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DISCLAIMER 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
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Executive	Summary	
The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox 

Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide 

(CO2), a practice called CO2 sequestration (CCS). In the subsurface of the midwestern United States, the 

Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three 

times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. 

Simon Sandstone, which has been proven by other Department of Energy‐funded research as a resource 

for CCS, the Knox strata may be an additional CCS resource for some parts of the Midwest and may be 

the sole geologic storage (GS) resource for other parts. 

 

One group of studies assembles, analyzes, and presents regional‐scale and point‐scale geologic 

information that bears on the suitability of the geologic formations of the Knox for a CCS project. New 

geologic and geo‐engineering information was developed through a small‐scale test of CO2 injection into 

a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation 

that, at least in some locations, geologic formations within the Knox will (a) accept a commercial‐scale 

flow rate of CO2 injected through a drilled well; (b) hold a commercial‐scale mass of CO2 (at least 30 

million tons) that is injected over decades; and (c) seal the injected CO2 within the injection formations 

for hundreds to thousands of years. In CCS literature, these three key CCS‐related attributes are called 

injectivity, capacity, and containment. The regional‐scale studies show that reservoir and seal properties 

adequate for commercial‐scale CCS in a Knox reservoir are likely to extend generally throughout the 

Illinois and Michigan Basins. Information distinguishing less prospective subregions from more 

prospective fairways is included in this report. 

 

Another group of studies report the results of reservoir flow simulations that estimate the progress and 

outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi 

Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In 

these studies, the regional‐scale information and a limited amount of detailed data from specific 

boreholes is used as the basis for modeling the CO2 injection process (dynamic modeling). The 

simulation studies were conducted progressively, with each successive study designed to refine the 

conclusions of the preceding one or to answer additional questions. The simulation studies conclude 

that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate 

injectivity and capacity for commercial‐scale injection through a single injection well. This conclusion 

depends on inferences from seismic‐data attributes that certain highly permeable horizons observed in 

the wells represent laterally persistent, porous vuggy zones that are vertically more common than 

initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence 

that the conditions that caused vug development (near‐surface processes) were of regional rather than 

local scale. 

 
Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. 

These studies cover well drilling, public interactions, representation of datasets and conclusions using 

geographic information system (GIS) platforms, and risk management. 
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Overall, the studies validate the identification of the Knox Group and overlying St. Peter Sandstone as 

CCS targets in the Midwest, and confirm the expectation that local well data will be consistently needed 

to investigate injectivity at any specific proposed injection site. At any proposed injection site, caprock, 

along with reservoir attributes, would be confirmed through an exploratory well that could become an 

injector. Compared to a massive sandstone injection reservoir like the Mt. Simon Sandstone, the lesser 

lateral and vertical homogeneity of a porous Knox reservoir is more likely to require a second 

exploratory well—so that injection can be effectively tested—before further investment decisions are 

made. If a CCS project location allows good access for data acquisition, a CO2 plume migrating within the 

Knox is reasonably likely to be observable using the seismic profiling technique. Within Knox reservoirs, 

the likely existence of unanticipated highly permeable migration pathways will increase the uncertainty 

of plume prediction and could increase the radius of regulatory Areas of Review. 

  



10 
 

Project Summary 

Objectives 

This project (DE‐FE0002068) evaluates the carbon sequestration (CCS) potential of the Cambro‐

Ordovician St. Peter Sandstone and the Knox Group in the Illinois and Michigan Basins covering the 

states of Illinois, Indiana, Kentucky, and Michigan. There was very little reservoir and seal data for these 

two intervals even though it may have the most significant CCS potential in areas where the Mt. Simon 

Sandstone is absent or too deep to be a viable target. This project helps determine if 1) the Knox has 

potential as a seal, 2) the Maquoketa Shale would be a good seal for carbon dioxide (CO2), 3) the 

reservoir quality of the Knox and St. Peter Sandstone in specific areas of the Illinois and Michigan Basins 

is adequate, 4) CO2 will interact with the waters and mineralogy of the seal and reservoir, and 5) the risk 

of fracturing the seals or the reservoir and allowing CO2 to move in unanticipated directions. The Knox is 

equivalent to the Arbuckle in Oklahoma and Ellenburger in Texas and this project would help support 

potential sequestration projects in those regions. 

 

In summary, the project objectives are to evaluate the three fundamental geological criteria for a CCS 

project—injectivity, capacity, and containment—whose target reservoir is within the Cambro‐Ordovician 

units of the Illinois and Michigan Basins and adjacent Midwestern areas at the regional scale. Although 

nearly all geologic data (and all data cited by the 19 topical reports) is site specific, the report authors 

have typically extrapolated their conclusions cautiously toward the regional scale. No actual CCS project 

would proceed far without site‐specific data, but the regional‐scale inferences about both reservoir and 

caprock quality will help project operators identify Midwestern subregions that may provide suitable 

sequestration targets for specific CO2 sources. Besides criteria strictly related to the reservoir and 

caprock, other broad requirements for a successful CCS project include ability to monitor the CO2 plume 

(using data from seismic reflection and other methods), ability to satisfy local residents that the project 

is safe, and the ability to identify, evaluate, and address risks associated with project execution. The DE‐

FE0002068 studies described in this final report also address some, but not all aspects of these 

requirements. 

Accomplishments and Benefits of this Project 

The results of this project show how to reduce storage risk by documenting the uncertainties related to 

any commercial CCS project that involves the St. Peter Sandstone and the Knox Group. The project 

delineated potential new geologic intervals for carbon storage in Illinois, Indiana, Michigan, and Western 

Kentucky and will enhance the North American carbon storage resource potential. This final project 

report includes best practice recommendations for each task, including site selection, characterization, 

site operations, and closure practices.  

 

The major accomplishments and benefits of this project to carbon storage are listed below: 

 Developed a Best Practices Manual that illustrates the methodology for reducing storage risks 
for the Knox and St. Peter Sandstone. 

 Highlighted areas of high risk and low risk for carbon storage in the St. Peter Sandstone and 
Knox strata in the Illinois and Michigan Basins. 
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 Showed how seismic reflection data can be used to delineate high‐ and low‐risk areas. 

 Evaluated seals and reservoirs for faulting and fracture risk (geomechanical studies), as well as 
their interactivity and reactions with CO2 in the presence of brine (geochemical studies). 

 Illustrated injectivity and storage potential of commercial injection into St. Peter Sandstone and 
Knox with reservoir simulation. 

 Performed CO2 injection test in an existing well in Hancock County, Kentucky, to evaluate 
injectivity of the Knox. 

 Developed regional CO2 storage resource estimates for the Knox and St. Peter Sandstone for use 
in future version of the US Department of Energy’s (DOE’s) North American CO2 Storage 
Resource Atlas. 

 Showed that reservoir characterization and reservoir flow simulation are both important tools in 
understanding plume migration but there is a limit on their effectiveness. Adding more 
information to the model did not necessarily change the results enough to justify the costs and 
time involved.  

Results and Discussion 

This final report is primarily composed of 19 different topical reports submitted as deliverables to the US 

Department of Energy. Please refer to the individual topical reports for further details and references to 

the detailed work completed by this project.  

 

A number of the topical reports and research directions were the result of an American Society of 

Mechanical Engineers (ASME) Peer Review (October 22–26, 2012) for the National Energy Technology 

Laboratory (NETL). The ASME recommended further reservoir simulations, geochemical studies, and 

evaluations of the geologic model used in the reservoir flow simulations. These recommendations have 

all been completed. 

 

The project included a geologic and geophysical appraisal of the Cambro‐Ordovician interval from the 

Maquoketa (Utica) Shale (significant secondary seal in the region) to the top of the Eau Claire Shale (the 

primary seal for the Mt. Simon Sandstone; Figure 1). We investigated both the reservoir and seal 

capacity of the intervening layers, with emphasis on the St. Peter Sandstone and the Knox Group. This 

stratigraphic interval is regionally present in multiple states and, when the Mt. Simon Sandstone is not a 

potential reservoir, may be the most important sequestration target in the United States Midwest. We 

acquired whole and sidewall cores from the Maquoketa Shale and Knox Super Group. The upper Knox 

and the Maquoketa was evaluated for seal potential and the lower Knox for reservoir potential.  
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acquired a state‐of‐the‐art vertical seismic profile (VSP) to monitor the injected CO2 and image its 

distribution in the area around the well bore. 

 

Carbon dioxide injection inherently alters the pressure of the brine, its chemical content, and possibly 

the temperature around the injection wells and also across the reservoir. These perturbations trigger 

complex coupled processes (multiphase fluid flow, heat transfer, rock‐fluid interactions and mechanical 

processes) whereby the reservoir and the surrounding rock masses, and any fractures and faults within 

them, undergo a change in stress; hence, deformations and, possibly, failure can occur. The Knox Group 

contains no thick shale intervals and is composed of mostly dolomite rocks. Geomechanical testing 

allowed us to evaluate the importance of this unit as a possible seal for the lower Knox and as a 

secondary seal for the Mt. Simon Sandstone. In the Illinois Basin, there are only limited core from the 

Maquoketa Shale and Knox in areas that have sequestration potential. The Maquoketa core was 

collected to enable us to evaluate the seal potential for not only the Knox but also for the St. Peter 

Sandstone, but also as a secondary seal for the Mt. Simon Sandstone.  

 

Within the sealing components—the primary and secondary caprocks and, if any, the sealing faults—

rock failure, the re‐activation of fractures and faults, or the creation or propagation of hydraulic 

fractures may drastically enhance permeability and result in the leakage of fluids (CO2 or brines) outside 

the intended storage complex. Geomechanics helped determine whether these features, if present, 

could potentially become conduits for movement of CO2 or brine to shallower layers.  

 

We conducted a second phase of injection in the KGS #1 Blan well. A second phase of injection allowed 

KYCCS to test different reservoir facies in the Knox and test the lateral continuity and capacity of the 

initial CO2 test zone with additional fluid volume.  

 

The Cambro‐Ordovician Knox Group and the St. Peter Sandstone of the Illinois and Michigan Basins meet 

the storage criteria of being able to store 30 million tonnes of CO2. The Knox is a regionally extensive 

and thick (over 609.5 m [2,000 feet]) dolomite with well‐developed porosity common in both basins. 

The Knox was also shown to have the capacity to store 50 million tonnes of CO2 at a site in Henderson 

County, Kentucky, as part of Kentucky’s FutureGen proposal in 2006. A number of waste disposal wells 

in Illinois and Kentucky use the Knox as the target interval. In both the Illinois and Michigan Basins, 

porosity in the Knox can range from 4% to 17% in some zones. Both the injection well at the IBDP and 

the well at the Hancock site encountered lost circulation and porous intervals in the Knox. Natural gas 

storage fields have used the Knox and St. Peter as a reservoir. Early estimates of the storage capacity in 

the St. Peter Sandstone in the Illinois Basin suggest that there are 1.6 to 6.4 billion tonnes, with 

additional capacity in the Michigan Basin (DOE, 2008). However, these early St. Peter Sandstone 

calculations were based on very imprecise data. Regional variations in St. Peter Sandstone were not 

taken into account and no regional assessment was done highlighting areas of high potential with those 

of higher risk. In our assessment of the St. Peter Sandstone, we will include new data from our IDBP well 

and new wells in the Michigan Basin. 
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The primary goal of this project was to analyze the sequestration potential of the Cambro‐Ordovician 

interval in the Illinois and Michigan Basins. We did not use any untested technology. The best practices 

manual that is the final product in this research is specific to these formations. We will be able to 

significantly lower the cost of sequestration site assessment because all basins and formations have 

unique issues that must be assessed to adequately understand the uncertainties and risks to the 

sequestration project.  

Knox	and	St.	Peter	Sandstone	Geology	and	Reservoir	Properties	
The Knox carbonates are considered part of the Great American Carbonate Bank (GACB) that was 

deposited during the Cambrian and Ordovician and is found throughout North America (Fritz et al., 

2012). The Knox is the stratigraphic equivalent of the Arbuckle in Kansas and Oklahoma and the 

Ellenberger Group in Texas. In the Illinois Basin, the Knox carbonates range in thickness from 300 to 500 

ft (90 to 152 m) in northern Illinois to as much as 6,000 ft (1,828 m) in southern Illinois.  

 

In this report, we concentrated on the geologic and geophysical interpretation of the Potosi Dolomite, 

which is part of the lower Knox succession. The Potosi Dolomite is characterized by thick vuggy intervals 

(up to 7 ft thick [2.1 m]) and brecciated zones that suggest a paleokarst environment (James and 

Choquette, 1988).  

 

The Potosi Dolomite was chosen for this study because of its high permeability values and large capacity 

for CO2 storage. The Potosi’s excellent reservoir properties have been documented by a chemical waste 

deposal project at Tuscola, Illinois. This disposal project has already injected over 50 million tonnes of 

CO2 equivalent in liquid chemical waste into the Potosi Dolomite. We were able to acquire new core and 

wireline data from the Potosi Dolomite and use existing 3D seismic reflection data from the Decatur, 

Illinois, area to model the movement of CO2 through the reservoir.  

Stratigraphy	
The objective of this topical study (Lasemi and Khorasgani, 2014 ) was to determine lateral and vertical 

lithologic variations of the rocks within the Upper Cambrian through Lower Ordovician succession (Sauk 

II–III sequences) deposits in Illinois that could serve as a reservoir or seal for CO2 storage. More than 

1,000 deep wells penetrating the Mt. Simon Sandstone were studied for detailed subsurface 

stratigraphic evaluation of the Knox succession. The Cambro‐Ordovician rocks in the Illinois Basin consist 

of mixed carbonate‐siliciclastic deposits. The Knox succession thickens in a southeast direction; its 

thickness ranges from nearly 800 ft in the extreme northwest to nearly 8,000 ft in the Reelfoot Rift in 

the extreme southeastern part of Illinois. The succession overlies, with a gradational contact, the Middle 

Cambrian Mt. Simon Sandstone and underlies, with the major sub‐Tippecanoe unconformity, the Upper 

Ordovician St. Peter Sandstone. 

 

In northern and central Illinois, the Cambro‐Ordovician rocks are classified as the Cambrian Knox and the 

Ordovician Prairie du Chien Groups, which consist of alternating dolomite and siliciclastic units. The 

Upper Cambrian Knox Group includes, from base to top, the Eau Claire Formation, Galesville and Ironton 

Sandstones, Franconia Formation, Potosi Dolomite, and the Eminence Formation that grades laterally 
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into the Jordan Sandstone in the extreme northwest part of the state. The Lower Ordovician Prairie du 

Chien Group comprises the Gunter Sandstone at the base followed by Oneota Dolomite, New Richmond 

Sandstone, and the Shakopee Dolomite. The siliciclastic intervals thin southward and, in the southern 

and deeper part of the Illinois Basin, the contacts of the dominantly carbonate units cannot be 

determined with confidence. Long regarded as the undifferentiated Knox Group, the Cambro‐Ordovician 

succession in southern Illinois consists chiefly of fine to coarsely crystalline dolomite capped by the 

Middle Ordovician Everton Formation.  

 

Detailed facies analysis indicates that the carbonate units consist mainly of mudstone to grainstone 

facies (fossiliferous/oolitic limestone and dolomite) with relics of bioclasts, ooids, intraclasts and peloids 

recording deposition on a shallow marine ramp setting. Porous and permeable vugular or 

fractured/cavernous dolomite intervals that grade to dense fine to coarsely crystalline dolomite are 

present within the dolomite units. Several hundred barrels of fluid were lost in some of these porous 

intervals during drilling, indicating high permeability. The sandstone intervals are porous and permeable 

and are texturally and compositionally mature.  

 

The permeable sandstone and dolomite intervals are laterally extensive and could serve as important 

reservoirs to store natural gas, CO2 or hazardous waste material. The dominant lithology of the Knox and 

the overlying Prairie du Chien Group is fine to coarsely crystalline, dense dolomite. The intercrystalline 

pore space of the dolomite was lost as a consequence of late‐stage diagenetic dolomite overgrowth or 

cementation. The dense dolomite intervals, therefore, could serve as an effective seal for the 

encompassing porous and permeable sandstone and dolomite intervals. 

 

The results of this study show that the Cambro‐Ordovician Knox Group in the Illinois Basin may be an 

attractive target for CO2 sequestration because these rocks are (1) laterally extensive, (2) consist of 

some porous and permeable dolomite and sandstone intervals, and (3) contain abundant impermeable 

shale and carbonate seals. 

 

The focus of this investigation is the Cambrian Potosi Dolomite in the lower portion of the Knox, which is 

partially equivalent to the Copper Ridge Dolomite in Eastern Kentucky and Ohio. The Potosi Dolomite is 

underlain by the Franconia Formation and is overlain by the Eminence Formation. The Franconia 

Formation consists of glauconitic and argillaceous sandstone, shale, and dolomite. The Franconia is the 

oldest formation exposed in Illinois and is generally less than 100 ft (30 m) thick in northern Illinois and 

possibly greater than 700 ft (213 m) thick in the depocenter of the Illinois Basin. The contact with the 

overlying Potosi Dolomite is transitional as sandstone and shale diminish upward in the Franconia, 

making it difficult to distinguish. The Eminence is a relatively light‐colored, fine‐ to medium‐grained 

dolomite that contains abundant chert, quartz grains, and green clay. Thin interbedded mudstones and 

sandstones are common. It is commonly bioturbated, moderately vuggy, highly fractured, and 

brecciated. The Eminence is generally less than 100 ft (30 m) thick in extreme northern Illinois and 150 

to 200 ft (45 to 61 m) thick in the southern part of the Basin. In Indiana and Kentucky, the Eminence is 

not recognized as a separate formation and is considered to be part of the Potosi Dolomite. In Illinois 

and Missouri, the Eminence has previously been differentiated from the underlying Potosi Dolomite by 
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the absence of drusy quartz lining vugs. The top of the Eminence is separated from the overlying Gunter 

Sandstone by a regional unconformity that can be traced across most of North America (Palmer  et al., 

2012). In the Illinois Basin there is no available core across the Eminence‐Potosi contact. We hypothesize 

that the Potosi Dolomite was subjected to early vadose or phreatic karstification, likely a result of 

subaerial exposure at the top of the Eminence; however, without core, this interpretation is difficult to 

prove. 

 

Potosi	Dolomite	
The Potosi Dolomite is a thick to massively bedded, gray to light brown, fine‐ to medium‐crystalline 

dolomite characterized by vugs lined with dolomite, chalcedony, and megaquartz. In central and 

northern Illinois, lost circulation zones are encountered when drilling the Potosi Dolomite. Losses of 

thousands of barrels of drilling fluid have been reported from these lost circulation intervals. There are 

also reports of the drill bits dropping multiple feet when encountering these lost circulation intervals. In 

the wells at the IBDP, zones have been imaged with the FMI, indicating vuggy intervals up to 7 ft (2.1 m) 

thick. Lost circulation and abundant drilling fluid loss suggest these caverns are well connected rather 

than isolated dissolution voids.  

 

Based on 30 ft (9 m) of core cut from the Potosi Dolomite above and into the lost circulation zone at the 

IBDP, the Potosi Dolomite is a cyclic carbonate dominated by subtidal and intertidal facies. Suspected 

algal structures and bioturbated facies are common throughout. Other facies include homogeneous 

dolomitized mudstones, thinly laminated dolomite, edgewise or flat‐pebble conglomerates, and 

intraclastic dolomite. The suspected algal structures and bioturbated facies are highly obscured by a 

strong diagenetic overprint. This diagenetic overprint includes varying degrees of dolomitization, 

extensive fracturing, dissolution, brecciation, and quartz and dolomite cementation. These diagenetic 

processes are most abundant in the algal and bioturbated facies. However, depositional facies are 

difficult to identify in breccia zones. Isolated vugs that are less than 2 cm (.7 in.) are commonly lined 

with concentrically zoned late‐stage dolomite. Vugs that are greater than 2 cm (.7 in.) are lined with 

dolomite, chalcedony, and megaquartz. This diagenetic quartz is typical of the Potosi Dolomite 

throughout the Illinois Basin and into Missouri and Wisconsin in equivalent strata, suggesting a 

diagenetic event that extends out of or along the margins of the Illinois Basin.  

 

It was difficult to get accurate porosity data from conventional wireline tools because of the problems 

encountered when drilling through the lost circulation zone. In all three wells at the IBDP site, the use of 

lost circulation material was not adequate for reducing fluid loss; instead, the operators had to pump 

cement into the solution cavities. In the CCS1 well, they had to use 1,050 sacks of cement to control the 

drilling fluid loss (James Kirksey, personal communication, Schlumberger Carbon Services, 2013). 

Therefore, all of the originally higher porosity zones are filled with cement. The FMI was the best tool for 

evaluating the size and amount of vugs and solution cavities present in the well. The cement has a 

significantly lower resistivity than the dolomite and solution cavities were easily discernible with a 

microresistivity tool. 
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Knox	Group	Capacity	Estimates	
Topical report DOE/FE0002068‐19 summarizes the stratigraphy and capacity estimates of the Knox 

Group (Harris et al., 2014). Permitting of CO2 injection into saline formations by the Environmental 

Protection Agency Underground Injection Control (EPA UIC) program requires that storage is only 

considered for the portion of the formation in which total dissolved solids of native brines exceed 

10,000 ppm. Furthermore, to ensure that CO2 remains in a dense supercritical phase, the standard 

approach to defining the net area of a potential saline formation storage reservoir is to remove any area 

of the storage formation that has a reservoir‐seal contact boundary lying above 800 m depth. During the 

technical review of our results, we found that a portion of the Knox Group reservoir in Illinois did not 

meet these requirements. As a result, we redefined the reservoir boundary accordingly as shown in 

Figure 3. The volumetric equations were recalculated for this reduced reservoir domain and the final 

storage resource estimate (SRE) results are given in Table 1.  

The recent work of (Ellett et al., 2013) indicates that the application of efficiency factors published in the 

DOE methodology (Goodman et al., 2012) to a reservoir volume has been spatially constrained based on 

water quality (10,000 ppm requirement) and CO2 phase criteria (>800 m depth for suitable pressure and 

temperature conditions), and thus will effectively underestimate the resource. As a result it, should be 

noted that the storage resource estimates given in Table 1 are considered to be conservative estimates 

for the Knox Group reservoir. 
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Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 The  FMI  wireline  tool  is  an  absolute  necessity  to  understand  the  amount  of  fractures  and 
solution cavities. It must be acquired on all new wells in a CCS project that penetrate the Knox 
Group. 

 Regional mapping of  the  reservoir  is necessary  to understand  the  continuity of  the different 
carbonate formations.  

 Geomechanical testing of the core was critical in understanding the rock properties for reservoir 
flow modeling of a hypothetical CO2 sequestration project. 

St.	Peter	Sandstone	
The topical report DOE/FE0002068‐6 summarizes the stratigraphy and capacity estimates of the St. 

Peter Sandstone (Barnes and Ellett, 2014). The Middle Ordovician‐age St. Peter Sandstone is a 

widespread, lithologically distinct, typically pure quartz arenite lithostratigraphic unit found throughout 

the upper Midwest, USA. The geological occurrence of the St. Peter Sandstone ranges from surface 

outcrop to deep burial settings in the cratonic interior Michigan and Illinois Basins at depths in excess of 

3.5 km. The St. Peter Sandstone was initially defined as “ortho” quartzite sandstone exposed in 

Minneapolis and St. Paul, Minnesota, along the "St. Peter River," which is now called the Minnesota 

River. The type section is in a bluff where the Minnesota River joins the Mississippi River at Fort Snelling 

in Minneapolis. 

 

The St. Peter Sandstone and transitional/correlative, carbonate‐dominated facies occur throughout 

much of the central US, including at least some portions of the states of Indiana, Ohio, Iowa, Kansas, 

Kentucky, Michigan, Minnesota, Missouri, and Nebraska (Figure 4). Similar lithostratigraphic units of the 

Simpson Group are also recognized as far south as Oklahoma and Arkansas. In the upper Midwest, the 

St. Peter ranges in thickness from a widespread stratigraphic pinch out (typically on structural arch 

settings, e.g., Kankakee, Findley‐Algonquin, Wisconsin, and Cincinnati arches) to in excess of 330 m 

(1,200 ft) in the Michigan Basin. In structurally positive arch areas of the upper Midwest, the St. Peter 

typically overlies a deep erosion surface or is absent above the inter‐regional, base Tippecanoe (Knox) 

unconformity, which was cut into various older strata. In some areas of Wisconsin, southern lower 

Michigan, Indiana, and elsewhere, closely spaced stratigraphic sections of the St. Peter Sandstone infill 

erosional relief on the unconformity surface in thickness of as much as 70–100 m within a few 

kilometers or less of stratigraphic sections where the St. Peter Sandstone is thin or absent. In contrast, 

the contact with Lower‐Middle Ordovician strata of the Knox and equivalent strata, including the Prairie 

du Chien Group, is considered conformable in the central portions of the Michigan and Illinois Basins. On 

the basis of biostratigraphic studies, the St. Peter Sandstone is older (Whiterockian) within the central 

Illinois and Michigan Basins, whereas it appears to be younger (Mohawkian) in the Upper Mississippi 

Valley type section area and other arch areas of the upper Midwest. These age relations suggest that 

deposition of the St. Peter Sandstone was time transgressive from the central Michigan and Illinois 

Basins outwards to arch areas, such as southeastern Minnesota. 
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porosity, although reservoir quality is very good in these relatively shallowly buried sandstones with 

porosity of 5% to over 25% and permeability from 9.86 × 10–11 to over 9.86 × 10–9 (10 mD to over 1,000 

mD). 

St.	Peter	Capacity	Estimates	
Multiple deterministic‐based approaches were used in conjunction with the probabilistic‐based storage 
efficiency factors published in the DOE methodology to estimate the carbon storage resource of the 
formation. Extensive data sets of core analyses and wireline logs were compiled to develop the 
necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of 
storage resource estimates varies as a function of data availability and quality, and the underlying 
assumptions used in the different approaches. In the first and simplest approach, storage resource 
estimates were calculated from mapping the gross thickness of the formation and applying a single 
estimate of the effective mean porosity of the formation (Figure 5 and Figure 6). Results from this 
approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 
11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach 
involved consideration of the diagenetic history of the formation throughout the two basins and used 
depth‐dependent functions of porosity to derive a more realistic spatially variable model of porosity, 
rather than applying a single estimate of porosity throughout the entire potential reservoir domains. 
The second approach resulted in storage resource estimates of 3.0 to 31.6 Gt in the Michigan Basin, and 
0.6 to 6.1 Gt in the Illinois Basin. The third approach attempted to account for the local‐scale variability 
in reservoir quality as a function of both porosity and permeability by using core and log analyses to 
calculate explicitly the net effective porosity at multiple well locations, and interpolate those results 
throughout the two basins. This approach resulted in storage resource estimates of 10.7 to 34.7 Gt in 
the Michigan Basin, and 11.2 to 36.4 Gt in the Illinois Basin. A fourth and final approach used advanced 
reservoir characterization as the most sophisticated means to estimate storage resource by defining 
reservoir properties for multiple facies within the St Peter Sandstone. This approach was limited to the 
Michigan Basin because the Illinois Basin data set did not have the requisite level of data quality and 
sampling density to support such an analysis. Results from this approach led to a storage resource 
estimate of 15.4 Gt to 50.1 Gt for the Michigan Basin. The observed variability in results from the four 
different approaches is evaluated in the context of data and methodological constraints, leading to the 
conclusion that the storage resource estimates from the first two approaches may be conservative, 
whereas the net porosity based approaches may overestimate the resource.  
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Seals	
The low‐porosity Knox limestones may function as locally effective seals for CO2 injection into a Knox 

sandstone unit or into the Potosi Dolomite, but the limestones are difficult to differentiate (and 

therefore to regionally map) and they may be too fracture prone to provide a reliable seal. In contrast, 

the regional Maquoketa‐Utica Shale appears to be present at thicknesses exceeding 30 m (100 ft) 

everywhere in the Illinois and Michigan Basins. Where cored in the Blan well in Kentucky, the 

Maquoketa is a black, fissile shale dominated by clay minerals, and it has both sufficiently low 

permeability and sufficiently high compressive strength to serve as caprock for an underlying Knox CO2 

reservoir. In the Decatur area of the central Illinois Basin, the Maquoketa contains higher fractions of 

quartz and carbonate minerals relative to clays, but is thinly laminated and has low effective porosity 

(<3%) and permeability (<9.86 × 10–12 cm2 [1 mD]; Zaluski, 2014). According to Young (1992), the 

Maquoketa “is a low permeability groundwater‐confining unit throughout the Midwest.” 

Geochemistry	of	Seals	
In  the  topical  report DOE/FE0002068‐10  (Yoksoulian et al., 2014), portions of  the Knox Group  (Potosi 
Dolomite,  Gunter  Sandstone,  and  New  Richmond  Sandstone),  St.  Peter  Sandstone,  and Maquoketa 
Shale have been assessed for CCS potential as part of a regional study of the Illinois and Michigan Basins. 
 
A total of 12 laboratory experiments were completed to identify the reaction mechanisms, kinetics, and 
solid‐phase  products  that  are  likely  to  occur  in  the  Knox  Dolomite  and  the Maquoketa  Shale when 
exposed to supercritical CO2. Samples were obtained from the IBDP, outcrops and cores from within the 
Illinois  Basin,  and  laboratory  produced  synthetic  and  reservoir  brines.  Nine  high‐pressure,  high‐
temperature  batch  reactor  experiments were  conducted  using  Potosi  Dolomite  (southwest Missouri 
outcrop),  Gunter  and  New  Richmond  Sandstone  (Morgan  Co,  IL),  and Maquoketa  Shale  (IBDP  site). 
Additionally, five core flood experiments were conducted using Potosi Dolomite (IBDP site) and Gunter 
(Blan well, Hancock Co., KY) and St. Peter (Marion Co., IL) Sandstones, using either laboratory produced 
synthetic brine or deionized water (DI). 
 
A variety of analytical techniques were used to characterize the physical, geochemical, and mineralogical 
changes  between  the  pre‐  and  post‐reaction  products  from  the  batch  reactor  and  core  flood 
experiments. These included standard petrography, scanning electron microcopy (SEM; Figure 7), X‐ray 
diffraction,  ion  chromatography,  and  inductively  coupled  plasma  analyses.  Results  were  used  to 
compare  pre‐  and  post‐reaction  petrographic  and  geochemical  conditions,  as  well  as  kinetic  and 
equilibrium predictions from numerical geochemical modeling. 
 
Results  from  the  Knox Group  reservoir  experiments  show  the dissolution  of  dolomite,  the  dominant 
mineral present  throughout  the Knox Group, while  in  the presence of  supercritical CO2  and brine  as 
expected.  The  SEM  analysis  of  the  Potosi  Dolomite  batch  reactor  experiments  revealed  pitting  and 
degradation of dolomite  crystals  that  appeared pristine  and unaltered  in pre‐reaction  samples. Post‐
reaction  brines  from  the  Potosi  Dolomite,  Gunter  Sandstone,  and  New  Richmond  Sandstone 
experiments  all  contained  elevated  concentrations  of  calcium,  magnesium,  strontium,  and  barium 
greater than  in the nonreacted brines. These elevated concentrations  indicate that carbonate minerals 
such  as  dolomite  dissolved  during  the  experiments.  There  is  no  evidence  for  the  formation  of 
measureable amounts of new  solid‐phase products during  the duration  (1  to 4 months) of  the batch 
reactor  studies  using  the  Knox  Group  reservoir  rock;  however,  very  small  amounts  of  solid  phase 
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material produced during the experiments were observed, but could not be  identified or quantified by 
the techniques used in this study. 
 
Post‐reaction brine chemistry results for all experiments were compared to United States Environmental 
Protection Agency (US EPA) drinking water standards for the regulated analytes As, Ba, Be, Cd, Cr, Cu, 
Pb, Se, and Tl (where applicable, F and NO3 were compared as well) to provide context for the results of 
this  project.  However,  in  some  cases,  the  results  of  the  analytes  As,  Be,  Cd,  Pb,  Se  and  Tl  were 
inconclusive because analytical method detection  limits (MDLs) were up to 150 times greater than the 
US EPA minimum  contaminant  levels  (MCLs). The  results of  the Potosi Dolomite, New Richmond and 
Gunter Sandstones, and Maquoketa Shale batch experiments  indicated  that  the concentrations of  the 
analytes of concern were generally less than the US EPA minimum MCLs.  
Speciation  calculations  based  on  the  post‐reaction  brine  composition  during  the  Potosi  Dolomite 
experiment  indicate that the system reached equilibrium before the end of the 4 month experimental 
duration. As a  result,  five short‐term  (approximately 6 hour) core  flood experiments were performed. 
Interpretation  of  post‐reaction  brine  chemistry  and  equilibrium  modeling  of  these  short‐term 
experiments indicate that the systems still reacted quickly enough to reach equilibrium with respect to 
carbonates.  Geochemical  modeling  and  optimization  estimated  reaction  rate  parameters  for  some 
potential  reactions  that  could  occur  in  the  Knox Group.  The  observed  and modeled  rapid  reactions 
suggest that larger scale models simulating CO2 sequestration reactive transport for the Knox Group do 
not need kinetic constraints for carbonates to create an accurate understanding of reservoir processes. 
 
The  Maquoketa  Shale  (primary  seal)  batch  reactor  experiments  indicated  that  feldspars,  clays, 
carbonates  and  sulfide  minerals  dissolved  as  suggested  by  elevated  concentrations  of  aluminum, 
barium, calcium, potassium, magnesium, sulfur, silicon, and strontium in the post‐reaction brines. Using 
rate parameters derived  from pre‐reaction mineralogy and post‐reaction  fluid geochemistry, a model 
estimating  the  expected  mineral  reactions  after  10  years  indicates  that  alteration  of  k‐feldspar  to 
kaolinite and quartz dominate the changes  in silicate mineralogy. These alterations contribute  little to 
changes in porosity and therefore would not be expected to have a significant impact on seal integrity. 
Carbonate minerals were  48.2%  of  the  initial  volume  in  samples  used  in  the  experiments,  and  the 
modeled  dissolution  of  these minerals  could  lead  to  a  2.2%  decrease  in  mineral  volume  at  most. 
However,  in  an  actual  sequestration  scenario,  the  lower  water‐to‐mineral  ratio  would  limit  the 
carbonate dissolution further. 
 
In summary, project results indicate that the Knox Group‐CO2‐brine system could be initially chemically 
reactive  in  a  CO2  sequestration  scenario.  The  effect  of  this  reactivity would  likely  reach  equilibrium 
shortly after injection of CO2 into the reservoir had stopped. According to IBDP site geophysical logs, the 
Maquoketa Shale is approximately 61 m (200 ft) thick in the central Illinois Basin, and a secondary (New 
Albany Shale)  seal  is 40 m  (130  ft)  thick. Thus, even  if  significant mineral dissolution occurred  in  the 
caprock,  it  would  be  highly  unlikely  that  caprock  integrity  would  be  in  jeopardy  given  the  rapid 
equilibration of the Knox‐CO2‐brine system.  
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Reservoir	Injectivity	
For target reservoir formations, studies of reservoir attributes aim to quantify the rate at which the 

formations may accept an injected flow of dense‐phase CO2, and to estimate the rock volume and 

surface‐footprint area that a specified mass of injected CO2 will occupy. For intended caprock 

formations, studies attempt to quantify (1) the added pressure (due to CO2 injection) that a target 

caprock will withstand without fracturing, and (2) the minimum pressure required to cause CO2 to enter 

the caprock pore space if no fracturing occurs (the pore entry pressure).  

Results of this research suggest that, generally in the Illinois Basin, reservoirs in both the St. Peter 

Sandstone and the Potosi Dolomite (a formation of the Knox) may be capable of sustaining injection at 

commercial rates. We examined four different St. Peter gas storage projects in Illinois (Figure 10). These 

four projects illustrated the effectiveness of the reservoir and the overlying seals. The development of 

these S.t Peter gas storage projects date from the early 1960s to the early 1970s. All of these storage 

reservoirs were located on structural anticlines. These storage projects are important because they 

show that the rocks above the St. Peter reservoir are effective seals to the movement of gas; therefore, 

the St. Peter Sandstone is not only a potential reservoir, but also has the seals necessary to contain CO2. 

The storage projects also show that the St. Peter has the necessary permeability to inject CO2. Reservoir 

simulation results for the St. Peter indicate good injectivity and a relatively small CO2 plume footprint. 

While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, 

results of this study indicate that development with three or four appropriately spaced wells may be 

sufficient. For the Potosi Dolomite, dynamic simulations discussed in in this report substantiate the 

possibility that in the Decatur area, the Potosi Dolomite may be capable of accepting CO2 at a rate of 3.2 

million tonnes per annum (MTPA) for 30 years, possibly requiring more than one injection well. 
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Highly porous and permeable intervals (as shown by lost circulation zones and high wastewater injection 

rates) have been penetrated within the Potosi Dolomite at multiple locations around the Illinois Basin, 

and Potosi Dolomite intervals displaying vuggy secondary porosity have been documented in cores. 

Furthermore, diagenetic history deduced from petrographic studies suggests that secondary porosity 

development in the Potosi Dolomite is likely to have been of a regional, rather than local nature. These 

observations suggest that secondary porosity adequate for a CO2 injection project may occur widely in 

the Illinois Basin and possibly the Michigan Basin.  

Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 Distinguishing particular subareas  that are especially  favorable or unfavorable  for porosity 
development.  In a “favorable” area, estimating the chance that a  favorable reservoir zone 
will be penetrated in an exploration well. 

 Estimating  the  geometric,  petrophysical,  and  hydraulic  characteristics  of  a  favorable 
reservoir zone. 

 

Injection	of	SO2	co‐injected	with	CO2	
The ASME performed a peer review (October 22–26, 2012) of selected projects within the Carbon 
Storage portfolio. Although not required, the panel recommended that the project perform modelling 
work to determine the potential impact that impurities in CO2 can have on the reaction products and 
mineralization kinetics.  
 
The Cambrian–Ordovician Knox Group, a thick sequence of dolostone with minor dolomitic sandstone, 
in western Kentucky, USA, has been evaluated as a prospective CO2 sequestration target. The CO2 
storage potential of the Knox group was studied through a field test site, where a 2,477 m test well was 
drilled and 626 tonnes of CO2 was injected. Rock cores, brine samples, and geophysical logs were also 
taken from the test well to study geology, brine chemistry, mineralogy, seal rock integrity, and long‐
term physical and chemical fate of injected CO2. As a part of the CO2 storage evaluation study, this 
topical report DOE/FE0002068‐18 (Zhu and Harris, 2014) describes the task of evaluating potential long‐
term impacts of SO2 when co‐injected with CO2 on the Knox deep saline reservoirs.  
 
Understanding potential long‐term impacts of CO2 impurities, such as sulphur and nitrogen compounds, 
on deep carbon storage reservoirs is of considerable interest because co‐injection of the impurities with 
CO2 can bring significant economic and environmental benefits. In this topical report (Zhu and Harris, 
2014), a modeling approach was used to evaluate long‐term chemical and physical interactions among 
formation rocks, brines, and co‐injected CO2 and SO2. The TOUGHREACT was used to build separate one‐
dimensional (1D) radial models for the Beekmantown Dolomite and the Gunter Sandstone, two primary 
reservoirs identified in the Knox. The 1D models were built on mostly field data collected from the test 
well. Co‐injection of a mass ratio of 2.5% SO2 and 97.5% CO2, representative of flue gas from coal‐fired 
plants, was simulated and the co‐injection models were compared to models with CO2 only injections. 
To accommodate co‐injection of CO2 and SO2 in TOUGHREACT, 0.8 mol/(kg of water) of SO2 was 
dissolved in the original formation brines and the SO2‐containing brines were then co‐injected with CO2. 
Each model simulated an injection period of 16 hours and subsequent reaction period of 10,000 years. 
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The model results suggest that added SO2 created an acidic zone near the injection well in both 
reservoirs through a disproportionation reaction and the acidic zone enhanced dissolution of dolomite 
and precipitation of anhydrite, leading to noticeable increases in porosity and permeability. The added 
SO2 changed brine chemistry, decreasing concentration of Ca+ and increasing concentrations of SO42‐ 
and Mg2+. The acidic zones appeared to be buffered rather quickly but the changes in aqueous species 
remained for a long time. However, the impacts on aluminosilicate minerals appeared to be insignificant 
in both reservoirs, slightly changing the rates of precipitation/dissolution but the overall reaction paths 
remained the same. The Gunter Sandstone appeared to be more active with SO2 than the Beekmantown 
Dolomite. With the same SO2 impurity, more dolomite was dissolved in the Gunter than in the 
Beekmantown. Consequently, porosity was raised more in the Gunter than in the Beekmantown. 
Additional comparison model runs with different inputs in reservoir physical properties suggested that 
the difference in reservoir response to SO2 was likely controlled by geochemical characteristics rather 
than physical properties of the reservoirs. 
 
Although a representative SO2 impurity was used in this study, the degree of interactions among SO2, 
the formation brines, and the reservoir rocks should be considered a rough approximation. The handling 
of SO2 impurity in TOUGHREACT required the SO2 to be totally dissolved in brine, which exaggerated the 
amount of SO2 available for interacting with the reservoirs. The 2 times exaggeration would be 
especially high for large‐scale injection scenarios where injected SO2 would be expected to remain in gas 
phases for a long period of time. 
 
The model results presented here should be considered as explanatory, aiming to illustrate possible 
major physical/geochemical alterations in the two carbon deep reservoirs because of the added SO2. 
The 1D radial models were highly simplified, treating both reservoirs as homogeneous in physical and 
geochemical properties. Field conditions are certainly more complex, which may greatly change physical 
flow and chemical reaction path. Because of the highly simplified assumptions used in these 1D models 
and limitations of TOUGHREACT, the results should be considered as qualitative. 

Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 Injection of SO2  impurities may alter  the porosity and  the permeability of  the  reservoir. More 
research needs to be completed on flue gas impurities that are included with the injected CO2.  

Reservoir	Flow	Simulation	(St.	Peter	Sandstone)	
The ASME performed a peer review (October 22–26, 2012) of selected projects within the Carbon 
Storage portfolio. The ASME panel requested that this project conduct further reservoir simulations 
using reservoir properties that would be expected in deeper St. Peter reservoirs. Therefore, additional 
reservoir flow simulations of CO2 injection in the St. Peter Sandstone were completed in this project.  
 
The first set of flow simulations tried to inject at an injection rate of 2 million tonnes/year at a constant 
rate over a 20‐year period DOE/FE0002068‐1 (Leetaru et al., 2012). Reservoir simulation results for the 
St. Peter interval indicate that the plume diameter related to a single injector would be relatively small, 
with a radius of approximately 1 mi; however, the overall plume footprint with multiple wells may be 
quite large. During the 20‐year simulation period, it was observed that an average injection rate of 
990,000 tonnes/year was achieved at the maximum bottomhole injection pressure. During this period, 
the minimum injection rate was 660,000 tonnes/year (1st year) and the maximum injection rate was 
1,164,000 tonnes/year (20th year). Although the well injected at maximum injection pressure throughout 
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the injection period, injection rate increased as the saturation and mobility of CO2 increased. Based on 
these results, a rough estimate of the number of wells needed to inject 2 million tonnes/year into the St. 
Peter interval can be made; however, these results ignore potential well interference effects and 
possible limitations due to wellbore hydraulics. Keeping these assumptions in mind, the simulation 
results indicate that a minimum of two wells would be required; although three or four wells are more 
likely in order to allow for uncertainty in reservoir performance and to provide operational reliability.  
 
In addition to the injectivity analysis, the corresponding pressure behavior of the reservoir because of 
the modeled injection from a single well was delivered for geomechanical analysis. The near‐wellbore 
region experiences the largest pressure increase; the pressure disturbance decreases at increasing radial 
distance from the well, with an increase in formation pressure of 100 psi observed at a radius of 
approximately 20,000 ft (6,096 m) from the injection wellbore at the end of the injection period. 
 

This topical report DOE/FE0002068‐7 (Will et al., 2014) addresses the question of whether or not the St. 

Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois 

Basin, where it lies at greater depths (below the underground source of drinking water [USDW]) than at 

the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir 

model created in 2010. Model size and spatial resolution were increased resulting in a threefold increase 

in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an 

extensive core database was used to develop porosity‐permeability relationships. The analysis involved 

a Base Model representative of the St. Peter at in‐situ conditions, followed by the creation of two 

hypothetical models at in‐situ plus 1,000 ft (300 m) and in‐situ plus 2,000 ft (600 m) depths (Figure 11) 

through systematic depth‐dependent adjustment of the Base Model parameters. Properties for the 

depth‐shifted models were based on porosity versus depth relationship extracted from the core 

database followed by application of the porosity‐permeability relationship. Each of the three resulting 

models (Figure 12) were used as input to dynamic simulations with the single well injection target of 3.2 

MTPA for 30 years using an appropriate fracture gradient based on the bottomhole pressure limit for 

each injection level.  



 

Figure 11 N‐S oriented crosss section showiing top and botttom of the threee St. Peter staticc models: Base, Mid, and Lowe
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kPa (30 psia) beyond 22 km (14 mi) away from injector. The initial reservoir pressure is restored after 
approximately 20 years post‐injection. It is important to remember that the respective plume extent and 
areal pressure increase corresponds to an injection of 43 Mt CO2. Should the targeted cumulative 
injection of 96 Mt be achieved, a much larger plume extent and areal pressure increase could be 
expected. 

The 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" [Adushita et al., 
2014]) was rerun using a new injection scenario: 3.2 MTPA for 30 years. The extent of the Potosi 
Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently 
large enough to accommodate the evolution of the plume. The new model topical report 
DOE/FE0002068‐14 (Adushita and Smith, 2014), Potosi Dynamic Model 2013a, was built by extending 
the Potosi Dynamic Model 2010 grid to 30 mi × 30 mi (48.3 km × 48.3 km), while preserving all property 
modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 
2013a. 

In topical report DOE/FE0002068‐14 (Smith, 2014), the Potosi Dolomite reservoir model was updated to 
take into account the new data from the verification well VW2, which was drilled in 2012. The new 
porosity and permeability modeling was performed to take into account the log data from the new well. 
Revisions of the 2010 modeling assumptions were also done on relative permeability, capillary 
pressures, formation water salinity, and the maximum allowable well bottomhole pressure. Dynamic 
simulations were run using the injection target of 3.2 MTPA for 30 years. This new dynamic model was 
named Potosi Dynamic Model 2013b. 

Because of the major uncertainties on the vugs permeability, two models were built: the Pessimistic and 
Optimistic Cases. The Optimistic Case assumes vugs permeability of 8.87 × 10–8 cm2 (9,000 mD), which is 
analog to the vugs permeability identified in the pressure fall off test of a waste water injector in the 
Tuscola site, approximately 40 mi (64.4 km) away from the IBDP area. The Pessimistic Case assumes that 
the vugs permeability is equal to the log data, which does not take into account the permeability from 
secondary porosity. The probability of such case is deemed low and could be treated as the worst case 
scenario, because the contribution of secondary porosity to the permeability is neglected and the loss 
circulation events might correspond to a much higher permeability. It is considered important, however, 
to identify the range of possible reservoir performance because there are no rigorous data available for 
the vugs permeability. 

The Optimistic Case gives an average CO2 injection rate of 0.8 MTPA and cumulative injection of 26 Mt in 
30 years, which corresponds to 27% of the injection target. The injection rate is approximately 3.2 MTPA 
in the first year as the well is injecting into the surrounding vugs; it declines rapidly to 0.8 MTPA in year 
4 once the surrounding vugs are full and the CO2 starts to reach the matrix. This implies that, according 
to this preliminary model, a minimum of four (4) wells could be required to achieve the injection target. 
This result is lower than the injectivity estimated in the Potosi Dynamic Model 2013a (43 Mt in 30 years), 
because the permeability model applied in the Potosi Dynamic Model 2013b is more conservative. This 
revision was deemed necessary to treat the uncertainty in a more appropriate manner. 

As the CO2 follows the paths where vugs interconnection exists, a reasonably large and irregular plume 
extent was created. For the Optimistic Case, the plume extends 17 mi (27.4km) in the east‐west and 14 
mi (22.5 km) in the north‐south directions after 30 years. After injection is completed, the plume 
continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post‐
injection, the plume extends 20 mi (32.2km) in the east‐west and 15.5 mi (24.9 km) in the north‐south 
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directions. Should the targeted cumulative injection of 96 Mt be achieved, a much larger plume extent 
could be expected. 

For the Optimistic Case, the increase of reservoir pressure at the end of injection is approximately 1,200 
psia (8,274 kPa) around the injector and gradually decreases away from the well. The reservoir pressure 
increase is less than 30 psia (206.8 kPa) beyond 14 mi (22.5 km) away from injector. Should the targeted 
cumulative injection of 96 Mt be achieved, a much larger areal pressure increase could be expected. The 
initial reservoir pressure is nearly restored after approximately 100 years post‐injection. The presence of 
matrix slows down the pressure dissipations.  

The Pessimistic Case gives an average CO2 injection rate of 0.2 MTPA and cumulative injection of 7 Mt in 
30 years, which corresponds to 7% of the injection target. This implies that in the worst case scenario, a 
minimum of sixteen (16) wells could be required to achieve the injection target.  

The evaluation is mainly associated with uncertainty on the vugs permeability, distribution, and 
interconnectivity. The different results indicated by the Optimistic and Pessimistic Cases signify the 
importance of vugs permeability characterization. Therefore, injection and pressure interference tests 
among the wells could be considered to evaluate the local vugs permeability, extent, and 
interconnectivity. 

In topical report DOE/FE0002068‐16 (Adushita and Smith, 2014) , a new property modeling workflow 
was applied, where seismic inversion data guided the porosity mapping and geobody extraction. The 
static reservoir model was fully guided by PorosityCube interpretations and derivations coupled with 
petrophysical logs from three wells (Figure 15). The two main assumptions are (1) porosity features in 
the PorosityCube that correlate with lost circulation zones represent vugular zones, and (2) that these 
vugular zones are laterally continuous. Extrapolation was done carefully to populate the vugular facies 
and their corresponding properties outside the seismic footprint up to the boundary of the 30 by 30 mi 
(48 by 48 km) model. Dynamic simulations were also run using the injection target of 3.5 million tons 
per annum (3.2 MTPA) for 30 years. This new dynamic model was named Potosi Dynamic Model 2013c. 
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Next, the PoroSpect analysis resulted in a high‐resolution secondary porosity log. This log was used to 
better discriminate the contribution of porosity among matrix and vugs. This refinement was coupled 
with the porosity mapping and geobody extraction previously used in the Potosi Reservoir Model 2013c, 
Property Modeling Update. Thus, the static reservoir model was fully guided by PorosityCube 
interpretations and derivations coupled with petrophysical logs from three wells enhanced by high‐
resolution PoroSpect logs. The three main assumptions are (1) porosity features in the PorosityCube 
that correlate with lost circulation zones represent vuggy zones, (2) these vuggy zones are laterally 
continuous, and (3) FMI‐derived porosity logs provide a finer discrimination of primary versus secondary 
porosity contributions. Where previous static models constrained the assignment of “vuggy‐type” 
porosity and permeability characteristics to two lost circulation zones totaling approximately 20 ft (6.1 
m) in thickness, the new PoroSpect analysis validated the presence of additional vuggy intervals outside 
the lost circulation zones. The new static model expanded the zones designated as “vuggy” to cover 
additional vertical extent above and below the lost circulation zones. This resulted in approximately 100 
ft (30.5 m) of reservoir thickness assigned with elevated (that is, vuggy‐type) permeability. The model  
descriped in topical report DOE/FE0002068‐17 (Smith and Adushita, 2014) is more optimistic in that it 
considers the possibility of vuggy‐type permeability outside of the two observed lost circulation zones.  

Property modeling outside the seismic footprint required the extrapolation of vuggy intervals and their 
petrophysical properties up to the model boundary of 30 mi × 30 mi (48.3 km × 48.3 km). Dynamic 
simulations were again run using the injection target of 3.2 MTPA of CO2 for 30 years. This new dynamic 
model was named Potosi Dynamic Model 2014. 

Reservoir simulations resulted in a cumulative injection of 96 million tonnes obtained with a single well 
in 30 years, which satisfies the injection target with the injection rate of 3.2 MTPA throughout the entire 
injection period. Unlike the previous model, 2013b which potentially required a minimum of three (3) 
wells to meet the injection target, the new model can achieve the injection target with a single well 
within the Potosi Dolomite. As the CO2 follows the paths where vug interconnection exists, a reasonably 
large and irregular plume extent was created. After 30 years of injection, the plume edge extends 13.5 
mi (21.7 km) in the east‐west and 16.8 mi (27.0 km) in the north‐south directions ( Figure 17). After 
injection is ended, the plume does not grow laterally. Driven by buoyancy, some CO2 migrates upward 
across layers. Vertical migration does not, however, change the lateral plume shape significantly during 
the 100 years after injection. 
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in the Potosi Dolomite still remain. Therefore, injection and pressure interference tests among wells 
would be useful for evaluating local vuggy zone permeability, extent, and interconnectivity. 

Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 Developers of a planned CCS project targeting the Knox—compared to a reservoir dominated by 
intergranular porosity—should plan a relatively greater effort to confirm site‐specific ability to 
track the CO2 plume in the subsurface. This is important because flow in a Knox reservoir is more 
likely to be dominated by thin horizons of exceptionally high vuggy permeability, with these 
implications: 

o Thin vuggy horizons are more likely than intergranular‐porosity‐dominated horizons to 
be laterally discontinuous or intermittent.  

o Vuggy horizons that are generally stratigraphically separate may be linked through 
vertical high‐permeability zones. 

o Through a highly porous and permeable zone of restricted dimensions, a CO2 plume may 
migrate unexpectedly fast in an unexpected direction. 

o CO2 saturation in thin horizons is difficult to image seismically. 
o CO2 plume migration predictions (geometry and timing) are more uncertain, causing 

greater uncertainty in planning monitoring wells and monitoring programs.  
 

Knowledge	Gaps	
The Knox Group studies conducted under DOE contract DE‐FE0002068 were designed primarily to 

generate new data in a small amount and leverage existing data in a large amount in order to develop 

both basin‐scale and site‐scale understanding of the three fundamental geoengineering attributes of a 

GS project: injectivity, capacity, and containment. A secondary objective was to provide a view of key 

management and execution aspects pertinent to a generic Knox GS project. While great strides were 

made, an actual Knox GS project sited elsewhere than Decatur would need more guidance than is 

provided by these initial studies. Prominent knowledge gaps include the following: 

Best	Practices	
 Best Practices for CCS development targeted at a Knox Group reservoir are generally the same 

as best practices for any planned CCS development.  

 A main differentiating factor from a generic CCS project is this: Developers of a planned CCS 
project targeting the Knox—compared to a reservoir dominated by intergranular porosity—
should plan a relatively greater effort to confirm site‐specific ability to track the CO2 plume in 
the subsurface. This is important because flow in a Knox reservoir is more likely to be dominated 
by thin horizons of exceptionally high vuggy permeability, with these implications: 

o Thin vuggy horizons are more likely than intergranular‐porosity‐dominated horizons to 
be laterally discontinuous or intermittent.  

o Vuggy horizons that are generally stratigraphically separate may be linked through 
vertical high‐permeability zones. 

o Through a highly porous and permeable zone of restricted dimensions, a CO2 plume may 
migrate unexpectedly fast in an unexpected direction. 

o CO2 saturation in thin horizons is difficult to image seismically. 
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o CO2 plume migration predictions (geometry and timing) are more uncertain, causing 
greater uncertainty in planning monitoring wells and monitoring programs.  

 Plan on dedicating two exploration wells to site characterization Multiwell interference testing is 
probably necessary to adequately confirm injectivity and capacity. 

 However, given two wells and testing, there is less reliance on 3D seismic to substantiate 
reservoir characteristics.  

	

Operations 

Outreach	
The Kentucky Geological Survey and industry partners drilled a 2,477‐m (8,126‐ft) deep carbon storage 

research well in Hancock County, Kentucky, in 2009. The public open house was summarized in a US 

Department of Energy Topical Report DOE/FE0002068‐2 (Harris et al., 2012). Two phases of injection 

tests in the Knox Group carbonates and Gunter Sandstone were completed, including both brine and 

CO2 injection. The second phase of injection was completed in September 2010 as part of US DOE 

Cooperative Agreement DOE‐0002068, “An Evaluation of the Carbon Sequestration Potential of the 

Cambro‐Ordovician Strata of the Illinois and Michigan Basins.” One of the subtasks of this project was an 

open house at the conclusion of the project to present results to the public and stakeholders. The open 

house meeting was held on the evening of October 28, 2010, in Hawesville, Kentucky, at the Hancock 

County Career Center Figure 18 and Figure 19. Information presented included summaries of the project 

results by geologists and exhibits of rock core and log data from the well. 

 

Although public attendance at the open house was low, key county government officials were present to 

hear the results and ask questions about the 2‐year‐long project. The low turnout was attributed to 

general satisfaction with how the project was conducted and the lack of problems that affected the 

public.  
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inject into the Potosi Dolomite would need to be drilled such that the karstic porosity would not be 

damaged, while also ensuring wellbore integrity. The topical report DE‐FE0002068‐4 (Kirksey, 2013) 

develops a well plan for constructing a CO2 injection well capable of injecting 3.2 million tonnes per 

annum (MTPA) CO2 into the Knox over a period of 30 years. Though the design is specific to completing a 

Knox injector in the vicinity of Macon County, Illinois, the recommended design factors of long‐string 

casing point at top of the Knox, underbalanced drilling within the Knox, and openhole completion are 

likely regionally valid for a planned Knox injector. 

Well	Design	Summary	
First, the injection tubing was sized so that the rate of 3.2 MTPA could be injected below the critical 

erosional velocity of the tubulars (Figure 20). Then, casing strings and borehole were optimized based on 

tubing size. The flow simulations suggested that 14 cm (5 ½ in.) injection tubing could be used. Other 

well parameters such, as the long casing string would be 24.45 cm (9 ⅝ in.) inside a 31.12 cm (12 ¼ in.) 

borehole and the surface casing would be 33.973 cm (13 ⅜ in.) inside a 43.82 cm (17 ½ in.) borehole. 

The karstic porosity of the Potosi Dolomite would be protected by the long casing string top set at the 

top of the Potosi Dolomite. Through that casing, a 22 or 22.2 cm (8 ½ or 8 ¾ in.) borehole would be 

drilled to the base of the Potosi Dolomite using under‐balanced drilling (UBD) methods. After the 22 cm 

(8 ½ in.) borehole was completed, the 14 cm (5 ½) injection tubing and packer would be installed inside 

the long casing string and the well would be completed using an openhole injection completion. Using 

this design, the long casing string will have a competent seat, and the well can be fully cemented back to 

surface ensuring wellbore integrity and a good seal against both the primary and secondary caprocks. 

The UBD techniques will protect the karstic porosity from drilling‐fluid invasion and will enable obtaining 

a fluid sample from the very top of the karstic section.  

Potential	Drilling	Hazards	
There are few hazards associated with drilling in the area. Previous penetrations have encountered no 

surface or drift gas. The well section from 304.5– 381 m (1,000–1,250 ft) can produce brackish water 

that, if allowed to enter the wellbore, can lead to wellbore stability problems. The upper Knox can be 

very hard drilling with chert and pyrite streaks that can cause premature bit wear. If drilled as planned, 

the well will be cased and cemented before reaching the Potosi Dolomite so that potential lost 

circulation would not be an issue. The UBD technique is not common the Illinois Basin so drilling crews 

must be coached in its use. The completion of the well as an openhole injector should be done while the 

drilling rig is still in place so that, after the well drilling is finished, any injection tests can be carried out 

without involving a rig. As in any drilling operation, good planning and attention to detail will be very 

important. A “Drill Well on Paper” exercise is recommended so that all parties involved with the drilling 

process can offer input and fully understand the scope of the planned drilling operation. A pre‐spud 

safety and operations meeting is also recommended just before drilling begins to review the drilling plan 

and to outline and review all safety expectations. 

Legacy	Well	Integrity	and	Risk	Mitigation	
There are a number of ways well integrity can be comprised and upward migration of CO2 or brine can 

occur (Zaluski, 2014). Figure 21 is an illustration of potential leakage pathways in an abandoned well. 

These failures can be the result of poor cement and historical well completion or abandonment methods 
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that are not considered reliable compared to today’s standards. In the case of legacy oil and gas wells, 

like many CCS projects that utilize deep saline storage, the Potosi Dolomite and St. Peter Sandstone are 

located well below the Mississippian‐age sandstone and carbonate oil reservoirs. Because of this, oil and 

gas operators only drilled down to these lower formations for exploration purposes. If hydrocarbon 

resources were found to be absent, drilling down to these lower formations was rare; however, there 

are some water disposal wells in these formations. Nevertheless, the risk of one of these wells being 

close to the migration pathway of the CO2 plume must be mitigated by the considering the following 

general investigations: 

 This  risk  is  already  low  because  there  are  few  legacy  wells  drilled  into  these  deep  saline 
formations in the Illinois Basin. 

 Complete a database well search  for wells  that penetrate  the caprock  (Maquoketa Shale) and 
gather the below information: 

o Distance to the CO2 injection well 

o Evaluate the well completion and abandonment records 

o Evaluate the cement integrity by examining the cement bond logs CBL 

 Compare  the  results of  the predictive CO2 plume extent and  formation pressure pulse extent 
from reservoir simulations with the location of the legacy well. Risk decreases substantially the 
further the legacy well is from the injected CO2 plume.  

 If a legacy well poses a potential risk, the following steps are available to mitigate this risk: 

o Locate the new CO2 injection well away from the legacy well. 

o Re‐enter the legacy well and quantify its well integrity or abandon the well with modern 
abandonment technologies.  

o A MMV program should be designed to monitor the plume development over time and 
there  should be a way  to detect  the plume  in  the event  that  it migrates  towards  the 
legacy well.  

 



 

Figure 20 WWell schematic foor Knox injection test. 
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and graphical presentation software and spreadsheet‐based physical models were employed for 

interpretation of these data. 

Calculating reservoir volume required to store a volume of supercritical CO2 required data provided by 

wireline electric logs, analysis of whole and sidewall cores, wireline temperature and pressure surveys, 

and analysis of formation waters collected before injection tests. Phase 1 injection testing focused on 

the entire Knox section. A total of 297 tonnes of CO2 were injected into the Knox section in the open 

wellbore below 1,116 m. Phase 2 injection testing focused on the Gunter (Figure 23), the highest 

porosity and permeability section within the Knox. The Gunter section was mechanically isolated to a 

70.1 m interval of the wellbore. A total of 333 tonnes of CO2 were injected into the Gunter.  

The wellbore was subsequently abandoned with cement plugs and the wellsite was reclaimed. Storage 

volume calculated for the Phase 2 test interval is 2,194 tonnes per surface hectare. Thus, 456 hectares 

of surface area is required to store 1 million tonnes of supercritical CO2 in the Phase 2 Gunter test 

interval. The range of most‐likely storage capacities calculated in the Knox in the Marvin Blan No. 1 is 

1,000 tonnes per surface hectare in the Phase 2 Gunter interval to 8,685 tonnes per surface hectare for 

the entire Knox section. Thus, by itself, the Gunter lacks sufficient reservoir volume to be considered for 

CO2 storage, but it may provide up to 18% of the reservoir volume available in the Knox as a whole. 

Primary sealing strata tested in the Marvin Blan No. 1 is the Ordovician Maquoketa Shale. The 

Maquoketa is considered a primary reservoir seal for CO2 storage in underlying reservoirs. The 

Maquoketa section was cored and laboratory analyses performed as part of the Phase 1 testing 

program. Analyses of this core included laboratory measurements of porosity, permeability, and 

mercury injection threshold pressure. Sealing capacity of strata was determined by two methods in this 

study: mercury‐injection capillary pressure tests or permeability measured in core plugs. Supercritical 

CO2 seal capacity calculated for these core plugs from the Maquoketa were 1,756–16,056 m. Rock 

mechanical measurements made on a representative sample from the Maquoketa yielded a 

compressive strength of 1.75 MPa. Therefore, the Maquoketa can act as an effective confining interval 

for supercritical CO2 stored in the Knox. 

Regional extrapolation of CO2 storage potential based on the results of a single well test can be 

problematic unless corroborating evidence can be demonstrated. Core analysis from the Knox is not 

available from wells in the region surrounding the Marvin Blan No. 1 well, although indirect evidence of 

porosity and permeability can be demonstrated in the form of active saltwater‐disposal and gas‐storage 

wells injecting into the Knox. Pore volume is reduced in wells east of the Marvin Blan No. 1 because of 

erosional truncation of the Beekmantown on the western flank of the Cincinnati Arch, whereas wells 

west of the Marvin Blan No. 1 have sections comparable to the Marvin Blan No. 1 but lose pore volume 

because of compaction at their greater depths. The preliminary regional evaluation suggests that the 

Knox reservoir may be found throughout much of western Kentucky. The western Kentucky region 

suitable for CO2 storage in the Knox is limited updip, to the east and south, by the depth at which the 

base of the Maquoketa lies above the depth required to ensure storage of CO2 in its supercritical state 

and the deepest a commercial well might be drilled for CO2 storage. The resulting prospective region has 

an area of approximately 15,600 km2, beyond which it is unlikely that suitable Knox reservoirs may be 
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Before this survey, there were no regionally extensive 2D seismic data spanning this section of the 

Illinois Basin. Between the northwest side of Morgan County and northwestern border of Douglas 

County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 

101 was the longest at 150 km (93 mi) in length and ended northeast of Decatur, Illinois. Line 501 ran 

west‐east from the IBDP site to northwestern Douglas County and was 40 km (25 mi) in length. Line 601 

was the shortest and ran north‐south past the IBDP site and connected lines 101 and 501. All three lines 

are correlated to well logs at the IBDP site. 

Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below 

about 400 milliseconds (ms), which made interpretation of the Mt. Simon and Knox sections difficult. 

The data quality also gradually decreased moving westward across the state. To meet evolving project 

objectives, the seismic data was re‐processed in 2012 using different techniques to enhance the signal 

quality, thereby rendering a more coherent seismic profile for interpreters. It is believed that the seismic 

degradation could be caused by shallow natural gas deposits and Quaternary sediments (which include 

abandoned river and stream channels, former ponds, and swamps with peat deposits) that may have 

complicated or changed the seismic wavelet. 

Where previously limited by seismic coverage, the seismic profiles have provided valuable subsurface 

information across central Illinois. Some of the interpretations based on this survey included, but are not 

limited to 

•  Generally, stratigraphy gently dips to the east from Morgan to Douglas County; 

•  The Knox Group roughly maintains its thickness. There is little evidence for faulting in the Knox. 

However, at least one resolvable fault penetrates the entire Knox section; 

•  The Eau Claire Formation, the primary seal for the Mt. Simon Sandstone, appears to be 

continuous across the entire seismic profile; 

•  The Mt. Simon Sandstone thins towards the western edge of the Basin. As a result, the highly 

porous lowermost Mt. Simon section is absent in the western part of the state; 

•  Overall basement dip is from west to east; 

•  Basement topography shows evidence of basement highs with on‐lapping patterns by Mt. Simon 

sediments.  

•  There is evidence of faults within the lower Mt. Simon Sandstone and basement rock that are 

contemporaneous with Mt. Simon Sandstone deposition. These faults are not active and do not 

penetrate the Eau Claire Shale. It is believed that these faults are associated with a possible failed rifting 

event 750 to 560 million years ago during the breakup of the supercontinent Rodinia. 

Figure 26 shows an example of a possible fault that penetrates through the entire Knox interval, the 

Maquoketa (the primary seal for the Knox) and New Albany formations. This particular fault is significant 

because it had not been previously observed. Faults that penetrate seals form potential leakage 
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Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 2D  seismic  reflection  profiles  need  to  be  long  enough  to  evaluate  faulting  and  stratigraphic 
changes. 

 You  need  nearby well  control with  velocity  information  to  correlate  the  seismic  traces with 
stratigraphic information.  

 Shallow  surface effects can make  seismic acquisition difficult by  increasing  the noise‐to‐signal 
ratio and making interpretation difficult. 

Risk	Assessment	

Features,	Events,	and	Processes	(FEP	Analysis)	
The topical report DOE/FE0002068‐5 (Hnottavange‐Telleen, 2013) describes a process and provides seed 

information for identifying and evaluating risks pertinent to a hypothetical CO2 CCS project. In the 

envisioned project, the target sequestration reservoir rock is the Potosi Dolomite of the Knox Group. The 

Potosi Dolomite is identified as a potential target formation because (1), at least locally, it contains 

vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper 

Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content 

is discussed in Section 3.3 of the topical report which describes two lists of Features, Events, and 

Processes (FEPs) that should be considered during the design stage of such a project. These lists 

primarily highlight risk elements particular to the establishment of the Potosi Dolomite as the target 

formation in general. The lists are consciously incomplete with respect to risk elements that would be 

relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements 

specific to a particular future project site would have to be identified. 

Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the 

International Energy Agency Greenhouse Gas Program (IEAGHG); previous risk evaluation projects 

executed by Schlumberger Carbon Services; and new input solicited from experts currently working on 

aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those 

that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox–

Potosi Dolomite. 

Risks of using the Potosi Dolomite as the target sequestration reservoir for a CCS project include 

uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and 

continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently 

porous and permeable) injection depths within the overall formation. Less direct implications include 

the vertical position of the Potosi Dolomite within the rock column and the absence of a laterally 

extensive shale caprock immediately overlying the Potosi Dolomite. Based on modeling work done 

partly in association with this risk report, risks that should also be evaluated include the ability of 

available methods to predict and track the development of a CO2 plume as it migrates away from the 

injection point(s). The geologic and hydrodynamic uncertainties present risks that are compounded at 

the stage of acquiring necessary drilling and injection permits. 
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It is anticipated that, in the future, a regional geologic study or CO2‐emitter request may identify a small 

specific area as a prospective CCS project site. At that point, the FEPs lists provided in this report should 

be evaluated by experts for their relative levels of risk. A procedure for this evaluation is provided. The 

higher‐risk FEPs should then be used to write project‐specific scenarios that may themselves be 

evaluated for risk. Then, actions to reduce and to manage risk can be described and undertaken.  

The FEPs lists should not be considered complete, as potentially the most important risks are ones that 

have not yet been thought of. But these lists are intended to include the most important risk elements 

pertinent to a Potosi Dolomite‐target CCS project, and they provide a good starting point for diligent risk 

identification, evaluation, and management. 

Best	Practices	
Specific conclusions and best practices are given below: 

• FEP  analysis  should  be  mandatory  for  any  CCS  project.  However,  using  the  FEP  analysis 
developed by our project as a template would simplify the processes.  

• Bringing in experts before underrating detailed site assessment should be mandatory.  

Visually	Reviewing	Risk:	Regional	Screening		
 

To illuminate areas of higher or lower potential for sequestration, example screening criteria were 

spatially overlain on mapped CO2 storage results from the current Cambro‐Ordovician regional 

assessment. Although the screening criteria may not be the ultimate restrictions for CO2 storage, they 

represent considerations that may guide the search for a candidate storage site to be studied later in 

further detail in order to assess and determine geologic suitability for CO2 storage.  

 

Of primary importance to subsurface CO2 storage are adequate reservoir pore volume, depth, and 

salinity, as well as reservoir‐seal continuity absent of major faulting. Additional considerations may 

include the proximity of wells or subsurface penetrations within the St. Peter Sandstone‐Knox Group 

stratigraphic interval, such as EPA Class I disposal wells, CO2 storage wells, and/or storage fields for 

natural gas. For the following example, we will use the selected screening criteria to focus on potential 

CO2 storage areas in the Knox Group. 

 

CO2	storage	resource	
 

Figure 29 illustrates the spatial distribution of the Knox Group CO2 storage resource from the current 

Cambro‐Ordovician regional assessment (P90 estimate). The map shows higher values (storage in tonnes 

per km2) in the central and southwest portions of the Illinois Basin, which is largely a function of 

increased Knox thickness, and thus reservoir pore volume available for CO2 storage, throughout this 

area. Inherent in the resource estimates are spatial screening by reservoir depth and salinity: depths 

greater than 800 m are specified by DOE assessment methodology (US DOE, 2012) in order to maintain 

supercritical CO2 within the reservoir’s temperature and pressure regime and salinity greater than 
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10,000 parts‐per‐million (ppm) of TDS that exceeds the US EPA drinking water standards for potable 

water.  

 

For this screening example, an additional buffered area extending 8 km (5 mi) from the 10,000 ppm TDS 

line in the St. Peter Sandstone was applied to the Knox storage map results (Figure 30). The buffered 

area extends southward into the more brine‐saturated St. Peter Sandstone of the central Illinois Basin 

(Young 1992) and serves to isolate an injected CO2 plume and minimize any pressure effects that may be 

transmitted from a potential injection site toward the 10,000 ppm limit line.  

 

In general, the areal buffering provides some degree of isolation from geologic and geographic features 

that may be of concern for subsurface CO2 storage. The buffer distance is somewhat arbitrary, but helps 

to highlight features that should be of concern to projects that intend to inject significant volumes of 

CO2 into the ground at high pressure. Additional screening criteria to which spatial buffers were applied 

are discussed as follows. 

 

Faults	
 

A 8‐km (5‐mi) buffered restriction was placed around major mapped faults in the Illinois Basin (Figure 

31; (Nelson, 1995), (IGS, 2000)]), to indicate potential through‐going displacements in both storage 

reservoir and geologic seal. In addition to known fault lines, the Charleston Monocline was added as a 

regional screening consideration; this prominent feature of the LaSalle Anticlinorium has been mapped 

as a north/northwest‐trending monoclinal structure in east‐central Illinois (Nelson, 1995) and is believed 

to be a deep‐seated basement fault that penetrates most of the shallower horizons. 

 

Faults, in particular, need to be characterized and understood on a site‐specific basis; features such as 

smaller displacements or stratigraphic traps (e.g., as in the case of certain oil fields) may not necessarily 

be restrictions to CO2 injection and storage, if it is determined that the displacements do not adversely 

affect storage reservoir and seal integrity. 

 

Gas	storage	fields	and	other	sensitive	wells	
 

The buffers around natural gas storage fields and deep Class I waste injection wells attempt to isolate 

the injected CO2 plume from the fields or wells. The purpose of this buffer is to minimize any pressure 

effects that may be transmitted between the injection site and the natural gas storage field or waste 

injection well. A buffer radius of 16 km (10 mi) was placed around gas storage fields which targeted the 

St. Peter‐Knox stratigraphic interval (Figure 32); these storage fields were assumed to be active if not 

explicitly known to be abandoned (Buschbach, 1973). 

 

For the purposes of this study, sensitive wells are defined as active Class I disposal wells in the St. Peter‐

Knox stratigraphic interval and/or deep CO2 injection wells—to which a buffer radius of 8 km (5 mi) was 
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applied (Figure 32). Well location and status information for active Class I disposal wells (hazardous or 

non‐hazardous waste) were obtained from state geological surveys, the Illinois EPA (regulatory agency 

for Illinois), and the US EPA (regulatory agency for Indiana and Kentucky). Three deep CO2 injection well 

locations were also highlighted for this screening example; of these, only the Blan #1 well in western 

Kentucky has injected CO2 into the Knox Group, whereas the in‐progress IBDP well
1,2 and the planned 

FutureGen_2.0 injection well1 both target the Mt. Simon Sandstone—a saline reservoir stratigraphically 

lower than the Knox horizon. Although the locations of CO2 injection wells should be considered in 

regional screening, this study used an 8‐km (5‐mi) buffer because of the relatively small amount of CO2 

injected in the Blan #1 well (293 tonnes) and the presence of a sealing stratigraphic interval (Eau Claire 

Shale) between the Mt. Simon Sandstone and the overlying Knox Group. 

 

Guidelines for sensitive wells were adapted from the original FutureGen siting proposal that dealt with 

site‐specific selection criteria, where the land above a proposed target formation(s) must not intersect 

dams, water reservoirs, hazardous materials storage facilities, Class 1 injection wells, or other “sensitive 

features.” Based on the professional judgment of technical experts and in consultation with the Illinois 

EPA, the FutureGen applicant believes that a 45 million tonne (50 million ton) CO2 plume would have a 

very low probability of migrating up to 10 mi (16 km) laterally from the bottomhole location of an 

injection well. Although locating site‐specific sensitive features such as dams, reservoirs, etc., was 

deemed beyond the scope of this regional screening case example, these features would have to be 

considered (along with other environmental concerns, per US National Environmental Policy Act 

reporting requirements) if the regional screening results carried forward to detailed site selection and 

characterization efforts. 

 

Results	
 

Figure 33 shows an overlay of all screening criteria discussed above, and faulted areas are a dominant 

visual feature on the map. Faults are generally concentrated in the southern, deeper potion of the 

Illinois Basin. Gas storage fields and sensitive wells are found along the margins of the Knox storage 

resource in the Illinois Basin, where the Knox Group reservoir is generally thinner. Thus, an example of 

potential sequestration fairway areas free from our screening criteria and overlays are shown in darker 

green and blue‐green colors in southern Illinois, southwest Indiana, and western Kentucky. Although 

some thick Knox reservoir is apparent in the extreme southwestern portion of the Illinois Basin in 

western‐most Kentucky, this area is near the limit of the current regional Cambro‐Ordovician study and 

warrants further examination.  

 

As previously stated, the buffer sizes are somewhat arbitrary, but serve to represent selected examples 

of geological features or conditions that could be considered when regionally identifying areas of 

relatively higher or lower potential for CO2 storage to be studied in further detail. 

                                                            
1 Well status at the time of this report. 
2 For regional mapping purposes, planned CO2 injection into the Mt. Simon Sandstone at the Industrial Carbon 
Capture and Storage well at Decatur, Illinois, is considered to be the same location as the IBDP injection well.  
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Recommend	Best	Practices	and	Lessons	Learned	
The recommend best practices and lessons learned are given below: 

 Within the broadly favorable areas of the Illinois and Michigan Basins, selection of a specific 
project site is still a challenge. GIS‐based maps apply the current knowledge of Knox reservoir 
quality, caprock sealing capacity, depth, and other constraints in a layered fashion, to define 
fairways most favorable for Knox project siting. The GIS format enables adding data layers in the 
future to further refine siting. 

 Some other geographically specific data layers would be helpful toward siting. An important 
constraint is “monitorability”—that is, the technical ability and budgetary feasibility to locate 
the plume of injected CO2 and to demonstrate containment. The ability to successfully monitor 
(using whatever technologies) depends on some geologic characteristics, but depends to an 
even greater extent on such surface characteristics such as “surface accessibility,” “percent land 
cover by buildings or inaccessible natural features,” or “percent land cover by tilled farmland.” 

 
 
 
 
 
 
 
 
 
 



 

Figure 29 Kn

 
 

nox Group CO2 sstorage resource (P90 estimate) in the Illinois BBasin. 
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Figure 30 Kn

 
 

nox Group CO2 sstorage screeninng: 10,000 ppm TDS. 
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Figure 31 Kn

 

nox Group CO2 sstorage screeninng: faulted areas. 
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Figure 32 Knnox Group CO2 sstorage screeninng: gas storage ffields and sensittive deep wells.. 
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Figure 33 Knnox Group CO2 sstorage resource showing overllay of all regionaal screening critteria. 
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Publications	and	Presentations	Completed	in	the	Project	
The following table and references are all of the publications and presentations produced during the 

course of the project.   

Task and Subtask  Report or publication 

Task 1 – Project Management 

and Planning 

 

This Task was continually 

updated and does not involve an 

individual report. 

Task 2 – Compile Available Base 

data and Assess Data Needs 

 

This Task was continually 

updated and is included in all of 

the separate reports 

Task 3 – Site Characterization at 

the Decatur and Hancock 

Projects 

 

 

Subtask 3.1 Acquire the 

core from the Decatur 

project. 

 

Completed and part of multiple 

publications and reports 

Subtask 3.2 Measure 

reservoir and 

geomechanical 

properties of the core 

from Decatur. 

 

(Leetaru, 2012) 

Subtask 3.3 Interpret 

results of first phase of 

injection tests at the 

Hancock site and decide 

on the specific zone and 

fluid type for the second 

injection test 

(Bowersox, 2010),(Bowersox, 

2012),(Bowersox, 2013) 

Subtask 3.4 Design 

injection test with 

assistance of outside 

consultants and request 

final bids for workover 

rig, CO2 supply, and 

injection equipment. 

(Bowersox, 2010),(Bowersox, 

2012), Bowersox, 2013) 
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Subtask 3.5 Perform 

injection test at the 

Hancock site. 

 

(Bowersox, 2010),(Bowersox, 

2012), (Bowersox, 2013) 

Subtask 3.6 Using 

workover rig while still 

on location, acquire 3D 

vertical seismic profile  

 

(Bowersox, 2010), (Bowersox, 

2012) 

Subtask 3.7 Plug and 

abandon well and 

reclaim well site. The 

costs for plugging and 

reclamation of the well 

will be paid by the 

Kentucky Consortium for 

Carbon Storage (KYCCS) 

as cost‐share to the 

project. 

 

(Bowersox, 2010),(Bowersox, 

2012) 

Subtask 3.8 Interpret 

results of second 

injection phase and 

model the reservoir 

using data from both 

injection phases. 

Compare the results of 

the 3D VSP with the 

zero‐offset VSP acquired 

prior to injection. 

 

(Bowersox, 2010),(Bowersox, 

2012), (Hickman, 2014b) 

Subtask 3.9 Hold an 

open house for the 

public at or near the 

Hancock site. 

 

(Harris, 2012) 
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Task 4 – Regional Significance 

 

 

Subtask 4.1 Develop 

cross sections 

(Lasemi, 2014), (Askari, 2013) 

Subtask 4.2 Develop 

regional structure and 

thickness maps 

(Lasemi, 2014) 

Subtask 4.3 Evaluate the 

limits of the Knox and 

Mt. Simon formations in 

western Illinois. 

(Smith, 2014c) 

Subtask 4.4 Prepare 

topical 

report summarizing the 

results of 2‐D survey 

(Smith, 2014c) 

Task 5 – Capacity Estimates 

 

 

Subtask 5.1 Calculate 

the average porosity of 

the porous intervals in 

the Knox and St. Peter 

Sandstone. 

 

(Will, 2014), (Bowersox, 2011), 

(Barnes, 2014a), (Barnes, 2014b), 

(Sosulski, 2013), (Ellett, 2011), 

(Ellett, 2013) 
 

Subtask 5.2 Develop a 

depth‐to‐porosity 

relationship 

(Will, 2014), (Barnes, 2014a) 

Subtask 5.3 Use both 

reflection seismic and 

seismic modeling 

(Will, 2014) 

Subtask 5.4 Develop 

storage capacity maps of 

the key intervals 

(Harris, 2014),  

Task 6 Injectivity of the 

formation 

 

(Harris, 2012), (Leetaru, 2014) 

Task 6 – Injectivity of the   
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formation 

 

Subtask 6.1 Evaluate the 

injectivity from St. Peter 

natural gas storage 

projects. 

 

(Will, 2014) 

Subtask 6.2 Use 

available core to develop 

a porosity vs. 

permeability 

relationship. 

 

(Barnes, 2014a) 

Subtask 6.3 Carry out 

numerical reservoir flow 

simulation of the Knox 

and St. Peter. 

 

(Adushita, 2014a),(Adushita, 

2014c),(Adushita, 2014b),(Smith, 

2014a),(Smith, 2014b), (Leetaru, 

2014) 

Task 7 – Stratigraphic 

Containment 

 

 

Subtask 7.1 Conduct 

geomechanical 

measurements of the 

Maquoketa and Knox 

from the newly acquired 

core from Decatur, 

Illinois. 

 

(Zaluski, 2014), (Leetaru, 2012) 

Subtask 7.2 Conduct seal 

analysis of the 

Maquoketa and Knox 

cores (including core 

from Decatur Project 

and Hancock site). 

 

(Zaluski, 2014), (Leetaru, 2012) 

Subtask 7.3 Integrate 

different seal data 

including: wireline log 

(Zaluski, 2014), (Leetaru, 2012), 

(Zdan, 2013) 
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properties, 

geomechanical 

measurements, whole 

core, and seismic 

reflection data. 

 

Subtask 7.4 Carry out 

petrophysical analyses of 

a regionally distributed 

modern wireline logs in 

the two basin area to 

evaluate the continuity 

of the seal. 

 

(Lasemi, 2014), (Bowersox, 2014) 

Task 8 – Brine Containment 

 

 

Subtask 8.1 Use 

available brine data from 

the Knox and St. Peter 

and numerically model 

the dissolution of CO2 in 

brine and the interaction 

with carbonate reservoir 

rocks. 

 

(Park, 2011b), (Park, 2011a), 

(Zhu, 2011), (Zhu, 2012), (Zhu, 

2013), (Zhu, 2014) 

Task 9 – Mineralization 

Containment  

 

 

Subtask 9.1 Conduct 

sedimentologic and 

petrographic analysis of 

core and outcrop to 

develop a depositional 

model that could be a 

predictive tool for 

changes in the reservoir. 

 

(Yoksoulian, 2014), (Bowersox, 

2014), (Freiburg, 2012), 

(Freiburg, 2013), (Freiburg, in 

review) 

Subtask 9.2 Carry out 

laboratory analyses to 

identify the mineral 

(Yoksoulian, 2014) 
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components of the core. 

 

Subtask 9.3 Use core 

from different areas 

(including the acquired 

core from the Hancock 

Kentucky site and the 

Decatur Site) and do 

laboratory 

measurements of CO2 

mineral reactions.  

 

(Yoksoulian, 2014) 

Task 10 – Leakage Pathways 

 

 

Subtask 10.1 Review 

petrophysical analyses of 

all modern logs through 

the interval to determine 

possible indications of 

fractures. 

 

(Smith, 2014b), (Zaluski, 2014) 

Subtask 10.2 Evaluate 

the seal potential of 

different types of 

faulting found in the 

Illinois Basin. Work 

would involve calculating 

shale gouge ratios for 

several intervals using 

log data from the 

Hancock well. 

 

(Hickman, 2014a) 

Subtask 10.3 Develop a 

strategy to mitigate 

possible CO2 release. 

 

(Zaluski, 2014),  

Task 11 – Site Selection 

 

 

Subtask 11.1 Using the  In Final Report 
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results from the previous 

tasks, develop a best‐

practices manual for 

assessing the suitability 

of a site for CO2 

sequestration in the 

Cambro‐Ordovician. 

 

Subtask 11.2 Develop a 

series of GIS‐compatible 

maps showing areas of 

high and low potential 

for sequestration. 

 

In Final Report 

Task 12 – Risk Assessment 

 

 

Subtask 12.1 Use a FEP 

analysis approach to 

understand the 

uncertainty of 

developing a site. 

 

(Hnotttavange‐Telleen, 2013) 

Task 13 – Well Bore 

Management 

 

 

Subtask 13.1 Use 

geomechanics to assess 

risk for borehole 

breakthrough in existing 

wells. 

 

(Kirksey, 2013) 

 

 

Publications Generated on Project 

Adushita, Y., 2014a, Restoration of the Potosi Dynamic Model 2012, U.S. Department of Energy, Topical 
Report DOE/FE0002068‐13 20 p. 
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Adushita, Y., and V. Smith, 2014b, The Potosi reservoir model 2013, U.S. Department of Energy, topical 
Report DOE/FE0002068‐14 34 p. 

‐, 2014c, the Potosi reservoir model 2013c, property modeling update, U.S. Department of Energy, 
topical Report DOE/FE0002068‐16 48 p. 

Askari, Z., Lasemi, Y. and Leetaru, H. E, 2013, The Cambro‐Ordovician Prairie du Chien and Knox Groups 
in the Subsurface of Central Illinois: Facies, Reservoir Potential, and Correlation, Pittsburgh, PA, 
American Association of Petroleum Geologists Annual Meeting Abstracts. 

Barnes, D. A., and K.M. Ellett, 2014a, Geological Carbon Sequestration Storage Resource Estimates for 
the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA, U.S Department of Energy, 
Topical Report DOE/FE0002068‐6, 63 p. 

Barnes, D. A., and S. Zdan, 2014b, Regional CO2 storage resource assessment in a geologically complex, 
deep saline aquifer, the Middle Ordovician St. Peter Sandstone, Michigan Basin, USA., Austin TX.  

Bowersox, J. R., 2013, Evaluation of Phase 2 CO2 injection testing in the deep saline Gunter Sandstone 
reservoir (Cambrian–Ordovician Knox Group), Marvin Blan No. 1 Well, Hancock County, 
Kentucky, Kentucky Geological Survey, Series 12, Contract Report 53, 43 p.: 

Bowersox, J. R., and Lynch, M.J.,, 2010, Carbon storage tests by the Kentucky Geological Survey in 
western Kentucky – ownership, access, and liability issues: Energeia, v. 21, no. 3, p. 1–3. 

Bowersox, J. R., and Williams, D.A., 2014, Geology of the Kentucky Geological Survey Marvin Blan no. 1 
well, east‐central Hancock County, Kentucky, Kentucky Geological Survey, Series XII, Report of 
Investigations 25, 22 p.: 

Bowersox, J. R., Williams, D.A., Hickman, J.B., and Harris, D.C., 2011, CO2 storage in U.S. Midcontinent 
Cambro‐Ordovician carbonates: implications of the western Kentucky carbon storage test 
Geological Society of America Abstracts with Programs, v. 43. 

Bowersox, R. J. a. J. B. H., 2012, Part1:Evaluation of Phase 2 CO2 Injection Testing in the Deep Saline 
Gunter Sandstone Reservoir (Cambro‐Ordovician Knox Group), Marvin Blan No. 1 Well, Hancock 
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Sequestration Target Interval with Injected Fluids, U.S. Department of Energy, Washington, DC, 
Topical Report DOE/FE0002068‐3, 357 p. p. 

Ellett, K., Zhang, Q., Medina, C., Rupp, J., Wang, G., and Carr, T., 2013, Uncertainty in regional‐scale 
evaluation of CO2 geologic storage resources—comparison of the Illinois Basin (USA) and the 
Ordos Basin (China): Energy Procedia, v. 37, p. 5151‐5159. 
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