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ABSTRACT The constituents of large, multisubunit protein complexes dictate their functions
in cells, but determining their precise molecular makeup in vivo is challenging. One example
of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellu-
lose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma
membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA)
isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to
address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-
containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence
microscopy and developed a set of information-based step detection procedures to estimate
the number of GFP molecules in each particle. The step detection algorithms account for
changes in signal variance due to changing numbers of fluorophores, and the subsequent
analysis avoids common problems associated with fitting multiple Gaussian functions to
binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can
exist in each particle. These procedures can be applied to photobleaching data for any pro-
tein complex with large numbers of fluorescently tagged subunits, providing a new analytical
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tool with which to probe complex composition and stoichiometry.

INTRODUCTION

Cellulose is a major structural component in the plant cell wall that
regulates plant cell growth and morphology and also has extensive
commercial value for applications such as papermaking, textile
manufacturing, and biofuel production (Carroll and Somerville,
2009). However, the molecular processes involved in the biosynthe-
sis of cellulose, which is composed of large numbers of B(1,4)-linked
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glucan chains that associate via hydrogen bonds to form cellulose
microfibrils, remain incompletely understood despite intensive
research over the past 15 yr (McFarlane, 2014). It is generally be-
lieved that cellulose is synthesized at the plasma membrane and
extruded into the extracellular space by a cellulose synthesis com-
plex (CSC). Each CSC contains many GT2-family glucosyltrans-
ferases called cellulose synthases (CESAs) and is assembled into a
large integral membrane complex with a membrane-spanning ro-
sette configuration ~25 nm in diameter (Haigler and Brown, 1986).
The complex is formed in the Golgi and transported to the plasma
membrane, where it becomes active to synthesize the glucan chains
that constitute the cellulose microfibril (McFarlane, 2014). Genetic
and biochemical data indicate that a minimum of three different
CESA isoforms are present in each CSC; in the model plant Arabi-
dopsis thaliana, AtCESA1, AtCESA3, and AtCESA6-type proteins
are present in CSCs that synthesize cellulose in the primary walls of
growing cells, whereas AtCESA4, AtCESA7, and AtCESAS proteins
are present in CSCs during secondary wall synthesis in cells that
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have ceased growth (Taylor et al., 2003; Desprez et al., 2007; Persson
et al., 2007). Estimations based on structural studies of cellulose
microfibrils (Fernandes et al., 2011; Thomas et al., 2013) and mole-
cular modeling of CESAs (Sethaphong et al., 2013) predict that
each CSC is composed of between 12 and 36 subunits (Guerriero,
2010; McFarlane, 2014); however, the precise stoichiometry of
CESA isoforms within each CSC remains undefined. Empirically de-
termining protein copy numbers for intact membrane-bound CSCs
through nondestructive means is challenging, especially since re-
constituting active, purified plant CSCs has proven to be extremely
difficult (Lai-Kee-Him et al., 2002; Cifuentes et al., 2010; Fujii et al.,
2010).

One alternative method of estimating protein copy numbers in
integral membrane complexes is to count bleaching steps for sub-
units tagged with intrinsically fluorescent proteins, such as green
fluorescent protein (GFP), under total internal reflection fluorescent
(TIRF) microscopy (Ulbrich and Isacoff, 2007). However, the number
of proteins that can be estimated using current methods is limited:
higher copy numbers lead to increases in both fluctuations in the
fluorescence signal and the initial rate of photobleaching, complicat-
ing the identification of discrete photobleaching steps. This issue
can be addressed by using a median filter to reduce noise in the
data and constructing pairwise distance distributions to determine
the unitary step size of photobleaching (Svoboda et al., 1993; Leake
et al., 2006). However, implementing this approach to estimate sub-
unit number typically requires empirical selection of the optimal me-
dian filter and still does not readily resolve the precise timing and
magnitude of individual bleaching steps.

Step detection algorithms, which are frequently used to analyze
the spatial steps undertaken by motor proteins, are capable of auto-
matically detecting change points in data traces (Carter et al., 2008).
Numerous methods have been developed to detect steps, but most
of them depend heavily upon preselected parameters. Of note, the
%2 method developed by Kerssemakers et al. (2006) requires an
input of the number of steps to be detected, which is difficult to
calculate if prior information about the data is unavailable. Methods
based on information criteria are objective and do not require user-
defined input parameters (Kalafut and Visscher, 2008). However,
they have been implemented in step detection algorithms only by
assuming that the variance associated with each step is constant
(Kalafut and Visscher, 2008), which is adequate for single motor pro-
tein stepping but not for photobleaching. Because intensity fluctua-
tions of individual fluorophores around their means are uncorre-
lated, the presence of multiple active fluorophores in a complex
will result in a higher variance in the fluorescence intensity signal
than the variance associated with a single fluorophore. Hence algo-
rithms designed to detect steps in photobleaching data need to
consider these variance changes to avoid overfitting during periods
of high fluorescence intensity. Another complexity in photobleach-
ing data is that with increasing copy number, there is an increasing
probability that two or more fluorophores will bleach within a short
time frame (e.g., within a single acquisition period), which can also
skew the step size distribution and complicate the estimation of a
unitary photobleaching step size. Thus there also exists a need for
the development of objective analytical tools to extract unitary step
sizes from step-size distribution densities that improve upon current
methods of data binning and fitting a user-defined number of
Gaussian functions.

In the present work, we develop a novel procedure that combines
step detection and density estimation to determine unitary step
size and copy number from experimental photobleaching data. A
mathematical model is constructed to generate simulated bleaching
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data, and the simulated data are used to optimize the performance
of the step detection and density estimation algorithms and demon-
strate their ability to accurately retrieve copy numbers from simu-
lated data with varying degrees of experimental noise. A key goal in
developing these tools was to make them as objective as possible by
minimizing the number of user-defined parameters, and it is hoped
that these procedures will establish best practices for analyzing pho-
tobleaching data derived from complexes with high copy numbers.
We apply these analytical tools to photobleaching data collected for
GFP-tagged AtCESA3 in intact cells of A. thaliana seedlings and es-
timate the lower limit of copy number per particle to be 10.

RESULTS

Imaging CesA complexes in Arabidopsis seedlings

To estimate the copy number of GFP-AtCESA3 in membrane-local-
ized particles in living cells of A. thaliana, we mounted 5- to 6-d-old
light-grown seedlings expressing GFP-AtCESA3 (Desprez et al.,
2007) in an imaging chamber and carried out recordings of GFP
bleaching in hypocotyl cells containing low densities of GFP-
AtCESA3 particles (Supplemental Movie S1). Imaging was per-
formed using variable-angle epifluorescence microscopy (Konopka
and Bednarek, 2008), which, like TIRF microscopy, reduces back-
ground fluorescence but allows for the imaging of proteins farther
from the coverslip, such as those in the plasma membrane of plant
cells that are separated from the coverslip by the cell wall (Konopka
et al., 2008; Konopka and Bednarek, 2008). To quantify photo-
bleaching rates, time lapse recordings were collected (Supplemen-
tal Movie S1), and fluorescence intensity traces for individual GFP-
containing particles were measured using ImageJ (see Materials
and Methods). Instead of exhibiting discrete steps, the intensity
changes during photobleaching for many traces appeared to be
relatively smooth (Figure 1A and Supplemental Movie S1), suggest-
ing that the number of fluorophores per particle is relatively high.

The photobleaching rate constant for GFP-AtCESA3 was esti-
mated by ensemble averaging all of the photobleaching collected
traces and fitting a single-exponential function using MATLAB's
nonlinear least squares method (Figure 1A, inset). The fitted rate of
0.0278 + 0.0003 s™' (mean + SEM of fit, N = 77 traces) is the ex-
pected rate of photobleaching events regardless of the true number
of independent photobleaching units present.

The experimental background noise was estimated by analyzing
the distribution of the final plateau variance (as defined by the
Tdetector2 step detection algorithm; see later description) for the
77 measured traces. As expected, the distribution had more than
one mode (Supplemental Figure S1) due to the fact that complete
photobleaching had not occurred in some of the traces. Therefore
the lowest-variance mode was defined as the background variance,
whereas the next mode indicates the sum of the background vari-
ance plus the variance associated with one fluorophore. To allow for
more precise quantitative analysis of bleaching for multiple fluoro-
phores, we developed a statistical method of photobleaching analy-
sis, as described later.

Generating simulated fluorescence photobleaching data

Fluorescence intensity from a single fluorophore is typically
described as a Gaussian distribution (Lakowicz, 2010) with mean
intensity p and variance 62 (Figure 1B, inset). Although intensity fluc-
tuations at low photon counts are better modeled as a Poisson dis-
tribution, added signal variance due to rapid fluorophore blinking
events, fluctuations in the background signal, and camera read noise
justify the assumption that the signal is Gaussian. We postulate that
the fluorophores are independent of one another and thus the
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FIGURE 1: In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a single GFP-AtCESA3 particle in
hypocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps, and total time is 100 s to allow most GFP to be
photobleached. Representative Movie S1 is included in the Supplementary Data. Inset, ensemble average of 77
photobleaching traces with exponential fit to the data. (B) Quantitative model describing photobleaching. The
fluorescence signal is assumed to fall over time with constant step sizes, matching the quantal fluorescence of a single
GFP. The GFP fluorescence and the background signal are treated as Gaussian distributions, Normal(y, 62) and
Normal(0, 2), respectively. The time before fluorophore bleaching, T, is assumed to be exponentially distributed with
mean 1= 1/A, where A is the photobleaching rate constant. The SNR is defined as the step size divided by the SD.

(C) Simulated photobleaching trace from 12 fluorophores with p = 500 a.u. and ¢ = § = 250 a.u. (D) Simulated stepping
data such as a kinesin walking along a microtubule in an optical trap experiment, with p=1, 6= 1, and 10% backward

steps.

intensity fluctuations for each fluorophore are uncorrelated with
those of neighboring fluorophores. Thus, when n fluorophores are
localized in a diffraction-limited spot, the overall intensity will be the
sum of the mean intensities (ko = ny), and the overall variance will
be the sum of the variances plus the variance of the background, &2
(Otot> = no? + &). Of note, in photobleaching traces, the variance
scales with signal intensity, and if background fluctuations are low
and/or signal variance is high, then variance is proportional to inten-
sity. This situation contrasts with typical positional step detection
problems (e.g., identifying step displacements for motor proteins),
for which the variance is independent of position and is thus con-
stant for each step (Svoboda et al., 1993). As a result of this scaled
variance, with each intensity drop during a photobleaching experi-
ment, there will be an associated decrease in the signal variance.
Another aspect of multifluorophore photobleaching data that
complicates the identification of bleaching steps is the fact that the
frequency of photobleaching events for an ensemble of fluoro-
phores changes over time. Photobleaching is typically modeled as a
first-order process with rate A and characteristic bleach time T,
where L= 1/T. Thus the time it takes for a single fluorophore in a set
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to bleach will follow an exponential distribution with mean of T. If
there are n fluorophores in a diffraction-limited spot, then the mean
time before the first bleaching event will be much faster because
any of the fluorophores can bleach. Assuming that photobleaching
events are independent of one another, the time before the first
bleaching event will also follow an exponential distribution, with a
rate equal to nA, and the mean time before the first photobleaching
event will be T/n. Thus, at the beginning of an experiment, bleach-
ing events will be more frequent and will be associated with larger
signal variance, making it difficult to identify individual events.

To assess the ability of step detection algorithms to detect pho-
tobleaching events, we simulated a photobleaching signal for a
complex containing 12 GFP fluorophores (Figure 1C), each having a
mean intensity p and variance 62 that approximate the GFP-AtC-
ESA3 intensity trace shown in Figure 1A. In parallel, we simulated a
signal having a uniform stepping rate and a constant variance, simi-
lar to motor protein displacement signals (Figure 1D). Data sets with
various signal-to-noise ratio (SNR) values were generated to repre-
sent a range of possible experimental scenarios. For motor stepping
data (Figure 1D), the SNR is defined as ratio of step size over the SD
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(1/0). Defining SNR for bleaching traces, however, is complicated by
the fact that the variance changes with the number of active fluoro-
phores. Thus the SNR for the photobleaching data was defined as
the mean intensity p of a single fluorophore divided by its SD ¢
(u/o). The variance of the background signal, 82, was chosen to
equal the variance of a single fluorophore, 62. Different SNR values
were achieved by setting p = 500 a.u. and varying the SD. To objec-
tively identify each bleaching event, we developed multiple step
detection algorithms that use statistical analysis to detect photo-
bleaching events and compared their performance using the simu-
lated data.

Using step detection algorithms to identify

bleaching events

To analyze our photobleaching data, we developed two step de-
tection algorithms that use statistical tests to identify steps. For
each method, approaches were developed that assumed the dif-
ferent plateau regions in the signal had either equal or unequal
variances. The first method is based on the Bayesian information
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criterion (BIC; Schwarz, 1978) and predicts steps purely based on
statistical information in the data. Kalafut and Visscher (2008) used
this approach for step detection but assumed that the variance
within each step was constant. We modified this implementation
to allow for changes in variance. A second algorithm was devel-
oped based on the two-sample t test with or without assumed
equal variance. These four algorithms are named Bdetector1
and Bdetector2 for the BIC-based methods assuming equal or
unequal variance, respectively, and Tdetector1 and Tdetector2 for
the t test-based methods assuming equal or unequal variance,
respectively.

Both pairs of algorithms use a conceptually similar step detec-
tion approach of iteratively searching for change points until no sta-
tistically significant step can be added (Figure 2 and Supplemental
Movie S2). The algorithms are summarized as follows:

1) The data are scanned, and for each potential time at which a
step may occur, the mean and variance are calculated for the
time preceding the step and the time after the step.
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FIGURE 2: Step detection algorithms. (A—C) Bdetector algorithm. (A) To fit the first step, Bdetector scans all possible
change points and calculates a corresponding BIC value at each position (blue line). If the minimum BIC is lower than the
BIC value for not adding a step (green line), a step is added (red line) at the position where the minimum BIC occurs.

(B) Keeping the first step, Bdetector rescans all possible change points, calculates new corresponding BIC values (blue
line), and adds a second step at the position of the minimum BIC (red line). This process is iteratively repeated. (C) When
the minimum BIC value for adding an additional step (blue line) is not lower than the current BIC value (green line), the
program terminates. (D-F) Tdetector algorithm in which, in contrast to the BIC, a higher significance for the t test
indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated (blue line) and
is compared with the threshold (green line). Provided it is above the significance threshold, a step is added at the point
of maximum significance (red line). (E) The data are split into two segments at the detected change point, and the
procedure is repeated for each segment (splitting the right segment into two in this case). This process is repeated for
each new segment until adding a step does result in a significance value greater than the threshold. The algorithm then
moves on to another segment. (F) When adding a change point fails to raise the significance above the threshold for

every segment, the program terminates.
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2) Using these means and associated variances, a BIC value
(Bdetector) or the significance from a two-sample t test
(Tdetector) is calculated and used to identify the optimal step.
The optimal step is the one that leads to the lowest BIC value
(Bdetector) or the largest significance (Tdetector). If no step
leads to a BIC value smaller than the current one or a signifi-
cance value above a defined threshold, then no step is chosen.

The process is repeated until no additional statistically significant
steps can be detected, at which point it terminates.

To validate their performance, we first tested the step detection
algorithms on simulated stepping data having SNR values from 0.4
to 5 (Figure 3). The step times were sampled from an exponential
distribution with an expected value of 100 time points/plateau,
with 90% of steps being a unit step increase and 10% being a unit
step decrease. At high SNR values, the mean predicted step size
was close to the actual value, but with diminishing SNR, an addi-
tional peak corresponding to twice the unitary step size emerged
(Figure 3A and Supplemental Figure S2). We defined two metrics,
sensitivity and precision, to assess the performance of the algo-
rithms. Sensitivity is defined as the proportion of the true steps that
are identified by the step detection algorithm. Precision is defined

as the proportion of identified steps that are true steps (see
Materials and Methods). Overfitting will lead to high sensitivity and
low precision (false positives), whereas underfitting results in high
precision but low sensitivity (missed events). With SNR values >2,
all four algorithms performed well and had both high-sensitivity
and high-precision values (Figure 3, B and C). Reasonable predic-
tions were obtained at SNR values between 1 and 2, but sensitivity
and precision both fell sharply for SNR values <1. The BIC-based
algorithms displayed a tradeoff between sensitivity and precision,
with Bdetector? (constant variance) having higher sensitivity and
Bdetector2 (unequal variance) having higher precision (Figure 3, B
and C, blue and green plots). In contrast, for the two-sample t test
methods, Tdetector1 (assumed constant variance) and Tedector2
(assumed unequal variance) performed similarly (Figure 3, B and C,
red and black plots).

After benchmarking the step detection algorithms on the step-
ping data, we used the algorithms to detect unitary steps in the
simulated photobleaching data. For ease of comparison, the step
size was fixed at 500 a.u. for all simulated data, and the variance was
altered to achieve different SNR values. As seen in Figure 4A, both
algorithms identified similar steps in the simulated photobleaching
data with SNR = 2. Considering the performance at different SNR
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FIGURE 3: Detecting steps in simulated stepping data. (A) Histograms of step sizes predicted by all step detection
algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR of 1. Real step sizes are
calculated by comparing the means of plateau regions on either side of a step. The mode at +1 represents forward
steps, and the mode at —1 represents backward steps. The four algorithms detect unitary forward and backward steps
but also have modes centered at +2, corresponding to twice the single step size and representing missed steps.

(B) Sensitivity plots for the four algorithms. The missed steps corresponding to the lower sensitivity of Bdetector2 can
be seen in A by the population centered at +2 step size. (C) Precision plots for the four algorithms. Bdetector1 had
problems with overfitting, resulting in lower precision and a number of steps between 0 and 1 in A.
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FIGURE 4: Detecting steps in simulated photobleaching data. (A) Simulated photobleaching data (black) with step
detection by the Tdetector2 (red) and Bdetector2 (blue) algorithms. (B, C) Precision and sensitivity plots for the four
algorithms. The two algorithms not assuming equal variance (Bdetector2 and Tdetector2) gave better precision but
missed events, whereas Bdetector1 and Tdetector1 gave better sensitivity but led to false positives.

values, the methods assuming unequal variance (Bdetector2 and
Tdetector2) resulted in higher precision but lower sensitivity than
the methods assuming equal variance (Bdetector1 and Tdetector1;
Figure 4, B and C). For estimating subunit numbers from photo-
bleaching data, the most important factor is properly estimating the
amplitude of a quantal photobleaching event (the first mode).
Hence a loss in sensitivity corresponding to missed steps (resulting
in higher modes) is acceptable. In contrast, the falsely identified
steps corresponding to low precision can lead to underestimating
the quantal photobleaching amplitude. On the basis of these con-
siderations, the two methods assuming constant variance were infe-
rior to the methods assuming unequal variance. The Tdetector?2 al-
gorithm performed the best overall and was chosen for the
subsequent analyses described later.

Determining unitary step size from step detection results
After identifying steps, the next task in analyzing photobleaching
data is to use the identified step amplitudes to extract the ampli-
tude of a unitary photobleaching event. The total subunit number is
subsequently estimated by dividing the initial (high) fluorescence
amplitudes by this quantal unit. We initially focused on results from
the simulated data set shown in Figure 4A having SNR = 2 and a
GFP copy number of 12. A histogram of step amplitudes predicted
by the Tdetector2 algorithm suggests the presence of at least two
modes (Figure 5A). The simplest method of estimating the unitary
step size is to fit the binned histogram data with multiple Gaussian
functions corresponding to the different modes. However, estima-
tion by this method is strongly dependent on bin size (Figure 5, A
and B), and there are no existing objective methods for identifying
the optimal bin size.

Kernel density estimation (KDE) is a nonparametric method of
density estimation that can be used to identify modes without re-
quiring data binning. In short, each step represents a probability of
1/N, where N is total number of steps, and a Gaussian centered at
each step is used to estimate the distribution of this 1/N probability,
resulting in a total of N Gaussians. The overall probability density is
obtained by the sum of these N Gaussians (Silverman, 1986). Al-
though the main peak from the KDE is obvious, it is difficult to re-
trieve information for subsequent modes because there are poorly
separated (Figure 5C).

Density estimation by a Gaussian mixture model (GMM) can pro-
vide predictions of peak position for each mode in a way that avoids
the drawbacks of KDE. In this method, the distribution of steps is
estimated by a mixture of Gaussians, and the means and variances of
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these Gaussians are obtained by maximizing the expected posterior
probability, computationally achieved by expectation—maximization
algorithms (Dempster et al., 1977). However, one uncertainty of this
method is in choosing the number of Gaussians, k, to be fitted to
the data, which can alter the fitting results. To provide an objective
method for choosing the number of Gaussians, we fitted the step
amplitude data using the Gaussian mixture model by an increasing
number of Gaussians and determined the BIC value associated with
each fit. The optimal number of Gaussians was defined as the num-
ber that gave the lowest BIC value, which for the simulated photo-
bleaching data was 5 (Figure 6, A and B). The different peaks were
assumed to be multiples of the unitary photobleaching amplitude,
and the mean unitary step size was calculated as a weighted aver-
age of each peak, giving a value of 528.3 a.u. This estimate is within
6% of the step size value of 500 a.u. that was chosen for these simu-
lated photobleaching data.

To further assess the performance of this method in estimating
copy number from diverse photobleaching data, we performed
identical analyses on simulated bleaching data with copy numbers
from 2 to 20 at a range of SNR values (Figure 6C). Strikingly, for
simulated data with copy numbers <12, the analysis method pre-
dicts the value of the unitary step within 10% even down to an SNR
of 1 (Figure 6C). With a copy number of 20, predicted step sizes are
within 7% of the true step size for SNR of 22 but increase toward
twice the true step size at lower SNR values. On the basis of these
results, the ability of this method to estimate copy numbers from
photobleaching data is limited for data with both very high copy
numbers (>20) and low SNR values (<2). In these cases, the design
of the photobleaching experiment should be further optimized to
improve the SNR.

Using unitary step size to estimate fluorophore

copy number

The final task in estimating the number of fluorophores in a complex
is to calculate the amplitude of the overall fluorescence drop by tak-
ing the difference between the initial fluorescence and the value of
the final plateau and dividing by the unitary step size. Accurately
estimating the total amplitude of the photobleaching signal can be
challenging, however, due to uncertainties in measuring the initial
fluorescence amplitude and uncertainties in whether the final pla-
teau represents full bleaching. The first few time points of photo-
bleaching traces have the most variability due to the fast rate of pho-
tobleaching and high signal variance associated with a large
number of fluorophores. Simply averaging over the first few points
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93.9% of the fluorophores are expected to
bleach (see Eq. 9), and the overall intensity
drop of the simulated data was corrected
upward by dividing by 0.939. Dividing the
total intensity drop of each trace by the uni-
tary step size results in a distribution of copy
numbers with a mean of 12.3 estimated by
KDE (Figure 6D), within 3% of the correct
copy number of 12. Copy number errors
were within 10% for SNR > 1 for copy num-
bers of <12 and for SNR > 1.8 for a copy
number of 20 (Figure 6E).
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To validate the ability of the developed
methods to estimate copy numbers from a
protein with a known number of GFP sub-
units, we engineered a kinesin construct
containing four GFPs (see Materials and
Methods). Proteins were attached to the
coverslip surface through nonspecific inter-
actions and imaged using TIRF microscopy
(Shastry and Hancock, 2010). Steps were
fitted to the 71 acquired photobleaching

r T T T
0 500 1000 1500 2000

Step Size (a.u.
C 20— P ( )
Kernel Density Estimation

Probability (x 10)

0.5—

traces using the Tdetector2 algorithm
(Figure 7A), resulting in 455 detected steps.
The step size distribution was fitted using
the Gaussian mixture model, and on the
basis of the calculated BIC values, the opti-
mal number of modes was determined to
be four (Figure 7B). When the step size dis-
tribution was fitted using four modes, the
corresponding unitary step size was deter-
mined to be 60.8 a.u. (Figure 7C). On the
basis of this step size and the SD of noise in
the traces, the SNR was calculated to be
1.1 for these measurements.
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FIGURE 5: Comparing methods of fitting photobleaching step size distributions to extract
unitary step size. Histograms represent step size distributions from Tdetector2 applied to
simulated photobleaching data with copy number 12 and SNR = 2. The distribution is made up
of 570 detected steps. (A) Fit of two Gaussian functions to the data using a bin size of 50. Fit
parameters are pq =510 a.u., 61 =55, pp = 836 a.u., and o, = 335. (B) Fit of two Gaussian
functions to the data using a bin size of 150. Fit parameters are py =568 a.u., 61 = 67, pp = 873
a.u., and 6, = 342. In both cases fits to more than two Gaussians did not converge.

(C) Identifying modes by KDE. A histogram with bin size 50 is plotted for the purpose of visual
comparison but is not used for fitting. Smooth curve is the estimation of multiple Gaussians

(kernels) by KDE.

reduces the noise but also leads to underestimating the true maxi-
mum fluorescence. To avoid introducing any bias, we chose to simply
take the initial fluorescence value as the maximum for each trace.
The proportion of fluorophores that are expected to bleach during
the finite acquisition time can be estimated by fitting an exponential
to the ensemble average of the photobleaching traces (see Materials
and Methods). The simulated photobleaching data had a duration of
100 s and, because it was modeled on the experimental data, was
well fitted by an exponential with a rate constant of 0.0278 s™'. Thus
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can be influenced by several factors. First,
the probability that a GFP will fluoresce is
not expected to be 1, which leads to the
distribution having a binomial nature. Sec-
ond, the probability of observing every sin-
gle bleaching event during an experiment is
<1 due to the finite acquisition time, mean-
ing that the number of acquired bleaching
events from each subpopulation of fluoresc-
ing GFPs will itself be binomially distributed.
Third, due to normal intensity fluctuations,
the overall intensity drop for each trace will
have an associated error value simply from
the fluorescence fluctuations. Fourth, it is
difficult to rule out the presence of a small percentage of aggregates
in the sample or pairs of complexes residing in the same diffraction-
limited spot. Owing to these factors, the expected copy number dis-
tribution will be a binomial distribution broadened by Gaussian
noise. As a conservative approach, we chose to fit the copy number
distribution using the Gaussian mixture model.

To estimate fluorophore copy number, we calculated the total
intensity drop for each photobleaching trace by taking the differ-
ence of the initial point and the mean value of the final plateau.

2500 3000
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FIGURE 6: Step size and copy number determination for simulated photobleaching data. (A) BIC values using different
numbers of Gaussians in the GMM density estimation for the same distribution used in Figure 5. The best fit (smallest
BIC value) was achieved with five Gaussians. (B) Corresponding fit of five Gaussians to the step size data (histogram is
for display only and is not used by the GMM procedure). Red, green, yellow, pink, and purple traces represent the five
Gaussians in the GMM fit, with corresponding means of 560, 921, 1376, 1811, and 2343 a.u., and relative weights of
0.461, 0.341, 0.162, 0.028, and 0.008. The SD, which is assumed to be identical for all modes, is 135.9 a.u. Blue line is
the overall density. The unitary step size is calculated as Zf.;ﬂ/i Piui, where P; and ; are the relative weight and the
mean, respectively, of the ith peak, resulting in a value of 528.3 a.u. (C) Predicted unitary step size as a function of

SNR and copy number, demonstrating good performance for copy number <12 at SNR > 1 and copy number of 20 at
SNR > 2. Actual step size in simulated data was 500 a.u. (D) Predicted copy number from simulated photobleaching data
with SNR of 2 and copy number 12. Peak position from KDE (black line) corresponds to mean copy number of 12.3.

(E) Predicted copy number across different SNR ratios. Similar to the step size estimate, a break point at SNR < 2 was

seen for prediction on copy number 20.

Each intensity drop was then divided by the estimated unitary step
size of 60.8 a.u. to generate a copy number estimate. The fit to the
copy number distribution shows two peaks at 3.28 and
6.65 (Figure 7D). Given an expected copy number of four, these
peaks are consistent with the binomial nature leading to a slight shift
toward lower copy number for the first mode, and the second mode
corresponding to pairs of complexes either due to aggregates or to
two surface-bound complexes being within the same diffraction-
limited spot. These results demonstrate that the method can give an
accurate prediction of minimum protein copy number even in a data
set having SNR=1.1.

Estimating copy number for GFP-AtCESA3

After developing an objective method for estimating subunit copy
number for protein complexes tagged with large numbers of fluoro-
phores and assessing its performance on simulated photobleaching
data, we applied the technique to a set of photobleaching data for
GFP-AtCESA3 particles (Figure 8A). On the basis of the trend of BIC
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values (Figure 8B), a model consisting of six Gaussians was used to
estimate the distribution of predicted step sizes, and the final esti-
mate for a single step was calculated to be 445.4 a.u. (Figure 8C). This
step size indicates that the SNR is ~2-2.5, within the range that our
methods can reliably uncover copy number. However, in the final
copy number histogram, instead of seeing a single mode as for the
simulated data, two modes, one around 10 and the other around 20,
are apparent (Figure 8D). This factor of 2 suggests that a subpopula-
tion of the analyzed particles might be composed of two complexes
within the focal limited spot, either because there are two populations
of CSCs in cells or because pairs of CSCs occasionally exist in close
proximity, especially when they are immobile, as was the case for this
data set. A fit consisting of two Gaussians identifies peaks at 9.56 and
23.5 copies. Considering that protein misfolding, incomplete matura-
tion of GFP, and bleaching events occurring before data acquisition
can all potentially lead to underestimating the true number of GFPs
present, we conclude that 10 copies is a lower limit for the estimated
number of GFP-AtCESA3 subunits in each CSC particle.
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estimation of the unitary step intensity can
propagate to larger errors in the copy num-
ber estimation, it is important to use as
much of the available information as possi-
ble to achieve the best possible estimate
for unitary photobleaching. In our photo-
bleaching data analysis, we identified three
major challenges to accurately measuring
high copy numbers: 1) detecting steps in
traces having nonuniform variances due to
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the summed fluctuations of multiple fluoro-
phores, 2) precisely identifying the unitary
step size from step size distribution densi-
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intensity drop corresponding to bleaching
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for all of the subunits in the complex. We
developed a solution for each of these
challenges, and we hope that this set of
tools will be adopted as “best practices”
for analyzing photobleaching data in other
systems with high protein copy number.
Whereas signal variance in molecular
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FIGURE 7: Estimating copy number for kinesin-4xGFP. (A) Trace of kinesin-4xGFP bleaching
(black) with steps fitted by Tdetector2 (red). (B) The BIC search leads to a best fit of k=4
Gaussians for fitting the step size distribution. (C) Estimating the unitary step size (60.8 a.u.)
from the step size distribution (455 total detected steps). The mean values of the four modes
were 63.9, 109.9, 165.8, and 258.1 a.u., relative weights were 0.622, 0.289, 0.062, and 0.027,
and the SD was 19.6 a.u. (D) Copy number distribution. There were two peaks, centered at 3.28
and 6.65. These peaks are consistent with the binomial nature leading to a slight shift from four
toward lower copy number and with a double-aggregate population at roughly twice the copy
number of the first peak. Histograms (black boxes) are also plotted in C and D for reference but

not used in the GMM fitting.

DISCUSSION

Determining the stoichiometry of proteins in large, multisubunit
membrane complexes by biochemical methods is challenging,
and despite producing a highly abundant and useful biopolymer,
the molecular makeup of the cellulose synthesis complex, one
such protein complex, has remained enigmatic. The goal of this
work was to quantify the number of CESA subunits in cellulose
synthesis complexes by nondestructive in vivo photobleaching.
Plant seedlings expressing GFP-AtCESA3 were imaged using vari-
able-angle epifluorescence microscopy, and the fluorescence
intensities of individual GFP-AtCESA3-containing particles were
recorded as the signals bleached to near background levels. How-
ever, despite efforts to maximize the SNR, individual photobleach-
ing steps were not easily identified by eye, preventing an objective
estimate of CESA copy number. This hurdle motivated us to de-
velop a set of statistical tools to estimate unitary step size and fluo-
rophore copy number from photobleaching data involving many
fluorophores.

Using imaging to quantify subunit copy number for intact protein
complexes in vivo provides a method to probe the quaternary struc-
ture of these complexes that circumvents the difficulty and potential
disruption of the complex inherent in biochemical purification. For
copy numbers <5, it is often easy to simply estimate the number of
steps by eye (Ulbrich and Isacoff, 2007; Nakajo et al., 2010). In other
cases, it is possible to estimate unitary step intensity by measuring
the amplitude of the last step, but that approach ignores much of
the rich information present in the data. Because small errors in the
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4 6
Copy Number

8 10 motor stepping data are independent of

the motor position, photobleaching data
present the unique challenge of signal
variance that scales with intensity. Previous
step detection methods used the ap-
proach of constructing pairwise distance
distributions to estimate unitary step size
for each step (Svoboda et al., 1993; Leake
et al., 2006) but assumed a constant vari-
ance. This variance is important because it
is used in tests to determine statistical sig-
nificance. Applying step detection algo-
rithms that assume constant variance to
photobleaching data results in overfitting of steps in early time
points, when both the signal and variance are high. Thus the tech-
nique developed here to estimate the time-dependent variance of
the signal was a key advance that improved the performance of
both the BIC-based and t test-based step detection algorithms
over those assuming constant variance.

The step detection algorithms output a step size distribution
density that needs to be analyzed to extract the unitary step size.
We found KDE to be a vastly superior approach over the traditional
technique of binning the data and fitting multiple Gaussians be-
cause it eliminated the decision of what bin size to use. However,
one weakness of KDE was fitting to higher modes. The Gaussian
mixture model proved to be the optimal tool for identifying the
modes of step intensity and assigning them proper weights. The
multiple modes of step sizes can be explained by at least two rea-
sons. First, it is possible that two or more fluorophores can bleach at
the same time, resulting in larger steps. This probability grows with
increasing copy number. Second, a step detection algorithm might
group two steps into one when fitting the two steps separately is not
statistically significant. This can happen when noise is high, which
also often correlates with high copy numbers. The probability of
observing single steps consisting of multiple bleaching events is
represented by the proportion of each mode in the GMM density
estimation.

The final technique that we developed was a best estimate of the
total photobleaching amplitude, taking into account the bleaching
rate. From the ensemble average, a photobleaching rate constant
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FIGURE 8: Copy number estimation for GFP-AtCESA3 particles. (A) Trace of GFP-AtCESA3
photobleaching (black) with steps fitted by Tdetector2 (blue). (B) BIC values for step detection at

increasing number of Gaussians, showing the minimum at k = 6. (C) Estimation of unitary step size

(445.4 a.u.) by GMM based on 730 total detected steps. Step size distribution was fitted by six

Gaussians, shown in red, green, yellow, pink, and purple. Mean values were 453, 864, 1337, 1799,

2335, and 3082 a.u., relative weights were 0.4953, 0.3325, 0.1252, 0.0367, 0.0074, and 0.0027,

and the SD was 160 a.u. Overall fit from GMM is shown in blue. Histogram (black boxes) is also

plotted for reference but not used in the GMM fitting. (D) Copy number distribution for GFP-
AtCESA3 particles. Two peaks are evident from the histograms, and fitting two Gaussians (red
and green curves) gives means of 9.56 and 23.5 and ratio of 0.844 and 0.156, with SD of 4.03.

could be readily extracted. This parameter will vary with excitation
intensity, cellular conditions, and other factors and so needs to be

measured for each experiment. If the duration of the experiment is

longer than five times the photobleaching time constant, then it is
expected that 99% of the signal has bleached, minimizing the need

30

tion algorithms to detect early bleaching
steps. An additional uncertainty is whether
the two peaks in the copy number distribu-
tion indicate that some particles are aggre-
gates of multiple complexes or that two
different populations of CSCs exist. To
distinguish these two hypotheses, future
experiments will focus on photobleaching
analysis of motile GFP-AtCESA particles,
which presumably represent single CSCs.
In conclusion, we developed a reliable
method for determining copy number in
multisubunit complexes from in vivo photo-
bleaching data. The statistical analysis com-
bines step detection and density estimation
to accurately determine the unitary photo-
bleaching step and takes into consideration
the bleaching rate constant when determin-
ing the maximum fluorescence signal. This
method is generic and can be used to esti-
mate the stoichiometry of other membrane-
bound complexes and can be applied to
fluorophores other than GFP. Because the
signal variance and unitary step size are cal-
culated directly from the raw data, it is not
necessary to carry out new controls for dif-
ferent fluorophores, but fluorophores that
display more prominent and prolonged
dark states such as yellow fluorescent pro-
tein are expected to have lower SNR, which
may set an upper limit on maximum copy
numbers that can be reliably estimated.
These algorithms can also be adapted to
analyze molecular motor stepping data.
Applying this method to in vivo photo-

bleaching data gave a lower limit of 10 copies of GFP-AtCESA3 in
cellulose synthesis complexes.

MATERIALS AND METHODS
Photobleaching experiments

for any correction. However, long acquisition times are not always ~ A. thaliana seeds of the genotype AtCESA3®® GFP-CESA3

possible due to stage or sample drift, camera memory, and underly-
ing cellular dynamics. Hence correcting for the expected maximum
amplitude is important to avoid underestimating copy number.
Although the statistical analysis indicated an average copy num-
ber of 10 GFP-CESA3 in the observed complexes, we consider this
to be a lower limit for the following reasons. First, the GFP-AtCESA3
transgene is present in a background of the partial-loss-of-function
AtCESA3® allele of AtCESA3 (Desprez et al, 2007), meaning
that endogenous nonfluorescent AtCESA3 can potentially still be
expressed and comprise a portion of each CSC. Second, the time
required for microscope focus adjustments necessary to pinpoint the
focal plane of the membrane means that some GFP molecules might
bleach before images are recorded. Third, it is impossible to rule out
the presence of GFP molecules that are misfolded or have not ma-
tured (although the estimated 15-min maturation time constant for
enhanced GFP is expected to be sufficiently fast for the present mea-
surements; lizuka et al., 2011). To improve upon this initial result, we
are engineering plants that contain GFP-AtCESA3 expressed in a
CESA3-null background. We are also exploring the use of slow-
bleaching versions of fluorescent proteins in order to minimize pre-
bleaching. Slow bleaching will also improve the ability of step detec-
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(Desprez et al., 2007) were surface-sterilized for 20 min in 30%
bleach + 0.1% SDS, washed four times with sterile water, and

stored in sterile 0.15% agar at 4°C for 3 d before being sown on

square Petri plates containing MS medium (2.2 g/I Murashige
and Skoog salts [Caisson Laboratories, Logan, UT] + 0.6 g/I 2-(N-
morpholino)-ethanesulfonic acid [Research Organics, Cleveland,
OH] + 8 g/l agar-agar [Research Organics], + 10 g/I sucrose,
pH 5.6). The plates were incubated in a 22°C growth chamber
under 24-h illumination for 5-6 d before use in microscopy ex-
periments. Seedlings were mounted on glass slides between two
pieces of permanent double-stick tape (3M, St. Paul, MN), 30 pl
of sterile water was added to the seedling, and a 24 x 40 mm
#1.5 coverslip was adhered to the tape to generate an imaging
chamber. Seedlings were imaged on a Nikon TE2000 microscope
in variable-angle mode with a 60x/1.4 numerical aperture oil im-
mersion objective and a 100-mW, 488-nm excitation laser. Hypo-
cotyl cells containing sparse GFP-AtCESA3-positive particles
were imaged using a Photometrics Cascade 512b camera in
streaming mode using maximum gain with 200-ms exposure time
for 500-600 frames, during which time many particles bleached
to background levels.
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As a control, the Drosophila kinesin heavy chain truncated
at residue 559 was modified to have GFP at both the N- and
C-termini, generating a dimer containing four GFP fluorophores.
The protein was bacterially expressed and Ni column purified as
previously described (Shastry and Hancock, 2010). Surface-immo-
bilized fluorophores were imaged by TIRF illumination (Shastry and
Hancock, 2010) and acquired in an identical manner to the GFP-
AtCESA3 data.

Image analysis

Image stacks were processed in ImageJ (National Institutes of
Health, Bethesda, MD) as follows. First, the Background Subtract
tool (10-pixel radius, sliding paraboloid) was used to subtract back-
ground fluorescence from each frame in the stack. Next an Average
Projection of the stack was generated and used to select 7-pixel-
radius circular regions of interest (ROI) surrounding immobile GFP-
AtCESA3 particles. Finally, photobleaching traces were generated
from the background-subtracted image stack by measuring the total
pixel intensity of each ROI for every frame of the stack. A total of 77
particles were analyzed.

Tdetector1 algorithm

The Tdetector1 algorithm carries out an iterative two-sample t test
that assumes the expected variance throughout the entire input
data vector to be constant. It also assumes that the input data vector
is a piecewise-constant step function hidden in normally distributed
white noise. There are no user-defined variables, and the only input
to the algorithm is a single vector of data, X.

To begin, the algorithm must calculate the variance of the under-
lying white noise, 62, of the input data vector. The conventional
method of calculating variance, Var(X) = E[(X — p)?], cannot be used
because the data are expected to contain steps that would result in
a large overestimation of the underlying variance. Instead a pairwise
difference calculation must be used:

Z(H)(XM -Xi)

S () 0

where X is the data vector, 62 is the variance of underlying noise in
X, Lis the length of X, and i is the index of X.

Pairwise differences that are significantly greater in magnitude
compared with the rest (possibly due to a large step there) are dis-
counted from the calculation (see Supplemental Methods for further
details).

The first round of the step detection process iterates through
every possible way of splitting Xinto two sections and calculates the
difference of means (DOM) of those two sections. Each DOM is then
rated for significance based on the expected distribution of DOMs
that would result from splitting a normal random vector of the same
length, with no steps, at that respective index (given in Eq. 2):

DOM ~ N(O,GZG+&D @

where 62 is the variance of underlying noise in X, L is the length of
the current subset of X (for the first round of step detection, Lis the
length of the entire X vector), and i is the index of splitting.

This process is similar to comparing to the t distribution as in a
two-sample ttest. If there is a calculated DOM that is significant (see
Supplemental Methods) compared with the normal distribution
shown in Eq. 2, then the null hypothesis (that the observed DOM is
due to variations of a normal random vector without a step) is re-
jected, the two sections are declared as two separate plateaus, and
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a possible step is declared at that index. For each round of step fit-
ting, only the most significant DOM results in a declared step. After
the first round of step fitting, the process is repeated on each new
plateau, and any new plateaus from a round of step fitting will go
through the same process until no new plateaus are declared.

Finally, the algorithm undergoes a step-checking phase that per-
forms DOM significance testing for all adjacent plateaus declared
(see Supplemental Methods). MATLAB code for the Tdetector algo-
rithm is included in the Supplemental Materials.

Tdetector2 algorithm

The Tdetector2 algorithm is very similar to Tdetector1, except that
it assumes that different sections of the data have different expected
variances (as found in photobleaching traces for which higher num-
bers of unbleached fluorophores lead to higher variances). Again, it
assumes that the input data vector is a piecewise-constant step
function hidden in normally distributed white noise, and it requires
only this single vector of data, X, as input to the algorithm.

The first task of the algorithm is to find sections of the data that
have significantly different variances from one another. To accom-
plish this, it first calculates the variance of underlying noise through-
out all of X using the same process described for Tdetector1 (Eq. 1).
Next it uses the same process that the Tdetector1 algorithm uses to
test each possible DOM for significance, but instead of comparing
means, it tests each possible difference of variances (DOV) for sig-
nificance. The expected distribution of DOVs is approximated as
normal, with a variance (Eq. 3; derivation in Supplemental Methods)
that depends on nearly the same variables defining the variance of
DOMs in Eq. 2. The only difference is that 62 is always the underly-
ing variance of the entire X vector in Eq. 2, whereas in Eq. 3, it is the
underlying variance of only the subset of X that is currently being
split into two sections:

s i2+i—3+(L—i)2+(L—f)—3

(i—1)? [(L-i)-1]

DOV ~N| 0,0 -2 3

where 67 is the variance of underlying noise in the current subset of
X, Lis the length of the current subset of X, and i is the index of
splitting.

As in the iterative step fitting process of Tdetector1, this variance
sectioning continues to declare and test new plateaus until no new
significant variance sections are declared. Once the algorithm has
completed the variance-sectioning process, it begins the same step
detection process as in the Tdetector1 algorithm, with two excep-
tions: 1) for DOM significance testing, Tdetector2 uses 62 = mean
underlying variance of the current subset of X in Eq. 2 rather than
the underlying variance of the entire X vector; and 2) once the most
significant index of splitting has been determined, the resulting
DOM is again tested for significance with respect to a slightly differ-
ent distribution of DOMs shown by Eq. 4 (similar to Welch's t test):

DOM - N[O,ﬁ+ "_5] @
i L—i

where 67 is the underlying variance of the first section, 63 is the

underlying variance of the second section, L is the length of the cur-

rent subset of X, and i is the index of splitting.

This distribution takes into account the possibility of unequal
variances between the two sections. If both tests have shown signifi-
cance with respect to their distributions, then a step and two new
plateaus are declared at that index.
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Bdetector algorithms
The Bdetector1 algorithm is identical to the method described in
Kalafut and Visscher (2008), with the algorithm implemented in R
(www.r-project.org). The Bdetector2 algorithm was developed by
modifying Bdetector1 to allow for changing variance, as follows.
For data with points x; (i is from 1 to N), if k steps are fitted at
positions Iy, p,..., I, and for notational simplicity, let [y = O, and
ler1 =N, then the maximum likelihood estimators for mean and vari-
ance are

1 lj
2r‘:h—1 Xiy

up=7—r where j=1,... k+1 (%)
j— 1=

1 | 2

2 _ i .

%115 Zi=/H(X’ ~uj) ©
Recall that the BIC for a statistical model is calculated as

BIC = -2log L + p In(N) (7)

where log L is the log-likelihood of a model and p is the number of
parameters to estimate.
Thus the BIC for fitting k steps is

BIC = ZI](:(I) —Ij71)|n((5]2-)+N|n(27r)+N+p|og(N) 8

where p=2(k + 1) =2k + 2.

To add a step, Bdetector2 scans each potential step position and
calculates a BIC value. If the difference between the minimal BIC
value and BIC from not adding a step is > 5 (Kass and Raftery, 1995),
a new step is added at the position that leads to smallest BIC value.
While holding all previous steps, this process is then repeated to
detect subsequent steps. Bdetector2 terminates when no more
steps that result in a lower BIC value can be added.

Photobleaching rate estimation

By ensemble averaging many photobleaching traces and fitting to
an exponential, the photobleaching rate constant can be estimated
with high accuracy. Because each GFP photobleaches indepen-
dently of one another, the rate constant for the exponential decay of
the ensemble average will be the same as the first-order bleaching
rate of a single GFP.

Comparing the photobleaching rate constant to the total acqui-
sition time also allows for a correction due to photobleaching
events that are expected to be missed due to the finite acquisition
time of the experiment. On the basis of the known acquisition time
and calculated photobleaching rate, Eq. 9 calculates the fraction of
photobleaching events that are expected to occur during acquisi-
tion. This number is critical because the final copy number is esti-
mated by dividing the total intensity drop for each photobleaching
trace by the experimentally determined unitary step size. If the
photobleaching trace has not fallen all the way to background,
then copy number will be underestimated. Hence, to correct for
missed photobleaching events, the total intensity drop for each
trace is corrected by dividing by the expected fraction of observed
events given by Eq. 9. We have

fraction observed = 1— e~a 9

where a is the acquisition time in seconds and k is the fitted photo-
bleach rate in inverse seconds.

According to our fitted photobleaching rate (0.0278 + 0.0003 s™)
and acquisition time (a = 100 s), we expect to observe ~93% of the
photobleaching process.
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Definition of sensitivity and precision ratings for step
detection algorithms

The ability of each step detection algorithm to correctly identify
steps was tested using simulated data with added white noise con-
taining steps at known indexes. Each algorithm was given the same
collection of simulated data, and then the indexes at which each
algorithm declared steps were compared with the true step indexes.
If a declared step index was within a certain range of a true step in-
dex, then it was regarded as a correct declared step (i.e., if Eq. 10is
satisfied). The range was defined by a constant percentage multi-
plier (0.05) of the two true plateau lengths on either side of a true
step index:

—round(0.05p1) < (ideclared — itrue ) < round (0.05p2 ) (10

where py is the number of data points in the plateau that precedes
the true step, py is the number of data points in the plateau that
follows the true step, igeclared is the index of the declared step, and
itrye is the index of a true step

Once a declared step is defined as correct, the true step to which
it was matched is no longer allowed to be matched to again. This
means that if there are multiple declared steps within a certain range
of the true step, only one of those declared steps is allowed to be
defined as correct.

The sensitivity of an algorithm was defined as the fraction of true
steps that have a declared step within their range (detected true
steps). The precision of an algorithm was defined as the fraction of
declared steps that are correct (Egs. 11 and 12):

sensitivity = detected true steps
tivity = total true steps (11
. correct declared steps

precision = (12)

total declaredsteps

Underfitting the data will result in low sensitivity and generally
higher precision, whereas overfitting will result in low precision and
generally higher sensitivity.

Density estimation

Least-squares fitting on binned histogram data was carried out in R
with nonlinear least-squares fitting. Center of bins and bin height
were used. For kernel density estimation, bandwidth was as speci-
fied by Scott (1992). The “normalmixEM" function in the R package
“mixtools” (Benaglia et al., 2009) was used to implement the
Gaussian mixture model, and the variance of each Gaussian was
assumed to be the same, while means were unconstrained. The
BIC value was calculated based on the log-likelihood of each fitting
and was used to objectively determine the number of Gaussians to
use in the final model.
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