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ABSTRACT 
Cloud computing is increasingly considered as an additional 

computational resource platform for scientific workflows. The 

cloud offers opportunity to scale-out applications from desktops 

and local cluster resources. At the same time, it can eliminate the 

challenges of restricted software environments and queue delays 

in shared high performance computing environments.  

Choosing from these diverse resource platforms for a workflow 

execution poses a challenge for many scientists. Scientists are 

often faced with deciding resource platform selection trade-offs 

with limited information on the actual workflows. While many 

workflow planning methods have explored task scheduling onto 

different resources, these methods often require fine-scale 

characterization of the workflow that is onerous for a scientist.  

In this position paper, we describe our early exploratory work into 

using blackbox characteristics to do a cost-benefit analysis across 

of using cloud platforms. We use only very limited high-level 

information on the workflow length, width, and data sizes. The 

length and width are indicative of the workflow duration and 

parallelism. The data size characterizes the IO requirements.  We 

compare the effectiveness of this approach to other resource 

selection models using two exemplar scientific workflows 

scheduled on desktops, local clusters, HPC centers, and clouds. 

Early results suggest that the blackbox model often makes the 

same resource selections as a more fine-grained whitebox model. 

We believe the simplicity of the blackbox model can help inform 

a scientist on the applicability of cloud computing resources even 

before porting an existing workflow. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed applications 

General Terms 
Algorithms, Performance. Experimentation 

Keywords 
Workflow Patterns, Workflow Structure, Cloud Computing, High 

Performance Computing, Resource Management, eScience 

1. INTRODUCTION 
Scientific experiments and applications are often composed of a 

number of tasks with diverse computation and data needs. The 

tasks form a dataflow pipeline between logical stages that are 

represented and executed as workflows or scripts. Each task may 

have loosely coupled, asynchronous interactions or be a tightly 

bound MPI application, among others. 

Cloud computing has recently gained popularity as a resource 

platform for on-demand, high-availability, and high-scalability 

access using a pay-as-you-go model. Web applications have 

benefited from this paradigm leading to reduction or even 

elimination of computing and storage infrastructure investments. 

Scientists are beginning to explore the feasibility of the virtualized 

cloud resource model for running their computation and data 

analysis at small and large scales [3]. 

In addition to commercial cloud offerings, scientists can access 

several execution resource platforms for running their workflows 

including local workstations, small clusters owned by research 

groups, and shared supercomputing resources at national labs. 

Each platform presents trade-offs in terms of performance, policy, 

and cost with significant differences among them.  

Resource selection for scheduling workflows is frequently ad hoc, 

offline decisions by users. A user may choose to run applications 

based on familiarity with an environment or thumb-rules based on 

earlier experiences. Given the dynamic nature of the resources, 

both in the short and long terms, such improvised scheduling is 

often sub-optimal and occasionally punitive.  

Several models are in use for efficient scheduling of workflows in 

heterogeneous resource environments [9,10,11]. Efficiency may 

be defined as any combination of reducing total wallclock time for 

completing the workflow, improving resource usage, or 

minimizing monetary cost. These models vary in complexity and 

accuracy (though the two are not strictly correlated). The 

scheduling schemes also vary in the degree of a priori knowledge 

about the workflow used for resource selection, ranging from 

purely structural information of the workflow to knowing fine-

grained details of each workflow task. Most workflow scheduling 

approaches use fine-grained data today. 

Detailed knowledge of workflow characteristics may not be 

available before the workflow is run. Such knowledge also entails 

user overhead for collection and description. Scientists often need 

an approximate estimate of a resource platform’s suitability for 

their workflow by just providing high-level information about it.  

In this position paper, we present a blackbox model for resource 

selection using limited knowledge of workflow characteristics. 

Our approach is based on the idea that the workflow structure 

and/or its dominant resource requirement stage are sufficient to 

evaluate the trade-offs associated with each resource platform. 

This approach is less studied in literature. We use (a) the 

workflow’s dimensions – length and width – that signify its 

potential duration and fanout, and (b) the input and output data 

sizes to the workflow. We describe our early exploratory work 

into this high-level model that allows users to provide just these 

three characteristics of their application in order to understand its 

performance trade-offs on different platforms. We test our 

hypothesis using previously collected experimental data of two 

eScience applications and compare the efficiency of our blackbox 

prediction with existing fine-grained whitebox and graybox 

workflow resource selection models. Our early results show the 

benefits of using limited information to make a usable estimate of 

the application performance on different platforms. 

Specifically, we investigate the following questions: 



 

 

 Is it possible to make intelligent selection of resource 

platform from several available options using only the 

workflow dimensions and data input/output sizes?   

 What are the trade-offs of running applications on different 

resource platforms?  

 What workflow attributes determine their suitability for 

specific resource platforms? 

The rest of this paper is organized as follows. Section 2, provides 

an overview of common resource platforms and workflow 

characteristics that guide resource selection; section 3 introduces 

our blackbox model and describes it in the context of whitebox 

and graybox models; section 4 presents a comparative evaluation 

of the blackbox model accuracy for two genomics applications; 

section 5 describes related work; and section 6 has our 

conclusions and future work. 

2. OVERVIEW 

2.1 Resource Platforms   
Common resource platforms available to scientists for running 

their applications include desktop workstations, local clusters, 

shared HPC resources and more recently, commercial clouds.  

2.1.1 Desktop Workstation Resources 
A large number of science applications today still run on the 

desktop. Powerful multi-core machines can now match small 

clusters in their compute power. However, growth of data and the 

nature of analysis are far exceeding what is possible even on high-

end workstations. The interactive nature of some scientific 

processes does make it necessary to transfer the final data to a 

user’s desktop for visualization or validation. The workstation 

allows a user to exercise complete control over the software 

environment as well as on the privacy of the data.  

2.1.2 Local Cluster Resources 
Scientists often own and operate mid-sized local clusters (≤ 256 

cores) within their research groups. Graduate students and 

research staff manage these environments in-house. The local 

cluster is a useful resource platform for groups that can afford the 

infrastructure and management cost. The captive nature of these 

resources often makes them under-subscribed and users can get 

immediate access for their applications. The cluster is often 

located on a LAN making large data transfers from desktop fast. 

Nevertheless, these are only suitable for small to mid-range 

computations that fit within the cluster’s core size. 

2.1.3 HPC Shared Resources 
Scientific workflows also use shared resources at academic and 

national supercomputing centers. These resources are typically 

accessible to multiple user groups through one-to-many or peer-

to-peer allocations and are often over-subscribed. While users can 

gain access to a larger resource pool, they incur queue wait times 

that vary with the  system load when they want to run their 

computations. Users in this environment often have less control 

and are subject to site level policies and software changes. While 

some users may be on a fast research network to these centers, 

this is not universal. WAN bandwidth can limit large data 

transfers. 

2.1.4 Cloud Resources 
Cloud computing promises a greater degree of freedom to end-

users enabling customized and user-controlled software 

environments while enabling resource scale-out comparable to 

Shared HPC centers. The on-demand access to unlimited cycles 

eliminates contention with other users. However, resource 

virtualization can impact some scientific applications and 

overheads like Virtual Machine (VM) start time and 

(comparatively) low network bandwidth from desktop to cloud 

can impact application runtime. Users need to be aware of 

resource usage to stay within budgeted funds, and the model of 

paying for resource usage with a credit card is different from 

current scientific budget process. Recently, as the demand has 

spiked, cloud providers like Amazon are offering a tiered model 

with different access levels.  

2.2 Workflow Characteristics 
Workflows exhibit features and have requirements that can be 

used to determine the resource best suited to run part or all of the 

workflow stages among those available. 

Structural features of a workflow characterize the data and control 

flow pattern. Common patterns are sequential pipeline, map-

reduce (or fork-join) pattern, and iterations of these. Besides the 

pattern itself, the width of the structure (i.e. fanout of tasks), the 

length in terms of number of stages and their runtime, and the 

number of iterations determine resource selection [11]. 

Resource usage features of a workflow quantify the 

computational, data storage, and networking resources.  The 

compute usage can be specified as time taken to run the stage on a 

specific core speed. The data and networking resources can be 

specified in terms of input and output file sizes as well as 

characteristics such as access patterns. Memory requirements may 

also be key for some data intensive applications. 

2.3 Resource Platform Attributes  
Resource platforms exhibit characteristics that can be used to 

evaluate their aptness for running workflows with certain 

attributes. Availability of both resource and workflow attributes 

helps perform matchmaking. 

The degree of parallelism offered by a resource platform depends 

on the number of cores available for computation. For desktop 

and local clusters, this may be all the cores available while for 

Cloud and Shared HPC, the bounds may be set by policy. The 

core speed can also impact the computation since cloud resources 

may be rated at a lower speed or run slower due to virtualization. 

Computation latency can be introduced through batch queues 

controlling access to Shared HPC clusters or by VM startup times. 

Network bandwidth in and out of the resource platform from 

desktop determines data transfer time between client and remote 

compute resources. Persistence and size of available local storage 

can decide if intermediate data is moved out of remote platforms 

to desktop. Network latency within the resource platform can 

affect communication costs of tightly coupled MPI tasks. 

Finally, cost of using the resource is a factor. The costs of a 

desktop, local cluster or shared HPC resources are often partially 

hidden or amortized. Cloud costs are very visible.  Shared HPC 

resources may also have quotas that limit user access. 

3. PLATFORM SELECTION APPROACHES 
Workflows are often orchestrated by a workflow engine on a 

client machine with the actual tasks of the workflow running on 

local or remote resources. The initial input and final output of the 

workflow is present in the desktop client. The parallel nature of 

the workflow may allow multiple tasks to be run concurrently; we 

term all tasks that can run concurrently as a stage in the workflow.  



 

 

Resource platform selection models help decide which among 

available resource platforms are best suited to run the workflow in 

order to optimize for one or more factors. The models use an 

optimization function based on some number of workflow and 

resource attributes to quantify an optimization factor. In this 

paper, we limit our optimization factor to minimizing the 

makespan (or total runtime) of the workflow. For simplicity, we 

assume that all tasks of a workflow are run on the same platform. 

We classify three workflow selection models based on the degree 

of detail required to characterize the workflow to choose a 

suitable resource platform to run it. Figure 1 illustrates the three 

selection models for the Motif workflow introduced in the next 

section.  

 Whitebox (or Fine-grained) Selection: This model assumes 

that the workflow structure and all attributes for each workflow 

task are available. This means the data input, data output and the 

CPU time for each task is known before workflow’s launch. Also, 

the fanout of each stage of the workflow is know from the 

structure. Given this relatively fine-grained detail, each workflow 

task can be scheduled independently and, potentially, on a 

different resource platform. Each task incurs a latency time to 

access one CPU core, but needs the core only for the duration of 

that task. The time-optimization function for this model gives the 

total workflow time as: 

FWorkflowTime = Ʃ F
i
StageTime 

where FiStageTime is the time taken by workflow stage i given by: 
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Where:  

T
i
Data : Time to transfer input, output data between desktop and 

the execution platform for the ith stage; 

T
i
LatencyOne : Latency time to start executing one task in the ith 

stage on one core, due to queue wait- or VM instance start- time; 

T
i
TaskLength : Maximum task runtime among those workflow 

tasks scheduled concurrently in the ith stage;  

N
i
TaskWidth  : Width or fanout of the number of tasks in ith stage; 

N
i
Cores : Number of available cores for running the tasks, and 

N
i
Cores ≤ NiTasks. 

 Graybox (or Hybrid) Selection: This assumes each stage of 

the workflow is opaque with only the stage width, stage length, 

and total data transferred into and out of each stage known. The 

width is given by the number of parallel tasks within the stage; the 

length, given by the total runtime for the stage when run fully 

parallel. The tasks attributes within each workflow stage are not 

known. As such, this model needs to acquire the maximum 

possible number of CPU cores up to its width before it can run. 

For optimization, the model can look ahead to acquire and retain 

cores for subsequent stages until the workflow completes. The 

time-optimization function for this model gives the total workflow 

runtime as the sum of all i workflow stage runtimes plus the 

latency time for acquiring the largest number of cores required 

from among all workflow stages: 

FWorkflowTime = TLatencyMax + Ʃ F
i
StageTime 

Where:  

TLatencyMax : Latency time, due to queue wait or VM instance 

start time, to acquire maximum possible cores; and 

    F
i
StageTime =  T

i
Data  +  

    (T
i
TaskLength × N

i
TaskWidth)/N

i
Cores 

 Coarse-grained (or Blackbox) Selection: The blackbox 

resource selection uses just three commonly known attributes for 

the entire workflow: the maximum fanout of the workflow at any 

point, which we term as the workflow width, and the total time to 

run the workflow computation at full parallelism, which we term 

the workflow length, and knowledge of the initial workflow input 

and final workflow output data sizes. Using this approximation, 

we can reduce the workflow as blackbox with just one stage and 

use a function similar to the graybox model above. The time-

optimization function for the total workflow runtime is: 

     FWorkflowTime = TLatencyMax  +  TDataSum +  

       (TLength× NWidth)/NCores 
Where:  

TDataSum  : Time to transfer initial input and final output data 

between desktop and the execution platform for the workflow; 

TLength  : Workflow length time as defined above; 

NWidth  : Width or maximum fanout of the workflow. 

4. EARLY EVALUATION 
We compare our whitebox, graybox, and blackbox models for two 

eScience applications across desktop, local cluster, shared HPC 

center and cloud resource platforms. We evaluate the relative 

efficiency of the blackbox model for resource platform selection.  

4.1 eScience Workload 

4.1.1 Genome Wide Association Study (GWAS) 
Genome Wide Association Studies (GWAS) use computationally 

costly statistical algorithms to infer which genetic markers are 

associated with a particular phenotype or disease of interest [1]. 

The Linear Mixed Model GWAS workflow consists of two 

parallelized, compute-intensive Map-Reduce stages and four 

single-task stages. The ML stage calculates the maximum 

likelihood over input genes with a parallel fanout of 1100 tasks 

and takes 10mins in parallel. The subsequent expectation-

maximization stage (EM) with a fanout of 150 improves the ML 

estimate and takes 9mins to complete in parallel. The input data 

size to the workflow is ~150MB for 40K genes for 200 subjects. 

The final EM stage produces a 10MB association matrix as result. 

So the workflow width is 1100, length is 19mins, and data in and 

out are 150MB and 10Mb respectively. 

4.1.2 Motif Network 
Motif Networks can model gene regulation dependencies that 

control protein synthesis and behavior [2]. The MotifNetwork 
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Figure 1. Motif workflow attributes used for whitebox (left), 

graybox (center), and blackbox (right) scheduling. 

Figure 1. Motif workflow attributes used for whitebox (left), graybox 

(center), and blackbox (right) workflow scheduling. Each model 

requires less workflow characterization by the user  



 

 

project analyses genome-sized networks of sequences that are 

computationally intensive. A typical Motif workflow has a Map-

Reduce stage and two single-task sequential stages. A pre-

processing task splits a 13MB input file into 135 chunks that are 

individually operated upon by loosely-coupled, compute intensive 

Interprocscan tasks that take 90mins to execute in parallel and 

produce 500KB of output. A post-processing task gathers the 

outputs and generates a 71MB file, and two 599MB files. So the 

workflow width is 135, length is 90mins, data input is 13MB and 

data output is 1269MB [7]. 

4.2 Resource Platforms  
We use the following resource platform specifications based on 

earlier measurements for our evaluation: 

 Local Workstation: We consider a single core workstation 

with CPU rated at 2.5GHz. All input and output workflow data 

are on local disk and tasks execute sequentially on local core. 

 Local Cluster: We consider clusters of sizes between 1 to 256 

cores that are connected by Gigabit Ethernet (128MB/s) to the 

scientist’s desktop client. Each node has an identical CPU Core to 

the above workstation. The desktop contains the inputs to the 

workflow and all cluster outputs are transferred back to desktop. 

 HPC Cluster: We consider the TeraGrid shared clusters at 

Indiana University (BigRed) and at SDSC with queue wait times 

at the 95% quantile predicted using Network Weather Service [5]. 

Cores are limited to between 1 and 2048 cores for concurrent use 

to simulate user quota policy. For simplicity, we assume each 

node has identical CPU Core to the above workstation. The 

bandwidth between the HPC center and user’s desktop client 

holding inputs and outputs is set at 1.2MB/sec. 

 Cloud: We consider Microsoft’s Azure cloud with small VM 

CPU cores rated at 1.6GHz. The VM start times are measured at 

20secs per additional VM with a 200sec overall startup time [4] 

and users are assumed to get between 1 and 2048 VMs at a time. 

The bandwidth between Azure Cloud and user’s desktop client 

holding inputs and outputs was measured at 1.2MB/sec. 

4.3 Workload Evaluation 
We simulated the GWAS and Motif workloads on each of the four 

resource platforms for each of the three resource selection models.  

The total workflow runtime is calculated using the time-

optimization functions described earlier. We repeated the 

calculation varying numbers of cores in local cluster, shared HPC 

and cloud. 

Figures 2(a–c) show Log-Log plots of the estimated GWAS 

workflow runtimes (Y Axis) as a function of the available number 

of concurrent cores (X Axis). Figures 3(a–c) are Linear plots of 

the same, zoomed into regions of interest. The pairwise 

percentage difference in time estimates between blackbox and 

whitebox models, and blackbox and graybox models are shown in 

Figures 4(a) and 4(b).  

The GWAS workflow runtime on the local cluster and the 

workstation (hidden by 1-core cluster datapoint) are highly similar 

for all three models due to the predictable nature of their resource 

attributes. These resource platforms do not have any queue or VM 

startup overheads and have minimal data transfer time to/from the 

desktop. Most time is spent running the workflow. 

The whitebox model provides a lower time estimate for BigRed 

HPC than graybox and blackbox, but is higher on SDSC HPC. 

This is due to the relatively higher queue wait time for shorter 

duration workflow tasks scheduled independently on SDSC by 

whitebox, while the inverse effect is seen on BigRed’s queue. 

Since both graybox and blackbox use larger granularities for stage 

and workflow lengths, their estimates are consistent. 

The cloud runtime estimate is consistent on all three models. This 

is because the deterministic VM start time overhead is paid only 

once in all three models and the intermediate data transfers time 

hidden in the blackbox is dwarfed by compute/VM start times. 

The runtimes estimates for Motif are shown in Figures 5(a – c) for 

the models. We can draw similar conclusions from them. 

5. RELATED WORK 
Workflow systems like Pegasus, Swift, and Trident usually 

incorporate features to schedule tasks onto remote resources, such 

as Grids or clusters. For example, Swift uses Falkon execution 

framework to dispatch workflows tasks using multi-level 

scheduling [10]. This typifies fine-grained resource selection 

where detailed workflow structure and resource needs are known. 

DAG scheduling algorithms [9] for Grids use heuristic models to 

schedule applications to meet time budgets. Our optimization 

functions are similar and extend to all three models we evaluate. 

Deelman, et al. [8] describe resource costs for running a Montage 

workflow on Amazon EC2. We use similar resource performance 

measures for Microsoft Azure [4]. 

6. CONCLUSIONS & FUTURE WORK 
From these initial evaluations, we observe that the blackbox 

approach gives runtime estimates that are close to the graybox 

model for the GWAS and Motif workflows. While the absolute 

time estimates differ widely between blackbox and whitebox 

models, the blackbox approach is able to order the resource 

platform selections similar to the whitebox model in many cases. 

This fulfills our intended goal of understanding high-level 

resource platforms with limited workflow knowledge. 

As future work, we will study the sources of errors between the 

different models to help build heuristics that can help improve the 

blackbox runtime predictions. These will help drive a resource 

selection service for scientists to plug in high-level characteristics 

for a workflow and get estimates of the optimal platform for it. 
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Figure 2(a). GWAS runtime in hours with increa-

sing cores using whitebox model. (Log-Log) 

Figure 2(b) GWAS runtime in hours with increa-

sing cores using graybox model. (Log-Log plot) 

Figure 2(c).GWAS runtime in hours with increa-

sing cores using blackbox model. (Log-Log plot) 

  
 

Figure 3(a). GWAS runtime in hours with increa-

sing cores using whitebox model. (Linear) 

Figure 3(b). GWAS runtime in hours with increa-

sing cores using graybox model. (Linear plot) 

Figure 3(c) GWAS runtime in hours with increa-

sing cores using blackbox model. (Linear plot) 

  
Figure 4(a). GWAS runtime difference % between blackbox and whitebox 

resource selection models with increasing number of cores. 

Figure 4(b). GWAS runtime difference % between blackbox and graybox 

resource selection models with increasing number of cores. 

   
Figure 5(a). Motif runtime in hours with increa-

sing cores using whitebox model. (Linear plot) 

Figure 5(b).  Motif runtime in hours with increa-

sing cores using graybox model. (Linear plot) 

Figure 5(c).  Motif runtime in hours with increa-

sing cores using blackbox model. (Linear plot) 
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