Center for Center for Technology for Advanced Scientific
Component Software (TASCS)

http://tascs—-scidac.org

Consolidated Progress Report
July 2006-March 2009

Proposal Number: 100990
Technical Contact: Osni A. Marques
Program Area: SciDAC Center for Enabling Technology
Program Office: Office of Advanced Scientific Computing Research
Program Announcements: LAB 06-04 and DE-FG02-06ER06-04

Lead Principal Investigator:

Institution Principal Investigator
Oak Ridge National Laboratory David E. Bernholdt
PO Box 2008, MS 6016 (865) 574-3147

Oak Ridge, TN 37831-6016 bernholdtde @ornl.gov

Participating Institutions
Institution Institutional Lead co-Pl
Argonne National Laboratory (ANL) Lois Curfman Mclnnes
Binghamton University (BU) Madhusudhan Govindaraju

Indiana University (IU) Randall Bramley
Lawrence Livermore National Laboratory (LLNL) Tom Epperly
Oak Ridge National Laboratory (ORNL) James A. Kohl

Pacific Northwest National Laboratory (PNNL) Jarek Nieplocha

Sandia National Laboratories (SNL)
Tech-X Corporation (Tech-X)
University of Maryland (UMD)
University of Oregon (UO)

Virginia State University (VSU)

Rob Armstrong
Svetlana Shasharina
Alan L. Sussman
Matt Sottile
Kostadin Damevski

Contents

1 Introduction and Project Overview
1.1 Backgroundand Goals
1.2 Project Organization and Research Agenda
1.3 Overview of Milestones and Deliverables
2 Project Highlights
3 Component Technology Initiatives
3.1 Emerging HPC Hardware and Software Paradigms
3.1.1 Multiple-Component-Multiple-Data MCMD)
3.1.2 CCA on Heterogeneous Architectures
3.1.3 FaultTolerance e e
3.2 Software Quality and Verification (SQV)
3.3 Computational Quality of Service (CQoS) and Adaptivity
4 The CCA Environment
4.1 Core Tool Support and Maintenance i
42 Enhancements e e e e e e e
43 Usability o o o e e e
4.3.1 Bocca: Automated CCA Interfaces and Components
432 OnRamp
5 The CCA Toolkit
6 User and Application Outreach and Support
6.1 Application Support L. e
6.2 User Outreach and Support
6.3 Community Outreach
6.4 Education e e e e e e
6.5 Supporting the Common Component Architecture (CCA) Forum
7 Non-Technical Matters
Appendices

A External Collaborations
A1 SciDACProjects e e

Al
A.l2
Al3
Al4

A.15
A.1.6
A1.7
A.1.8

Applied Partial Differential Equations Center Enabling Technologies (APDEC) . . .
Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

Center for Scalable Application Development Software (CScADS)
Center for the Simulation of RF Wave Interactions with Magnetohydrodynamics

(SWIM) . .
Community Petascale Project for Accelerator Science and Simulation (ComPASS) .
Computational Facility for Reacting Flow Science (CFRFS)
Framework Application for Core-Edge Transport Simulations (FACETS)
GroundWAter CCA MOdeling Library and Extensions (GWACCAMOLE)

11
11
11
13
14
14
16

20
20
23
25
26
27

29

31
31
31
32
32
33

35

36
36
36
36
36

A2

A3

A.1.9 Hybrid Numerical Methods for Multiscale Simulations of Subsurface Biogeochem-
ical Processes
A.1.10 Quantum Chemistry SAP
A.1.11 Performance Engineering Research Institute (PERI)
A.1.12 Scientific Data Management Center (SDM)
A.1.13 Towards Optimal Petascale Simulations (TOPS)
Other DOE Projects e e e e e e e e
A.2.1 Common Component Architecture for Electron Cloud Accelerator Simulations . . .
A.2.2 Contractor Meta-Build System,
A.2.3 Cooperative Programming (Co-Op)
A.2.4 Coordinated Infrastructure for Fault Tolerance of Systems (CIFTS)
A.2.5 Distributed CCA Components and Grid Services for Scientific Computing
A.2.6 High-Performance Mass Spectrometry Facility
A.2.7 Nuclear Energy Advanced Modeling and Simulation NEAMS)
A28 NWChem
A2.9 Polygraph e
A2.10 ROSE
A2.11 SPARSKIT-CCA
A.2.12 Tuning Analysis and Utilities (TAU)
Other SPONSOrs e e e e e
A.3.1 Center for Integrated Space Weather Modeling (CISM)
A.3.2 Chapel Language Development Team
A.3.3 Community Surface Dynamics Modeling System (CSDMS) Integration Facility . . .
A.3.4 HPC Application Software Consortium (HPC-ASC)

B TASCS Publications and Presentations

C Additional Non-TASCS References

1 Introduction and Project Overview

1.1 Background and Goals

A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that
high-performance computational science is now universally recognized as a critical aspect of scientific dis-
covery [71], complementing both theoretical and experimental research. As scientific communities prepare
to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model
simulations at the extreme scale [72], it is more important than ever to address the technical and social
challenges of geographically distributed teams that combine expertise in domain science, applied mathe-
matics, and computer science to build robust and flexible codes that can incorporate changes over time. The
Center for Technology for Advanced Scientific Component Software (TASCS)! tackles these these issues
by exploiting component-based software development to facilitate collaborative high-performance scientific
computing.

Why Components in Scientific Simulation? Component-

based design constructs complex software by combining sim- . T
pler building blocks called components [73]. This approach o 127 §
has been developed by the computer science community as the “\Qo“e 106 %
latest in a succession of approaches to deal with the burgeon- @ 108 5
ing complexity of software systems (Fig. 1). Like the object- Object-Oriented | 10* .:;
oriented concepts from which they evolved, components en- Structured Programming :2: %5_
capsulate functionality and related state, but as their name im- C— 100 §
plies, components are meant to be composed. All components, Acsomblere 100 2
whether intrinsically object oriented or not, must have a com- 1995 1955 1965 1975 1985 1995 200 10" %
mon means of composition, which object-oriented concepts Year »

alone do not provide.

Component-based applications are composed from indi- Figure 1: Computer scientists have devel-
vidual components based on the interfaces they expose. Thus, ©Ped a succession of techniques to address
components become a tool to organize large, complex software the increasing size and complexity of soft-
systems in terms of smaller modules of manageable scale, with Ware systems, with component technology
components and interfaces serving as fundamental units in as the latest to achieve wide-spread accep-
describing software architectures. In addition, because each tance. (Axes are qualitative rather than
component typically represents the work of an individual or a quantitative.)
small group, component-based approaches can help address a
variety of sociological and technical challenges typical in computational science teams that are increasingly
multidisciplinary, geographically distributed, and dealing with multi-language programming in complex
computing environments with lifetimes much shorter than the software running on them.

Besides providing an organizational basis for “software in the large,” component approaches offer many
additional benefits. For example, encapsulation and well-defined interfaces facilitate interoperability and
reuse. While traditional software libraries also accomplish this function, components enable a key additional
feature: the automation of composition under program control and rearrangement of functionality “on the
fly.” This automation property creates new opportunities for the real-time adaptivity of components to
improve accuracy, robustness, and performance (Sec. 3.3). Similarly, the framework in which component-
based applications are assembled and executed provides a platform for making services available to all
participating components, such as orchestration of teams of parallel tasks (Sec. 3.1) and verification of
interface contracts to improve software quality (Sec. 3.2).

'http://tascs-scidac.org

Components in SciDAC. Although component-based software engineering (CBSE) has gained wide ac-
ceptance in most other areas of computing, until recently it has made few inroads into high-performance
computational science and engineering. Because scientific simulations must run in exotic high-performance
environments, and there is little tolerance for inefficiencies that impede performance, computational science
has special requirements that mainstream commodity component environments do not address.

In 1998, the Common Component Architecture Forum? was formed as a grass-roots organization of re-
searchers at national laboratories and universities with the goal of fundamentally changing the way scientific
software is developed and used by creating a component model targeted to the needs of high-performance
scientific computing — the CCA. The CCA addresses these issues and provides key features of language-
neutral specification of common component interfaces, interoperability for software written in program-
ming languages important to scientific computing, and dynamic composability, all with minimal runtime
overhead [74].

In 2001, a core group of CCA Forum members established the Center for Component Technology for
Terascale Simulation Software (CCTTSS) under the SciDAC-1 program. The CCTTSS successfully devel-
oped the CCA to the prototype stage and demonstrated the practical and potential benefits of component-
based software development (CBSD) through work with several scientific application teams. The Center
also made significant efforts at community-building, outreach, and education, thereby encouraging compu-
tational scientists to make long-term investments in their software, and increasing the awareness of software
engineering considerations and potential roles for components and related technologies.

The Center for Technology for Advanced Scientific Component Software began in 2006 under the
SciDAC-2 program with the goal of taking the CCA and high-performance computing (HPC) component
technology in general from the prototype to the production stage of maturity and quality. As discussed in
Sec. 2 and Appendix A, TASCS is now enabling diverse multidisciplinary teams to investigate new scientific
questions by leveraging the CCA component approach. Moreover, TASCS explores HPC component tech-
nology as a platform for providing application scientists with additional tools and productivity advantages
that are not available, and in many cases would be extremely hard to deploy, in traditional HPC program-
ming environments. As discussed in Sec. 3, these initiatives set the stage for new software capabilities
that we believe are essential aspects of extreme-scale computational science collaborations on emerging
leadership-class machines.

1.2 Project Organization and Research Agenda

TASCS’s work has four major thrust areas, each with several activities (described below), around which
the main portion of this progress report is organized (Fig. 2). The work is strongly motivated by numerous
interactions with scientific applications teams and other SciDAC CETs and Institutes (Appendix A), and
activities are tightly integrated, both across the four thrust areas and across the participating institutions.

e Component Technology Initiatives utilize and extend the component model to provide new “value
added” capabilities for CCA users (Sec. 3).

— Emerging HPC Hardware and Software Paradigms motivate our creation of component-
based tools to help applications manage higher/hybrid levels of parallelism through a multiple-
component multiple-data (MCMD) paradigm; we also are developing support for fault-tolerant
components and hardware co-processors (Sec. 3.1).

— Our work in Software Quality and Verification develops mechanisms to specify and verify
functional software “contracts” associated with component interfaces to help both providers and
users improve the quality of their codes (Sec. 3.2).

http://www.cca-forum.org

Component Technology
Initigtives

TASCS Focus Areas

——

CCA Tookit
Coardinatar:
Rob &rmstrong, SKL

CCA Environment
Coardingtar:
Tom Epperly, LLML

Emerging High-
Perfomance Computing
Hardware and Software
Paradigms (HPC)
Coardingtor:
Jarek Mieplocha, PRMML

Software Quality and
Verification (SQU)
Coardingtor:
Tammy Dahlgren, LLML

Computational Quality of
Service and Adaptivity
(CQoS5)
Coordinator:

Lais Curfman Molnnes,
ARL

Core Tool Support and
Maintenance

—
\ r Coardinatar.
Ben Allan, SML

Enhancements

Coordinatar: —
Tam Epperly, LLML

> Activities <

Usabiliby
Coardinatar:
Matt Sottile, UO

Figure 2: TASCS organizational chart.

Table 1: TASCS Research Areas and Annual Budget by Institution

Budget
Institution Research Areas” ($k)
Argonne National Laboratory Initiatives, CQoS, Core Tools, Usability, Toolkit, 505
Outreach
Binghamton University Enhancements 93
Indiana University Toolkit, Outreach 127
Lawrence Livermore National Laboratory SQV, Environment, Core Tools, Enhancements, 537
Usability, Toolkit, Outreach
Oak Ridge National Laboratory HPC, SQYV, Core Tools, Enhancements, Usabil- 500
ity, Toolkit, Outreach
Pacific Northwest National Laboratory HPC, Toolkit, Outreach 329
Sandia National Laboratories CQoS, Core Tools, Enhancements, Usability, 538
Toolkit, Outreach
Tech-X Corporation Toolkit, Outreach 87
University of Maryland Toolkit 62
University of Oregon” Usability 94
Virginia State University© Enhancements, Toolkit 128
Total 3,000

“Coordinating institutions for each research area are shown in italics.
®Originally Los Alamos National Laboratory
“Originally University of Utah

— Research in Computational Quality of Service and Adaptivity leverages CCA mechanisms
to dynamically adapt long-running component-based applications in response to changing con-
ditions (e.g., performance, accuracy, robustness) by composing, substituting, and reconfiguring
components on the fly (Sec. 3.3).

e The CCA Environment thrust supports and improves the foundation of the CCA environment and
tools for ease of use and as core technology for other initiatives (Sec. 4).

— Core Tool Support and Maintenance provide essential software maintenance, porting, and
support in the face of changing HPC environments (Sec. 4.1).

— Enhancements extend the CCA environment with additional capabilities required by users and
by other activities within TASCS (Sec. 4.2).

— Usability work makes CCA technology more accessible to users through the development of
tools for the (semi-)automatic wrapping of existing code into components (Sec. 4.3).

e The CCA Toolkit provides a diverse suite of scientific components, along with a basic software
skeleton to facilitate the creation of new components (Sec. 5).

e User/Application Qutreach and Support assist scientific teams with CCA usage through direct
interactions as well as the development of documentation, tutorials, and example materials (Sec. 6).

The TASCS team currently includes researchers from five national laboratories, five universities, and
one small research business (Table 1); several changes to the project team since the project’s inception are
described in Sec. 7. At most institutions, the funding partially supports multiple researchers, ranging from
faculty and senior researchers to graduate students and undergraduate interns. Most institutions are engaged
in multiple activities within the project, as noted in Table 1 and at the start of each section of this report. Note
that while laboratory participants received funding beginning in July 2006, university participants did not
receive their award notifications until January 2007. This fact, and funding gaps associated with institutional
changes, have delayed some work as described in Sec. 4 and Sec. 5.

We also collaborate extensively with a wide variety of external projects (Appendix A). Such collabora-
tions are an important part of TASCS. In addition to providing a testing ground for the results of our work,
many of these collaborations inspire new research ideas and developments. As discussed in Sec. 3, several
projects are direct research partners in our three Component Technology Initiatives.

1.3 Overview of Milestones and Deliverables

The following tables provide an overview of the milestones and deliverables of the project, taken from the
Project Management Plan Version 0.91 of 4 December 2006°, broken down by thrust area and activity. In
each section, the coordinator and the participating institutions are listed.

*http://tascs-scidac.org/documents/mgmt-plan.pdf

Table 2: Summary of Milestones for Component Technology Initiatives
Coordinator: L.C. Mclnnes, ANL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, UMD

Year 1

Year 2 Year 3

Years 4-5

Emerging HPC Paradigms

e Develop multi-level
parallelism model.

e Define abstract model for
CCA hybrid apps.

Coordinator: J. Nieplocha, PNNL,;

e Develop CCA model for
processor groups.

e Develop component in-
terface for hybrid systems.

e Develop simple MCMD
programming model.

e Prototype hybrid inter-
face for example applica-
tion.

Farticipants: ORNL, PNNL

e Incorporate MCMD
support for heterogeneous
prog. models.

e Implement hybrid &
MCMD example applica-
tion components.

Software Quality and Verification

e Identify and define
CQoS and domain-specific
semantics; assess spec.
mechanisms.

Coordinator: T.L. Dahlgren, LLNL;

e Introduce semantic
specifications into selected
Toolkit components.

e Develop sequencing en-
forcement prototype in Ba-
bel/SIDL.

e Develop semantics
prototype(s).

e Design method invoca-
tion sequencing constraints
enforcement.

Farticipants: LLNL, ORNL

o Evaluate semantics
prototype(s).

e Evaluate sequencing
enforcement prototype.

e Revise and evaluate pro-
totypes based on CQoS
evolution.

Computational Quality of Service (CQoS)

e Collect application
requirements, define
metrics, perform base
experiments.

e Build database compo-
nent.

Coordinator: L.C. Mclnnes, ANL;

e Populate CQoS testbed
and specify initial CQoS

e Complete design of
overall CQoS strategy.

APL e Implement application

e Develop initial control laws.

performance models for e Implement an asyn-
applications. chronous control infras-
e Develop proxy port gen- tructure.

eration for CQoS usage.

Participants: ANL, SNL

e Design APIs for general
analysis engines.

e Create a generic CQoS
framework for HPC
applications.

e Stress test CQoS tools.

Table 3: Summary of Milestones for CCA Environment

Coordinator: T. Epperly, LLNL; Participants: ANL, BU, LLNL, ORNL, SNL, UO, VSU

Year 1

Year 2 Year 3

Years 4-5

Core Tool Support and Maintenance

e Port CCA software stack

<— Support helpdesk and open bugtracking. —>
<— Develop and maintain technical documentation. —
e Complete CCA Confor- e Automated conformance

Coordinator: B. Allan, SNL; Participants: ANL, LLNL, ORNL, SNL

e Evaluate and port to

to NLCF machines mance Tests testing for all CCA frame- new architectures as they
works. emerge.
(continued)

Table 3: Summary of Milestones for CCA Environment (continued)

Year 1

Year 2

Year 3

Years 4-5

Enhancements

e Adopt EventService and

Coordinator: T. Epperly, LLNL;

o Demonstrate

Participants: BU, LLNL, ORNL, SNL, VSU

e Finalize specification for

e Demonstrate exchange

MPIService into standard. = CCA/Kepler Component of sub-assemblies between

e Demonstrate support for interoperability. sub-assemblies. two CCA Frameworks.

BabelRMI in XCAT. e Add structs to e Develop specification for e Demonstrate framework
SIDL/Babel. framework interoperability between
e Add Fortran 2003 interoperability. CCA implementations.
support to Babel. e Release full fledged ver- e Extend BabelRMI com-
e Incorporate SOAP as sion of XCAT. munication modules for
module in BabelRMI, inte- new CCA applications.
grate with Proteus/ XCAT.

Usability Coordinator: M. Sottile, UO; Farticipants: LLNL, ORNL, SNL, UO

e Draft CCA-Lite Spec
and CCA-Lite Framework.
e Document advanced
component debugging
techniques.

e Design component test
harness.

e Preliminary integration
of CCA-Lite test
framework with Ccaffeine
framework.

e Deploy component test
harness.

e Demonstrate connecting
CCA-Lite components to
CCA components in
Ccaffeine.

o Integrate SIDL
semantics enforcement
into testing methodology.
e Develop component trac-
ing tools to facilitate de-

bugging.

e Demonstrate
source-to-source
conversion of CCA-Lite
component to full CCA
Component.

e Evaluate tradeoffs in
debugging and testing
CCA-Lite vs. full CCA.

e Apply test harness to se-
lected toolkit components.

Table 4: Summary of Milestones for the CCA Toolkit
Coordinator: R. Armstrong, SNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X, UMD, VSU

Year 1

Year 2

Year 3

Years 4-5

+— Design, establish and, based on user feedback, iterate and improve CCA Base Installation —

e Design toolkit structure
and contribute initial com-
ponents to the Toolkit, and
establish web distribution
system

e Incorporate and promul-
gate Toolkit components
into CCA tutorial and out-
reach activities, improve
type and quality of the
Toolkit repertoire.

e Add to Toolkit com-
ponent improvements to

CCA architecture since
Year 1, e.g. MCMD
components, templates,

and CQoS plug-ins.

° Establish web-
based/community process
for approving/distributing
component contributions
from the community,
as user base for Toolkit
expands.

Table 5: Summary of Milestones for Application and User Outreach and Support
Coordinator: D.E. Bernholdt, ORNL; Participants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X

Year 1

Year 2

Year 3

Years 4-5

<— Support applications in adopting and using CCA. —

<— Deliver user support, incl. tutorials, coding camps, etc. —

e Revamp cca-forum.
org web services.

+— Update tutorial and best practices documentation. —>

e Revamp or migrate
cca—forum.org
development services.

code

2 Project Highlights

FACETS Project Uses CCA Tools for First Integrated
Core-Edge Plasma Simulation. The Framework Applica-
tion for Core-Edge Transport Simulations (FACETS) project
(Sec. A.1.7) is developing integrated modeling capabilities for
the plasma core, edge, and wall in Tokamak reactors as one
of three SciDAC prototype projects for the Fusion Simula-
tion Project. This problem involves complex physics with
different dimensionalities, modeled by separate codes. The
FACETS team uses the CCA’s Scientific Interface Definition
Language (SIDL) to express the interfaces between the com-
ponents representing the core, edge, and wall physics, and the
Babel language interoperability to integrate the UEDGE code
into the custom FACETS framework. With this integrated ap-
plication, FACETS has recently achieved the first tightly cou-
pled code-edge fusion plasma model (Fig. 3) [75]. This result
provides an important proof of concept that opens the door to
further scientific discovery, parallelization research, and addi-
tional performance optimization.

CFRFS Researchers Demonstrate Their Toolkit in a
Fourth-Order in Space AMR Simulation. The Computa-
tional Facility for Reacting Flow Science (CFRFS) project
(Sec. A.1.6) is developing an AMR toolkit for simulating re-
acting flows with detailed chemistry. The CCA standard is
used to incorporate contributions from combustion researchers
and established software libraries (e.g., CHOMBO from the
Algorithmic and Software Framework for Applied Partial Dif-
ferential Equations (APDEC) (Sec. A.1.1) and hypre from
the Towards Optimal Petascale Simulations (TOPS) Center
(Sec. A.1.13)). Using this CCA-based toolkit, a CFRFS
achievement — fourth-order spatial discretizations on a block-
structured adaptive mesh — was demonstrated recently [76,77]
within the context of methane-air ignition. Fourth-order con-
vergence was demonstrated empirically. Fig. 4 shows a snap-
shot from a simulation of a “bubble” of methane igniting in a
pre-heated air flow in a pipe. A 3-level AMR mesh is seen to
resolve the ignition spot and the edge flame that burns through
a region surrounding the methane-air interface where the two

Figure 3: FACETS uses Babel to com-
bine software components written in mul-
tiple languages to produce the first inte-
grated core-edge simulation [75]. Courtesy
of John Cary; produced with VizSchema
(Tech-X).

Figure 4: CFRFS researchers used a CCA-
based AMR toolkit for reacting flows to
simulate CH4-Air ignition [76]. Courtesy
of Cosmin Safta (SNL).

mix and form a combustible mixture. CFRFS researchers are also developing a meta-partitioner for reac-
tive flows on block-structured, adaptively refined meshes using new CCA infrastructure for computational

quality of service (see Sec. 3.3).

Components Enable Interchangeability and Interoperability in Quantum Chemistry. Researchers in
the Quantum Chemistry Strategic Application Partnership (QCSAP) (Sec. A.1.10) have used the CCA to
achieve interoperability among three leading high-performance chemistry applications (GAMESS, MPQC,
and NWChem). SIDL/Babel has eliminated difficulties with interoperability among Fortran, C++, and
Python, thereby enabling the adoption of a common high-level interface for a chemistry model component

that each chemistry package supports [78] and the use of TAO

numerical optimization components from the TOPS project [81]
(Sec. 5 and A.1.13). Chemists are now performing hybrid

quantum/classical simulations using methods available within

any of the packages [80] and are sharing low-level capabili-

ties such as integral evaluation [79], thus enabling rapid devel-

opment of novel methods. Explicitly correlated calculations

including relativistic effects, which were rapidly implemented

using components, were employed to revise the heats of for-

mation of chromium compounds of interest in industrial ap-

plications by 2-3 kcal/mol [82]. Quantum chemists are also Figure 5: The CCA enables hybrid quan-
pursuing multilevel simulations using new component capabil- tum/classical simulations using GAMESS,
ities for emerging HPC architectures (Sec. 3.1.1) and are em- MPQC, and NWChem [79, 80]. Courtesy
ploying new CCA infrastructure for computational quality of of the QCSAP project.

service (Sec. 3.3) for dynamic and adaptive configuration [1].

Bocca Revolutionizes CCA Component Development. While the CCA provides powerful ideas and
tools, navigating the details of creating components in a multi-language environment can be challenging.
To help lower this barrier, a small team of TASCS researchers, including Boyana Norris (ANL), Ben Allan
(SNL), Wael Elwasif (ORNL) and Rob Armstrong (SNL), developed Bocca, a code-generation and project
management tool for the CCA.

Given the definition of a component in terms of the ports it uses and provides, Bocca can generate a
complete component in any Babel-supported language, including a build system, but sans the actual im-
plementation. This capability enables a component skeleton to be built and loadable into a framework in
seconds, thereby allowing computational scientists to focus on the functional parts of the code. Described
in more detail in Sec 4.3, Bocca’s impact has been profound, completely changing the way users approach a
CCA project (see Fig. 10). After the CCA tutorial was rewritten to use it, we found that students were able to
make 200% more progress through the hands-on exercises and had a better grasp of the CCA environment.
Since Bocca was publicly released in April 2007, it has been adopted almost universally among CCA users.

Special Recognition for TASCS Researchers. In 2006, David Bernholdt (ORNL) was invited to teach
a course as part of the CEA-EDF-INRIA Summer School on the Design of High-Performance Scientific
Applications [2] in St. Rémy 1és Chevreuse, France. The course, entitled Software Architecture for High-
Performance Computing: A Pragmatic Approach, included 8.5 hours of lecture material and a 3-hour hands-
on CCA tutorial.

In 2007, Ken Chiu (BU) collaborated with researchers Wei Lu, Satoshi Shriasuna, and Dennis Gannon
(IU) on a paper entitled A Hybrid Decomposition Scheme for Building Scientific Workflows [3], which won
the Best Paper Award at the High Performance Computing Symposium, in Norfolk, Virginia.

Also in 2007, David Bernholdt (ORNL) gave a keynote address entitled The Common Component Archi-
tecture: Building Frameworks for Computational Science [4] at the International Conference on Modeling
and Simulation in the Petroleum Industry in Porto de Galinhas, Brazil.

10

3 Component Technology Initiatives
Coordinator: Lois Curfman Mclnnes, ANL

The TASCS Center is pursuing three technology initiatives based on the premise that, in addition to aid-
ing multidisciplinary software development, the CCA component approach can facilitate the deployment of
new capabilities throughout the entire lifecycle of extreme-scale scientific simulations. This work is moti-
vated and validated through collaborations with SciDAC science teams working in combustion (Sec. A.1.6),
quantum chemistry (Sec. A.1.10), fusion modeling (Sec. A.1.7, A.1.4), accelerator modeling (Sec. A.1.5),
subsurface modeling (Sec. A.1.9), and proteomics (Sec. A.2.6), as well as with mathematicians in the
ITAPS (Sec. A.1.2) and TOPS (Sec. A.1.13) centers and computer scientists in the Coordinated Infras-
tructure for Fault Tolerance in Systems (CIFTS) project (Sec. A.2.4).

These initiatives address challenges at different but related levels in the development of component-
based scientific software [5]. The initiative on Emerging HPC Hardware and Software Paradigms (Sec. 3.1)
leverages component technology for applications that target massively parallel, heterogeneous architec-
tures. The second initiative, Software Quality and Verification (Sec. 3.2), investigates new approaches to
the lightweight runtime enforcement of behavioral semantics that help developers to use interfaces cor-
rectly, with little impact on performance. By exploiting component automation, including capabilities for
plugging and unplugging components during execution, the initiative on Computational Quality of Service
and Adaptivity (Sec. 3.3) develops tools to help application scientists choose among alternative algorith-
mic implementations and parameters, thereby creating new opportunities to enhance the performance of
CCA applications. Research in all three initiatives in turn motivates extensions to the CCA specification
and the development of new core CCA technologies, including a new event service specification discussed
in Sec. 4.2. Since the start of the TASCS project, this work has been discussed in a variety of papers,
presentations, and posters [1,5-22] as well as a Ph.D. dissertation [23].

3.1 Emerging HPC Hardware and Software Paradigms
Coordinator: Jarek Nieplocha, PNNL
Participants: ORNL, PNNL

The overall goal of this initiative is to leverage the CCA’s unique capabilities for flexible high-performance
software to help domain scientists fully harness the unprecedented computing power of emerging leadership-
class machines. By providing an easy-to-use intermediate layer between hardware and scientific program-
mers, CCA components can make new advances in emerging HPC paradigms readily usable by applications
teams, thereby helping domain scientists to manage the complexity of these changes over time. Three fo-
cus areas are support for multiple levels of parallelism via a Multiple-Component-Multiple-Data (MCMD)
paradigm (Sec. 3.1.1), support for increasingly hybrid and heterogeneous hardware (Sec. 3.1.2), and com-
ponent resilience in response to fault tolerance challenges (Sec 3.1.3).

3.1.1 Multiple-Component-Multiple-Data (MCMD)

Collaborators. TASCS participants in this initiative are Daniel Chavarria, lan Gorton, Manojkumar Kr-
ishnan, Jarek Nieplocha (PNNL); David Bernholdt and Wael Elwasif (ORNL). To motivate and validate
this work, TASCS researchers collaborate with the Groundwater Subsurface GWACCAMOLE Scientific
Application Partnership (Sec. A.1.8), the NWChem team (Sec. A.2.8), the STOMP (Sec. A.1.9) project,
the Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) (Sec. A.1.4), and the
CIFTS (Sec. A.2.4) project.

Motivation. As high-end computers transition from offering thousands of processors to tens and hundreds
of thousands of processors, users are increasingly challenged to find additional parallelism in their applica-
tion in order to effectively utilize these emerging machines. When a single parallel activity does not scale
sufficiently, it would often be desirable to launch many distinct parallel tasks, each using a subset of the

11

available processors. This type of programming goes by many names, including multi-level parallelism,
multiple-program multiple-data (MPMD) parallelism, multi-tasking, etc. Traditional parallel programming
models provide only the most basic support for this kind of programming, if they provide any support at all.
The component environment, on the other hand, provides an excellent platform to make such capabilities
broadly available.

Accomplishments. The dynamic nature and en-
capsulation of components map quite naturally to
the concepts of MPMD programming. We call this
approach the Multiple Component Multiple Data

(MCMD) programming model. Our primary goal =

is to define, develop, and deploy high-level infras-
tructure for MCMD programming in a CCA envi-
ronment to support applications based on multiple
levels of parallelism.

PNNL team members led the formation of a
CCA Forum working group on MCMD program-
ming, which held a workshop during the January
2007 meeting of the CCA Forum to explore moti-
vating MCMD applications, including hierarchical Figure 6: MCMD design of STOMP subsurface sim-
parallelism in computational chemistry [83], co-op ulations for hydrologic/geophysical inverse modeling.
parallelism, ab initio nuclear structure calculations,
coupled climate modeling, space weather modeling,
molecular dynamics, and groundwater multiphysics simulations. Based on these use cases, the MCMD
working group developed a model for MCMD programming as well as a simple yet generic processor-group
model that can map to processor groups in various parallel programming models. The processor-group
model supports both single-executable parallel job as well as multi-partition applications (e.g., multiple
parallel jobs). Multi-partition applications can be homogeneous (e.g., all parallel jobs are MPI based) or
heterogeneous (i.e., jobs may contain a combination of multiple programming models such as MPI, GA,
PVM, etc). The MCMD group also developed a draft specification for a feams service to manage concurrent
groups of processes at the component level. The concept of a CCA team refers to an ordered collection of
processes yet is more general than an MPI group; for example, a team can contain a list of processes from
multiple parallel runs.

To implement the high-level infrastructure for MCMD programming, we also developed a high-level
API for process group management at the CCA level. To express and manage hierarchical parallelism
though processor groups, it is essential to support processor groups at the component level. The MCMD
programming model promotes parallelism at the component level, parallelism within the component, and
parallelism within a subroutine. The CCA MCMD model supports various execution models (e.g., single
vs. multiple mpiruns); different programming models (e.g., MPI, Global Address Space (GAS) models in-
cluding Global Arrays (GA), CAF, etc.); global process and group IDs; and process and group ID translators
to facilitate the translation of a CCA process group to an MPI group.

To date, we have five releases of the MCMD API specification based on feedback from several MCMD
meetings and teleconferences. The MCMD specification is available for download at the MCMD working
group webpage. We also developed a prototype implementation of the MCMD specification, which can be
used in application evaluation.

Estimated
Properties

Minimization
Executive
MCMD Driver

Application Impact and Future Work. The PNNL team is working with the STOMP subsurface mod-
eling group to add MCMD capabilities to their code. Fig. 6 shows the MCMD model for doing large-scale
subsurface simulations. This work will provide a validation of the CCA feams model, while allowing the

12

STOMP group to carry out parameter studies using multiple instances of the parallel STOMP component to
simulate flows through heterogeneous, porous media at the Hanford site. The MCMD implementation incor-
porates task parallelism between components and data parallelism within components. PNNL has also been
working on an MCMD implementation to facilitate the estimation of spatially variable subsurface geologic
material properties using field observations of multivariate data types and sample sizes, and to support a
multimodal minimization methodology using forward models of hydrologic, geochemical, and geophysical
processes to estimate the desired properties.

The ORNL team is working in collaboration with the SWIM fusion project to implement MCMD capa-
bilities based on the feams approach in their component-based (but not CCA-compliant) Integrated Plasma
Simulator (IPS) framework. This application is not one considered in the original design of the feams model,
and parallel tasks are implemented at the mpirun level, thus providing broader validation of the design.

3.1.2 CCA on Heterogeneous Architectures

Collaborators. Work on heterogeneous architectures is being carried out by PNNL researchers in collabo-
ration with Polygraph project (Sec. A.2.9) and the High Performance Mass Spectrometry group (Sec. A.2.6)
at the Environmental Molecular Sciences Laboratory at PNNL.

Motivation. Hybrid high-performance computing systems, which incorporate mainstream processors as
well as specialized hardware engines, are quickly becoming a reality at many supercomputer centers. Sys-
tems such as LANL’s Roadrunner and the Tokyo Institute of Technology’s TSUBAME cluster have been
built from nodes utilizing mainstream processors (x86 CPUs) and mainstream high-performance networks
(InfiniBand); these systems integrate specialized hardware accelerators on each compute node: Cell blades
in the case of Roadrunner and ClearSpeed SIMD accelerators in the case of TSUBAME. Vendors such as
SGI and Cray offer systems that incorporate Field Programmable Gate Array (FPGA)-based accelerators as
part of mainstream HPC systems. Other projects have explored the potential of Graphics Processing Units
(GPUgs) for the same acceleration purpose. Hybrid approaches are of interest as alternatives to the more
evolutionary path of homogeneous systems of multicore processors.

The performance advantages of specialized hardware accelerators over mainstream processors have been
well studied and understood. However, the design and implementation complexity required to develop high-
performance, scalable hybrid applications on such systems has not been yet addressed. In addition, most
hybrid system vendors have developed proprietary interfaces to their accelerators and in some cases have
managed to expose accelerated functionality through common library interfaces such as BLAS and LA-
PACK. However, it is clear that in most cases having accelerated libraries is not enough to satisfy the perfor-
mance of applications, which involve many custom, domain-specific algorithms. In these cases, application
developers need to create accelerated implementations of their custom algorithms, and they prefer to have a
reasonable level of portability for their code.

Accomplishments. We have studied the use of CCA components for creating portable interfaces for cus-
tom algorithms implemented on accelerators. This work leverages the clear software engineering benefits of
component design in terms of providing encapsulation, separation of concerns, and clean interfaces as well
as portability and maintainability of codes. These components can cleanly encapsulate the entire low-level,
platform-specific details of hardware accelerated implementations, while providing a high-level interface
that is 100% compatible with components implementing software versions of the same algorithm.

To demonstrate this concept, we created a component-based version of an application in proteomics
named Polygraph (Sec. A.2.9), which uses an innovative approach to extract mass spectra from experimental
databases given a description of a candidate peptide. Polygraph employs a genetic algorithm approach to
find the best matches for the candidate peptide sequence, which is a compute intensive process for long
sequences on large databases.

We developed an FPGA-accelerated version of a key computational kernel (fpgenerate ()) in Poly-

13

graph and demonstrated the ease of integrating the FPGA-accelerated kernel into the rest of the software
application using CCA component technology. We also built a CCA component of the original software
version of the fpgenerate () kernel and demonstrated seamless interoperability between the FPGA and
software versions, with very low overhead compared to non-componentized, monolithic versions [7]. We
used a new CCA-based high-performance event service to distribute work and coordinate execution be-
tween CPU-only nodes and nodes with attached accelerators (e.g., FPGA, GPU, etc.) on a HPC system (see
Sec. 4.2). We also evaluated the use of the event service in an application for high-speed processing of data
from a mass spectrometer biology application [8,9].

Application Impact and Future Work. This preliminary work with the Polygraph team has demonstrated
the effectiveness of CCA component support for heterogeneous architectures both in terms of performance
and ease of use. We plan to extended functionality based on the priorities of the Polygraph project and
the Environmental Molecular Sciences Laboratory at PNNL and to generalize capabilities in support of
additional scientific applications.

3.1.3 Fault Tolerance

Collaborators. Current work on fault tolerance is being carried out by ORNL researchers in collaboration
with the CIFTS project (Sec. A.2.4). The concepts are being prototyped in collaboration with the SWIM
fusion project (Sec. A.1.4).

Motivation. The primary focus of the CIFTS project is the development of a Fault Tolerance Backplane
(FTB) to disseminate fault information throughout the software stack, from hardware, device drivers, and
operating systems, up to user libraries and applications, in order to facilitate coordinated responses to prob-
lems and failures. The goal of our collaboration with CIFTS is to make FTB events available to CCA
applications, and to use this capability to explore fault resilience in the CCA environment.

Accomplishments. The TASCS-CIFTS-SWIM collaboration is currently working to prototype fault tol-
erance capabilities in the component-based (but not CCA-compliant) IPS framework for plasma simulations.
An event service modeled on the proposed CCA Event Service (Sec. 4.2) has been implemented and bridged
to the FTB. As mentioned above (Sec. 3.1.1), an MCMD capability is also under development to support
concurrent execution of multiple parallel tasks within a coupled fusion simulation. Through this collab-
oration, such simulations will be able to gracefully tolerate failure and restoration of nodes, selectively
restarting only failed tasks rather than the whole simulation.

Application Impact and Future Work. Once the CCA Event Service is packaged and readily available to
the CCA community, we will develop the bridge between the FTB and the CCA Event Service, thus making
fault-related events available to CCA applications in the same context as other types of events. With the
fault-tolerant IPS, we plan to explore extensions to the CCA teams service to facilitate fault tolerance, as
well as other abstractions for resilience that might usefully be encapsulated as reusable components.

3.2 Software Quality and Verification (SQV)
Coordinator: Tammy Dahlgren, LLNL
Participants: LLNL, ORNL

Collaborators. This work is performed primarily by Tammy Dahlgren (LLNL), along with Wael Elwasif
and David Bernholdt (ORNL). The initiative is motivated in part by and involved collaborations with the In-
teroperable Technologies for Advanced Petascale Simulations (ITAPS) (Sec. A.1.2) and TOPS (Sec. A.1.13)
CETs. Key collaborators in the Computational Quality of Service Initiative (see Sec. 3.3) are Li Li, Lois
Curfman Mclnnes, and Boyana Norris (ANL); Mclnnes and Norris are also TOPS investigators. Lori Di-
achin and Kyle Chand (LLNL), as well as Carl Ollivier-Gooch (University of British Columbia), were
invaluable collaborators on some of the early work with ITAPS.

14

Motivation. The Software Quality and Verification (SQV) Initiative focuses on improving the quality
of component-based scientific software through verifiable or enforceable semantic annotations added to
interface specifications [5, 6].

Much of the scientific computing community relies on documentation to describe the behavior and
use of basic method signatures making up the application programming interface. Documentation is often
incomplete or quickly becomes out-of-date during active software development. In the case of multiple
implementations conforming to a common specification, such as the ITAPS unstructured mesh and the TOPS
(non)linear solver interfaces, each implementation may be best suited to a different range of applications.
These inconsistencies and limitations can lead to confusion and frustration for developers trying to use the
software.

Enforceable interface contracts provide a uniform mechanism for documenting behaviors and constraints
associated with components, automatically verifying component implementation conformance to the docu-
mented specification, and checking components are used by applications in a manner consistent with their
designs (as defined in the specification). No routinely used HPC programming language provides such ca-
pabilities. While subroutines in traditional code often do some level of validation of inbound arguments, it
is much rarer to find separate validation of outbound arguments. Moreover, such checks are not visible to
the user of the routine, and are not easily controlled (turned off or on at runtime, e.g., for performance rea-
sons). The component environment, on the other hand, provides a convenient venue for expressing interface
contracts as well as for interposing enforcement and control between caller and callee without modifying
component internals.

Accomplishments. Support for semantic annotations was integrated into poglentitysetGetNestWorkset (

: : : : Tl inoutopaque workset_iterator,
SIDL, thereby extending basic method signatures for the expression of in RoUlare T apaiiae

terface contracts independent of the implementation languages of the asso- e ananic)

throws Error;

ciated components. Currently, the specification of pre- and post-conditions require
workset iterator != null;

and invariants are supported, though the latter is as yet untested. Contracts ensure

workset_iterator != null;

are translated into enforcement routines in the Babel middleware. The Ba- eul vk
: : L (entity_handles != null);
bel runtime system provides control over enforcement decisions and related (entity. hundlest—null)

options. The October 2008 release of Babel 1.4.0 supports contract enforce- E‘;l;i:r-‘:(enm e
ment for C and C++ clients invoking server-side implementations in any of the b
Babel-supported languages (i.e., C, C++, Fortran 77 and 90, Java, and Python).
Support for Python clients was recently added, and Java and Fortran 77 clients
are being de.:l?ugged. . . tion for a single method,

An additional area of rese;arch is perfgrmance—.senS{tlve cont.ract enforce- from an early version of
ment as an alternative to simply enabling or disabling runtime enforce- the ITAPS mesh interface
ment [10, 12,23]. Results to date suggest that adaptive sampling techniques
can allow a much higher percentage of detected contract violations while lim-
iting the overall performance impact of contract enforcement.

Figure 7: Example in-
terface contract specifica-

specification.

Application Impact and Future Work. A recent focus of work by our ANL collaborators involves incor-
porating selective, performance-driven interface contract enforcement capabilities in Babel [11] into CQoS
infrastructure. They are also extending TOPS components for (non)linear solvers with assertions to improve
performance and robustness. Babel’s contract capabilities are being used to implement adaptive linear solver
components for a parallel, nonlinear partial differential equation (PDE) application in the CQoS testbed.
Near-term plans include completing Babel support for interface contracts in all languages, extending the
regression test suite and documentation, and adding an exercise on contracts to the CCA Tutorial. Longer-
range work includes expanding the expressiveness of interface contracts with more built-in features, such
as operations on two- to seven-dimensional SIDL arrays, basic method order sequencing constraints, and
additional annotations identified through collaborations. The ORNL team recently obtained access to the

15

neutronics code deNovo, one of the very few scientific applications already making use of contracts, with
the intent of comparing deNovo’s contract capabilities to those provided in Babel. In addition to supporting
the automatic enforcement of behavioral constraints, some semantic annotations could aid the identification
and reconfiguration of suitable components as part of CQoS infrastructure.

LLNL recently initiated the hiring process for a student intern during summer 2009 to assist in extending
the test suite, and ORNL is seeking a post-graduate researcher to expand its work in this initiative.

3.3 Computational Quality of Service (CQoS) and Adaptivity
Coordinator: Lois Curfman Mclnnes, ANL
Participants: ANL, SNL

Collaborators. TASCS participants in this initiative are Van Bui, Li Li, Lois Curfman McInnes, Boyana
Norris (ANL); Rob Armstrong, Joseph Kenny, Nicole Lemaster, and Jaideep Ray (SNL). The design and
development of CQoS infrastructure is a collaboration with the Software Quality and Verification (SQV)
initiative (Sec 3.2), the TAU group (Sec. A.2.12) at the University of Oregon, and the Performance En-
gineering Research Institute (PERI, Sec. A.1.11). To motivate and validate this work, we interact closely
with chemists in the QCSAP (Sec. A.1.10), the Computational Facility for Reacting Flow Science (CFRFS,
Sec. A.1.6), the TOPS CET (Sec. A.1.13), and the FACETS (Sec. A.1.7) fusion and ComPASS (Sec. A.1.5)
accelerator SciDAC projects. CQoS collaborators discussed the priorities of applications teams and strategy
for design during all-hands sessions that preceded quarterly CCA Forum meetings in January 2007 and July
2007; team members communicate regularly via a project wiki, monthly telecons, and additional subproject
sessions.

Motivation. As computational science progresses toward ever more realistic multiphysics applications, no
single research group can effectively select or tune all components of a given application, and no solution
strategy can seamlessly span the entire spectrum efficiently. Common component interfaces, along with pro-
gramming language interoperability and dynamic composability, are key features of component technology
that enable easy access to suites of independently developed algorithms and implementations. The challenge
then becomes how to make sound choices when dynamically choosing among the available implementa-
tions and parameters, suitably compromising among accuracy, performance, and algorithmic robustness.
Motivated by the needs of computational teams in quantum chemistry, combustion, fusion, and accelerator
modeling [84], we are developing generic support for computational quality of service (CQoS) [85], or the
automatic composition, substitution, and dynamic reconfiguration of components to suit a particular compu-
tational purpose and environment. CQoS embodies the familiar concept of quality of service in networking
as well as the ability to specify and manage characteristics of the application in a way that adapts to the
changing (computational) environment.

CQoS Testbed. An important initial step in this work has been the development of a CQoS testbed, which
contains component codes that are representative of the issues faced by the fusion, accelerator, combus-
tion, and quantum chemistry applications that motivate this work. One such example is a parallel nonlinear
PDE modeling flow in a driven cavity; the primary CQoS issue for this problem is selecting and parame-
terizing preconditioned Newton-Krylov algorithms for TOPS solver components. As discussed in Sec. 3.2,
we are collaborating with T. Dahlgren (LLNL) to incorporate performance-driven interface contracts, as a
precursor to later introducing such capabilities for configuring nonlinear solvers for plasma edge simula-
tions in the FACETS fusion SciDAC project. Initial testbed work was done by summer intern A. Berger at
ANL (Sec. 6.4).

CQoS Infrastructure. Our approach to CQoS design includes capabilities for measurement and analysis
infrastructure as well as control infrastructure for dynamic component replacement and domain-specific
decision making [19,21]. We designed and specified the initial CQoS API, and in August 2008 we made an

16

initial release of prototype computational quality of service (CQoS) database components*, which support
the management and query of historical performance data and application metadata for high-performance
component applications. The database component interface design supports the management and analysis
of performance and application metadata, so that the mapping of a problem to a solution that can potentially
yield the best performance can be accomplished statically or at runtime. The UML diagram in Fig. 8
shows the main interfaces and some of their methods. We introduce two types of components for storing
and querying CQoS performance data and metadata. The database component provides general-purpose
interfaces for storing and accessing data in a physical database. The comparator interfaces compare and/or
match properties of two problems under user-specified conditions. Summer intern B. Xie at ANL (Sec. 6.4)
contributed to CQoS infrastructure development.

We teamed with the TAU group to extend the PerfExplorer performance 0B

connect

disconnect

analysis tool and to integrate PerfExplorer into general CQoS infrastructure |Grcraameter
resetQuery

to classify performance and meta-information and then suggest appropriate |eccuequery [(>—f Outcome |

getNumberOfRows

configurations for new problem instances. PerfExplorer, a framework for |geaeduen O amoerOiColumns
parallel performance data mining and knowledge discovery in the TAU per- =
formance system, was developed to facilitate analysis on large collections o i—
. . . setRHS
of experimental performance profiles [22]. Within the context of the CQoS [Parameterser] getLHS
setName() getRHS :

initiative, PerfExplorer has been employing the classification capabilities P Aty
. .. . setTBName() getRHSParameterAt
in the Weka data-mining package to construct a runtime parameter recom- sefToleranceAt

. L. getName() getToIer_anceAt
mendation system. After the performance data for a set of training runs has L iy

doCompare

been stored in a performance database, PerfExplorer loads the data and build

a classifier from it. In production application runs, the classifier is loaded ﬁ
into a CCA component. It is then used to obtain the best parameter settings potr
by querying with the current values of the application-specific metadata that |{gewameo
were used in the classification. We are testing these capabilities with CQoS

testbed codes and applications in quantum chemistry and combustion.

CQoS in Quantum Chemistry. The QCSAP project (Sec. A.1.10) has
adopted CCA components to promote interoperability among the GAMESS,
MPQC, and NWChem quantum chemistry packages. Running these com-
putations on diverse computing platforms requires specification of many options that range from the basic
selection of methods, expansion basis, and convergence criteria to hardware configuration and low-level
algorithmic parameters; typical educated guesses or trial and error can result in unexpectedly low perfor-
mance. Motivated by the need for faster runtimes and increased productivity for chemists, we are teaming
with QCSAP researchers to develop a flexible CQoS approach for quantum chemistry that uses a generic
CQoS database component to create a training database with timing results and metadata for a range of
calculations. The database then interacts with a chemistry CQoS component and other infrastructure to
facilitate adaptive application composition for new calculations. Fig. 9 illustrates the interactions of the
chemistry CQoS component with database, comparator, and analysis CQoS components [1, 18].

Our initial work involves three phases: collection of performance data in a training database, perfor-
mance analysis, and adaptive application composition based on this information. The training database
contains timing results for calculations spanning a range of molecular characteristics and hardware configu-
rations. Once this database is populated on a target machine, users can request an appropriate configuration
for a new molecule and calculation type from the chemistry CQoS component. The chemistry CQoS com-
ponent uses the general CQoS database component interfaces to store and query performance and associated
metadata, which in this case consists of the application’s parallel configuration parameters. Furthermore,
we defined comparator components that serve as filters when searching for appropriate parameter settings in

Figure 8: UML diagram of
CQoS database component
interfaces and methods.

4Seehttp://wiki.mcs.anl.gov/cqos.

17

)

Quantum Chemistry Model ’
(GAMESS, MPQC, NWChem) H Shemisry COoS
1

Legend

Chemistry I l

) 1
1 1
1 1
1 1
1 1
| package-specific]
Pe(ri‘forrr;ar;c? data . . query New Prqblem Optimal | implementation :
and metadaia descriptions parameter !) !
extract settings j Chemistry [
1 ! generic ¢
v L 7 : implementation i
1 1
Database Comparator | CQoS !

— —_— general
Component maich Components | infrastructure B:
Query results 1 !
| Trainin, i

g

Performance query data/ __| Analysis | flow :>i
& Metadata store results — | Component] i
Database ! Par_ameter N |
CQoS Component Infrastructure | ! tuning flow !

Figure 9: Components in a CQoS-enabled quantum chemistry application [1].

the database. An analysis component based on PerfExplorer provides offline performance analysis to iden-
tify sources of parallel inefficiency and determine appropriate parameters for a given configuration. Further
details about our approach in using CQoS infrastructure in quantum chemistry are available [1, 18].

CQoS in Combustion. We are also collaborating with the CFRFS project (Sec. A.1.6) to develop a meta-
partitioner to be used to partition and load-balance parallel simulations of reactive flows on block-structured,
adaptively-refined meshes. The numerical method adopted by CFRFS, a Strang-split time-integration con-
ducted on such a mesh, results in spatially-uneven computational loads due to (1) the high concentration of
grid points in the vicinity of the flame and (2) the difficulty in integrating the fast chemical kinetics within
the flame, leading to the slow convergence of nonlinear solves, within the context of implicit integration.
The aim of the combustion CQoS effort is to develop and configure a load-balancer such that the AMR
mesh is appropriately partitioned and to develop, over time, a partitioner that accounts for spatially-varying
per-cell computational load.

CFREFS researchers have provided detailed input on priorities for CQoS infrastructure, tested the pro-
totype CQoS database capabilities [21], and developed application-specific metrics and control laws. In
particular, this work addressed the problem of appropriately configuring a partitioner, which required de-
velopment of metrics to quantify the characteristics of an AMR mesh [86, 87]. CFRFS researchers also
investigated the sensitivity of partition quality on various partitioner parameters [88, 89] and how to pair
mesh characteristics with their optimal partitioner parameter values by running four separate AMR simu-
lations and saving the trace, i.e., the mesh hierarchy, after every re-grid operation [90]. These traces were
then subjected to a battery of roughly 1000 partitioning tests, with various partitioner parameter settings, to
gauge their quality. This work resulted in a simple rule-based decision engine that was then tested on the
same traces to determine whether it could indeed select the optimal parameter values given the mesh.

The metapartitioner currently identifies the top ten parameter sets that are expected to provide an optimal
partitioning, based on the database of approximately 1000 tests, and proceeds to test each empirically, to
identify the best one [90]. Such an approach has been adopted because the initial sparse, evenly-distributed
sampling of the six-dimensional parameter space was insufficient to identify the optimal parameter set. We
will perform a more sophisticated and denser sampling of the parameter space, which will invariably require
a more sophisticated data collection and analysis approach than flat text files, the initial method employed.
In this regard, CFRFS researchers have investigated how a componentized database may be used within
CFREFS data collection infrastructure [21].

Application Impact and Future Work. We will continue to augment the CQoS infrastructure with ad-
ditional capabilities, with emphasis on the needs of the SciDAC quantum chemistry and combustion sim-

18

ulations. In later years we plan also to work directly with the fusion and accelerator projects to use CQoS
tools to select and configure TOPS (non)linear solvers. More specifically, future work includes enhancing
the CQoS infrastructure to support sophisticated analysis for (re)configuring algorithmic parameters and
component instances during runtime, developing application-specific performance models, and incorporat-
ing the CQoS training phase into empirical experiment design. We will continue to be in close collaboration
with TAU group to investigate performance analysis and knowledge mining approaches that help make de-
cisions for runtime adaptation. Because we are developing the base CQoS infrastructure to be generally
useful to high-performance scientific applications, we expect these tools to prove useful in application areas
beyond those introduced above when the need arises for dynamically selecting and parameterizing algo-
rithms/software during runtime.

19

4 The CCA Environment
Coordinator: Tom Epperly, LLNL

The CCA Environment thrust addresses two important aspects of the TASCS project. The first is our funda-
mental goal of bringing the CCA environment from a prototype stage to a production level of maturity and
quality. The second is enhancing and extending the capabilities of the CCA’s foundational technologies in
response to the needs of other elements of TASCS, our collaborators, and the CCA community at large.

The CCA’s fundamental technologies include the CCA specification itself, CCA framework implemen-
tations, and the Babel middleware. Babel provides high-performance language interoperability (currently
supporting C, C++, Fortran, Java, and Python), remote method invocation (RMI), and interface contract
(Sec. 3.2) capabilities, among others. Additional tools and technologies developed to make the CCA more
accessible and user-friendly also become become critical parts of the CCA infrastructure for most users.

Work on the CCA Environment is organized around three types of activities. The first, Core Tool Support
and Maintenance (Sec. 4.1), is the task of keeping the essential tools of the CCA environment working
on diverse and ever-changing computing platforms and responding to user support requests. The second
activity, Enhancements (Sec. 4.2), focuses on extending the CCA environment, while the third activity,
Usability (Sec. 4.3), improves the usability and productivity of the CCA environment, primarily for the
developers of component software.

While much of this work is aimed at the general CCA user base, some of the developments are motivated
by the needs of specific collaborations, including the ComPASS (Sec. A.1.5), CFRFS (Sec. A.1.6), FACETS
(Sec. A.1.7), and GWACCAMOLE (Sec. A.1.8) scientific applications, as well as the HPC (Sec. 3.1) and
CQoS (Sec. 3.3) Initiatives. Some of the work has been carried out jointly with the Contractor (Sec. A.2.2),
SDM (Sec. A.1.12), and Distributed Components (Sec. A.2.5) projects.

Since the beginning of the TASCS project, this work has been discussed in a variety of papers, presen-
tations, and posters [3,8,9,24-43].

4.1 Core Tool Support and Maintenance
Coordinator: Ben Allan, SNL
Farticipants: ANL, LLNL, ORNL, SNL

Collaborators. The TASCS participants in support and maintenance are Benjamin Allan, Rob Armstrong
(SNL); Boyana Norris (ANL); Wael Elwasif, Jim Kohl (ORNL); Tom Epperly, Tammy Dahlgren, and Gary
Kumfert (LLNL). The initial users of the CCA tools on leadership-class platforms will be the ComPASS
(Sec. A.1.5), CFREFS (Sec. A.1.6), FACETS (Sec. A.1.7), and GWACCAMOLE (Sec. A.1.8) projects.

Motivation. It is crucial to the success of TASCS and the CCA that the core tools are available and well
supported on computer platforms of interest, ranging from development machines (laptops and desktops) to
large-scale capacity and leadership-class capability systems. The basic work of the Support activity is three-
fold: providing support and maintenance of the CCA tool chain, primarily in response to user-submitted
issues; porting to new platforms; and improving documentation.

The commonly used CCA tool chain consists of the following tools, with their primary developers or
maintainers in parenthesis:
The CCA specification (SNL)
The Babel middleware compiler (LLNL)
The Ccaffeine parallel runtime framework and its GUI (SNL)
The Bocca component development environment (ANL, SNL, ORNL)

Helpdesk and Bug Tracking. Bug tracking and helpdesk support is provided for the entire tool chain
through web- and email-accessible bug tracking tools. A centralized CCA helpdesk> enables users to get the

Shttp://www.cca-forum.org/help/

20

Table 6: Platforms supported by the TASCS project.

Platform Primary Site(s) Lead Maintainer
Cray XT/Catamount ORNL deprecated

Cray XT/Compute Node Linux ORNL, NERSC Jim Kohl (ORNL)
IBM Blue Gene/P ANL Boyana Norris (ANL)
Redhat Linux clusters IU, PNNL

Redhat/Fedora Linux many

Debian/Ubuntu Linux many

Mac OSX many

Table 7: Development tools supported by the TASCS project.

Tool Version(s)

GCC compilers 4.3 (C, C++, Fortran)

IBM XL compilers 9.x (C, C++), 11.x (Fortran)
Pathscale compilers 3.1

Intel compilers 9,10

Portland Group compilers 6.x,7.x, 8.0

Sun Java 1.4-1.6

Python 2.3-2.6

OpenMPI compiler wrappers all versions
MPICH2 compiler wrappers all versions

assistance they need without knowing which team is responsible for the issue at hand, though tool-specific
trackers are also available for more experienced users. Issue resolution is performed by all tool developers,
including ANL, LLNL, ORNL, and SNL team members.

Tool Maintenance and Porting. Users of CCA technologies employ a wide variety of platforms and
software development tools, which are constantly evolving. The nature of the capabilities provided by CCA
tools makes them sensitive to many small details of the platforms and software environments in which they
function. Consequently, the CCA tools require continual attention (at varying levels). Table 6 lists the
variety of platforms to which the CCA tool chain has been ported and maintained since the start of the
TASCS project. Because of the special challenges associated with high-end systems, specific TASCS staff
members are assigned to maintain these platforms. Table 7 gives an idea of the development tools that we
support.

Challenges Supporting Specific Platforms. The majority of the effort of porting and maintaining the
CCA tools has gone into the leadership-class systems (Cray XT and IBM Blue Gene). These platforms
pose particular challenges for complex software infrastructures like the CCA because they typically offer
stripped-down operating system functionality on compute nodes and rely on cross-compilation environments
that often have insufficient support for configuration and build tools commonly used in open source software
(e.g., GNU Autotools and Python distutils). Further, since these systems tend to suffer relatively frequent
outages, porting work on them tends to proceed significantly more slowly than for more conventional envi-
ronments. These challenges are exacerbated by computing center policies: (1) disk space and inode quotas
pose extreme difficulties in maintaining local versions of supporting tools and libraries that are needed to
compensate for outdated or missing tools, and (2) queue structures and disk policies make regular testing

21

difficult.

Dynamic linking is a specific capability that is not typically available on leadership-class systems but
is central to the CCA on “normal” platforms. To remedy this difficulty, B. Allan (SNL) has produced an
initial version of a tool to generate from a set of components a statically linked CCA application and a
specification of how they should be wired together. Once the required code generation has been extended to
cover all Babel-supported languages, the tool will be ready for general use.

A recurring request from a variety of potential CCA users is support for Microsoft Windows (more
specifically, a native Windows port rather than the use of a UNIX emulation environment like Cygwin).
Recently, G. Kumfert and T. Epperly (LLNL) visited Microsoft to explore the potential routes to a Windows
port and the effort involved. They determined that while a port is feasible, the effort required would be
substantial — certainly beyond currently available resources. Given this fact, our hope is to find a collaborat-
ing project with a strong enough interest in using the CCA in a native Windows environment that they are
willing to invest some of their own resources in a Windows port.

Improving Packaging and Deployment. The Babel team has made a number of changes to reduce de-
pendencies and simplify the build process for the tool. These include the incorporation of the (no longer
supported) Chasm Fortran interoperability library into the Babel package, switching XML processors, and
switching to using libtool for linking.

In addition, the overall approach to packaging and deployment of the CCA tool chain has recently
been changed. The new approach leverages the Contractor build system developed by James Amundson
(Fermilab, see Sec. A.2.2), which is focused on large software installations that require the coordinated
configuration, building, and installation of numerous individual packages. The CCA tool chain build system
was initially prototyped by summer intern D. Taylor and his mentor, B. Norris (ANL, see Sec. 6.4). CCA-
Tools-Contractor provides integration of the existing configuration and build process for all tool-chain parts,
automating the download, configuration, and build of CCA software and most of its prerequisites using
simple command-line and optional graphical interfaces. After some refinement and lengthy testing, the
CCA-Tools-Contractor system recently became the production packaging for the CCA tool chain.

Testing. As we realized the level of vigilance required to keep the CCA tool chain functioning properly
in the face of constant evolution of the supporting software environments, especially on leadership-class
platforms, we shifted our effort from the originally planned CCA specification conformance testing and test
harnesses for component developers (Sec. 4.3) to implementing automatic “nightly build” and regression
testing for the tool chain. The Babel team (LLNL) and others test Babel routinely on a wide variety of
platforms using the Gantlet test harness that was co-developed with Babel. As noted above, routine test-
ing on leadership-class systems can be very challenging. J. Kohl (ORNL) has developed routine testing
infrastructure for the Cray XT (though different site policies require different procedures for NERSC and
ORNL). B. Norris (ANL) is addressing this need for the IBM Blue Gene/P, but that environment is even
more challenging, and additional effort will be required to make such testing routine there. We are also
working to extend such testing to the entire tool chain, using the CCA tutorial as a primary test case. The
new Contractor-based distribution of the tool chain is expected to facilitate this work.

Documentation. Technical documentation efforts have focused on extending the CCA tutorial materi-
als (Sec. 6.2) to describe and demonstrate additional features of the CCA environment. The tutorial now
includes:
e aset of very simple examples for solving single variable ordinary differential equations;
e a complex, MPI-based mini-toolkit for solving partial differential equations on orthogonal grids; and
e components for implementing and conformance testing the specifications for Event, MPI, BuilderSer-
vice, and ServiceRegistry ports.

22

4.2 Enhancements
Coordinator: Tom Epperly, LLNL
Farticipants: BU, LLNL, ORNL, SNL, VSU

Collaborators. TASCS participants in this work include Ken Chiu, Madhu Govindaraju, Michael Head,
Dai-Hee Kim, Xiang Gao, Ying Zhang (BU); Gary Kumfert, Tom Epperly (LLNL); Ben Allan (SNL); Steve
Parker (University of Utah (UU)); and Kosta Damevski (UU/VSU). The TASCS HPC (Sec. 3.1) and CQoS
(Sec. 3.3) Initiatives, as well as the ComPASS (Sec. A.1.5) and FACETS (Sec. A.1.7) applications, have
provided specific motivations for some these activities. Some of the work has been performed jointly with
the SDM (Sec. A.1.12) and Distributed Components (Sec. A.2.5) projects.

Motivation. The CCA environment must evolve to meet the needs of the user community. This work
includes extending and refining the CCA specification itself, as well as the core tools associated with it.

The Common Component Architecture Review Board (CCARB). In the interest of ensuring a more
robust specification, TASCS participant G. Kumfert (LLNL) proposed to the CCA Forum a new multi-
step standardization process to be overseen by a Common Component Architecture Review Board, which
represents both developers and users of the CCA. The Forum approved the proposal, and established the
CCARB with Kumfert as its first chair, and TASCS participants B. Allan (SNL) and L. McInnes (ANL)
among its members. On Kumfert’s departure from LLNL (see Sec. 7), Allan was appointed chair and
T. Epperly (LLNL) was added to the Board.

Extending the CCA Specification. A number of new services are making their way through the new
standardization process:

e A publish/subscribe Event Service has a wide variety of uses within the CCA. The Event Service was
originally motivated by the desire to support more general and flexible interactions between Graphical
User Interface (GUI) frontends and CCA frameworks and applications. The Event Service has been
employed to distribute and coordinate work in heterogeneous computing environments (Sec. 3.1.2),
and we anticipate using it to make information about system faults available to CCA applications
(Sec.3.1.3) and to support CQoS work (Sec. 3.3).

Two implementations of the proposed Event Service specification have been developed: one by
K. Damevski (UU/VSU), based on the event service built into the SciJump framework, and the other
by the PNNL team in conjunction with their work on supporting heterogeneous computing environ-
ments (Sec. 3.1.2). The PNNL event service is notable in that it is a fully distributed implementation,
using the Aggregate Remote Memory Copy Interface (ARMCI) for communications between parallel
processes [8,9].

K. Damevski (VSU) chairs the CCARB’s Event Service Working Group, which is responsible for

moving the event service specification through the standards process. Recently, Damevski and G. Kum-
fert (LLNL) collected the existing event service implementations and began evaluating them for porta-

bility across CCA frameworks and functionality. Key stakeholders, including the CQoS team, are also

reviewing the draft specification and implementations for functionality and performance as part of the

standardization process.

e While the CCA specification itself is agnostic with respect to the parallel programming model used by
components, the vast majority of parallel CCA components use MPI for communications. The MPI
Service solves the problem of who is responsible for calling MPI_Init and supplies communicators
to components that request them.

B. Allan (SNL) chairs the CCARB’s MPI Service Working Group, which has evaluated the common
use cases and produced a draft specification. In addition, the group has two implementations of the

23

MPI Service specification as required by the CCARB’s approval process. The draft is still under
review but is expected to become part of the CCA specification this fiscal year.

A command line service, described in our proposal, has been made redundant by features of the MPI-2
standard, which are now widely enough implemented that we can rely upon them.

The next step beyond building independent individual frameworks is making them interoperate. Com-
ponent applications should be able to transparently span multiple disjoint component frameworks with low
overhead as compared to the same applications running within a single framework. Interoperable frame-
works enable applications to take advantage of more resources, and to better match constituent parts to the
underlying resources that best support them. The CCA specification does not prescribe a wire format for
inter-component calls in distributed frameworks, thereby promoting considerable flexibility and customiza-
tion for the framework developer. Anticipating a more intensive effort planned for the coming years of
the project, the BU team has completed initial work in designing a specification for interoperability be-
tween CCA components of different frameworks. This work outlines five underlying component framework
interoperability requirements, and three general approaches to addressing them [38].

RMI Enhancements. The BU team has focused thus far on the development of high-performance dis-
tributed middleware, a C++-based distributed framework, and multi-protocol support for Babel. This effort
lays the groundwork for interoperability between distributed computing component frameworks and MPI-
based parallel computing frameworks. Distributed middleware uses RMI to achieve parallel computing
instead of MPI-based parallelism. The BU team extended XCAT, a C++-based distributed framework, with
support for Babel to generate wrappers for distributed XCAT components. Furthermore, they added multi-
protocol communication support to BabelRMI through the Proteus library [24]. The BabelRMI Proteus
module is currently being designed to work with the SOAP communication protocol, which is widely used
with Web services based applications. The BU team’s work in these areas opens up new possibilities for
interoperability among CCA components and Web services based applications.

The BU team presented several papers describing their recent work to improve XML parsing [25-27,39].
This work important for distributed CCA computing because of the extensive use of XML-based protocols
for distributed services. In this work, the team studied how popular parallelization techniques used in SMP
models can be applied and adapted for multi-core processors.

Tech-X researchers have implemented and characterized BabelRMI over the CORBA IIOP transport
layer, showing how standards-based distributed communication protocols can be integrated into Babel with
little performance penalty [24].

UU researchers Damevski, Zhang, and Parker have been exploring an approach to parallel remote
method invocation in the CCA context [42].

Language Interoperability Enhancements. The LLNL Babel team worked with the Distributed Com-
ponents Small Business Innovation Research (SBIR) project at Tech-X (Sec. A.2.5) to implement multi-
language struct(ure) support in Babel, similar to the capabilities of native C/C++. With the advent of derived
types in Fortran, structs are becoming common in scientific Application Programming Interface (API)’s to
package related data in a single data structure. This work addresses the need for structs in multi-language
interfaces. LLNL provided the overall design and the implementation of the C, C++, Java, and Python bind-
ings, while the Tech-X SBIR project provided the Fortran2003 implementation. The goal is to be able to
pass structs between C, C++, and Fortran 2003 without requiring any copies or function calls to access data
members. This capability was described in a presentation and paper [28] and appeared in the Babel 1.4.0
release in October 2008.

One challenge we have encountered with the F2003 struct support in particular is that the Fortran com-
pilers currently supported on Dept. of Energy (DOE)’s leadership-class systems (Portland Group and Path-
scale) do not sufficiently support the “bind(c)” feature of the newest Fortran standard to allow Babel’s F2003

24

struct binding to work. As struct support is very important to two of our science collaborators (ComPASS
and FACETYS), this circumstance is an obstacle to their use of Babel-based applications on such machines.
We are investigating workarounds, as well as trying to get implementation time lines from the compiler
vendors.

Summer intern M. Porche worked under the guidance of T. Epperly (LLNL) on a prototype of Batooki,
a basic Babel toolkit of fundamental data structures. Most languages provide a basic library of common
container classes and related algorithms. There is a similar need among Babel programmers, and Batooki is
our work to fill that need. Porche demonstrated the feasibility of such a toolkit, but some additional work is
required before Batooki can be released as part of Babel.

Extending the CCA Framework and Integration with Other Component Systems. The CCA frame-
work is an important platform through which new capabilities can be provides for application software de-
velopers to use. In this context, K. Damevski and others at UU have been exploring the limits of scalability
of the CCA framework (up to millions of distributed framework nodes) in a fault tolerant fashion [40,41].

The CCA is not the only framework(-like) environment used in scientific computing. Integration of
software across disparate frameworks becomes increasingly important as many computational scientists
begin to undertake new coupled multiscale and multiphysics simulations (often based on existing codes,
which might utilize their own framework environments), and to develop “end-to-end” solutions to automate
more of the simulation and analysis workflows.

The BU team developed a novel decomposition scheme to incorporate CCA components in the Ccaffeine
framework into the Kepler scientific workflow toolkit [3], developed by the Scientific Data Management
(SDM) center (Sec. A.1.12). Scientific workflows are concerned with high-level orchestration of a time-
decomposed simulation, while components are mainly used at a lower level to enable software modularity
and reuse at a small performance cost. Combining these technologies in a seamless way leverages the
benefits of both decomposition paradigms, resulting in more flexibility for scientific application design.
This initial work showed how the benefits of a workflow approach can be combined with a components-
based system to make a hybrid system with the benefits of both technologies. In addition to work with
Kepler, the BU team developed a standards compliant approach to C++ reflection to support coupling in
problem solving environment [29].

In collaboration with the SDM center, the UU/VSU team extended BU’s earlier work with Kepler by
developing a system with fine grained communication between the CCA framework and Kepler [30]. Where
BU’s approach required translation of Babel’s SIDL into Web Service Definition Language (WSDL), the
UU/VSU team simplified the design and improved performance by using “native” BabelRMI. The UU/VSU
researchers designed three Kepler actors that are necessary for an initial hybrid application: one actor that
is able to initialize the components, one actor that can control and begin the execution of the components,
and one that is able to communicate status messages and results. They tested their design by executing and
controlling a CCA tutorial application from Kepler. Having demonstrated interoperability between Kepler
and the CCA, we are now looking for a suitable application to drive turning this into a production capability.

4.3 Usability
Coordinator: Matthew Sottile, UO
Farticipants: ANL, LLNL, ORNL, SNL, UO

Collaborators. The work described here has been performed by Boyana Norris (ANL); Wael Elwasif
(ORNL); Ben Allan, Rob Armstrong (SNL); Geoff Hulette and Matt Sottile (UO). Note that in the original
proposal, ANL did not plan to participate in the Usability activities, but that changed with the retooling of
the effort to focus on Bocca and OnRamp (see below).

Motivation. The Usability activity is responsible for addressing critical issues that exist at the point where
users of CCA interact with both the tools and the programming model. Usability of CCA tools involves

25

managing the complexity of the tool chain (largely due to the unavoidable complexity of multilingual code
environments) and developing tools and approaches to make CCA users more productive in creating and
using component software.

Retooling Usability. The usability effort initially focused on a concept known as “CCA-lite.” During the
SciDAC-1 CCTTSS project, it was already recognized that there was a significant learning curve for the
CCA due to the complexity induced by SIDL and tools supporting full language interoperability. A “lite”
version of the CCA specification was intended to reduce this complexity by limiting language interoperabil-
ity support and eliminating support for dynamic loading of components from shared libraries. The intent
of this second, pruned-down specification was to reduce the barrier to adoption with the intent that users of
CCA-lite would eventually migrate to the full CCA specification. This approach had two drawbacks: the
need to maintain a second standard and complete tool chain to support the lite approach and assist with the
transition to full CCA, and potential resistance of CCA-lite users to move to the full CCA specification,
thereby defeating the intent of the “lite” specification as an intermediate step.

With the advent of Bocca (Sec. 4.3.1), creating CCA components conformant to the original specifica-
tion became simple enough to make the CCA lite option much less attractive. Moreover, we realized that
Bocca could be leveraged to provide an even higher degree of automation for the migration of large legacy
code bases to the CCA, namely, the OnRamp utilities (Sec.4.3.2).

Given the significance and impact of these two developments, as well as other priorities within the
project (particularly on improving the portability and robustness of the tool chain), we have deferred addi-
tional usability tasks planned for the early years of the project, namely development of a component test
harness and debugging support.

4.3.1 Bocca: Automated CCA Interfaces and Components

By the beginning of SciDAC-2 it was clear that while component-based language-interoperable software
was attractive, the glue code and attendant build system necessary to support component oriented designs
was overwhelming to most users. Bocca was conceived as a command-line tool that would create the
skeletal structure for a component and its interfaces, including the entire build system necessary to compile
the component as well as the Babel bindings and references required by the CCA specification. Bocca
makes the creation of buildable components and their attendant interfaces as easy as giving them names
(see Fig. 10). Because the build system comes with Bocca, these components are ready to load into a CCA
framework. Of course, the components need implementation code before they will do something useful.
The idea is that all of the glue code that makes a component is provided. Moreover, markers, in the form of
comments, show application programmers precisely where to insert their code so that they can concentrate
immediately and solely on the task of creating scientific software [34—36].

While Bocca provides functionality typically available in graphical software development environments,
it cannot rely on having the project state continuously available in memory. Bocca’s design is thus based
on a lightweight graph-based representation of SIDL-based entities and their relationships (Fig. 11 contains
an example graph for a simple Bocca project). Each command must load the entire project state, and a
number of commands modify it and must store it, making efficient serialization and deserialization crucial.
Bocca supports project creation and ongoing management, including various refactoring tasks (e.g., rename,
remove, import, copy) on SIDL-based project entities (interfaces, ports, classes, components, enums).

Today Bocca provides numerous ways of importing implementation code and SIDL interfaces from ex-
ternal sources. Components can be created from SIDL/Babel code directly, while interfaces can be imported
from existing SIDL files, and both can be imported from other CCA components.

As evidence of Bocca’s remarkable success, the tool has virtually taken over the CCA world. Today,
anyone contemplating making a CCA component will almost certainly use Bocca. Nearly every component
in the CCA toolkit now uses Bocca for its maintenance and build system. The CCA tutorial has been

26

Shell command listing

bocca create project myProject

cd myProject

bocca create port myPort

bocca create component —--uses=myPort@aPort —--go=myGoPort Componentl
bocca create component —--provides=myPort@aPort Component?2

vy U»r U0 Ur U

0 Common Component Architecture: Untitled_0.bld ¢changed)
File View CCA Info
Actions

Run| [Remove|Remove All |Open. Save|Save As.. |Load component class..|Append component path...

Palette Arena

Componentl
Component2

Componentl

Component2

Figure 10: Bocca example creating simple, albeit empty, components. The shell commands at the top
create the components in the Ccaffeine GUI. In this case, Bocca creates empty shell components that are
nonetheless fully CCA-compliant. Subsequently, the user would need to add code to implement the desired
functionality for the components.

contains @t: myProject.Compunen@
package: myProject 0.0 contains port: myProject.nyPort 0.0
ex @t: myProject.Componen@

contains
interface: gov.cca.Port 0.0

project: myProject 0.0.0 ‘—>

Created with GraphViz by Bocca

Figure 11: Graph representing the project state for a simple Bocca project.

rewritten to teach the Bocca style of component development exclusively. Most importantly, Bocca has
greatly reduced the barrier to using component-based methods for scientific computing.

Bocca is itself readily extensible to accommodate different build systems and other capabilities. It can
also serve as the basis on which to build higher levels of automation, such as the generation of component
proxies (used by the TAU performance monitoring system, Sec. A.2.12), or the semi-automatic wrapping of
legacy code into CCA components, as in OnRamp.

4.3.2 OnRamp

Significant effort in the Usability activity during this period has gone into OnRamp — the next step beyond
Bocca. While Bocca autogenerates CCA componentry, creating all of the glue code necessary for partici-
pating in the CCA world, OnRamp provides a mechanism for converting legacy (i.e., non-component) code
into a fully functional componentized version of the same application. Using developer-supplied directives
that appear as comments in the original source, OnRamp constructs the desired CCA interfaces and binds
the original code as the implementations of these interfaces. This process can be done piecewise to extract
a particular fragment of an existing simulation, or the entire application can be converted to a component
framework that preserves the same behavior as the original (Fig. 12).

27

/[File: main.c

/[%CCA COMPONENT id=TestComp

JI%CCA PORT id=TestPort TestPort TestPort
JI%CCABEGIN
d float add2(float a, float b) { }

retum a +b;

}

floatx =1.0: Connect components

floaty =2.0;
floatz =3.0: — together to create an

float add3(float a, float b, float c) {
Developer annotates) retum add2(a, b) +¢; } - TestPort
original code TestPort

int main(int argc, char *argv) { f»

float n =add3(x, v, 2); application-specific framework
retumn (int)n; . ..
} reproducing the original
/FACCAEND application functionality
OnRamp instructs Bocca to Application broken
create empty components into components

automatically OnRamp pastes application

functionality and necessary

TestPort run M TestPort glue code into the empty components

Figure 12: OnRamp processing an existing code into CCA components.

OnRamp is based on several components:

e commercial-grade compiler front-ends as provided by the UO Program Database Toolkit package for C,

C++, and Fortran (77,90,95);

e the OnRamp code itself that uses the database representation generated by PDT to analyze the OnRamp
annotations and static interface of the user code; and

e a set of OnRamp code generation routines for populating SIDL and Babel implementation files based
on the results of the static analysis phase.

OnRamp needs to statically analyze both input code and annotations for two reasons. First, semantic
guidance must be provided beyond that which can be inferred from the language alone. The type systems
of common languages (such as C) do not contain sufficient information to properly describe complex data
structures or even multidimensional arrays commonly needed by scientific simulations. Annotations are
necessary to inform analysis tools of these types. Second, OnRamp must guide decomposition of code into
meaningful and useful components. This work requires human intervention to decide how subroutines and
types are related to an interface (i.e., Port), such as those that comprise a solver or mesh package.

OnRamp defines a concise annotation language to guide tools in determining the structure and semantics
of the code beyond that which can be inferred from static syntax analysis alone. An example annotated
subroutine is shown below.

/* %$CCA PORT id=VectorMath

ARRAY elements=x length=len

ARRAY elements=y length=len »*/
double dot (double xx, double =%y, int len);

OnRamp performs code and annotation analysis sufficient to understand implementation dependencies
and how implementations are decomposed into components. OnRamp relies heavily on Bocca to realize the
components, glue code, and build system necessary to create components or a componentized application.

The OnRamp project is led by UO with contributions from ANL and SNL. The code repository and
downloadable distribution for OnRamp is hosted at the SciDAC Outreach website®. We have produced a
number of publications on OnRamp and related code wrapping efforts [31-33].

*http://outreach.scidac.gov

28

S The CCA Toolkit
Coordinator: Rob Armstrong, SNL
Farticipants: ANL, IU, LLNL, ORNL, PNNL, SNL, Tech-X, UMD, VSU

Collaborators. Development of the CCA toolkit is is a broad collaboration among all TASCS partici-
pants, mathematicians in the ITAPS (Sec. A.1.2) and TOPS (Sec. A.1.13) math CETs, Masha Sosonkina at
Ames (Sec. A.2.11), and the TAU group at UO (Sec. A.2.12).

Motivation. The aim of the CCA Toolkit is to create a repository of high-quality, high-performance com-
ponents that enable scientific developers to perform rapid prototyping, numerical proofs of concept, and
experimentation with readily available and easy-to-use components. These components also provide valu-
able plug-and-play capabilities to existing HPC applications.

Accomplishments. This work consists of several different elements: defining conventions and standards
for components in the CCA Toolkit, so that their installations can coexist and be used together straightfor-
wardly; the collection and publication of contributed components; and the development of new components
for the toolkit. R. Armstrong (SNL) has led the first two elements of this effort, while a variety of groups,
both within and outside TASCS, are developing and contributing components.

After evolving through several specifications for toolkit components, the development of Bocca (Sec. 4.3)
has provided a very logical and straightforward set of conventions to follow. Toolkit contributors are not
required to use Bocca, but should provide the equivalent make targets and installation procedures. As
a reflection of how revolutionary Bocca has been to CCA component development, most of the Toolkit
components now use it directly in their build systems and component generation. As a practical matter,
R. Armstrong is providing direct assistance to external contributors in adapting their components to the
Toolkit’s conventions.

The CCA Component Collection. The CCA Toolkit web page, currently located on the developmental
webssite, http://www.cca-forum.org/dev/software/components/, to be made public soon,
lists the currently available components; the SPARSKIT-CCA and TAU components are funded externally
to TASCS.

e Global Array Component (PNNL) is a componentized version of the library.

e InterComm (UMD) is a framework that facilitates interoperation between two parallel codes. The
InterComm component does the same for CCA components.

e Parallel Cartesian Grid Component (SNL) presents a fully parallel rectilinear grid and associated
tools for solving PDEs on it.

e TOPS Solver Components (ANL, Sec. A.1.13) provide high-level access to parallel (non)linear al-
gebraic solvers for nonlinear PDEs; these components build upon PETSc, hypre, and SuperL.U.

e Linear Solver Interface (LISI) (IU) [44-47] provides a lower-level linear solver interface, building
on including PETSc, Trilinos, and SuperL.U.

e SPARSKIT-CCA (Ames Lab, Sec. A.2.11) [44,45] is a componentized version of the library.

o TAO Numerical Optimization Components (ANL) provide a component interface to the Toolkit for
Advanced Optimization, which is part of TOPS (Sec. A.1.13).

e TAU Components (UO, Sec. A.2.12) for performance monitoring and analysis provide a componen-
tized version of Tuning and Analysis Utilities.

29

In addition to this work, a number of groups within the project are in the process of developing compo-
nents for the Toolkit.

e J. Billings at ORNL implemented a CCA-compliant version of the ITAPS mesh interface (Sec. A.1.2),
which has been tested with a component implementation of the ITAPS test program. Componentiza-
tion costs versus the native C implementation of the test program were measured to be 3.4%. Future
testing will be in an application setting.

e N. Lemaster and D. Rouson at SNL are extending the Parallel Cartesian Grid component from 2D
to 3D. In addition, a meta-partitioner is being crafted to allow any logical partitioning scheme for
the grid to be employed as a component itself. The component will do the heavy lifting so that its
processor/data decomposition matches the scheme.

e J. Larson and colleagues at ANL have been working to generalize their experience with coupling
components and scientific applications such as FACETS (Sec. A.1.7) [48-52].

e The UMD team completed componentization of the InterComm data coupling package, which now
includes a number of working examples that employ the Ccaffeine framework. They are also work-
ing with the CCA MCMD working group and framework developers on an approach for providing
InterComm’s full functionality within the CCA environment [53].

e K. Damevski (VSU) is adapting the SciJump framework’s GUI into a general CCA GUI component,
which will eventually replace the aging Ccafe-GUI that was developed specifically for the Ccaffeine
framework. This work requires more intimate coupling to a CCA framework than the current CCA
specification allows. The CCA Event Service (Sec. 4.2), also being developed by Damevski, will
provide the fine-grain feedback necessary to make CCA frameworks interactive enough for a user-
driven GUL.

Application Impact and Future Work. Toolkit development is always an outgrowth of other collabora-
tions, including TASCS research initiatives (Sec. 3) and educational efforts in the CCA tutorial (Sec. 6). Two
important components are expected in the near term: the CCA GUI component, replacing the antiquated and
buggy Ccaffeine GUI (K. Damevski, VSU) and the ITAPS unstructured meshing tools (J. Billings, ORNL).
This work will impact many CCA Toolkit users by providing a much-needed first-class user interface and
an important mesh type that is not currently available.

An important complement to the development of actual components for the Toolkit is the definition of
common interfaces that can provide interoperability across multiple libraries that offer similar capabilities.
We encourage other SciDAC centers and applications teams to define common interfaces to their respective
domains of expertise. CCA has an ongoing effort with ITAPS, TOPS, and QCSAP to aid in translating their
advances into SIDL interfaces and CCA components.

30

6 User and Application Outreach and Support
Coordinator: David Bernholdt, ORNL
Participants: ANL, 1U, LLNL, ORNL, PNNL, SNL, Tech-X

Because the long-range goal of the CCA effort is to fundamentally change the way high-performance scien-
tific software is developed and used, outreach constitutes an important part of TASCS. This outreach takes
several forms, ranging from work with specific application groups, to broader activities aimed at assisting
and growing the number of knowledgeable CCA users, to general outreach to the computational science
community, including publications, presentations, and educational activities.

6.1 Application Support

Appendix A describes more than two dozen external projects with which we have actively collaborated
during this period. In each of these collaborations there has been a bidirectional intellectual exchange
between the projects related to the use of component concepts and/or CCA tools. This is not merely a list
of projects with which we have discussed possible collaborations, or projects that have adopted the CCA
without interacting with us.

As mentioned in Sec. 1, these collaborations are very important to the way TASCS operates because
they provide a testing grounds for our tools and ideas; they also provide feedback, which helps us to refine
our work and often spurs new research ideas. The intensity and level of effort devoted to each collaboration
varies from project to project. In many cases, TASCS team members are also direct participants in the
collaborating project and provide a focal point for the collaborative work.

6.2 User Outreach and Support

Beyond direct collaborations with specific projects, we also make a significant effort to support a broader
community in learning and using component concepts and CCA tools. Our primary vehicles for this work
are tutorials and “coding camps.” Coding camps are focused working sessions, typically several days to
a week in duration, in which a group of CCA users and CCA developers meet in one room, akin to what
some projects call “bring-your-own-code workshops.” By co-locating users who have questions with experts
capable of helping to solve problems, development can be greatly accelerated compared to typical email- or
phone-based interactions.

Development and presentation of tutorial materials is a broad effort among numerous TASCS team
members at ANL, LLNL, ORNL, SNL, and Tech-X, and our collaborators Tony Drummond (Lawrence
Berkeley National Laboratory (LBNL)), and Alan Morris and Sameer Shende (UO). Tutorials presented
during this period include:

e Ninth Workshop on the DOE Advanced Computational Software (ACTS) Collection, Oakland, Califor-
nia (2008)
Simula Research Laboratory, Lysaker, Norway (2008)
PARA 2008, Trondheim, Norway
Supercomputing 2007, Reno, Nevada (two independent tutorials for Babel and the CCA)
Eighth Workshop on the DOE Advanced Computational Software (ACTS) Collection, Berkeley, Cali-
fornia (2007)
SciDAC 2007, Boston, Massachusetts
e Seventh Workshop on the DOE Advanced Computational Software Collection, Berkeley, California

(2006)

During this period, the tutorial was also significantly revamped, under the leadership of B. Allan and
R. Armstrong (SNL), to incorporate Bocca as the primary development tool used by students and to add
additional material based on a more complex PDE problem. Recent experience shows that both improve-
ments are providing significant benefits in terms of the amount of progress students are able to make during

31

a hands-on session and the perceived relevance of the examples. We have also shifted the balance of the
tutorial from an equal measure of lecture-style presentations and self-paced hands-on computer exercises to
one with less lecture time and more hands-on time.

The project held coding camps in January 2008 and April 2007 as working sessions for contributors to
the CCA Toolkit (Sec. 5). The 2007 coding camp also served as the initial “friendly user” release of the
Bocca tool (Sec. 4.3).

6.3 Community Outreach

Outreach to the broader community includes a variety of scholarly activities as well as activities that support
the CCA Forum.

Publications and Presentations. The TASCS team is actively involved in disseminating the results of
our research and educating the community about CBSE. Appendix B provides a comprehensive list of the
project’s 70 publications and presentations to date. Citations for most of these appear in the body of this
report, in conjunction with the description of the work, or in Appendix A in conjunction with the particular
collaborations that gave rise to them. We have also produced a number of publications that provide more
general overviews of the CCA and TASCS, often as outreach to specific scientific communities [6, 54—60],
and some new ideas [61,62].

Scientific Meetings. TASCS members are also active in the organization of scientific meetings to promote
the exchange of ideas and experience with CBSD.

A focal point of these activities has been a series of workshops, which has been organized annually
since 2005 at the initiative of R. Armstrong (SNL) and D. Bernholdt (ORNL). The workshops were orig-
inally known as CompFrame, and were a continuation of workshops organized by Aad van der Steen
(U. Utrecht) several years earlier. Since 2006, the workshop has been co-organized with the European
Union (EU) HPC Grid Programming Environments and Components (HPC-GECO) project, initially as
HPC-GECO/CompFrame, and starting in 2008 as the Workshop on Component-Based High-Performance
Computing (CBHPC). After the 2007 workshop, a Steering Committee was established to give the work-
shop series greater continuity independent of the TASCS and HPC-GECO projects. As past meeting chairs,
Bernholdt and Armstrong serve terms on the initial Steering Committee. TASCS also hosts the CompFrame
web site’ on the CCA Forum collaboration servers (Sec. 6.5).

Other meeting organization activities by TASCS members include:

e At SIAM CSE 2009, Damian Rousson (SNL) organised an 8-speaker minisymposium titled “Multi-
physics Modeling: Frameworks and Applications.”

e David Bernholdt (ORNL) was co-chair of HPC-GECO/CompFrame 2007, with 16 speakers.

e For Para08, Ben Allan (SNL) co-organized a minisymposium on “HPC Software: Tools, Libraries
and Frameworks” with ten speakers.

6.4 Education

Through its university participants and national lab internship programs, the TASCS project is actively work-
ing to instill in the next generation workforce an appreciation of and relevant experience with component-
based high-performance computing.

CCA in the Classroom. All TASCS universities incorporate component-related material in one or more
of the courses in their computer science curricula.

"http://compframe.org

32

Degrees Awarded. A number of students have obtained M.S. and Ph.D. degrees on topics related to
TASCS:

Tammy Dahlgren (LLNL), Ph.D., 2008, University of California Davis [23]

Xiang Gao, M.S., 2008, Binghamton University

Shang-chieh Wu, Ph.D., 2008, University of Maryland [63]

Ashwin Swaminathan, M.S., 2007, University of Utah [64]

Kostadin Damevski, Ph.D., 2006, University of Utah [65]

Summer Interns. The project has hosted a number of interns. Their technical contributions are covered
in the sections referenced in the column “Description.”

Year Host Site Name School Mentor Description
2006 ANL Andrea Berger Clarion U. Lois Mclnnes Sec. 3.3
2006 ANL Daniel Taylor = Edinboro U. Boyana Norris Sec. 4.1
2008 ANL Bing Xie [linois Inst. of Tech. Boyana Norris Sec. 3.3
2008 LLNL Monica Porche Central State U. Tom Epperly Sec. 4.2
2008 ORNL Henok Mikre =~ U. Tennessee David Bernholdt Sec. 6.3

6.5 Supporting the CCA Forum

The CCA Forum continues to exist as a community-based organization, separate from any particular re-
search project such as TASCS. We consider this structure to be very important, and in fact as we were
formulating the TASCS proposal, we simultaneously took steps within the Forum to formalize a manage-
ment structure that previously had not been clearly defined. However, as the largest single CCA-related
project, TASCS plays a very strong role in supporting the organization.

CCA Forum Meetings. Historically, TASCS (or its predecessor CCTTSS) participants have arranged and
hosted approximately three quarters of all CCA Forum meetings. Since July 2006, ten of the last eleven
quarterly Forum meetings have been hosted by TASCS sites. Financially, these meetings are supported by a
combination of registration fees, intended to cover most of the costs, and project funds to make up the differ-
ence. TASCS leverages these meetings as, effectively, project meetings, as well as opportunities to engage
frequently with collaborators and the larger CCA community. A standard agenda item at these meetings is
a brief update on the recent activities of the TASCS project, and many of the contributed presentations are
related to TASCS research. TASCS also supports the costs of providing remote access (teleconference and
web sharing for presentations) to Forum meetings.

CCA Forum Collaboration Servers. TASCS provides a variety of collaboration services for the Forum,
including:

Mailing lists

Web sites and wikis

Code repositories (CVS and Subversion)

Login access to a common computing environment

At the beginning of the TASCS project, we began migrating these services from old hardware provided
by SNL and hosted by LBNL to newly-purchased servers at ORNL, where it was easier to cover IT de-
partment support costs from project funds. The migration has taken much longer than anticipated, in large
part because the level of support we have been able to get from the IT department is much lower than we
originally anticipated. This situation is largely due to ORNL IT staff being diverted to address the avalanche
of cyber security requirements being imposed by DOE. At this point, code repositories still reside on the
old LBNL servers (we expect to finish migrating them after this review is over), and all other services are
hosted at ORNL.

33

While we had originally thought to establish our own SourceForge-like software development site fo-
cused on CCA-related projects, the challenges described above have caused us to rethink this plan. Recent
discussions among leading developers of CCA software have suggested that SourceForge itself is consid-
ered sufficiently reliable, and with good information and cross-linking on the CCA Forum web site, there is
little to be gained from a “private garden” for CCA software development, especially given the challenges
we would face in deploying and supporting it without more IT assistance. Consequently, we recently began
migrating several of our core tools to the newly-established http://cca-forum.sourceforge.net
SourceForge project.

As an alternative to this deliverable, we have focused on developing an electronic document repository
for CCA-related publications, presentations, and other materials, in order to address a long-standing com-
plaint that the CCA effort does not do an adequate job of making its scholarly work widely accessible. The
repository, http://eprints.cca-forum.org, is based on the freely available GNU EPrints soft-
ware package (http://www.eprints.orqg). For us, the primary purpose of the document repository is
to provide a comprehensive public bibliography of CCA-related publications and presentations. The EPrints
package allows items to refer to external URLSs (i.e., the journal’s web site) or archive the document locally,
as appropriate. The package is powerful and extremely customizable. The initial installation and customiza-
tion of the EPrints package was done in the summer of 2008 by University of Tennessee undergraduate
Henok Mikre during an internship with D. Bernholdt (ORNL). At this point, the repository has been pop-
ulated with the bibliographic information for all publications of the CCTTSS and TASCS projects, and we
are in the process of completing those entries to include links to or copies of the actual papers wherever
possible. We are also collecting presentations, posters, and other materials, starting with TASCS. Once the
repository contains the complete output of the two SciDAC main projects, we will begin a campaign to
collect CCA-related publications from other projects as well.

34

7 Non-Technical Matters

During this period, the TASCS project has experienced a number of personnel changes that have signifi-
cantly impacted the institutional make-up of the project as well as the composition of the leadership team.
Fortunately, however, the new site leads are also long-standing participants in the CCA effort, so the dis-
ruptions have been minimal, and mostly associated with funding gaps, as discussed below. Within each
institution, of course, there have been changes over time, primarily as students and postdocs come and go.
Students having thesis or dissertation work related to TASCS, along with short-term student interns, are
discussed in Sec. 6.3.

Matt Sottile at UO Succeeds Craig Rasmussen at L.os Alamos National Laboratory (LANL). In April
2007, LANL co-PI Craig Rasmussen accepted additional management responsibilities within the lab and
transferred his TASCS leadership responsibilities to Matt Sottile, who has been involved in the CCA effort
since 2001. In September 2007, Sottile started a faculty position at UO, and with the concurrence of our
DOE program managers, the LANL TASCS effort moved with him. Although Sottile was able to keep the
Usability effort (Sec. 4.3) moving during the transition, the pace of work was necessarily slowed until the
funding caught up with him in June 2008 and he was able to hire students to work on the project.

Kosta Damevski at VSU Succeeds Steve Parker at UU. In May 2008, Steve Parker left UU for a position
at NVidia. At nearly the same time, Kosta Damevski, who had worked with Parker on TASCS, first as a
Ph.D. student and then as a postdoc, accepted a faculty position at VSU. In consultation with our DOE
program managers, we decided to replace Parker at UU with Damevski at VSU in TASCS. The paperwork
to move the funds was submitted as quickly as possible after Damevski formally started his position in the
Fall of 2008 and is still working its way through DOE. However, Damevski has managed to temporarily
tap other funding sources for travel and has been able to be quite active in the project. Because his research
interests are somewhat different from those of his mentor, we have made some minor adjustments to our
future plans in response to this change. Those differences are discussed in Sec. 4.2 and Sec. 5.

Tom Epperly Succeeds Gary Kumfert as LLNL Co-PI. In October 2008, Gary Kumfert left LLNL for a
position at Conviva, a small technology company; he was succeeded by Tom Epperly. Kumfert and Epperly
have worked together on the CCA effort since March 2000, effectively jointly leading LLNL’s participation
since April 2003, so the transition within the TASCS leadership team went smoothly. However the ripple
effects of Kumfert’s departure are still being felt. Over the last six months, we have found replacements for
Kumfert in the various roles he had, such as chair of the CCA Review Board, point of contact for various
collaborations, etc. LLNL is in the process of finding a postdoc to join the project to spread the work
load. (Due to LLNL’s budget situation and related hiring constraints, it is not feasible to hire a regular staff
member at this time.)

35

A External Collaborations

In this section we briefly summarize the external projects and groups with which we have collaborated
during this period, including the TASCS institutions involved in these interactions.

A.1 SciDAC Projects
A.1.1 Applied Partial Differential Equations Center Enabling Technologies (APDEC)

e Project PI: Phil Colella (LBNL)
e Collaboration Point of Contact: Rob Armstrong (SNL)
e TASCS institution: SNL

Collaboration Summary: While a structured mesh component including Automated Mesh Refinement
(AMR) exists primarily for the CFRFS combustion CCA application, there are a number of stability issues
and functional limitations. Primarily driven by combustion scientists in the CFRFS project, work has begun
on a more robust and feature rich component using Chombo, an AMR package provided by APDEC.

Collaboration Progress and Status: A Parallel Cartesian Grid component (non-AMR) already exists in
the CCA Toolkit, and the CFRFS still uses an older AMR component based on the GrACE package from
Rutgers University. As motivated by the needs of CFRFS applications, work on the new Chombo-based
AMR component is proceeding using CFRFS resources and some consulting from CCA; the component is
currently in the design stage.

A.1.2 Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

e Project PI: Lori Diachin (LLNL)
e Collaboration Point of Contact: Rob Armstrong (SNL)
e TASCS institutions: LLNL, ORNL, SNL

Collaboration Summary: The ITAPS CET is developing interoperable and interchangeable mesh, geom-
etry, and field manipulation services that are of direct use to SCiDAC applications. TASCS is teaming with
ITAPS to develop CCA-compliant mesh components based on ITAPS implementations of iMesh.

Collaboration Progress and Status: The ITAPS center has created SIDL wrapper code that can be used
with any ITAPS mesh implementation to provide support for all the languages that SIDL supports. TASCS
researchers are collaborating with the ITAPS team to build CCA-compliant mesh components based on the
MOAB implementation of iMesh. Tests are underway to understand the performance ramifications of using
both the C- and SIDL-based iMesh binding for common access functions for mesh data.

The CCA is currently being used in the GWACCAMOLE project (Sec. A.1.8) for ground water ap-
plications that employ a home-grown, smoothed-particle hydrodynamics component for the data model.
Discussions are underway about transitioning the applications to an unstructured mesh representation that
would greatly benefit from this ITAPS mesh component. This work is a good example of how the CCA
facilitates a collaboration between SciDAC applications and computer science/math centers.

A.1.3 Center for Scalable Application Development Software (CScADS)

e Project PI: John Mellor-Crummey (Rice University)
e Collaboration Point of Contact: Tom Epperly (LLNL)
e TASCS institutions: LLNL, ORNL

Collaboration Summary: In this collaboration we are working with John Mellor-Crummey’s compiler
group at Rice to develop component-focused optimizations to remove the computational overhead of the
CCA. The runtime overhead from the CCA comes primarily from Babel, which increases the overhead of
making a function call by 2 to 5 times a normal Fortran-to-Fortran function call depending on the arguments
being passed. Often this overhead is negligible because of the amount of computing that occurs during

36

the function call, but in some cases, the function call overhead creates a noticeable performance decrease.
For those cases, the Rice team is investigating optimizations that can decrease the overhead and improve
performance.

Collaboration Progress and Status: Recently, the LLNL Babel team provided Mellor-Crummey’s team
with an example used by the ITAPS project (Sec A.1.2) to measure the impact of Babel’s overhead on
performance. In many ways, this test case represents a worst-case scenario because the amount of work
performed per function call for low-level mesh operations is minimal. Jeffrey Sandoval performed some
initial tests and identified several promising approaches to reduce the overhead, e.g., by removing malloc
and free calls. This collaborative research project is ongoing.

A.1.4 Center for the Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM)

e Project PI: Don Batchelor (ORNL)
e Collaboration Point of Contact: David Bernholdt (ORNL)
e TASCS institutions: IU, ORNL

Collaboration Summary: SWIM is one of three SciDAC prototype projects for the anticipated Fusion
Simulation Project. SWIM focuses on integrated modeling of radio-frequency waves and magnetohydro-
dynamics in magnetically confined plasmas. In order to provide a flexible simulation environment capable
of supporting the extensive set of computational modules of interest, SWIM has drawn on component-
based software development concepts and experience of the TASCS project to develop a custom component
framework for the project. SWIM serves as a testing ground for several new TASCS developments, in-
cluding MCMD programming (Sec. 3.1.1) and the CCA Event Service (Sec. 4.2), as well as a testbed to
explore fault tolerance in component environments (Sec. 3.1.3), particularly in MCMD applications, as part
of TASCS collaboration with the CIFTS project (Sec. A.2.4).

Collaboration Progress and Status: This active and ongoing collaboration is currently focused on re-
vamping the SWIM Integrated Plasma Simulator (IPS) framework to support concurrent MCMD computing
for the particular computational model in which each task is a separate parallel job (launched with mpirun
or the equivalent). The IPS also features an event service modeled on the proposed CCA Event Service
(simplified in that it only supports polling event delivery, not asynchronous delivery). The SWIM project
is exploring an even lighter-weight event service interface that trades performance for simplicity and may
prove useful at higher levels of applications, where performance of the event service is not a paramount
concern. Depending on the experience of the SWIM developers with this interface, it might be proposed
as a “simplified event service” interface for the CCA specification. The IPS has also provided the proof of
principle for connectivity between the CCA Event Service and the CIFTS Fault Tolerance Backplane.

A.1.5 Community Petascale Project for Accelerator Science and Simulation (ComPASS)

e Project PI: Panagiotis Spentzouris (FNAL)
e Collaboration Point of Contact: Boyana Norris (ANL)
e TASCS institutions: ANL, Tech-X

Collaboration Summary: The ComPASS-TASCS collaboration is developing interoperable beam dy-
namics components based on Synergia2 (FNAL), MaryLie/Impact (LBNL), and TxPhysics (Tech-X Corpo-
ration). Our goals are to facilitate the interaction among multiple physics modules, such as space charge,
electron cloud, and wakefield effects, as well as to provide easy access to scalable software under devel-
opment by other SciDAC projects. TASCS members L. Mclnnes and B. Norris are also members of the
COMPASS project.

Collaboration Progress and Status: Recently ComPASS and TASCS teamed with S. Muszala (Sec. A.2.1)
to develop a prototype component electron cloud simulation that leverages high-level componentization of

37

Synergia, including SIDL-based wrappers for beam optics components (quadrupoles and drifts) built on
MaryLie/Impact, as well as C++ and F90 particle store components based on Synergia2 and a new Syner-
gia2 C++-based space charge component. This work also incorporates new SIDL-based components built
on TxPhysics. Further details are in two joint papers [66, 67].

This work extensively employed Bocca, resulting in the rapid development of the new SIDL-based
components as well as important feedback to Bocca developers about new features needed by ComPASS.
In addition, ComPASS is a motivator for recent work in porting the CCA tools and their prerequisites to
LCF machines, with the goal of automating the process as much as possible for future platforms. Also,
a joint ComPASS-TASCS-TOPS collaboration to dynamically select and parametrize algebraic solvers in
beam dynamics simulations motivates work in the CQoS Initiative (Sec. 3.3).

A.1.6 Computational Facility for Reacting Flow Science (CFRFS)

e Project PI: Habib Najm (SNL)
e Collaboration Point of Contact: Jaideep Ray (SNL)
e TASCS institutions: ANL, SNL

Collaboration Summary: As highlighted in Sec. 2, TASCS is helping CFRFS to design and implement
a component toolkit for reacting flows. The focus is on enabling high-fidelity simulations of lab-scale
flames using detailed chemical mechanisms. The low-Mach approximation of the Navier-Stokes equations
is used to model momentum and energy transport. The toolkit performs its simulations on block-structured
adaptive meshes and employs advanced numerical schemes, specifically fourth-order spatial discretizations
and extended-stability, explicit time-integrators on block-structured mesh hierarchies.

The CFRFS toolkit is maturing. Laminar reacting flow calculations are becoming routine. Much of
the CCA design (e.g., the components, ports) and CCA-related details (e.g., the framework) are considered
by the investigators as infrastructure and only mentioned in passing in talks and papers. The principal
investigator, Habib Najm, cites the modularity of CFRFS’s component-oriented design as a key feature
that enables the seamless incorporation of new code by all CFRFES researchers, including many short-term
visitors of the Combustion Research Facility. Existing components can be easily used and modified, while
new components can be added, without endangering the previous functionality, nor constraining future
additions to the simulation. The CFRFS Toolkit today contains over 100 components; most simulations use
about 3040 of them at a time.

Collaboration Progress and Status: Building on earlier developments of components for the energy
and species equations [68], an important aspect of the entire construction — the projection method for the
momentum equations — was recently implemented [76] and fourth-order convergence demonstrated [77];
see Fig. 4. Scalability results were shown for up to approximately 500 processors.

CFREFS researchers also collaborate with TASCS in the CQoS Initiative (Sec. 3.3) to motivate and vali-
date new tools that facilitate the dynamic composition and reconfiguration of components. CFRFS is using
this infrastructure to develop a meta-partitioner to be used to partition and load-balance parallel simulations
of reactive flows on block-structured, adaptively-refined meshes.

A.1.7 Framework Application for Core-Edge Transport Simulations (FACETS)

e Project PI: John Cary (Tech-X)
e Collaboration Point of Contact: Sveta Shasharina (Tech-X)
e TASCS institutions: ANL, IU, LLNL, Tech-X

Collaboration Summary: The FACETS (Framework Application for Core-Edge Transport Simulations)
project [35] began in January 2007 with the goal of providing core to wall transport modeling of a toka-
mak fusion reactor. This work involves coupling previously separate computations for the core, edge, and
wall regions and developing new codes. Such coupling is primarily through connection regions of lower

38

dimensionality. The project has started developing a component-based coupling framework to bring to-
gether models for each of these regions. Our collaboration fall into two categories: directly contributing to
FACETS development and providing consulting and educational support to FACETS physicists.

Collaboration Progress and Status: The collaboration between FACETS and TASCS has been very ac-
tive and successful. FACETS embraces the paradigm of component-based software engineering, and several
researchers from the TASCS team are also members of FACETS.

FACETS uses Babel to couple legacy codes written in variants of Fortran and Python to the FACETS
framework, which is written in C++. For example, transport modules such as glf23 and mmm95 were
wrapped in SIDL and used in the first version of the FMCFM (Framework for Modernization and Compo-
nentization of Fusion Modules, developed at Tech-X in a different project), which is essential for FACETS
core modeling. The tokamak edge is modeled in FACETS by the UEDGE code, which is also called through
Babel bindings. To enable use of Babel on the LCFs, we provided a static Babel build for FACETS re-
searchers. Our work with this project resulted in joint papers [28, 69], and the result of code integration
enabled by Babel is visualized in Fig. 3.

The educational and consulting help to FACETS took the form of informal seminars and joint testing of
TASCS software. Presentations about CCA components and Bocca were given at Tech-X Corporation, and
the full CCA tool chain, including Bocca and OnRamp, is installed on multiple Tech-X computers. We have
worked on integration of CCA tools with the FACETS build system and developed several svn repositories
with working examples of CCA components and Bocca usage.

A.1.8 GroundWAter CCA MOdeling Library and Extensions (GWACCAMOLE)

e Project PI: Bruce Palmer (PNNL)
e Collaboration Point of Contact: Manojkumar Krishnan (PNNL)
e TASCS institutions: ORNL, PNNL, SNL

Collaboration Summary: The GWACCAMOLE (GroundWAter CCA MOdeling Library and Exten-
sions) SciDAC SAP is building a component-based HPC framework for subsurface simulations using a
hybrid approach to combine different physical models into a single coherent simulation. Existing paral-
lel simulation tools will be decomposed into components for use within the CCA framework and will be
extended with components providing interfaces between the different models. The underlying models for
these interfacial components will be developed as part of the associated science application. The framework
will also incorporate new numerical grid and solver technologies being developed by other SciDAC centers
to provide a flexible framework for large-scale simulations of subsurface reactive flows.

Collaboration Progress and Status: We recently added a simple chemistry component to the GWAC-
CAMOLE Smoothed Particle Hydrodynamics (SPH) framework. This work involved refactoring the STOMP
(Sec. A.1.9) subsurface continuum simulation package into two components: a physics component and
a mesh component, where the SIDL component interface can support both rectangular and unstructured
meshes. Discussion is in progress with ITAPS (Sec. A.1.2) on incorporation of ITAPS unstructured mesh
libraries. We also ported the SPH framework to the new Bocca project management infrastructure. We are
beginning large-scale SPH simulations of diffusive transport in porous media, including a nearly complete
port of the SPH framework to the NERSC Franklin machine. This project uses the MCMD model introduced
in Sec. 3.1 to incorporate task parallelism among components.

A.1.9 Hybrid Numerical Methods for Multiscale Simulations of Subsurface Biogeochemical Pro-
cesses

e Project PI: Tim Schiebe PNNL
e Collaboration Point of Contact: Manojkumar Krishnan (PNNL)
e TASCS institution: PNNL

39

Collaboration Summary: This SciDAC project is developing an integrated multiscale modeling frame-
work with the capability of directly linking different process models at continuum, pore, and sub-pore scales.
Current TASCS collaborations focus on adding MCMD capabilities to the Subsurface Transport Over Mul-
tiple Phases (STOMP) application for subsurface flow and transport. As discussed in Sec. 3.1, the MCMD
implementation incorporates task parallelism between the components as well as data parallelism within
the components. This work will provide a validation of the CCA teams model, while allowing the STOMP
developers to conduct parameter studies using multiple instances of the parallel STOMP component to sim-
ulate flows through heterogeneous, porous media at Hanford.

Collaboration Progress and Status: PNNL has been developing a MCMD implementation for large-
scale subsurface simulations. A key capability is the estimation of spatially variable subsurface geologic
material properties using field observations of multivariate data types and sample sizes. A multimodal
minimization methodology uses forward models of hydrologic, geochemical, and geophysical processes to
estimate the desired properties.

A.1.10 Quantum Chemistry SAP

e Project PI: Mark Gordon (Ames Lab)
e Collaboration Point of Contact: Joe Kenny (SNL)
e TASCS institutions: ANL, PNNL, SNL

Collaboration Summary: As highlighted in Sec. 2 and shown in Fig. 5, TASCS supports the Quantum
Chemistry SAP in their mission to develop interfaces among major quantum chemistry packages, creating
a flexible, community-based software development environment. This application project employs CCA
infrastructure to develop interoperable components based on three important computational chemistry codes:
General Atomic and Molecular Electronic Structure System (GAMESS), the Massively Parallel Quantum
Chemistry program (MPQC), and Northwest Chem (NWChem). Component technology allows not only
interchangeability of high-level capabilities provided by participating codes but also the ability to mix and
match low-level components providing such services as integral evaluation and the formation of operator
matrices [79].

Collaboration Progress and Status: As early adopters of the CCA approach, the Quantum Chemistry
SAP development team has settled into a development process and is using CCA software as a production
tool, enabling the project to focus on meeting its scientific objectives. Recent scientific progress has included
a CCA component-based hybrid quantum/classical simulation capability [80]. The application developers
provide useful feedback as TASCS members further harden the CCA software stack for production use.
Recently, a particularly active collaboration has been sustained between QCSAP developers and the TASCS
CQoS Initiative (Sec. 3.3). This work has led to the design and implementation of prototype applications
to more efficiently manage computational resources during complicated quantum chemistry calculations [1,
18].

A.1.11 Performance Engineering Research Institute (PERI)

e Project PI: Bob Lucas (ISI)
e Collaboration Point of Contact: Boyana Norris (ANL)
e TASCS institution: ANL

Collaboration Summary: The TASCS CQoS Initiative (Sec. 3.3) aims to systematically identify and
improve component-based software by applying component-wise performance engineering techniques. This
collaboration involves the instrumentation of codes, the collection of performance profiles of components,
and the storage of that data in a performance database that makes optimization possibilities more clear to
software designers.

40

Collaboration Progress and Status: PERI has defined a standard representation for application metadata,
which is required by the CQoS Initiative. The analysis portions of the CQoS infrastructure classify perfor-
mance results based on parameters that are part of the metadata. The initial implementation steps toward
fully automated tuning of component applications leverage PERI performance measurement tools and are
beginning to incorporate some of the infrastructure being developed by the PERI autotuning working group
(of which B. Norris is a member).

A.1.12 Scientific Data Management Center (SDM)

e Project PI: Arie Shoshani (LBNL)
e Collaboration Point of Contact: Kosta Damevski (VSU)
e TASCS institutions: UU, VSU

Collaboration Summary: The focus of this collaboration is to have interoperability between the software
architectures used by the TASCS and SDM centers in order to enable applications to use the benefits of both
approaches. The SDM center uses scientific workflows that are concerned with high-level orchestration
of time-decomposed simulations, while TASCS’s components are mainly used at a lower level to enable
software modularity and reuse. Combining these technologies in a seamless way leverages the benefits of
both paradigms, resulting in more flexibility for scientific application design.

Collaboration Progress and Status: A proof of concept application that uses both scientific workflows
and components has been designed and implemented. The next step is to identify a meaningful scientific
application that would benefit from using both technologies.

A.1.13 Towards Optimal Petascale Simulations (TOPS)

e Project PI: David Keyes (Columbia University)
e Collaboration Point of Contact: Lois Curfman McInnes (ANL)
e TASCS institutions: ANL

Collaboration Summary: The focus of TASCS-TOPS collaboration is the development of scalable TOPS
linear/nonlinear solver components, with emphasis on the needs of beam dynamics applications in the Sci-
DAC ComPASS accelerator project (Sec. A.1.5) and core-edge plasma applications in the SciDAC FACETS
fusion project (Sec. A.1.7). We also develop numerical optimization components based on TAO, which are
employed in quantum chemistry simulatons [81] (Sec. A.1.10). The selection and parametrization of solver
algorithms and implementations in long-running simulations motivate work in the SQV (Sec. 3.2) and CQoS
(Sec. 3.3) Initiatives.

Collaboration Progress and Status: We have developed prototype high-level, language-independent
components for the scalable solution of large linear and nonlinear algebraic systems arising from either
structured or unstructured meshes. These components, compliant with the CCA and written using SIDL,
can interface to underlying solvers provided by a large variety of libraries developed at various institutions,
including hypre (LLNL), SuperLU (LBNL), and PETSc (ANL).

The common interfaces employed by TOPS solver components enable easy access to suites of indepen-
dently developed algorithms and implementations. The challenge then becomes how, during runtime, to
make the best choices for reliability, accuracy, and performance. We are currently extending TOPS compo-
nents to incorporate new CQoS capabilities to facilitate appropriate choices for algorithms and parameters
of TOPS linear and nonlinear solver components.

A.2 Other DOE Projects
A.2.1 Common Component Architecture for Electron Cloud Accelerator Simulations

e Project PI: Stefan Muszala (Tech-X)
e Collaboration Point of Contact: Boyana Norris (ANL)

41

e TASCS institutions: ANL, Tech-X

Collaboration Summary: The CCA Ecloud project models the Electron Cloud Effect (ECE) using CCA
components. Electrons bouncing off of particle accelerator beam walls cause the wall to emit more elec-
trons through secondary emission and eventually to build into a cloud. The ECE is important to particle
accelerator simulations because the cloud causes the proton beam to degrade. The scope of this project in-
volves wrapping and coupling TxPhysics and Synergia2, while addressing computational quality of service
requirements (Sec. 3.3) through the use of TAU performance tools (Sec. A.2.12).

Collaboration Progress and Status: Recent work focused on developing SIDL-based components based
on the TxPhysics package and using these in conjunction with Synergia2-based components developed by
the ComPASS project (Sec. A.1.5) to create a new prototype CCA electron cloud application. Ionization
routines from the TxPhysics library were wrapped to allow their use as function mapped components. Ini-
tial validation demonstrates that the component and non-component applications produce closely matching
numbers of electrons.

Also, we recently tested OnRamp (Sec. 4.3) within TxPhysics (used by ComPASS codes Synergia and
VORPAL) to demonstrate the ease of creating CCA components for existing physics codes and to compare
Bocca-generated SIDL interfaces with the interfaces developed manually at Tech-X. The success of this
effort will hopefully further promote CCA tools among physics application developers.

A.2.2 Contractor Meta-Build System

e Project PI: James Amundson (Fermilab)
e Collaboration Point of Contact: Boyana Norris (ANL)
e TASCS institution: ANL

Collaboration Summary: The Contractor meta-build system® was designed to manage complex pro-
cesses involving configuration, building, and installation of software, such as when numerous interdepen-
dent packages must be configured and installed in a variety of environments.

Collaboration Progress and Status: As discussed in Sec. 4.1, the standard distribution of the CCA tools
is now based on Contractor, and joint development of the CCA-Tools-Contractor capabilities continues.

A.2.3 Cooperative Programming (Co-Op)

e Project PI: John May (LLNL)
e Collaboration Point of Contact: Tom Epperly (LLNL)
e TASCS institution: LLNL

Collaboration Summary: A LLNL LDRD project developed the Cooperative Programming Model (Co-
op) model that uses Babel RMI to manage collections of MPI jobs to perform large, multi-scale, multi-
physics applications. This project considered an approach to petascale computing based on simultane-
ously running multiple parallel jobs. For example, an application scales well to 1000 processors, and 100
thousand-processor runs can be performed simultaneously using Co-op, a program has been created that
scales to 100,000 processors. Initially, this work was applied to material modeling, where a continuum
model was coupled with a fine-scale model that was automatically invoked when the continuum assumption
broke down [91-93]. More recently, this work has also been applied to a discrete event modeling simulation
for space situational awareness. This simulation models the systems for tracking satellites and known space
junk orbiting earth.

Collaboration Progress and Status: The basic Co-op system is largely stable, and recent activities have
focused on maintenance and new applications. In addition to materials modeling and space situational

$http://home.fnal.gov/-amundson/contractor—www

42

awareness, some other LLNL multi-physics applications have investigated using Co-op for special-purpose
calculations.

A.2.4 Coordinated Infrastructure for Fault Tolerance of Systems (CIFTS)

e Project PI: Pete Beckman (ANL)
e Collaboration Point of Contact: David Bernholdt (ORNL)
e TASCS institution: ORNL

Collaboration Summary: As the project name suggests, CIFTS is developing an infrastructure to make
fault information available throughout the software stack (from the device drivers and operating system to
the applications) and to facilitate a coordinated response to faults when they occur. Central to the CIFTS
project is the Fault Tolerance Backplane (FTB), an event service to disseminate fault information. As part
of the TASCS Emerging HPC Initiative (Sec. 3.1), we are collaborating with CIFTS to connect the CCA
environment to the FTB and explore how fault-related abstractions might be conveniently expressed in the
component environment.

Collaboration Progress and Status: Initial exploration of fault tolerance in component environments is
taking place primarily in collaboration with the SWIM fusion project (Sec. A.1.4), which is also making
use of TASCS MCMD and Event Service concepts. After we gain some practical experience with fault
tolerance for real simulations running in the SWIM IPS, we plan to extend these ideas into fully CCA-
compliant capabilities.

A.2.5 Distributed CCA Components and Grid Services for Scientific Computing

e Project PI: Nanbor Wang (Tech-X)
e Collaboration Point of Contact: Sveta Shasharina (Tech-X)
e TASCS institutions: LLNL, Tech-X

Collaboration Summary: TASCS and Tech-X jointly worked on providing struct support for Fortran2003
in Babel and demonstrated using Babel Simple RMI to perform remote data analysis of the code VORPAL.

Collaboration Progress and Status: The project has succeeding in developing the struct support to be
used in FACETS (Sec. A.1.7) to integrate transport modules into the FACETS framework for coupled core-
edge-wall modeling of a tokamak fusion reactor.

A.2.6 High-Performance Mass Spectrometry Facility

e Project PI: Mikhail Belov (PNNL)
e Collaboration Point of Contact: Manojkumar Krishnan (PNNL)
e TASCS institution: PNNL

Collaboration Summary: The High-Performance Mass Spectrometry Facility” is teaming with the Emerg-
ing HPC Initiative (Sec. 3.1) to evaluate the use of a newly developed high-performance Event Service im-
plementation, which the PNNL team recently developed to exploit efficient communication mechanisms
commonly used on HPC platforms. We designed and implemented the Event Service using the Aggregate
Remote Memory Copy Interface (ARMCI) as an underlying communication layer for this mechanism. Two
alternative implementations were developed and evaluated on a Cray XD-1 platform.

Collaboration Progress and Status: The performance results demonstrated that event delivery latencies
are low and that the Event Service is able to achieve high throughput levels. The Event Service has been used
to distribute work and coordinate execution between CPU-only nodes and nodes with attached accelerators
(e.g., FPGA, GPU) on a HPC system. In order to take advantage of the FPGA accelerators from a global
system and application perspective, the CPU-only nodes can request processing by the nodes with attached

ghttp: //www.emsl.pnl.gov/capabs/hpmsf.shtml

43

FPGAs. We applied this model to a computational proteomics application involving inverse Hadamard
transform signal processing, where the FPGA accelerator achieved a 6x speed advantage over pure software
processing. The data transfer time between CPU-only requester nodes and the nodes with attached FPGAs
is minimal, compared to the signal processing computation. This application demonstrated the use of CCA-
based hybrid computing strategies on a scalable platform [8,9].

A.2.7 Nuclear Energy Advanced Modeling and Simulation (NEAMS)

NEAMS Program Manager: Alex Larzelere (DOE)
IBM-FOA Project PI: George Chiu (IBM)

NEAMS-CT Project PI: Gil Weigand (ORNL)
Collaboration Point of Contact: David Bernholdt (ORNL)
TASCS institution: ORNL

Collaboration Summary: Nuclear Energy Advanced Modeling and Simulation (NEAMS) is a program
in the DOE Office of Nuclear Energy with the goal of bringing state of the art high-performance compu-
tational science and engineering capabilities to revamp the way nuclear power systems are designed and
developed. An important part of the NEAMS vision is a framework to provide a unified environment for the
development, composition, and execution of a wide range of simulations modeling nuclear fuels, reactors,
reprocessing, and waste forms. The NEAMS framework is expected to be based on component concepts,
and the CCA is being considered as a possible infrastructure on which to develop the domain-specific frame-
work.

Collaboration Progress and Status: Currently two active projects within the NEAMS program include
design work on the NEAMS framework. The IBM-FOA project began in October 2008, and the NEAMS-
CT effort was funded in March 2009, with the framework efforts in both led by David Bernholdt (ORNL).
NEAMS is using model-driven system design (MDSD) and Unified Modeling Language (UML) method-
ology and tools to analyze the NEAMS problem domain, as well as major software systems used in the
domain, and candidate infrastructure, including the CCA.

A.2.8 NWChem

e Project PI: Bert de Jong (PNNL)
e Collaboration Point of Contact: Manojkumar Krishnan (PNNL)
e TASCS institution: PNNL

Collaboration Summary: NWChem is a large (2.5 million lines of code) suite of computational chem-
istry algorithms that was developed based on multiple languages (Fortran, C, C++, Python) and program-
ming models (MPI, Global Arrays). Although NWChem has been designed from scratch to work on mas-
sively parallel systems, until recently it was unable to effectively exploit variable degrees of parallelism
available in the set of algorithms and methods it offers. As a result, the scalability of some important calcu-
lations was limited by the least scalable parts of the simulation.

Collaboration Progress and Status: We are using CCA in the context of computational chemistry to
express and manage multiple levels of parallelism (MLP) through the use of processor groups [83]. As
discussed in Sec. 3.1, we are using the MCMD approach to manage MLP. To exploit available hardware
parallelism in petascale systems, exploitation of MLP is essential. This technique has been shown to increase
granularity of computation and thus improve the overall scalability.

A.2.9 Polygraph

e Project PI: Bill Cannon and Doug Baxter (PNNL)
e Collaboration Point of Contact: Manojkumar Krishnan (PNNL)
e TASCS institution: PNNL

44

Collaboration Summary: We have studied the use of CCA components for creating portable interfaces
for custom algorithms implemented on hardware accelerators (Sec. 3.1). These components can cleanly
encapsulate the entire low-level, platform specific details of hardware accelerated implementations, while
providing a high-level interface that is 100% compatible with components implementing software versions
of the same algorithm. To demonstrate this concept, we have created a component-based version of an
application in proteomics named Polygraph.

Collaboration Progress and Status: Polygraph, developed at PNNL, uses an innovative approach to ex-
tract mass spectra from experimental databases given a description of a candidate peptide. Polygraph utilizes
a genetic algorithm approach to find the best matches for the candidate peptide sequence, which is a com-
pute intensive process for long sequences on large databases. We developed an FPGA-accelerated version
of a key computational kernel in Polygraph, and demonstrated the ease of integrating the FPGA-accelerated
kernel into the rest of the software application using CCA component technology. We also built a CCA com-
ponent of the original software version of the kernel and demonstrated seamless interoperability between
the FPGA and software versions, with very low overhead compared to non-componentized, monolithic ver-
sions [7].

A.2.10 ROSE

e Project PI: Dan Quinlan (LLNL)
e Collaboration Point of Contact: Tom Epperly (LLNL)
e TASCS institution: LLNL

Collaboration Summary: The ROSE project uses Babel to link a graphical front-end written in Java to the
ROSE parsing and analysis engine in C++ [70]. By linking these two sub-systems with Babel, the graphical
front-end is able to visualize large-scale software systems and incorporate various pieces of information
determined by ROSE analysis into a single view.

Collaboration Progress and Status: Currently, the visualization tool is not under active development, so
the project does not require active support at this time.

A.2.11 SPARSKIT-CCA

e Project PI: Masha Sosonkina (Ames Laboratory)
e Collaboration Point of Contact: Lois Curfman McInnes (ANL)
e TASCS institutions: ANL

Collaboration Summary: SPARSKIT-CCA, a suite of CCA components for the parallel iterative solution
of sparse linear systems, is part of the CCA Toolkit (Sec 5). Major components implement various parallel
preconditioners and accelerators available in the original SPARSKIT, its modern extension, ITSOL, and the
PARMS parallel solution library. The matrix storage format is very flexible and may be easily extended. The
list of preconditioners and accelerators may also be easily extended due to the standard interfaces developed
for SPARSKIT-CCA.

Collaboration Progress and Status: SPARSKIT, developed in the 90s by Yousef Saad at the University
of Minnesota, is a basic toolkit for sequential sparse matrix computations and is widely used in scientific
community. Written in Fortran 77 and having a cumbersome interface, it is considered a legacy code.

Our first objective is to enable its wider usage in modern applications and to facilitate further de-
velopment of SPARSKIT. The component interfaces are defined according to CCA requirements. The
SPARSKIT-CCA design features matrix-free interfaces, which enable its usage with a variety of matrix
formats and iterative solution implementations of preconditioners and accelerators. In particular, we have
integrated SPARSKIT-CCA, which has a medium-level interface granularity, with LISI interfaces [44,45],
which provide higher-level access to linear system solution methods and encapsulate both preconditioners

45

and accelerators within a joint interface. Our second goal — creation of parallel SPARSKIT components — is
well underway. We have implemented a distributed matrix component, components for graph partitioners,
and parallel preconditioners. Combining all these ingredients and careful testing constitute our forthcoming
efforts.

A.2.12 Tuning Analysis and Utilities (TAU)

e Project PI: Allen Malony (UO)
e Collaboration Point of Contact: Li Li (ANL)
e TASCS institution: ANL

Collaboration Summary: The collaboration between the TAU group and TASCS has the goal of de-
veloping performance monitoring and analysis components, with emphasis on dynamic configuration and
adaptation of computational components during the execution of a scientific application.

Collaboration Progress and Status: The collaboration is developing CCA-compliant performance mon-
itoring (e.g., through automated performance proxy component generation) and analysis capabilities based
on TAU as part of the CCA Toolkit (Sec 5). A second point of interaction is performing analysis and pre-
diction based on the performance data to help make runtime decisions about component reconfiguration and
adaptation [19,22].

A highlight of recent work is the extension of PerfExplorer, a framework for parallel performance data
mining and knowledge discovery, as motivated by the CQoS Initiative (Sec. 3.3) and the Quantum Chem-
istry Science Application Partnership (Sec. A.1.10). We integrated performance analysis capabilities of
PerfExplorer into general CQoS infrastructure to classify performance and meta-information for quantum
chemistry computations and then suggested appropriate configurations for new problem instances [1].

A.3 Other Sponsors
A.3.1 Center for Integrated Space Weather Modeling (CISM)

e Project PI:
e Collaboration Point of Contact: Alan Sussman (UMD)
e TASCS institution: UMD

Collaboration Summary: The Center for Integrated Space Weather Modeling (CISM) is an NSF Science
and Technology Center focused on building a set of coupled physical models for space weather to fully
model the Sun to Earth environment. The models are written in different programming languages, with
some parallel (MPI or shared memory) and some sequential. Currently the physical coupling between the
models uses the Maryland InterComm software, and the goal of the TASCS collaboration is to introduce
the space weather modeling community, and the CISM participants more immediately, to the benefits and
capabilities of a complete CCA environment.

Collaboration Progress and Status: We have designed, built, and tested SIDL interfaces for the Inter-
Comm API. We have built several examples with multiple parallel components and have run them using
the Ccaffeine framework. Each parallel component runs in a separate Ccaffeine instance and makes calls
to InterComm components to export or import data to a parallel component in a different instance of the
framework. In the near future we will work with CISM space physicists to encapsulate one or more of their
models as CCA components, so that they can determine if CCA technology can provide them with services
not currently provided by InterComm or other model coupling tools they are currently using.

A.3.2 Chapel Language Development Team

e Project PI: Brad Chamberlain (Cray)
e Collaboration Point of Contact: Tom Epperly (LLNL)
e TASCS institutions: LLNL

46

Collaboration Summary: Brad Chamberlain (Cray) teamed with G. Kumfert and T. Epperly (LLNL) to
consider the challenge of introducing High-Productivity Computing Systems (HPCS) computer languages
into Babel. We developed a list of requirements and technical challenges that would need to be over-
come. Extending Babel to incorporate Parallel Global Address Space (PGAS) languages is a major research
challenge because parallelism in PGAS languages is implicit, and with the serial languages Babel already
supports, parallelism is explicit. Ultimately, we authored a joint proposal to seek funding to work on this
and submitted it to the DOE’s call for proposals in the area of Petascale Tools Development.

Collaboration Progress and Status: The collaboration is awaiting a funding source.
A.3.3 Community Surface Dynamics Modeling System (CSDMS) Integration Facility

e Project PI: Scott Peckham (University of Colorado at Boulder)
e Collaboration Point of Contact: Boyana Norris (ANL)
e TASCS institution: ANL

Collaboration Summary: The CSDMS project is a community effort that deals with modeling the Earth’s
surface, specifically the dynamic interfaces between lithosphere, hydrosphere, cryosphere, and atmosphere.
The goal of the Integration Facility is to provide component interfaces to the numerous existing (and fu-
ture) models with the goal of enabling faster model development, easier access to and better usability of
simulation codes, and coupling models in HPC environments in the future.

Collaboration Progress and Status: B. Norris has assisted The National Science Foundation (NSF)-
funded Community Surface Dynamics Modeling System (CSDMS) Integration Facility in evaluating the
suitability of CCA technology for providing an appropriate environment for multiple models and their im-
plementations. At present CSDMS has adopted the CCA component model and integrated it with the Open
Modelling Interface and Environment (OpenMI) standard [94] for environmental modeling [95]. Interac-
tions with CSDMS have also resulted in improvements and extensions of CCA tool infrastructure, especially
Bocca (Sec. 4.3.1).

A.3.4 HPC Application Software Consortium (HPC-ASC)

e Organizers: Merle Giles (NCSA), Robert Graybill (IST)
e Collaboration Point of Contact: David Bernholdt (ORNL)
e TASCS institutions: LLNL, ORNL, SNL

Collaboration Summary: This nascent consortium is intended to address the needs of industrial HPC
users for better scalability and interoperability in simulation tools developed (primarily) by commercial
independent software vendors. These challenges are closely related to many of the issues the CCA Forum
was created to address, but (at least initially) are more focused on particular code-coupling issues, and with
the added complications of most of the software involved being proprietary, developed by for-profit entities.

Collaboration Progress and Status: TASCS project members G. Kumfert (LLNL), R. Armstrong (SNL)
and D. Bernholdt (ORNL) have engaged with the HPC Application Software Consortium (HPC-ASC) lead-
ership at several face-to-face meetings, as well as email exchanges and teleconferences. TASCS and the
CCA Forum have offered their experience in organizing and running community-based standards organiza-
tions, as well as technical experience with component technology and related middleware in order to help
the consortium make progress towards their goals. We are also interested in getting more insight into the
multi-physics code-coupling problems they need to address in order to inform our own long-term interest in
developing abstractions and tools to generally support solving such problems in component environments
like the CCA. At present, after an initial flurry of activity, the consortium’s progress seems to have slowed.

47

B
[1]

8]

[10]

[11]

TASCS Publications and Presentations

Li Li, Joseph P. Kenny, Meng-Shiou Wu, Kevin Huck, Alexander Gaenko, Mark S. Gordon, Curtis L.
Janssen, Lois Curfman MclInnes, Hirotoshi Mori, Heather M. Netzloff, Boyana Norris, and Theresa L.
Windus, Adaptive Application Composition in Quantum Chemistry, in 5th International Conference
on the Quality of Software Architectures (QoSA 2009), pages 1-17, 2009, (in press).

David E. Bernholdt, Software Architecture for High-Performance Scientific Computing: A Pragmatic
Approach, course (8.5 hours lecture, 3 hours lab), CEA-EDF-INRIA Summer School: Design of
High-Performance Scientific Applications, St. Remy les Chevreuse, France, 2006.

Wei Lu, Kenneth Chiu, Satoshi Shirasuna, and Dennis Gannon, Hybrid Decomposition Scheme for
Building Scientific Workflows, in Proceedings of High Performance Computing Symposium (HPC
2007), Norfolk, Virginia, March 25-29, pages 388 -394, ACM, 2007, Best paper award.

David E. Bernholdt, The Common Component Architecture: Building Frameworks for Computational
Science, keynote, International Conference on Modeling and Simulation in the Petroleum Industry,
2007.

Lois Curfman Mclnnes, Tamara Dahlgren, Jarek Nieplocha, David Bernholdt, Benjamin A. Allan,
Rob Armstrong, Daniel Chavarria, Wael Elwasif Ian Gorton, Manoj Krishan, Allen Malony, Boyana
Norris, Jaideep Ray, and Sameer Shende, Research Initiatives for Plug-and-Play Scientific Computing,
in David Keyes, editor, SciDAC 2007, 24-28 June 2007, Boston, Massachusetts, USA, volume 78 of
Journal of Physics: Conference Series, page 012046, Institute of Physics, 2007.

Steven Parker, Rob Armstrong, David Bernholdt, Tamara Dahlgren, Tom Epperly, Joseph Kenny,
Manoj Krishnan, Gary Kumfert, Jay Larson, Lois Curfman Mclnnes, Jarek Nieplocha, Jaideep Ray,
and Sveta Shasharina, Enabling Advanced Scientific Computing Software, CTWatch Quarterly 3
(2007), invited article,.

Daniel Chavarria-Miranda, Jarek Nieplocha, and Ian D. Gorton, Hardware-Accelerated Components
for Hybrid Computing Systems, in Proceedings of the 2008 CompFrame/HPC-GECO Workshop on
Component Based High Performance Computing, ACM, 2008.

Ian D. Gorton, Daniel Chavarria-Miranda, and Jarek Nieplocha, Design and Implementation of a High-
Performance CCA Event Service, Concurrency and Computation: Practice and Experience (2009),
in press.

Ian Gorton, Daniel Chavarria-Miranda, Manojkumar Krishnan, and Jarek Nieplocha, A High-
Performance Event Service for HPC Applications, in SE-HPC ’07: Proceedings of the 3rd Inter-
national Workshop on Software Engineering for High Performance Computing Applications, page 1,
Washington, DC, USA, 2007, IEEE Computer Society, Spp,.

Tamara L. Dahlgren, Performance-Driven Interface Contract Enforcement for Scientific Components,
in Component-Based Software Engineering, volume 4608 of Lecture Notes in Computer Science, pages
157-172, Berlin/Heidelberg, 2007, Springer.

Tamara Dahlgren, David Bernholdt, and Lois Curfman Mclnnes, Gaining Confidence in Scientific
Applications Through Executable Interface Contracts, in Rick Stevens, editor, SciDAC 2008, 14-17
July 2008, Seattle, Washington, USA, volume 125 of Journal of Physics: Conference Series, page
012086, Institute of Physics, 2008.

48

[12] T. Dahlgren, Interface Contracts for Scientific Components and Libraries, seminar, Mathematics and
Computer Science Division Colloquium, Argonne National Laboratory, Argonne, IL, 2008.

[13] Li Li, Boyana Norris, Van Bui, Kevin Huck, Joseph P. Kenny, Lois Curfman MclInnes, Heather Net-
zloff, and Meng-Shiou Wu, Database and Analysis Support for Automated Configuration of Scientific
Applications, talk, STAM Conference on Computational Science and Engineering, 2009.

[14] Li Li, Boyana Norris, and Lois Curfman Mclnnes, Database Components for Support of Computa-
tional Quality of Service for Scientific CCA Applications, talk, SIAM Conference on Parallel Process-
ing for Scientific Computing (PP0S), 2008.

[15] Boyana Norris, Enabling Adaptive Algorithms through Component-Based Software Engineering, sem-
inar, RWTH Aachen, Aachen, Germany, 2007.

[16] Boyana Norris, Lois Curfman Mclnnes, Sanjukta Bhowmick, and Li Li, Adaptive Numerical Compo-
nents for PDE-Based Simulations, PAMM: Special Issue: Sixth International Congress on Industrial
Applied Mathematics (ICIAMO7) and GAMM Annual Meeting, Zurich 2007 7, 1140509 (2007).

[17] Jaideep Ray, Cosmin Safta, and Habib Najm, Designing Adaptive Mesh Simulators for Reacting Flows
Using the Common Component Architecture, talk, SIAM Conference on Computational Science and
Engineering, 2009.

[18] J. Kenny, Kevin Huck, L Li, L. McInnes, H Netzloff, B Norris, M. Wu, A. Gaenko, and H. Mori,
Computational Quality of Service (CQoS) in Quantum Chemistry, poster, 2008 ACM/IEEE conference
on Supercomputing, 2008.

[19] Van Bui, Boyana Norris, Kevin Huck, Lois Curfman Mclnnes, Li Li, Oscar Hernandez, and Barbara
Chapman, A Component Infrastructure for Performance and Power Modeling of Parallel Scientific
Applications, in Proceedings of the 2008 CompFrame/HPC-GECO Workshop on Component Based
High Performance Computing, ACM, 2008.

[20] Boyana Norris, Lois McInnes, Sanjukta Bhowmick, and Li Li, Adaptive Numerical Components for
PDE-Based Simulations, in Proceedings of ICIAM 2007, Zurich, Switzerland, 2007.

[21] L Li, B Norris, H Johansson, L. Mclnnes, and J Ray, Component Infrastructure for Managing Per-
formance Data and Runtime Adaptation of Parallel Applications, in Proceedings of PARAOS (9th
International Workshop on State-of-the-Art in Scientific and Parallel Computing), 2008.

[22] Kevin Huck, Oscar Hernandez, Van Bui, Sunita Chandrasekaran, Barbara Chapman, Allen D. Malony,
Lois Curfman Mclnnes, and Boyana Norris, Capturing Performance Knowledge for Automated Anal-
ysis, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1-10, Piscataway,
NIJ, USA, 2008, IEEE Press.

[23] Tamara L. Dahlgren, Performance-Driven Interface Contract Enforcement for Scientific Compo-
nents, Technical Report CSE-2008-6 (Also LLNL UCRL-TH-235341), University of California,
Davis, Davis, CA, 2008, Ph.D. Thesis.

[24] Nanbor Wang, Paul Hamill, Fang Liu, Steve Tramer, Roopa Pundaleeka, and Randall Bramley, In-
tegrating Large-scale Distributed and Parallel HPC (DPHPC) Applications using a Component-Based
Architecture, in Proceedings of the 2008 CompFrame/HPC-GECO Workshop on Component Based
High Performance Computing, 2008.

49

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Yinfei Pan, Ying Zhang, and Kenneth Chiu, Simultaneous Transducers for Data-Parallel XML Parsing,
in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, IEEE,
2008.

Yinfei Pan, Ying Zhang, Kenneth Chiu, and Wei Lu, Parallel XML Parsing Using Meta-DFAs, in
E-SCIENCE °07: Proceedings of the Third IEEE International Conference on e-Science and Grid
Computing, pages 237-244, Washington, DC, USA, 2007, IEEE Computer Society.

Rajdeep Bhowmik, Chaitali Gupta, Madhusudhan Govindaraju, and Aneesh Aggarwal, Optimizing
XML Processing for Grid Applications Using an Emulation Framework, in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1-11, IEEE, 2008.

S. Muszala, T. Epperly, and N. Wang, Babel Fortran 2003 Binding for Structured Data Types, in Jack
Dongarra, Anne C. Elster, and Jerzy Wasniewski, editors, Applied Parallel Computing: 9th Interna-
tional Conference, PARA 2008, Trondheim, Norway, 13-16 May, 2008, Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2008, (in press).

Tharaka Devadithya, Kenneth Chiu, and Wei Lu, C++ Reflection for High Performance Problem
Solving Environments, in Proceedings of High Performance Computing Symposium (HPC 2007),
Norfolk, Virginia, March 25-29, pages 435-440, ACM, 2007.

Kostadin Damevski, Ayla Khan, and Steven Parker, Scientific Workflows and Components: Together
at Last!, in Proceedings of the 2008 CompFrame/HPC-GECO Workshop on Component Based High
Performance Computing, 2008.

Wael R. Elwasif and Benjamin A. Allan, Incorporating Legacy Libraries in Modern HPC Component
Enviornments, in PARAOS-9th International Workshop on State-of-the-Art in Scientific and Parallel
Computing, Trondheim, Norway, 2008, (in press).

Geoffrey Hulette, Matthew J. Sottile, Benjamin A. Allan, and Robert C. Armstrong, Using CCA and
Onramp to Generate an Application-specific Framework from a Monolithic Application, poster, 2008
ACM/IEEE conference on Supercomputing, 2008.

Benjamin A. Allan and Boyana Norris, Automating SIDL-Based Development for New and Legacy
Software, in Proceedings of the 2008 CompFrame/HPC-GECO Workshop on Component Based High
Performance Computing, 2008.

Benjamin A. Allan, Boyana Norris, Wael R. Elwasif, and Robert C. Armstrong, Managing Scientific
Software Complexity with Bocca and CCA, Scientific Programming 16, 315 (2008).

Wael Elwasif, Boyana Norris, Benjamin A. Allan, and Robert Armstrong, Bocca: A Development
Environment for HPC Components, in Proceedings of HPC-GECO/CompFrame’07, October 21-22,
2007, Montreal, Québec, Canada, pages 21-30, ACM, 2007.

Benjamin A. Allan and Boyana Norris, Automating Multilanguage Development Processes for the
High-Performance Software Life-Cycle, in PARA 2008-9th International Workshop on State-of-the-
Art in Scientific and Parallel Computing, Trondheim, Norway, 2008, (in press).

Steven Parker, Kostadin Damevski, Ayla Khan, Ashwin Deepak Swaminathan, and Chris Johnson,
The SCIJump Framework for Parallel and Distributed Scientific Computing, in M. Parashar, X. Li,
and S. Chandra, editors, Advanced Computational Infrastructures for Parallel/Distributed Adaptive
Applications, Wiley Press, 2007.

50

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Madhusudhan Govindaraju, Michael J. Lewis, and Kenneth Chiu, Design and Implementation Is-
sues for Distributed CCA Framework Interoperability, Concurrency and Computation: Practice and
Experience 19, 651 (2007).

Rajdeep Bhowmik, Chaitali Gupta, Madhusudhan Govindaraju, and Aneesh Aggarwal, McGrid:
Framework for Optimizing Grid Middleware on Multi-Core Processors, in SOCP '07: Proceedings of
the 2007 Workshop on Service-Oriented Computing Performance: Aspects, Issues, and Approaches,
pages 9-16, New York, NY, USA, 2007, ACM.

Kostadin Damevski, Ashwin Deepak Swaminathan, and Steven Parker, CCALoop: Scalable Design
of a Distributed Component Framework, in Proceedings of the 16th International Symposium on High
Performance Distributed Computing, pages 213-214, New York, NY, USA, 2007, ACM.

Kostadin Damevski, Ashwin Deepak Swaminathan, and Steven Parker, Highly Scalable Distributed
Component Framework for Scientific Computing, in Proceedings of the 3rd International Conference
on High Performance Computing and Communication, Houston, Texas, 2007.

Kostadin Damevski, Keming Zhang, and Steven Parker, Practical Parallel Remote Method Invocation
for the Babel Compiler, in Proceedings of the 1st Joint HPC-GECO/CompFrame Workshop, Montreal,
Canada, 2007, ACM.

Nanbor Wang, Rooparani Pundaleeka, and Johan Carlsson, Distributed Components for Integrating
Large-Scale HPC Applications, in HPC-GECO/CompFrame 2007, 21-22 October, Montreal, Quebec,
Canada, 2007.

Masha Sosonkina, Dane Coffey, Fang Liu, and Randall Bramley, Hierarchical Usability Levels for
Sparse Linear System Solver Components, in Proceedings of the 2008 CompFrame/HPC-GECO
Workshop on Component Based High Performance Computing, 2008.

Masha Sosonkina, Fang Liu, and Randall Bramley, Usability Levels for Sparse Linear Algebra Com-
ponents, Concurrency and Computation: Practice and Experience 20, 1439 (2007).

Fang Liu and Randall Bramley, CCA-LISI: On Designing A CCA Parallel Sparse Linear Solver
Interface, in 21th International Parallel and Distributed Processing Symposium (IPDPS 2007), Pro-
ceedings, 26-30 March 2007, Long Beach, California, USA, pages 1-10, IEEE, 2007.

Fang Liu, Masha Sosonkina, and Randall Bramley, A HPC Sparse Solver Interface for Scalable Mul-
tilevel Methods, in High Performance Computing and Simulation Symposium (HPC 2009) , Part of
2009 Spring Simulation Multiconference (SpringSim’09), 2009, (in press).

Everest T. Ong, J. Walter Larson, Boyana Norris, Robert L. Jacob, Michael Tobis, and Michael Steder,
A Multilingual Programming Model for Coupled Systems, International Journal for Multiscale Com-
putational Engineering 6, 39 (2008).

J. Walter Larson and Boyana Norris, Component Specification for Parallel Coupling Infrastructure,
in O. Gervasi and M. L. Gavrilova, editors, Proceedings of the International Conference on Computa-
tional Science and its Applications (ICCSA 2007), volume 4707 of Lecture Notes in Computer Science,
pages 56—68, Springer-Verlag, 2007.

E. T. Ong, J. W. Larson, B. Norris, R. L. Jacob, M. Tobis, and M. Steder, Multilingual Interfaces for
Coupling in Multiphysics and Multiscale Systems, in Proceedings of the International Conference on
Computational Science, Beijing, China, May 27-30, 2007, Proceedings, Part I, volume 4487/2007 of
Lecture Notes in Computer Science, pages 931-938, 2007.

51

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

E. T. Ong, J. W. Larson, B. Norris, R. L. Jacob, M. Tobis, and M. Steder, A Multilingual Programming
Model for Coupled Systems, International Journal of Multiscale Computational Engineering 6, 39
(2008).

J. W. Larson, Graphical Notation for Diagramming Coupling Workflows for Multiphysics and Multi-
scale Systems, in Proceedings of the 9th International Conference on Computational Science (ICCS
09), Lecture Notes on Computer Science, Springer, 2009, (in press).

Shang chieh Wu and Alan Sussman, Taking Advantage of Collective Operation Semantics for Loosely
Coupled Simulations, in Proceedings of the 21st International Parallel & Distributed Processing
Symposium, IEEE Computer Society Press, 2007.

David E. Bernholdt, The Common Component Architecture: Building Frameworks for Computational
Science, invited talk, MODEST-7c: Multi-Scale, Multi-Physics Software Frameworks (in MODEST
and Elsewhere), 2006.

David E. Bernholdt, The Common Component Architecture: Building Frameworks for Computational
Science, invited talk, US-Japan Workshop on Integrated Simulation of Fusion Plasmas, 2007.

David E. Bernholdt, The Role of Component Software Technology in Meeting the Challenge of Petas-
cale Scientific Simulation, seminar, PetroBras CENPES (Research Center), Brazil, 2007.

Valmor de Almeida, David E. Bernholdt, Doug Dechow, and Wael Elwasif, Integrated Simulation
using the Common Component Architecture, poster, Computational Science and Engineering Confer-
ence (CESC) 2007, 2007.

Benjamin A. Allan, Developments in the Common Component Architecture, in International Confer-
ence on Computational Methods 2007, Hiroshima, Japan, 2007.

Benjamin A. Allan, Developments in the Common Component Architecture, in International Work-
shop for Large-Scale Coupled Simulations, Tokyo, Japan, 2007.

S. Shasharina, N. Wang, S. Muazala, and R. Pundaleeka, Grid and Component Technologies in Physics
Applications, in International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALPCS) 2007, 2007.

David E. Bernholdt, Component Architectures in the Next Generation of Ultrascale Scientific Com-
puting: Challenges and Opportunities, in HPC-GECO/CompFrame 2007, 21-22 October, Montreal,
Quebec, Canada, 2007.

Kostadin Damevski and Hui Chen, Automated Provenance Collection for CCA Component Assem-
blies, in Proceedings of the 9th International Conference on Computational Science (ICCS 09), Lecture
Notes on Computer Science, Springer, 2009, (in press).

Shang chieh Wu, Flexible and Efficient Control of Data Transfers for Loosely Coupled Components,
PhD thesis, University of Maryland, 2008.

Ashwin Deepak Swaminathan, CCALoop - A Scalable Distributed Component Framework for Scien-
tific Computing, Master’s thesis, University of Utah, 2008.

Kostadin Damevski, Component Model Interoperability for Scientific Computing, PhD thesis, Univer-
sity of Utah, 2006.

52

[66]

[67]

[68]

[69]

[70]

Douglas R. Dechow, Boyana Norris, and James Amundson, The Common Component Architecture
for Particle Accelerator Simulations, in Proceedings of HPC-GECO/CompFrame’07, October 21-22,
2007, Montreal, Québec, Canada, ACM, 2007.

J. F. Amundson, D. Dechow, L. Mclnnes, B. Norris, P. Spentzouris, and P. Stoltz, Multiscale, multi-
physics beam dynamics framework design and applications, in Journal of Physics: Conference Series
125, volume 125, 2008.

H. N. Najm, J. Ray, M. Valorani, F. Creta, and D. A. Goussis, A Computational Facility for Reacting
Flow Science, Journal of Physics: Conference Series 46, 53 (2006).

Svetlana Shasharina, John R. Cary, Ammar Hakim, Gregory R. Werner, Scott Kruger, and Alex
Pletzer, FACETS: A Physics Driven Parallel Component Framework, in Proceedings of the 2008
CompFrame/HPC-GECO Workshop on Component Based High Performance Computing, 2008.

Thomas Panas, Thomas Epperly, Daniel J. Quinlan, Andreas Saebjornsen, and Richard W. Vuduc,
Communicating Software Architecture using a Unified Single-View Visualization, in /2th Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS 2007), 10-14 July 2007,
Auckland, New Zealand, pages 217-228, IEEE Computer Society, 2007.

53

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Additional Non-TASCS References

U.S. Department of Energy, Archive of SciDAC Discovery Highlights, http://www.scidac.
gov/highlights/hilites_archive.html, 2009.

U.S. Department of Energy, Workshops on Scientific Computing at the Extreme Scale (cli-
mate, high energy physics, nuclear physics, fusion), http://www.sc.doe.gov/ascr/
WorkshopsConferences/WorkshopsConferences.html, 2009.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM Press, New York,
1999.

Benjamin A. Allan, Robert Armstrong, David E. Bernholdt, Felipe Bertrand, Kenneth Chiu, Tamara L.
Dahlgren, Kostadin Damevski, Wael R. Elwasif, Thomas G. W. Epperly, Madhusudhan Govindaraju,
Daniel S. Katz, James A. Kohl, Manoj Krishnan, Gary Kumfert, J. Walter Larson, Sophia Lefantzi,
Michael J. Lewis, Allen D. Malony, Lois C. Mclnnes, Jarek Nieplocha, Boyana Norris, Steven G.
Parker, Jaideep Ray, Sameer Shende, Theresa L. Windus, and Shujia Zhou, A Component Architecture
for High-Performance Scientific Computing, Intl. J. High-Perf. Computing Appl. 20, 163 (2006).

J.R. Cary, J. Candy, R. H. Cohen, S. Krasheninnikov, D. C. McCune, D. J. Estep, J. Larson, A. D. Mal-
ony, A. Pankin, P. H. Worley, J. A. Carlsson, A. H. Hakim, P. Hamill, S. Kruger, M. Miah, S. Muzsala,
A. Pletzer, S. Shasharina, D. Wade-Stein, N. Wang, S. Balay, L. Mclnnes, H. Zhang, T. Casper, L. Di-
achin, T. Epperly, T. D. Rognlien, M. R. Fahey, J. Cobb, A. Morris, S. Shende, G. W. Hammett,
K. Indireshkumar, D. Stotler, and A. Yu Pigarov, First Results from Core-Edge Parallel Composition
in the FACETS Project, in Journal of Physics: Conference Series 125, 2008.

Cosmin Safta, Jaideep Ray, and Habib N. Najm, Performance of a High-order Projection Scheme
for AMR Computations of Chemically Reacting Flows, in SIAM 12th International Conference on
Numerical Combustion, Monetrey, CA, 2008.

Cosmin Safta, Jaideep Ray, and Habib N. Najm, A High-Order Projection Scheme for AMR Computa-
tions of Chemically Reacting Flows, in SIAM Conference on Computational Science and Engineering,
Miami, FL, 2009.

J. P. Kenny, C. L. Janssen, M. S. Gordon, M. Sosonkina, and T. L. Windus, A Component Approach
to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum
Chemistry Science Application Partnership, Scientific Computing 16, 287 (2008).

J. P. Kenny, C. L. Janssen, E. F. Valeev, and T. L. Windus, Components for Integral Evaluation in
Quantum Chemistry, J. Computat. Chem. 29, 562 (2008).

T. P. Gulabani, M. Sosonkina, M. S. Gordona, C. L. Janssen, J. P. Kenny, H. Netzloff, and T. L.
Windus, Development of High Performance Scientific Components for Interoperability of Computing
Packages, in High Performance Computing Symposium (HPC 2009), part of 2009 Spring Simulation
Multiconference (SpringSim’09), San Diego, California, USA, 2009.

Joseph P. Kenny, Steven J. Benson, Yuri Alexeev, Jason Sarich, Curtis L. Janssen, Lois Curfman
Mcinnes, Manojkumar Krishnan, Jarek Nieplocha, Elizabeth Jurrus, Carl Fahlstrom, and Theresa L.
Windus, Component-Based Integration of Chemistry and Optimization Software, J.Computat. Chem.
24, 1717 (2004).

54

[82] C. L. Janssen, J. P. Kenny, I. M. B. Nielsen, M. Krishnan, V. Gurumoorthi, E. F. Valeev, and T. L.
Windus, Enabling New Capabilities and Insights from Quantum Chemistry by Using Component
Architectures, Journal of Physics: Conference Series 46, 220 (2006).

[83] Theresa Windus Manojkumar Krishnan, Yuri Alexeev and Jarek Nieplocha, Multilevel Parallelism in
Computational Chemistry using Common Component Architecture and Global Arrays, in Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, 2005.

[84] L. Mclnnes, J. Ray, R. Armstrong, T. Dahlgren, A. Malony, B. Norris, S. Shende, J. Kenny, and
J. Steensland, Computational Quality of Service for Scientific CCA Applications: Composition, Sub-
stitution, and Reconfiguration, Technical Report ANL/MCS-P1326-0206, Argonne National Labora-
tory, 2006.

[85] Boyana Notris, Jaideep Ray, Rob Armstrong, Lois C. Mclnnes, David E. Bernholdt, Wael R. Elwasif,
Allen D. Malony, and Sameer Shende, Computational Quality of Service for Scientific Components,
in Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt Wallnau, editors, Proceedings
of the International Symposium on Component-Based Software Engineering (CBSE7), volume 3054
of Lecture Notes in Computer Science, pages 264-271, Edinburgh, Scotland, 2004, Springer, (also
available as Argonne preprint ANL/MCS-P1131-0304),.

[86] J. Steensland and J. Ray, A Partitioner-Centric Model for SAMR Partitioning Trade-Off Optimization:
Part I, International Journal of High Performance Computing Applications 19, 409 (2005).

[87] J. Steensland and J. Ray, A Partitioner-Centric Model for SAMR Partitioning Trade-Off Optimiza-
tion: Part II, in Proceedings of the 6th International Workshop on High Performance Scientific and
Engineering Computing (HPSEC-04), 2004.

[88] H. Johansson and J. Steensland, A Performance Characterization of Load Balancing Algorithms for
Parallel SAMR Applications, Technical Report Technical Report 2006-047, Department of Informa-
tion Technology, Uppsala University, 2006.

[89] H. Johansson, Performance Characterization and Evaluation of Parallel PDE Solvers, Licenciate
thesis, Department of Information Technology, Uppsala University, 2006.

[90] H. Johansson, Design and Implementation of a Dynamic and Adaptive Meta-Partitioner for Parallel
SAMR Grid Hierarchies, Technical Report Technical Report 2008-017, Department of Information
Technology, Uppsala University, 2008.

[91] J. Knap, N. R. Barton, R. D. Hornung, A. Arsenlis, R. Becker, and D. R. Jefferson, Adaptive Sampling
in Hierarchical Simulation, International Journal for Numerical Methods in Engineering 76, 572
(2008).

[92] Nathan R. Barton, Jaroslaw Knap, Athanasios Arsenlis, Richard Becker, Richard D. Hornung, and
David R. Jefferson, Embedded Polycrystal Plasticity and Adaptive Sampling, International Journal of
Plasticity 24, 242 (2008).

[93] Joel V. Bernier, Nathan R. Barton, and Jaroslaw Knap, Polycrystal Plasticity Based Predictions of
Strain Localization in Metal Forming, Journal of Engineering Materials and Technology 130, 021020
(2008).

[94] OpenMI Home Page, 2009.
[95] Scott Peckham, CSDMS Handbook of Concepts and Protocols: A Guide for Code Contributors, 2009.

55

