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Abstract

Implementing energy conservation measures in buildings can reduce energy costs and

environmental impacts, but such measures cost money to implement so intelligent investment strategies

require the ability to quantify the energy savings by comparing actual energy used to how much energy

would have been used in absence of the conservation measures (known as the “baseline” energy use).

Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in

the literature is inadequate quantification of the uncertainty in baseline energy use predictions.

However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most

commercial buildings have, or soon will have, electricity meters capable of providing data at short time

intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to

do so after shorter measurement durations than are traditionally used. In this paper, we show that

uncertainty estimation provides greater measurement and verification (M&V) information and helps to

overcome some of the difficulties with deciding how much data is needed to develop baseline models

and to confirm energy savings. We also show that cross-validation is an effective method for computing

uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using

short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial

buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision

making information for investing in energy conservation measures.

Keywords: uncertainty analysis; building retrofit; measurement and verification; building energy;

baseline prediction; cross-validation; change-point model; linear regression
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Abbreviations
M&V measurement and verification

ECM energy conservation measure

HVAC heating, ventilation, and air conditioning

ESCO energy service company

IPMVP International Performance Measurement and Verification Protocol

1 INTRODUCTION

Energy efficiency improvements in buildings are a cost effective approach to reducing energy use.

Energy conservation measures (ECMs) reduce energy consumption through the installation of newer, and

usually more efficient, equipment and appliances, retrofitting old equipment, and/or modifying operating

procedures. For example, typical ECMs in commercial buildings include replacing light fixtures,

retrofitting hot water boilers or heating, ventilation, and air conditioning (HVAC) fans, or changing lighting

and HVAC schedules. ECMs could also include real-time anomaly detection or participation in demand

response programs that aim to reduce electricity consumption at particular times. In the last two decades

we have seen the market to provide such services through energy service companies (ESCOs) expand

dramatically, the typical business model being reducing energy costs by implementing retrofits. A constant

tradeoff for the retrofit market is between the accuracy in the energy savings estimates (and, by extension,

in the payback of an ECM) and the wait needed for accurate estimates (due to waiting for the necessary

post-retrofit data). This tradeoff is very important in the ESCO business because obtaining data, and the

time it takes to gather them, can significantly impact the costs and return on their investment.

The effectiveness of an ECM is defined typically by the amount of energy use that is avoided. In other

words, the difference between how much energy the building consumed over a given period, and how much

it would have consumed without the ECM. The latter value is typically referred to as the “adjusted

baseline” and the overall process of confirming ECM effectiveness is called “measurement and

verification” (M&V). For examples of M&V techniques, see the International Performance Measurement

and Verification Protocol (IPMVP) [1]). Critical technical questions facing M&V practitioners include not

only estimating how much energy the building would have consumed, but knowing how accurate the

energy estimates must be in order to be useful. These questions have important ramifications in the

durations of energy data to record before and after the retrofit, the analysis methods employed, and perhaps

most importantly, whether the energy saved by a given retrofit will be measurable.
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IPMVP includes several classes of methods that attempt to separate the effect of the ECM from other

processes that affect the building’s energy consumption. These methods include installing electric meters

to monitor the energy use of individual components or subsystems, and creating and exercising computer

models that mimic the physical processes of the building. One of the accepted IPMVP approaches is to

create a statistical model, based on data from before the ECM was implemented, that can adjust for

changes in weather (or in other parameters, if known). The model is then applied to the period after the

ECM is implemented, to predict the “baseline” energy use. IPMVP methods for creating these statistical

models were developed many years ago, when the only whole-building energy consumption measurements

were obtained from monthly utility bills.

In recent years, time-resolved “interval data” have become more commonly available; these are data

on electric load as a function of time, typically at 15-minute to 1-hour intervals. Interval data provide new

opportunities for M&V, including a reduction in the duration of data required to determine the dependence

between weather and building energy use. If the only available electricity consumption data are monthly,

then an M&V practitioner must wait until there have been both warm months and cool months in order to

determine the relationship between outdoor air temperature and energy use. However, if interval data are

available then significantly fewer data may be needed (e.g., from just a few hot and cold days, which may

even occur within the same month). The use of interval data should therefore allow whole-building M&V

to be completed using much shorter pre- and post-install periods than are currently recommended by

IPMVP.

Several methods for computing baseline energy that take advantage of interval data are reported in the

literature. Mathieu et al. [2] provides a good summary of energy prediction methods. Coughlin et al. [3]

considers methods that average load profiles from the last several days. Granderson et al. [4] describes

several other methods, including models based on binning, nearest neighbor models, and nonlinear

weighted regressions, in which predictions are based on measurements from similar conditions.

Claridge [5] and Taylor et al. [6] discuss more complex mathematical methods, including autoregressive

integrated moving average models, neural network models, exponential smoothing models, and Fourier

series models. These methods, and many others (e.g., [7, 8]), have substantially advanced both the state of

the art in M&V and the suite of tools that a practitioner may use to confirm energy savings. The success of

these methods, coupled with the wide installation of interval meters means it is likely that these methods

will be used for many IPMVP-style M&V techniques in the future. We are already seeing a host of ESCOs
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emerging to provide this service.

While advancing the state of the art, a critical addition to these tools is a better method to estimate

uncertainty in the baseline estimates. Uncertainty is important because it provides actionable information

for ESCOs, building operators, and portfolio managers. It provides these stakeholders the information

necessary to assess the risks of a financial investment [9, 10]. Quantifying uncertainty also allows M&V

practitioners to weigh the limitations and benefits of the amount of data used to compute baseline estimates

and retrofit savings: the benefit of an ECM can only be definitively demonstrated if the savings are large

relative to the uncertainty in the energy use estimates. The savings is the difference between the baseline

energy use and the actual energy use, and since the latter is known from the utility meter, the uncertainty in

the savings is equal to the uncertainty in the baseline energy use. The baseline energy use is uncertain

because it is the amount it would have consumed in the absence of the ECM, which is not measurable and

therefore must be predicted, and these predictions are subject to uncertainty.

There is often substantial uncertainty in the baseline prediction, due to the fact that the building’s

energy use varies with weather, occupancy, operating hours, and many other factors, many of which have

unknown relationships to the energy consumption. Such details are often not measured or recorded due to

costs or time. Uncertainty in baseline estimates result for three main reasons:

1. Energy use in the building varies due to factors not included in the models. For example, more or

fewer people may use the building, hours of operation may change, equipment may be replaced or its

usage pattern may change, and so on.

2. Input parameters are subject to error. Outdoor air temperature or humidity measurements may be

inaccurate or may be measured miles from the building and thus may not accurately represent site

conditions.

3. The model is misspecified. Any statistical model includes assumptions, some of which will not be

perfectly accurate. For example, ordinary linear regression assumes that model errors are

independent, identically-distributed draws from a normal distribution, but in predicting building

electric load the errors are often not independent, not identically distributed, and not drawn from a

normal distribution. Uncertainty estimates provided by such models are often reported [11–13] but

are sometimes not accurate.
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The remainder of this paper is organized as follows: In Section 2 we present a regression-based model

for estimating baseline electric load and an algorithm that uses cross-validation to quantify uncertainty in

baseline predictions. In Section 3 we illustrate the regression model and the uncertainty algorithm using

real data from 17 commercial buildings. Finally, in Section 4 we discuss the application of these methods

to the M&V process.

2 METHODS

The method for predicting the statistical distribution of the baseline electric load is a two-stage

process. In the first stage, we predict the expected electric load. In the second stage, we complete the

characterization of the distribution by predicting the uncertainty bounds of the predicted electric load. In

this paper, we select a particular model for the first stage, but the uncertainty quantification method used in

the second stage can be applied to any model that predicts expected load. In addition, the methods

presented here can be used to easily compare the performance of competing models.

2.1 Load Prediction

In this section we describe a linear regression model for predicting whole-building electric load. This

approach can be applied to end-uses with sub-metered data, but a more common application is predicting

whole-building load. We use a linear regression model based on the time of week and the outdoor air

temperature to predict the expected baseline. This model is robust, easy to use and interpret, is

computationally efficient, and provides a good fit to the data (both objectively, and when compared to other

prediction methods [14]). In addition, it requires relatively little data to be effective. Since M&V

practitioners are often faced with very limited data, this is an important benefit. Not only does the

regression model rely on only two easily measured values (time and temperature), but it may require shorter

measurement periods than are traditionally used (e.g., a few months, rather than a full year). Short-interval

data allows the model to be fit to many measurement values, but does not require a long time to collect

these data. In addition, fitting the model using short interval data (hourly or sub-hourly) allows the model

to extract information about the relationship between energy use and outdoor air temperature that would be

obscured if the model were fit to monthly data. This model provides an M&V practitioner with an accurate

model of electric load while requiring minimal investment in measurement equipment and monitoring time.

In commercial buildings, it is typical for load to be high during afternoons (when the outdoor air

temperature is high and the building is heavily occupied) and low during the nights and weekends (when
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temperatures are low and/or the building is unoccupied). Many office buildings have an “occupied” mode

during which the indoor air temperature is maintained at a comfortable level and an “unoccupied” mode

during which the indoor air temperature is either uncontrolled or is maintained only within a broad band. In

a typical commercial building, the dependence of load on temperature is a nonlinear function of

temperature, and depends on which mode the building is in. In occupied mode, it is common for load to be

positively correlated with outdoor air temperature at high temperatures (when using energy for cooling),

negatively correlated at low temperatures (when using energy for heating), and relatively uncorrelated at

moderate temperatures (when not using energy for cooling or heating). In unoccupied mode, load typically

has little correlation with outdoor air temperature. With this knowledge, we selected a model structure that

is limited to the “time of week” and the outdoor air temperature as predictor variables. A similar model is

described in more detail in [2]. This development and demonstration of this research applies to any general

forecast model, such as one that includes additional explanatory variables (e.g., humidity, occupancy).

However, since these data are not commonly recorded, we did not select such a model.

Consider K measured data points, where data point k is from time tk and includes a temperature

measurement Tk and a load measurement Lk, for k = 1, . . . ,K. We model the load as the sum of a

time-dependent portion and a temperature-dependent portion L̂k = L̂k,time + L̂k,temp.

We model the time-dependent portion of load in a way that captures patterns such as lower load at

night than during the day, lower load on weekends than on weekdays, and lower load on Friday afternoon

than on other weekday afternoons. We model time-dependence by dividing the week into 168 one-hour

intervals and assign an indicator variable and coefficient to each interval. The time indicator variable

τk,i = 1 if tk is in interval i and τk,i = 0 otherwise, for i = 1, . . . , 168. The time-dependent portion of the

predicted load is computed by summing the product of indicators and coefficients over all 168 time

intervals L̂k,time =
∑168

i=1 αiτk,i. The time indicators serve to select which coefficient contributes to the

predicted energy use. For a given data point, one of the 168 coefficients is multiplied by one and added to

the predicted load, and the other 167 coefficients are multiplied by zero and have no effect.

We model the temperature-dependent portion of load so as to describe the behavior of a typical

building’s heating and cooling system. We model temperature-dependence using a piecewise-linear and

continuous function. In order to achieve this functional form, we divide the temperature range into four

intervals, and assign a temperature component and coefficient to each interval. The temperature is written

as the sum Tk =
∑4

j=1 θk,j where the temperature components θk,j are the portion of the temperature Tk in
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temperature interval j. For example, if the temperature intervals are 20◦F − 40◦F , 40◦F − 60◦F ,

60◦F − 80◦F , and 80◦F − 100◦F , and the temperature is Tk = 75◦F , then the temperature components

are θk,1 = 20◦F , θk,2 = 20◦F , θk,3 = 15◦F , and θk,4 = 0◦F . The temperature-dependent portion of the

predicted load is computed by summing the product of components and coefficients over all temperature

intervals L̂k,temp =
∑4

j=1 βjθk,j .

The predicted load for data point k is the sum of the time-dependent portion and the

temperature-dependent portion L̂k = L̂k,time + L̂k,temp =
∑168

i=1 αiτk,i +
∑4

j=1 βjθk,j . The regression

coefficients αi and βj are computed using ordinary least squares by minimizing the sum of the squared

error
∑K

k=1(Lk − L̂k)
2.

To allow the dependence of load on time and temperature to be different when the building is in

occupied and unoccupied modes, we model the two modes separately. We first split the data into two

disjoint subsets of the original data set, one for occupied mode and one for unoccupied mode. We compute

one set of regression coefficients that best fit the occupied data, and another set of coefficients that best fit

the unoccupied data. To predict the load at a particular time and temperature, we apply the corresponding

regression coefficients.

2.2 Computing Uncertainty

In this section we describe a general method for quantifying uncertainty in baseline energy

predictions. The approach can be used to compute uncertainty on any time interval, but we demonstrate the

approach by computing uncertainty bounds on monthly energy totals. This is the time scale at which energy

predictions are commonly preferred by M&V practitioners because building owners making decisions to

invest in ECMs are interested in estimates of energy savings computed over time scales of months or years.

Consider the relationship between the model error and the amount of data used to fit the model. Model

error is typically reduced by using more data to fit the model, but there is a limit to this effect because (1)

when stochastic variability is present, any model will eventually cease to improve even when more data are

collected, and (2) building energy behavior changes over time, so knowing how the building performed in

the distant past does not predict how it will perform in the future. For example, over a period of months or

years the base load on weeknights is likely to change, so that data from weeknights long ago will not

improve the prediction of the next weeknight. In other words, the model must have enough data to

characterize a wide range of load and temperature relationships, and to distinguish between the building’s
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average behavior and inherent stochastic variability. However, data from too far back in time can be useless

or harmful because those data no longer reflect the building’s current behavior.

We now define an algorithm to compute the probability distribution of the residuals (the error between

the measured data and the model predictions). The uncertainty algorithm is based on cross-validation (i.e.,

partitioning the data into subsets, fitting the model to one subset, then validating the model with another

subset). We separate the data set (e.g., one year of data) into many shorter time intervals (e.g., one month).

We fit the model to the data in one interval, then use the model to predict the data in the next interval. We

then compare those predictions to the measured data during the prediction interval and compute the

residuals. We repeat this process of computing residuals for each interval in the data set. We suspect the

statistical distribution of the resulting set of residuals can be used to estimate the uncertainty in the model

predictions.

The algorithm is defined as follows:

Define the sequences of measured load data L = {L1, . . . , LK}, time data t = {t1, . . . , tK}, and

temperature data T = {T1, . . . , TK}. Start by separating the data set into M smaller intervals, one for each

month, i.e., {L}m, {t}m, and {T}m are the load, time, and temperature time sequences for month m, where

m = 1, . . . ,M . For m = 1, . . . ,M − 1, the residuals samples are computed with the following algorithm.

1. Fit a model to the data from month m by using {L}m, {t}m, and {T}m to compute the model

parameters for month m. Any model can be used, but here we use the model described in Section 2.1.

In this case, the model parameters for month m are the regression coefficients {α}m and {β}m.

2. For the following month, month m+ 1, make load predictions {L̂}m+1 using the model parameters

from month m.

3. Compute the measured energy consumption Im+1 and the predicted energy consumption Îm+1 in

month m+ 1 by summing the actual loads and predicted loads over of the time intervals in the

month.

4. Compute the residual Rm+1 = Im+1 − Îm+1 in month m+ 1.

When the algorithm finishes, the set of residuals {R} contains M − 1 residual samples, each representing

the error in the energy consumption prediction during a different month.

We would like to answer the question: If we fit a model using several months of data, how accurately

can the next month’s energy consumption be predicted? We propose to answer this question by assuming
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that the set of errors, {R}, has the same statistical distribution as the error in the next month’s energy

consumption prediction. We test the validity of this assumption empirically in Section 3.

The set of errors, {R}, was generated by fitting the model using one month of data and using it to

predict the energy used in the following month, which is somewhat different from the situation of eventual

interest, in which the model is fit to several months of data. On one hand, the errors {R} might tend to be

too large in magnitude because a model fit to a single month of data may be subject to more stochastic

variability than a model fit to several months of data. On the other hand, the errors {R} might tend to be

too small in magnitude because fitting each month separately allows the model to adjust to features of the

data that are incorrectly assumed constant when fitting the model to several months of data (e.g., changes in

base load or temperature sensitivity). In the next section, we investigate the extent to which the set {R}

represents the statistical distribution of errors in the situation of interest.

3 RESULTS

In this paper, we analyze whole-building electric load data from 17 government and commercial office

buildings from various locations and climates throughout the United States. Most of the buildings have

measured load at 15 minute intervals, one has data at 10 minute intervals, and the remainder have data at 1

hour intervals. Roughly half of the buildings have 27 months of data and roughly half have 12 months of

data. The majority of the buildings provided outdoor air temperature data measured on site. For the rest of

the buildings, outdoor air temperature data from a nearby weather station were acquired from

http://www.wunderground.com. Missing outdoor air temperature data were interpolated linearly

when only a few hours of data were missing. When more temperature data were missing, the temperature

and load data from that time interval were excluded from the data set. We start by illustrating the modeling

technique described in Section 2.1 by focusing on measured data from one particular office building. The

same modeling technique is used for each building. We then apply the algorithm described in Section 2.2

by utilizing data from all 17 buildings.

Figure 1 shows one week of temperature and load data. We believe that this building, like most office

buildings, operates in occupied and unoccupied modes. We assumed the building mode depends on the

time of day and the day of the week, and determined these times by inspection. The temperature exhibits a

clear pattern of high temperatures during the day and low temperatures at night, and shows gradual

variation throughout the week as well. Similarly, the load is high in the afternoons and low at night, but is
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Figure 1: Temperature and load vs. time in occupied mode (red stars) and unoccupied mode (black circles).
Occupied hours are Monday-Friday 5am-11pm. Data are for Building 5.

also low throughout the entire weekend. The shape of the load curve during the day is different than that of

the temperature curve (e.g., the peak in load at the start of the occupied period), indicating the dependence

of load on more than just temperature. In addition, load is lower on Friday afternoon than on other weekday

afternoons, indicating the dependence of load on both time of day and day of week. These observations

support our choice of a load prediction model that depends on both temperature and hour of week.

Figure 2 shows load plotted against temperature. In unoccupied mode, temperature appears to have

little correlation with load. In occupied mode, temperature is positively correlated with load, particularly at

high temperatures. This behavior supports our choice of a load prediction model that fits load to a function

of temperature, and that fits separate models for occupied and unoccupied modes.

Figure 3 illustrates the piecewise-linear and continuous portion of the model. The time-dependent

portion of the modeled load, L̂k,time =
∑168

i=1 αiτk,i, is subtracted from the measured data Lk, and the

result is plotted against the temperature Tk. The temperature-dependent component of the modeled load,
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Figure 2: Load vs. temperature in occupied mode (red stars) and unoccupied mode (black circles), showing
random subset of 10% of data. Data are for Building 5.
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Figure 3: Time-independent load vs. temperature in occupied mode, as measured (red stars) and modeled
(black lines), showing random subset of 10% of data. Data are for Building 5.

L̂k,temp =
∑4

j=1 βjθk,j , is superimposed. For lower temperatures, temperature has little effect on load, but

at high temperatures, temperature is correlated with load. The agreement between the modeled and

measured values of time-independent load justifies our choice of a load prediction model that fits load to a

piecewise-linear and continuous function of temperature.

Figure 4 shows the measured and predicted load for three separate weeks in different seasons. Overall,

in each of the three weeks, the predicted load is very close to the measured load, despite the variability of

outdoor air temperatures and daily load shapes with season. In June, there is a peak in load in the late

afternoon on Monday and Tuesday, while in May, the late afternoon peak is more pronounced later in the

week; the load in January shows no such peak. The model does not capture this peak well because it is
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mode (black circles) modeled separately. Data are for Building 5.

averaging behavior over many weeks, and most weeks do not exhibit this peak. A similar argument

explains the model underpredicting load for a short interval on Sunday morning in June. While predictions

may be high (e.g., the middle of the week in January) or low (e.g., the end of the week in May) for short

periods, predicted totals on longer time scales (which are of interest to M&V practitioners) are accurate.

In Figure 5, measured load is plotted against predicted load, illustrating reasonable agreement

between the model and the data. There is larger variation at high loads than at moderate loads. The linear

regression coefficients are computed to reduce error at moderate loads, which are very common, at the

expense of allowing larger error at high loads, which are much less common. Since these high loads occur

relatively infrequently, their impact on monthly energy totals will be minimal, and the errors at high loads

will not be problematic to M&V practitioners interested in long time scale predictions.

Figure 6 shows the relationship between model error and the amount of data used to fit the model for 5

of the 17 buildings in the data set. For each building, the model is fit several times using different durations
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of data. Each time, it is used to predict the load during the final month. On the horizontal axis is the length

of the interval used to fit the model (in units of days), and on the vertical axis is the normalized difference

between the measured load and the predicted load during the final month. In some cases, model error is

reduced by using more data to fit the model (e.g., Buildings 4, 9, and 13), but for many of the 17 buildings

tested, the error when fitting to only a few months of data is about the same magnitude as when using four

or more months of data (e.g., Buildings 5 and 7). This observation suggests that a method that uses the

error when fitting to a small amount of data helps to predict the error when fitting to a large amount of data.

In this study, we observed that model error no longer reduces when more than a few months of data

are used. However, we should note that this result is specific to the particular model used here. If a model

other than the one described in Section 2.1 is used, error may continue to reduce when more data is used.

In addition, this result is specific to the data for the buildings in this study; other buildings may illustrate

different behavior. An important contribution of this work is developing a practical and empirical approach

that M&V practitioners can apply to investigate the relationship between model error and the amount of

data for any given model and data set. Practitioners can use the results of such an analysis to decide

between multiple competing models, whether a model is suitable, the degree to which additional data are

likely to improve the analysis, etc.

Figure 6 also illustrates the type of analysis that can be performed by M&V practitioners to explore

how much data is needed for a M&V analysis. Some minimum level of model performance is necessary.

However, the right level of accuracy depends in part on the intended application. Collecting more data may

improve model accuracy, but it might not be worthwhile if the improvement is small relative to the effort

(and therefore costs) to obtain measurements for longer periods (e.g., delaying the installation of retrofits

and reconciling retrofit savings). Since different M&V projects have different needs on prediction

accuracy, M&V practitioners can balance acceptable model accuracy against additional measurements

using an analysis similar to that shown in Figure 6.

To illustrate the method for computing uncertainty at the portfolio level, we applied the algorithm in

Section 2.2 to all 17 buildings in the data set. For each building, we estimate the uncertainty of the

residuals of the predicted energy use. We do so by separating the final month of data from the data set, and

applying the algorithm to all except the final month. In other words, we generate the set of residual samples

{R} as though the final month of data does not exist. These residual samples serve as an estimate of the

uncertainty in the predicted energy use during the final month.

16



0 100 200 300 400 500 600 700 800
−30

−25

−20

−15

−10

−5

0

5

10

15

amount of data used (days)

re
s
id

u
a
ls

 (
%

)

 

 

Bldg. 4

Bldg. 5

Bldg. 7

Bldg. 9

Bldg. 13

Figure 6: Residuals normalized by measured value vs. number of days of data used to fit model. Data are
predicted for the final month.

17



To assess the validity of the uncertainty estimates, we also compute the actual residual for each

building. We first fit the model in Section 2.1 to all of the data except the final month, then use it to predict

the energy use in the final month. We compute the actual residual Ract by subtracting the energy prediction

during the final month from the measured energy during the final month. In a typical application of the

algorithm, the actual residuals would not be available. We compute them here as a means to assess the

uncertainty algorithm’s validity.

As an example, consider a building with 12 months of data from January through December. We

separate December from the data set and apply the algorithm in Section 2.2 with M = 11 to the January

through November data, resulting in a set of residuals {R} containing 10 samples. We then fit the model in

Section 2.1 to the January through November data and use it to predict the energy use in December. We

compute the actual residual Ract as the difference between the prediction during December and the

measured energy during December.

For each building, this results in a set of samples {R} that constitute the estimated distribution of the

residuals, and one actual residual Ract, of the predicted energy use during the final month. If the

uncertainty estimation algorithm provides a good approximation of the model uncertainty, then one would

expect the actual residual for the final month to be consistent with the predicted uncertainty. In other

words, the actual residual should appear to have been drawn from the same distribution as the residual

samples. For example, after many trials (i.e., for many buildings), one would expect that for half of the

trials, the actual residuals for the final month are within the 1st and 3rd quartiles of the residual samples,

and similarly for other quantiles. If the actual residuals are within the 1st and 3rd quantiles for more than

half of the trials, then the uncertainty is likely overestimated. Likewise, if the actual residuals are within the

interquartile range for fewer than half the trials, then the uncertainty is likely underestimated.

Figure 7 depicts the distributions of the residual samples {R} and the actual residuals Ract for the 17

buildings in the data set, and shows that the uncertainty predicted by the estimation algorithm in

Section 2.2 is consistent with the actual residuals. The residuals lie within the interquartile range for

roughly half the buildings. In addition, very few of the actual residuals lie outside the extreme values of the

residual samples distributions. Figure 7 shows that the uncertainty estimates are neither underestimates nor

overestimates, and that the distribution of the residual samples is a consistent estimate of the uncertainty in

the energy use predictions. For the 17 buildings studied, M&V practitioners can accurately compute the

uncertainty in energy use predictions by applying the algorithm in Section 2.2. These uncertainty estimates
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Figure 7: Integrated load residuals for 17 buildings. Red circles are actual residuals (fit model to all except
final month, then predict final month). Box plots show median, quartiles, extreme values (dotted), and
outliers (+) for residual samples from the uncertainty estimation algorithm.

can then be used to weigh the risks, costs, and benefits of investing in ECMs.

A more robust test of the algorithm in Section 2.2 would be to compare several trials of actual

residuals against the proposed distributions for each building, rather than just one (as is shown in Figure 7).

In addition, the actual residuals could be compared to the proposed distributions for more than 17

buildings. However, these tests require significantly more data than we had access to and must be the

subject of future research.

Figure 7 also shows that the energy predictions for some buildings are much more uncertain than for

others. For example, compare the tight distributions of errors in Buildings 13 and 16 to the wide

distributions in Buildings 3 and 9. If the owner of Building 16 is planning to implement an ECM that is

expected to reduce the building’s energy use by 10%, they can be confident that they will easily see the

19



savings using a whole-building baseline approach. In contrast, there is no hope of seeing such an effect in

Building 9 because the expected savings are small compared to the uncertainty in the baseline prediction.

The uncertainty in the energy predictions could be due to factors not included in the model (e.g.,

occupancy), error in temperature measurements, model misspecification, or the duration of data used to fit

the model. The fact that these uncertainties can be large for some buildings and small for others illustrates

the benefit of the methods presented here: quantifying uncertainty in energy predictions provides

actionable information to M&V practitioners.

4 DISCUSSION AND CONCLUDING REMARKS

In this paper, we addressed the problem of quantifying energy savings due to implementing energy

conservation measures (ECMs), and isolating those savings from energy differences due to other influences

(e.g., weather, time of day, day of the week). We presented an energy prediction technique that uses linear

regression on time of week indicator variables and a piecewise-linear and continuous function of

temperature. We illustrated the prediction method using actual data from a commercial building. We

extended prior research by presenting a method for estimating the statistical distribution of the prediction

error and applied the method to actual data from 17 commercial buildings.

The work focuses on providing practical analytical tools and concepts for the M&V practitioner. A

method to compute estimates of uncertainty in energy baselines is critical for practitioners and stakeholders

to value the tradeoffs between data gathering, duration of pre- and post-ECM analyses, and expected

energy savings. We see that simple regression models are likely to be preferred over more complex

methods, in the near term, due to the ease of understanding and applicability. The use of such models

further emphasizes the need to include uncertainty in estimations.

In the analysis of the 17 commercial buildings, we show that cross validation is suitable as a first

approach to quantifying baseline uncertainty for M&V. In this analysis we show that a full year’s worth of

data to build baseline models (as prescribed by some IPMVP methods) does not necessarily improve the

performance of the monthly or annual energy estimates. Moreover, for the buildings considered,

uncertainty estimates are consistent with measured values, indicating the viability of the approach.

Future analysis should include other methods of estimating baseline uncertainty, testing using data

from additional buildings, and further exploration of the tradeoffs between more complex regression

models and the duration of the model training period.
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