that uses fully 
sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts 
and at temperatures relevant to the casting process.  The specific objectives of the project were 
to: develop mathematical models to establish the principle of the measurement method, design 
and build a viscosity measurement prototype system based on the established principle, and 
calibrate the system and quantify the uncertainty range. The result of the project indicates that 
the oscillation cup technique is applicable for melt viscosity measurement. Detailed 
mathematical models of innovative sample ampoule designs were developed to not only 
determine melt viscosity, but also melt density under certain designs. Measurement uncertainty 
were analyzed and quantified. The result of this project can be used as the initial step toward the 
eventual goal of establishing a viscosity measurement system for radioactive melts. 
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1. INTRODUCTION 

The National Energy Policy (NEP) recommends that the United States "develop reprocessing 
and fuel treatment technologies that are cleaner, more efficient, less waste-intensive, and more 
proliferation-resistant."  The mission of the U.S. Department of Energy’s (DOE) Fuel Cycle 
R&D (FCRD) program is to develop fuel cycle technologies that will meet the need for 
economic and sustained nuclear energy production while satisfying requirements for controlled 
proliferation-resistant nuclear materials management system.  FCRD is designed to develop new 
technologies so they may be deployed to support the operation of current nuclear power plants, 
including advanced light water reactors and Generation IV advanced reactors.  Deployment of 
new fuel cycle technologies is necessary in order for the U.S. to achieve a significant reduction 
in the amount of high-level radioactive waste that requires geologic disposal, to reduce 
significantly accumulated plutonium in civilian spent fuel, and to extract more useful energy 
from nuclear fuel.  

One of FCRD's goals has been to develop and demonstrate advanced, proliferation-resistant fuel 
cycle technologies for treatment of commercial light water reactor spent fuel and to develop an 
integrated spent fuel recycling plan.  In the longer term, FCRD’s development of a system 
involving spent-fuel partitioning and recycling of actinides (highly-radioactive materials 
contained in spent fuel) and other long-lived radioactive components in fast reactors for 
destruction through transmutation could result in a de facto fifty-fold increase in the technical 
capacity of the repository.  This increase would come principally from the destruction of 
actinides that generate heat that limits repository capacity. FCRD R&D program has campaigns 
in separation and waste forms, transmutation fuels, reactors, system analysis, safeguards, and 
modeling and simulation.  FCRD fuels campaign develops for qualification of transmutation 
fuels for use in recycling reactors over a range of potential compositions in order to enable 
closure of the fuel cycle while maintaining the commercial competitiveness of nuclear energy.  A 
key research need for FCRD fuels is advanced fabrication techniques that are capable of remote 
and industrial scale operation with low losses and performance of the fuel during irradiation.  

Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more 
straightforward reprocessing path, which does not separate out pure plutonium from the process 
stream.  U-Pu-Zr based alloy fuels have outstanding reactor core performance, simplicity of 
reprocessing and fuel-fabrication, and low fuel cycle cost even in a relatively small-scale fuel 
cycle plant.  One of the key challenges for metal fuel fabrication is the demonstration of an 
advanced casting system that incurs low americium vapor loss.  Metallic fuel has been fabricated 
through a variety of processes.  Rolling and swaging to size, co-extrusion with the cladding, or 
centrifugal casting were used for fuel fabrication for the Experimental Breeder Reactor I (EBR-
I).  The most extensive experience with fuel casting in the U.S. was with the Experimental 
Breeder Reactor II (EBR-II) fuel, which was cast through counter gravity injection casting into 
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precision bored glass molds.  This method was used to cast fuel for EBR-II throughout its life 
and was found to be reliable in both remote and “hands-on” operation. However, the addition of 
minor actinides, particularly americium, to the fuel introduces complications not easily dealt with 
using counter gravity injection casting.  During counter gravity injection casting the melt is 
placed under a vacuum, which due to the high vapor pressure of americium, leads to americium 
losses from the fuel because of volatilization.  In order for metallic fuel to be used for 
transmutation purposes, a casting system must be developed which will retain americium during 
the casting cycle. 

Fabrication of fuel rodlets containing minor actinides and rare earth (RE) additions (for instance, 
U-20Pu-3Am-2Np-1.0RE-15Zr) for irradiation tests was performed by arc melting and casting at 
the Idaho National Laboratory (INL).  The casting was conducted in an inert atmosphere (argon) 
glovebox using an electric discharge plasma arc melter with a suction or gravity drop casting 
method. The feedstock materials were melted and thoroughly homogenized.  The slug 
dimensions for the fuels cast were approximately 5 cm in length and 4.9 mm in diameter.  
Currently, an induction heated, pressure differential assisted, bottom pour casting system is being 
developed at INL at bench scale.  Americium retention will be accomplished by reducing the 
application of vacuum, covering the crucible, and utilizing short melt cycles.   

For the optimal design of a casting system and further scale up development, computational 
modeling of the casting process is needed to provide information on melt flow and solidification 
for process optimization.  Model development for metal fuel casting has been initiated at Los 
Alamos National Laboratory (LANL).  The most important melt property that controls the melt 
flow is its viscosity.  However, there is no data available on the viscosity of metal fuel melts and 
there is no commercial measurement system available to perform such measurements. 

2. METALLIC FUEL AND VISCOSITY BACKGROUND 

Currently, the FCRD fuels program is focused on and principally interested in the development 
of oxide and metal alloy fuel systems. This includes improvement of the fundamental 
understanding of fuel behavior through characterization of microstructure, chemistry, and 
thermophysical properties of unirradiated fuel specimens, and the integration of these studies 
with theory and simulation. Of primary interest in fuels fabrication is the development of 
industrially viable, remote fabrication processes for oxide and metal alloy fuels, which have 
minimal losses of fuel material and generate a minimal amount of secondary waste. 

The primary metal fuel of interest is U-Pu-Zr system, with additions of the minor actinides and 
rare earth elements.  Argonne National Laboratory (ANL) conducted some studies relative to 
phase diagram development and some thermophysical property determination (density, heat 
capacity) for a number of concentrations (Ofte, 1965, Zegler 1965 Grove, 1966, 1967).  After 
those limited measurements done in the 1960s, there were few studies until the FCRD program 
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initiated its thermal properties effort in the early 2000’s (Kennedy, 2004,).  The lack of 
information on thermophysical and thermomechanical properties and the knowledge about these 
alloy fuels presents a significant challenge for the development of advanced fuels.    

The U-Zr binary alloy system is an important subsystem of the U-Pu-Zr ternary alloy, and also 
the starting fuel composition.  Figure 1 shows the phase diagram of the system (Massalski, 1986).  
However, available data of the U-Zr system are sparse.  Thermodynamics of the U-Zr alloy such 
as phase identification, stability and transition has been studied more than thermophysical 
properties.  Fedorov et al. (Federov, 1968) measured heat capacity of U-Zr from room 
temperature to 1123 K.  However, their data is generally believed to be too large in comparison 
with those estimated from those of uranium and zirconium using the additivity law and did not 
clearly show the existence of four phase transitions indicated in the phase diagram.  For instance, 

above 870 K, U()Zr() solid solution is formed.  Japanese researchers later obtained more 
reasonable data for heat capacity at elevated temperatures (Nakamura, 1980).  Rodríguez 
(Rodríguez, 1994) measured melting points, phase transformations, and the phase relationships 
of U-Zr-Np using dilatometry and electron probe microanalysis.  Kanno et al. (Kanno, 1988) 
measured the absolute vapor pressures and the thermodynamic activities of both liquid and solid 
solutions in the temperature range 1700-1800 K.  Takahashi et al. (Takahashi, 1988, 1989) 
measured the thermal diffusivity and heat capacity of four U-Zr alloys from 300-1100 K, 
including the temperature region of phase 
transitions of these alloys.  Matsui et al. 
(Matsui, 1989) also measured the heat 
capacity and electrical conductivity of 
U0.8Zr0.2 from 300-1300 K, and calculated 
the thermal conductivity based on thermal 
diffusivity data, as well as the Wiedemann-
Franz’s Law using electrical conductivity.  
These thermophysical property 
measurements, performed in Europe and 
Japan about twenty years ago, did not 
include viscosity.  In the US, early work in 
1960sm collected in Touloukian’s database 
(Touloukian, 1967), still represent the best 
available information for thermophysical 
properties.  It is apparent that such scattered 
and scarce data points fall far short of the need for the renewed effort in alloy fuel development 
under FCRD.  The lack of viscosity information makes it imperative to develop a viscosity 
measurement capability for the alloy fuels to be fabricated and tested.  Viscosity can also 
contribute to the basic understanding and broad knowledge of the alloy systems, in addition to 
enabling fuel fabrication and fuel casting design and optimization. 

FIGURE 2: PHASE DIAGRAM OF U-ZR SYSTEM. 
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The measurement of viscosity at high temperatures is quite challenging.  Iida published the 
review on the properties including viscosity and density of molten metals (Iida, 1988), and the 
comparison among the viscosities of molten iron reported by many researchers showed 
considerable difference of several dozen percent.  The method for measurements should be 
chosen carefully by considering physical and chemical properties of the melt.  Three types of 
measurement techniques, i.e., the capillary, oscillation cup, and rotation methods are commonly 
used to measure liquid viscosity at high temperatures. Another method, the falling sphere method, 
is not applicable here because it requires synchrotron X-rays to observe sphere movement in the 
melt.  The capillary method can only be used at temperatures less than 1000 C, which is too low 
for this proposed project as Figure 1 shows that the U-Zr system melts at above 1135 C.  The 
oscillating method and rotating method can be used at temperatures above 1000 C.  Rotating 
spindle viscometers use an open melt pool and it is applicable to melts with low vapor pressures 
such as glasses or molten salts, as described in ISO 7884-2 and ASTM C965.  The method is less 
likely to be easily adaptable to glovebox applications.  The oscillation cup method is used when 
the vapor pressure of the melt is high since the sample can be sealed and the volume of sample 
needed for measurement can be small (Li, 2004, 2005).  However, the theoretical and 
mathematical aspects of the method are complex and there have been only a few of this type of 
viscometer ever developed in the world.   Molten uranium dioxide was measured in the early 
1970s in DOE national laboratories with vastly different values (Tsai, 1972, Woodley 1974).  
Two oscillation systems were developed in the U.S. in last three decades but none are currently 
operational.  

This proposed project aligns well with the technical objectives of the metal fuel casting program 
of the FCRD fuels campaign. The scope of work of this project is practical with respect to the 
specified funding range and period of performance listed in the solicitation.  Viscosity is the 
most important parameter for melt processing in casting for fuel rod fabrication.  Viscosity 
information can provide essential science-based understanding of the melt structure and the 
necessary data for the computational modeling of the casting process.     

3. RESEARCH GOALS AND BJECTIVES 

The overall goal of research is conduct proof-of-principle studies of the proposed measurement 
method. The objectives of the project were to: design and develop mathematical models to 
establish the principle of the measurement method, build a viscosity measurement prototype 
system based on the established principle, calibrate the system and quantify the uncertainty 
range, and evaluate its application potential in a glovebox. This includes design, theoretical 
modeling, construction, testing, calibration, and uncertainty quantification.  The following major 
tasks are to be planned to achieve the specific objectives in project.  

Theoretical Model Development 
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Detailed mathematical models have to be developed for the measurement system as part of the 
design process, because the system design will rely of the models to determine system 
parameters. The models are also critical for data processing and system optimization. The 
uncertainty analysis will also use these models to evaluate measurement uncertainty. 

(1) System Design, Construction and Testing 

With available technical options for the range of material properties to be measured, such as 
density, viscosity and electrical conductivity, the experimental system will be designed 
accordingly.  Although the general principle of oscillation method is available, the parameters of 
measurement system have to be carefully calculated for the new measurement requirements.  
Due to the increase in operation temperature up to 1000 oC, most of the components and the 
system have to be designed to meet the high temperature requirements.  In addition to using the 
transient torque method which requires the electromagnetic field to stir the melt, the design can 
be also based the oscillation cup method first.  For oscillation methods, the sample can be in the 
furnace and the electromagnetic field is only used to initialize the rotation, which can be realized 
with an additional conductive component far away from the sample and high temperature zone.  
Therefore, the electromagnetic field does not need to penetrate the furnace and a commercial 
high temperature furnace will be used.   

This task will modify the initial design as required to resolve issues encountered during 
construction. The systems will be built and tested. Samples of materials with the similar range of 
properties and known viscosity will be used for shakedown and calibration of the prototype 
measurement system, which may be modified depending on the results of the calibration 
measurement, until an acceptable measurement response is achieved.   Measurement 
repeatability and uncertainty range based on precision and bias uncertainties will be evaluated.  
The procedure for extracting viscosity data from the measured angular oscillations will be 
established. 

(2) Uncertainty Quantification   

Measurement uncertainty will be evaluated based on the design parameters and experimental 
data. Monte Carlo uncertainty estimation will be performed to quantity the contributions of each 
parameter to the final uncertainty of the result. Measurement uncertainty of both oscillation cup 
the transient toque methods will be compared.  

4. THEORY AND MATHEMATICAL MODELS 

4.1. Introduction 

A noncontact rotational technique, called electromagnetic viscometer (EMV), can 
simultaneously measure the viscosity and electrical conductance of liquid metals at high 
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temperatures. The sample is sealed in a fused silica cup suspended by a quartz fiber. Once a 
rotational magnetic field (RMF) surrounding the cup is applied, a rotational flow of the sample is 
triggered, further causing the axial oscillation of the cup. The transient angular motion of the 
suspension system is measured to determine the electrical conductance and viscosity of fluids.  

The EMV has potential to be an important method of measuring viscosities of high temperature 
electrically conducting fluids. This technique combines the noncontact rotational technique for 
measuring the electrical conductance (Bakhtiyarov, 1999) and the widely-used oscillating cup 
viscometers (OCV) for measuring the viscosities (Kehr, 2007, Gruner, 2008, Wang, 2002, 
Torklep, 1979, Sasaki, 1995, Sato, 1995)). As an improved version of the OCV, the EMV has all 
advantages of the OCV, such as high measurement accuracy, noncontact inductive technique, 
and only small amount of sample required. Furthermore, the EMV method has exclusive 
advantage due to the capability of simultaneous measurements of electrical conductance and 
viscosity. 

To provide better experimental design of EMVs, theoretical study is necessary to improve the 
understanding its mechanism.  Currently there is a lack of theoretical analyses of the EMV, 
though the theory of the OCV has already been well established since 1950s. The OCV behavior 
was first modeled by a pair of coupled transcendental equations (Kestin, 1957). Special 
mathematical treatments were further performed (Roscoe 1958, Beckwith, 1957) to establish a 
simpler and useful relation between viscosity and measurable parameters, i.e. the decrement and 
time period of the oscillation. As a newly developed technique, the EMV has not drawn too 
much attention yet. The only theoretical study relating to the EMV is the numerical modeling in 
(Li, 2004). 

The main objective of this chapter is to establish analytical models for the EMV. On the basis of 
these models, the EMV behavior is discussed to come up with some application principles. 
Specific objectives of this work include: 

1) Establish an analytic model for 1D EMV, improve understanding of the mechanism, and 
provide some guidance for experimental design; 

2) Establish an analytic model for 2D EMV to improve the accuracy of modeling, perform 
numerical experiments, and fundamentally optimize the experimental conditions for higher 
measurement accuracy; 

3) Establish an analytic model for a stepped-cylindrical cup EMV, and examine the feasibility of 
simultaneously measuring density, viscosity and electrical conductance with the EMV method.  

4.2. One Dimensional Model 
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A 1-D EMV model is developed in this section. The relationships between fluids properties and 
experimental design parameters are discussed aiming to better understand the mechanism of 
EMVs and to provide some general guidance for future experiment design.  

4.2.1. Analytical Model 

4.2.1.1. Mathematic and Physical Description 

A cylindrical cup with tested fluids enclosed is suspended by a torsional wire and surrounded by 
a rotational electromagnetic field as schemed in Fig. 4.2.1. The magnetic field which is uniform 
everywhere, rotates around the centerline of the cup with constant frequency.  Once the RMF 
turns on, the Lorentz force induces a fluid flow, exerting a viscous shear on the inner wall of the 
cup. The viscous effects interacts with the elastic deformation of the torsional wire, creating an 
axial oscillation of the cup.  

 

Fig. 4.2.1 Schematic of a single-cylindrical cup EMV  

An EMV consists of two physically interacting subsystems: the fluid flow in the cup and the 
oscillation of the cup assembly. They affect each other through the viscous shear on the inner 
wall of the cup. On one hand, the fluid motion acts like an engine to trigger and maintain the 
motion of the cup. At the same time, it adds extra drag to the damping of the cup oscillation. On 
the other hand, the oscillation of the cup give rise to a similar oscillation in the fluid, especially 
in the vicinity of the wall. Different governing equations are needed to describe these 
phenomena. The motion of the cup is governed by, 

଴̅ܫ ቂ
ௗమఈሺ௧̅ሻ

ௗ௧̅మ
൅ ଴߂2 ഥ߱଴

ௗఈሺ௧̅ሻ

ௗ௧̅
൅ ሺ1 ൅ ଴߂

ଶሻ ഥ߱଴
ଶߙሺ̅ݐሻቃ ൌ  (ሻ    Eq. 4.2.1a̅ݐഥሺܯ

where ߙሺݐሻ is the angular displacement of the cup away from its initial position. ഥ߱଴, ߂଴ and ܫ଴̅ 
are the parameters related to the cup assembly in the absence of fluid, namely the damped 
angular frequency, the damping parameter, and the moment of inertial of the empty cup, 
respectively. ߂଴ evaluates the rate of the damping due to the internal friction of the suspension 
wire and the resistance in the surrounding air, and its value is equal to the logarithmic decrement 
decreasing by a factor of 2ߨ. As the under damping oscillation with ߂଴ ൏ 0.01 is usually applied 
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in measurements, ߂଴ approaches the damping ratio of the oscillation with a difference of less 
than 0.01%. ܯഥሺ̅ݐሻ is the viscous torque on the inner wall of the cup. The over bar, hereafter, is 
used to denote the dimensionless quantities.  

To investigate the fluid motion, we assume that a) the inertial forces are negligible compared to 
the viscous forces and b) the interaction at the bottom of the cup is negligible compared to that 
from the side wall so as to make the 1D assumption. It is reasonable once if the liquid depth is 
much larger than the inner radius of the cup. Thus, the fluid motion is governed by the 1D Stokes 
equation with the Lorentz force.  

డఆഥሺ௥̅,௧̅ሻ

డ௧̅
ൌ ఙഥ஻തమ

ଶఘഥ
ሺ ഥ߱௠ െ ,ݎതሺ̅ߗ ሻሻ̅ݐ ൅ ߥ ቂడ

మఆഥሺ௥̅,௧̅ሻ

డ௥̅మ
൅ ଷ

௥̅

డఆഥሺ௥̅,௧̅ሻ

డ௥̅
ቃ    Eq. 4.2.1b) 

in which,	ߗത is the angular velocity, ߪത is the electrical conductance, ܤത  is the strength of the RMF 
and ഥ߱௠ is the angular frequency of the RMF. The first term in the RHS represents the Lorentz 
force induced by the RMF, causing the fluid in motion. Because low-frequency RMFs are 
usually applied, the magnetic field induced by the fluid motion is negligible comparing to the 
external magnetic field (Volz, 1999). Hence, the Lorentz force is linear to the difference of the 
rotational rate between the magnetic field and the flow. If getting rid of the Lorentz force term, 
Eq. 4.2.1b) describes the flow at the situation without RMFs applied, such as in the traditional 
OCVs.  

The viscous torque exerted on the cup is related to the fluid motion,  

ሻ̅ݐഥሺܯ ൌ െ4 ூఔ̅ഥ

ோത
డఆሺ௥̅ୀோത,௧̅ሻ

డ௥̅
         Eq. 4.2.1c) 

in which തܴ is the inner radius of the cup, ̅ߥ the kinetic viscosity, ܫ ̅the momentum inertia of the 

fluid column. ܫ ̅ ൌ గ

ଶ
ߩ̅ തܴସܪഥ, ̅ߩ is the density of the fluid, and ܪഥ is the depth of the liquid hold in 

the cup. Again, the viscous torque occurring at the bottom wall is ignored. 

Eq. 4.2.1a) and b) are subjected to initial conditions such as: 

̅ݐሺߙ ൌ 0ሻ ൌ  (଴,           Eq. 4.2. 2aߙ

,ݎതሺ̅ߗ ̅ݐ ൌ 0ሻ ൌ 0         Eq. 4.2.2b) 

An initial angular displacement ߙ଴ is set in Eq. 4.2.2a), which is suitable for both OCVs and 
EMVs. In the OCVs, appropriate initial displacement is necessary to start the motion of the cup 
as well as the fluid. In contrast, the EMVs are at rest before adding the RMF, so that ߙ଴ ൌ 0. The 
fluid is always static for either the OCVs or the EMVs as described by Eq. 4.2.2b).  

Bu assuming the no-slip conditions at the interface between the fluid and the cup, Eq. 4.2.1b) is 
subjected to the following boundary conditions,  
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ݎതሺ̅ߗ ൌ തܴ, ሻ̅ݐ ൌ ௗఈሺ௧̅ሻ

ௗ௧̅
.         Eq. 4.2.2c) 

The fluid and the cup share the same angular velocity at the interface.  

It is convenient to scale the governing equations by introducing the dimensionless parameters 

ݐ ൌ ̅ݐ ഥ߱଴,ܯ ൌ ெഥ

ூబ̅ఠഥబ
మ , ߗ ൌ ఆഥ

ఠഥబ
, ݎ ൌ ௥̅

ఋഥ
, ܴ ൌ ோത

ఋഥ
, ܫ ൌ ூ̅

ூబ̅
, ߱௠ ൌ ఠഥ೘

ఠഥబ
, ܽܪ ൌ ට̅ߜതܤ

ఙഥ

ఘഥఔഥ
.   Eq. 4.2.3 

where ̅ߜ ൌ ට
ఔഥ

ఠഥబ
, can be regarded as an average boundary layer thickness (Kestin, 1957). ܽܪ is 

the Hartmann number, representing the ratio of the driving electromagnetic force to the viscous 
force in the fluid.  

With the introduction of Eq. 4.2.3, Eq. 4.2.1 is rewritten as 

ௗమఈሺ௧ሻ

ௗ௧మ
൅ ଴߂2

ௗఈሺ௧ሻ

ௗ௧
൅ ሺ1 ൅ ଴߂

ଶሻߙሺݐሻ ൌ  (ሻ      Eq. 4.2.4aݐሺܯ

డఆሺ௥,௧ሻ

డ௧
ൌ ு௔మ

ଶ
ሺ߱௠ െ ,ݎሺߗ ሻሻݐ ൅ డమఆሺ௥,௧ሻ

డ௥మ
൅ ଷ

௥

డఆሺ௥,௧ሻ

డ௥
      Eq. 4.2.4b) 

ሻݐሺܯ ൌ െ4 ூ

ோ

�ఆሺ௥ୀோ,௧ሻ

�௥
          Eq. 4.2.4c) 

while Eq. 4.2.2 changes to 

ݐሺߙ ൌ 0ሻ ൌ  (଴         Eq. 4.2.5aߙ

,ݎሺߗ ݐ ൌ 0ሻ ൌ 0         Eq. 4.2.5b) 

ݎሺߗ ൌ ܴ, ሻݐ ൌ ௗఈሺ௧ሻ

ௗ௧
.          Eq. 4.2.5c) 

The PDEs in Eq. 4.2.4 are coupled. Seeking their solution benefits from the use Laplace 
transform. Eq. 4.2.4 subject to Eq. 4.2.5 has Laplace transform with complex argument ݏ,  

ሺ2߂଴ ൅ ሻݏ௅ሺߙݏሻሾݏ െ ଴ሿߙ ൅ ሺ1 ൅ ଴߂
ଶሻߙ௅ሺݏሻ ൌ       ሻݏ௅ሺܯ

 Eq. 4.2.6a) 

,ݎ௅ሺߗݏ ሻݏ ൌ
ு௔మ

ଶ
ቂఠ೘

௦
െ ,ݎ௅ሺߗ ሻቃݏ ൅

�మఆಽሺ௥,௦ሻ

�௥మ
൅ ଷ

௥

�ఆಽሺ௥,௦ሻ

�௥
     Eq. 4.2.6b) 

ሻݏ௅ሺܯ ൌ െ4 ூ

ோ

డఆಽሺ௥ୀோ,௦ሻ

డ௥
        Eq. 4.2.6c) 

with the boundary condition: 

ݎ௅ሺߗ ൌ ܴ, ሻݏ ൌ ܴሺsߙ௅ሺݏሻ െ α଴ሻ       Eq. 4.2.7 
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The subscript ܮ represents the notation for the Laplace transform of functions.  

Eq. 4.2.6b) subjected to Eq. 4.2.7 is solved, yielding 

,ݎ௅ሺߗ ሻݏ ൌ ቂߙݏ௅ሺݏሻ െ ଴ߙ െ
ு௔మఠ೘

௦ሺଶ௦ାு௔మሻ
ቃ ோ
௥

ூభሺ௥ට௦ା
ಹೌమ

మ
ሻ

ூభሺோට௦ା
ಹೌమ

మ
ሻ
൅ ு௔మఠ೘

௦ሺଶ௦ାு௔మሻ
    Eq. 4.2.8 

where ܫଵ  and ܫଶ  are first and second order, modified Bessel functions of the first kind, 
respectively. 

Substituting Eq. 4.2.8 into Eq. 4.2.6c), we obtain 

ሻݏ௅ሺܯ ൌ െܦሺݏሻ ቂߙ௅ሺݏሻ െ
ఈబ
௦
െ ு௔మఠ೘

௦మሺଶ௦ାு௔మሻ
ቃ      Eq. 4.2.9 

where, 

ሻݏሺܦ ൌ
ସூ௦ට௦ାಹೌ

మ

మ

ோ

ூమቆோට௦ା
ಹೌమ

మ
ቇ

ூభቆோට௦ା
ಹೌమ

మ
ቇ
        Eq. 4.2.10 

  

Substituting Eq. 4.2.9 into Eq. 6a) yields the angular displacement in Laplace transform, 

ሻݏ௅ሺߙ ൌ
ு௔మఠ೘஽ሺ௦ሻ

௦మሺଶ௦ାு௔మሻሾଵାሺ௦ା௱బሻమା஽ሺ௦ሻሿ
൅

ఈబൣ௦మାଶ௦௱బା஽ሺ௦ሻ൧

௦ሾଵାሺ௦ା௱బሻమା஽ሺ௦ሻሿ
    Eq. 4.2.11 

The first term of the RHS reflects the influence of the RMF on the motion of the cup. The second 
term contributes to the initial angle deflection which is only required for OCVs. Thus, setting 
ܽܪ ൌ 0 in Eq. 4.2.11 to get rid of the influence of RMFs, leads to the angular displacement for 
the OCVs, 

ሻݏ௅ሺߙ ൌ
ൣ௦మାଶ௦௱బା஽ሺ௦ሻ൧

௦ሾଵାሺ௦ା௱బሻమା஽ሺ௦ሻሿ
 ଴,        Eq. 4.2.12ߙ

which is in accordance with the previous OCV models. If setting ߙ଴ ൌ 0 instead, the transient 
angular displacement for the EMVs is obtained, 

ሻݏ௅ሺߙ ൌ
ு௔మఠ೘஽ሺ௦ሻ

௦మሺଶ௦ାு௔మሻሾଵାሺ௦ା௱బሻమା஽ሺ௦ሻሿ
.       Eq. 4.2.13 

4.2.1.2. Features of characteristic equations 

The inverse Laplace transforms of Eq. 4.2.13 is needed to model the actual angular displacement 
of the EMVs. The features of the transform equation are first examined before taking the inverse 
transform. Applying the orthogonality of Bessel functions to Eq. 4.2.10 yields, 
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ሻݏሺܦ ൌ
ସூ௦൫ଶ௦ାு௔మ൯

ோమ
∑ ൤ݏ ൅ ு௔మ

ଶ
൅ ቀఓ೔

ோ
ቁ
ଶ
൨
ିଵ

ஶ
௜ୀଵ      Eq. 4.2.14 

where the value of ߤ௜ is given by ܬଵሺߤ௜ሻ ൌ 0, while ܬଵ is the first order Bessel function of the first 
kind. After substituting Eq. 4.2.14 to Eq. 4.2.13, it has been easily seen that ߙ௅ሺݏሻ is a single-
valued function which has a simple pole at ݏ ൌ 0 and the remaining poles occurring where  

1 ൅ ሺݏ ൅ ଴ሻଶ߂ ൅ ሻݏሺܦ ൌ 0        Eq. 4.2.15 

In contrast, െܽܪଶ/2 is only a removable singularity of Eq. 4.2.13, but not its pole. The roots of 
Eq. 4.2.15 can be divided into two groups. One group consists of infinitely many real poles, 
denoted by  ݏ௞  with ݇ ൌ 1,2,3… . and  the other group includes two conjugate complexes, 
denoted by ݏା and ିݏ.  

We first investigate the real-root group. Substituting Eq. 4.2.14 into Eq. 4.2.15 yields,  

െଵାሺ௦ା௱బሻమ

௦൬௦ାಹೌ
మ

మ
൰
ൌ ଼ூ

ோమ
∑ ൤ݏ ൅ ு௔మ

ଶ
൅ ቀఓ೔

ோ
ቁ
ଶ
൨
ିଵ

ஶ
௜ୀଵ       Eq. 4.2.16 

Both sides of the equation above are plotted in Fig. 4.2.2.2 by setting each as a function of ݏ.  

 

Fig. 4.2.2.2. Graphic scheme for locating negative real roots 



12 
 

Fig. 4.2.2.2 is not drawn to scale but only to illustrate the location of real roots. The shape of the 
curves and the positions of their intersecting points ݏ௞ are very similar to those plotted by Kestin 
and Newell (1957) for locating the real roots of OCVs. The slight difference between them will 
be completely removed if setting ܽܪ ൌ 0 in Fig. 4.2.2.2. Some facts that we can tell from the 
figure include a) In the positive range, there is no intersections, suggesting that all real roots must 
be negative only, b) In the range between െܽܪଶ/2 and 0, the RHS curve is always higher than 
the LHS one. It is shown from the analysis of Eq. 4.2.14 and 4.2.16 that this feature is always 
true only if ܽܪଶܫ ൏ 16. This is a loose condition as both ܽܪ and ܫ are generally less than unity. 
c) In the range of less than െܽܪଶ/2, there is one and only one intersection between every pair of 

consecutive ܵ௞ ൌ െ ൤ு௔
మ

ଶ
൅ ቀఓೖ

ோ
ቁ
ଶ
൨ . In any interval between ܵ௞  and ܵ௞ାଵ , the RHS curve 

decreases monotonically from positive infinity to negative infinity. It is guaranteed to have only 
one intersection ݏ௞  with the monotonic LHS curve. All ݏ௞  are slightly less than ܵ௞ , and the 
difference is mainly dependent on the value of ܫ/ܴଶ. As ܫ/ܴଶ increases, ݏ௞ move continuously to 
the left and away from ܵ௞ , but never jump over to next interval. Provided that the tests are 
performed with the same suspension system, the real roots for the EMVs are larger by about 
 .ଶ/2 in magnitude than those for OCVsܽܪ

Based on the above features of real roots, an approximate solution is derived. It is impossible to 
obtain an explicit expression of the roots from the transcendental equation Eq. 4.2.15 or 4.2.16, 
although the intervals in which the roots are confined are easily located. With the knowledge of 
intervals, there are a few numerical methods that can be used to find approximate solutions of the 
intersections. When fitting experimental data to determine the parameters of interest, the preset 
condition may vary hundreds of times, and at least twenty roots are solved for each change. The 
numerical iteration solving for these roots takes most of the computation time. In order to 
achieve fast processing speed, an approximate analytic solution is then developed on the basis of 
truncating the Taylor series. This solution also facilitates future error analysis of the EMV 
experiments. We first set  

௞ݏ ൌ െ ൤ு௔
మ

ଶ
൅ ቀఓೖାఌೖ

ோ
ቁ
ଶ
൨        Eq. 4.2.17 

where ߝ௞ ൌ ܱሺ1ሻ, accounting for the difference between  ݏ௞  and ܵ௞ . Combining Eq. 4.2.10, 
4.2.15 and 4.2.17 yields,  

 ቈ1 ൅ ൤߂଴ െ ቀఓೖାఌೖ
ோ

ቁ
ଶ
െ ு௔మ

ଶ
൨
ଶ

቉ ௞ߤଵሺܬ ൅ ௞ሻߝ െ
ସூ

ோమ
ሺߤ௞ ൅ ௞ሻߝ ൤ቀ

ఓೖାఌೖ
ோ

ቁ
ଶ
൅ ு௔మ

ଶ
൨ ௞ߤଶሺܬ ൅ ௞ሻߝ ൌ 0   

           Eq. 4.2.18 

in which ܬଶ is the second order Bessel function of the first kind. Their Taylor series expansion at 
 ௞ is given byߤ
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௞ߤଵሺܬ ൅ ௞ሻߝ ൌ ௞ߝ௞ሻߤ଴ሺܬ ൅ ܱሺߝ௞
ଶሻ          Eq. 4.2.19a) 

௞ߤଶሺܬ ൅ ௞ሻߝ ൌ െܬ଴ሺߤ௞ሻሾ1 െ ௞ߤ/௞ߝ2 ൅ Oሺߝ௞
ଶሻሿ       Eq. 4.2.19b) 

in which ܬ଴ is the zeroth order Bessel function of the first kind. 

Substituting Eq. 4.2.19a) and b) into Eq. 4.2.18 yields,  

ିସூఓೖ
ோమ

൤ቀఓೖ
ோ
ቁ
ଶ
൅ ு௔మ

ଶ
൨ ൅ ቈ1 ൅ ቀ߂଴ െ

ு௔మ

ଶ
ቁ
ଶ
൅ ቀఓೖ

ோ
ቁ
ଶ
൤ቀఓೖ

ோ
ቁ
ଶ
െ ଴߂2 ൅ ଶ൨ܽܪ ൅ ସூ

ோమ
൤ቀఓೖ

ோ
ቁ
ଶ
െ ு௔మ

ଶ
൨቉ ௞ߝ ൅

ܱሺߝ௞
ଶሻ ൌ 0          Eq. 4.2.20 

Assuming ߂଴,  ଶ~ܱሺ1ሻ, and getting rid of all high order truncation error in Eq. 4.2.20, anܽܪ
explicit solution of ߝ௞ is given by 

௞ߝ ൌ
൤ቀ
ഋೖ
ೃ
ቁ
మ
ାಹೌ

మ

మ
൨

ቀ
ഋೖ
ೃ
ቁ
ర
ାర಺
ೃమ
ቀ
ഋೖ
ೃ
ቁ
మ
ାଵ

ସூఓೖ
ோమ

.         Eq. 4.2.21 

Substituting Eq. 4.2.21 into Eq. 4.2.17 gives rise to the approximate solution of real roots, 

௞ݏ ൌ െு௔మ

ଶ
൅ ቀఓೖ

ோ
ቁ
ଶ
൥1 ൅

ቀ
ഋೖ
ೃ
ቁ
మ
ାಹೌ

మ

మ

ቀ
ഋೖ
ೃ
ቁ
ర
ାర಺
ೃమ
ቀ
ഋೖ
ೃ
ቁ
మ
ାଵ

ସூ

ோమ
൩

ଶ

.      Eq. 4.2.22 

The values given by Eq. 4.2.22 have errors of less than 0.1% when both ܴ ൐ 1 and ܫ ൏ 0.015ܴଶ 
are satisfied.  

Besides real roots, Eq. 4.2.15 has a pair of complex roots. Their residues correspond to a damped 
harmonic motion as we will discuss later. Hence, the complex roots are denoted by  

േݏ ൌ ሺെ߂ േ ݅ሻ߱         Eq. 4.2.23 

where ߂ is the logarithmic decrement of the damping oscillation, and ߱ is the dimensionless 
oscillation frequency, defined by ߱ ൌ ഥ߱/ ഥ߱଴. 

Substituting Eq. 4.2.23 into Eq. 4.2.15 yields 

1 ൅ ሺ߂଴ െ ሻଶ߱߂ െ ߱ଶ ൅ Reܦሾሺെ߂ േ ݅ሻ߱ሿ ൌ 0     Eq. 4.2.24a) 

േ2߱ሺ߂଴ െ ሻ߱߂ ൅ Imܦሾሺെ߂ േ ݅ሻ߱ሿ ൌ 0      Eq. 4.2.24b) 

from which ߂ and ߱ are determined. The complex roots for the EMVs are different from those 
for the OCVs even if the same amount of fluid is tested with the same suspension system. All the 
difference is modeled by the presence of ܽܪଶ/2 in ܦሺݏሻ.  

4.2.1.3. Transient Angular Displacement 
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The inverse Laplace transform of Eq. 4.2.13 gives rise to the actual motion of the cup,  

ሻݐሺߙ ൌ ଵ

ଶగ௜
׬

ு௔మఠ೘஽ሺ௦ሻ௘ೞ೟

௦మሺଶ௦ାு௔మሻሾଵାሺ௦ା௱బሻమା஽ሺ௦ሻሿ
஼ݏ݀       Eq. 4.2.25 

where ܥ is any vertical contour in the right side of the complex ݏ-plane so that all points along 
the contour are guaranteed to be greater than the real part of all poles. Because all poles of the 
integrand are the simple ones, their residues can be summarized to evaluate the contour integral, 
yielding  

ሻݐሺߙ ൌ ஶߙ ൅ ሻݐሺ்ߙ ൅  ሻ        Eq. 4.2.26ݐெሺߙ

where  

ஶߙ ൌ Resሺݏ ൌ 0ሻ ൌ ଶ√ଶூఠ೘ு௔

൫ଵା௱బ
మ൯ோ

ூమሺ
ೃಹೌ
√మ

ሻ

ூభሺ
ೃಹೌ
√మ

ሻ
,      Eq. 4.2.27a) 

ሻݐ஽ሺߙ ൌ ∑Resሺݏ ൌ േሻݏ ൌ ∑ ு௔మఠ೘஽ሺ௦ሻ

௦ሺଶ௦ାு௔మሻൣଶሺ௦ା௱బሻା஽′ሺ௦ሻ൧
௦ୀ௦േ ݁௦௧,   Eq. 4.2.27b) 

ሻݐሺ்ߙ ൌ ∑ Resሺݏ ൌ ௞ሻݏ
ஶ
௞ୀଵ ൌ ∑ ு௔మఠ೘஽ሺ௦ೖሻ

௦ೖሺଶ௦ೖାு௔మሻൣଶሺ௦ೖା௱బሻା஽′ሺ௦ೖሻ൧
ஶ
௞ୀଵ ݁௦ೖ௧.  Eq. 4.2.27c) 

The actual angular displacement is regarded as a combination of three components of motion, 
each corresponding to a group of poles. ߙஶ is equal to the residue of ݏ ൌ 0. It represents the 
angular displacement of the cup in final equilibrium state when the cup ceases oscillating and 
retrieves stationary. Instead of being stationary like the cup, the fluid reaches its steady flow state 
to maintain a constant viscous torque on the cup. The viscous torque is well balanced by the 
torsional torque due to the twisting of the suspension string with a twist angle of ߙஶ. ߙ஽  is 
obtained from the residues of complex roots ݏേ. It describes a classic damped oscillation of the 

cup around the initial position. ்ߙ consists of an infinite series of exponential decay terms, each 
of them corresponding to the residue of a single real root ݏ௞. The magnitude of ݏ௞ evaluates the 
rate at which the ݇th exponential term decays.  The overall motion that ்ߙ describes is nearly 
close to an exponential decay so that we call it fast decay.  

Numerical calculations of Eq. 4.2.27c) can be performed by retaining a number of terms of the 
series in sequence. Once sufficient terms are taken, the truncation errors can be successfully 
avoided for two reasons. First, the starting value of each exponential term is in monotonic 
decreasing sequence. Second, the latter exponential term has faster decay rate as |ݏ௞| ൏  .|௞ାଵݏ|
Therefore, the first exponential decay is the strongest one at any time, and the former decay is 
stronger than the subsequent ones.  
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Fig. 4.2.3 Transient angular displacement of typical EMVs 

Fig. 4.2.3 shows the transient motion of the cup in a typical EMV, as well as all of its 
components. ߙሺݐሻ , plotted as a solid curve, looks like a damped oscillation with shifting 
equilibrium points around which the oscillation occurs. The curve is less waved with time and 
finally becomes a straight line, which is not shown in the figure. Accompanying with the 
oscillation, the cup consistently twists toward its final equilibrium position. Thus, it is reasonable 
to decompose the overall transients as two distinct motions. One is the harmonic oscillation 
damping around the final equilibrium point, denoted by the dashed line of ߙஶ ൅  ,஽ in Fig. 4.2.3ߙ
and the other is fast decay ்ߙ.  

The EMV might be a more powerful technique comparing with the OCV because it is able to 
provide more information. Similar to the derivation of Eq. 4.2.26, the inverse Laplace transform 
of Eq. 4.2.12 gives rise to the angular displacement for an OCV,  

ሻݐሺߙ ൌ ଴ߙ ∑
ଵା௱బ

మ

௦ൣଶሺ௦ା௱బሻା஽′ሺ௦ሻ൧
݁௦௧௦ ,       Eq. 4.2.28 

in which ݏ are the roots of the characteristic equation Eq. 15. They are slightly different from 
those for the EMVs in that ݏ ൌ 0 is no longer a pole, and that ܽܪ ൌ 0 in the solution for ݏേ and 

 ௞. A typical transient motion of the cup in an OCV is nearly a damped oscillation as plotted inݏ
Fig. 4.2.4. The motion of the cup in an OCV is different from that in an EMV in two aspects. 
First, fast decay is generally too small to provide any reliable information for measurements. It is 
deliberately filtered out by ignoring the first few cycles of the oscillation in an OCV 
measurement. Second, the cup returns its initial position by the end of the oscillation because 
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there is lack of a external restoring force to maintain an angular displacement of the cup. 
Therefore, besides the damped oscillation, the final equilibrium position and fast decay can be 
observed in an EMV measurement. Their existence makes it possible that more physical 
properties may be determined in better accuracy and with faster response time.  

 

Fig. 4.2.4 Transient angular displacement of typical OCVs 

The solutions given by Eqs. 2.27b) and 2.27c) are expressed in terms of a series, which are 
cumbersome for further analysis. Then, the damped oscillation is rewritten in a common way as 

ሻݐ஽ሺߙ ൌ ݐ௱ఠ௧cosሺ߱ି݁ܣ ൅ ߶ሻ.        Eq. 4.2.29 

where ܣ is the amplitude of the oscillation at the initial state and ߶ is the phase angle. The values 
of ܣ and ߶ are obtained from Eq. 4.2.27b). The phase shift, ߰, defined as 

߰ ൌ గିథ

ఠ
,           Eq. 4.2.30 

is illustrated in Fig. 4.2.3. It is equivalent to the dimensionless time when the oscillation is at the 
lowest point.  

Meanwhile, fast decay is characterized by its amplitude at the initial moment, ߛ, 

ߛ ൌ  ሺ0ሻ,          Eq. 4.2.31்ߙ

and half-lift ߬, the amount of time required for the decay to fall to 2/ߛ, such as 
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ሺ߬ሻ்ߙ ൌ
ఊ

ଶ
.           Eq. 4.2.32 

 and ߬ represent the strength and the decay rate of fast decay, respectively. Their values are ߛ
determined by Eq. 4.2.27c), and their physical meanings are illustrated in Fig. 4.2.3.  

It should be noticed that ߛ ,߶ ,ܣ, and ߙஶ are correlated to match the initial condition ߙሺ0ሻ ൌ 0, 
yielding   

cosሺ߶ሻܣ ൅ ߛ ൅ ஶߙ ൌ 0         Eq. 4.2.33 

Therefore, any three of	ߛ ,߶ ,ܣ, and ߙஶ are independent. They are able to exclusively identify 
the transient angular displacement along with the other three parameters ߂, ߱, and ߬.  

4.2.2. Understanding of Mechanism 

One purpose of this study is to understand the mechanism of EMVs so that some design 
principles can be put forward. The motion of the cup has been successfully identified by a set of 
variables. Next, their dependence on design parameters though which the experimental 
conditions are preset, including ߂଴, ߱௠, ,ܫ ܴ	and ܽܪ, is discussed on purpose of guiding further 
experimental design.  

Among the design parameters, ߂଴ has the least significant influence on the angular displacement. 
 ଴ is usually much smaller than unity so that at least a few oscillation can be observed before the߂
oscillation becomes too small to measure. The change of ߂଴ is limited in a small range, and then 
has no considerable influence on the motion of the cup except the damping ratio, ߂. However, 
߂ െ  ଴. Because the useful information for measurements is߂ ଴ is insensitive to the change of߂
߂ െ  ଴ on the motion becomes less important. Therefore, the߂ the only impact of ,߂ ଴ other than߂
impact of ߂଴ is not discussed later. 

߱௠ has a simple but powerful impact on the motion of the cup in an EMV. It varies linearly with 
the amplitude of all components of the motion according to Eq. 4.2.27. Other parameters relating 
to time, such as phase shift, decay rate and period are independent of ߱௠. The independence is 
shown by the characteristic equation Eq. 4.2.15 in which ߱௠  is absent, not a variable in the 
solutions of all kinds of poles. Hence, altering ߱௠  is a convenient and efficient method for 
setting the angular displacement in a moderate range with no need of concerning about any other 
undesirable changes. 

,ܫ ܴ	and ܽܪ are the remaining design parameters, which are mainly focused in later discussion. 
The range of ܴ	and ܽܪ , as well as the exact value of ܫ , can be preset by altering the cup 
geometry, the amount of tested fluid, the suspension wire, the strength of the magnetic field, and 
so on. They have significant influence on the motion of the cup. At the same time, ܴ and ܽܪ are 
the target parameters that need to be determined from measurements, as they are actually 
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functions of viscosity and electrical conductance of fluid. It makes them play a more important 
role to measurements.  

The solution given by Eqs. 4.2.26 and 4.2.27 is then programmed to determine the value of all 
the seven variables under conditions of ߱௠ ൌ 958.3 ଴߂ , ൌ 0.005 ܫ , ൌ 0.01,0.05  and 0.1 , 
ܴ ൑ 50, and ܽܪ ൑ 1. The values of ߱௠ is in accordance with the previous experimental study 
(Li, 2004). The dependence of these variables on ܴ	and ܽܪ  are plotted in Fig. 4.2.5-4.2.11, 
respectively, for a variety of ܫ.   

4.2.3. Fast Decay 

Fast decay arises mainly from the rotational flow induced by the Lorentz force. The motion of 
the fluid contributes to a pair of interacting physics, each of them giving rise to a component of 
the flow. First, the oscillation of the wall is able to penetrate a certain distance of layer in the 
fluid. Such an oscillation mainly affects the behavior of the damped oscillation as we will discuss 
later. Second, the Lorentz force drives the fluid to form a rotational flow with the assumption 
that the cup is not in motion. The rotational flow can be modeled by Eq. 4.2.3c) subject to 
,ሺܴߗ ሻݐ ൌ ,ݎሺߗ 0ሻ ൌ 0, whose solution consists of an infinite series of exponent decay terms 

each of which has time constant 1/ܵ௞ with ܵ௞ ൌ െ ൤ு௔
మ

ଶ
൅ ቀఓೖ

ோ
ቁ
ଶ
൨. The growth of the rotational 

flow is a process in which magnetic energy continually stores in the flow after overcoming the 
dissipation effects. The presence of the oscillation requires extra energy, which means it takes 
longer for the flow to grow. It explains why |ݏ௞| ൐ |ܵ௞|. Because the gap between ݏ௞ and ܵ௞ is 
small, fast decay is likely to vary with the rotational flow almost at the same rate.  Therefore, the 
features of fast decay are discussed on the basis of the understanding of the rotational flow.  

The transients of the rotational flow can be classified according to the value of 
ு௔మோమ

ଶ
, which 

represents the ratio of the electromagnetic force to the viscous force. Because the only variable to 

adjust 
ு௔మோమ

ଶ
 is the strength of the external magnetic field, ܤ, for a specific fluid tested in a 

certain cup, 
ு௔మோమ

ଶ
 acts as the index of  ܤ.  

In a strong magnetic field with 
ு௔మோమ

ଶ
≫ 1, there is a thin boundary layer comparing to the radius 

of the cup. A steep velocity gradient grows up in the boundary layer, creating a strong viscous 
force in balance with the Lorentz force. In the remaining space, the flow uniformly accelerates to 
the rotational rate of the magnetic field, while the Lorentz force dramatically decreases and 
finally disappears. Thus, the Lorentz force is the dominant mechanism of the flow growth, 

having the same time scale of 
ଶ

ு௔మ
 according to Eq. 4.2.4b). It also agrees with the analysis of ܵ௞, 

which approaches to െு௔మ

ଶ
 as 

ு௔మ

ଶ
≫ ଵ

ோమ
. The relation of ߬~ ଵ

ு௔మ
 is in accordance with the 

reciprocal curve of ܴ ൌ 20 in Fig. 4.2.5b). It is noteworthy to point out that ߬ is independent on 
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ܴ. The independence is well illustrated by the curve of ܽܪ ൌ 0.5 in Fig. 4.2.5a), which is flat in 
the range of ܴ ൐ 20.  

    

     a) ߬ vs.	ܴ             b) ߬ vs. ܽܪଶ 

Fig. 4.2.5 Decay Rate of Fast Decay 

When 
ு௔మோమ

ଶ
≪ 1, the external magnetic field is too weak to induce a strong flow. The flow 

remains slow comparing with the rotation of the magnetic field, and the corresponding Lorentz 
force is almost unvaried throughout the transients. Although the velocity gradient only slightly 
grows, the viscous force remarkably rises up because of the relative large viscosity, and finally 
balances with the Lorentz force at steady state. Hence, the viscous term is dominant in Eq. 
4.2.4b) and its time scale of ܴଶ is also the time scale of the flow. All the curves in Fig. 4.2.5a) 

have nearly parabolic shape for small ܴ  such as 
ு௔మோమ

ଶ
≪ 1 , in accordance with the above 

analysis. 

In the medium magnetic field with 
ு௔మோమ

ଶ
~1, the development of the viscous force and the 

Lorentz force are at the same level and the time scale of the flow is dependent on both ܴ and ܽܪ. 
The increase of ܴ or the decrease of viscosity requires more time to develop a steeper velocity 
gradient, as shown in Fig. 4.2.5a). The magnetic field with larger ܽܪ gets stronger to create a 
larger Lorentz force, which shorten the time that the flow needs to grow, as shown in Fig. 
4.2.5b). 

The amplitude of fast decay, ߛ, is impacted not only by the rotational flow, but also by the 
boundary layer through which the rotational flow is able to oscillate the cup. As either ܴ → 0 or 
ܽܪ → 0, corresponding to the extremely large viscosity of fluids or the absence of the RMF 
respectively, there is no rotational flow so that ߛ → 0. As ܴ → ∞, the rotational flow is regarded 
as the potential flow which fails to rotate the cup due to the insignificant fluid viscosity. As 
ܽܪ → ∞, the applied RMF is so strong as to complete the establishment of steady rotational flow 
before creating a significant fast decay. Therefore, the magnitude of ߛ  has a hump-shaped 
dependence on either ܴ  or ܽܪ , which is shown by some curves in Fig. 4.2.6. The other 
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monotonic curves will present a hump as well after expanding the range of ܴ  or ܽܪ . The 
dependence of ߛ is further revealed through the analysis of Eq. 4.2.27c). In a weak magnetic 

field of  
ு௔మோమ

ଶ
≪ ܴ ସ→଴ where the index is 4 forܴ~ߛ ଶ andܽܪ~ߛ ,1 ≪ 1 and 0 for ܴ ≫ 1. In a 

strong magnetic field of 
ு௔మோమ

ଶ
≫ ܽܪ ଴→ିସ where the index is 0 forܽܪ~ߛ ଶ andିܴ~ߛ ,1 ≪ 1 and 

-4 for ܽܪ ≫ 1.   

    

   a) ߛ vs.	ܴ            b) ߛ vs.	ܽܪଶ 

Fig. 4.2.6 Amplitude of Fast Decay 

4.2.4. Angular Displacement at Equilibrium 

The value of ߙஶ completely relies on the viscous torque at equilibrium state. When the new 
equilibrium is achieved, the steady state flow creates a constant viscous torque on the static cup. 
The cup deviates away from its initial position by ߙஶ, and a torsional torque is formed to balance 
the viscous torque. Any change of the viscous torque leads to a different value of ߙஶ.  

Both ܴ and ܽܪ affect the viscous torque. The stronger magnetic field with larger ܽܪ induces 
faster rotational flow, resulting to stronger viscous torque. Fig. 4.2.7b) shows ߙஶ dramatically 
increases with the increase of ܽܪ. For less viscous fluid with larger ܴ, the viscous torque or ߙஶ 
tends to decrease as shown in Fig. 4.2.7a), in spite of the slight increase of angular velocity 
gradient.  

The Dependence of ܽܪ and ܴ can be further revealed through the analysis of Eq. 4.2.27a). In a 

weak magnetic field,  
ு௔మோమ

ଶ
≪ 1  such that 

ூమሺ
ೃಹೌ
√మ

ሻ

ூభሺ
ೃಹೌ
√మ

ሻ
ൎ ோு௔

ସ√ଶ
, and ߙஶ ൎ ூఠ೘ு௔మ

ଶ൫ଵା௱బ
మ൯

. Thus, ߙஶ  is in 

proportional to ܴ଴ and ܽܪଶ, agreeing with the flat curve of ܽܪ ൌ 0.01 in Fig. 4.2.7a), and the 
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straight line of ܴ ൌ 1 in Fig. 4.2.7b). Under conditions of strong magnetic field,  
ு௔మோమ

ଶ
≫ 1 such 

that 
ூమሺ

ೃಹೌ
√మ

ሻ

ூభሺ
ೃಹೌ
√మ

ሻ
ൎ 1, and ߙஶ ൎ ଶ√ଶூఠ೘ு௔

൫ଵା௱బ
మ൯ோ

.  

        

   a) ߙஶ vs.	ܴ            b) ߙஶ vs.	ܽܪଶ 

Fig. 4.2.7 Angular Displacement at Equilibrium 

4.2.5. Oscillation 

The damped oscillation of the cup contributes to the interaction of the viscous torque and the 
torsional torque. For a specific suspension system, the oscillation is governed by the viscous 
torque, which is related to the magnitude of the Lorentz force and the structure of the boundary 
layer. ܽܪଶ is in proportional to the Lorentz force, while the change of ܽܪ has no impact on the 
structure of boundary layer. In the comparison, ܴ affects the structure of the boundary other than 
the Lorentz force. In a small cup with small ܴ, the fluid moves with the cup as a rigid body, and 
the oscillation occurs everywhere in the fluid. A large cup is the one with large ܴ, in which the 
oscillation is confined only in a small layer of fluid near the cup wall while there is a rotational 
flow in the center.   

The strength of the oscillation is evaluated by ܣ, its amplitude at the initial moment when the 
rotational flow has not started yet. Fig. 4.2.8b shows a linear dependence of ܽܪଶ , which is 
explained by the linear relationship between the Lorentz force and ܽܪଶ. Fig. 4.2.8a) shows a 
relation of ܣ~ܴିଵ for large cups. It is because the increase of ܴ or the decrease of viscosity 
gives rise to a thinner boundary layer, leading to a smaller viscous torque. In a small cup where 
the boundary layer extends to the center of the cup, the change of viscosity has little or no 
influence on the structure of the boundary layer, implying ܣ~ܴ~଴.  
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   a) ܣ vs.	ܴ            b) ܣ vs.	ܽܪଶ 

Fig. 4.2.8 Amplitude of the Damped Oscillation 

The damping ratio of the oscillation ߂ is always larger than ߂଴ because the viscous effects act as 
an additional drag to the damping. Similar to ߂ ,ܣ െ  ଶas shown inܽܪ ଴ is linearly dependent on߂
Fig. 4.2.9b). It is because the Lorentz force not only creates the oscillation, but also acts as an 
additional drag force to enhance the damping effects. Fig. 4.2.9a) shows that ߂ െ ଴߂  has 
minimum values at ܴ → 0 and at ܴ → ∞. A peak value occurs around ܴ ൎ 5. The dependence is 
much stronger in small cups than in large cups.  

      

             a) ߂ െ ߂ (ܴ           b	଴ vs.߂ െ  ଶܽܪ	.଴ vs߂

Fig. 4.2.9 Damping Ratio of the Damped Oscillation 

Both ܴ and ܽܪ have insignificant influence on the oscillation frequency ߱. Fig. 4.2.10a) shows 
that filling fluid in the cup makes a difference of ߱ by no more than 5% for a wide variety of ܴ. 
And the difference caused by the change of ܽܪ is even smaller, such as less than 1%, as shown 
in Fig. 4.2.10b). Thus, the observation of the oscillation frequency is less important.  



23 
 

  

       a) ߱ vs.	ܴ           b) ߱ vs.	ܽܪ at ܴ ൌ 5 

Fig. 4.2.10 Frequency of the Damped Oscillation  

The phase-shift of the oscillation mainly reflects the comparison of fast decay with the damped 
oscillation in strength. Combining Eq. 4.2.30 and Eq. 4.2.33 yields,  

cosሺ߱߰ሻ ൌ ଵାஓ/஑ಮ
୅/஑ಮ

         Eq. 4.2.34 

Because ߱ is almost of unity, the equation gives ߛ ൌ 0 as ߰ ൌ 0, suggesting the absence of fast 
decay. Larger ߰  corresponds to a relative stronger fast decay. Fig. 4.2.11b) shows a linear 
dependence of  ܽܪଶ like all other parameters describing the oscillation. Fig. 4.2.11a) shows ߰ 
rapidly rises up with the increase of ܴ for small cups, and the rise becomes slow for large cups. 
The phase-shift is an important parameter for EMV measurements. A large ߰  benefits the 
measurements in which the features of fast decay are mainly concerned. If only the features of 
the oscillation are used instead, a small ߰ is better for getting rid of the influence of fast decay. 

   

             a) ߰ vs.	ܴ           b) ߰ vs.	ܽܪଶ 
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Fig. 4.2.11 Phase shift of the Damped Oscillation 

Figs. 2.5-2.11 also show the influence of ܫ on the motion of the cup. The value of ܫ can be easily 
adjusted in a small range by changing the amount of fluid for a specific suspension system. It is 
shown from Figs 2.6, 2.7 and 2.8 that the parameters relating to the strength of the motion, such 
as ߛ ,ܣ, and ߙஶ, vary nearly linearly with ܫ, because all the curves, plotted as the ratio of them to 
߂ .ܫ are almost or completely overlapped for a variety of ,ܫ െ  ଴ is at the same situation, which߂
almost linear to ܫ  as shown in Fig. 4.2.9. In contrast, ߬  and ߰  are slightly dependent or 
independent on ܫ as the curves for different ܫ are overlapped in Figs. 2.5, and 2.11. Finally, Fig. 
4.2.10 shows that the change of ߱  is nonlinearly dependent on ܫ ,  and a relative strong 
dependence occurs at small ܴ . Thus, adjusting ܫ  is able to preset ߂ െ ଴߂  and ߱ , besides the 
ability of preset the range of the angular displacement like adjusting ߱௠. In general, larger ܫ 
causes a stronger response of the cup, leading to a higher measurement accuracy.  

4.2.6. Practical Implication 

The ultimate purpose of this project is to infer the value of viscosity and electrical conductance 
from the observed motion of the cup. There are two practical methods of EMV measurements, 
the rapid method and the quasi-steady-state (QSS) method. 

The rapid measurement takes advantage of the features of both fast decay and the oscillation. It 
is called rapid measurement because only the first few cycles are need for data fitting. Some 
design principles that facilitate the rapid measurement include: a) Large ܴ is needed to obtain a 
sufficiently strong fast decay. The phase-shift of the oscillation, ߰, is relative large in large cups, 
meaning fast decay becomes competitive to the oscillation in magnitude. b) Small ܽܪ  is 
preferred to achieve a high measurement accuracy of ܴ or ̅ߥ. Among all parameters, the decay 
rate of fast decay,	߬, has the strongest dependence on ܴ as ߬~ܴଶ~̅ିߥଵ, and it occurs only in the 

weak magnetic field with 
ு௔మோమ

ଶ
≪ 1. A magnetic field with smaller ܽܪ creates a stronger fast 

decay as well. c) The determination of ܽܪ or ߪത  is relatively accurate in comparison with ܴ , 
because of the fact that there are more parameters with stronger dependence on ܽܪ . Under 
conditions of large ܴ and small ܽܪ, the amplitude of the damped oscillation, ܣ, is the most 
sensitive parameter to ܽܪ as ܽܪ~ܣଶ~ߪതଵ. The response of other parameters to the change of ܴ 
and ܽܪ will improve the measurement accuracy. The rapid method has already been exploited in 
previous experimental studies (Li, 2004). In their experiments, ܴ ൌ 9.5, and ܽܪ ൌ 0.037. 

In contrast, the QSS measurements collect information involved in the quasi-steady state only. 
After the first few cycles when fast decay completely vanishes, the motion of the cup becomes a 
pure oscillation around the final equilibrium point. Thus, the system reaches the so-called quasi-
steady state. The parameters that can be obtained from the damped oscillation are ߙஶ, ߱ and 
߂ െ ଴߂ . They are substituted into Eqs. 24a), 24b) and 27a) to determine ܴ and ܽܪ. As ߱ is 
insensitive to the change of ܴ and ܽܪ, the measurement accuracy is totally dependent on the 
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dependence of ߙஶ and ߂ െ  (଴.   The application principles for the QSS measurement include: a߂
Large ܽܪ is preferred to improve the measurement accuracy of viscosity. According to Fig. 
4.2.7b), ߙஶ becomes strongly dependent on the change of ܽܪ when ܽܪଶ ൐ 0.2 and ܴ ൐ 5, or 
when ܽܪଶ ൐ 0.4  and ܴ ൐ 1 . Thus, the determination of viscosity is not only related to the 
change of ߂ െ ߂ is needed to have ܫ ஶ. b) largeߙ ଴, but also the change of߂ െ  ଴ as large as߂
possible. 

There are some additional principles we should pay attentions to, a) The range of the angular 
displacement can be adjusted by setting appropriate ߱௠and ܫ. The motion of the cup should be 
moderate so that it can be detected. At the same time, it won't be too violent to break down the 

fragile torsional wire. b) Low frequency RMF with ഥ߱௠ ൏ ଵ

ோതమఙఓబ
, where ߤ଴ is the permeability of 

free space, is required to have a Lorentz force linear with ݎ. The relation sets up a maximum 
limit of ߱௠.  

4.3. Two Dimensional Model 

A 2-D EMV model is established in this section. Our earlier 1D model assumes the contact of 
fluid to the bottom of the cup has negligible influence on the motion of the cup. The 1D model is 
applicable only for testing slim fluid column. Even if so, the omission of the bottom effects 
causes additional measurement error. Thus, we come up with a 2D model to take the bottom 
effects into account.  

4.3.1. Analytical model 

4.3.1.1. Mathematic Description 

Dimensionless governing equations describing physical phenomena in a cylindrical cup EMV 
are listed below,  

ௗమఈሺ௧ሻ

ௗ௧మ
൅ ଴߂2

ௗఈሺ௧ሻ

ௗ௧
൅ ൫1 ൅ Δ଴

ଶ൯ߙሺݐሻ ൌ  (ሻ      Eq. 4.3.1aݐሺܯ

డఆሺ௥,௭,௧ሻ

డ௧
ൌ ு௔మ

ଶ
൫߱௠ െ ,ݎሺߗ ,ݖ ሻ൯ݐ ൅ డమఆሺ௥,௭,௧ሻ

డ௥మ
൅ ଷ

௥

డఆሺ௥,௭,௧ሻ

డ௥
൅ డమఆሺ௥,௭,௧ሻ

డ௭మ
   Eq. 4.3.1b) 

ሻݐሺܯ ൌ ସூ

ோு
൤׬ ቀ௥

ோ
ቁ
ଷ డఆሺ௥,௭ୀ଴,௧ሻ

డ௭

ோ
଴ ݎ݀ െ ׬

డఆሺ௥ୀோ,௭,௧ሻ

డ௥

ு
଴  (൨    Eq. 4.3.1cݖ݀

in which all parameters have been defined in Eq. 4.2.3, except ܪ ൌ ுഥ

ఋ
, where ܪഥ is the actual 

height of liquid column. Eq. 4.3.1a) is the governing equation for the motion of the cup driven by 
the viscous torque. Eq. 4.3.1b) governs the flow in the cup with the presence of the Lorentz 
force. Eq. 4.3.3c) describes the viscous torque exerted on the side and bottom walls.  

The fluid flow is subjected to boundary conditions, 
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,ݎሺߗ ݖ ൌ 0, ሻݐ ൌ ௗఈሺ௧ሻ

ௗ௧
         Eq. 4.3.2a) 

డ

డ௭
,ݎሺߗ ݖ ൌ ,ܪ ሻݐ ൌ 0         Eq. 4.3.2b) 

ݎሺߗ ൌ ܴ, ,ݖ ሻݐ ൌ ௗఈሺ௧ሻ

ௗ௧
         Eq. 4.3.2c) 

At the side and bottom walls, the no-slip condition is used. The drag at the top surface of the 
fluid is ignored. The fluids and the suspension system are at rest before the RMF turns on, so that 
the initial conditions are given by 

,ݎሺߗ ,ݖ ݐ ൌ 0ሻ ൌ 0         Eq. 4.3.3a) 

ݐሺߙ ൌ 0ሻ ൌ 0          Eq. 4.3.3b) 

Laplace Transform of the governing equations Eq. 4.3.1 with initial conditions Eq. 4.3.3 is 
written as 

ሾ1 ൅ ሺݏ ൅ ሻݏ௅ሺߙ଴ሻଶሿ߂ ൌ  (ሻ        Eq. 4.3.3aݏ௅ሺܯ

,ݎ௅ሺߗݏ ,ݖ ሻݏ ൌ
ு௔మ

ଶ
ቂఠ೘
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௥
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డ௭మ
  Eq. 4.3.3b) 
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Similarly, Laplace transform of Eq. 4.3.2 is given by  

,ݎ௅ሺߗ ݖ ൌ 0, ሻݏ ൌ  (ሻ        Eq. 4.3.4aݏ௅ሺߙݏ

డ

డ௭
,ݎ௅ሺߗ ݖ ൌ ,ܪ ሻݏ ൌ 0        Eq. 4.3.4b) 

ݎ௅ሺߗ ൌ ܴ, ,ݖ ሻݏ ൌ  (ሻ        Eq. 4.3.4cݏ௅ሺߙݏ

Eq. 4.3.3b) with boundary conditions Eq. 4.3.4a)-c) is solved by the method of variable 
separation,  
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 Eq. 4.3.5 

with ݏ௠ ൌ ݏ ൅ ு௔మ

ଶ
൅ ቀఓ೔

ோ
ቁ
ଶ
 and ݏா ൌ ݏ ൅ ு௔మ

ଶ
.  

Substituting Eq. 4.3.5 into Eq. 4.3.3a) yields, 

ሻݏ௅ሺߙ ൌ
ு௔మఠ೘஽ሺ௦ሻ

ଶ௦మ௦ಶሾሺ௦ା∆బሻమା஽ሺ௦ሻାଵሿ
        Eq. 4.3.6 
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where, 

ሻݏሺܦ ൌ ாݏݏܫ8 ∑
ଵ

௦೘
൤ ଵ
ோమ
൅ ௦ಶ

ఓ೔
మ
୲ୟ୬୦൫ுඥ௦೘൯

ுඥ௦೘
൨ஶ

௜ୀଵ .      Eq. 4.3.7a) 

Other forms of ܦሺݏሻ are written as 

ሻݏሺܦ ൌ ாݏݏܫ ቎1 െ ாݏ16 ∑ ∑ ଵ

ఓ೔
మఒೕ

మቈ௦ಶାቀ
ഋ೔
ೃ
ቁ
మ
ା൬

ഊೕ
ಹ
൰
మ
቉

ஶ
௜ୀଵ

ஶ
௜ୀଵ ቏    Eq. 4.3.7b) 

ሻݏሺܦ ൌ ாݏݏܫ ቈ1 െ ாݏ8 ∑
ଵ

ఒೕ
మ௦೙

ஶ
௝ୀଵ ൤

ூమ൫ோඥ௦೙൯

ோඥ௦೙ூభ൫ோඥ௦೙൯
െ ଵ

ସ
൨቉      Eq. 4.3.7c) 

with ݏ௡ ൌ ݏ ൅ ு௔మ

ଶ
൅ ቀ

ఒೕ
ு
ቁ
ଶ

, and ߣ௝ ൌ ቀ݆ െ ଵ

ଶ
ቁ ߨ . Eq. 4.3.7a)-c) are fully equivalent and 

interchangeable. The conversion between each other can be deduced by the following series 
expansion, 

ூమሺ௫ሻ

ଶ௫ூభሺ௫ሻ
ൌ ଵ

଼
െ ∑ ௫మ

ሺ௫మାఓ೔మሻఓ೔మ
ஶ
௝ୀଵ         Eq. 4.3.8a) 

୲ୟ୬୦	ሺ௫ሻ

௫
ൌ 1 െ 2∑ ௫మ

ቂ௫మାఒೕ
మቃఒೕ

మ
ஶ
௝ୀଵ         Eq. 4.3.8b) 

Eq. 4.3.7 a) or c) is obtained by converting the infinite double series in Eq. 4.3.7b) to a single 
series in terms of ݅  or ݆ , respectively. Because only a finite number of terms are taken for 
numerical calculations of the infinite series, choosing appropriate form of ܦሺݏሻ may reduce the 
truncation error. Generally, Eq. 4.3.7a) is better for squat liquid column, and Eq. 4.3.7c) for slim 
liquid column.  

4.3.1.2. Features of characteristic equations 

The inverse transform of Eq. 4.3.6 is taken to obtain the actual angular displacement of the cup. 
Similar to the 1D EMV model, Eq. 4.3.6 is a single-value function with three groups of poles: 
zero pole, an infinite number of negative real poles, and a pair of conjugate complexes. The 
poles besides ݏ ൌ 0 are roots of the characteristic equation, 

1 ൅ ሺݏ ൅ ଴ሻଶ߂ ൅ ሻݏሺܦ ൌ 0        Eq. 4.3.9 

The features of negative real roots are first examined. Substituting Eq. 4.3.7b) into Eq. 4.3.9 
yields, 
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െଵାሺ௦ା௱బሻమ
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మ

మ
൰
ൌ ாݏݏܫ ቎1 െ ாݏ16 ∑ ∑ ଵ
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൰
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௜ୀଵ

ஶ
௜ୀଵ ቏   Eq. 4.3.10 

When both sides are plotted as a function of ݏ to locate these negative roots, the same scheme to 

Fig. 4.2.2 will be obtained. Yet ௜ܵ௝ , which confines the interval ends, is given by െ൤ு௔
మ

ଶ
൅

ቀఓ೔
ோ
ቁ
ଶ
൅ ቀ

ఒೕ
ு
ቁ
ଶ
൨, rather than by  െ൤ு௔

మ

ଶ
൅ ቀఓ೔

ோ
ቁ
ଶ
൨ for the 1D EMV model. The presence of ቀ

ఒೕ
ு
ቁ
ଶ
 

contributes to the bottom effects. As ܪ approaches infinite,	ቀ
ఒೕ
ு
ቁ
ଶ
 approaches zero, meaning the 

impact from the bottom is negligible comparing with the side wall. Just like the 1D model, there 
exists a single root ݏ௞ in the interval between any two consecutive ௜ܵ௝. For instance, the largest 

root ݏଵ is always less than ଵܵଵ, and larger than the second large ܵ, either ଵܵଶ or ܵଶଵ. Numerical 
calculations are used to solve ݏ௞  in a sequence starting from ݏଵ . The truncation error is 
sufficiently small when the last ݏ is tenth larger than ݏଵ in magnitude. 

Next, we solve for complex poles. The complex roots are defined as the same to that of 1D 
model, Eq. 4.2.23 is rewritten here as, 

േݏ ൌ ሺെ߂ േ ݅ሻ߱           Eq. 4.3.11 
  

Substituting Eq. 4.3.11 into Eq. 4.3.9 yields 

1 ൅ ሺ߂଴ െ ሻଶ߱߂ െ ߱ଶ ൅ Reܦሾሺെ߂ േ ݅ሻ߱ሿ ൌ 0     Eq. 4.3.12 a) 

േ2߱ሺ߂଴ െ ሻ߱߂ ൅ Imܦሾሺെ߂ േ ݅ሻ߱ሿ ൌ 0      Eq. 4.3.12 b) 

from which ߂ and ߱ are determined. 

4.3.2. Transient Angular Displacement 

The actual angular displacement of the cup is obtained by the residue theorem in a way as we did 
when developing the 1D model. The results are pretty similar,  

ሻݐሺߙ ൌ ஶߙ ൅ ሻݐሺ்ߙ ൅  ሻ          Eq. 4.3.13ݐሺ்ߙ

with 

ஶߙ ൌ Resሺݏ ൌ 0ሻ ൌ ఠ೘

ଵା௱బ
మ lim௦→଴

஽ሺ௦ሻ

௦
,      Eq. 4.3.14a) 

ሻݐ஽ሺߙ ൌ ∑Resሺݏ ൌ േሻݏ ൌ ∑ ு௔మఠ೘஽ሺ௦ሻ

௦ሺଶ௦ାு௔మሻൣଶሺ௦ା∆బሻା஽′ሺ௦ሻ൧
௦ୀ௦േ ݁௦௧,    Eq. 4.3.14b) 
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ሻݐሺ்ߙ ൌ ∑ Resሺݏ ൌ ௞ሻݏ
ஶ
௞ୀଵ ൌ ∑ ு௔మఠ೘஽ሺ௦ೖሻ

௦ೖሺଶ௦ೖାு௔మሻൣଶሺ௦ೖା∆బሻା஽′ሺ௦ೖሻ൧
ஶ
௞ୀଵ ݁௦ೖ௧.   Eq. 4.3.14c) 

 represent the angular position at final equilibrium, the damped oscillation, and ்ߙ ஽ andߙ	,ஶߙ
the fast decay, respectively. It is noted that the modification of ܦሺݏሻ is the only change as the 1D 
solution extends to the 2D one.  

4.4. Numerical Experiments 

Numerical experiments are performed to better illustrate the usage of rapid measurement method 
and QSS measurement method. The noises in real experiments are simulated, and they produce 
different measurement errors dependent on the measurement method, the process of processing 
data, and the experimental conditions. The measurement errors are compared to seek for the 
optimal experimental conditions and the better measurement method.  

4.4.1. Description of Experiments 

To numerically generate experimental data with desired ܽܪ and ܴ, Eqs. 3.13 and 3.14 are first 
calculated for a lifelong motion of the cup under conditions of ߂଴ ൌ 0.0017 ܫ , ൌ 0.0262 , 
ܴ/ܪ ൌ 11.83  and ߱௠ ൌ 958.3 . These conditions agree with the previous experiments. ܰ 
Number of calculations are carried out in each cycle, and the time difference between any two 
consecutive calculations is equal. Next, small disturbances are added up to the calculated ߙሺݐሻ to 
simulate the noises from real measurements. They are assumed to follow the normal distribution 
with mean 0 and standard deviation	0.01. Finally, the generation of data are repeated 10 times, 
each of which is separately fitted for the corresponding ܽܪ and ܴ. The mean of the ten values is 
taken as the final result. 

The generated data are fitted to determine ܽܪ  and ܴ , just like the data processing in real 
experiments. In rapid measurement method, the cycles before the quasi-steady state are generally 
used  for calculations. The QSS time is defined as the moment when fast decay falls to 0.01ߛ, or 
the start of the quasi-steady state. In some cases that fast decay vanishes too fast to form a few 
cycles, such as the one with QSS time of 11.4 as shown in Fig. 4.4.1, 8 cycles are used instead. 
Overall, the duration in which the data are used for fitting is between 0 and the maximum of QSS 
time and 50, as shown in Fig. 4.4.2. The values of ܽܪ and ܴ are then determined by the method 
of least squares, to yield the best fit between the solution of Eqs. 3.13 and 3.14 and these data.  
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Fig. 4.4.1 Numerical Experiment with ܴ ൌ ܽܪ,5 ൌ 0.1 and ܰ ൌ 25 

  

Fig. 4.4.2 Duration used for Rapid Measurements at	ܽܪ ൌ 0.1 

In the QSS method, all the cycles after the QSS time are compared with the model to fit the 
values of ߂ and ߙஶ. They are substituted to the coupled equations of Eqs. 2.24a), 2.24b) and Eq. 
4.3.14a), from which ܽܪ, ܴ and ߱ are solved. 

It is apparent that the fitted values of ܽܪ and ܴ are different from those used for the generation 
of original data. The difference is the measurement errors caused by the noises in measurements. 
It is noteworthy to mention that the measurement errors caused by the uncertainties of ߂଴, ܪ ,ܫ, 
and ߱௠ are not taken into account, as their true values are used during fitting. Regardless of the 
influence of all the other uncertainties, the relative measurement errors of electrical conductance 
and viscosity are given by 

ఙݎܧ ൌ ቚு௔೘
మ ିு௔ೌమ

ு௔ೌ
మ ቚ ൈ 100%        Eq. 4.3.15a) 

జݎܧ ൌ ቚோ೘
మ ିோೌమ

ோೌ
మ ቚ ൈ 100%        Eq. 4.3.15b) 
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where ݎܧ notes for the relative measurement error, the subscript ܽ  for the actual or original 
values, and the subscript ݉ for the measured or fitted values. 

   

Fig. 4.4.3 Comparison of Errors from Rapid measurements at ܰ ൌ 200,500 and 800 (ܽܪ ൌ
0.01) 

Numbers of points in a cycle affects the measurement errors. Fig. 4.4.3 compares the relative 
errors of electrical conductance and viscosity measured from the rapid method for ܰ ൌ 200,500 
and 800 . The differences of the relative errors between ܰ ൌ 500  and ܰ ൌ 800  are not 
considerable, suggesting that 500 points per cycle is a sufficient number for fitting. Nonetheless, 
ܰ ൌ 200 is used for all latter calculations to speed up the computation.  

4.4.2. Measurement Errors 

Fig. 4.4.4 plots the relative errors of electrical conductance and viscosity measured by the rapid 
method. Two conclusions are drawn through the observation of these figures. First, the 
measurements have higher accuracy for ܽܪ ൑ 0.1, as the measurement errors at ܽܪ ൌ 0.56 are 
much larger than those at ܽܪ ൌ 0.01 and 0.1. The errors at ܽܪ ൌ 0.1 are pretty close to those at 
ܽܪ ൌ 0.01. Second, the measurements with ܴ ൏ 2.5 should be avoided as they lead to much 
larger errors.  



32 
 

   

Fig. 4.4.4 Relative Errors by Rapid Measurements 

Fig. 4.4.5 plots the relative errors of electrical conductance and viscosity measured by the QSS 
method. The features of measurement errors can be well explained by the dependence of ߙஶ and 
߂ െ  ଴ as show in Fig. 4.2.7 and 2.9. First, the errors of viscosity tend to increase with the߂
increase of ܴଶ for ܽܪ ൌ 0.01 and 0.1. Because ߙஶ is barely dependent on ܴଶ for small ܽܪ as 
shown in Fig. 4.2.7a), the viscosity is determined only from the dependence of ߂ െ  ଴, which߂
becomes weaker for larger ܴଶ as shown in Fig. 4.2.7b). Thus, the increase of ܴଶ leads to larger 
errors. Second, when ܽܪ rises up to 0.56, the increase of ܴଶ significantly reduces the errors in 
the range of 5 ൏ ܴଶ ൏ 15. It is because the strong dependence of ߙஶ plays an important role to 
improving the measurement accuracy.   

  

Fig. 4.4.5 Relative Errors by QSS Measurements 

By comparing the measurement errors from both methods, it is noticed that the rapid method 
generally has better measurement accuracy. When appropriate ܽܪ  and ܴ  are set, the 
measurement errors of viscosity are as low as 0.15% or so by the rapid method, against 1% or so 
by the QSS method. And the errors of electrical conductance are about 0.02% by the rapid 
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method, against 0.1-0.2% by the QSS method. A better accuary is achieved by the rapid method, 
because it takes full usage of all the information.  

5. NEW STEPPED CYLINDER DESIGN 

An analytical model for the stepped-cylindrical EMV will be developed in this section. We have 
established two models for a single-cylindrical EMV in which fluid is hold in a cylindrical cup. 
Such an EMV is improved by replacing with a stepped-cylinder cup, which consists of a squat 
cylindrical container attached to a tube of narrow diameter. The improved EMV is called a 
stepped-cylindrical EMV. 

Simultaneous measurement of density together with viscosity and electrical conductance 
improves the applicability of the EMV method. Density of the fluid is of importance not only 
because it is one of the essential physical properties, but also because its value must be known to 
calculate ܽܪ  and ܫ  in the EMV measurements. If density can be determined from the EMV 
measurements to save extra efforts, it becomes more convenient to use the EMVs. The same 
desire exists for the traditional oscillating viscometers as well. 

It is possible for a stepped-cylindrical EMV to fulfill the purpose of simultaneous measurement 
of density. According to our 1D model, the change of density in a cylindrical cup does change 
any experimental conditions but the Hartmann number, ܽܪ. Because both electrical conductance 
and density are coupled in ܽܪ, it rules out any feasibility of measuring them at the same time. In 
practical, the value of density is usually obtained from other references or experiments, leaving 
the electrical conductance to be determined from the EMV measurements. When a stepped-
cylindrical cup is used instead, the volume change of fluid is capable of significantly changing 
the momentum inertia, to which the motion of the cup is extremely sensitive. Thus, it becomes 
feasible to measure density through the observed motion of the cup.   

The replacement of the stepped-cylinder cup is also expected to improve the measurement 
accuracy. Evaporation effects and meniscus effects have been suggested to be two major sources 
of measurement errors for the OCV measurements. Evaporation effects occurs as the fluid 
evaporates in the closed cup, resulting into the reduce of fluid and extra damping effects due to 
the vapor. Meniscus effects occurs due to the meniscus shape in the upper surface of fluids close 
to the side wall of the cup. It changes the height of the fluid column as well as the viscous shear. 
They can affect the EMV measurements in the same way. However, when fluid is hold in a 
stepped-cylindrical cup, the empty space above the fluid and the upper surface of the fluid are 
reduced because of the narrow size of the tube. Thus, evaporation effects and meniscus effects 
can be significantly suppressed. 

In this section, an analytic model for the stepped-cylindrical cup is established on purpose of 
verifying the feasibility of simultaneous measurement of density, viscosity, and electrical 
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conductance. Due to the common features between EMVs and OCVs, the replacement can also 
be applied to the traditional OCVs to perform simultaneous measurement and to improve 
measurement accuracy.  

5.1. Analytical Model 

5.1.1. Physical Description 

Fluid is hold in a stepped-cylindrical cup in the improved stepped-cylindrical EMV. The cup 
consists of a cylinder container connected a tube. The tube is much smaller than the container in 
diameter as schemed in Fig. 5.1.1. The fluid fills the whole container and part of the tube, 
leaving the upper part of the tube empty. The fluid in the tube is much less than that in the 
container in volume. When the fluid changes in volume due to thermal expansion, the fluid 
column rises up or falls down in the tube.  

 

Fig. 5.1.1 Schematic of a stepped-cylindrical EMV 

5.1.2. Mathematic Description 

The physical mechanisms in a single-cylindrical EMV are identical to the single-cylindrical 
EMVs as described before. The motion of the cup is described by the following dimensionless 
equation with its initial condition,  

ௗమఈሺ௧ሻ

ௗ௧మ
൅ ଴߂2

ௗఈሺ௧ሻ

ௗ௧
൅ ሺ1 ൅ ଴߂

ଶሻߙሺݐሻ ൌ  (ሻ      Eq. 5.1.1aݐሺܯ

ݐሺߙ ൌ 0ሻ ൌ 0          Eq. 5.1.1b) 

To model the motion of the fluid, the following assumptions are used: a) Fluid flows around the 
z direction, while no secondary motion exists. This assumption eliminates the convective 
acceleration term in the Navier-Stokes equation. b) The viscous force at the interacting surface 
through which the tube is connected to the container has insignificant influence on the flow in 
the tube. c) The connection between the tube and the container has negligible influence on the 
flow inside the container so that the container is simply regarded as an enclosed cylindrical cup. 
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This assumption is acceptable when the tube is much narrower than the container. d) There is no 
slip of fluid at all walls.  

Based on these assumptions, the flow in the tube is described by the following governing 
equation, as well as its boundary and initial conditions, 

డఆభሺ௥,௭,௧ሻ

డ௧
ൌ ு௔మ

ଶ
൫߱௠ െ ,ݎଵሺߗ ,ݖ ሻ൯ݐ ൅
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൅ ଷ

௥

డఆభሺ௥,௭,௧ሻ
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    Eq. 5.1.2a) 

డ

డ௭
,ݎଵሺߗ ݖ ൌ 0, ሻݐ ൌ డ

డ௭
,ݎଵሺߗ ݖ ൌ ,ଵܪ ሻݐ ൌ 0      Eq. 5.1.2b) 

ݎଵሺߗ ൌ ܴଵ, ,ݖ ሻݐ ൌ
ௗఈሺ௧ሻ

ௗ௧
        Eq. 5.1.2c) 

,ݎଵሺߗ ,ݖ ݐ ൌ 0ሻ ൌ 0         Eq. 5.1.2d) 

where ߗଵ, ܴଵ, and ܪଵ are the angular velocity of fluid, and the radius and the height of the fluid 
column in the tube, respectively. Because there is no viscous effects at the top and bottom 
surfaces, the flow is uniform along the z direction, becoming an 1D phenomena. 

The flow in the container is governed by 

డఆమሺ௥,௭,௧ሻ

డ௧
ൌ ு௔మ
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   Eq. 5.1.3a) 

ݎଶሺߗ ൏ ܴଶ, ݖ ൌ 0, ሻݐ ൌ ,ݎଶሺߗ ݖ ൌ െܪଶ, ሻݐ ൌ ݎଶሺߗ ൌ ܴଶ, ,ݖ ሻݐ ൌ
ௗఈሺ௧ሻ

ௗ௧
  Eq. 5.1.3b) 

,ݎଶሺߗ ,ݖ ݐ ൌ 0ሻ ൌ 0         Eq. 5.1.3c) 

where ߗଶ, ܴଶ, and ܪଶ are the angular velocity of fluid, and the inner radius and the height of the 
container, respectively.  

The viscous torque is caused by the viscous shear on all the walls, yielding 
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 ൨        Eq. 5.1.4ݎ݀

where ܫଵ and ܫଶ are the dimensionless moment inertia of fluid in the tube and in the container, 

respectively, with ܫଵ ൌ
గ

ଶ
ߩ̅ തܴଵ

ସܪഥଵ/ܫ଴̅ and ܫଶ ൌ
గ

ଶ
ߩ̅ തܴଶ

ସܪഥଶ/ܫ଴̅. 

5.1.3. Transient Angular Displacement 

Laplace transform method is used to solve Eqs. 4.2.1-4.2.4 as we have done in last two sections.  
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The Laplace form of its angular velocity in the tube is the same to Eq. 5.1.8, which is rewritten 
as  

,ݎ௅ଵሺߗ ሻݏ ൌ ቂߙݏ௅ሺݏሻ െ
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     Eq. 5.1.5 

Because the flow is symmetric around the half-height plane in the container, ߗ௅ଶ can be easily 
obtained from Eq. 4.3.5 by adapting the height to ܪଶ/2,  

,ݎ௅ଶሺߗ ,ݖ ሻݏ ൌ ∑ ଶோమ
௥ఓ೔௦೘

ஶ
௜ୀଵ

௃భሺఓ೔௥/ோమሻ

௃బሺఓ೔ሻ
൤1 െ

ୡ୭ୱ୦	ൣ ሺுమ/ଶା௭ሻඥ௦೘൧

ୡ୭ୱ୦	ሺுమඥ௦೘/ଶሻ
൨ ቂݏݏாߙ௅ሺݏሻ െ

ு௔మఠ೘

ଶ௦
ቃ ൅   ,ሻݏ௅ሺߙݏ

           Eq. 5.1.6  
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ቁ
ଶ
 and ݏா ൌ ݏ ൅ ு௔మ

ଶ
.  

Substituting Eqs. 4.2.5 and 4.2.6 into the Laplace form of Eqs. 4.2.4 and 4.2.1, the angular 
displacement of the cup is given by 
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        Eq. 5.1.7 

where, 
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The solution is not different from those established for the 1D and 2D model, except the 
expression of ܦሺݏሻ. The first term in the RHS of Eq. 5.1.8 contributes to the viscous shear on the 
tube, the second one results from the contact of fluid with all the surfaces of an imaginary 
enclosed container, and the third one compensates for the loss of the contact surfaces due to the 
opening at the top walls.  

In a similar way to infer the expression of the actual angular displacement of the 1D model, the 
inverse Laplace transform of Eq. 5.1.8 yields 

ሻݐሺߙ ൌ ஶߙ ൅ ሻݐሺ்ߙ ൅  ሻ          Eq. 5.1.9ݐሺ்ߙ

with 

ஶߙ ൌ Resሺݏ ൌ 0ሻ ൌ ఠ೘

ଵା௱బ
మ lim௦→଴

஽ሺ௦ሻ

௦
,      Eq. 5.1.9a) 
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ሻݐ஽ሺߙ ൌ ∑Resሺݏ ൌ േሻݏ ൌ ∑ ு௔మఠ೘஽ሺ௦ሻ

௦ሺଶ௦ାு௔మሻൣଶሺ௦ା௱బሻା஽′ሺ௦ሻ൧
௦ୀ௦േ ݁௦௧,    Eq. 5.1.9b) 

ሻݐሺ்ߙ ൌ ∑ Resሺݏ ൌ ௞ሻݏ
ஶ
௞ୀଵ ൌ ∑ ு௔మఠ೘஽ሺ௦ೖሻ

௦ೖሺଶ௦ೖାு௔మሻൣଶሺ௦ೖା∆బሻା஽′ሺ௦ೖሻ൧
ஶ
௞ୀଵ ݁௦ೖ௧.   Eq. 5.1.9c) 

5.2. Results and Analysis 

The study is to examine the feasibility of simultaneously measuring the density, viscosity, and 
electrical conductance in a stepped-cylindrical EMV. Because the replacement of the stepped-
cylindrical cup cause no difference in the measurements of viscosity and electrical conductance, 
as we will show later, our analysis mainly focus on the impact of various density on the motion 
of the cup. 

The motion of the cup is exclusively characterized by a group of dimensionless numbers, 
including ߙ ,߬ ,ߛஶ, ܣ,	߱, ߰ and ߂, which are defined by Eqs. 5.1.29-32. They are determined by 
comparing Eqs. 5.1.29-32 with the solution of Eq. 5.1.9. In our calculations, ܪଶ ൌ 2ܴଶ, ܫଶ ൌ
ଵܪ ,0.02 ൌ ܴଵ and ܽܪ ൌ 0.1 unless other specific values are given. A series of ܴଵ/ܴଶ of 0.01, 
0.1 and 0.2 are used to examine the impact of the geometry of the cup. In extreme case of 
ܴଵ/ܴଶ ൌ 0.01, the stepped-cylindrical cup functions as an enclosed cylindrical container full of 
fluid in terms of the EMV measurements, in spite of the mass exchange between the container 
and the tube.  

5.2.1. Measurement of Viscosity and Electrical Conductance. 

The response of the motion of the cup to the change of viscosity is shown in Figs. 4.2a) and b). 
The independent variable ܴଶ acts as viscosity as ܴଶ is a function of only viscosity for a specific 
system. The values of ܴଵ,	ܪଵ, and ܪଶ adapt to the change of ܴଶ in calculations, assuming the cup 
is unchanged in geometry. It is seen from Figs. 4.2a)-d) that the curves of ߬ and ߂ are completely 
or almost overlapped for a variety of ܴଵ/ܴଶ . Such a feature exists for the remaining 
dimensionless numbers, ,ܣ ,ߛ	ߙஶ, ߰, and ߱, which are not plotted.  
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    a) ߬ vs.	ܴଶ      b) ߂ vs.	ܴଶ 

Fig. 5.2 Response of Angular Displacement to Change of Viscosity 

Figs. 4.3a) and b) plot ߬  and ߂  with the change of electrical conductance, respectively, as 
examples of the response of the motion of the cup. Similar to Fig. 5.2, all curves are overlapped 
with each other for a variety of ܴଵ/ܴଶ.  

       

 

     a) ߬ vs. ܽܪଶ             b) ߂ vs. ܽܪଶ        
  

Fig. 5.3 Response of Angular Displacement to Change of Electrical Conductance 

The independence of ܴଵ/ܴଶ shown in Figs 4.2 and 4.3 implies that the addition of the tube has 
no impact on the measurements of viscosity and electrical conductance of fluid in the container, 
provided that the tube is much narrower than the container. It is explained by the fact that the 
moment of inertia of the fluid in the tube is less than that in the container by a few orders of 
magnitude, as the moment of inertia has a fourth power relationship with the diameter. 
According to our 1D single-cylindrical model, the strength of all components of the angular 
displacement varies linearly with the moment of inertia of fluid. It means that the motion of the 
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cup is mostly controlled by the fluid in the container, while the fluid in the tube causes only a 
negligible disturbance. Therefore, in terms of the measurements of electrical conductance and 
viscosity, a stepped-cylindrical EMV works just like a single-cylindrical EMV with an enclosed 
cup full of fluid.  

5.2.2. Measurement of Density 

In a specific suspension system, the variation of density affects the motion of the cup mainly via 
changing ܫଶ and ܽܪ, and they they follow the relationship of 2

2 ~~ HaI  ଵ is the remainingܫ .

parameter that is subject to the change of density. However, the change of ܫଵ is less than that of 
 ଶ by a factor of ሺܴଵ/ܴଶሻଶ. For instance, when half of the fluid is expelled out of the containerܫ
due to thermal expansion in a stepped-cylindrical cup with ܴଵ/ܴଶ ൌ  ,ଶ will decrease by halfܫ ,0.1
while ܫଵ increases by only 0.005ܫଶ. As a consequence, the overall moment of ineria of fluid in a 
stepped-cylindrical cup strongly relies on density, although the total mass of fluid never changes 
in such an enclosed system. The variation of moment of inertia distinguishes the stepped-
cylindrical EMV from the single-cylindrical EMV. 

The response of angular displacement to the change of density is plotted in Fig. 5.4a)-g). As the 
density varies from 0.3 to 1 in these figures, the corresponding ܽܪଶ decreases from 0.033 to 
0.01, and ܫଶ increases from 0.06 to 0.2.   

  

   a) ߬ vs. Variation of Density   b) ߰ vs. Variation of Density 
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   c) ߛ vs. Variation of Density   d) ߙஶ vs. Variation of Density 

 

  

   e) ܣ vs. Variation of Density   f) ߂ vs. Variation of Density 

   

      g) ߱ vs. Variation of Density 
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Fig. 5.4 Response of Angular Displacement to Change of Density 

Generally, the response to the change of density is in accordance with our earlier analyses from 
the 1D single-cylindrical model, if we regard the repsonse as the co-contribution of changes of 
both ܫଶ and ܽܪ. For example, ߬ is indepdent of the change of moment of inertia according to the 
1D model. Hence, the change of ܽܪ alone contributes the most to the variation of ߬. It explains 
that the curves in Fig. 5.4a) agree well with the ones in Fig. 5.5b) for ܽܪଶ between 0.033 and 
0.01. Another example is the variation of ߂. It should be seen from Fig. 5.9b) that the decease of 
߂ ଶ from 0.033 to 0.01 linearly decreasesܽܪ െ  ଶܫ ଴ by only less than 10%, while the increase of߂
from 0.06 to 0.2 almost triples ߂ െ  ଶ,  theܫ ଴. As a result of the overwhelming contribution of߂
curves of ߂ െ ଴߂  straightly clime in Fig. 5.4f), with slopes corresponding to the values of 
ሺ߂ െ   .(in Fig. 5.9b ܫ/଴ሻ߂

In addition, the response to the change of density is slightly dependent on the value of ܴଵ/ܴଶ. 
Some curves are clearly varied for a variety of ܴଵ/ܴଶ in Fig. 5.4. The dependence is attributed to 
the different change of ܫଵ in  the tubes with different ܴଵ, even if the fluid exchange is the same.  

Overall, ߂ െ  ଴ is the most senstive parameter with the change of density. Actrually, the other߂
parameters only slightly reponds to the change of density in comparison with the repsonses to 
changes of electrical conductance or viscosity. Because the information collected from the 
motion of the cup is much more than what is necessary for determing the electrical conductance 
and visocity, the dependence of ߂ െ  ଴ can be saved somehow to measure the density. If doing߂
so, the increase of ሺ߂ െ  ଶ is likely to reduce the errors of measureing density. The largestܫ/଴ሻ߂
value of ሺ߂ െ occures at ܴଶ	ଶܫ/଴ሻ߂ ൌ 5 according the 1D single-cylindrical model. 

5.3. Step Cylinder Summary 

An analytical model for a stepped-cylindrical EMV has been established with a few assumptions: 
the uncoupling of fluid flow in the tube and in the container, negligible advective flow, and 
negligible opening effects on the flow in the container. Calculations are carried out to plot the 
response of the motion of the cup to the change of viscosity, electrical conductance, and density 
in stepped-cylindrical EMVs. From the analysis of the responses, it is concluded that a stepped-
cylindrical EMV with a narrow tube is not quite different from a single-cylindrical EMV in 
terms of measuring electrical conductance and viscosity. The analysis also suggests the 
feasibility of simultaneously measuring density, because the damping ratio of the oscillation is 
very sensitive to the change of density. 

In future studies, numerical simulations for the behavior of a stepped-cylindrical EMV are 
needed to examine the accuracy of the current model. Based on the simulation results, the current 
model will be corrected in need, so that it is applicable for predicting electrical conductance, 
viscosity, and density in sufficiently high accuracy.  
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6. EXPERIMENTAL 

6.1. General Principle  

 

The measurement principle of this proposed 
project will be the oscillation type and will be 
based on the previous work on the transient 
torque and oscillation-cup viscometer.  The 
advantage of this non-intrusive, contactless 
technique method is its operation at high 
temperatures, sealed sample container, and 
possible adaptation to glovebox application.   
For instance, the PI’s previous research for 
NASA was on compound semiconductor 
melts containing mercury, cadmium, and 
tellurium, which has a high vapor pressure (up 
to 30 atm), high temperature (up to 1100 C), 
and a toxic vapor.  

The schematic diagram of the transient 
torque/oscillation cup viscosity measurement system is shown in Figure 2. The melt sample is 
sealed inside a quartz ampoule, and the ampoule is suspended by a long quartz fiber or tungsten 
wire to form a torsional oscillation system.  For the transient torque method, a rotating magnetic 
field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate 
and oscillate around its vertical axis.  A high resolution angle detector is used to measure the 
torsional oscillation angle of the ampoule.  Based on the transient behavior of the angle after the 
rotating magnetic field is applied, the viscosity of the melt can be determined based on the melt 
viscous force on the ampoule wall.  In addition, the electrical conductivity of the melt can also be 
determined simultaneously with viscosity.  For the operation in oscillation cup mode, an initial 
torsional oscillation of the ampoule will be damped down after the rotating electromagnetic field 
is turned off.  The viscous damping of the ampoule oscillation by the fluid can be used to 
calculate the fluid viscosity.  There are two physically interacting systems involved: a torsional 
oscillation system consisting of the ampoule assembly suspended by the fiber, and the liquid 
flow driven by the rotating magnetic field.  The interaction between the two systems is on their 
interface: the viscous shear of the liquid exerts a torque on the ampoule inner wall under the no-
slip boundary condition for the liquid.  These two systems can be described by respective 

FIGURE 6.1: Schematic of the transient-
torque/oscillation cup measurement system. 
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governing equations with initial and boundary conditions.  For ampoule torsional oscillation, the 

deflection angle of the ampoule at time t, (t), measuring from the initial position when the fluid 
is motionless, can be described by the following oscillation equation:  

       tMtk
dt

td
C

dt

td
I  

2

2

,     Eq. 6.1 

where I is the moment of inertia of the ampoule assembly without the liquid, C is the damping 
coefficient which is mainly related to the internal friction of the fiber suspending the ampoule 
assembly (not the damping of the liquid inside the ampoule) and k is the torsional spring constant 
of the fiber.  The torque exerted on the ampoule wall M(t) by the liquid shear inside the ampoule, 
which is a function of the viscous shear on the wall, is expressed by: 

   
Rrdr

trdV
hRtM




,

2 2       Eq. 6.2 

where R is the inner radius of the ampoule, h is the height of the fluid,  is the density of the 

fluid,  is the kinematic viscosity of the fluid, and V (r, t) is the tangential fluid velocity in 

cylindrical coordinates (r, , z).  The liquid flow can be treated as two dimensional planar and 
axis-symmetric because the height of the fluid column is much larger than its diameter.  
Therefore, the Navier-Stokes equation for the laminar flow has only the tangential component 
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

,   Eq. 6.3 

where f is the Lorentz body force cause by the rotating magnetic field.  Equations 1-3 can be 
solved with proper initial and boundary conditions to describe the transient deflection angle.  
Because the parameters in these equations can be determined, the unknown liquid properties, 
viscosity and electrical conductivity, can be obtained by solving the inverse problem with 
coupled fluid flow and ampoule oscillation.   

The instrument parameters, namely, the moment of inertia (I), the damping coefficient (C), and 
the torsional spring constant (k) for the suspended-ampoule assembly must be determined 
accurately. Specifically, the instrument parameters (I, C, & k) of each ampoule assembly need to 
be determined due to potential differences in each individual ampoule. The method determines 
the instrument parameter (I, C, & k) can be similar to that used in the oscillation cup method 
described by Thresh, which uses a free oscillation process by adding two additional metal rings 
with known moments to the oscillation system. The damping constant, as a property of the 
tungsten wire or quartz fiber, is measured using a solid metal sample attached to the same fiber 
suspension by conducting a free oscillation experiment. For samples that solidified at room 
temperatures, the solidified sample can be used instead of using a different solid to determine the 
actual damping constant of the system.  
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There will be significant technical challenges to develop a viscosity measurement system that 
can measure melts up to 1400 C, which is the typical range for fuel melts.  The challenges 
include material selection for the oscillation apparatus, ampoule material selection and the 
coatings for the interior of the ampoule to prevent chemical interactions of the melt and the 
ampoule.  Due to the high operational temperatures, most components must be rated for high 
temperatures and the system must be designed and built with the intention for the eventual use 
for U-Pu-Zr based alloys.  Another challenge is how to make a furnace that can maintain the 
required temperature while having minimum interference with the electromagnetic field.  System 
shakedown, tuning, and calibration also require significant experience and time.  

The scientific merit of this project has three main aspects in advancing the state of knowledge in 
measurement science, and the fuel fabrication program of FCRD.  First, there is no such 
measurement system in this temperature range for nuclear fuels in the world.  The new transient 
torque/oscillation cup system will provide a unique capability for the measurement of viscosity, 
which is an advance in the general measurement of science and technology.  Second, the 
capability of determination of required properties for the advanced fuel program provides needed 
fundamental information for the understanding of the behavior of the melts, because viscosity is 
the most important property to show melt structure and phase transformations.   Third, the 
viscosity data obtained can significantly improve the accuracy of computational modeling of the 
casting process for metal fuels because, as stated earlier, there is no such data available and 
viscosity is the most important fluid property that governs the melt flow. 

After the transient torque viscometer was set up, a seven nines grade mercury sample was used 
to verify the transient torque method for determining electrical conductivity and viscosity.  This 
is because the electrical conductivity and viscosity of mercury are easily measured in the 
temperature range from room temperature to 473 K and the data for mercury are published by 
Dyos and Farell.  The electrical conductivity and the viscosity of mercury at 326.6, 351.8, and 
377.0 K were measured using a transient torque viscometer for the verification of the transient 
torque method.  The main advantage of this method is that the measurement of both electrical 
conductivity and viscosity can be completed in 1 or 2 min, as opposed to the 1- or 2-h 
measurement required using the oscillation cup method, which can only be used to measure 
viscosity.  Thus, the transient torque method is a non-intrusive method that is capable of rapid 
and simultaneous determination of the electrical conductivity and viscosity of a liquid. 

6.2. Experimental Parameters 

The torsion wire chosen for ampoule suspension is a quartz fiber instead of a tungsten wire, 
which is usually used for the oscillation cup viscometers.  The quartz fiber experiences almost no 
plastic deformation as a function of time, and the torsional spring constant is also smaller to 
enable a longer oscillation period, which reduces relative measurement errors.  The quartz fiber 

is 125 m in diameter and approximately 26.2 cm long.  One end of the fiber is glued to an 
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aluminum disk, and the other end is glued to the center of the encoder stand, as shown in Fig. 4.2.  
The ampoule containing the sample is attached to the center of the encoder stand by a rigid metal 
and quartz tube to reduce the effect of “wobbling motion” on the measurements.  The ampoule is 
positioned at the center of the RMF by adjusting the position of the aluminum disk on top of the 
assembly. 

The RMF is generated by a set of electromagnets.  Each electromagnet consists of a series of 
coils placed in the stator core and connects to form 3-phase Y-connection windings.  A Pacific 
330-AMX series power supply is used to provide power for each phase.  The power supply is 
capable of separately adjusting the voltage applied to each phase of the electromagnets in order 
to obtain a suitable magnetic field at the center of the electromagnets for the transient torque 
viscometer.   

A uniform magnetic field was required for the transient torque method to carry out the 
measurement of the electrical conductivity and viscosity of the liquid sample.  By adjusting the 
voltage applied to each phase of the electromagnets, an fairly uniform rotating magnetic field can 
be obtained at the center of electromagnets.  A Hall effect probe was used to measure the 
strength of RMF in a cylindrical coordinates.  The origin of the cylindrical coordinate is the 
center of the electromagnet.  First, the Hall effect probe was placed at the origin position in the 

middle of electromagnets.  The strength RMF() of the magnetic field was measured along the 

azimuthal direction ().  The RMF() measurement was carried out by rotating the probe in a 10 
increment until the probe was back to the starting position.  Second, the strength RMF(z) of the 
magnetic field was measured along the vertical direction (z) at the center of the electromagnets.  
Each measurement was carried out with an interval of 0.5 cm away from the origin position 
along the z-axis.  Third, the strength RMF(r) of the magnetic field was measured along the radial 
direction (r).  Each measurement was carried out with an interval of 0.5 cm away from the origin 
position along the r-axis.  One component of RMF(r) is RMF(r(r)), which was the magnetic field 
strength measured along a r-axis when the probe was perpendicular to the r-axis.  Another 
component of RMF(r) is RMF(r(Q)), which was the magnetic field strength measured along the 
r-axis when the probe was parallel to the r-axis. 

The furnace that was used to heat the sample is placed in the middle of the electromagnets.  It is 
made of a ceramic outer shell to allow penetration of the electromagnetic field.  The heating 
elements are wound longitudinally to minimize the effect on the RMF inside the furnace of the 
magnetic field generated by the ac current through the heating element during heating.  It was 
found that an approximately 2% reduction in the strength of the RMF occurred when an 8 amp 
AC current was used to heat up the furnace. 

A MicroE Gold 1400 transmissive rotary encoder was used to measure the angular displacement 
of the ampoule.  It consists of a sensor and a diffraction grating plate.  Using a MC2000 motion 
board provided by MicroE, the resolution of the angular displacement is less than 2.7�10-7 
degrees.  A Visual Basic program was developed to communicate with the MC2000 motion 
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board and to record the angular displacement of the ampoule.  The maximum frequency of the 
data acquisition of the MC2000 motion board is 40 Hz. 

The ampoule and the encoder system are enclosed in a vacuum chamber.  The pressure in the 

chamber is maintained at approximately 2.610-4 atm during the measurements.  The reduction 
in the air pressure significantly reduces the background noise associated with the measurements 
of the ampoule deflection angle.  A big change in pressure is also used as an indicator of 
ampoule failure due to the high vapor pressure of the melt sample.  When the pressure exceeds a 
pre-selected set point, in cases of ampoule failure, the power to the transient torque viscometer 
would be automatically turned off to keep the sample from continuously heating up. 

6.3. Results and Discussion 

A seven nines grade mercury (47.1 grams) sample was sealed in a fused silica ampoule 
(approximately 10 cm long with a 9 mm nominal inner diameter and 15 mm nominal outer 
diameter).  The ampoule was positioned in the middle of the electromagnets, as indicated in the 
schematic of the transient torque viscometer (Fig. 6.1).  The data acquisition system for 
measuring the deflection angle of the ampoule was initialized when the liquid mercury was 
approximately motionless in the ampoule.  At this point, the RMF was turned on.  The 
interaction between the RMF and the mercury generated a Lorentz force which induced a liquid 
flow in the same direction as that of the RMF.  The flow in the mercury sample caused the 
ampoule to rotate around its vertical axis.  At the same time, the torsion fiber provided a 
restoring torque which induced a torsional oscillation of the ampoule. 

Fig. 6.2 shows the ampoule deflection angle of mercury at 377 K versus time, which was 
measured using the transient torque viscometer.  Initially, the sample and the ampoule were at 
rest, and there was a small oscillation noise around the equilibrium position of 0 degree angle.  
An RMF of approximately 71 Gauss was turned on at about 77 s. The ampoule immediately 
responded to the mercury flow induced by the Lorentz force and started to rotate.  At the same 
time, an oscillatory motion was superimposed on the ampoule rotation due to the restoring torque 
generated by the torsion fiber.  The amplitude of the oscillation was approximately 0.4 degree, 
and its period was approximately 16 s. After about 100 s, the flow in the mercury was no longer 
accelerated by the RMF, and the ampoule oscillated around the new equilibrium position of 
approximately –1.0 degree. At about 263 s, the RMF was turned off.  After another 100 s, the 
flow due to the RMF was diminished, and the ampoule oscillated around the original equilibrium 
position at a 0 degree angle.  From the experimental curve shown in Fig. 38, the electrical 
conductivity and viscosity of mercury can be determined.  The principle and theory behind the 
determination of the electrical conductivity and the viscosity from the data shown in Fig. 38 are 
discussed in the following sections. 
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Fig. 6.2. Measured ampoule deflection angle vs. time for mercury at 377 k. 

To determine the electrical conductivity and viscosity, the instrument parameters, namely the 
moment of inertia (I), the damping coefficient (C), and the torsional spring constant (k) for each 
fiber-ampoule assembly, must be determined accurately, as well as the strength of the RMF (B0).  
Specifically, the instruments parameters (I, C, k) of each ampoule assembly, which were used in 
each numerical analysis (numerically solving Eqs. 14-21) to determine the electrical conductivity 
and the viscosity, need to be determined, due to the slight difference of each individual ampoule 
assembly.  The method used to determine instrument parameters (I, C, k) is the same method 
used in the oscillation cup method described by Thresh.  This method uses an RMF-free 
oscillation process at room temperature by adding two additional metal rings with known 

different moments of inertial (I1 and I2) to the torsional oscillation system.  B0 is accurately 
calibrated experimentally using either a solid or liquid with known electrical conductivity by 
conducting a transient torque experiment.  B0 only needs to be measured once for the viscometer.  
The theory and procedures for determining the instrument constants (I, C, k) and B0 are described 
in detail below. 
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The rotation angle of the ampoule assembly, (t) at time t, can be expressed by a different form 
of Eq. 14 as follows: 

         tMtI
dt

td
I

dt

td
I   2

0
2
0002

2

12 , Eq. 6.4 

where I is moment of inertia of the ampoule assembly without a sample, 0 = 2/T0 is the 
oscillation frequency of the empty ampoule assembly in a vacuum, T0 is the corresponding 

period of oscillation, and 0 is the damping logarithmic decrement for the fiber-ampoule 
assembly without a sample.  M(t) is the torque on the inner ampoule wall, which is generated by 
the interaction of the RMF and the sample in the ampoule.  The damping coefficient, C, and 
spring constant, k, can be expressed by: 

002  IC  Eq. 6.5 

and 

 2
0

2
0 1  Ik . Eq. 6.6 

Since 0 is three orders of magnitude smaller than 1, the spring constant can be rewritten as 
follows: 

2
0Ik  . Eq. 6.7 

To calculate C, and k, the moment of inertia of the empty ampoule assembly (I), the angular 

frequency of the empty ampoule assembly (0), and the logarithm decrement of the empty 

ampoule assembly (0) need to be determined.   

The moment of inertia of the empty ampoule assembly (I) is determined by measuring the 

angular frequencies (1 and 2) after adding two metal rings with known moments of inertia, I1 

and I2, on the ampoule assembly containing a sample.  It should note that the spring constant (k) 
is a constant for the torsional system with or without adding the two metal rings on the fiber-

ampoule torsional oscillation system.  If a metal ring with moment of inertia (I1 or I2) is added 
to the fiber-ampoule torsional oscillation system, the sprint constant (k) can be expressed as 
follows: 

  2
11 IIk   Eq. 6.8 

or 

  2
22 IIk  . Eq. 6.9 

Therefore,  



49 
 

    2
22

2
11

2
0  IIIIIk  . Eq. 6.10 

By regrouping Eq. 6.10, the moment of inertia (I) of the empty ampoule assembly without the 
metal ring added can be calculated from the following equation: 

2
2

2
1

2
11

2
22








II

I . Eq. 6.11 

The angular frequency with the metal ring added on the ampoule-oscillation system, such as 1 

and 2, and the logarithmic decrement with the metal ring added on the ampoule-oscillation 

system, such as 1 or 2, are determined by the RMF-free oscillation, which is the same as that 
using the oscillation cup method.  It should be noted that the measured RMF-free logarithmic 

decrement of the amplitude, such as 1 or 2, is not 0 in Eq. 6.4.  0 is the logarithmic 
decrement of the fiber-ampoule system without a liquid inside the ampoule and without the 

addition of the metal rings.  1 or 2, are the logarithmic decrement of the fiber-ampoule system 
with a sample inside the ampoule when the two metal rings were added, respectively.  For an 

RMF-free oscillation, (t) can also be written in an oscillation motion as follows: 

    00 cos
2/

exp ttt
T

ampt 





 
  , Eq. 6.12 

where 0 is the initial angular position before the ampoule assembly oscillation starts, amp is the 

amplitude of the oscillation,  is the damping logarithm decrement of the ampoule containing a 
liquid, T/2  is the angular frequency of the oscillation, T is the corresponding oscillation 
period, and t0 is oscillation starting time.  By a standard least root-mean-square fitting of the 

experimental data to Eq. 28, 0, amp, , , and t0 can be obtained.  Table 6 lists a fitting result of 
an ampoule assembly oscillation with a metal ring added and the mercury sample sealed in the 
ampoule at room temperature.  Fig. 40 also shows this fitting curve and the experimental curve 

of RMF-free ampoule assembly oscillation.  After 1 and 2, and 1 and 2, are determined 
using this method, the moment of inertia I is calculated from Eq. 6.11.  The spring constant k and 

the angular frequency 0 of the fiber-ampoule oscillation system without the sample sealed in 
the ampoule are then calculated from Eq. 6.10.  

Because the sample needed to be sealed in the ampoule before any experimental parameter 
determination was carried out, it is impossible to measure the logarithmic decrement of the 

empty fiber-ampoule system (0).  By using an approximation, the logarithmic decrement of a 

fiber-ampoule system with solid sample sealed in the ampoule (s) is used instead of the 
logarithmic decrement of the fiber-ampoule system with no sample inside the ampoule.  This is 
because the damping coefficient of the empty ampoule assembly is mainly from the internal 
friction inside the fiber and not from the solid sample.  For a liquid sample, such as mercury, at 

room temperature the logarithmic decrement of the empty ampoule system (0) is used as the 
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value of the logarithmic decrement of the fiber-ampoule system with a solid sealed in the 

ampoule (s).  In this study with mercury as a sample, a zinc metal sample with high electrical 
conductivity at room temperature was chosen.  Table 7 shows a set of the determined 
experimental parameters for the numerical analysis. 

With all the instrumental parameters (I, C, k) determined, the viscosity and nominal Lorentz 
force generated by the RMF of the liquid sample can be calculated by the numerical solution of 
above equations and boundary conditions.  The computation uses a control volume method for 
the flow calculation, with two hundred radial nodes along the radial direction and time steps of 
0.01 second.  A 4th-order Runge-Kutta method was used.  An iterative process is used to solve 
the coupled oscillation and flow problem simultaneously.  A best fitting procedure was used to 
achieve a least root-mean-square error between the computation result and the experimental data 
to obtain the viscosity and Lorentz force.  Table 8 shows the numerical fitting results for the 
viscosity and Lorentz force from the experimental data of mercury at different temperatures. 

Table 1: Fitting results of the RMF-free oscillation for the mercury ampoule assembly with a 
metal ring added 

Oscillation parameter Fitting result Fitting error 

0 (degree) -0.01838 0.00004 
amp (degree) 2.0242 0.0002 

t0 (sec) 314.0310 0.0003 

 4.310-3 0.0001 

 (1/sec) 0.35403 0.00001 
 

Table 2: Experimental parameters for a mercury sample at 377 k 

Suspension wire 125m diameter quartz fiber 
26.2 cm length 

Sample Material 
Density 

Height 

Radius 

Mercury 
1.340104 kg/m3 

5.39210-2 m 

4.55710-3 m 
Suspension System  

Moment of Inertia (I) 

Torsional Spring Constant (k) 

Damping Coefficient (C) 

 

1.86610-5 kg m2 

2.88810-6 kg m2/s2 

2.49410-8 kg m2/s 

Angular frequency of RMF 377 Rad/s   (60) (Hz) 
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Fig. 6.3. Fitting results and RMF-free oscillation of the ampoule assembly containing a mercury 
sample sealed in the ampoule at room temperature with a metal ring added. 

 

Table 3: Numerical fitting results for viscosity and Lorentz force from experimental data for 
mercury sample 

Temperature (K) Kinematic Viscosity (m2/s) Lorentz Force (N/m3) 
301.3 1.12210-7 6.604 
326.6 1.03810-7 6.498 
351.8 0.96610-7 6.389 
377.0 0.91310-7 6.249 
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The electrical conductivity of liquid mercury can be calculated from Lorentz force using Eq. 19 
if the B0 is known. In our study, B0 is accurately determined by using a mercury sample at 301.3 

K, which has a known electrical conductivity of 1.051106 -1m-1.  The Lorentz force of 
mercury induced by the RMF at 301.3 K was 6.604 N/m3. B0 is then calculated from Eq. 17.  
After the B0 is determined, the unknown electrical conductivity of the liquid mercury at 326.6, 
351.8, and 377.0 K can be calculated from the Lorentz force, which is the fitting result from the 
numerical analysis, at each temperature.  Thus the viscosity and electrical conductivity of 
mercury is simultaneously determined by the transient torque method.  

The results for the viscosity and electrical conductivity of mercury at selected temperatures as 
determined by the transient torque method are compared in Table 9 with the published data.  The 
published viscosity data for mercury was determined by Menz using the oscillation cup method.  
The kinematic viscosities of mercury as determined in this study at 301.3, 326.6, 351.8, and 377 

K are, respectively,   1.12210-7, 1.03810-7, 0.96610-7, and 0.91310-7 m2/s.  The maximum 
difference between the viscosity values determined in this study and published values is 1.28%.  
The published electrical conductivity data of mercury at selected temperatures are measured 
using four-probe method.  In this study the electrical conductivities of mercury at 326.6, 351.8, 

and 377 K were then determined to be 1.030106, 1.010106, and 0.982106 -1m-1. A 
maximum difference between the published value of electrical conductivity and that determined 
in this study at 351.8 K was 1.134%.  Overall, there is excellent agreement between the electrical 
conductivity and the viscosity as determined using the current method and the published 
electrical conductivity and viscosity data for mercury. 

As seen in Table 9, the difference between the published values of viscosity and electrical 
conductivity and those measured in this study increases as the temperature increases.  For the 
viscosity measurement, the liquid flow cannot be treated exactly as two-dimensional planar and 
axisymmetric because the temperature in the mercury is slightly non-uniform (about 3K top 
hotter) along the z-axis.  As the temperature of the mercury is increased, the temperature 
difference between the top and the bottom of mercury sample slight increases.  Thus, the 
increasing difference between the published viscosity values and those determined in this study 
may be due to this phenomenon.  For the electrical conductivity measurement, the standard value 
was the electrical conductivity value of mercury at room temperature.  After the mercury sample 
was heated, the temperature of the electromagnets was increased.  The increased temperature of 
the electromagnets caused the reduction in the strength of the rotating magnetic field.  Therefore, 
the difference between the published electrical conductivity values and those determined in this 
study increased as the temperature increased.   

Table 4: Comparison of experimental results of mercury with published data 

 
T  Kinematic viscosity (m2/s) Electrical conductivity (-1m-1) 
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(K) Present Published 

(Menz, 
1966) 

Difference Present Published 

(Dyos, 
1992) 

Difference 

301.0 1.12210-7 1.12110-7 0.01% 1.051106* 1.051106 - 

326.6 1.03810-7 1.04010-7 0.20% 1.030106 1.027106 0.25% 

351.8 0.96610-7 0.97610-7 1.03% 1.010106 0.999106 1.13% 

377.0 0.91310-7 0.92510-7 1.28% 0.982106 0.972106 1.09% 

*Standard value 

If desired, the transient torque viscometer can also be used as an oscillation cup viscometer.  The 
experimental data from 350 s on, in Fig. 41, is actually oscillation damping by the fluid without 
RMF stirring.  The logarithmic decrement can be obtained to calculate the viscosity of the fluid 
using Roscoe’s equation (Eq. 5).  It is apparent from Fig. 41 that the time needed for the 
oscillation cup measurement is much longer than that for the transient torque method.  Fig. 41 
also shows that the transient torque numerical simulation result correctly predicts the oscillation 
cup portion of the experimental data, which is the data after 350 s.  In other words, the viscosity 
results from the two methods are the same in our experimental setup. 

7. UNCERTAINTY EVALUATION 

7.1. Uncertainty Propagation of Oscillation Cup Technique 

The uncertainty resulting from such a viscometer with either viscosity-computation method is 
not thoroughly explored in previous works and frequently consists of order of magnitude 
considerations. To explore the uncertainties from such a measurement, numerical simulations of 
the viscometer were used in this study to estimate viscosity uncertainties using the Monte Carlo 
method. Such an approach is needed because of the iterative nature of the viscosity computation. 
The result of the study, the uncertainty level and the extent of the contributions from different 
parameters, can be used for the design and optimization of oscillating-vessel viscometers. 

For the initial design and evaluation with the focus on the uncertainty assessment, numerical 
simulation of the viscometer is used to estimate viscosity uncertainties through the Monte Carlo 
method. The simulation computes the system response for a particular set of inputs (viscosity, 
moment of inertia, spring constant and hysteretic damping), and the viscosity is calculated using 
two methods: the Roscoe approximate solution and a numerical-fit method. For numerical fitting, 
a residual function of the logarithmic decay of oscillation amplitude and oscillation period is 
developed to replace the residual function of angular oscillation, which is mathematically stiff. 
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The results of this study indicate that the method using computational solution of the equations 
and fitting for the parameters should be used, since it almost always out-performs the Roscoe 
approximation in uncertainty. The hysteretic damping and spring stiffness uncertainties translate 
into viscosity uncertainties almost directly, whereas the moment of inertial and vessel-height 
uncertainties are magnified approximately two-fold. As the hysteretic damping increases, so does 
the magnification of its uncertainty, therefore it should be minimized in the system design. The 
result of this study provides a general guide for the design and application of all oscillation-
vessel viscosity measurement systems. 

7.2. Monte Carlo Methods 

The governing differential equations of flow and oscillation are simplified by the assumption that 
the flow is one-dimensional inside a long, oscillating cylinder. The fluid flow and vessel 
oscillation equations are solved numerically to simulate the behavior of the system after release 
from an initial displacement, thereby generating a system response in the form of angular 
oscillation verses time after release. Two methods of computing viscosity from the system 
response are considered: Roscoe's approximate analytical method and a numerical-fit procedure. 
The expected viscosity uncertainty from each computation method from a system response is 
quantified using Monte Carlo uncertainty analysis. 

The simulation computes the system response for a particular set of material and geometric 
inputs (viscosity, moment of inertia, spring constant and hysteretic damping) by numerically 
solving the system's governing differential equations, using second-order finite differences in 
space and a second-order Runge–Kutta method in time. 

To quantify the uncertainty from indirect computational methods such as the Roscoe's and the 
numerical-fit viscosity computation, Monte Carlo uncertainty analysis was performed using a 
particular viscometer, and the results from the analysis are only valid for that exact 
configuration. In this procedure, an uncertainty was assumed for one or more of the viscometer's 
design parameters and from these assumed uncertainties a set of viscometer designs were 
generated which vary from the device of interest according to the assumed uncertainties in a 
Gaussian fashion. This set of theoretical viscometers served as inputs to a series of simulations to 
compute each viscometer's system response for a known viscosity. Using this set of system 
responses as inputs to a viscosity-computation algorithm (Roscoe or numerical-fit), a set of 
viscosities were computed. Because the uncertainties are built into the input distribution, the 
resulting viscosity distribution differed from the actual viscosity; it is this difference which 
allowed the uncertainty to be computed. A diagram of the process is shown in Figure 7.1. 
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Figure 7.1. Monte Carlo uncertainty analysis. 

As can be seen in figure 7.1, an input distribution was generated for parameters and used as input 
to series of simulations. Each simulation produced the system response for a particular value 
from this distribution. The set of system responses which correspond to the distribution 
of C were used as inputs to the viscosity computation. The viscosity computation was given all 
the data concerning the inputs except for the parameter of interest. For that parameter, only the 
mean of the input distribution was given to simulate the uncertainty in that parameter. Using an 
inaccurate value as an input to the viscosity computation results in a error in the computed 
viscosity. Thus, a distribution of viscosities was produced from each computation method which 
corresponds to the input distribution used. Comparing the viscosity distribution against the input 
distribution yields important information about the uncertainty due to any particular parameter 
(Colman, 2009, Greenland, 2001, Cox, 2006). To ensure the validity of the results, enough points 
were considered in the distributions so that they accurately approximate the chosen distribution. 

7.3. Uncertainty Results and Discussion 

The Monte Carlo uncertainty program was run with both the Roscoe and numerical-fit methods 
to analyze the uncertainties expected from a viscometer similar to one used to measure mercury. 
By using parameters from the mercury viscometer, the choice of values for the simulations is 
reasonable and relevant. Comparing the computed viscosity to the input viscosity yields the 
error. Many simulations are run in Monte Carlo fashion to characterize the error of each method 
across a range of input parameters. 

7.3.1. Code Performance 

Because the numerical viscosity computation and the Monte Carlo process both require many 
system simulations to be executed, the total computational cost of the code is quite large. 
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Fortuitously, the code is easily parallelized to run on a cluster computer, thereby dramatically 
reducing the actual real time of the computation. All computations were done on a small 12-core 
64-bit AMD Athlon cluster in less than 24 h. 

7.3.2. Predicted Uncertainties 

The results of the simulations are presented in figure 7.2 in terms of the relative uncertainty of 
viscosity μ as a function of one specific parameter and the uncertainty of that parameter at 1% or 
5%. Four lines are presented in each plot, two for each method of viscosity computation. The 
two series represent the 1% and 5% relative uncertainty of the input variable at a 95% confidence 
level, while the plots show the uncertainty in the computed viscosity at a given range of 
parameter. 

 

Figure 7.2. Viscosity uncertainty computed using either Roscoe's or the numerical method at 
specified parameter value and its uncertainty range of either 1% or 5%. 

A trend to consider is the increasing uncertainty of both methods with increasing hysteretic 
damping in the suspension thread, shown in figure 7.2(a). This suggests that the hysteretic 
damping must be either very well known or kept to a very small value to minimize the 
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uncertainty in viscosity results. Ideally, the value of the hysteretic damping constant should be 
very small and accurate. The uncertainty in viscosity is shown to be almost independent of the 
range of values of vessel height h, moment of inertia I and spring stiffness k. Therefore, the 
design of the viscometer should only minimize the uncertainty of these parameters rather than 
their values. 

The uncertainty due to the moment of inertia (I) and the vessel height (h) is approximately 
magnified by a factor of two as shown in figure 7.2, while the uncertainty from the hysteretic 
damping C and spring stiffness k is approximately the same as the input uncertainty. Thus, the 
accuracy of the first two values is critical to obtaining accurate results. 

Figure 7.3 shows the viscosity uncertainty as the uncertainty of an input parameter changes. The 
increase of uncertainty in viscosity is shown to increase linearly with the parameter uncertainty. 
The combined overall uncertainty for the case of all inputs being equally uncertain is shown in 
figure 6. A major advantage of the Monte Carlo uncertainty method over the Taylor's series 
method is that correlated uncertainties are included in the analysis. Additionally, even though the 
range of variables examined is fixed for each computation, they can be varied to explore any 
potential viscometer design, so long as the assumptions made in the derivation of the governing 
differential equations are maintained. 
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Figure 7.3. Overall uncertainty in viscosity as a function of the uncertainty range of parameters. 

The results obtained from these simulations agree reasonably well with the work of Gruner and 
Hoyer (2009). Although the methodologies used were somewhat similar, the parameters which 
were varied and the combination of their effects makes it difficult to compare their results 
directly with those obtained in this work. If one assumes that the input uncertainties are all in the 
0% to 3% range, then figure 7.3 suggests that their results fall in the same range as those reported 
here. 

From these results it can be observed that the hysteretic damping in the suspension thread should 
be as low as possible to minimize the uncertainty increase associated therewith. Additionally, 
any measurement of the moment of inertia or vessel height should be very precise, since the 
relative uncertainty in that measurement will be effectively doubled in the computed viscosity. 

7.4. Sensitivity of Transient Torque Method 

7.4.1. Introduction 

The equations of motion are solved numerically during the curve fit, since no analytical solutions 
are known for this system. The numerical solution uses the control volume finite element method 
(CVFEM) to discretize the equations in space, while a Crank-Nicholson method is used for time 
integration. This results in a method that is formally second order in space and time, and also 
very stable from the implicit component of the time integration. 

Because CVFEM solvers are not commonly encountered, a brief overview of the method is 
provided here. As the name of the method suggests, CVFEM solvers result from the combination 
of ideas from traditional finite volume (FVM) and finite element methods (FEM) (Rousse, 
2000). A FEM-style mesh and shape functions are used to discretize the domain and provide an 
interpolated solution between grid points. This allows the method to be used as complex 
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geometries, or to provide clustered nodes near important features. Using this discretization 
control volumes (often called cells) are defined around the nodes in the mesh, and using the 
divergence theorem a conservation law can be enforced for each volume; this technique is 
sometimes called a dual-mesh, since the same domain is broken up into both elements and cells. 
A diagram of the elements and control volumes used in this solver is found in figure 2. 

To enforce a conservation law, traditional FVM methods are used for each cell. The conservation 
equation is integrated over space and time, the divergence theorem is applied, and 
approximations are then used for most terms in the resulting expression. The results of the first 
two steps for the present problem are listed in equation (9). CVFEM solvers differ from more 
traditional FVM solvers in the last step by using the interpolation from the finite elements to 
provide the approximations for terms instead of local finite difference methods. The use of finite 
differences in FVM solvers has led some to call them finite difference methods (FDM), or more 
correctly, CVFDM; the latter name should be preferred to distinguish them from both CVFEM 
solvers and simpler FDM solvers. 

 

For a more general solver it is desirable to move all the terms in equation (9) to one side and then 
call the expression the residual for the cell, as shown in equation (10). When the residual is zero, 
the conservation law holds for the the cell and the governing equation is satisfied in an integral 
sense. To solve the system at each time step, the residuals for all cells are forced to zero. 

 

A novel method is used to incorporate the solid body rotation into the simulation; a boundary 
element was created which accounts for the momentum transport between the fluid and body, 
thus coupling the two systems through the same momentum transport mechanics as in the fluid 
solver. This element references the current ampoule displacement angle to compute the reactive 
force of the spring. The angle itself is simply the time integration of the body’s angular velocity. 
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The residual contribution from the solid body mechanics is shown in equation (11), where M is 
the moment of inertia converted into an effective mass at the outer radius of the ampoule. 

 

A multivariate Newton s method is used to solve the equations at each step, although only a 
single iteration is required since the problem is linear. This method was chosen because the 
mathematics of the solver are straight forward and allow for added complexity if it becomes 
needed. The method comes from the Taylor’s series expansion of the residual vector for all 
degrees of freedom in the problem, as seen in (12). By forcing the perturbed residual to zero and 
recognizing the residual’s derivative as the Jacobian, the final method is found in equation (13). 

 

 

Evaluation of the Jacobian  is accomplished through automatic differentiation. Since the 
simulation is written in Fortran 2003, this is implemented using operator overloads on a dual 
number derived data-type which uses the chain rule to track derivatives of calculations made. 
Automatic differentiation has applications in several areas, including the evaluation of Jacobian 
matrices for Newton iteration (Spall, 2013). The system of equations that result from (13) are 
tridiagonal in form and are solved using a version of the Thomas algorithm. 

During simulation runs, the spatial and temporal discretizations were refined until the solution no 
longer changed appreciably. 

7.4.1.1. 3.2. Curve fitting 

A curve fit is used to match the viscosity and magnetic force constant needed to duplicate the 
results from experiment. This is done by first fitting a tension spline to the experimental data, 
which allows it to be sampled at arbitrary points in time. Next, a candidate fit is compared 

against this spline by defining a residual function , 

where s(ti) is the simulation s angle and e(ti) is the experiment s angle at the discrete time 
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value ti. This residual function is then minimized using the Nelder-Mead simplex method with 
the inputs limited to a variation of no more than 20% of the nominal value (Olsson, 1975). 

3.3. Sensitivity studies 

Since previous studies of the uncertainty in oscillating cup viscometer measurements noted a 
linear relationship between the uncertainty of input parameters and the resultant uncertainty of 
the viscosity, a full Monte Carlo simulation was deemed unnecessary for the present work 
(Horne, 2012). Since the experimental data from the only RMF viscometer experiment is 
available for use, the parameters of that physical experiment were used as the baseline values for 
the simulations, and deviations from this baseline were simulated. 

The effects of each input parameter were first considered by trying to fit the experimental data 
using the numerical simulations, but with the parameter of interest perturbed by a relative value. 
This potentially resulted in altered fit results for the sample viscosity and or body force constant. 
The relationship between the input error and the output error (assuming the experimental data to 
be correct) is the subject of the present study. 

In addition to single-parameter studies, certain combinations of input parameters were 
systematically varied simultaneously and independently to look for effects on the results from 
variation in two parameters. While initial efforts included a full parameter space exploration, the 
results showed that only two input parameters must be simultaneously considered to capture all 
effects of interest; this fact, combined with the computational cost of full parameter space 
exploration, resulted in only two parameter comparisons being made. 

7.4.2. 4. Result and analysis 

To ensure that the assumed values for the simulations are relevant, the design parameters from 
viscometer in the literature were selected for this work. The experimental parameters of the 
measurement under analysis can be found in Table 5. 

Table 5. Experimental parameters and conditions. 

Parameter SymbolValue Units 

Material Hg Mercury --- 

Temperature T 377 K 

Density  13.384x103 Kg-m-3

Viscosity  92.1x10-9 m2-s-1 

Body force constant f0 ?4.683x10-4N-kg-1

RMF Frequency  377.0 rad-s-1

Moment of inertia I 1.867x10-5 Kg-m2

Damping constant C 2.494x10-8 N-m-s
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Parameter SymbolValue Units 

Spring constant k 2.888x10-6 N-m 

Height of ampoule h 53.9x10-3 m 

Radius of ampoule R 4.557x10-3 m 
 

Experimental data was compared against the simulation results for the baseline viscometer and 
refined in space and time until an adequate match was obtained. The actual simulations are 
refined slightly beyond this level to allow for tighter step size requirements as the input 
parameters are varied. A comparison of the simulation and experimental data is shown in Figure 
7.4.1. 

 

Figure 7.4.1: Comparison of simulation with experimental data 

The simulation is begun right at the moment when the RMF is switched on, since prior to this the 
system is at rest. The transient response of the viscometer can be clearly seen as it adjusts motion 
of the sample induced by the magnetic field, and the momentum gained from the transition starts 
an oscillation of the system similar to conventional viscometer operation. 

The results of the sensitivity analysis for both the sample viscosity and body force constant 
versus all the considered input parameters can be found in Figure 7.4.2. The most noticeable 
characteristic of the sensitivity results is the noise in the results, which is caused by regression 
error in the curve fitting process. While this could be cleaned up by tightening the convergence 
criteria for the curve fitting process and smoothing neighboring points, leaving the noise present 
in the results presents a better representation of the errors as they are likely to occur in an actual 
measurement. 
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Figure 7.4.2. Variation of the viscosity and body force constant (f0) versus error in input 
parameters. (a) viscosity variation versus errors, (b) body force constant variation versus errors. 

Also easily observed is the regression failure present in the results when the moment of inertia 
(I) is too far off the actual value. This is caused by the change in oscillation period cause by 
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variation in I which cannot be accounted for by other variables, especially the viscosity and body 
force constant, and has been observed in previous analysis (Horne 2012). This problem can be 
remedied by allowing I to vary during the fitting process and then verifying that the fitted 
moment of inertia matches the measured value afterwards. Otherwise, it can be seen from the 
data that it must be known to within 5% to obtain a fitted result, and that even within that range 
any error in I will strongly affect the computed viscosity. The effects from error in I on f0 are 
much less pronounced than for viscosity, since the magnetically induced fluid velocity has the 
strongest influence on the angular offset caused by the motion, and not the oscillations which the 
moment of inertia has such a profound effect on. 

Further inspection of Figure 7.4.2 shows that two of the considered input parameters seem to 
have no systematic effect on the fitted results whatsoever; these parameters are the vessel’s outer 
radius (R) and the damping constant of the suspension thread (C). While it may surprise no one 
that the vessel radius can cancel out all of the calculations, the insignificance of the damping 
constant is interesting and specific to the RMF viscometer operation. In the traditional oscillating 
cup viscometer method, the logarithmic decrement from which the viscosity is computed 
includes effects from both the viscous fluid flow and the hysteretic damping within the 
suspension thread; the latter value must be known to compute the former, as the two affect the 
system oscillation in roughly the same manner. For this property to be unimportant to the RMF-
based viscometer represents a significant advantage and must be a consequence of the 
measurement’s reliance on transient behavior instead of semi-steady state operation. 

The error caused in the body force constant seems to directly relate to errors in the thread spring 
stiffness. This can be explained by the fact that both the body force constant and spring constant 
have a strong effect on the offset angle at which the system oscillates after the RMF is activated. 
An increase in spring constant will decrease this angle as the same viscous drag from the sample 
results in less displacement, while an increase in body force constant will increase the 
displacement as a greater fluid velocity, and thereby, viscous drag is induced. These effects are 
readily seen in the figure as f0 decreases to compensate for increases to k. Nonlinearity in the 
momentum conservation equation causes the nonlinear relationship between f0 and k. 

It is interesting to note the similarity of the error in viscosity due to the moment of inertia and 
spring constants, where both show a roughly parabolic trend offset from the correct value. The 
similar behavior of the two parameters can be explained by their close relation in the natural 

frequency of an undamped system, where . Thus, error in either I or k will result in 
errors in the predicted oscillation frequency of the system, and therefore, to bad fit. The position 
of k in the numerator of the fraction is likely the reason that moderate (~10%) errors in k do not 
cause regression failure as they do with errors in I. This relationship between k and I was further 
explored by considering the error in both viscosity and body force constant as a function of 
spring stiffness and moment of inertial simultaneously. The results of this exploration can be 
seen in figure 7.4.3. 
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Figure 7.4.3. Variation of the viscosity and body force constant (f0) versus moment of intertia (I) 
and spring stiffness (k). (a) Viscosity variation, (b) body force constant (f0) variation. 

The search for correlation between k and I in Figure 7.4.3(a) proved to be quite fruitful, as the 

natural frequency explanation of the characteristics in the single variable sensitivity study are 

confirmed by the new data. It can be clearly seen in the figure that the computed value for the 

viscosity remains largely unchanged so long as the ratio k/I is held constant as demonstrated by 

the 45 degree angle visible in the equally-scaled relative errors. Even more convincing is the 

absence of such a trend in the computed body force constant in Figure 7,4,3(b). While the spring 

stiffness influence on f0 is fairly strong, so long as regression error does not occur, I has little 
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effect on its value; these trends are clearly visible in the data. Also of note are the regions of 

regression error visible in both plots of figure 7.4.3 where the ratio k/I deviates too greatly from 

its correct value. 

The vessel height seemingly has little effect on the computed viscosity, while the relationship to 

the computed body force constant appears to be linear as seen in Figure 7.4.2(b). An increase 

in h will directly increase the viscous force acting on the viscometer from the fluid, but will not 

affect the moment of inertia, since the two are assumed to be measured separately. While this 

results in an increased effect on the mean offset angle with the RMF active, it does not 

significantly affect the effective damping cause by the fluid on the viscometer. Upon further 

investigation, the moment of inertia was found to experience a decreased range of regression 

success with decreased values of h, as can be seen in Figure 7.4.4. 

 

Figure 7.4.4. Body force constant (f0) versus vessel height (h) and moment of inertia (I). 

The derivatives of both the body force constant and viscosity as computed in the sensitivity 
studies are found in Table 6. Assuming a roughly linear relationship between input and output, 
which seems reasonable given the data, the expected measurement uncertainties can be 
computed using the Taylor’s series method of uncertainty propagation without the need for a full 
Monte Carlo simulation. 
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Table 6: Computed derivatives for each input parameter. 

  Viscosity Body force constant 

  Derivative Units Derivative Units 

R  1.47x100 
 

-5.08x10-1 

h  5.58x10?2 
 

8.54x100 

I  1.34x104 
 

-7.74x103 

C  3.50x105 
 

1.53x105 

k  6.81x104 
 

-1.18x105 

 

From the computed sensitivities and assuming that all input parameters are known to within 1% 
using Gaussian statistics, the expected uncertainties of the new measurement are 1.25% for the 
body force constant and 3.5% for the viscosity. It must be stressed that these values assume a 
particular input uncertainty which is, in fact, unknown. These uncertainty results are similar to 
those found in the literature for the traditional oscillating-cup viscometer design, suggesting that 
while the RMF viscometer demonstrates numerous advantages, improved precision is likely not 
one of them. 

8. CONCLUSIONS 

Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more 
straightforward reprocessing path, which does not separate out pure plutonium from the process 
stream.  Fabrication of fuel containing minor actinides and rare earth (RE) elements is generally 
done by melt casting in an inert atmosphere. For the design of a casting system and further scale 
up development, computational modeling of the casting process is needed to provide information 
on melt flow and solidification for process optimization. Therefore, there is a need for melt 
viscosity data, the most important melt property that controls the melt flow.   

This project investigated in detail viscosity measurement techniques that use fully sealed melt 
sample with no Americium vapor loss at temperatures relevant to the casting process.  The 
project focused on developing mathematical models to establish the measurement method, 
building a prototype system, and quantifying the uncertainty range. The result of the project 
indicates that the oscillation cup technique is applicable for melt viscosity measurement. 
Detailed mathematical models of innovative sample ampoule designs were developed to not only 
determine melt viscosity, but also melt density under certain designs. Measurement uncertainty 
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were analyzed and quantified. The result of this project can be used as the initial step toward the 
eventual goal of establishing a viscosity measurement system for radioactive melts. 

The motion of the cup in an electromagnetic viscometer was modeled with the 1D assumption. 
The motion is decomposed to three components, namely the angular displacement at equilibrium, 
fast decay, and the damped harmonic oscillation. The impact of experimental design parameters 
on the angular displacement has been investigated. Based on the understanding of the EMV 
mechanism, two measurement methods are suggested, and some general guidance are put 
forward for experimental design. When the rapid method is applied, large cups submerged in 
weak magnetic field is preferred. In contrast, large ܽܪ is the better choice if using the QSS 
method. 

An analytical model was established for a 2D cylinder EMV. Numerical experiments within 
common experimental conditions are performed. Experimental data with external noises are 
firstly generated from the 2D model, and then fitted to determine viscosity and electrical 
conductance by the rapid method and by the QSS method. The measurement errors are resulted 
without the consideration of uncertainties of all parameters. Some conclusions are drawn from 
the analysis of the measurement errors: a) The rapid method has a great advantage over the QSS 
method with significantly improved accuracy, b) When using the rapid method, ܽܪ ൏ 0.1 and 
ܴ ൐ 3  are preferred to obtain relative high measurement accuracy, and c) Measurement of 
electrical conductance has much higher accuracy than viscosity. 

The experimental system showed viability of viscosity measurement using sealed samples. The 
calibration indicates the data are well in line with published viscosity information. From the 
results of the uncertainty analysis, several conclusions can be drawn. First, a residual function 
based on oscillation period and logarithmic decay of oscillation amplitude should be used for 
numerical fitting. A residual based on angular displacement is mathematically stiff. Second, the 
numerical-fit method generally produces better results, but the step size for actual computation of 
viscosity must be kept very small to ensure good results. Third, a larger value of damping 
generates increased uncertainty; therefore its value should be minimized as much as possible 
regardless of its uncertainty. The other parameters considered do not exhibit this behavior, thus 
their values do not need to be minimized. The viscosity uncertainty doubles due to uncertainty in 
the vessel height h and moment of inertia I, therefore these values must be known very 
accurately. The viscosity uncertainty varies nearly linearly with the uncertainty of either 
individual parameters or all the parameters. This all demonstrates that the methods used here can 
be used to design a viscometer that minimizes the resulting uncertainty in measured viscosities. 

From the transient analysi, it must be concluded that the error modes in the RMF-based 
viscometer measurement are quite different from the logarithmic decrement method traditionally 
used. While the moment of inertia for the viscometer must be accurately known for both 
methods, other parameters which have great sway on the accuracy of the traditional technique 
don't matter at all for the RMF variant. These benefits alone would warrant further study, but 
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when combined with the possibility to measure the electrical conductivity and viscosity so 
rapidly that their variation with temperature could be reasonably developed demonstrates the 
new methods dramatic superiority for electrically conducting liquids. Given the advantages, even 
though the resulting viscosity values are likely to be only as precise as the results of the more 
traditional measurement, the new method is clearly superior to the old. More careful 
considerations of the viscometer design, as well as even simulated experiments with more 
advantageous geometries should be conducted. 
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