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Abstract 

We compare two approaches for building a statistical proxy model (metamodel) for CO2 
geologic sequestration from the results of full-physics compositional simulations. The first 
approach involves a classical Box-Behnken or Augmented Pairs experimental design with a 
quadratic polynomial response surface. The second approach used a space-filling maxmin Latin 
Hypercube sampling or maximum entropy design with the choice of five different meta-
modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms, 
multivariate adaptive regression spline (MARS) and additivity and variance stabilization 
(AVAS). Simulations results for CO2 injection into a reservoir-caprock system with 9 design 
variables (and 97 samples) were used to generate the data for developing the proxy models. The 
fitted models were validated with using an independent data set and a cross-validation approach 
for three different performance metrics: total storage efficiency, CO2 plume radius and average 
reservoir pressure. The Box-Behnken–quadratic polynomial metamodel performed the best, 
followed closely by the maximin LHS–kriging metamodel.  
 

  



Simplified Physics Based Models   Table of Contents 
for CO2 Sequestration  

DOE Award No. DE-FE0009051, Task #3 iv 

Table of Contents 

Page 

Abstract .................................................................................................................................... iii 

List of Figures ............................................................................................................................ vi 

List of Tables ............................................................................................................................vii 

Executive Summary ................................................................................................................ viii 

1 Introduction ......................................................................................................................... 1 

1.1 Background ................................................................................................................... 1 

1.2 Previous Work .............................................................................................................. 1 

1.3 Scope and Organization ................................................................................................ 2 

2 Experimental Designs .......................................................................................................... 3 

2.1 Factorial Designs .......................................................................................................... 3 

2.1.1 Plackett-Burman .................................................................................................... 3 

2.1.2 Central Composite and Box-Behnken..................................................................... 4 

2.1.3 Augmented Pairs .................................................................................................... 6 

2.1.4 Run Comparison .................................................................................................... 7 

2.2 Sampling Designs ......................................................................................................... 8 

2.2.1 Purely Random Design .......................................................................................... 8 

2.2.2 Latin Hypercube Sampling ..................................................................................... 8 

2.2.3 Maximin LHS ........................................................................................................ 9 

2.2.4 Maximum Entropy ............................................................................................... 10 

2.2.5 Design Comparison .............................................................................................. 10 

3 Metamodeling .................................................................................................................... 13 

3.1 Introduction ................................................................................................................ 13 

3.2 Quadratic Model ......................................................................................................... 13 

3.3 Quadratic Model with LASSO Variable Selection ....................................................... 14 

3.4 Kriging Model ............................................................................................................ 15 

3.5 Multivariate Adaptive Regression Splines (MARS)..................................................... 16 

3.6 Additivity and Variance Stabilization (AVAS) ............................................................ 16 

3.7 Thin Plate Splines (TPS) ............................................................................................. 16 



Simplified Physics Based Models   Table of Contents 
for CO2 Sequestration  

DOE Award No. DE-FE0009051, Task #3 v 

3.8 Support Vector Regression .......................................................................................... 16 

3.9 Radial Basis Functions (RBF) ..................................................................................... 17 

3.10 Projection Pursuit Regression (PPR) ........................................................................... 18 

4 Metamodel Evaluation ....................................................................................................... 19 

4.1 Performance Evaluation Metrics ................................................................................. 19 

4.2 Independent Validation ............................................................................................... 20 

4.3 Cross-Validation ......................................................................................................... 20 

4.3.1 k-Fold .................................................................................................................. 20 

4.3.2 Leave-One-Out .................................................................................................... 21 

4.4 Variable Importance .................................................................................................... 21 

4.5 Case Study – Arches Metamodeling ............................................................................ 22 

5 Comparison of Metamodeling Approaches ......................................................................... 27 

5.1 Problem Description ................................................................................................... 27 

5.2 Model Fit Results ........................................................................................................ 29 

5.3 Independent Validation Results ................................................................................... 31 

5.4 Cross-Validation Results ............................................................................................. 33 

5.5 Variable Importance .................................................................................................... 36 

5.6 Discussion of Results .................................................................................................. 39 

6 Summary and Conclusions ................................................................................................. 43 

7 Acknowledgments ............................................................................................................. 45 

8 References ......................................................................................................................... 46 

Appendix .................................................................................................................................. 48 

Total Storage Efficiency ........................................................................................................ 48 

Plume Radius......................................................................................................................... 55 

Average Pressure ................................................................................................................... 61 

 

 



Simplified Physics Based Models   List of Figures 
for CO2 Sequestration  

DOE Award No. DE-FE0009051, Task #3 vi 

List of Figures 
Page 

Figure 1.  An example of a Plackett-Burman design for three inputs (left) and its representation 

in the predictor space (right). ..................................................................................... 4 

Figure 2.  Central Composite design for three inputs (left) and its representation in the input 

space (right). .............................................................................................................. 5 

Figure 3.  Box-Behnken design for three inputs (left) and its representation in the predictor 

space (right). .............................................................................................................. 5 

Figure 4.  Augmented pairs design for three inputs (left) and its representation in the predictor 

space (right). .............................................................................................................. 6 

Figure 5.  A comparison of the number of unique runs needed for the different factorial designs 

described in this section. ............................................................................................ 7 

Figure 6.  Examples of LHS designs using 20 observations for two predictors. .......................... 9 

Figure 7.  Examples of maximin LHS designs using 20 observations for two predictors. ........... 9 

Figure 8.  Examples of maximum entropy designs using 20 observations for two predictors. ... 10 

Figure 9.  Comparison of the sampling designs with respect to the wrap-around L2 discrepancy 

measure. .................................................................................................................. 11 

Figure 10.  Comparison of the sampling designs with respect to the maximin distance measure. 12 

Figure 11.  Comparison of the sampling designs with respect to the entropy measure. ............... 12 

Figure 12.  CO2_R metamodel performance in 12-fold cross-validation. ................................... 25 

Figure 13.  Variable importance results for the "Total Storage Efficiency" response. ................. 37 

Figure 14.  Variable importance results for the "Plume Radius" response. .................................. 38 

Figure 15.  Variable importance results for the "Average Pressure" response. ............................ 39 

Figure 16.  Comparison of validation and cross-validation scaled RMSE values for the 

metamodels, colored by design type. ........................................................................ 40 

Figure 17.  Progression through full model fit SRMSE, validation SRMSE, and cross-validation 

SRMSE, by design, metamodel, and response. ......................................................... 41 

 



Simplified Physics Based Models   List of Tables 
for CO2 Sequestration  

DOE Award No. DE-FE0009051, Task #3 vii 

List of Tables 
Page 

Table 1.  Predictors and Responses in the Arches Dataset ....................................................... 23 

Table 2.  Metamodel Performance, 12-Fold Cross-Validation ................................................. 24 

Table 3.  Metamodel Performance, 6-Fold Cross-Validation ................................................... 24 

Table 4.  Designs and Metamodels (Size n) Used in the Study ................................................ 27 

Table 5.  Input Distributions used with LHS Sampling ........................................................... 28 

Table 6.  Full Model Fit results (Scaled RMSE shown for each combination) ......................... 29 

Table 7.  Full Model Fit results (Pseudo-R2 shown for each combination) .............................. 30 

Table 8.  Validation Study Results (Scaled RMSE shown for each combination) .................... 31 

Table 9.  Validation Study Results (Pseudo-R2 shown for each combination) ......................... 32 

Table 10. Summary of the Validation Study Findings .............................................................. 33 

Table 11.  5-fold Cross-Validation Study Results (Scaled RMSE shown for each combination) 34 

Table 12.  5-fold Cross-Validation Study Results (Pseudo-R2 shown for each combination) ..... 34 

Table 13.  Summary of the Cross-Validation Study Findings .................................................... 35 



Statistical Learning Based Models   Executive Summary 
for CO2 Sequestration  

DOE Award No. DE-FE0009051, Task #3 viii 

Executive Summary 

The objective of this research project is to develop and validate a portfolio of simplified 
modeling approaches for CO2 sequestration in deep saline formations – based on simplified 
physics, statistical learning, and/or mathematical approximations – for predicting: (a) injection 
well and formation pressure buildup, (b) lateral and vertical CO2 plume migration, and (c) brine 
displacement to overlying formations and the far-field.  Such computationally-efficient 
alternatives to conventional numerical simulators can be valuable assets during preliminary CO2 
injection project screening, serve as a key element of probabilistic system assessment modeling 
tools, and assist regulators in quickly evaluating geological storage projects.  The project team 
includes Battelle and Stanford University.  Support for the project is provided by U.S. DOE 
National Energy Technology Laboratory and the Ohio Development Service Agency Office of 
Coal Development (ODSA). 
 
This topical report presents results from Task 3 of the research, which focuses on statistical 
learning based models, with the objective of identifying and comparing several different 
ways of creating such predictive models.  These are commonly called “proxy models” or 
“metamodels” in the geoscience literature.  In applications related to subsurface flow, 
response variables of interest are often simulated with full physics mathematical models that 
are based on a large number of predictor variables.  When a deep understanding of the 
relationship between the predictors and response is required, e.g., for optimization, many 
runs of the predictors at different combinations of settings may be necessary.  Due to time 
and cost, running such a model for a large number of runs may not be feasible. The idea of a 
proxy model is to first acquire a small number of simulation runs at prescribed combinations 
of predictors, called a design matrix.  These combinations are specially chosen to be 
representative of all possible predictor settings, called the input space.  The runs are also 
chosen to allow estimation of large scale effects in the response.  Using the observed runs, a 
statistical model is then developed.  This model describes a specific mathematical 
relationship between the predictor variables and the response.   
 
A good metamodel needs to have two characteristics.  First, it must provide an accurate 
approximation of the full physics simulation.  That is, for any combination of predictor 
settings, the metamodel should predict a value of the response that is close to the value one 
would get by running the full simulation at the same settings.  Second, the metamodel must 
run orders of magnitude faster than the full physics simulation.  If these two requirements 
are met, then the metamodel may be used as a proxy for the full physics simulation, and 
since it can produce responses quickly, it can be used to explore the input space for optimal 
predictor combinations. 
 
After conducting a survey of geoscience literature, several designs and models were selected 
for the comparison study.  Regarding designs, both experimental and sampling design 
approaches were considered.  From the former group, Box-Behnken (BB) and augmented 
pairs (AP) designs were selected.  BB designs are the industry standard, and AP is a 
competitor of the BB that uses fewer runs.  From the latter group, maximum entropy (ME) 
and maximin Latin hypercube sampling (LHS) designs were selected.  LHS designs are also 
popular in the geoscience literature, and ME designs are a leading competitor. 
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Regarding modeling techniques, five different approaches were considered.  These include 
quadratic polynomial regression, which is common in oil and gas applications; kriging, 
which is a popular choice often used with LHS designs; MARS, which is another method 
often cited in the literature; and AVAS, which is a non-parametric modeling option.  In 
addition, a version of quadratic modeling that uses LASSO variable selection was also 
considered as a more refined alternative to traditional quadratic regression modeling. 
 
All 20 combinations of designs and models were used to predict each of three responses in a 9-
input full-physics simulation of CO2 injection into a closed reservoir using the compositional 
simulator, GEM.  The performance of each metamodel was evaluated by fitting to this data set 
using three criteria: root mean squared error (RMSE), scaled RMSE, and pseudo-R2.  Evaluation 
was performed both for 5-fold cross-validated predictions on the training set as well as 
predictions on an independent test set.   
 
In this latter case, the traditional approach of a BB design with a quadratic regression model 
came out as the top performer in terms of general performance scores and robustness to different 
responses.  In particular, it beat out the other models in the validation study, and was competitive 
with the top performer in the cross-validation study.  Of the other models, the maximin LHS with 
either kriging or quadratic regression models also showed good performance and robustness to 
different responses.   
 
The poorest performing design was augmented pairs (AP), which was not competitive with the 
other three designs.  This could be due to the fact that the AP design has fewer runs and is 
designed to work best with linear modeling approaches like quadratic regression.  It does not 
have the kind of space-filling characteristics that one would expect for good performance using 
the other types of models.  The worst performing modeling approaches were MARS and AVAS, 
which showed decent performance on some responses, but poor results on others. 
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1 Introduction 

1.1 Background 

To understand the behavior of a response function with respect to multiple predictor values, one 
typically needs a large number of observations to adequately cover the input space. An 
inefficient approach is to compute the response for all combinations of predictor values chosen 
on a suitably fine grid. Usually, this is not feasible. In physical experiments, some combinations 
of predictors may not be available to the experimenter, or may produce responses that are beyond 
the capability of the instrumentation to measure. In simulated experiments (e.g., finite element 
computer models), a large amount of computation may be required to collect each response. 
Therefore, computing responses over a grid of predictor values may take too long, or be too 
expensive to complete. 

The standard method for avoiding costly data collection is to only observe the response at a 
subset of predictor values, and then fit a metamodel (also called a “proxy model” or “response 
surface model” or “reduced-order model”) to those points. Metamodels approximate the response 
at unobserved combinations of predictor values using the available sampled data, and are 
typically designed for rapid prediction. In this way, an approximate response surface can be 
generated for the entire input space in a short amount of time, and it can subsequently be used to 
meet project-specific research goals. 

1.2 Previous Work 

In the oil and gas literature, metamodels are often used as proxies for the underlying simulation 
models, especially for optimization and uncertainty quantification studies. Osterloh (2008) [1], 
Ekeoma and Appah (2009) [2], and Zubarev (2009) [3] provide overall guidance on sampling 
and metamodeling strategy for reservoir simulations. In particular, Osterloh (2008) [1] examines 
Latin hypercube sampling (LHS) designs and compares polynomial and kriging metamodels, 
Ekeoma and Appah (2009) [2] focuses specifically on LHS designs, and Zubarev (2009) [3] 
compares polynomial, kriging, thin plate spline, and artificial neural network metamodels. 

There are also examples of specific case studies in which metamodeling was used. Kalla and 
White (2005) [4] compared a second order polynomial model and kriging model using an 
orthogonal array (OA) sample design in a gas coning case study. In this case, the second order 
polynomial outperformed kriging with a 36-run design in 14 variables. Anbar (2010) [5] settled 
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on first order polynomial models for fitting outputs of a CMG STARS simulation for CO2 
sequestration in deep saline carbonate aquifers. The models were fit using LHS designs of size 
100 over 16 variables. Finally, Wriedt et al. (2014) [6] used a Box-Behnken design and a 
stepwise quadratic regression model to develop probability distributions for responses related to 
CO2 injection into deep saline reservoirs. 

1.3 Scope and Organization 

The aim of this research project is to evaluate and compare several combinations of study 
designs and metamodeling techniques in the context of injection of CO2 into a closed-volume 
reservoir. In conducting this research, there are two outcomes of interest. First of all, as in the 
studies mentioned above, this study provides another piece of information regarding which 
designs and metamodels are most effective in this application area. Such information may be of 
use to other investigators who work in carbon sequestration. Secondly, the hope is that this task 
produces one or more metamodels that can predict the simulated responses with an acceptable 
degree of accuracy, and can be compared to some of the other simplified approaches being 
investigated under this project. 

The remainder of this document contains a more detailed description of this study and the results. 
Sections 1 and 1 contain background information on experimental designs and metamodels, 
respectively, that are commonly used in response surface modeling. Section 1 identifies several 
frameworks for evaluating such metamodels. Section 4.5 describes a case study that was carried 
out using pre-existing data from the Arches province in the American Midwest. This work was 
the subject of a presentation at the 8th International Congress on Environmental Modelling and 
Software (iEMSs), and subsequent publication in the conference proceedings. Finally, Section 5 
describes the application of the methodology from Section 4 using results of a reservoir 
simulation study of CO2 injection into a bounded saline formation. 
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2 Experimental Designs 

2.1 Factorial Designs 

Factorial designs are typically used for variable screening or response surface optimization. 
These designs set each of the predictor variables at one of several levels, usually a “low” and 
“high”, or a “low”, “center”, and “high”. Typically, “low”, “center”, and “high” levels are 
denoted -1, 0, and +1, respectively. When the number of inputs is small, factorial designs can use 
a relatively small number of runs to explore the predictor space and allow estimation of simple 
linear or quadratic models, which can in turn be used to identify the regions of the space 
corresponding to optimal response values. As long as the response surface can be adequately 
modeled with simple functions, factorial designs are sufficient; however, other designs may be 
necessary for understanding the behavior of more complex functions (see Section 2.2). As the 
number of inputs increases, full factorial designs can get quite large due to exponential growth in 
the number of runs. In that case, smaller factorial designs can be used to understand the response 
surface. A description of several of those designs is given below. 

2.1.1 Plackett-Burman 

Plackett-Burman designs [7] are a class of designs that are chosen to provide the best possible 
estimates of the main effects of the predictors on the response. Main effect estimates for 
Plackett-Burman designs have the minimum variance possible for a limited number of runs. The 
designs themselves are chosen so that each unique combination of levels for every pair of 
predictors appears the same number of times throughout the design. Typically, there are only two 
levels (+1 and -1) assigned for each input. While main effects are estimable, interaction effects 
between predictors are typically confounded with the main effects and cannot be separated 
without additional runs. Plackett-Burman designs for k inputs can have a number of unique runs 
anywhere between the nearest multiple of 4 from k (not any larger than k + 4) and 2k runs, where 
they become full 2k factorial designs. One example of a Plackett-Burman design is shown in 
Figure 1. In this case, the design has 12 runs over 3 inputs, although there are only 23 = 8 unique 
runs; the other runs are duplicates. 
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X1 X2 X3 

 
 

1 1 1 

-1 1 -1 

-1 -1 1 

-1 -1 -1 

1 -1 -1 

1 1 -1 

1 1 1 

-1 1 1 

1 -1 1 

-1 1 -1 

-1 -1 1 

1 -1 -1 

   
Figure 1.  An example of a Plackett-Burman design for three inputs (left) and its 

representation in the predictor space (right). 
 

2.1.2 Central Composite and Box-Behnken 

Central Composite (CC) and Box-Behnken (BB) [8] designs are related methods that use three 
levels for each predictor. Both designs make judicious use of observations and allow estimation 
of linear and quadratic terms in a polynomial surface model. The CC design samples points at 
the corners of a hypercube in the input space and at points at the centers of the faces, as shown in 
Figure 2. In contrast, the BB design samples points along the edges of the hypercube, as shown 
in Figure 3. One commonly cited disadvantage to the CC design is that combinations where 
multiple predictors have simultaneous extreme values (i.e., at the corners of the hypercube) are 
typically unrealistic. The BB design places observations at less extreme predictor combinations 
to provide a better model fit over the center of the space.  
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X1 X2 X3  

 

 

-1 -1 -1 
-1 -1 +1 
-1 +1 -1 
-1 +1 +1 

-1.68 0 0 
0 -1.68 0 
0 0 -1.68 
0 0 0 
0 0 1.68 
0 1.68 0 

1.68 0 0 
+1 -1 -1 
+1 -1 +1 
+1 +1 -1 

+1 +1 +1 

   
 

Figure 2.  Central Composite design for three inputs (left) and its representation in the 
input space (right). 

 

X1 X2 X3 

 

-1 -1 0 
-1 0 -1 
-1 0 +1 
-1 +1 0 
0 -1 -1 
0 -1 +1 
0 0 0 
0 +1 -1 
0 +1 +1 

+1 -1 0 
+1 0 -1 
+1 0 +1 

+1 +1 0 

    

Figure 3.  Box-Behnken design for three inputs (left) and its representation in the 
predictor space (right). 
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2.1.3 Augmented Pairs 

The augmented pairs (AP) design described by Morris (2000) [9] is an alternative to Central 
Composite and Box-Behnken designs, and is made to work well with sequential response surface 
search and optimization procedures. The strength of the AP design is that it builds the latter 3-
level targeted design by augmenting the 2-level design used in the initial exploration phase. In 
this way, none of the runs are wasted. To construct an AP design, one begins with a 2-level 
(preferably orthogonal) design, with observations at various combinations of {-1, +1} for the 
different factors. An example of such a design is the Plackett-Burman design. To augment the 
design, first n0 center-point replicates are added (e.g., repeated runs with level 0 for all factors). 
Next, each pair of runs in the 2-level design are used to construct a new single run, where the 
levels of the factors in the new run are Lnew = -0.5*(L1 + L2). Here, L1 and L2 are the factor levels 
in the two parent runs, so that the new level of the factor will be 0 if the original runs were at +1 
and -1, -1 if both original runs were at +1, or +1 if both original runs were at -1. The resulting 
design is smaller in size than a CC or BB design, but still retains many of their advantages. 
 
 

X1 X2 X3 

 

0 0 0 

1 1 1 

-1 1 -1 

1 -1 -1 

-1 -1 1 

0 1 0 

1 0 0 

0 0 1 

0 0 -1 

-1 0 0 

0 -1 0 

   
 

Figure 4.  Augmented pairs design for three inputs (left) and its representation in the 
predictor space (right). 
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2.1.4 Run Comparison 

Figure 5 shows a comparison of the number of unique runs required by each type of factorial 
design described above. The most expensive design is a full 2-level factorial design, which has 2k 
runs for k inputs (see the curve indicated in magenta). Such designs are a special case of 
Plackett-Burman design, but Plackett-Burman designs can have as low as k + 1 runs. The 
minimum number of runs for a Plackett-Burman design is shown in Figure 5 in cyan. Note, 
however, that such designs do not allow estimation of much more than the main effects of the 
inputs, and are not good in general for response surface modeling. Of the 3-level designs, the 
Box-Behnken and Central Composite designs (red and green, respectively) have comparable 
numbers of unique runs, while the augmented pairs design typically has fewer runs. The 
maximum number of 3-level runs possible is 3k (not shown). 
 

 

Figure 5.  A comparison of the number of unique runs needed for the different factorial 
designs described in this section. 
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2.2 Sampling Designs 

For smooth, well-behaved responses, factorial designs provide a means of fitting polynomial 
surfaces (e.g., linear for two-level designs, quadratic for three-level designs) to the data to guide 
further exploration in the predictor space. Because they were developed in the tradition of 
modeling physical experiments, predictors in these designs are only set to one of a few levels in 
each run; this allows the estimation of predictor effects (i.e., through an ANOVA decomposition) 
and the magnitude of the random variability present in the system. 

In this case, the goal is to fit a metamodel to the output of deterministic simulation code. That is 
to say, the variability in the system is zero. There is less of a need to sample predictors at one of 
a small set of values from run to run, since estimating variability is no longer required. 
Furthermore, it is possible that the simulation surface is not smooth and well-behaved. There 
could be local discontinuities present that cannot be easily observed from a factorial design that 
only examines behavior at the low, center, and high end of the ranges for each predictor.  

An alternative approach is a sampling design, which has runs that are not restricted to low, 
center, and high values of each predictor. Instead, the samples are randomly chosen across the 
ranges of values for each predictor. Generally, the goal is to spread observations across the 
predictor space with as few “holes” or “gaps” as possible. 

2.2.1 Purely Random Design 

The most basic sampling design is a simple random sample over the input space. Observations 
are chosen by drawing independent random samples of size n over the range of possible values 
for each input. The result is a design with n runs. Variations on this approach could use different 
marginal distributions in the sampling of the inputs, or possibly include draws from a joint 
distribution over subsets of inputs. Random designs are easy and straightforward to produce. 
However, they could also suffer from poor “space-filling” characteristics. That is, multiple 
observations frequently end up clustered in one part of the space and provide largely redundant 
information about the behavior of the response surface in that region. Other parts of the space 
may be sparsely populated, and the redundant observations could be put to better use filling in 
those gaps.  

2.2.2 Latin Hypercube Sampling 

A Latin hypercube sample (LHS) design described by McKay et al. (1997) [10] is intended to fill 
the predictor space by randomly selecting observations in equal probability bins across the range 
of the inputs. These designs sample values in [0, 1] for each of the inputs at each design point. 
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The sampling is done in such a way that for a sample of size n, there will be exactly one 
observation in each of the intervals [0, 1/n), [1/n, 2/n), …, [(n-1)/n, 1] for each of the inputs.  

In practice, the [0, 1] bounds on the values in LHS samples are interpreted to be a probability, 
and the design points are transformed through some probability distribution on the inputs. This 
has the effect of spreading the sampled points across equal regions of probability for each input, 
according to the chosen distribution. Several examples of LHS designs are shown in Figure 6 for 
two predictors. 

 

Figure 6.  Examples of LHS designs using 20 observations for two predictors. 
 

2.2.3 Maximin LHS 

A maximin LHS design described by Johnson et al. (1990) [11] is created by generating a large 
number (e.g., thousands) of LHS designs and selecting the design that has the largest value of the 
function 
 

𝑀(𝐱1, 𝐱2, … , 𝐱𝑛) = 𝑚𝑚𝑚𝑖,𝑗 �𝐱𝑖 − 𝐱𝑗�, 
 

where 𝐱1, 𝐱2, … , 𝐱𝑛 are the n sampled observations and �𝐱𝑖 − 𝐱𝑗� is the Euclidean distance 
between observations i and j. In other words, the maximin LHS design is the one that maximizes 
the minimum distance between any pair of observations in the sample. Examples of maximin 
LHS designs are shown in Figure 7. 
 

 

Figure 7.  Examples of maximin LHS designs using 20 observations for two predictors. 
 

Maximizing the minimum distance between any pair of points has the effect of spreading the 
observations out as much as possible across the input space, under the constraint that the design 
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is still based on a Latin hypercube. Maximin LHS designs, therefore, tend to have better space-
filling characteristics. With a generic LHS design, there is a rare chance that, for example, all of 
the runs could be drawn from bins along the diagonal of the hypercube. This would result in a 
poor design for response surface modeling. Since maximin designs are selected from hundreds or 
thousands of candidate models, the chance of such a diagonal model is infinitesimally small. In 
general, for any location in the input space, the distance to the closest observation will be on 
average less in a maximin LHS design than in a generic LHS design.  

2.2.4 Maximum Entropy 

Maximum entropy designs described by Shewry and Wynn (1987) [12] are also designed to have 
space-filling characteristics. The design is chosen to maximize the amount of “information” 
given by the sample, which in this case is captured by the entropy measure as defined in 
Shannon’s information theory [13]. One way to do this is to maximize the determinant of the 
correlation matrix 𝐂 = (𝑟[𝑖, 𝑗]), where 
 

𝑟[𝑖, 𝑗] = �
1 − Γ(ℎ𝑖𝑖) 𝑖𝑖 ℎ𝑖𝑖 ≤ 𝑎

0 𝑖𝑖 ℎ𝑖𝑖 > 𝑎 . 

 

Here, hij is the distance between two observations xi and xj and Γ�ℎ𝑖𝑖� is a spherical variogram 
with range a, defined by 
 

Γ(ℎ) = 3ℎ
2𝑎
− 1

2
�ℎ
𝑎
�
3
. 

 

Maximum entropy designs are not restricted to equal probability bins, as LHS designs are. 
Several examples of these designs are shown in Figure 8. 

 

Figure 8.  Examples of maximum entropy designs using 20 observations for two 
predictors. 

2.2.5 Design Comparison 

The figures below show comparisons of the various types of sampling designs with respect to 
several space-filling criteria. The wrap-around L2 discrepancy described by Hickernell (1998) 
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[14], WL2, measures the difference between the number of design points per sub-volume 
compared to the same count for a uniform distribution of points across the input space. It is 
computed with the formula shown below, where p is the number of inputs, and 𝐱1, 𝐱2, … , 𝐱𝑛 are 
the n observations (i.e., design runs). 

𝑊𝑊2 = −�
4
3�

𝑝

+
1
𝑛2����

3
2 −

�𝑥𝑖𝑘 − 𝑥𝑗𝑘��1 − �𝑥𝑖𝑘 − 𝑥𝑗𝑘���
𝑝

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 

The second criterion is the maximin criterion described in Section 2.2.3: 

 𝑀 = 𝑚𝑚𝑚𝑖,𝑗 �𝐱𝑖 − 𝐱𝑗� 
 

The final criterion is the entropy measure, defined as 𝐸 = det (𝐂), where the matrix 𝐂 = (𝑟[𝑖, 𝑗]) 
as described in Section 2.2.4. 

To compare the space-filling characteristics of each of the sampling designs, 100 designs of each 
type were sampled over n = 20 runs and d = 2 inputs. Each of the three criteria were then 
computed for each design. Comparisons of the designs are shown in Figure 9, Figure 10, and 
Figure 11, corresponding to wrap-around L2 discrepancy, maximin, and entropy measures, 
respectively. Maximum entropy is the top performer for two of the metrics, including the 
maximin measure. It is able to outperform the maximin LHS design in the latter case because it 
is not bound by the restriction to be a Latin hypercube design. In terms of wrap-around L2 
discrepancy, maximin LHS is the clear winner. 

 

Figure 9.  Comparison of the sampling designs with respect to the wrap-around L2 
discrepancy measure.  

Smaller values indicate better space-filling characteristics. 
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Figure 10.  Comparison of the sampling designs with respect to the maximin distance 
measure.  

Larger values indicate better space-filling characteristics. 

 

 

Figure 11.  Comparison of the sampling designs with respect to the entropy measure.  
Larger values indicate better space-filling characteristics. 
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3 Metamodeling 

3.1 Introduction 

After deciding on an experimental design, the experiment can be run at each of the prescribed 
predictor settings, and the responses can be observed. Using the design and the observed 
response, a response surface model may be used to predict what the response would have been at 
an unobserved combination of predictor values. In the context of computer experiments, where 
the response being modeled is the result of deterministic computer code, the response surface 
model is also referred to as a proxy model or a metamodel. Both terms capture the fact that one is 
using a model (i.e., the metamodel) to predict the output of another model (i.e., the deterministic 
computer code). 

There are many variations of metamodels, but the goal is generally the same for all of them. 
Some assumptions are made about either the shape of the response surface, its smoothness, 
and/or the correlation in responses between points that are close in the space. The parameters for 
these assumptions are estimated with the sampled observations, and a criterion is optimized. 
Typically, that criterion balances the smoothness and simplicity of the surface with its ability to 
match available data. 

3.2 Quadratic Model 

The quadratic polynomial model fits a parametric model to the response that is the analogue of 
the parabola in p dimensions. It is defined as a sum of all linear, quadratic, and pair-wise cross-
product terms between predictors. That is, the approximating function 𝑓(𝐱) is defined by: 
 

𝑓(𝐱) = 𝑦� = 𝑏0 + �𝑏𝑖𝑥𝑖

𝑝

𝑖=1

+ �𝑏𝑖𝑖(𝑥𝑖)2 + ��𝑏𝑖𝑖𝑥𝑖𝑥𝑗
𝑗>𝑖

𝑝

𝑖=1

𝑝

𝑖=1

 

 

The coefficients in the quadratic polynomial model are estimated by solving the linear model Y 
= XB, where  
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𝐘 = �

𝑓(𝐱1)
𝑓(𝐱2)
⋮

𝑓(𝐱𝑛)

� , 𝐗 =

⎝

⎜
⎛

1 𝑥11 …
1 𝑥12 …

𝑥𝑝1 (𝑥11)2 …
𝑥𝑝2 (𝑥12)2 …

�𝑥𝑝1�
2

𝑥11𝑥21

�𝑥𝑝2�
2

𝑥12𝑥22
𝑥11𝑥31 … 𝑥𝑝−11 𝑥𝑝1

𝑥12𝑥32 … 𝑥𝑝−12 𝑥𝑝2

⋮ ⋮
1 𝑥1𝑛 …

⋮ ⋮
𝑥𝑝𝑛 (𝑥1𝑛)2 …

⋮ ⋮
�𝑥𝑝𝑛�

2
𝑥1𝑛𝑥2𝑛

⋮ ⋮
𝑥1𝑛𝑥3𝑛 … 𝑥𝑝−1𝑛 𝑥𝑝𝑛⎠

⎟
⎞

,  

and 

 𝐁 = �𝑏0, 𝑏1, … , 𝑏𝑝, 𝑏11, … , 𝑏𝑝𝑝, 𝑏12, 𝑏13, … , 𝑏𝑝−1,𝑝�
𝑇
. 

 

The solution is given by 𝐁� = (𝐗′𝐗)−1𝐗′𝐘. This is a special case of multivariate linear regression. 

3.3 Quadratic Model with LASSO Variable Selection 

Typically, in industry, the analyst will perform a variable selection technique before proceeding 
with a quadratic fit. This could be done, for example, using exploratory analysis, stepwise 
regression, or comparison of candidate models using information criteria like AIC or BIC. 
Ultimately, the final model fit will only use a subset of the main effects, interactions, and 
squared effects. This results in a parsimonious model and can often lead to better predictions 
because noisy, less relevant covariates have been removed from consideration. 

One way of performing variable selection is through an automatic procedure based on LASSO 
regression. LASSO (Least Absolute Shrinkage and Selection Operator) regression described by 
Tibshirani (1966) [15] is a technique for fitting a basic multiple linear regression model while 
shrinking the coefficients toward zero. Mathematically, this is done by adding a penalty term to 
the least squares term in the objective function for linear regression. LASSO regression has the 
interesting property that some of the fitted coefficients will be exactly zero. In these cases, 
LASSO serves as a variable selection algorithm where variables whose coefficients are zero are 
removed from the model. 

The full procedure for the LASSO variable selection and quadratic fit is as follows: 

1. Determine an appropriate value of λ using 10-fold cross-validation on the root mean 
squared error (RMSE) of the regression fit. 

2. Fit a LASSO model using the quadratic regression model: 
 

𝑓(𝐱) = 𝑦� = 𝑏0 + �𝑏𝑖𝑥𝑖

𝑝

𝑖=1

+ �𝑏𝑖𝑖(𝑥𝑖)2 + ��𝑏𝑖𝑖𝑥𝑖𝑥𝑗
𝑗>𝑖

𝑝

𝑖=1

𝑝

𝑖=1
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3. Identify which coefficients (b0, bi, bij, bii) are non-zero in the LASSO model. Remove 
all main effects, interactions, and squared terms that are associated with the zero 
coefficients. 

4. Refit an OLS regression model using only the remaining terms from the LASSO model. 
 

3.4 Kriging Model 

The kriging model described by Simpson et al. (1998), Cressie (1993), and Krige (1951) [16-18] 
has an approximation function that is composed of a trend term and an autocorrelation term. That 
is, 
 

𝑓(𝐱) = 𝜇(𝐱) + 𝑍(𝐱), 
 

where 𝜇(𝐱) is the overall trend and Z(𝐱) is the autocorrelation term. Z(𝐱) is treated as the 
realization of a mean zero stochastic process with a covariance structure given by 𝐶𝐶𝐶�𝑍(𝐱)� =
𝜎2𝐑, where R is an n×n matrix whose (𝑖, 𝑗)th element is the correlation function 𝑅�𝐱𝑖, 𝐱𝑗� 
between any two of the sampled observations 𝐱𝑖 and 𝐱𝑗. Ordinary kriging assumes a scalar trend 
(𝐱) = 𝜇0 , whereas universal kriging uses a parametric trend term.  

In this study, the Matérn(5/2, θ) correlation below is used, where, 𝑑𝑘 = �𝑥𝑘𝑖 − 𝑥𝑘
𝑗�. The Matérn 

correlation is often favored for kriging models because it tends to produce estimates that are 
smoother on a local level than other common alternatives structures, like the exponential. 
However, it is also more flexible than Gaussian correlation, which can be overly smooth. 
 

𝑅�𝐱𝑖, 𝐱𝑗� = ��1 +
𝑑𝑘√5
𝜃𝑘

+
5𝑑𝑘2

𝜃𝑘2
� 𝑒𝑒𝑒�−

𝑑𝑘√5
𝜃𝑘

�
𝑝

𝑘=1

 

 

In the universal kriging model, the quadratic polynomial trend term below was used. 
 

𝜇(𝐱) = 𝑏0 + �𝑏𝑖𝑥𝑖

𝑝

𝑖=1

+ �𝑏𝑖𝑖(𝑥𝑖)2 + ��𝑏𝑖𝑖𝑥𝑖𝑥𝑗
𝑗>𝑖

𝑝

𝑖=1

𝑝

𝑖=1
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3.5 Multivariate Adaptive Regression Splines (MARS) 

MARS models described by Friedman (1991) [19] approximate the response surface using a 
collection of simple step and hinge functions (described below). Each function is only defined 
over a particular region of the input space, and all of the functions collectively form a single 
piecewise function over the full input space. The model is defined by: 
 

𝑓(𝐱) = ∑ 𝑐𝑖𝐵𝑖(𝐱)𝑘
𝑖=1 , 

 

where each Bi is a basis function that is constant, a hinge function, or a product of two or more 
hinge functions. Hinge functions are flat at zero over a portion of the space and linear elsewhere. 
In the case of a single variable x, a hinge function takes the form max (0, 𝑥 − 𝑞) or max (0, 𝑞 −
𝑥) for a constant q. Here, q is the location of the hinge, also called a knot. 

3.6 Additivity and Variance Stabilization (AVAS) 

The AVAS model described by Breiman and Friedman (1985) and Tibshirani (1988) [20, 21] 
uses a non-parametric, iterative procedure to find some transformation of the response that can 
be represented as a sum of transformed predictors. That is, it finds functions g0, g1, …, gp such 
that: 
 

𝑔0�𝑓(𝐱)� = �𝑔𝑖(𝐱𝑖)
𝑝

𝑖=1

 

3.7 Thin Plate Splines (TPS) 

TPS, as described by Duchon (1977), [22] are a generalization of splines in multiple dimensions. 
The name refers to the modeling of the response using a surface analogous to a thin semi-rigid 
sheet of metal. This surface can be deformed to fit the response, but at the expense of a penalty 
applied for non-smoothness. 

3.8 Support Vector Regression 

Support vector regression (SVR) is closely related to support vector machines (SVMs), which 
are widely used in classification tasks. In the case of SVR as described by Drucker (1977) [23], 
the p-dimensional input vectors x are represented by a d-dimensional set of features z, where 
each element of the vector z is some function of the values in x. For example, z could contain 
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each of the terms in a polynomial formulation of the inputs. Given the features z, the support 
vector regression model is given by 
 

𝑓(𝐱) = 𝐳′𝐰, 
 

where w is a vector of real-valued linear model parameters. The estimation of the parameter 
vector w is done with two goals in mind: (i) allow errors no larger than ε when comparing actual 
and predicted responses, and (ii) make the function as “flat” as possible. These requirements are 
formally stated as: 
 

minimize  1
2
‖𝐰‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑙

𝑖=1  
 

subject to  �
𝑓(𝐱) − 𝑓(𝐱) ≤ 𝜀 + 𝜉𝑖
𝑓(𝐱) − 𝑓(𝐱) ≤ 𝜀 + 𝜉𝑖∗

𝜉𝑖, 𝜉𝑖∗ ≥ 0
 

 

Here, 𝜉𝑖 and 𝜉𝑖∗ are “slack” variables that, together with the tuning parameter C > 0 specify the 
tradeoff between the flatness and accuracy of the predictive function. 

The model is fit using a quadratic programming approach that depends only on knowing the dot 
product between observations. For this reason, the “kernel trick” can be used to specify non-
linear SVR models, in which case the feature vector z and model parameters we are not 
explicitly given. 

3.9 Radial Basis Functions (RBF) 

Radial basis functions described by Chen et al. (1991) [24] are any functions that depend solely 
on the distance of an observation to some fixed location c. That is, an RBF 𝜙(∙) satisfies𝜙(𝐱) =
𝜙(‖𝐱 − 𝐜‖). An RBF regression model takes the following form. 
 

𝑓(𝐱) = 𝑏0 + �𝑏𝑖𝜙𝑖(‖𝐱 − 𝐱𝑖‖)
𝑝

𝑖=1

 

 

That is, the response surface is approximated by a weighted sum of radial basis functions, each 
of which depends on the distance from the location of interest, x, and one of the sampled 
observations, xi. The regression weights bi are then trained using an ordinary least squares 
approach. Other variations on this theme may be used to improve model fit. One way to provide 
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a smoother fit is to include a smaller number of basis functions that involve alternative centers 
c1, c2, …, cp’ instead of x1, x2, …, xp, where p’ << p. Another alternative is to allow the 
parameters of the 𝜙𝑖(∙) functions to vary by location. 

3.10 Projection Pursuit Regression (PPR) 

PPR is an iterative procedure that estimates the response surface in a nonparametric fashion 
using linear combinations of the predictors.   
 

𝑓(𝐱) = �𝑔𝑘(𝐳𝑘)
𝐾

𝑘=1

= �𝑔𝑘(𝛂𝑘′ 𝐱)
𝐾

𝑘=1

= �𝑔𝑘 ��𝛼𝑘𝑘𝑥𝑖

𝑛

𝑖=1

�
𝐾

𝑘=1

 

 

Here, the weights αk define a projection of the variables in observation x to a new variable zk. 
The functions gk are smooth univariate functions (e.g., a linear approximation or spline fit). To 
fit this model, the response is centered and the residuals are initialized to the response values. At 
each iteration in the model fitting, the projection αk is chosen to maximize the amount of 
variability in the residuals r1, r2, …, rn that can be explained. That is, αk is chosen as 𝛂𝑘 =
arg𝑚𝑚𝑚𝛂  𝐼(𝛂), where 
 

𝐼(𝛂) = 1 − ∑ �𝑟𝑖−𝑔(𝛂′𝐱)�𝑛
𝑖=1

∑ 𝑟𝑖
2𝑛

𝑖=1
. 

 

In this sense, projections are chosen in pursuit of explaining the variability in the residuals. After 
selecting the projection αk, the residuals are updated for the next iteration. The model fitting 
process ends when residuals are sufficiently small to trigger a stopping threshold. 
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4 Metamodel Evaluation 

4.1 Performance Evaluation Metrics 

The most desirable property of a metamodel is that it will provide the closest match between the 
prediction and the truth for future independent test data. When comparing different metamodels, 
it is useful to be able to capture the quality of the metamodel fit in a single statistic. There are 
many ways to do this, but two of the most common are root mean squared error (RMSE) and R2.  
RMSE is defined as the square root of the average squared difference between predictions 
𝑦�𝑖 = 𝑓�𝐱𝑖� and true response values 𝑦𝑖 = 𝑓�𝐱𝑖� for a set of observations{𝐱1, 𝐱2, … , 𝐱𝑛}. 
 

𝑅𝑅𝑅𝑅 = �
1
𝑛�

(𝑦𝑖 − 𝑦�𝑖)2
𝑛

𝑖=1

 

 

The RMSE can also be normalized by, for example, dividing it by the median observed response. 
This puts it on a similar scale regardless of the response, allowing for comparison of metamodel 
fits to different response surfaces. 
 

"Scaled" 𝑅𝑅𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑆 =
�1
𝑛∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=1

𝑚𝑚𝑚𝑚𝑚𝑚{𝑦1, 𝑦2, … , 𝑦𝑛} 

 

Another metamodel accuracy measure is R2, which is defined as the amount of variation in the 
response that is explained by the predictors. In a simple linear regression model, the R2 statistic 
is the square of the correlation between the actual and predicted response values. For other 
models, a pseudo-R2 statistic is typically used. 
 

Pseudo-𝑅2 = 𝑅𝑝2 = 1 −
𝑆𝑆𝑚𝑚𝑚𝑚𝑚

𝑆𝑆𝑒𝑒𝑒𝑒𝑒
= 1 −

∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

 

 

Note that while R2 in simple linear regression is always in [0, 1], the pseudo-R2 is in [-∞, 1]. A 
negative pseudo-R2 statistic means the model predicts the response worse than a flat model that 
predicts the mean observed response value everywhere in the predictor space. 
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4.2 Independent Validation 

The most straightforward way to quantify the accuracy of a metamodel is to collect new, 
independent test data that were not involved in training the model. The metamodel is then used 
to produce predictions of the response at those test locations, and an RMSE or pseudo-R2 statistic 
can capture the quality of the fit. If these statistics have favorable values, then the model can be 
considered accurate over the region of the predictor space “covered” by the test observations. For 
this reason, it is important to select independent test data that span the region of the predictor 
space of interest to the investigator, and that they are selected in a sufficient density to capture 
variation in the response surface at a resolution fine enough to meet the needs of the study. 

4.3 Cross-Validation 

In many cases, independent test data are not available at the time of model fitting. In this case, 
one must use the training data to measure model accuracy. One approach is to fit a metamodel 
using all available training data, then calculate model accuracy statistics based on those training 
observations. In this case, the statistics will be biased optimistically, since the metamodel first 
and foremost is designed to fit those particular observations well. An overtrained model will fit 
the training data very well, but perform poorly on independent test data. 

4.3.1 k-Fold 

A better approach is to use a k-fold cross-validation approach (see, e.g., Hastie et al. (2008) [25], 
Chapter 7). Under this paradigm, the dataset is randomly partitioned into k folds, which are 
mutually exclusive and exhaustive subsets of the observations. Each fold is then systematically 
held out and the metamodel is fit to a dataset consisting of only the remaining k – 1 folds. This 
model is then used to make a prediction on the fold that was left out. After repeating this process 
on all k folds, there are a total of k models that are constructed, each of which are used to predict 
the value of the single fold that was left out of the training set. 

While the cross-validation approach does not specifically test the unique model that is created by 
using all n training observations together, it does test the algorithm that is used to construct the 
model. When each fold is held out of the training set, it will behave like independent test data as 
far as that particular model is concerned. Therefore, the error magnitudes from the cross-
validation more accurately reflect error rates in the model fit over parts of the response surface 
that have not been sampled. 
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In general, selecting the number of folds k is a balance between the bias in estimating the model 
accuracy and the variance in model fits. If k is small (i.e., each fold contains many observations), 
the model fits will be made using a smaller subset of the dataset, with less overlap in training 
data between models. This can result in large variations in the models as successive folds are 
held out, and thus create highly variable estimates of model accuracy from fold to fold. If k is 
large (i.e. each fold contains only a few observations), the model fits will be less variable, since 
most of the training data will be in common between fits. However, estimation of model 
accuracy will tend to be more optimistically biased, since all of the models will begin to look 
similar to the full model trained using all n observations. The rule of thumb is to use somewhere 
between k = 5 and k = 10 (see discussion in Hastie et al. (2008) [25], Ch.7). 

4.3.2 Leave-One-Out 

Leave-one-out cross-validation is the extreme case of k-fold cross-validation where k = n. That 
is, each fold is a single observation. In this case, each cross-validation model is fit with n – 1 
observations and then used to predict the response at the single observation that was left out of 
the training data. Although this is a popular approach to measuring model accuracy, it can lead to 
optimistic estimates of model quality due to the low variance of model fits from fold to fold. It 
can also come with a high computational cost, as n – 1 different models need to be trained. 

4.4 Variable Importance 

Often, it is of interest to identify which of the inputs are the drivers of the model response. This 
can aid in narrowing down the set of input values that produces an optimum response, or can 
allow for a more parsimonious explanation of the interactions between the inputs and the 
response. Determination of a variable’s importance can be approached in a number of ways. 

For example, in classical experimental design, the coefficients of each input in an ANOVA 
model, along with the associated standard error and significance, can be used to rank the 
variables and remove the insignificant ones from the model. Such a procedure has even been 
automated in stepwise model-fitting approaches. Some other models have their own specific 
methods for determining variable importance, as well. 

One more general method for assigning variable importance is to compute the R2 loss. The 
reasoning behind this approach is that removing important inputs from the model will result in 
models that have much worse predictive ability. In contrast, removing inputs that are not 
important should have a minimal effect on the quality of the model fit. The pseudo-R2 value (see 
Section 4.1) is one way of capturing how well the inputs are able to explain the variability in the 
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response. Therefore, an input’s importance can be measured by how large a reduction in the 
pseudo-R2 occurs as a result of removing that input from the model. A summary of the procedure 
is given below. 

1. Fit a model of the response using all of the inputs. Compute the pseudo-R2 for this 
full model, and call it 𝑅𝑓𝑓𝑓𝑓2 . 

2. Fit a reduced model of the response using all inputs except input k. Compute the 
pseudo-R2 for the reduced model, and call it 𝑅−𝑘2 . 

3. Define the importance of input k to be 𝐼𝑘 = 𝑅𝑓𝑓𝑓𝑓2 − 𝑅−𝑘2  
 

4.5 Case Study – Arches Metamodeling 

During this year, a preliminary study for Task 3 was conducted using an existing dataset from 
the Arches province in the American Midwest, which is described by Mishra et al. (2014) [26]. 
In that study, single-well simulations of CO2 injection into a closed volume (as would be the case 
in a network of wells employed for regional scale CO2 storage) were carried out using the 
STOMP-CO2 simulator described in White et al. (2012) [27]. Stratigraphic columns 
corresponding to three different ratios of reservoir (Mount Simon sandstone, MS) and caprock 
(Eau Claire shale, EC) thickness were considered, with different depths to injection zone in each 
case. 

For each synthetic site case, simulations with 4 different well patterns (33, 44, 55, and 
66 well arrays), and 3 different permeability group variations (High k, Medium k, and Low k) 
were run. Each permeability group consists of a set of correlated variables: permeability of MS, 
permeability of EC, and the capillary entry pressure. This brings the total number of simulations 
to 343 = 36. Simulations of pressure-constrained injection (at 90% of the fracture pressure) 
were carried out using a 2-D r-z model with 20 vertical rows and 100 radial columns. The 
predictors and response variables extracted from the simulations are described in Table 1. 

Since the Arches dataset contains only 36 observations and 3 predictors, there is clearly the 
potential for highly variable model fits if k is too small. For this study, k was chosen to be 12, 
which places 3 observations within each fold. Since model fits are being made with 33 
observations, they are unlikely to vary wildly from fold to fold. Also, with such a small sample 
size, bias is unlikely to be a problem since all of the observations carry a lot of weight in the 
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model fitting process. This guarantees that a model created with one fold removed will be 
different than the model trained using all of the data.  

Table 1.  Predictors and Responses in the Arches Dataset 

Predictor Description 

D Depth to injection (m), which affects the fracture pressure, and hence, the maximum 
pressure differential under which injection can be carried out 

L Well spacing (m), which determines the volume of the closed system into which CO2 is 
injected 

kh_MS Permeability-thickness product (md-ft) for the injection reservoir (Mount Simon sandstone), 
which controls the amount of CO2 that can be injected for a given pressure differential 

  

Response Description 
Cum_CO2 Cumulative volume of CO2 injected (millions of metric tons, MMT) 
CO2_R Radius of CO2 plume (m) 
PCT_CO2 % Mass flux entering the caprock 
 

The 12-fold cross-validation procedure was repeated 100 times for each metamodel, with fold 
memberships being randomly selected each time. For each response, this produced 100 cross-
validated predictions at every set of sampled predictor values. The overall measure of metamodel 
accuracy was the RMSE. In this case, let 𝑓𝑗(𝐱𝑖) be the prediction of the response in the jth cross-
validation replicate for the ith observation. In similar fashion, let 𝑓𝑗�𝐱𝑖� be the true response. 
Then define the metamodel accuracy for that response to be the following. 
 

𝑅𝑅𝑅𝑅 = �
1

36�
1

100�
�𝑓𝑗(𝐱𝑖) − 𝑓𝑗(𝐱𝑖)�

2
100

𝑗=1

36

𝑖=1

 

 

Table 2 shows a comparison of model accuracy across all metamodels and responses. Note that 
the raw RMSE values have different magnitudes from response to response. This is due to 
different original scales for the observed responses. To allow better comparison of the RMSE 
values, they may be scaled by the average response across the n = 36 observations, which is 
denoted here as SRMSE. Both the RMSE and the SRMSE are given in Table 2 for each 
combination of metamodel and response. 
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Table 2.  Metamodel Performance, 12-Fold Cross-Validation 

Model Name 
RMSE (SRMSE) 

CUM_C02 CO2_R PCT_CO2 
Quadratic 2.376 (-0.108) 900.504 (-0.095) 0.466 (-0.216) 
Ordinary Kriging 0.640 (-0.029) 784.904 (-0.083) 0.087 (-0.04) 
Universal Kriging 0.766 (-0.035) 536.496 (-0.057) 0.080 (-0.037) 
MARS 9.811 (-0.445) 1322.644 (-0.14) 1.092 (-0.507) 
AVAS 6.996 (-0.317) 1393.492 (-0.147) 0.443 (-0.206) 
TPS 3.924 (-0.178) 1035.832 (-0.109) 0.694 (-0.322) 
 

For all three responses, the kriging models outperform the other four types of metamodels. In 
particular, the universal kriging model with a quadratic trend seems best overall. This can be 
seen, for example, in Figure 12, which shows plots of cross-validated metamodel performance on 
one of the responses, CO2_R. Note that the universal kriging model provides relatively stable 
results across the range of values for this response. The residuals appear to be largely 
uncorrelated as well, which indicates that there are not large systematic components to the 
response that are not being accounted for. 

The entire cross-validation procedure was also repeated using 6 folds and 100 replicate runs. In 
this case, there are 6 observations in each fold, and the successive metamodel fits are made using 
fewer observations (30 instead of the 33 in the 12-fold case). Using a smaller number of folds 
should have the effect of reducing overfitting effects on the predictions and increasing model 
variability from run to run. Results for the 6-fold cross-validation are shown in Table 3. The 
kriging models are still the best performers for all responses, although now the universal kriging 
model is the top performer for the first response as well. 
 

Table 3.  Metamodel Performance, 6-Fold Cross-Validation 

Model Name 
RMSE (SRMSE) 

CUM_C02 CO2_R PCT_CO2 
Quadratic 2.455 (-0.111) 933.624 (-0.098) 0.480 (-0.223) 
Ordinary Kriging 1.305 (-0.059) 743.243 (-0.078) 0.137 (-0.064) 
Universal Kriging 1.186 (-0.054) 611.898 (-0.065) 0.117 (-0.054) 
MARS 10.061 (-0.456) 1574.248 (-0.166) 1.157 (-0.537) 
AVAS 7.083 (-0.321) 1253.068 (-0.132) 0.476 (-0.221) 
TPS 4.214 (-0.191) 1141.412 (-0.12) 0.763 (-0.354) 
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Figure 12.  CO2_R metamodel performance in 12-fold cross-validation.  
Circles represent the median prediction over the 100 replicate runs. Vertical lines indicate various percentile 
ranges over the 100 replicate runs: Black = 25th – 75th, Dark Grey = 5th – 95th, Light Grey = Min – Max. 
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In this study, the cross-validation performance of five different metamodeling approaches was 
measured in a closed volume injection case study of the Arches dataset. The dataset contained 
three CO2 predictors, three responses, and 36 observations. Results showed that the kriging 
metamodels outperformed the others for all three responses – in particular, the universal kriging 
model with a quadratic trend had the best overall cross-validated RMSE. The quadratic 
polynomial model was second best, followed by TPS, AVAS, and MARS. These rankings held 
true for both the 6- and 12-fold cross-validation.  

Clearly, a single case study with 36 observations is not sufficient to make a robust comparison 
between metamodels. Performance is dependent not only on the number of observations, but also 
on what sampling design was used and how many predictors there are. However, in this 
particular case, the kriging metamodel was better at uncovering the structure of the response 
surface (at least at the 36 observed sample points) than the other models. 
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5 Comparison of Metamodeling Approaches 

5.1 Problem Description 

For the full combined experimental design and metamodel comparison study, sampling methods 
and metamodels were developed for a reservoir simulator called GEM described in Computer 
Modeling Group (2014) [28]. A simulation run requires nine input parameters, and results in a 
host of responses over a 30 year period. Of these responses, three were chosen for the proxy 
model comparison. The first is the average pressure in the reservoir, the second is the radius of 
the CO2 plume, and the third is the total storage efficiency of the reservoir. All responses were 
selected at the end of the 30 year period.  

The designs and metamodels under consideration in the study are listed in Table 4. The selection 
of these options was made with two objectives in mind. The first goal was to provide a slice 
through a continuum of possible approaches that would likely be used by others in the field. The 
second goal was to allow for clear interpretation by keeping the number of models from being 
needlessly large. For analysts opting for an experimental design route, the Box-Behnken design 
seems to be the industry standard, more so than Central Composite, Plackett-Burman, and 
factorial designs. Augmented pairs was also selected as an alternative to the Box-Behnken that 
needs fewer runs; such a design may be useful in cases where design runs are expensive to obtain 
in terms of time or money.  

Table 4.  Designs and Metamodels (Size n) Used in the Study 

Experimental Designs Metamodels 
Box-Behnken (n = 97) Ordinary Kriging 
Augmented Pairs (n = 79) Universal Kriging 
Maximum Entropy (n = 97) Quadratic Polynomial 

Maximin LHS (n = 97) 
Quadratic Polynomial + LASSO Variable Selection 
MARS 
AVAS 

 

For those opting for a sampling approach, the expected advantage of such designs over 
experimental designs would be their space-filling nature. LHS designs are popular choices in this 
area, and maximin LHS designs are the typical choice of space-filling LHS design. Occasionally, 
maximum entropy designs are used in literature, and they show better space-filling 
characteristics than maximin LHS designs according to two of the three space-filling metrics 
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described in Section 2.2.5. For that reason, maximum entropy designs are considered in this 
study as well. 

Each of the sampling designs contained n = 97 runs with different values for the nine input 
variables. The selection of 97 runs was made because the Box-Behnken design for p = 9 input 
variables has n = 97 unique observations. In physical experiments, the Box-Behnken design 
contains a number of duplicate points that are intended to be used to capture unknown sources of 
variability. However, since the GEM simulation is deterministic, there is no need to measure the 
response at a particular set of inputs more than once. This reduces the Box-Behnken design from 
130 runs to 97. To avoid any bias that could be attributed to unequal sample sizes, all of the 
maximin LHS designs were restricted to the same number of runs as the Box-Behnken design. 
The exception to this rule was the augmented pairs design, which for 9 predictors is defined by n 
= 79 runs after removing duplicate observations. 

The maximum entropy and maximin LHS designs were sampled over the 9-dimensional unit 
hypercube [0, 1]9 and then converted back to the original predictor scale using the distributions 
shown in Table 5. Here, T(l, m, h) is a triangular distribution extending from l to h, with its peak 
at m. 
 

Table 5.  Input Distributions used with LHS Sampling 

Input Description Distribution 
HR Thickness of the reservoir T(50,150,250) 
HCR Thickness of the caprock T(100,150,200) 

µLNKR 
VDP 

Log-mean reservoir permeability, Dykstra-
Parson’s coefficient (perfectly correlated) 

µln_KR ~ T(2.45, 3.56, 4.67) 
VDP ~ T(0.35, 0.55, 0.75) 

KCR 
Average horizontal permeability of the 
caprock lnT(0.002,0.02,0.2) 

KV/KH Anisotropy ratio lnT(0.01,0.1,1) 

Q CO2 injection rate discrete with equal probability – {0.33, 0.83, 
1.33} 

ϕR Porosity of the reservoir T(0.08,0.12,0.18) 

ϕCR Porosity of the caprock T(0.05,0.07,0.10) 

IV Order of permeability layering 
Discrete w/equal probability, 
IV ∈ {“random”, ” increasing”, ”decreasing”} 

PC,CR Capillary pressure model of caprock Fixed value: Decrease PC by 3x 
kr,R Relative permeability model of reservoir Fixed value: Linear for krw 
 

Each of the metamodels was trained on the dataset using the R statistical computing language 
described by R Development Core Team (2011) [29]. Specifically, kriging metamodels were 
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trained using the km method of the DiceKriging package described by Roustant et al. (2011) 
[30], the quadratic polynomial fit was performed using the lm method in the stats package 
(included in base R), LASSO was performed using the caret package described by Kuhn et al. 
(2012) [31], MARS was performed using the mars method of the mda package described by 
Hastie et al. (2011) [32], and AVAS was performed using the avas method of the acepack 
package described by Spector et al. (2010) [33]. 

5.2 Model Fit Results 

In this study, there were four candidate designs (Box-Behnken, augmented pairs, maximum 
entropy, and maximin Latin hypercube sampling (LHS)) and six metamodels (ordinary kriging, 
universal kriging, quadratic, LASSO + quadratic, MARS, and AVAS). This yields a total of 4 x 
6 = 24 combinations of designs and metamodels. For each of these combinations, a metamodel 
was trained using the design inputs. 

The model performance was measured using root mean squared error (RMSE), scaled root mean 
squared error (SRMSE), and pseudo-R2, which are described in Section 4.1. Table 6 and  

Table 7 show the SRMSE and pseudo-R2 for each of the metamodels, respectively, measured 
over the training data. Here, “BB” stands for Box-Behnken, “AP” for augmented pairs, “ME” for 
maximum entropy, and “MM” for maximin LHS. Note that this is a biased view of model 
performance, since the models are being evaluated over the same dataset used to train them. For 
example, since kriging models are interpolators (i.e., they pass through each observation by 
design), they always achieve zero error over the training set. However, one obviously could not 
expect them to perfectly model the response at other points in the input space.  
 

Table 6.  Full Model Fit results (Scaled RMSE shown for each combination) 

Total Storage Efficiency 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.000 0.000 0.063 0.070 0.103 0.097 
AP 0.000 0.000 0.042 0.059 0.125 0.107 
ME 0.000 0.000 0.054 0.063 0.090 0.080 
MM 0.000 0.000 0.048 0.058 0.082 0.072 

Plume Radius 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 
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BB 0.000 0.000 0.046 0.047 0.123 0.068 
AP 0.000 0.000 0.032 0.032 0.138 0.094 
ME 0.000 0.000 0.033 0.033 0.068 0.044 
MM 0.000 0.000 0.024 0.024 0.059 0.074 

Average Pressure 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.000 0.000 0.027 0.037 0.107 0.033 
AP 0.000 0.000 0.044 0.058 0.187 0.313 
ME 0.000 0.000 0.017 0.028 0.097 0.025 
MM 0.000 0.000 0.014 0.024 0.088 0.015 

 

Table 7.  Full Model Fit results (Pseudo-R2 shown for each combination) 

Total Storage Efficiency 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 1.000 1.000 0.926 0.910 0.802 0.825 
AP 1.000 1.000 0.980 0.960 0.819 0.869 
ME 1.000 1.000 0.921 0.892 0.786 0.830 
MM 1.000 1.000 0.938 0.908 0.819 0.858 

Plume Radius 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 1.000 1.000 0.977 0.976 0.834 0.949 
AP 1.000 1.000 0.992 0.992 0.851 0.931 
ME 1.000 1.000 0.984 0.984 0.933 0.972 
MM 1.000 1.000 0.990 0.989 0.937 0.902 

Average Pressure 

  
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 1.000 1.000 0.964 0.932 0.435 0.947 
AP 1.000 1.000 0.975 0.957 0.544 -0.283 
ME 1.000 1.000 0.987 0.965 0.570 0.971 
MM 1.000 1.000 0.990 0.970 0.579 0.988 
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5.3 Independent Validation Results 

The validation study is a comparison of various combinations of designs and metamodels in 
terms of prediction performance on a common independent test design. This avoids the issue of 
bias in evaluating model performance, as discussed in the previous section. These models were 
then used to predict the value of the response on an independent design, which in this case was a 
basic Latin hypercube sample.  

The results of the validation study are shown in Table 8 and Table 9. Cells shaded green indicate 
better performance, and those in red indicate worse performance. For the first response (Total 
Storage Efficiency), the Box-Behnken design was clearly the best performer, and the quadratic 
fit (with and without LASSO) seemed best. The LASSO quadratic fit seemed more robust across 
the designs than the other metamodels, giving consistently good performance. However, all of 
the first four model types (kriging and quadratic fits) seemed to have similar quality. 

Table 8.  Validation Study Results (Scaled RMSE shown for each combination) 

Total Storage Efficiency 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.100 0.090 0.090 0.089 0.103 0.111 
AP 0.100 0.110 0.110 0.106 0.109 0.107 
ME 0.114 0.114 0.114 0.103 0.109 0.100 
MM 0.110 0.118 0.118 0.093 0.109 0.113 

Plume Radius 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.077 0.068 0.068 0.069 0.099 0.066 
AP 0.081 0.087 0.087 0.087 0.117 0.093 
ME 0.072 0.062 0.062 0.069 0.081 0.063 
MM 0.064 0.065 0.065 0.064 0.089 0.099 

Average Pressure 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.035 0.040 0.040 0.040 0.118 0.047 
AP 0.076 0.108 0.108 0.104 0.151 0.410 
ME 0.036 0.040 0.041 0.045 0.119 0.048 
MM 0.044 0.042 0.042 0.060 0.134 0.050 
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Table 9.  Validation Study Results (Pseudo-R2 shown for each combination) 

Total Storage Efficiency 

  Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.765 0.808 0.808 0.811 0.748 0.706 
AP 0.763 0.715 0.715 0.734 0.720 0.731 
ME 0.693 0.693 0.693 0.746 0.720 0.763 
MM 0.712 0.672 0.672 0.793 0.718 0.699 

Plume Radius 

  Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.921 0.938 0.938 0.937 0.870 0.943 
AP 0.913 0.900 0.900 0.901 0.821 0.886 
ME 0.932 0.950 0.950 0.936 0.913 0.947 
MM 0.946 0.945 0.945 0.946 0.895 0.871 

Average Pressure 

  Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.952 0.940 0.940 0.939 0.464 0.916 
AP 0.779 0.555 0.554 0.588 0.128 -5.428 
ME 0.950 0.938 0.936 0.924 0.458 0.913 
MM 0.925 0.933 0.932 0.862 0.318 0.903 

 

 

For the second response (Plume Radius), the maximin LHS is the best performing design. As 
was the case in the first response, the first four model types perform similarly. This pattern 
continues for the third response (Average Pressure), where ordinary kriging is the best model. In 
terms of sampling designs, the Box-Behnken, maximum entropy, and maximin LHS all have 
similar performance when predicting Average Pressure. A summary of the findings from this 
study appear in Table 10.  

A visualization of the model fit qualities may also be found in the Appendix. Each row of plots 
shows a comparison of the predicted response to the actual response on different datasets. The 
left plot shows the prediction of the metamodel on the same data used to train it. These results 
are expected to be optimistically biased. The center plot shows the prediction of the metamodel 
on the independent validation set, which was a Latin hypercube sample. The right plot contains 
cross-validated results, which are described in more detail in Section 5.4. 
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Table 10. Summary of the Validation Study Findings 

Response Total Storage Efficiency Plume Radius Average Pressure 

Best Design Box-Behnken Maximin LHS Box-Behnken / 
Maximum Entropy 

Best Metamodel Quadratic w/LASSO Tie Between All Kriging 
and Quadratic Variants Ordinary Kriging 

 

 

5.4 Cross-Validation Results 

Another comparison of interest in this study was between cross-validation and validation. Had 
validation data not been available, would cross-validation have given similar results in terms of 
which metamodels had the best performance on each of the responses? To investigate this 
question, a 5-fold cross-validation procedure was implemented 100 times for each of the 
metamodels. For each response, this produced 100 cross-validated predictions at every set of 
sampled predictor inputs. The metamodels were compared using the average scaled RMSE 
(SMRSE) over the 100 sets of predictions. The SRMSE is given in the formula below, where yij 
is the prediction for the ith response in the jth cross-validation. 
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𝑛
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Results of the cross-validation runs are given in Table 11 and Table 12. There are several 
interesting things to note in comparing these results to the validation results. First of all, the 
cross-validation error rates seem higher than the validation error rates across the board. The 
effect is most prominent for the Box-Behnken and augmented pairs designs. This is likely 
because predictions by cross-validated models can only be made at sampled locations in the 
response surface. In the case of the BB and AP designs, the only samples points were on the 
boundaries of the predictor space, where models are not as likely to fit well, especially when 
those points are left out of the training process. 

Due to the disproportionate bias in measuring error in the factorial designs, the maximum 
entropy and maximin LHS designs look much more favorable in the cross-validation study. 
Maximin LHS is the top performing design in all cases. The ordinary kriging and quadratic + 
LASSO metamodels seem best overall as well. 
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Table 11.  5-fold Cross-Validation Study Results (Scaled RMSE shown for each 
combination) 

Total Storage Efficiency 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.119 0.181 0.182 0.170 0.119 0.119 
AP 0.136 0.327 0.333 0.367 0.141 0.144 
ME 0.115 0.177 0.175 0.125 0.117 0.117 
MM 0.104 0.148 0.151 0.106 0.107 0.109 

Plume Radius 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.100 0.130 0.128 0.216 0.134 0.104 
AP 0.098 0.186 0.187 0.347 0.162 0.135 
ME 0.092 0.111 0.110 0.071 0.087 0.086 
MM 0.067 0.075 0.076 0.057 0.079 0.082 

Average Pressure 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.054 0.078 0.078 0.107 0.118 0.052 
AP 0.173 0.289 0.299 0.303 0.233 0.320 
ME 0.040 0.055 0.056 0.039 0.114 0.033 
MM 0.031 0.046 0.045 0.036 0.106 0.028 

 

Table 12.  5-fold Cross-Validation Study Results (Pseudo-R2 shown for each combination) 

Total Storage Efficiency 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.760 0.640 0.632 0.625 0.749 0.761 
AP 0.824 0.741 0.741 0.709 0.792 0.786 
ME 0.691 0.462 0.468 0.678 0.681 0.684 
MM 0.748 0.623 0.614 0.765 0.728 0.724 

Plume Radius 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.906 0.888 0.887 0.721 0.808 0.907 
AP 0.944 0.909 0.907 0.712 0.836 0.910 
ME 0.896 0.882 0.883 0.938 0.904 0.923 
MM 0.936 0.935 0.934 0.956 0.906 0.925 
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Average Pressure 

 
Ordinary 
Kriging 

Universal 
Kriging 

Quadratic 
Poly 

Quadratic 
w/LASSO MARS AVAS 

BB 0.874 0.827 0.826 0.709 0.347 0.904 
AP 0.656 0.699 0.693 0.533 0.427 0.200 
ME 0.940 0.913 0.909 0.946 0.535 0.971 
MM 0.959 0.928 0.929 0.945 0.525 0.973 

 

Table 13.  Summary of the Cross-Validation Study Findings 

Response Total Storage Efficiency Plume Radius Average Pressure 

Best Design Maximin LHS Maximin LHS Maximin LHS 

Best Metamodel Ordinary Kriging Quadratic w/LASSO Ordinary Kriging 
 

Scatterplots summarizing the cross-validation results can be found in the Appendix in the right-
most column. Each plot compares the cross-validated predicted responses to the actual response. 
For each observation, the circle represents the median predicted response over the 100 cross-
validation runs. The black line shows the range of the 25th to 75th percentile predictions, the dark 
gray represents the 5th to 95th percentiles, and the light gray shows the full range of predictions, 
minimum to maximum. 

These figures give particular insights into why some models fare better than others. For example, 
the universal kriging and quadratic polynomial models tend to underperform compared to 
ordinary kriging and the quadratic w/LASSO model. The plots show that those models perform 
worse because they are more variable in the predicted response with respect to the choice of 
cross-validation grouping. That is, those models seem more sensitive to the data that are 
available, whereas the ordinary kriging and quadratic w/LASSO models predict similar 
responses regardless of how the training set is divided into cross-validation groups. 

The fact that these results do not entirely agree with the validation results is somewhat 
surprising. Cross-validation is intended to approximate the error rates that would be obtained on 
an independent test set without having to actually collect that independent test data. However, 
cross-validated predictions can only be made at training data points. Since the designs under 
consideration in this study have fundamentally different paradigms (e.g., sampling over input 
ranges vs. assigning levels), it is difficult to compare model performance on the basis of cross-
validation. A clear example of this is the augmented pairs models, which have the worst cross-
validation results. This is at odds with the validation results, which showed that AP models were 
in the middling range of performance. The fact that the cross-validation metrics for AP models 
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were so much worse could be related to the fact that the AP design had fewer runs to begin with, 
and those it did have were specifically chosen to not contain any redundant information. Holding 
some of those crucial observations, therefore, could remove too much information for the AP 
model to be able to adequately describe the surface. 

5.5 Variable Importance 

Using the procedure described in Section 4.4, the importance of the 9 GEM inputs was assessed 
for each combination of response, design, and metamodel. For a given combination, the 
metamodel was trained using the selected design and used to make predictions on the validation 
set described in Section 5.3. The pseudo-R2 was recorded over the validation set using this full 
model. Next, each input was held out of the model training process to obtain a reduced model. 
This reduced model was also used to predict over the validation set, with the input removed from 
the test set as well. The pseudo-R2 was then recorded for the reduced model. The difference 
between the two R2 values is the variable importance measure for the input that was held out. 

Results are shown in Figure 13, Figure 14, and Figure 15 for the total storage efficiency, plume 
radius, and average pressure responses, respectively. In each set of plots, the length of the bars 
represents the variable importance for the 9 predictors arranged in the rows. Different color bars 
correspond to the different designs, while plot columns correspond to different types of 
metamodels. One thing to note is that the pseudo-R2 is not bound between 0 and 1. As a result, in 
some cases the R2 loss can be negative or larger than 1. 

Results for total storage efficiency (Figure 13) show that the most influential inputs are 
anisotropy ratio, mean reservoir permeability, permeability layer arrangement, and reservoir 
thickness. In general, this pattern holds true over all combinations of design and metamodel. 
There is evidence of a slight contribution from the injection rate. 

The plume radius response (Figure 14) appears to be almost entirely driven by the injection rate 
and reservoir thickness, with all combinations of designs and metamodels in broad agreement. 
The same inputs are influential for average pressure as well (Figure 15). In this case, the 
instability observed in the augmented pairs/AVAS combination produces some very extreme R2 
loss values. Note that in the validation results in Table 9, the AVAS model for the augmented 
pairs design had a pseudo-R2 value of -5.428, which indicates that the model fit is much worse 
than that obtained by always predicting the mean response no matter what the input values are. 
With a full model that is predicting so poorly, removal of any inputs is going to make predictions 
worse. 
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Figure 13.  Variable importance results for the "Total Storage Efficiency" response.  
Influential variables include anisotropy ratio, mean reservoir permeability, permeability layer arrangement, 
and reservoir thickness. 
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Figure 14.  Variable importance results for the "Plume Radius" response.  
Influential variables are injection rate and reservoir thickness. 
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Figure 15.  Variable importance results for the "Average Pressure" response.  
Influential variables are injection rate and, to a small extend, reservoir thickness. Note that the augmented 
pairs design was very unstable for the AVAS procedure, resulting in abnormal R2 loss values. 
 

5.6 Discussion of Results 

In this study, four design strategies and six metamodels were tested using a GEM simulation. 
Each combination of design and metamodel was evaluated over the 9-predictor simulation using 
both an independent validation on a LHS design and 5-fold cross-validation. The validation 
results indicated that the best designs were Box-Behnken and maximin LHS, and the best 
metamodels were ordinary kriging and the quadratic polynomial with LASSO variable selection. 
MARS and AVAS models did not work as well as the other models in most cases, and the AP 
design was generally the worst performer, possibly due to it having a smaller number of runs 
than the other designs. 

A comparison of the validation and cross-validation results showed that the cross-validation error 
rates were larger than the validation error rates, and that the effect was disproportionately greater 
on the Box-Behnken and augmented pairs designs (see Figure 16 and Figure 17). This resulted in 
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the maximin LHS appearing far more favorable in the cross-validation study. Again, the ordinary 
kriging and quadratic w/LASSO metamodels were the best performers. 
 

 

Figure 16.  Comparison of validation and cross-validation scaled RMSE values for the 
metamodels, colored by design type.  

The diagonal line indicates where error rates would be the same between validation and cross-validation. 
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Figure 17.  Progression through full model fit SRMSE, validation SRMSE, and cross-
validation SRMSE, by design, metamodel, and response. 
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From the discussion above, there are two major conclusions to be drawn from the study. First, 
the Box-Behnken design with a quadratic metamodel seems to work quite well with this 
simulation, especially if a variable selection method like LASSO is used first. The maximin LHS 
design and ordinary kriging metamodel also performed well, but not consistently better than the 
traditional approach. 

Second, the results highlight the fact that factorial designs like the Box-Behnken design may be 
disproportionately affected by higher error rates when a cross-validation approach is used. One 
must be careful in using cross-validation as a technique with factorial design data, since the error 
rates paint a much different picture when compared to the validation approach, which is more 
straightforward and assessed model fit over the entire input space. 
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6 Summary and Conclusions 

There were two major objectives to be accomplished in Simplified Modeling Task 3.  The first 

goal was to identify several candidate approaches that predict simulation output using an 

approximation model (i.e., a metamodel).  These approaches include both a design of inputs at 

which to observe the true simulation output as well as a modeling paradigm whose parameters 

are fit using those observed outputs.  The second goal was to compare those approaches in order 

to determine which methods work well in different situations, and to make recommendations for 

others who may be attempting to model simulation outputs in this field. 

Regarding the first objective, a collection of representative experimental designs were selected 

from two broad categories.  The Box-Behnken and augmented pairs designs were chosen to 

represent the more traditional factorial design approach.  The former was chosen because it 

appears to be the most commonly used design of this type in the gas and petroleum literature; the 

latter was chosen as an alternative to the Box-Behnken that requires fewer simulation 

runs.  Maximin Latin hypercube sampling (LHS) and maximum entropy designs were selected to 

represent sampling designs, which form the second category.  Sampling designs have grown in 

popularity in recent years, and LHS designs are the most common of these designs seen in the 

literature.  The maximin LHS is a special type of LHS design that optimizes a desirable space-

filling criterion.  Maximum entropy designs are a popular alternative to LHS designs, and also 

have excellent space-filling characteristics. 

In terms of metamodeling approaches, several common competing methods were selected for 

comparison in this task.  These included quadratic polynomials, which are typically used in 

conjunction with factorial designs, kriging models, which are often used with sampling design 

approaches, and two other competing methods called MARS and AVAS.  In addition, a version 

of quadratic modeling that uses LASSO variable selection was also considered as a more refined 

alternative to traditional quadratic regression modeling. 

Regarding the second objective, all combinations of designs and metamodels were used to 

predict three different responses from a 9-input CMG-GEM simulation of gas injection into a 

closed reservoir.  Models were evaluated using three criteria: root mean squared error (RMSE), 
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scaled RMSE, and pseudo-R2.  Evaluation was performed both for 5-fold cross-validated 

predictions on the training set as well as predictions on an independent test set.  Results showed 

that using the traditional approach of a Box-Behnken design with a quadratic metamodel appears 

to work just as well, if not better, than using newer sampling designs and more complex 

modeling strategies.  In the validation study, this traditional approach was the top performer, and 

it was competitive in the cross-validation study as well. The maximin LHS with either ordinary 

kriging or the quadratic polynomial model with LASSO variable selection was another 

competitive method that showed generally robust performance across the three responses.  The 

worst performing design in general was the augmented pairs design, which may be attributed to 

the fact that it has fewer observations than the other designs.  The worst performing metamodels 

were MARS and AVAS. 
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Appendix 

Total Storage Efficiency 
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Plume Radius 
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Average Pressure 
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