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Abstract

We compare two approaches for building a statistical proxy model (metamodel) for CO,
geologic sequestration from the results of full-physics compositional simulations. The first
approach involves a classical Box-Behnken or Augmented Pairs experimental design with a
quadratic polynomial response surface. The second approach used a space-filling maxmin Latin
Hypercube sampling or maximum entropy design with the choice of five different meta-
modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms,
multivariate adaptive regression spline (MARS) and additivity and variance stabilization
(AVAS). Simulations results for CO; injection into a reservoir-caprock system with 9 design
variables (and 97 samples) were used to generate the data for developing the proxy models. The
fitted models were validated with using an independent data set and a cross-validation approach
for three different performance metrics: total storage efficiency, CO, plume radius and average
reservoir pressure. The Box-Behnken—quadratic polynomial metamodel performed the best,
followed closely by the maximin LHS-kriging metamodel.
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Executive Summary

The objective of this research project is to develop and validate a portfolio of simplified
modeling approaches for CO, sequestration in deep saline formations — based on simplified
physics, statistical learning, and/or mathematical approximations — for predicting: (a) injection
well and formation pressure buildup, (b) lateral and vertical CO, plume migration, and (c) brine
displacement to overlying formations and the far-field. Such computationally-efficient
alternatives to conventional numerical simulators can be valuable assets during preliminary CO,
injection project screening, serve as a key element of probabilistic system assessment modeling
tools, and assist regulators in quickly evaluating geological storage projects. The project team
includes Battelle and Stanford University. Support for the project is provided by U.S. DOE
National Energy Technology Laboratory and the Ohio Development Service Agency Office of
Coal Development (ODSA).

This topical report presents results from Task 3 of the research, which focuses on statistical
learning based models, with the objective of identifying and comparing several different
ways of creating such predictive models. These are commonly called “proxy models” or
“metamodels” in the geoscience literature. In applications related to subsurface flow,
response variables of interest are often simulated with full physics mathematical models that
are based on a large number of predictor variables. When a deep understanding of the
relationship between the predictors and response is required, e.g., for optimization, many
runs of the predictors at different combinations of settings may be necessary. Due to time
and cost, running such a model for a large number of runs may not be feasible. The idea of a
proxy model is to first acquire a small number of simulation runs at prescribed combinations
of predictors, called a design matrix. These combinations are specially chosen to be
representative of all possible predictor settings, called the input space. The runs are also
chosen to allow estimation of large scale effects in the response. Using the observed runs, a
statistical model is then developed. This model describes a specific mathematical
relationship between the predictor variables and the response.

A good metamodel needs to have two characteristics. First, it must provide an accurate
approximation of the full physics simulation. That is, for any combination of predictor
settings, the metamodel should predict a value of the response that is close to the value one
would get by running the full simulation at the same settings. Second, the metamodel must
run orders of magnitude faster than the full physics simulation. If these two requirements
are met, then the metamodel may be used as a proxy for the full physics simulation, and
since it can produce responses quickly, it can be used to explore the input space for optimal
predictor combinations.

After conducting a survey of geoscience literature, several designs and models were selected
for the comparison study. Regarding designs, both experimental and sampling design
approaches were considered. From the former group, Box-Behnken (BB) and augmented
pairs (AP) designs were selected. BB designs are the industry standard, and AP is a
competitor of the BB that uses fewer runs. From the latter group, maximum entropy (ME)
and maximin Latin hypercube sampling (LHS) designs were selected. LHS designs are also
popular in the geoscience literature, and ME designs are a leading competitor.
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Regarding modeling techniques, five different approaches were considered. These include
quadratic polynomial regression, which is common in oil and gas applications; kriging,
which is a popular choice often used with LHS designs; MARS, which is another method
often cited in the literature; and AVAS, which is a non-parametric modeling option. In
addition, a version of quadratic modeling that uses LASSO variable selection was also
considered as a more refined alternative to traditional quadratic regression modeling.

All 20 combinations of designs and models were used to predict each of three responses in a 9-
input full-physics simulation of CO; injection into a closed reservoir using the compositional
simulator, GEM. The performance of each metamodel was evaluated by fitting to this data set
using three criteria: root mean squared error (RMSE), scaled RMSE, and pseudo-R?. Evaluation
was performed both for 5-fold cross-validated predictions on the training set as well as
predictions on an independent test set.

In this latter case, the traditional approach of a BB design with a quadratic regression model
came out as the top performer in terms of general performance scores and robustness to different
responses. In particular, it beat out the other models in the validation study, and was competitive
with the top performer in the cross-validation study. Of the other models, the maximin LHS with
either kriging or quadratic regression models also showed good performance and robustness to
different responses.

The poorest performing design was augmented pairs (AP), which was not competitive with the
other three designs. This could be due to the fact that the AP design has fewer runs and is
designed to work best with linear modeling approaches like quadratic regression. It does not
have the kind of space-filling characteristics that one would expect for good performance using
the other types of models. The worst performing modeling approaches were MARS and AVAS,
which showed decent performance on some responses, but poor results on others.

DOE Award No. DE-FE0009051, Task #3 iX
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1 Introduction

1.1 Background

To understand the behavior of a response function with respect to multiple predictor values, one
typically needs a large number of observations to adequately cover the input space. An
inefficient approach is to compute the response for all combinations of predictor values chosen
on a suitably fine grid. Usually, this is not feasible. In physical experiments, some combinations
of predictors may not be available to the experimenter, or may produce responses that are beyond
the capability of the instrumentation to measure. In simulated experiments (e.g., finite element
computer models), a large amount of computation may be required to collect each response.
Therefore, computing responses over a grid of predictor values may take too long, or be too
expensive to complete.

The standard method for avoiding costly data collection is to only observe the response at a
subset of predictor values, and then fit a metamodel (also called a “proxy model” or “response
surface model” or “reduced-order model”) to those points. Metamodels approximate the response
at unobserved combinations of predictor values using the available sampled data, and are
typically designed for rapid prediction. In this way, an approximate response surface can be
generated for the entire input space in a short amount of time, and it can subsequently be used to
meet project-specific research goals.

1.2 Previous Work

In the oil and gas literature, metamodels are often used as proxies for the underlying simulation
models, especially for optimization and uncertainty quantification studies. Osterloh (2008) [1],
Ekeoma and Appah (2009) [2], and Zubarev (2009) [3] provide overall guidance on sampling
and metamodeling strategy for reservoir simulations. In particular, Osterloh (2008) [1] examines
Latin hypercube sampling (LHS) designs and compares polynomial and kriging metamodels,
Ekeoma and Appah (2009) [2] focuses specifically on LHS designs, and Zubarev (2009) [3]
compares polynomial, kriging, thin plate spline, and artificial neural network metamodels.

There are also examples of specific case studies in which metamodeling was used. Kalla and
White (2005) [4] compared a second order polynomial model and kriging model using an
orthogonal array (OA) sample design in a gas coning case study. In this case, the second order
polynomial outperformed kriging with a 36-run design in 14 variables. Anbar (2010) [5] settled
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on first order polynomial models for fitting outputs of a CMG STARS simulation for CO;
sequestration in deep saline carbonate aquifers. The models were fit using LHS designs of size
100 over 16 variables. Finally, Wriedt et al. (2014) [6] used a Box-Behnken design and a
stepwise quadratic regression model to develop probability distributions for responses related to
COz injection into deep saline reservoirs.

1.3 Scope and Organization

The aim of this research project is to evaluate and compare several combinations of study
designs and metamodeling techniques in the context of injection of CO, into a closed-volume
reservoir. In conducting this research, there are two outcomes of interest. First of all, as in the
studies mentioned above, this study provides another piece of information regarding which
designs and metamodels are most effective in this application area. Such information may be of
use to other investigators who work in carbon sequestration. Secondly, the hope is that this task
produces one or more metamodels that can predict the simulated responses with an acceptable
degree of accuracy, and can be compared to some of the other simplified approaches being
investigated under this project.

The remainder of this document contains a more detailed description of this study and the results.
Sections 1 and 1 contain background information on experimental designs and metamodels,
respectively, that are commonly used in response surface modeling. Section 1 identifies several
frameworks for evaluating such metamodels. Section 4.5 describes a case study that was carried
out using pre-existing data from the Arches province in the American Midwest. This work was
the subject of a presentation at the 8" International Congress on Environmental Modelling and
Software (IEMSs), and subsequent publication in the conference proceedings. Finally, Section 5
describes the application of the methodology from Section 4 using results of a reservoir
simulation study of CO, injection into a bounded saline formation.

DOE Award No. DE-FE0009051, Task #3 2



Statistical Learning Based Models Experimental Designs
for CO, Sequestration

2 Experimental Designs

2.1 Factorial Designs

Factorial designs are typically used for variable screening or response surface optimization.
These designs set each of the predictor variables at one of several levels, usually a “low” and
“high”, or a “low”, “center”, and “high”. Typically, “low”, “center”, and “high” levels are
denoted -1, 0, and +1, respectively. When the number of inputs is small, factorial designs can use
a relatively small number of runs to explore the predictor space and allow estimation of simple
linear or quadratic models, which can in turn be used to identify the regions of the space
corresponding to optimal response values. As long as the response surface can be adequately
modeled with simple functions, factorial designs are sufficient; however, other designs may be
necessary for understanding the behavior of more complex functions (see Section 2.2). As the
number of inputs increases, full factorial designs can get quite large due to exponential growth in
the number of runs. In that case, smaller factorial designs can be used to understand the response
surface. A description of several of those designs is given below.

2.1.1 Plackett-Burman

Plackett-Burman designs [7] are a class of designs that are chosen to provide the best possible
estimates of the main effects of the predictors on the response. Main effect estimates for
Plackett-Burman designs have the minimum variance possible for a limited number of runs. The
designs themselves are chosen so that each unique combination of levels for every pair of
predictors appears the same number of times throughout the design. Typically, there are only two
levels (+1 and -1) assigned for each input. While main effects are estimable, interaction effects
between predictors are typically confounded with the main effects and cannot be separated
without additional runs. Plackett-Burman designs for k inputs can have a number of unique runs
anywhere between the nearest multiple of 4 from k (not any larger than k + 4) and 2" runs, where
they become full 2% factorial designs. One example of a Plackett-Burman design is shown in
Figure 1. In this case, the design has 12 runs over 3 inputs, although there are only 2° = 8 unique
runs; the other runs are duplicates.
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Figure 1.  An example of a Plackett-Burman design for three inputs (left) and its
representation in the predictor space (right).

2.1.2 Central Composite and Box-Behnken

Central Composite (CC) and Box-Behnken (BB) [8] designs are related methods that use three
levels for each predictor. Both designs make judicious use of observations and allow estimation
of linear and quadratic terms in a polynomial surface model. The CC design samples points at
the corners of a hypercube in the input space and at points at the centers of the faces, as shown in
Figure 2. In contrast, the BB design samples points along the edges of the hypercube, as shown
in Figure 3. One commonly cited disadvantage to the CC design is that combinations where
multiple predictors have simultaneous extreme values (i.e., at the corners of the hypercube) are
typically unrealistic. The BB design places observations at less extreme predictor combinations
to provide a better model fit over the center of the space.
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Figure 2.  Central Composite design for three inputs (left) and its representation in the

input space (right).
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Figure 3. Box-Behnken design for three inputs (left) and its representation in the
predictor space (right).
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2.1.3 Augmented Pairs

The augmented pairs (AP) design described by Morris (2000) [9] is an alternative to Central
Composite and Box-Behnken designs, and is made to work well with sequential response surface
search and optimization procedures. The strength of the AP design is that it builds the latter 3-
level targeted design by augmenting the 2-level design used in the initial exploration phase. In
this way, none of the runs are wasted. To construct an AP design, one begins with a 2-level
(preferably orthogonal) design, with observations at various combinations of {-1, +1} for the
different factors. An example of such a design is the Plackett-Burman design. To augment the
design, first ny center-point replicates are added (e.g., repeated runs with level O for all factors).
Next, each pair of runs in the 2-level design are used to construct a new single run, where the
levels of the factors in the new run are Lnw = -0.5*(L; + L). Here, L; and L, are the factor levels
in the two parent runs, so that the new level of the factor will be O if the original runs were at +1
and -1, -1 if both original runs were at +1, or +1 if both original runs were at -1. The resulting
design is smaller in size than a CC or BB design, but still retains many of their advantages.

X1 | %o | X L5

0] oo 1 R
1 1 1 0.5 °
a1

1] 1] ’ e
111

0| 1]o0

100

0| o] 1

0| o] -1

1100

0o|-1]o0

Figure 4.  Augmented pairs design for three inputs (left) and its representation in the
predictor space (right).
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2.1.4 Run Comparison

Figure 5 shows a comparison of the number of unique runs required by each type of factorial
design described above. The most expensive design is a full 2-level factorial design, which has 2"
runs for k inputs (see the curve indicated in magenta). Such designs are a special case of
Plackett-Burman design, but Plackett-Burman designs can have as low as k + 1 runs. The
minimum number of runs for a Plackett-Burman design is shown in Figure 5 in cyan. Note,
however, that such designs do not allow estimation of much more than the main effects of the
inputs, and are not good in general for response surface modeling. Of the 3-level designs, the
Box-Behnken and Central Composite designs (red and green, respectively) have comparable
numbers of unique runs, while the augmented pairs design typically has fewer runs. The
maximum number of 3-level runs possible is 3 (not shown).
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Figure 5. A comparison of the number of unique runs needed for the different factorial
designs described in this section.
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2.2 Sampling Designs

For smooth, well-behaved responses, factorial designs provide a means of fitting polynomial
surfaces (e.g., linear for two-level designs, quadratic for three-level designs) to the data to guide
further exploration in the predictor space. Because they were developed in the tradition of
modeling physical experiments, predictors in these designs are only set to one of a few levels in
each run; this allows the estimation of predictor effects (i.e., through an ANOVA decomposition)
and the magnitude of the random variability present in the system.

In this case, the goal is to fit a metamodel to the output of deterministic simulation code. That is
to say, the variability in the system is zero. There is less of a need to sample predictors at one of
a small set of values from run to run, since estimating variability is no longer required.
Furthermore, it is possible that the simulation surface is not smooth and well-behaved. There
could be local discontinuities present that cannot be easily observed from a factorial design that
only examines behavior at the low, center, and high end of the ranges for each predictor.

An alternative approach is a sampling design, which has runs that are not restricted to low,
center, and high values of each predictor. Instead, the samples are randomly chosen across the
ranges of values for each predictor. Generally, the goal is to spread observations across the
predictor space with as few “holes” or “gaps” as possible.

2.2.1 Purely Random Design

The most basic sampling design is a simple random sample over the input space. Observations
are chosen by drawing independent random samples of size n over the range of possible values
for each input. The result is a design with n runs. Variations on this approach could use different
marginal distributions in the sampling of the inputs, or possibly include draws from a joint
distribution over subsets of inputs. Random designs are easy and straightforward to produce.
However, they could also suffer from poor “space-filling” characteristics. That is, multiple
observations frequently end up clustered in one part of the space and provide largely redundant
information about the behavior of the response surface in that region. Other parts of the space
may be sparsely populated, and the redundant observations could be put to better use filling in
those gaps.

2.2.2 Latin Hypercube Sampling

A Latin hypercube sample (LHS) design described by McKay et al. (1997) [10] is intended to fill
the predictor space by randomly selecting observations in equal probability bins across the range
of the inputs. These designs sample values in [0, 1] for each of the inputs at each design point.
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The sampling is done in such a way that for a sample of size n, there will be exactly one
observation in each of the intervals [0, 1/n), [1/n, 2/n), ..., [(n-1)/n, 1] for each of the inputs.

In practice, the [0, 1] bounds on the values in LHS samples are interpreted to be a probability,
and the design points are transformed through some probability distribution on the inputs. This
has the effect of spreading the sampled points across equal regions of probability for each input,
according to the chosen distribution. Several examples of LHS designs are shown in Figure 6 for
two predictors.

1 __ 1 1@ 1 1 1
0.; O.q Oq ) H 0ﬁ.

0 0 0 0 0
0 0.5 1 0 0.5 1 0 0.3 1 0 0.5 1 0 0.5 1

Figure 6. Examples of LHS designs using 20 observations for two predictors.

2.2.3 Maximin LHS

A maximin LHS design described by Johnson et al. (1990) [11] is created by generating a large
number (e.g., thousands) of LHS designs and selecting the design that has the largest value of the
function

M(x',x?,..,x™) = min; ||xi — Xj”,

where x',x?, ..., x™ are the n sampled observations and ||x! — x/|| is the Euclidean distance
between observations i and j. In other words, the maximin LHS design is the one that maximizes
the minimum distance between any pair of observations in the sample. Examples of maximin
LHS designs are shown in Figure 7.

Figure 7.  Examples of maximin LHS designs using 20 observations for two predictors.

Maximizing the minimum distance between any pair of points has the effect of spreading the
observations out as much as possible across the input space, under the constraint that the design
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is still based on a Latin hypercube. Maximin LHS designs, therefore, tend to have better space-
filling characteristics. With a generic LHS design, there is a rare chance that, for example, all of
the runs could be drawn from bins along the diagonal of the hypercube. This would result in a
poor design for response surface modeling. Since maximin designs are selected from hundreds or
thousands of candidate models, the chance of such a diagonal model is infinitesimally small. In
general, for any location in the input space, the distance to the closest observation will be on
average less in a maximin LHS design than in a generic LHS design.

2.2.4 Maximum Entropy

Maximum entropy designs described by Shewry and Wynn (1987) [12] are also designed to have
space-filling characteristics. The design is chosen to maximize the amount of “information”
given by the sample, which in this case is captured by the entropy measure as defined in
Shannon’s information theory [13]. One way to do this is to maximize the determinant of the
correlation matrix C = (r[i, j]), where

. (1=T(hy) ifh;<a
T[l,]] - { 0 lf hl] >a’

Here, h;j is the distance between two observations x'and ! and F(hi j) is a spherical variogram
with range a, defined by

r(r) =2 - 21(5)"

2 \a

Maximum entropy designs are not restricted to equal probability bins, as LHS designs are.
Several examples of these designs are shown in Figure 8.

Figure 8. Examples of maximum entropy designs using 20 observations for two
predictors.

2.2.5 Design Comparison

The figures below show comparisons of the various types of sampling designs with respect to
several space-filling criteria. The wrap-around L, discrepancy described by Hickernell (1998)
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[14], WL2, measures the difference between the number of design points per sub-volume
compared to the same count for a uniform distribution of points across the input space. It is
computed with the formula shown below, where p is the number of inputs, and x1, x?, ..., x™ are
the n observations (i.e., design runs).

iz = (3 4]
- 3 n2

n P

> T1(5- bt = xkla bt - x4)

n
i=1 j=1 k=1

The second criterion is the maximin criterion described in Section 2.2.3:

M = min,; ”Xi —Xj”

The final criterion is the entropy measure, defined as E = det(C), where the matrix C = (r[i, j])
as described in Section 2.2.4.

To compare the space-filling characteristics of each of the sampling designs, 100 designs of each
type were sampled over n = 20 runs and d = 2 inputs. Each of the three criteria were then
computed for each design. Comparisons of the designs are shown in Figure 9, Figure 10, and
Figure 11, corresponding to wrap-around L, discrepancy, maximin, and entropy measures,
respectively. Maximum entropy is the top performer for two of the metrics, including the
maximin measure. It is able to outperform the maximin LHS design in the latter case because it
is not bound by the restriction to be a Latin hypercube design. In terms of wrap-around L,
discrepancy, maximin LHS is the clear winner.

Max. Entropy [ F-=-=4 | F=-=--- N

Maximin LHS | |—|:|]-| -
Basic LHS }—m~ { i

Random - F=-=—===] | | e- | + 4

1 1 | 1 1 1 1 | 1 1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
Discrepancy

Figure 9. Comparison of the sampling designs with respect to the wrap-around L,
discrepancy measure.

Smaller values indicate better space-filling characteristics.
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Max. Entropy

Maximin LHS |- F m —k _

Basic LHS === | F-=--- | i

Randomt F+-| | F-——-——-——- | + + i

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Distance

Figure 10. Comparison of the sampling designs with respect to the maximin distance
measure.

Larger values indicate better space-filling characteristics.

Max. Entropy [ F——-—-- | === -- + 4

Maximin LHS - |—m—| _
Basic LHS | m—| + _

Random - +F -

1 | | | L 1 1 | | 1
5 6 7 8 9
Entropy

=
o
ad
.

Figure 11. Comparison of the sampling designs with respect to the entropy measure.

Larger values indicate better space-filling characteristics.
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3 Metamodeling

3.1 Introduction

After deciding on an experimental design, the experiment can be run at each of the prescribed
predictor settings, and the responses can be observed. Using the design and the observed
response, a response surface model may be used to predict what the response would have been at
an unobserved combination of predictor values. In the context of computer experiments, where
the response being modeled is the result of deterministic computer code, the response surface
model is also referred to as a proxy model or a metamodel. Both terms capture the fact that one is
using a model (i.e., the metamodel) to predict the output of another model (i.e., the deterministic
computer code).

There are many variations of metamodels, but the goal is generally the same for all of them.
Some assumptions are made about either the shape of the response surface, its smoothness,
and/or the correlation in responses between points that are close in the space. The parameters for
these assumptions are estimated with the sampled observations, and a criterion is optimized.
Typically, that criterion balances the smoothness and simplicity of the surface with its ability to
match available data.

3.2 Quadratic Model

The quadratic polynomial model fits a parametric model to the response that is the analogue of
the parabola in p dimensions. It is defined as a sum of all linear, quadratic, and pair-wise cross-
product terms between predictors. That is, the approximating function £ (x) is defined by:

p P p
fX)=9=by+ z bix; + z by (x;)? + ZZ bijxix;
i=1 i=1

i=1 j>i

The coefficients in the quadratic polynomial model are estimated by solving the linear model Y
= XB, where
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2
F(xY) /1 xooxp ()? L (x3)" xixi xixd .. Xp_1Xp \
vo[fed ) g 1 x? 2 (xP)? .. (xg)z x2x? XIX3 .. XpiXp
. ) )
. P P P : :
f(x™) 1 oxf oxp (af)? . (k) aPxd xfad . xpogxp

and
T
B = (bo, bl' ...,bp, b11, ...,bpp, b12, b13, ey bp—l,p) .

The solution is given by B = (X'X)~'X'Y. This is a special case of multivariate linear regression.
3.3 Quadratic Model with LASSO Variable Selection

Typically, in industry, the analyst will perform a variable selection technique before proceeding
with a quadratic fit. This could be done, for example, using exploratory analysis, stepwise
regression, or comparison of candidate models using information criteria like AIC or BIC.
Ultimately, the final model fit will only use a subset of the main effects, interactions, and
squared effects. This results in a parsimonious model and can often lead to better predictions
because noisy, less relevant covariates have been removed from consideration.

One way of performing variable selection is through an automatic procedure based on LASSO
regression. LASSO (Least Absolute Shrinkage and Selection Operator) regression described by
Tibshirani (1966) [15] is a technique for fitting a basic multiple linear regression model while
shrinking the coefficients toward zero. Mathematically, this is done by adding a penalty term to
the least squares term in the objective function for linear regression. LASSO regression has the
interesting property that some of the fitted coefficients will be exactly zero. In these cases,
LASSO serves as a variable selection algorithm where variables whose coefficients are zero are
removed from the model.

The full procedure for the LASSO variable selection and quadratic fit is as follows:

1. Determine an appropriate value of A using 10-fold cross-validation on the root mean
squared error (RMSE) of the regression fit.

2. Fit a LASSO model using the quadratic regression model:
p

p p
f&) =9 =bo+ z bix; + z by (x)? + ZZ bijx;x;
i=1 i=1

i=1 j>i
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3. Identify which coefficients (b0, bi, bij, bii) are non-zero in the LASSO model. Remove
all main effects, interactions, and squared terms that are associated with the zero
coefficients.

4. Refit an OLS regression model using only the remaining terms from the LASSO model.

3.4 Kriging Model

The kriging model described by Simpson et al. (1998), Cressie (1993), and Krige (1951) [16-18]
has an approximation function that is composed of a trend term and an autocorrelation term. That
IS,

fx) =pux +Z2(x),

where u(x) is the overall trend and Z(x) is the autocorrelation term. Z(x) is treated as the
realization of a mean zero stochastic process with a covariance structure given by Cov(Z (x)) =
a2R, where R is an nxn matrix whose (i, /)™ element is the correlation function R(xi,xf)
between any two of the sampled observations x* and x/. Ordinary kriging assumes a scalar trend
(x) = ug , whereas universal kriging uses a parametric trend term.

In this study, the Matém(5/2, 0) correlation below is used, where, d;, = (x} — x,’c) The Matérn
correlation is often favored for kriging models because it tends to produce estimates that are
smoother on a local level than other common alternatives structures, like the exponential.
However, it is also more flexible than Gaussian correlation, which can be overly smooth.

p
o dV5  5d? dV/5
R(XL,X]) = 1_[[1 + ’; +9—2k exp(— ’; )
k=1 k k k

In the universal kriging model, the quadratic polynomial trend term below was used.
14

p P
pu(x) = by + Z bix; + z by (x;)? + z z bijxix;
i=1 i=1

i=1 j>i
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3.5 Multivariate Adaptive Regression Splines (MARS)

MARS models described by Friedman (1991) [19] approximate the response surface using a
collection of simple step and hinge functions (described below). Each function is only defined
over a particular region of the input space, and all of the functions collectively form a single
piecewise function over the full input space. The model is defined by:

fx) =Xk, ¢Bi(x),

where each B; is a basis function that is constant, a hinge function, or a product of two or more
hinge functions. Hinge functions are flat at zero over a portion of the space and linear elsewhere.
In the case of a single variable x, a hinge function takes the form max(0, x — q) or max(0,q —
x) for a constant g. Here, q is the location of the hinge, also called a knot.

3.6 Additivity and Variance Stabilization (AVAS)

The AVAS model described by Breiman and Friedman (1985) and Tibshirani (1988) [20, 21]
uses a non-parametric, iterative procedure to find some transformation of the response that can
be represented as a sum of transformed predictors. That is, it finds functions go, g1, ..., gp such
that:

14
go(f®) = z gi(x)

3.7 Thin Plate Splines (TPS)

TPS, as described by Duchon (1977), [22] are a generalization of splines in multiple dimensions.
The name refers to the modeling of the response using a surface analogous to a thin semi-rigid
sheet of metal. This surface can be deformed to fit the response, but at the expense of a penalty
applied for non-smoothness.

3.8 Support Vector Regression

Support vector regression (SVR) is closely related to support vector machines (SVMs), which
are widely used in classification tasks. In the case of SVR as described by Drucker (1977) [23],
the p-dimensional input vectors x are represented by a d-dimensional set of features z, where
each element of the vector z is some function of the values in x. For example, z could contain
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each of the terms in a polynomial formulation of the inputs. Given the features z, the support
vector regression model is given by

f) =z'w,

where w is a vector of real-valued linear model parameters. The estimation of the parameter
vector w is done with two goals in mind: (i) allow errors no larger than € when comparing actual
and predicted responses, and (ii) make the function as “flat” as possible. These requirements are
formally stated as:

C e . 1 *
minimize SIwliZ + CEini (& + €0

f-fx)<e+§
subjectto  {f(x) — f(X) S e+ ¢
fi' fl* 2 O

Here, &; and & are “slack” variables that, together with the tuning parameter C > 0 specify the
tradeoff between the flatness and accuracy of the predictive function.

The model is fit using a quadratic programming approach that depends only on knowing the dot
product between observations. For this reason, the “kernel trick” can be used to specify non-
linear SVR models, in which case the feature vector z and model parameters we are not
explicitly given.

3.9 Radial Basis Functions (RBF)

Radial basis functions described by Chen et al. (1991) [24] are any functions that depend solely
on the distance of an observation to some fixed location c. That is, an RBF ¢ (*) satisfies¢p(x) =
¢(JIx — cl|). An RBF regression model takes the following form.

14
F60 = bo+ ) bii(llx—xil)

That is, the response surface is approximated by a weighted sum of radial basis functions, each
of which depends on the distance from the location of interest, x, and one of the sampled
observations, x;. The regression weights b; are then trained using an ordinary least squares
approach. Other variations on this theme may be used to improve model fit. One way to provide
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a smoother fit is to include a smaller number of basis functions that involve alternative centers
C1, C2, ..., Cp instead of Xy, Xy, ..., Xp, Where p’ << p. Another alternative is to allow the
parameters of the ¢;(-) functions to vary by location.

3.10Projection Pursuit Regression (PPR)

PPR is an iterative procedure that estimates the response surface in a nonparametric fashion
using linear combinations of the predictors.

fx) = igk(zk) = igk(akx) = igk (i akixi>
k=1 k=1

k=1 i=1

Here, the weights ax define a projection of the variables in observation x to a new variable z.
The functions gk are smooth univariate functions (e.g., a linear approximation or spline fit). To
fit this model, the response is centered and the residuals are initialized to the response values. At
each iteration in the model fitting, the projection ay is chosen to maximize the amount of
variability in the residuals ry, r, ..., ry that can be explained. That is, ay is chosen as o, =
argmax, I(a), where

I(o) = 1 — 2=rm9@)

i=17i

In this sense, projections are chosen in pursuit of explaining the variability in the residuals. After
selecting the projection ay, the residuals are updated for the next iteration. The model fitting
process ends when residuals are sufficiently small to trigger a stopping threshold.
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4 Metamodel Evaluation

4.1 Performance Evaluation Metrics

The most desirable property of a metamodel is that it will provide the closest match between the
prediction and the truth for future independent test data. When comparing different metamodels,
it is useful to be able to capture the quality of the metamodel fit in a single statistic. There are
many ways to do this, but two of the most common are root mean squared error (RMSE) and R?.
RMSE is defined as the square root of the average squared difference between predictions

9 = f(x*) and true response values y; = f(x‘) for a set of observations{x*, x?, ..., x"}.

n
1
RMSE = |~ (v = 9,)?
i=1

The RMSE can also be normalized by, for example, dividing it by the median observed response.
This puts it on a similar scale regardless of the response, allowing for comparison of metamodel
fits to different response surfaces.

1 ~
\/HZ?=1(yi — 91)?
"Scaled" RMSE = SRMSE = -
median{y,, y,, ..., Yo}

Another metamodel accuracy measure is R?, which is defined as the amount of variation in the
response that is explained by the predictors. In a simple linear regression model, the R? statistic
is the square of the correlation between the actual and predicted response values. For other
models, a pseudo-R? statistic is typically used.

SSmodel —1— Z?=1(yi - yi)z

Pseudo-R? = R2 =1 — —
P SSerror ?:1(yi - y)z

Note that while R? in simple linear regression is always in [0, 1], the pseudo-R? is in [-0, 1]. A
negative pseudo-R? statistic means the model predicts the response worse than a flat model that
predicts the mean observed response value everywhere in the predictor space.
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4.2 Independent Validation

The most straightforward way to quantify the accuracy of a metamodel is to collect new,
independent test data that were not involved in training the model. The metamodel is then used
to produce predictions of the response at those test locations, and an RMSE or pseudo-R? statistic
can capture the quality of the fit. If these statistics have favorable values, then the model can be
considered accurate over the region of the predictor space “covered” by the test observations. For
this reason, it is important to select independent test data that span the region of the predictor
space of interest to the investigator, and that they are selected in a sufficient density to capture
variation in the response surface at a resolution fine enough to meet the needs of the study.

4.3 Cross-Validation

In many cases, independent test data are not available at the time of model fitting. In this case,
one must use the training data to measure model accuracy. One approach is to fit a metamodel
using all available training data, then calculate model accuracy statistics based on those training
observations. In this case, the statistics will be biased optimistically, since the metamodel first
and foremost is designed to fit those particular observations well. An overtrained model will fit
the training data very well, but perform poorly on independent test data.

4.3.1 k-Fold

A better approach is to use a k-fold cross-validation approach (see, e.g., Hastie et al. (2008) [25],
Chapter 7). Under this paradigm, the dataset is randomly partitioned into k folds, which are
mutually exclusive and exhaustive subsets of the observations. Each fold is then systematically
held out and the metamodel is fit to a dataset consisting of only the remaining k — 1 folds. This
model is then used to make a prediction on the fold that was left out. After repeating this process
on all k folds, there are a total of k models that are constructed, each of which are used to predict
the value of the single fold that was left out of the training set.

While the cross-validation approach does not specifically test the unique model that is created by
using all n training observations together, it does test the algorithm that is used to construct the
model. When each fold is held out of the training set, it will behave like independent test data as
far as that particular model is concerned. Therefore, the error magnitudes from the cross-
validation more accurately reflect error rates in the model fit over parts of the response surface
that have not been sampled.
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In general, selecting the number of folds k is a balance between the bias in estimating the model
accuracy and the variance in model fits. If k is small (i.e., each fold contains many observations),
the model fits will be made using a smaller subset of the dataset, with less overlap in training
data between models. This can result in large variations in the models as successive folds are
held out, and thus create highly variable estimates of model accuracy from fold to fold. If k is
large (i.e. each fold contains only a few observations), the model fits will be less variable, since
most of the training data will be in common between fits. However, estimation of model
accuracy will tend to be more optimistically biased, since all of the models will begin to look
similar to the full model trained using all n observations. The rule of thumb is to use somewhere
between k =5 and k = 10 (see discussion in Hastie et al. (2008) [25], Ch.7).

4.3.2 Leave-One-Out

Leave-one-out cross-validation is the extreme case of k-fold cross-validation where k = n. That
is, each fold is a single observation. In this case, each cross-validation model is fit withn -1
observations and then used to predict the response at the single observation that was left out of
the training data. Although this is a popular approach to measuring model accuracy, it can lead to
optimistic estimates of model quality due to the low variance of model fits from fold to fold. It
can also come with a high computational cost, as n — 1 different models need to be trained.

4.4 Variable Importance

Often, it is of interest to identify which of the inputs are the drivers of the model response. This
can aid in narrowing down the set of input values that produces an optimum response, or can
allow for a more parsimonious explanation of the interactions between the inputs and the
response. Determination of a variable’s importance can be approached in a number of ways.

For example, in classical experimental design, the coefficients of each input in an ANOVA
model, along with the associated standard error and significance, can be used to rank the
variables and remove the insignificant ones from the model. Such a procedure has even been
automated in stepwise model-fitting approaches. Some other models have their own specific
methods for determining variable importance, as well.

One more general method for assigning variable importance is to compute the R? loss. The
reasoning behind this approach is that removing important inputs from the model will result in
models that have much worse predictive ability. In contrast, removing inputs that are not
important should have a minimal effect on the quality of the model fit. The pseudo-R? value (see
Section 4.1) is one way of capturing how well the inputs are able to explain the variability in the
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response. Therefore, an input’s importance can be measured by how large a reduction in the
pseudo-R? occurs as a result of removing that input from the model. A summary of the procedure
is given below.

1. Fit a model of the response using all of the inputs. Compute the pseudo-R? for this
full model, and call it R7,,;;.

2. Fit areduced model of the response using all inputs except input k. Compute the
pseudo-R? for the reduced model, and call it R?,,.

3. Define the importance of input k to be I, = R?,;, — R?;

4.5 Case Study — Arches Metamodeling

During this year, a preliminary study for Task 3 was conducted using an existing dataset from
the Arches province in the American Midwest, which is described by Mishra et al. (2014) [26].
In that study, single-well simulations of CO; injection into a closed volume (as would be the case
in a network of wells employed for regional scale CO, storage) were carried out using the
STOMP-CO; simulator described in White et al. (2012) [27]. Stratigraphic columns
corresponding to three different ratios of reservoir (Mount Simon sandstone, MS) and caprock
(Eau Claire shale, EC) thickness were considered, with different depths to injection zone in each
case.

For each synthetic site case, simulations with 4 different well patterns (33, 4X4, 5X5, and
6% 6 well arrays), and 3 different permeability group variations (High k, Medium k, and Low k)
were run. Each permeability group consists of a set of correlated variables: permeability of MS,
permeability of EC, and the capillary entry pressure. This brings the total number of simulations
to 3X4X3 = 36. Simulations of pressure-constrained injection (at 90% of the fracture pressure)
were carried out using a 2-D r-z model with 20 vertical rows and 100 radial columns. The
predictors and response variables extracted from the simulations are described in Table 1.

Since the Arches dataset contains only 36 observations and 3 predictors, there is clearly the
potential for highly variable model fits if k is too small. For this study, k was chosen to be 12,
which places 3 observations within each fold. Since model fits are being made with 33
observations, they are unlikely to vary wildly from fold to fold. Also, with such a small sample
size, bias is unlikely to be a problem since all of the observations carry a lot of weight in the
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model fitting process. This guarantees that a model created with one fold removed will be
different than the model trained using all of the data.

Table 1. Predictors and Responses in the Arches Dataset

Predictor Description

D Depth to injection (m), which affects the fracture pressure, and hence, the maximum
pressure differential under which injection can be carried out

L Well spacing (m), which determines the volume of the closed system into which CO; is
injected

Kh MS Permeability-thickness product (md-ft) for the injection reservoir (Mount Simon sandstone),

- which controls the amount of CO, that can be injected for a given pressure differential
Response Description

Cum_CO2 Cumulative volume of CO; injected (millions of metric tons, MMT)
CO2_R Radius of CO, plume (m)
PCT_CO2 % Mass flux entering the caprock

The 12-fold cross-validation procedure was repeated 100 times for each metamodel, with fold
memberships being randomly selected each time. For each response, this produced 100 cross-
validated predictions at every set of sampled predictor values. The overall measure of metamodel
accuracy was the RMSE. In this case, let fj(xi) be the prediction of the response in the j™ cross-
validation replicate for the i'" observation. In similar fashion, let £;(x*) be the true response.
Then define the metamodel accuracy for that response to be the following.

100

1 = 1 ) A N2
RMSE = %Z mZ(f,-(xl) - f;xH)
i=1 j=1

Table 2 shows a comparison of model accuracy across all metamodels and responses. Note that
the raw RMSE values have different magnitudes from response to response. This is due to
different original scales for the observed responses. To allow better comparison of the RMSE
values, they may be scaled by the average response across the n = 36 observations, which is
denoted here as SRMSE. Both the RMSE and the SRMSE are given in Table 2 for each
combination of metamodel and response.

DOE Award No. DE-FE0009051, Task #3 23



Statistical Learning Based Models Metamodel Evaluation
for CO, Sequestration

Table 2. Metamodel Performance, 12-Fold Cross-Validation

RMSE (SRMSE)

Model Name
CUM_C02 CO2 R PCT_CO2
Quadratic 2.376 (-0.108) 900.504 (-0.095) 0.466 (-0.216)
Ordinary Kriging 0.640 (-0.029) 784.904 (-0.083) 0.087 (-0.04)
Universal Kriging 0.766 (-0.035) 536.496 (-0.057) 0.080 (-0.037)
MARS 9.811 (-0.445) 1322.644 (-0.14) 1.092 (-0.507)
AVAS 6.996 (-0.317) 1393.492 (-0.147) 0.443 (-0.206)
TPS 3.924 (-0.178) 1035.832 (-0.109) 0.694 (-0.322)

For all three responses, the kriging models outperform the other four types of metamodels. In
particular, the universal kriging model with a quadratic trend seems best overall. This can be
seen, for example, in Figure 12, which shows plots of cross-validated metamodel performance on
one of the responses, CO2_R. Note that the universal kriging model provides relatively stable
results across the range of values for this response. The residuals appear to be largely
uncorrelated as well, which indicates that there are not large systematic components to the
response that are not being accounted for.

The entire cross-validation procedure was also repeated using 6 folds and 100 replicate runs. In
this case, there are 6 observations in each fold, and the successive metamodel fits are made using
fewer observations (30 instead of the 33 in the 12-fold case). Using a smaller number of folds
should have the effect of reducing overfitting effects on the predictions and increasing model
variability from run to run. Results for the 6-fold cross-validation are shown in Table 3. The
kriging models are still the best performers for all responses, although now the universal kriging
model is the top performer for the first response as well.

Table 3. Metamodel Performance, 6-Fold Cross-Validation

RMSE (SRMSE)

Model Name
CUM_C02 CO2 R PCT _CO2
Quadratic 2.455 (-0.111) 933.624 (-0.098) 0.480 (-0.223)
Ordinary Kriging 1.305 (-0.059) 743.243 (-0.078) 0.137 (-0.064)
Universal Kriging 1.186 (-0.054) 611.898 (-0.065) 0.117 (-0.054)
MARS 10.061 (-0.456) 1574.248 (-0.166) 1.157 (-0.537)
AVAS 7.083 (-0.321) 1253.068 (-0.132) 0.476 (-0.221)
TPS 4.214 (-0.191) 1141.412 (-0.12) 0.763 (-0.354)
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Figure 12. CO2_R metamodel performance in 12-fold cross-validation.

Circles represent the median prediction over the 100 replicate runs. Vertical lines indicate various percentile
ranges over the 100 replicate runs: Black = 25" — 75", Dark Grey = 5" — 95", Light Grey = Min — Max.

DOE Award No. DE-FE0009051, Task #3

25



Statistical Learning Based Models Metamodel Evaluation
for CO, Sequestration

In this study, the cross-validation performance of five different metamodeling approaches was
measured in a closed volume injection case study of the Arches dataset. The dataset contained
three CO;, predictors, three responses, and 36 observations. Results showed that the kriging
metamodels outperformed the others for all three responses — in particular, the universal kriging
model with a quadratic trend had the best overall cross-validated RMSE. The quadratic
polynomial model was second best, followed by TPS, AVAS, and MARS. These rankings held
true for both the 6- and 12-fold cross-validation.

Clearly, a single case study with 36 observations is not sufficient to make a robust comparison
between metamodels. Performance is dependent not only on the number of observations, but also
on what sampling design was used and how many predictors there are. However, in this
particular case, the kriging metamodel was better at uncovering the structure of the response
surface (at least at the 36 observed sample points) than the other models.
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5 Comparison of Metamodeling Approaches

5.1 Problem Description

For the full combined experimental design and metamodel comparison study, sampling methods
and metamodels were developed for a reservoir simulator called GEM described in Computer
Modeling Group (2014) [28]. A simulation run requires nine input parameters, and results in a
host of responses over a 30 year period. Of these responses, three were chosen for the proxy
model comparison. The first is the average pressure in the reservoir, the second is the radius of
the CO; plume, and the third is the total storage efficiency of the reservoir. All responses were
selected at the end of the 30 year period.

The designs and metamodels under consideration in the study are listed in Table 4. The selection
of these options was made with two objectives in mind. The first goal was to provide a slice
through a continuum of possible approaches that would likely be used by others in the field. The
second goal was to allow for clear interpretation by keeping the number of models from being
needlessly large. For analysts opting for an experimental design route, the Box-Behnken design
seems to be the industry standard, more so than Central Composite, Plackett-Burman, and
factorial designs. Augmented pairs was also selected as an alternative to the Box-Behnken that
needs fewer runs; such a design may be useful in cases where design runs are expensive to obtain
in terms of time or money.

Table 4. Designs and Metamodels (Size n) Used in the Study

Experimental Designs Metamodels
Box-Behnken (n = 97) Ordinary Kriging
Augmented Pairs (n = 79) Universal Kriging

Maximum Entropy (n = 97) Quadratic Polynomial

Quadratic Polynomial + LASSO Variable Selection
Maximin LHS (n = 97) MARS

AVAS

For those opting for a sampling approach, the expected advantage of such designs over
experimental designs would be their space-filling nature. LHS designs are popular choices in this
area, and maximin LHS designs are the typical choice of space-filling LHS design. Occasionally,
maximum entropy designs are used in literature, and they show better space-filling
characteristics than maximin LHS designs according to two of the three space-filling metrics
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described in Section 2.2.5. For that reason, maximum entropy designs are considered in this
study as well.

Each of the sampling designs contained n = 97 runs with different values for the nine input
variables. The selection of 97 runs was made because the Box-Behnken design for p = 9 input
variables has n = 97 unique observations. In physical experiments, the Box-Behnken design
contains a number of duplicate points that are intended to be used to capture unknown sources of
variability. However, since the GEM simulation is deterministic, there is no need to measure the
response at a particular set of inputs more than once. This reduces the Box-Behnken design from
130 runs to 97. To avoid any bias that could be attributed to unequal sample sizes, all of the
maximin LHS designs were restricted to the same number of runs as the Box-Behnken design.
The exception to this rule was the augmented pairs design, which for 9 predictors is defined by n
= 79 runs after removing duplicate observations.

The maximum entropy and maximin LHS designs were sampled over the 9-dimensional unit
hypercube [0, 1]° and then converted back to the original predictor scale using the distributions
shown in Table 5. Here, T(l, m, h) is a triangular distribution extending from | to h, with its peak
at m.

Table 5. Input Distributions used with LHS Sampling

Input Description Distribution

Hgr Thickness of the reservoir T(50,150,250)

Hcr Thickness of the caprock T(100,150,200)

HLNKR Log-mean reservoir permeability, Dykstra- | pin kr ~ T(2.45, 3.56, 4.67)

Vpp Parson’s coefficient (perfectly correlated) VDP ~ T(0.35, 0.55, 0.75)

Ken Average horizontal permeability of the INT(0.002,0.02,0.2)

caprock

Kv/Ky | Anisotropy ratio InT(0.01,0.1,1)

0 CO, injection rate discrete with equal probability — {0.33, 0.83,
1.33}

Or Porosity of the reservoir T(0.08,0.12,0.18)

Ocr Porosity of the caprock T(0.05,0.07,0.10)
Discrete w/equal probabilit

ly Order of permeability layering I wequaip . ! I, Y .
Iy € {*random”, ” increasing”, “decreasing”}

Pccr Capillary pressure model of caprock Fixed value: Decrease Pc by 3x

Krr Relative permeability model of reservoir Fixed value: Linear for K.,

Each of the metamodels was trained on the dataset using the R statistical computing language
described by R Development Core Team (2011) [29]. Specifically, kriging metamodels were

DOE Award No. DE-FE0009051, Task #3 28




Statistical Learning Based Models
for CO, Sequestration

Comparison of Metamodeling Approaches

trained using the km method of the DiceKriging package described by Roustant et al. (2011)
[30], the quadratic polynomial fit was performed using the Im method in the stats package
(included in base R), LASSO was performed using the caret package described by Kuhn et al.
(2012) [31], MARS was performed using the mars method of the mda package described by
Hastie et al. (2011) [32], and AVAS was performed using the avas method of the acepack
package described by Spector et al. (2010) [33].

5.2 Model Fit Results

In this study, there were four candidate designs (Box-Behnken, augmented pairs, maximum
entropy, and maximin Latin hypercube sampling (LHS)) and six metamodels (ordinary kriging,
universal kriging, quadratic, LASSO + quadratic, MARS, and AVAS). This yields a total of 4 x
6 = 24 combinations of designs and metamodels. For each of these combinations, a metamodel
was trained using the design inputs.

The model performance was measured using root mean squared error (RMSE), scaled root mean
squared error (SRMSE), and pseudo-R?, which are described in Section 4.1. Table 6 and

Table 7 show the SRMSE and pseudo-R? for each of the metamodels, respectively, measured
over the training data. Here, “BB” stands for Box-Behnken, “AP” for augmented pairs, “ME” for
maximum entropy, and “MM?” for maximin LHS. Note that this is a biased view of model
performance, since the models are being evaluated over the same dataset used to train them. For
example, since kriging models are interpolators (i.e., they pass through each observation by
design), they always achieve zero error over the training set. However, one obviously could not
expect them to perfectly model the response at other points in the input space.

Table 6. Full Model Fit results (Scaled RMSE shown for each combination)
Total Storage Efficiency

Ordinary | Universal | Quadratic | Quadratic
Kriging Kriging Poly W/LASSO MARS | AVAS
BB 0.000 0.000 0.063 0.070 0.103 0.097
AP 0.000 0.000 0.042 0.059 0.125 0.107
ME 0.000 0.000 0.054 0.063 0.090 0.080
MM 0.000 0.000 0.048 0.058 0.082 0.072

Plume Radius

Ordinary | Universal | Quadratic Quadratic

Kriging Kriging Poly w/LASSO MARS | AVAS
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BB 0.000 0.000 0.046 0.047 0.123 0.068

AP 0.000 0.000 0.032 0.032 0.138 0.094

ME 0.000 0.000 0.033 0.033 0.068 0.044

MM 0.000 0.000 0.024 0.024 0.059 0.074
Average Pressure

Yriging | Kriging | poly | wiLASs0 | MARS | AVAS

BB 0.000 0.000 0.027 0.037 0.107 0.033

AP 0.000 0.000 0.044 0.058 0.187 0.313

ME 0.000 0.000 0.017 0.028 0.097 0.025

MM 0.000 0.000 0.014 0.024 0.088 0.015

Table 7. Full Model Fit results (Pseudo-R? shown for each combination)

Total Storage Efficiency

Yriging | Krigng | Poly | wilASSo | MARS | AVAS

BB 1.000 1.000 0.926 0.910 0.802 | 0.825

AP 1.000 1.000 0.980 0.960 0.819 0.869

ME 1.000 1.000 0.921 0.892 0.786 | 0.830

MM 1.000 1.000 0.938 0.908 0.819 0.858

Plume Radius

Yriging | Krigng | Poly | wilASso | MARS | AVAS

BB 1.000 1.000 0.977 0.976 0.834 | 0.949

AP 1.000 1.000 0.992 0.992 0.851 0.931

ME 1.000 1.000 0.984 0.984 0.933 0.972

MM 1.000 1.000 0.990 0.989 0.937 0.902
Average Pressure

o | Sl | Qe | e | MARS | AvAS

BB 1.000 1.000 0.964 0.932 0.435 0.947

AP 1.000 1.000 0.975 0.957 0.544 -0.283

ME 1.000 1.000 0.987 0.965 0.570 0.971

MM 1.000 1.000 0.990 0.970 0.579 0.988
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5.3 Independent Validation Results

The validation study is a comparison of various combinations of designs and metamodels in
terms of prediction performance on a common independent test design. This avoids the issue of
bias in evaluating model performance, as discussed in the previous section. These models were
then used to predict the value of the response on an independent design, which in this case was a
basic Latin hypercube sample.

The results of the validation study are shown in Table 8 and Table 9. Cells shaded green indicate
better performance, and those in red indicate worse performance. For the first response (Total
Storage Efficiency), the Box-Behnken design was clearly the best performer, and the quadratic
fit (with and without LASSO) seemed best. The LASSO quadratic fit seemed more robust across
the designs than the other metamodels, giving consistently good performance. However, all of
the first four model types (kriging and quadratic fits) seemed to have similar quality.

Table 8. Validation Study Results (Scaled RMSE shown for each combination)

Total Storage Efficiency

Kriging | Kriging | _ Poly | wiLASs0 | MARS | AVAS

BB 0.100 0.090 0.090 0.089 0.103 0.111

AP 0.100 0.110 0.110 0.106 0.109 0.107

ME 0.114 0.114 0.114 0.103 0.109 0.100

MM 0.110 0.118 0.118 0.093 0.109 0.113
Plume Radius

Kriging | Kriging | Poly | wiLASs0 | MARS | AVAS

BB 0.077 0.068 0.068 0.069 0.099 0.066

AP 0.081 0.087 0.087 0.087 0.117 0.093

ME 0.072 0.062 0.062 0.069 0.081 0.063

MM 0.064 0.065 0.065 0.064 0.089 0.099
Average Pressure

Kriging | Kriging | ° Poly | wilASSG | MARS | AVAS

BB 0.035 0.040 0.040 0.040 0.118 0.047

AP 0.076 0.108 0.108 0.104 0.151 0.410

ME 0.036 0.040 0.041 0.045 0.119 0.048

MM 0.044 0.042 0.042 0.060 0.134 0.050
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Total Storage Efficiency

Validation Study Results (Pseudo-R? shown for each combination)

Kriging | Krigng | - Poly | wiAss0 | MARS | AVAS

BB 0.765 0.808 0.808 0.811 0.748 0.706

AP 0.763 0.715 0.715 0.734 0.720 0.731

ME 0.693 0.693 0.693 0.746 0.720 0.763

MM 0.712 0.672 0.672 0.793 0.718 0.699
Plume Radius

Kriging | Kriging | Py | wiAss0 | MARS | AVAS

BB 0.921 0.938 0.938 0.937 0.870 0.943

AP 0.913 0.900 0.900 0.901 0.821 0.886

ME 0.932 0.950 0.950 0.936 0.913 0.947

MM 0.946 0.945 0.945 0.946 0.895 0.871
Average Pressure

Krigng | Kriging |  paly | wiLASSO | MARS | AVAS

BB 0.952 0.940 0.940 0.939 0.464 0.916

AP 0.779 0.555 0.554 0.588 0.128 -5.428

ME 0.950 0.938 0.936 0.924 0.458 0.913

MM 0.925 0.933 0.932 0.862 0.318 0.903

For the second response (Plume Radius), the maximin LHS is the best performing design. As
was the case in the first response, the first four model types perform similarly. This pattern
continues for the third response (Average Pressure), where ordinary kriging is the best model. In
terms of sampling designs, the Box-Behnken, maximum entropy, and maximin LHS all have
similar performance when predicting Average Pressure. A summary of the findings from this
study appear in Table 10.

A visualization of the model fit qualities may also be found in the Appendix. Each row of plots
shows a comparison of the predicted response to the actual response on different datasets. The
left plot shows the prediction of the metamodel on the same data used to train it. These results
are expected to be optimistically biased. The center plot shows the prediction of the metamodel
on the independent validation set, which was a Latin hypercube sample. The right plot contains
cross-validated results, which are described in more detail in Section 5.4.
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Table 10. Summary of the Validation Study Findings

Response Total Storage Efficiency | Plume Radius Average Pressure

Box-Behnken /

Best Design Box-Behnken Maximin LHS ;
Maximum Entropy

Tie Between All Kriging

Best Metamodel Quadratic w/LASSO and Quadratic Variants

Ordinary Kriging

5.4 Cross-Validation Results

Another comparison of interest in this study was between cross-validation and validation. Had
validation data not been available, would cross-validation have given similar results in terms of
which metamodels had the best performance on each of the responses? To investigate this
question, a 5-fold cross-validation procedure was implemented 100 times for each of the
metamodels. For each response, this produced 100 cross-validated predictions at every set of
sampled predictor inputs. The metamodels were compared using the average scaled RMSE
(SMRSE) over the 100 sets of predictions. The SRMSE is given in the formula below, where y;;
is the prediction for the i response in the j™ cross-validation.

1 1 ~ )2 1 5 )2
\[ﬁzgilm }gg(Yij - yij) \[—10071 i=1 11'22(%1' - yij)
SRMSE = ; = :
median;(y;) median;(y;)

Results of the cross-validation runs are given in Table 11 and Table 12. There are several
interesting things to note in comparing these results to the validation results. First of all, the
cross-validation error rates seem higher than the validation error rates across the board. The
effect is most prominent for the Box-Behnken and augmented pairs designs. This is likely
because predictions by cross-validated models can only be made at sampled locations in the
response surface. In the case of the BB and AP designs, the only samples points were on the
boundaries of the predictor space, where models are not as likely to fit well, especially when
those points are left out of the training process.

Due to the disproportionate bias in measuring error in the factorial designs, the maximum
entropy and maximin LHS designs look much more favorable in the cross-validation study.
Maximin LHS is the top performing design in all cases. The ordinary kriging and quadratic +
LASSO metamodels seem best overall as well.
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Table 11. 5-fold Cross-Validation Study Results (Scaled RMSE shown for each
combination)
Total Storage Efficiency
Ordinary | Universal | Quadratic | Quadratic
Kriging Kriging Poly w/LASSO MARS | AVAS
BB 0.119 0.181 0.182 0.170 0.119 0.119
AP 0.136 0.327 0.333 0.367 0.141 0.144
ME 0.115 0.177 0.175 0.125 0.117 0.117
MM 0.104 0.148 0.151 0.106 0.107 0.109
Plume Radius
Ordinary | Universal | Quadratic | Quadratic
Kriging | Kriging Poly W/LASSO MARS | AVAS
BB 0.100 0.130 0.128 0.216 0.134 0.104
AP 0.098 0.186 0.187 0.347 0.162 0.135
ME 0.092 0.111 0.110 0.071 0.087 0.086
MM 0.067 0.075 0.076 0.057 0.079 0.082
Average Pressure
Ordinary | Universal | Quadratic | Quadratic
Kriging Kriging Poly w/LASSO MARS | AVAS
BB 0.054 0.078 0.078 0.107 0.118 0.052
AP 0.173 0.289 0.299 0.303 0.233 0.320
ME 0.040 0.055 0.056 0.039 0.114 0.033
MM 0.031 0.046 0.045 0.036 0.106 0.028
Table 12. 5-fold Cross-Validation Study Results (Pseudo-R? shown for each combination)
Total Storage Efficiency
Ordinary | Universal | Quadratic | Quadratic
Kriging Kriging Poly w/LASSO MARS | AVAS
BB 0.760 0.640 0.632 0.625 0.749 0.761
AP 0.824 0.741 0.741 0.709 0.792 0.786
ME 0.691 0.462 0.468 0.678 0.681 0.684
MM 0.748 0.623 0.614 0.765 0.728 0.724
Plume Radius
Ordinary | Universal | Quadratic | Quadratic
Kriging Kriging Poly w/LASSO MARS | AVAS
BB 0.906 0.888 0.887 0.721 0.808 0.907
AP 0.944 0.909 0.907 0.712 0.836 0.910
ME 0.896 0.882 0.883 0.938 0.904 0.923
MM 0.936 0.935 0.934 0.956 0.906 0.925
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Average Pressure

Ordinar Universal uadratic uadratic
Krigingy Kriging 0 Poly va/LASSO MARS | AVAS
BB 0.874 0.827 0.826 0.709 0.347 0.904
AP 0.656 0.699 0.693 0.533 0.427 0.200
ME 0.940 0.913 0.909 0.946 0.535 0.971
MM 0.959 0.928 0.929 0.945 0.525 0.973

Table 13. Summary of the Cross-Validation Study Findings

Response Total Storage Efficiency | Plume Radius Average Pressure
Best Design Maximin LHS Maximin LHS Maximin LHS
Best Metamodel Ordinary Kriging Quadratic w/LASSO Ordinary Kriging

Scatterplots summarizing the cross-validation results can be found in the Appendix in the right-
most column. Each plot compares the cross-validated predicted responses to the actual response.
For each observation, the circle represents the median predicted response over the 100 cross-
validation runs. The black line shows the range of the 25" to 75" percentile predictions, the dark
gray represents the 5" to 95" percentiles, and the light gray shows the full range of predictions,
minimum to maximum.

These figures give particular insights into why some models fare better than others. For example,
the universal kriging and quadratic polynomial models tend to underperform compared to
ordinary kriging and the quadratic w/LASSO model. The plots show that those models perform
worse because they are more variable in the predicted response with respect to the choice of
cross-validation grouping. That is, those models seem more sensitive to the data that are
available, whereas the ordinary kriging and quadratic w/LASSO models predict similar
responses regardless of how the training set is divided into cross-validation groups.

The fact that these results do not entirely agree with the validation results is somewhat
surprising. Cross-validation is intended to approximate the error rates that would be obtained on
an independent test set without having to actually collect that independent test data. However,
cross-validated predictions can only be made at training data points. Since the designs under
consideration in this study have fundamentally different paradigms (e.g., sampling over input
ranges vs. assigning levels), it is difficult to compare model performance on the basis of cross-
validation. A clear example of this is the augmented pairs models, which have the worst cross-
validation results. This is at odds with the validation results, which showed that AP models were
in the middling range of performance. The fact that the cross-validation metrics for AP models
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were so much worse could be related to the fact that the AP design had fewer runs to begin with,
and those it did have were specifically chosen to not contain any redundant information. Holding
some of those crucial observations, therefore, could remove too much information for the AP
model to be able to adequately describe the surface.

5.5 Variable Importance

Using the procedure described in Section 4.4, the importance of the 9 GEM inputs was assessed
for each combination of response, design, and metamodel. For a given combination, the
metamodel was trained using the selected design and used to make predictions on the validation
set described in Section 5.3. The pseudo-R? was recorded over the validation set using this full
model. Next, each input was held out of the model training process to obtain a reduced model.
This reduced model was also used to predict over the validation set, with the input removed from
the test set as well. The pseudo-R? was then recorded for the reduced model. The difference
between the two R? values is the variable importance measure for the input that was held out.

Results are shown in Figure 13, Figure 14, and Figure 15 for the total storage efficiency, plume
radius, and average pressure responses, respectively. In each set of plots, the length of the bars
represents the variable importance for the 9 predictors arranged in the rows. Different color bars
correspond to the different designs, while plot columns correspond to different types of
metamodels. One thing to note is that the pseudo-R? is not bound between 0 and 1. As a result, in
some cases the R? loss can be negative or larger than 1.

Results for total storage efficiency (Figure 13) show that the most influential inputs are
anisotropy ratio, mean reservoir permeability, permeability layer arrangement, and reservoir
thickness. In general, this pattern holds true over all combinations of design and metamodel.
There is evidence of a slight contribution from the injection rate.

The plume radius response (Figure 14) appears to be almost entirely driven by the injection rate
and reservoir thickness, with all combinations of designs and metamodels in broad agreement.
The same inputs are influential for average pressure as well (Figure 15). In this case, the
instability observed in the augmented pairs/AVAS combination produces some very extreme R
loss values. Note that in the validation results in Table 9, the AVAS model for the augmented
pairs design had a pseudo-R? value of -5.428, which indicates that the model fit is much worse
than that obtained by always predicting the mean response no matter what the input values are.
With a full model that is predicting so poorly, removal of any inputs is going to make predictions
worse.
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Figure 13. Variable importance results for the ""Total Storage Efficiency’ response.
Influential variables include anisotropy ratio, mean reservoir permeability, permeability layer arrangement,
and reservoir thickness.
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Figure 14. Variable importance results for the ""Plume Radius" response.

Influential variables are injection rate and reservoir thickness.
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Figure 15. Variable importance results for the ""Average Pressure' response.

Influential variables are injection rate and, to a small extend, reservoir thickness. Note that the augmented
pairs design was very unstable for the AVAS procedure, resulting in abnormal R? loss values.

5.6 Discussion of Results

In this study, four design strategies and six metamodels were tested using a GEM simulation.
Each combination of design and metamodel was evaluated over the 9-predictor simulation using
both an independent validation on a LHS design and 5-fold cross-validation. The validation
results indicated that the best designs were Box-Behnken and maximin LHS, and the best
metamodels were ordinary kriging and the quadratic polynomial with LASSO variable selection.
MARS and AVAS models did not work as well as the other models in most cases, and the AP
design was generally the worst performer, possibly due to it having a smaller number of runs
than the other designs.

A comparison of the validation and cross-validation results showed that the cross-validation error
rates were larger than the validation error rates, and that the effect was disproportionately greater
on the Box-Behnken and augmented pairs designs (see Figure 16 and Figure 17). This resulted in
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the maximin LHS appearing far more favorable in the cross-validation study. Again, the ordinary
kriging and quadratic w/LASSO metamodels were the best performers.
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Figure 16. Comparison of validation and cross-validation scaled RMSE values for the
metamodels, colored by design type.

The diagonal line indicates where error rates would be the same between validation and cross-validation.
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From the discussion above, there are two major conclusions to be drawn from the study. First,
the Box-Behnken design with a quadratic metamodel seems to work quite well with this
simulation, especially if a variable selection method like LASSO is used first. The maximin LHS
design and ordinary kriging metamodel also performed well, but not consistently better than the
traditional approach.

Second, the results highlight the fact that factorial designs like the Box-Behnken design may be
disproportionately affected by higher error rates when a cross-validation approach is used. One
must be careful in using cross-validation as a technique with factorial design data, since the error
rates paint a much different picture when compared to the validation approach, which is more
straightforward and assessed model fit over the entire input space.
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6 Summary and Conclusions

There were two major objectives to be accomplished in Simplified Modeling Task 3. The first
goal was to identify several candidate approaches that predict simulation output using an
approximation model (i.e., a metamodel). These approaches include both a design of inputs at
which to observe the true simulation output as well as a modeling paradigm whose parameters
are fit using those observed outputs. The second goal was to compare those approaches in order
to determine which methods work well in different situations, and to make recommendations for

others who may be attempting to model simulation outputs in this field.

Regarding the first objective, a collection of representative experimental designs were selected
from two broad categories. The Box-Behnken and augmented pairs designs were chosen to
represent the more traditional factorial design approach. The former was chosen because it
appears to be the most commonly used design of this type in the gas and petroleum literature; the
latter was chosen as an alternative to the Box-Behnken that requires fewer simulation

runs. Maximin Latin hypercube sampling (LHS) and maximum entropy designs were selected to
represent sampling designs, which form the second category. Sampling designs have grown in
popularity in recent years, and LHS designs are the most common of these designs seen in the
literature. The maximin LHS is a special type of LHS design that optimizes a desirable space-
filling criterion. Maximum entropy designs are a popular alternative to LHS designs, and also

have excellent space-filling characteristics.

In terms of metamodeling approaches, several common competing methods were selected for
comparison in this task. These included quadratic polynomials, which are typically used in
conjunction with factorial designs, kriging models, which are often used with sampling design
approaches, and two other competing methods called MARS and AVAS. In addition, a version
of quadratic modeling that uses LASSO variable selection was also considered as a more refined
alternative to traditional quadratic regression modeling.

Regarding the second objective, all combinations of designs and metamodels were used to
predict three different responses from a 9-input CMG-GEM simulation of gas injection into a
closed reservoir. Models were evaluated using three criteria: root mean squared error (RMSE),
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scaled RMSE, and pseudo-R?. Evaluation was performed both for 5-fold cross-validated
predictions on the training set as well as predictions on an independent test set. Results showed
that using the traditional approach of a Box-Behnken design with a quadratic metamodel appears
to work just as well, if not better, than using newer sampling designs and more complex
modeling strategies. In the validation study, this traditional approach was the top performer, and
it was competitive in the cross-validation study as well. The maximin LHS with either ordinary
kriging or the quadratic polynomial model with LASSO variable selection was another
competitive method that showed generally robust performance across the three responses. The
worst performing design in general was the augmented pairs design, which may be attributed to
the fact that it has fewer observations than the other designs. The worst performing metamodels
were MARS and AVAS.
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