
LA-UR-15-20398
Approved for public release; distribution is unlimited.

Title: Lotic Water Hydodynamic Model

Author(s): Judi, David Ryan
Tasseff, Byron Alexander

Intended for: Report

Issued: 2015-01-23

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Lotic Water Hydrodynamic Model

UNCLASSIFIED

UNCLASSIFIED

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is

operated by Los Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

The Department of Homeland Security sponsored the production of this material under
the Department of Energy contract for the management and operation of Los Alamos

National Laboratory.

UNCLASSIFIED

1

UNCLASSIFIED

Table of Contents
Introduction ... 3

Flood Modeling and Simulation Enhancements ... 3

Numerical Reformulation of the Shallow Water Equations.. 4

Domain Tracking on the GPU ... 8

Verification and Computational Performance Benchmarking 10

Multi-GPU ... 11

Enhanced Visualization ... 13

References ... 14

UNCLASSIFIED

2

UNCLASSIFIED

Table of Figures
Figure 1. CUDA computational components. ... 9

Figure 2. Pictorial description of CUDA blocks marked as active (blue) and inactive
(yellow). .. 10

Figure 3. Comparison of water depths at t = 0.69 seconds between Lotic (left) and
Alcrudo and Garcia-Navarro (right). .. 10

Figure 4. Performance comparison of CPU and GPU implementations with and without
domain tracking as a function of domain size. ... 11

Figure 5. Single and dual-GPU computational performance benchmark for the
hypothetical circular dam break. ... 12

Figure 6. Real-time visualization of the historic Taum Sauk dam break before (left) and
after (right) analysts’ topography manipulation. .. 13

UNCLASSIFIED

3

UNCLASSIFIED

Introduction
Water-related natural disasters, for example, floods and droughts, are among the most
frequent and costly natural hazards, both socially and economically. Many of these floods
are a result of excess rainfall collecting in streams and rivers, and subsequently
overtopping banks and flowing overland into urban environments. Floods can cause
physical damage to critical infrastructure and present health risks through the spread of
waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a
state-of-the-art surface water hydrodynamic model, to simulate propagation of flood
waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model
that has been used primarily for simulations in which overland water flows are
characterized by movement in two dimensions, such as flood waves expected from
rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced
Lotic through several development efforts. These developments included enhancements
to the 2D simulation engine, including numerical formulation, computational efficiency
developments, and visualization. Stakeholders can use simulation results to estimate
infrastructure damage and cascading consequences within other sets of infrastructure, as
well as to inform the development of flood mitigation strategies.

Flood Modeling and Simulation Enhancements
In 2008, to meet the objectives of fast-response flood modeling and simulation, LANL
developed a 2D flood model using a numerical approximation to the non-conservative
shallow water equations (Judi, Burian and McPherson 2009). The shallow water
equations are derived from the Navier-Stokes equations by integrating horizontal
momentum and continuity equations over depth. With bed slope and bed shear stress (i.e.,
friction) source terms, the non-conservative form of the equations may be written as
shown in Equation 1:

⎩
⎪
⎨

⎪
⎧ ℎ𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦 = 𝑅

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑔𝑤𝑥 −
𝜏𝑥

𝜌

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝑔𝑤𝑦 −
𝜏𝑥

𝜌

 , (1)

where ℎ is the water depth, 𝑤 is the water surface elevation, 𝑢 is the velocity in the x-
direction, 𝑣 is the velocity in the y-direction, 𝑡 is time, 𝑔 is the gravitational constant, 𝑅 is
the water source term, 𝜏𝑥 and 𝜏𝑦 are the bed shear stress components in the x- and y-
directions, and 𝜌 is the water density. The numerical approximation used to solve these
equations was a first-order upwind finite difference method.

Because velocities in the non-conservative form of the shallow water equations are not
subject to universal conservation laws, the model can develop spurious oscillations when
subjected to shocks and hydraulic jumps. However, this formulation is subject to
numerical challenges when simulating nuanced floodplains (e.g., urban areas). Thus,
LANL revised the numerical implementation using new and emerging algorithms based
on the conservative form of the shallow water equations.

UNCLASSIFIED

4

UNCLASSIFIED

Numerical Reformulation of the Shallow Water Equations
With bed slope and bed shear stress source terms, the conservative form of the shallow
water equations may be defined as shown in Equation 2:

⎩
⎪
⎨

⎪
⎧ ℎ𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦 = 𝑅

(ℎ𝑢)𝑡 + �ℎ𝑢2 + 1
2
𝑔ℎ2�

𝑥
+ (ℎ𝑢𝑢)𝑦 = −𝑔ℎ𝐵𝑥 −

𝜏𝑥

𝜌

(ℎ𝑣)𝑡 + (ℎ𝑢𝑢)𝑥 + �ℎ𝑣2 + 1
2
𝑔ℎ2�

𝑦
= −𝑔ℎ𝐵𝑦 −

𝜏𝑥

𝜌

 , (2)

where 𝐵 describes the bottom topography (or bathymetry) (Chertock, et al. 2010). In
vector form, this may be written more succinctly in Equation 3:

𝑼𝑡 + 𝑭(𝑼) + 𝑮(𝑼) = 𝑺𝐵(𝑼, ∇𝐵) + 𝑺𝑓(𝑼), (3)

where 𝑼 is the vector of conserved variables, 𝑭 and 𝑮 are fluxes in the x- and y-
directions, respectively, and 𝑺𝐵 and 𝑺𝑓 are the bed slope and bed shear stress source
terms, respectively (Brodtkorb, Sætra and Altinakar 2012).

To numerically approximate the conservative form of the shallow water equations,
developers employed an explicit finite difference scheme outlined by Kurganov and
Petrova (Kurganov and Petrova 2007). The scheme has several favorable qualities,
including the preservation of stationary steady states (e.g., the “lake at rest”), the
guarantee of non-negative water depths, and the ability to simulate domains with
discontinuous bottom bathymetries.

Numerical schemes that preserve steady-state solutions are regarded as “well-balanced.”
Developing such a scheme is difficult when using the vector of conserved variables
𝑼 = [ℎ, ℎ𝑢, ℎ𝑣]𝑇 but manageable when 𝑼 = [𝑤, ℎ𝑢, ℎ𝑣]𝑇, in which 𝑤 = ℎ + 𝐵. The
conservative shallow water equations may thus be rewritten as in Equation 4:

⎩
⎪
⎨

⎪
⎧

𝑤𝑡 + (ℎ𝑢)𝑥 + (ℎ𝑣)𝑦 = 𝑅

(ℎ𝑢)𝑡 + �(ℎ𝑢)2

𝑤−𝐵
+ 1

2
𝑔(𝑤 − 𝐵)2�

𝑥
+ �(ℎ𝑢)(ℎ𝑣)

𝑤−𝐵
�
𝑦

= −𝑔(𝑤 − 𝐵)𝐵𝑥 −
𝜏𝑥

𝜌

(ℎ𝑣)𝑡 + �(ℎ𝑢)(ℎ𝑣)
𝑤−𝐵

�
𝑥

+ �(ℎ𝑣)2

𝑤−𝐵
+ 1

2
𝑔(𝑤 − 𝐵)2�

𝑦
= −𝑔(𝑤 − 𝐵)𝐵𝑦 −

𝜏𝑥

𝜌

 (4)

The spatial discretization of the Kurganov-Petrova scheme is based on a staggered grid,
where 𝑼 is given as cell averages, 𝐵 is an averaged surface defined by bathymetric (or
topographic) values at the four cell corners, and fluxes are computed at midpoints of cell
interfaces (Brodtkorb, Sætra and Altinakar 2012). The scheme also uses interfacial
bathymetric heights; for a given cell center 𝐶𝑖𝑖, these data are computed as shown in
Equations 5 through 8.

UNCLASSIFIED

5

UNCLASSIFIED

𝐵𝑖𝑖𝐸 = 1
2
�𝐵𝑖+12,𝑗+12

+ 𝐵𝑖+12,𝑗−12
� (5)

𝐵𝑖𝑖𝑊 = 1
2
�𝐵𝑖−12,𝑗+12

+ 𝐵𝑖−12,𝑗−12
� (6)

𝐵𝑖𝑖𝑁 = 1
2
�𝐵𝑖+12,𝑗+12

+ 𝐵𝑖−12,𝑗+12
� (7)

𝐵𝑖𝑖𝑆 = 1
2
�𝐵𝑖+12,𝑗−12

+ 𝐵𝑖−12,𝑗−12
� (8)

where superscripts 𝐸, 𝑊, 𝑁, and 𝑆 define cell interfaces to the east, west, north, and
south of 𝐶𝑖𝑖’s center.

Reconstructions of 𝑼 must first be performed at grid cell interfaces. These
reconstructions are shown in Equations 9 through 12.

𝑼𝑖𝑖
𝐸 = 𝑼𝑖𝑖 + Δ𝑥

2
(𝑼𝑥)𝑖𝑖 (9)

𝑼𝑖𝑖
𝑊 = 𝑼𝑖𝑖 −

Δ𝑥
2

(𝑼𝑥)𝑖𝑖 (10)

𝑼𝑖𝑖
𝑁 = 𝑼𝑖𝑖 + Δ𝑦

2
�𝑼𝑦�𝑖𝑖 (11)

𝑼𝑖𝑖
𝑆 = 𝑼𝑖𝑖 −

Δ𝑦
2
�𝑼𝑦�𝑖𝑖 (12)

The numerical derivatives 𝑼𝑥 and 𝑼𝑦 are at least first-order approximations of 𝑼𝑥(𝑖, 𝑗, 𝑡)
and 𝑼𝑦(𝑖, 𝑗, 𝑡), respectively, and are computed using a nonlinear limiter. In this scheme,
slopes are computed using the generalized minmod flux limiter, defined by Equations 13
and 14:

𝑈𝑧 = minmod(𝜃𝜃, 𝑐, 𝜃𝜃) (13)

minmod(𝑎, 𝑏, 𝑐) = �
min(𝑎, 𝑏, 𝑐), {𝑎, 𝑏, 𝑐} > 0
max(𝑎, 𝑏, 𝑐) {𝑎, 𝑏, 𝑐} < 0

0
 (14)

where 𝜃 = 1.3, and 𝑓, 𝑐, and 𝑏 are the forward, central, and backward difference
approximations to the derivative, respectively (Brodtkorb, Sætra and Altinakar 2012).
However, this reconstruction does not guarantee non-negativity of ℎ. To handle dry
zones, Kurganov and Petrova propose to correct the slopes of 𝑤, such that values of ℎ at
integration points become non-negative. These corrections are made in the following four
cases, shown in Equations 15 through 18:

𝑤𝑖𝑖
𝐸 < 𝐵𝑖𝑖𝐸 → 𝑤𝑖𝑖

𝐸 = 𝐵𝑖𝑖𝐸 , 𝑤𝑖𝑖
𝑊 = 2𝑤�𝑖𝑖 − 𝐵𝑖𝑖𝐸 (15)

UNCLASSIFIED

6

UNCLASSIFIED

𝑤𝑖𝑖
𝑊 < 𝐵𝑖𝑖𝑊 → 𝑤𝑖𝑖

𝑊 = 𝐵𝑖𝑖𝑊, 𝑤𝑖𝑖
𝐸 = 2𝑤�𝑖𝑖 − 𝐵𝑖𝑖𝑊 (16)

𝑤𝑖𝑖
𝑁 < 𝐵𝑖𝑖𝑁 → 𝑤𝑖𝑖

𝑁 = 𝐵𝑖𝑖𝑁, 𝑤𝑖𝑖𝑆 = 2𝑤�𝑖𝑖 − 𝐵𝑖𝑖𝑁 (17)

𝑤𝑖𝑖
𝑆 < 𝐵𝑖𝑖𝑆 → 𝑤𝑖𝑖

𝑆 = 𝐵𝑖𝑖𝑆 , 𝑤𝑖𝑖
𝑁 = 2𝑤�𝑖𝑖 − 𝐵𝑖𝑖𝑆 (18)

where the average slope is defined by Equation 19.

𝑤�𝑖𝑖 =
𝑤𝑖𝑖
𝐸+𝑤𝑖𝑖

𝑊

2
=

𝑤𝑖𝑖
𝑁+𝑤𝑖𝑖

𝑆

2
 (19)

This correction guarantees the reconstruction of 𝑤 is conservative; hence, the water
depth, ℎ, will be non-negative. However, the values of ℎ may still be very small (or zero).
Thus, computing velocities (e.g., 𝑢 = (ℎ𝑢)/ℎ) could result in round-off errors as ℎ
approaches zero, leading to erroneously large velocities. To avoid this, Chertock et al.
provided a velocity correction for ℎ < 𝜅, shown in Equation 20:

𝑢 = 2(ℎ𝑢)
ℎ2+max(ℎ2,𝜅) (20)

with the (extrapolated) suggestion by Brodtkorb et al. for k shown in Equation 21:

𝜅 = �𝐾0max{1, min(Δ𝑥, Δ𝑦)} (21)

with 𝐾0 = 10−2 for single-precision calculations. Even with these corrections, however,
round-off errors may still lead to negative water depths. Thus, as an extra precaution,
water depths less than 𝜖𝑚 are set to zero, where 𝜖𝑚 is near machine precision.

Using the newly constructed interfacial values of ℎ, 𝑢, and 𝑣, vectors 𝑼𝐸,𝑊,𝑁,𝑆 are
constructed accordingly. Finally, interfacial flux values (i.e., 𝑭(𝑼) and 𝑮(𝑼)) are
computed using the quantities defined within vectors 𝑼𝐸,𝑊,𝑁,𝑆.
A central-upwind semi-discretization of the conservative shallow water equations results
in the system of ordinary differential equations (ODE) in Equation 22:

𝑑
𝑑𝑑
𝑼𝑖𝑖(𝑡) = −

𝑯𝑖𝑖
𝐸 (𝑡)− 𝑯𝑖−1,𝑗

𝐸 (𝑡)

Δ𝑥
−

𝑯𝑖𝑖
𝑁(𝑡)− 𝑯𝑖,𝑗−1

𝑁 (𝑡)

Δ𝑦
+ 𝑺𝐵,𝑖𝑖(𝑡) + 𝑺𝑓,𝑖𝑖(𝑡) (22)

The numerical fluxes 𝑯𝑖𝑖
𝐸 and 𝑯𝑖𝑖

𝑁 are given by Equations 23 and 24:

UNCLASSIFIED

7

UNCLASSIFIED

𝑯𝑖𝑖
𝐸 =

𝑎+𝑭�𝑼𝑖𝑖
𝐸 �−𝑎−𝑭�𝑼𝑖+1,𝑗

𝑊 �

𝑎+−𝑎−
+ 𝑎+𝑎−

𝑎+− 𝑎−
(𝑼𝑖+1,𝑗

𝑊 − 𝑼𝑖𝑖
𝐸) (23)

𝑯𝑖𝑖
𝑁 =

𝑏+𝑮�𝑼𝑖𝑖
𝑁�−𝑏−𝑮�𝑼𝑖,𝑗+1

𝑆 �

𝑏+−𝑏−
+ 𝑏+𝑏−

𝑏+− 𝑏−
(𝑼𝑖,𝑗+1

𝑆 − 𝑼𝑖𝑖
𝑁) (24)

Where a+, a-, b+, b- are described in Equations 25-28, respectively:

𝑎+ = max �𝑢𝑖𝑖𝐸 + �𝑔ℎ𝑖𝑖𝐸 , 𝑢𝑖+1,𝑗
𝑊 + �𝑔ℎ𝑖+1,𝑗

𝑊 � (25)

𝑎− = min �𝑢𝑖𝑖𝐸 − �𝑔ℎ𝑖𝑖𝐸 , 𝑢𝑖+1,𝑗
𝑊 − �𝑔ℎ𝑖+1,𝑗

𝑊 � (26)

𝑏+ = max �𝑣𝑖𝑖𝑁 + �𝑔ℎ𝑖𝑖𝑁 , 𝑣𝑖,𝑗+1𝑆 + �𝑔ℎ𝑖,𝑗+1𝑆 � (27)

𝑏− = min �𝑣𝑖𝑖𝑁 − �𝑔ℎ𝑖𝑖𝑁, 𝑣𝑖,𝑗+1𝑆 − �𝑔ℎ𝑖,𝑗+1𝑆 � (28)

Upon obtaining 𝑑
𝑑𝑑
𝑼𝑖𝑖(𝑡), the system of ODEs may be integrated with an ODE solver of

desired order. Brodtkorb et al. suggest using a standard second-order total variation
diminishing Runge-Kutta integrator, shown in Equation 29 and 30:

𝑼𝑖𝑖
∗ = 𝑈𝑖𝑖𝑛 + Δ𝑡 � 𝑑

𝑑𝑑
𝑼𝑖𝑖
𝑛 � (29)

𝑼𝑖𝑖
𝑛+1 = 1

2
𝑈𝑖𝑖𝑛 + 1

2
�𝑼𝑖𝑖

∗ + Δ𝑡 � 𝑑
𝑑𝑑
𝑼𝑖𝑖
∗ � � (30)

where the time step, Δ𝑡, is computed based on the Courant–Friedrichs–Lewy condition in
Equation 31:

Δ𝑡 = min �Δ𝑥
4𝑎

, Δ𝑦
4𝑏
� (31)

where a and b are defined in Equation 32, respectively:

𝑎 = max �𝑎+𝑗+12,𝑘, −𝑎
𝑗+12,𝑘
− � (32)

𝑏 = max �𝑏+𝑗,𝑘+12
, −𝑏

𝑗,𝑘+12

− � (33)

where 𝑎 and 𝑏 are global maxima over the entire domain (Chertock, et al. 2010).

UNCLASSIFIED

8

UNCLASSIFIED

Alternatively, an Euler integrator may be used by using Equation 34:

𝑼𝑖𝑖
𝑛+1 = 𝑈𝑖𝑖𝑛 + Δ𝑡 � 𝑑

𝑑𝑑
𝑼𝑖𝑖
𝑛 � (34)

The previously described equations were implemented on traditional CPU hardware
utilizing shared memory and parallel computing, and to the GPU. The implementation
was benchmarked against previously used case studies and will be described briefly in a
later section.

Domain Tracking on the GPU
Although parallel computation greatly increases the efficiency of the shallow water
model, additional considerations can further reduce model runtime. In real-world
scenarios (e.g., dam breaches), many cells within a domain never become “wet.”
Computations in these dry regions can thus be neglected, as their solutions are known a
priori. Tracking wet and dry cells focuses only on important computations (Judi, Burian
and McPherson 2011).

The CPU implementation of the shallow water model was adjusted to only perform
computations on wet cells and dry cells adjacent to wet cells. To map this concept to the
GPU, the hierarchy of NVIDIA’s Compute Unified Device Architecture (CUDA)
architecture was exploited as per recommendations of Sætra (Sætra 2013). Understanding
this implementation, however, requires a general understanding of the GPU
implementation.

CUDA’s computational hierarchy consists of three major components, shown pictorially
in Figure 1. To summarize these components, the CUDA programming guide is quoted
(NVIDA 2014):

“The CUDA architecture is built around a scalable array of
multithreaded Streaming Multiprocessors (SMs). When a CUDA
program on the host CPU invokes a kernel grid, the blocks of the
grid are enumerated and distributed to multiprocessors with
available execution capacity. The threads of a thread block
execute concurrently on one multiprocessor, and multiple thread
blocks can execute concurrently on one multiprocessor. As
thread blocks terminate, new blocks are launched on the vacated
multiprocessors.”

UNCLASSIFIED

9

UNCLASSIFIED

Figure 1. CUDA computational components.

In the case of the Kurganov-Petrova implementation described previously, each thread is
assigned a grid cell, while each block is assigned 16 × 12 threads. Instead of tracking
individual wet cells, wet blocks are tracked during each iteration. A block is marked as
active if any individual cell within the block is wet, or if the block is adjacent to another
“wet” block, shown visually in Figure 2. During each iteration, active blocks are
launched by kernel functions that describe the numerical scheme. At the end of each
iteration, the list and number of active blocks are updated for use during the next
iteration.

UNCLASSIFIED

10

UNCLASSIFIED

Figure 2. Pictorial description of CUDA blocks marked as active (blue) and inactive

(yellow).

Verification and Computational Performance Benchmarking
A hypothetical circular dam break was used to benchmark the accuracy and performance
of GPU implementations. This hypothetical simulation is commonly used to benchmark
new shallow water equation simulations in the literature (Alcrudo and Garcia-Navarro
1993). The scenario is defined by a flat, square domain with dimensionality of 50 × 50
cells; each cell is 1 meter. A circular column of water lies at the center of this domain
with a depth of 10 meters and a radius of 11 meters. The surrounding cells are initialized
with a water depth of 1 meter. Under the influence of gravity, this column of water
propagates in all directions, gradually encompassing the domain. The results for the
simulation at t = 0.69 seconds are shown in Figure 3.

Figure 3. Comparison of water depths at t = 0.69 seconds between Lotic (left) and Alcrudo

and Garcia-Navarro (right).

The hypothetical circular dam break was also used to benchmark computation
performance with and without domain tracking, as well as the performance of a multi-
core CPU implementation with domain tracking. To accomplish this, the domain was

UNCLASSIFIED

11

UNCLASSIFIED

modified to increase the number of computational cells. The scenario is defined by a flat,
square domain with dimensionality of 10,000 × 10,000 meters. A circular column of
water lies at the center of this domain with a depth of 500 meters and a radius of 100
meters. To benchmark model implementations as a function of domain size, the cell size
was altered as a function of the number of cells used to describe the domain. Performance
was measured similarly to Brodtkorb, Sætra, and Altinakar, in units of megacells per
second. To produce these measurements, each simulation was run with 10,000 time-steps,
and the execution time of each simulation was recorded. The CPU implementation used a
multithreaded OpenMP code, using 12 Intel Xeon x5670 cores, each at 2.93 gigahertz
(GHz). The GPU implementation employed one NVIDIA Tesla C2050, containing 448
CUDA cores, each at 1.15 GHz. In all cases, boundary condition updates were inactive.
Figure 4 shows the results of these performance comparisons.

Figure 4. Performance comparison of CPU and GPU implementations with and without

domain tracking as a function of domain size.

Clearly, both GPU implementations outperform the CPU implementation with domain
tracking. In this example, computational performance is increased an order of magnitude.
Comparing GPU implementations, a speedup of near 3 is observed when comparing the
domain tracking implementation with the non-tracking implementation.1 Additional
speedup is anticipated using the domain tracking algorithm as overhead involved in wet
cell/block tracking is reduced.

Multi-GPU
As simulation scenarios increase in size and duration, memory and performance
limitations may be quickly reached, which a concern when performing wide-area
hydrologic simulations. As an example, the NVIDIA Tesla C2050s used in benchmark
comparisons throughout this report contain three gigabytes of global on-device memory.
For a minimal simulation (e.g., Euler integration and no hydrological modeling), this

1 In the field of computer architecture, speedup is a metric for relative performance improvement when executing a task. The notion of
speedup was established by Amdahl's law, which was particularly focused in the context of parallel processing.

UNCLASSIFIED

12

UNCLASSIFIED

provides a theoretical maximum grid size of roughly 65 million cells. If more memory is
required for higher-order integration and/or hydrological modeling, this maximum size
decreases substantially. However, in emergency-response scenarios, the simulation of
very large domains is common. In previous emergency-response practice scenarios,
domains were reduced in size or resolution was decreased to adhere to memory
limitations of available GPUs.

By increasing the number of GPUs used for simulation from one to N, the domain size
and execution time may be theoretically increased or decreased by factors of N,
respectively. To implement this feature, a procedure similar to Sætra and Brodtkorb was
followed. The domain is first decomposed into N equally sized portions. N CPU threads
are assigned to control each GPU, and the model is run on each portion of the domain in
parallel. Near the center of domain, four rows of data are overlapped for each GPU and
subdomain. This overlap allows each GPU to iterate over its data twice before swapping
interfacial data with the other GPU (Sætra and Brodtkorb 2012).

The current implementation has only been tested on dual-GPU instances. To benchmark
single and dual-GPU instances, the hypothetical circular dam break was again used.
These performance comparisons are displayed graphically in Figure 5.

Figure 5. Single and dual-GPU computational performance benchmark for the hypothetical

circular dam break.

In many cases, super linear speedup was observed while benchmarking the dual-GPU
version. This may be a result of inefficient memory caching in GPU implementations. In
the single-GPU case, the entire system must fit within one GPU; when the problem is
split between two GPUs, it is possible that memory caching is handled more efficiently
(or plays a lesser role) during execution. As these inefficiencies are further investigated
and corrected, single and dual-GPU versions should both increase in performance, and
dual- versus single-GPU speedups should approach a value near 2.

UNCLASSIFIED

13

UNCLASSIFIED

Enhanced Visualization
Real-time visualization has been incorporated into the GPU implementation of flood
scenarios as the GPU model executes. In this instance, real-time is defined as
instantaneous visualization of results as it is simulated. This visualization component is
founded upon the work of Brodtkorb et al (Brodtkorb, Sætra and Altinakar 2012).
Because model and visualization data both reside on the GPU, data are easily accessed by
both components, allowing for fast simulation and immersive visualization. Terrains may
also be draped with user-defined textures, such as high-resolution satellite imagery.
Water surfaces are realistically rendered using the Fresnel equations. Extending the work
of Brodtkorb et al., Lotic allows for interactive manipulation of the domain. Presently,
analysts can alter the topography and add/remove water as the simulation runs. The
ability to manipulate topography may be especially useful to emergency managers, who
could use simulations to prepare for future flood events. Figure 6 shows an example of
textures, rendering, and topography manipulation on a monitor.

Figure 6. Real-time visualization of the historic Taum Sauk dam break before (left) and

after (right) analysts’ topography manipulation.

UNCLASSIFIED

14

UNCLASSIFIED

References
Alcrudo, Francisco, and Pilar Garcia-Navarro. "A high‐resolution Godunov‐type scheme

in finite volumes for the 2D shallow‐water equations." International Journal for
Numerical Methods in Fluids 16, no. 6 (1993): 489–505.

Brodtkorb, Andre, Martin Sætra, and Mustafa Altinakar. "Efficient shallow water
simulations of GPUs: Implementation, visualization, verification, and validation."
Computers and Fluides 55 (2012): 1–12.

Chertock, Alina, Shumo Cui, Alexander Kurganov, and Tong Wu. "Well-balanced
Positivity Preserving Central-Upwind Scheme for the Shallow Water System with
Friction Terms." J. Hydro 382 (2010): 88–102.

Judi, David, S Burian, and T McPherson. "Two-Dimensional Fast-Response Flood
Modeling: Desktop Parallel Computing and Domain Tracking." Journal of
Computing in Civil Engineering 25 (2011): 184–191.

Judi, David, Steve Burian, and Timothy McPherson. Development and validation of a
two-dimensional fast-response flood estimation model. LA-UR-09-01174, Los
Alamos, NM: Los Alamos National Laboratory, 2009.

Kurganov, Alexander, and Guergana Petrova. "A second-order well-balanced positivity
preservine central-upwind scheme for Saint-Venant system." Communications in
Mathematical Sciences 5, no. 1 (2007): 133–160.

NVIDA. "CUDA C Programming Guide." 2014.

Sætra, Martin. "Shallow water simulation on GPUs for sparse domains." Numerical
Mathematics and Advanced Applications 2011 (Springer), 2013: 673–680.

Sætra, Martin, and Andre Brodtkolb. "Shallow water simulations on multiple GPUs."
Applied Parallel and Scientific Computing (Springer), 2012: 56–66.

	Introduction
	Flood Modeling and Simulation Enhancements
	Numerical Reformulation of the Shallow Water Equations
	Domain Tracking on the GPU
	Verification and Computational Performance Benchmarking

	Multi-GPU
	Enhanced Visualization

